CARDIAC HYPERTROPHY IN POSTPUBERTAL LABORATORY RATS AFTER CONTROLLED RUNNING EXERCISE

Thesis for the Degree of M. A.
MICHIGAN STATE UNIVERSITY
KWOK - WAI HO
1970

LIBRAR K
Michigan Cots
University

ABSTRACT

CARDIAC HYPERTROPHY IN POSTPUBERTAL LABORATORY RATS AFTER CONTROLLED RUNNING EXERCISE

By

Kwok-Wai Ho

This study was designed to obtain in vitro anthropometric measurements of the cardiac muscle in postpubertal rats after different intensities of interval training.

Thirty-two male albino rats (Spartan Sprague-Dawley strain) were divided randomly into four equal groups, three exercise groups, each of which was subject to a different interval training program, and one control group. The animals were 71 days old at the start of the experiment.

For two weeks prior to the initiation of the study, the treatment animals were housed in spontaneous activity cages for foot conditioning and acclimatization to the laboratory. During the study, all the rats were maintained in sedentary cages. The three treatment groups were trained once daily, five days per week (Monday-Friday), for eight weeks. Training was performed in small animal controlled-running wheels.

At the end of the training period, the animals were fasted for twenty-four hours. They then were decapitated and their hearts were fixed in a 10 per cent formaldehyde solution. Afterwards, the ventricular length, the ventricular weight, the atrial weight, and the total heart weight of each animal were determined. A transverse slice of each heart was cut at a standard location and stained with Hematoxylin and Eosin. The slide was projected and the outline of the section was traced. From the tracing, the cross-sectional area, the ventricular chamber size, and the ventricular free wall area of the heart were measured with a planimeter.

The exercised animals had significantly larger heart measurements than the control group in regard to the ventricular length, the total heart weight, the ventricular weight, the atrial weight, and the left and right ventricular chamber area (P=.10). Among the exercised groups, the long interval training group had the largest right ventricular chamber area (P=.10). Measurements of the left ventricular chamber area showed that the long and the short interval training groups had larger chamber areas than the medium interval training group (P=.10). The short and the medium interval training groups had greater total heart weight, ventricular length, and ventricular weight in comparison to the long interval training group (P=.10). No

significant differences in the above mentioned variables were found between the short and the medium interval training groups.

CARDIAC HYPERTROPHY IN POSTPUBERTAL LABORATORY RATS AFTER CONTROLLED RUNNING EXERCISE

Ву

Kwok-Wai Ho

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirement
for the degree of

Master of Arts

Department of Health, Physical Education and Recreation

ACKNOWLEDGMENTS

This study is dedicated to all of you, the people I have met here, whose love and understanding is forever appreciated.

I would especially like to thank Dr. William

Heusner, my major advisor and Dr. Wayne Van Huss whose

advice and assistance made this study possible. I would

also like to thank the staff of the Human Energy Research

Laboratory at Michigan State University for their assistance in this study.

TABLE OF CONTENTS

Chaper															Page
I.	INTRODU	CTI	ON	•	•	•	•	•	•	•	•	•	•	•	1
II.	REVIEW	OF	LITE	ERAI	URI	Ξ.	•	•	•	•	•	•	•	•	3
III.	METHODS	•	•	•	•	•	•	•	•	•	•	•	•	•	16
IV.	RESULTS	•	•	•	•	•	•	•	•	•	•	•	•	•	21
v.	SUMMARY	, c	ONCI	LUSI	ONS	5, <i>I</i>	AND	REC	COMM	IENI	TTAC	ONS	S.	•	26
	Summ Conc Reco	lus	ions			•	•	•	•	•	•	•	•	•	26 27 28
BIBLIO	GRAPHY.	•	•	•	•	•	•	•	•	•	•	•	•	•	30
APPENDI	CES														
Appendi	L x														
Α.	Standar Intensi Postpub Running	ty ert	Endu	ırar and	ıce	Tra	aini	.ng .e F	Pro	gra s ir	am f	or		led-	
В.	Standar Intensi Postpub Running	ty ert	Endu al a	ırar and	ice	Tra	aini	.ng	Pro	ogra	am f	or			
с.	Standar Intensi Postpub Running	ty ert	Endu al a	ırar and	ıce	Tra	aini	.ng	Pro	gra	am f	or	:ol]	led-	40
D.	Basic D	ata	A]	ll <i>P</i>	Anir	nals	S .	•	•	•	•	•	•	•	41
Ε.	Herxhei Olympic												•	•	45

LIST OF TABLES

Table		Page
1.	Table of Mean Values for All Groups	22
A-1.	Standard Eight-Week, Short-Duration, High- Intensity Endurance Training Program for Postpubertal and Adult Male Rats in Controlled-Running Wheels	38
B-1.	Standard Eight-Week, Medium-Duration, Moderate- Intensity Endurance Training Program for Postpubertal and Adult Male Rats in Controlled-Running Wheels	39
C-1.	Standard Eight-Week, Long-Duration, Low- Intensity Endurance Training Program for Postpubertal and Adult Male Rats in Controlled-Running Wheels	40
D-1.	Basic DataAll Animals	41
E-1.	Herxheimer's Heart Size Data on the 1928 Olympic Athletes	45

LIST OF FIGURES

Figure										Page
1.	Sample	of	the	Projected	Cross	Section	•	•	•	19

CHAPTER I

INTRODUCTION

It is well known that vigorous physical exercise over an effective period may produce cardiac hypertrophy both in animal and human subjects. With hypertrophy, the heart enlarges its dimensions and its weight increases. The muscle fibers of the heart probably remain unchanged in quantity, but increase in diameter and length by an increase in the number of sarcomeres. The detailed biochemical process of cardiac hypertrophy is unknown. It is believed that the hypertrophy develops as a result of an increase in nucleic acids and protein synthesis, a process stimulated by elevated ATP (adenosine triphosphate) metabolism.

If one considers the heart as a muscular pump, its size and shape must affect the mechanics of its operation. There is no doubt that the hypertrophied athlete's heart is highly efficient. However, research in intact organisms on the adaptation of the cardiovascular system to muscular activity is limited by the techniques that can be used without impairing the subject's (particularly in

man) health or performance. An additional problem arises when the researcher attempts to control accurately different intensities of exercise in animal training. The interval training wheel for rats is designed to solve this problem by carefully controlling different intensities of running exercise for rats, as well as varying rest periods during the animals' interval running.

This study was conducted as an attempt to measure, in vitro, the anthropometric changes of the cardiac muscle in postpubertal rats following different intensities of interval training for eight weeks.

CHAPTER II

REVIEW OF LITERATURE

The most important phenomenon in cardiovascular adjustment during muscular activity is the increased blood flow to the exercising muscles. The increased flow is needed for several reasons: to supply more nutrients to the muscles as sources of energy for contraction, to remove waste products which otherwise would accumulate rapidly and impair the function of the muscle, and to permit a greater dissipation of heat produced by muscular activity. If circulation to the muscles does not increase, muscular contraction cannot be sustained for any significant length of time, and consequently exercise must stop. This increased cardiac output is achieved by an increase both in the number of heart beats per minute and in the volume of blood pumped with each beat (stroke volume). Therefore, repeated muscular activities increase work-loads both in ventricles and atria, and vigorous muscular activities over an effective period are believed to constitute the stimuli for the so-called physiological hypertrophy of the cardiac muscle in healthy individuals or animals.

As early as 1628, Harvery stated "the stronger, more muscular, and more substantial the build of men, thicker, heavier, more powerful and fibrous the heart, and the auricles and arteries are proportionally increased in thickness, strength, and all other respects" (37, p. 132).

Early observations of Bergmann (1884), Parrot (1893), Grober (1908), and Hesse (1921) showed that the size of the heart of an animal would reflect its degree of activity. Wild animals possess relatively larger hearts than domesticated animals, and birds which fly great distances or which fly clumsily with more wing actions have unusually large hearts (25, 77).

Dietlen and Schieffer reported that hard military work would cause the heart to increase in size (22, 25).

In 1896 before the use of X-ray, Henschen carried out his measurements by percussion and found an enlargement in the heart of ski runners (22, 25). Among the early researchers, Schott (1897) was the first to employ X-ray and found an unusual enlargement in athletes' hearts following a wrestling bout; however, inaccuracies were shown in his work (22, 25). The introduction of Moritz' (1908) orthodiagraph enabled Schieffer (1916) and Diethen (1919) to improve the accuracy of the observations. They reported that the area of the heart in habitual cyclists was greater than that in occasional cyclists or non-cyclists of the same body size and age (22, 25, 77).

Since, a lot of researches have been conducted to relate muscular activities with heart size. However, there is no agreement between the experimental results. The observations of Lee (1917) on Harvard oarsmen, of Cohn (1920) on returned soldiers, of Farrell (1929) on American transcontinental runners, of Eyster (1930) on athletes with prolonged athletic history, and Keys (1938) on college athletes showed that athletes and heavy workers have the same heart size as normal individuals of the same size and age (21, 27, 30, 53, 58). But many other researchers have found that vigorous athletic activities and hard physical labor produce cardiac muscle hypertrophy in men and animals (8, 22, 23, 24, 25, 38, 39, 41, 47, 48, 49, 59, 60, 77, 78, 82, 84, 85, 93).

Herrmann (1926) weighed the hearts of dogs and found that the average heart-weight ratio (per kilogram of body weight) was 7.98 gm/kg for normal mongrels, 13.4 for ten racing greyhounds, and 17.3 for the best racing greyhounds. He therefore concluded that heart hypertrophy, produced by exercise, is related to the degree of the exercise (39). X-ray studies of athletes' hearts usually have involved measuring the transverse diameter of the heart shadow. After examining several thousand athletes in various sports, Deutsch and Kauf reported that the athletes who participated in rowing, ski-running, and cycling had the largest hearts. They concluded that

the psychic strain and the excitement of certain sports could cause an enlargement of the heart (25). Hodges and Eyster reported that the transverse diameter of the heart had a higher correlation (.5738) with body weight than with age (.2371) or heart (.2140) (40).

Assuming that the heart was a sphere with radius equal to one-half of the transverse diameter of the heart shadow, Herxheimer calculated the heart volume to weight ratio of hundreds of top athletes (Appendix E) and concluded that exercises of strength, speed, or maximal effort will induce hypertrophy of skeletal muscle, but will only increase the heart mass to a small extent. However, exercises of vigorous endurance will lead to heart hypertrophy but will leave the body muscles unchanged in size (22, 25). Herxheimer's theory was emphasized by Steinhaus and was confirmed recently by Nocher and Reindell (64).

In general, cardiac enlargement (hypertrophy and dilation) appears first in the left heart and then in the right heart (59). In 1923 Herxheimer claimed that the heart would enlarge symmetrically on both sides of its vertical bisector and 1:2.2 was the ratio given of the transverse diameter of the right to the left segment of the heart after the enlargement (22). In 1919 under experimental conditions, Hiramatsu was the first to find hypertrophy in the right side of the heart (25).

Cureton published an extensive study of athletes' hearts in 1951 (22). He reported that track men who competed in long sprints (200, 400, and 800m) and swimmers who competed in the 200m and the 800m relay usually had a larger proportionate enlargement in the right transverse diameter. This is believed to be the result of the larger effort exerted by the right ventricle in ejecting blood into the lungs at times when the chest was constricted. Long distance runners generally had enlargement on the left side and would breath more easily and fully than the sprinters (22).

Other studies showed that hypertrophy developed in animals when they were subjected to induced anoxemia in a decompression chamber (80, 81, 83, 84, 86), and in men living at high altitudes (51, 70). The hypertrophy involved mainly the right ventricle and was produced presumably by the increased work load imposed by the pulmonary hypertension associated with hypoxia (81, 84). It was also shown that comparable anoxemia might result in long sprints, especially in swimming 200m or running 400m (22, 23). Thus, it is obvious that enlargement of the heart depends on the intensity of training, the type of training, and the duration of training. The sports which make the greatest demands on the circulatory system produce the greatest cardiac hypertrophy.

When hypertrophy develops, the number of fibers (nuclei) remains unchanged, but their diameter increases,

and the fibers lengthen by an increase in number of sarcomers (60). This is believed to be the result of an increase in nucleic acids and protein synthesis, a process stimulated by stronger ATP (adenosine triphosphate) metabolism. However, the obvious factor stimulating the development of myocardium hypertrophy is anaerobic ATP resynthesis occurring when the oxidizing phosphorylation of ATP directly corresponds to the needs of the functioning heart (59). In this so-called "physiologic" hypertrophy, which occurs in athletes or hard laborers, the weight of the heart rarely exceeds 500 gm, which has been designated as the critical heart weight by Linzbach (60).

However, when the heart is stimulated to do
heavier work for a long time period by some pathological
mechanism such as hypertension or aortic valvular disease,
it's weight will exceed this physiologic limit and may
reach 1,000 gm or more. If the hypertrophy is associated
with a normal ventricular chamber and residual blood
volume, it is described as concentric and occurs in the
early stages of chronic pressure load; e.g., vavular
stenosis or arterial hypertension. If the hypertrophy
is associated with a ventricular chamber and residual
blood volume larger than normal as in valvular regurgitation or myocardial disease, it is described as eccentric. Both concentric and eccentric hypertrophy are
generally referred to as pathologic hypertrophy. In
concentric hypertrophy, contrary to the classical concept,

there is an absolute increase in the number of fibers (more nuclei), which are only moderately thickened. Apparently, the increase in the number of muscle fibers is due to the longitudinal cleavage between points of anastomosis of the myocardial syncytium. In eccentric hypertrophy, the cardiac chamber is dilated with destruction and fibrosis of some muscle fibers. The surviving fibers undergo splitting and rearrangement, as in the concentric type, but attain a diameter greater than that of the concentric type when hearts of equal weight are compared (6, 60).

Experimental studies of the behavior and basic properties of hypertrophied hearts are few (34, 50). Experimental heart hypertrophy is usually produced by increasing the resistance to the ventricular ejection; e.g., increasing the resistance in the aorta or pulmonary artery. The response is characterized by a marked increase in the contractile function of the myocardium (estimated from the tension developed) with respect to the increase in the resistance (62).

Dieckhoff (1936) used the heart-lung preparation to study hypertrophied cat hearts and found a higher arterial pressure and cardiac output in them than in normal cat hearts (6, 50). Beznak also reported a higher cardiac output (by the direct Fick-method) in hypertrophied rat hearts when the rats were at rest.

However, he found no difference in the infusion rate between hypertrophied and normal rat hearts (9).

Geha, Kerr, Whitehorn and their co-workers claimed that hypertrophied heart muscle was capable of better performance than nonhypertrophied heart muscle (33, 50, 92). For given diastolic lengths, they found that a greater tension developed in the columnac carnae of the left ventricle of rat hearts which had been hypertrophied from repeated swimming to exhaustion (92). The maximal tension (per unit weight of papillary muscle) was also found to be significantly greater in the hypertrophied left ventricle of rats (50). In dogs, it was found that the hypertrophied right ventricle performed more work (per unit gross mass of the myocardium) than the normal right ventricle (33).

However, Grimm and his associates found no differences between hypertrophied and normal rat papillary muscle in tension production (per unit weight), water content, total protein concentration, or actomyosin concentration (35). Sandler and Dodge, who calculated the tension and stress of the inner wall of the left ventricle during a cardiac cycle by measuring the pressure, the dimensions, and the wall thickness of the ventricle from biplane angiocardiograms, also noted that the force per unit area of the ventricular wall in subjects with left cardiac hypertrophy was not different from those with normal left ventricles (73).

Another study reported that the oxygen consumption per minute per unit mass of the hypertrophied left ventricle was within the range of normal values, but the data did not permit the calculation of myocardial oxygen uptake per stroke because heart rates were not recorded (11). However, in dogs, the data of West indicated no difference in oxygen consumption per stroke per unit mass of tissue between normal and hypertensive animals (91). From these data, one might expect that the hypertrophied fibers of the heart would develop greater contractile force because of the increase in mass of the contractile tissues but not because of the increased functional capacity of the cellular elements. This was believed by Badeer (6) and may fall in the "second stage" of the "complex and wear" hypothesis, which states that the process of cardiac hypertrophy occurs in three stages. This hypothesis was proposed by Meerson in 1965 (62).

Cardiac performance is usually investigated by considering the size and shape of the heart which is regarded either as a pump made of muscle or as a muscle acting as a pump. Woods applied Laplace's law to evaluate the heart-wall tension in 1892 (94). Burch assumed a spherical shape for the left ventricle and assigned different volumes to demonstrate changes in the ventricular-wall tension (15, 16, 17). Burton and others also investigated the problem in the same manner (7, 18, 73).

In general, Laplace's law applies to a strained "membrane" separating two spaces of any shape. It states that if a slit is cut in the membrane, the two edges of the slit will be pulled apart with a force proportional to the length of the slit. The wall of the ventricle is a strained "membrane" when the heart contracts; so, a slit in the ventricular wall could be pulled apart. There is also a pressure gradient existing between the inner and outer ventricular wall. The equation is:

$$P = T(\frac{1}{R_1} + \frac{1}{R_2})$$
 (A)

Where P is the ventricular systolic blood pressure; T is the ventricular tension; and R_1 and R_2 are the "principal radii of curvature" at any point on the ventricular wall.

For the special case of a spherical ventricular wall, where the radii of curvature are equal $(R_1 = R_2)$, the general equation becomes:

$$P = \frac{2T}{R}$$
 (B)

Woods assumed that the thickness of the ventricular wall (t) at any point was proportional to the tension developed in the wall during systole; i.e.,

$$t = KT$$
 (C)

where K is a constant and is equal to the tension in a unit thickness of the wall. Substituting (C) into (B), one obtains:

$$P = \frac{2KT}{R}$$
 (18, 94)

According to Badeer, the force of contraction of the ventricular wall is defined as the integral of the force developed in the myocardium by a unit length of the circumference and the entire thickness of the wall of a given chamber over the whole period of systole. The mural force during systole is:

Mural force =
$$\overline{T}S = \frac{\overline{P} \cdot \overline{R}}{2}$$
 (#)

where:

T is the mean force per unit cross-sectional area of the wall,

S is the mean thickness of the wall,

 \overline{P} is the mean transmural pressure, and

 \overline{R} is the mean radius, during systole.

When hypertrophy develops, the thickness of the chamber wall increases. If the tension in the heart muscle remains unchanged, any increase in the mural force will be due to an increase in the thickness (S) rather than to an increase in the mean force per unit cross-sectional area of the wall (6).

Whether or not the hypertrophied heart will produce a greater tension per unit mass of its muscle than the normal heart is still unknown. However, there is no doubt that the hypertrophied athlete's heart is highly Trained athletes with heart beats over 200 per minute, systolic pressures up to 240 mm Hg without any disorders in the coronary blood circulation, stroke volumes as large as 200 ml and minute output as much as 35 liters have been recorded. Astrand has reported a maximum oxygen absorption of 5,800 cm³ in a well-trained athlete working under a 400-Watt load. The heart rate of a well-trained athlete can reach its maximum value within 5 to 8 seconds after the beginning of work, while in untrained subjects maximum rate occurs only after 30 to 40 Towards the end of the first second of work the trained athlete's heart rate reaches 75 per cent of its eventual maximum rate (59).

It is believed that the increased residual volume of the left ventricle is secondary to physiologic hypertrophy, in that it provides for an immediate increase in circulating blood when the athlete is put under stress. Therefore, the increase in the residual volume is not a sign of cardiac weakness (59, 60). Nocker, Reindell and Kenl showed that about one-third of the heart's energy is derived by oxidizing lactic acid when the subject is at rest. This fraction, however, can run up to 40, 61, and 56 per cent when the subject is subjected

to moderate work, strenuous work, and recovery respectively. Since the amount of lactate consumption depends on the mass of the heart muscle, the larger heart of the distance runner, by its increase in bulk, further contributes relief to the metabolic machinery by burning off the acid metabolites produced by the muscles (64).

CHAPTER III

METHODS

Thirty-two male albino rats (Spartan Sprague-Dawley strain) were randomly divided into four equal groups at 71 days of age:

- Group S--Short-duration (high-intensity endurance) training group.
- 2. Group M--Medium-duration (moderate-intensity endurance) training group.
- 3. Group L--Long-duration (low-intensity endurance) training group.
- 4. Group C--Control (sedentary) group.

For two weeks prior to the initiation of the study, the treatment animals were housed in spontaneous activity cages for foot conditioning and acclimatization to the laboratory. During the study, all of the animals were maintained in sedentary cages which offered no opportunity for exercise. Water and Wayne Lab Blocks were available ad libitum. The cage quarters and training facilities were kept at a constant temperature of 72°F; however, no attempt was made to control the humidity.

The treatment animals were trained in small animal controlled-running wheels once daily, five days per week (Monday-Friday), for eight weeks. The animals learned to run by avoidance-response-operant-conditioning. The controlled-running wheels and interval training programs were developed by the Human Energy Research Laboratory at Michigan State University.

Groups S, M, and L were trained with different training programs. A detailed breakdown of the training data is shown in Appendices A, B, and C. The performance data of each animal were recorded daily. Several animals were destroyed due to leg injury during training. The lighting in the training room was maintained at a dim level so that the light in each wheel (the conditioning stimulus) would have a more dramatic effect. All unnecessary noise was avoided during the daily training bouts.

When the eight-week training period was completed, the animals in all groups were fasted for twenty-four hours. After the twenty-four-hour fast, the animals were weighed and then decapitated. The heart with a small stem of the aorta still attached was quickly removed. The other great vessels were roughly trimmed away. The blood was expelled from the chambers, and the heart was washed free of blood with distilled water. Each heart then was suspended by a thread from the aortic stem and fixed in a 10 per cent formaldehyde solution. After the fixation period of four days, the great vessels of each heart were

carefully trimmed. The surface of the heart was flushed, and the atria were removed as cleanly as possible by careful dissection along the atrioventricular groove. The length of the ventricle from the apex to the entrance of the pulmonary artery was measured by calipers. The heart was transversely dissected along a line which was 55 per cent of the ventricular length from the apex. All measurements and dissections were performed on the ventral aspect of the heart.

The heart sections were blotted dry, and the total heart weight was determined. Then, the atriums were removed from the balance and total ventricular weight was determined. The total atrial weight was obtained by subtraction.

The sections containing the apex of the heart were then dehydrated in graded concentrations of alcohol. Following dehydration, they were embedded in paraffin and sectioned on a microtome at eight microns per slice starting from the end opposite to the apex. The first ten slices of each heart were discarded while the eleventh slice was stained with Hematoxylin and Eosin.

After staining, the slides were projected and magnified approximately 10.76 times on a solid background, 46 inches away, by a Sawyer 500R slide projector. The outline of each cross section was traced and the respective areas were measured by planimeter. Figure 1 shows how the various ventricular areas were arbitrarily

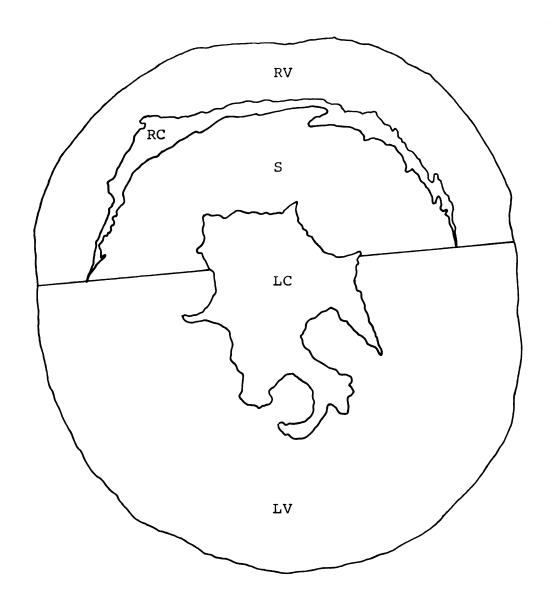


Figure 1.--Sample of the Projected Cross Section of Animal No. S-1.

RV = Right Ventricular Free Wall Area

RC = Right Ventricular Chamber Area

S = Septum Area

LC = Left Ventricular Chamber Area

LV = Left Ventricular Free Wall Area

!
1
,
1
,
ļ
I

separated for measurement purposes by an extended straight line drawn through the two extremities of the right ventricular chamber. Although in this way the left ventricular free wall and the septum would seem to be separated, they were considered and measured as one area (the left ventricle-septum area) as there is no anatomical evidence for such a line of demarcation (32, 52). Fulton and his associates have emphasized the usefulness of the ratio of the left ventricular free wall plus septum divided by right ventricular free wall (LV + S/RV), for the septum increases in proportion to the increase in the weight of the free wall of either ventricle (32, 52).

The method of separation used in this study provides technical simplification and creates no ambiguities when different ratios are compared, for the technique yields quite uniform results (32, 52).

Mean values of the data for each treatment group were calculated. Analysis of variance was used to analyze the data. Student-Newmen-Keuls statistical technique was used to compare the differences between individual groups due to training. The probability of making a type I error was held to the .10 level for this investigation; however, due to the small sample size the same observation was made whenever $P \leq .25$. All raw data are given in Appendix D.

CHAPTER IV

RESULTS

The measurement of ventricular volume has long been a technical problem. Many efforts have been made since the discovery of the X-ray, but none have been satisfactory to all investigators (75). Such a technique is extremely important, for without it one cannot determine the overall power and performance of the heart muscle. Indeed, Starling concluded that when the heart was free from its hormonal and nervous influences, its energy during systole was directly proportional to the diastolic volume (76).

The data of the present study agree with the general opinion that vigorous physical exercise over an effective period produces cardiac hypertrophy. The data in Table 1 show that in general hypertrophied hearts increase in weight, length, total cross-sectional area, and both left and right ventricular chamber areas.

The total heart weight of all exercised animals, both on an absolute and a relative basis, was 22 per cent greater than that of the controls. Such a difference,

20.076*

∨ × , ,

Ü

ر د ပ

.403 .410 .414 .286

Atria Weights 10-3 Body Weight Ventricle Weights Body Weight 20.009* Σ ∨ , , 3.618 3.648 3.587 3.006 ഗ v Ö U Ö Total Heart Weight Body Weight 23.225* **S** C < L 4.059 4.002 3.292 × ∨ 4.021 .162 gms. Atria Weight 15.421* .165 .162 .121 , , ر د Σ v ပ O Ventricle Weights 1.454 gms. 7.323* Σ v Σ ~ 1.467 1.403 1.274 ч ഗ S TABLE 1. -- Table of mean values for all groups. v v v υ υ ပ ы 1.616 gms. Total Heart Weight 21.351* 1.565 1.395 Σ ' 1.632 Σ S Ч S v v V v O Ö н Ventricle Length 1.894 cms. 12.580* 1.887 1.862 1.734 s v Σ ' , , **S** E v ပ U ပ ы н S.N.K. Test Groups S Σ H ပ [24

S.N.K. Test = Student-Newmen-Keuls Test. *P < .10.

L Ventricle and Septum Area R Ventricle 2.1366# 4.0796 4.3326 3.6129 3.5847 Area L Ventricle and Septum Area (L & R Ventricle Area Minus R Ventricle Area cm³s. 0.9671 93.9 92.6 91.0 98.6 Right Ventricle Area cm³s. 1.0280 23.2 23.9 25.2 24.8 L & R Ventri-cles and Septal Area (Total Section Minus L & R Chamber cm³s. Areas) 0.4934 117.1 119.5 113.4 116.1 cm³s. Right Chamber 2.7634* Area н Σ ' လ ы ы 8.9 ر ن 8.2 ٧ 6.3 4.7 v v ပ ပ Σ ß 14.1 cm³s. Left Chamber Area 2.5008* Σ ' S П S ы 11.6 13.5 8.9 v v v v U ပ υ Σ Σ 138.0 cm³s. Total Section Area 1.9452# 137.8 127.0 137.3 Groups M(Medium) Duration L(Long Duration) S(Short Duration) C(Control) S.N.K. Test Ŀ

TABLE 1 (cont'd).

*P < .10. #P < .25 but P > .10. S.N.K. Test = Student-Newmen-Keuls Test.

however, is far less than those which have been found in some pathologically enlarged human hearts. If a general comparison can be made between rats and men, this difference would fall below the "critical heart weight" of Linzbach (60).

The cross-sectional areas of the hearts of the exercised animals also show that enlargements of the left and right ventricular chamber areas are associated with increased total heart weight or ventricle weight. These cross-sectional differences do not occur in concentric or eccentric types of pathological hypertrophy.

Among the exercised groups, the long-duration running group had significantly smaller absolute ventricular length, total heart weight, and ventricular weight than either the medium- or the short-duration running groups ($P \le .10$) (Table 1). This group also had a significantly larger mean right ventricular chamber area ($P \le .10$) and a somewhat lower ratio of left ventricular free wall plus septum area divided by right ventricular free wall ($P \le .25$). Thus, it may be hypothesized from the data of this study that there may have been a tendency toward right ventricle domination in the long-duration running group.

The exercised animals showed significantly different values from those of the control group in regard to the ventricular length, the total heart weight, the ventricular weight, the atrial weight, and the left and

right ventricular chamber area (P = .10). Among the exercised groups, the long interval-training group had a larger mean right ventricular chamber than either the short or the medium group (P = .10). Measurements of the left ventricular chamber showed that the long and short groups had larger chambers than the medium interval-training group (P = .10). Both the short and the medium interval-training groups had greater total heart weight, ventricle length, and ventricle weight than the long training group (P = .10).

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

This study was designed to obtain in vitro anthropometric measurements of the cardiac muscle in postpubertal rats after different intensities of interval training.

Thirty-two male albino rats (Spartan Sprague-Dawley strain) were divided randomly into four equal groups—three exercise groups, each of which was subject to a different interval training program, and one control group. The animals were 71 days old at the start of the experiment.

For two weeks prior to the initiation of the study, the treatment animals were housed in spontaneous activity cages for foot conditioning and acclimatization to the laboratory. During the study, all the rats were maintained in sedentary cages. The three treatment groups were trained once daily, five days per week (Monday-Friday), for eight weeks. Training was performed in small animal controlled running wheels.

		1
		1
		ļ

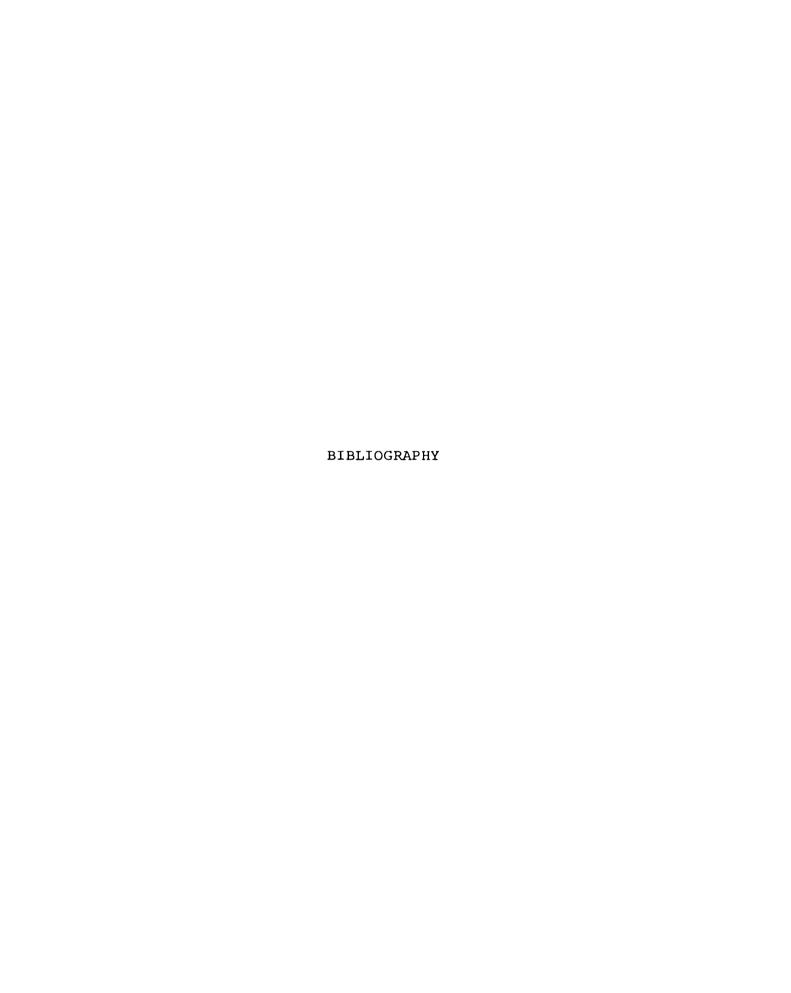
At the end of the training period, the animals were fasted for twenty-four hours. They then were decapitated and their hearts were fixed in a 10 per cent formaldehyde solution. Afterwards, the ventricular length, the ventricular weight, the atrial weight, and the total heart weight of each animal were determined. A transverse slice of each heart was cut at a standard location and stained with hematoxylin and eosin. The slide was projected and the outline of the section was traced. From the tracing, the cross-sectional area, the ventricular chamber size, and the ventricular free wall area of the heart were measured with a planimeter.

Mean values of the data for each treatment group were calculated. Analysis of variance was used to analyze the data. Student-Newman-Keuls statistical technique was used to compare the differences between individual groups due to training. The probability of making a type I error was held to the .10 level for this investigation; however, due to the small sample size the same observation was made whenever $P \leq .25$.

Conclusions

The results of this study indicate that vigorous physical exercise over an eightweek period produces cardiac hypertrophy in postpubertal laboratory rats.

- 2. The hypertrophied hearts increase in weight, length, total cross-sectional area, and both left and right ventricular chamber areas.
- 3. Among the exercised groups, the long-duration running group had significantly smaller absolute ventricular length, total heart weight, and ventricular weight than either the medium— or the short-duration running group. This group also had a significantly larger mean right ventricular chamber area and a somewhat lower ratio of the left ventricular free wall plus septum area divided by right ventricular free wall.


Recommendations

- 1. The physiological and mechanical details pertaining to running in rats are unknown. It will be necessary, therefore, to use a variety of different training programs in order to better define aerobic and anaerobic types of exercise for rats. Such definition is needed in order to compare the effects of different exercise programs on cardiac hypertrophy.
- 2. Experience has shown that the ability of rats to learn to run in a forced-exercise program and their performance while running on a

particular program may be strain specific.

Learning and training programs developed for
a particular strain may not be suitable for
another strain of rats. The researcher should
bear this in mind if replication is attempted.

- 3. The method used to dissect the ventricles transversely was not ideal due to errors in sectioning. Thus, measurement on the total cross-sectional area may not have been absolutely accurate. A better method must be sought.
- 4. In addition, only twenty slides were satisfactory and complete enough to illustrate the total cross-sectional area from the total of twenty-seven hearts which were sectioned and stained. Therefore, modification of the histology technique is needed.

BIBLIOGRAPHY

- Anson, B. J. Morris' Human Anatomy. 12 Edition. The Beatiston Division McGraw-Hall Book Company, p. 635, 1960.
- 2. Arvidsson, H. Angiocardiographic determination of left ventricular volume. Acta Radiol. 56:321, 1961.
- 3. Asmussen, E., and Nielsen, M. Cardiac output during muscular work and its regulation. Physiol. Rev. 35:778, 1955.
- 4. Badeer, H. S. The stimulus to hypertrophy of the myocardium. Circulation. 30:128, 1964.
- 5. Badeer, H. S. Effect of heart size on the oxygen uptake of the myocardium. Am. Heart Journal. 60:948, 1960.
- 6. Badeer, H. S. Biological significance of cardiac hypertrophy. Am. J. Cardiol. 14:133, 1964.
- 7. Badeer, H. S. Contractile tension in the myocardium. Am. Heart J. 66:432, 1963.
- 8. Bardeen, C. R. Determination of the size of the heart by X-rays. Am. J. Anatomy. 23:423, 1918.
- 9. Beznak, M. Cardiac output in rats during the development of cardiac hypertrophy. Circulation Res. 6:207, 1958.
- 10. Bevergard, S., Holmgren, A. and Jonsson, B. Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position. Acta Physiol Scandinav. 57:26, 1963.

- 11. Bing, R. J., Hammond, M. M., Handelsma, J. C., Powers, S. R., Spencer, F. C., Eckenholf, J. E., Goodale, W. T., Hafkenschiel, J. H., and Kety, S. S. The measurement of coronary blood flow, oxygen consumption and efficiency of the left ventricle in man. Am Heart J. 38:1, 1949.
- 12. Braunwald, E., Ross, J. Jr., Sonnenblick, E. H.

 Mechanisms of Contraction of the Normal and

 Failing Heart. Little, Brown and Co. Boston,

 1967.
- 13. Braunwald, E., Goldblatt, A., Harrison, D. C., and Mason, D. T. Studies on cardiac dimensions in intact, unanesthetized man: III. Effects of muscular exercise. Circulation Res. 13:460, 1963.
- 14. Braunwald, E., Sonnenblick, E. H., Ross, J., Glick, G., and Epstein, S. E. An analysis of the cardiac response to exercise. Physiology of Muscular Exercise. Am. Heart Association Monograph, No. 15. American Heart Association, Inc. N.Y., 1967.
- 15. Burch, G. E. Theoretic consideration of the time course of pressure developed and volume ejected by the normal and dilated left ventricle during systole. Am. Heart J. 50:352, 1955.
- 16. Burch, G. E., Ray, C. T., and Cronvich, J. A. Certain mechanical peculiarities of the human cardiac pump in normal and diseased states. <u>Circulation</u>. 5:504, 1952.
- 17. Burch, G. E. The dilated heart. A. M. A. Arch. Int. Med. 96:571, 1955.
- 18. Burton, A. C. The importance of shape and size of the heart. Am. Heart J. 54:801, 1957.
- 19. Chapman, C. B., Baker, O., Reynolds, J., and Bonte, F. J. Use of biplane cinefluorography for measurement of ventricular volume. Circulation. 18:1105, 1958.
- 20. Chiasson, R. B. The Laboratory Anatomy of the White Rat. Dubuque, Iowa, Brown C. Paul. 1958.
- 21. Cohn, A. E. An investigation of the size of the heart in soldiers by teleoroentgen method. Arch. Int. Med. 25:499, 1920.

- 22. Cureton, T. K. <u>Physical Fitness of Champion Athletes</u>. The University of Illinois Press, Urbana, 1951.
- 23. Cureton, T. K. The hearts of athletes. Illinois Med. J. 99:143, 1951.
- 24. Currens, J. H. and White, P. D. Half a century of running. New England J. Med. 265:988, 1961.
- 25. Deutsch, F. and Kauf, E. <u>Heart and Athletics</u>. C. V. Mosby Company, St. <u>Louis</u>, 1927.
- 26. Epstein, S. E., Robinson, B. F., Kahler, R. L., and Braunwald, E. Effects of beta-adrenergic blockade on the cardiac response to maximal and submaximal exercise in man. J. Clin. Invest. 44:1745, 1965.
- 27. Eyster, J. A. E. Further studies in cardiac hypertrophy. Am. J. Physiol. 93:647, 1930.
- 28. Eyster, J. A. E. Experimental and clinical studies in cardiac hypertrophy. J. Am. Med. Assoc. 91:1881, 1928.
- 29. Eyster, J. A. E., Meek, W. J., and Hodges, F. J. Cardiac changes subsequent to experimental aortic lesions. Arch. Int. Med. 39:536, 1927.
- 30. Farrell, J., Langan, P., and Gordon, B. A roentgen ray study of a group of long-distance runners. Am. J. Med. Sci. p. 394, 1929.
- 31. Friedman, C. E. The residual blood of the heart.

 Am. Heart J. 39:397, 1950.
- 32. Fulton, R. M., Hutchinson, E. C., and Jones, A. M. Ventricular weight in cardiac hypertrophy.

 Brit. Heart J. 14:413, 1952.
- 33. Geha, A. S., Duffy, J. P., and Swan, H. J. C. Relation of increase in muscle mass to performance of hypertrophied right ventricle in the dog.

 Circulation Res. 19:255, 1966.
- 34. Grant, R. P. Aspects of cardiac hypertrophy. Am. Heart J. 46:154, 1953.
- 35. Grimm, A. F., Kubota, R., and Whitehorn, W. V.
 Properties of myoeardium in cardiomegaly.
 Circulation Res. 12:118, 1963.

- 36. Harrison, D. C., Goldblatt, A., and Braunwald, E. Studies on cardiac dimensions in intact, unanesthetized man: I. Description of techniques and their validation. Circulation Res. 13:448, 1963.
- 37. Harvey, W. An anatomical dissertation upon the movement of the heart and blood in animals.

 An English Translation with Annotations by leake Chauncey D. Charles C. Thomas, Publisher. p. 132, 1928.
- 38. Hatai, S. S. Anatom. Record. 9:647, 1915.
- 39. Herrmann, G. R. <u>Proc, Soc. Exper. Biol. and Med.</u> 23:856, 1926.
- 40. Hodges, P. C., and Eyster, J. A. E. Estimation of transverse cardiac diameter in man. Arch. Internal. Med. 37:707, 1926.
- 41. Hollman, W. Work report.
- 42. Huxley, H. E. The mechanism of muscular contraction. Scient. American. 213:18, 1965.
- 43. Huxley, H. E. Contractile structure of cardiac and skeletal muscle. Circulation. 34:328, 1961.
- 44. Huxley, H. E. The contraction of muscle. Scient.
 American. 199:67, 1958.
- 45. Imperial, E. S., Levy, M. N., and Zieske, H. Jr.
 Outflow resistance as an independent determinant of cardiac performance. <u>Circulation Res</u>.
 9:1148, 1961.
- 46. Jones, R. H. Beriberi heart disease. <u>Circulation</u>. 19:275, 1959.
- 47. Karpovich, P. V. Physiology of Muscular Activity. W. B. Saunders Company. 1959.
- 48. Karvonen, M. J. "Training and the Heart" The Lancet. p. 897, April, 1958.
- 49. Kazno, Fitamura. The role of sport activities in the prevention of cardiovascular malfunction.

 Proceedings of International Congress of Sport
 Sciences. The Japanese union of sport science.
 Tokyo. p. 79, 1964.

- 50. Kerr, A., Winterberger, A. R., and Grambattista, M. Tension developed by papillary muscles from hypertrophied rat hearts. Circulation Res. 9:103, 1961.
- 51. Kerwin, A. J. Observation on the heart size of natives living at high altitudes. Am. Heart J. 28:69, 1944.
- 52. Kevin, E. B., Rowlands, D. T., and Scott, R. C.
 Observations on the assessment of cardiac hypertrophy utilizing a chamber partition technique. Circulation. 23:558, 1966.
- 53. Keys, A., and Friedell, H. L. Size and stroke of the heart in young men in relation to athletic activity. Science. 88:566, 1938.
- 54. Kissane, R. W. Area of the body surface and measurements of the normal heart in children. Arch. Internal. Med. 45:241, 1930.
- 55. Kjellberg, S. R., Lonroth, H., and Rudhe, U. The effect of various factors on the roentgenological determination of the cardiac volume. Acta radiol. 35:413, 1951.
- 56. Krames, B. B., and Van Liere, E. J. The heart weight and ventricular weights of normal adult albino rats. Anat. Rec. 156:461, 1966.
- 57. Latimer, H. B. The weight and thickness of the two ventricular walls in the newborn dog heart.
 Anatomical Rec. 152:225, 1965.
- 58. Lee, R. I. The effect of athletics on the heart: the athletic heart. Am. Phys. Ed. Rev. 22:166, 1917.
- 59. Letunov, S. P. Effect of many years of sport activities on the cardiovascular system. Proceedings of International Congress of Sport Sciences.

 The Japanese union of sport sciences, Tokyo. p. 66, 1964.
- 60. Linzbach, A. J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 5:370, 1960.
- 61. Louis, N. Katz. The performance of the heart. Circulation. 21:483, 1960.

- 62. Meerson, F. Z. A mechanism of hypertrophy and wear of the myocardium. The Am. J. Cardiol. 15:755, 1965.
- 63. Mitchell, J. H. Mechanisms of adaptation of the left ventricle to muscular exercise. Pediatrics. 32:660, Oct. 1963.
- 64. Nocker, J., Reindell, H., and Kenl, J. The adaptation of the body to training for endurance.

 Proceedings of International Congress of Sport
 Science, The Japanese union of sport sciences,
 Tokyo. p. 135, 1964.
- 65. Pallandin, A. V. Biochemistry of muscle training.
 Science. 102:576, 1945.
- 66. Patterson, S. W., and Starling, F. H. On the mechanical factors which determine the output of ventricles. J. Physiol. 48:357, 1914.
- 67. Piper, H., and Starling, E. H. The regulation of the heart beat. J. Physiol. 48:465, 1914.
- 68. Robinson, B. F., Epstein, S. E., Kahler, R. L., and Braunwald, E. Circulatory effects of acute expansion of blood volume: Studies during maximal exercise and at rest. <u>Circulation Res</u>. 19:26, 1966.
- 69. Roesler, H. A roentgenotogical study of the heart size in athletics. Am. J. Roentgenology and Radium Therapy. 38:849, Dec. 1939.
- 70. Rotta, A. Physiologic conditions of the heart in the natives of high altitudes. Am. Heart J. 33:669, 1947.
- 71. Rushmer, R. F. Constancy of stroke volume in ventricular response to exertion. Am. J. Physiol. 196:745, 1959.
- 72. Rushmer, R. F., Smith, O., and Franklin, D. Mechanisms of cardiac control in exercise. <u>Circulation</u>
 Res. 7:602, 1959.
- 73. Sandler, H., and Dodge, H. T. Left ventricular tension and stress in man. <u>Circulation Res.</u> 13:91, 1963.
- 74. Smith, B. Teleoroentgen measurement of hearts of normal soldiers. Am. Internal. Med. 25:522, May, 1920.

- 75. Soloff, L. A. On measuring left ventricular volume. Am. J. Cardio. 18:2, 1966.
- 76. Starling, E. H. The Linacre Lecture on the Law of the Heart. London, Longmans, Green, 1918.
- 77. Steinhaus, A. H. Chronic effects of exercise.
 Physiol. Rev. 13:103, 1933.
- 78. Steinhaus, A. H., Kirmiz, J. P., and Laurttsen, K. Studies in the physiology of exercise, VIII. The chronic effects of running and swimming on the hearts of growing dogs as revealed by roentgenography. Am. J. Physiol. 99:487, 1932.
- 79. Symposium on the regulation of the performance of heart. Physiol. Rev. 35:90-168, 1955.
- 80. Tappan, D. V., and Reynafarje, B. Tissue manifestations of adaptation to high altitudes. Am. J. Physiol. 190:99, 1957.
- 81. Valdivia, E. Right ventricular hypertrophy in guinea pigs exposed to simulated high altitude. Circulation Res. 5:612, 1957.
- 82. Van Liere, E. J., and Northup, D. W. Cardiac hypertrophy produced by exercise in albino and in hooded rats. J. Appl. Physiol. 11:91, 1957.
- 83. Van Liere, E. J. The effect of anoxemia on the size of the heart as studies by the X-ray. Am. J. Physiol. 82:727, Nov. 1927.
- 84. Van Liere, E. J., Krames, B. B., and Northup, D. W. Differences in cardiac hypertrophy in exercise and in hypoxia. <u>Circulation Res</u>. 16:244, 1965.
- 85. Van Liere, E. J., and Horne, A. F. Thyroxin and exercise on heart size in rats. Federation Proc. 14:155, 1955.
- 86. Van Liere, E. J. The effect of prolonged anoxemia on the heart and spleen in the mammal. Am. J. Physiol. 116:290, 1936.
- 87. Wachstein, M. Glycogen storage disease prodominantly involving the heart. Am. J. M. Se. 214:401, 1947.

- 88. Wang, Y., Shepherd, J. T., Marshall, R. J., Rowell, L., and Taylor, H. L. <u>Circulation</u>. 24:1064, 1961.
- 89. Wang, Y., Marshall, R. J., and Shepherd, J. T. Stroke volume in the dog during graded exercise. Circulation Res. 8:558, 1960.
- 90. Webster, B., and Cooke, C. Morphologic changes in the heart in experimental myxedema. Arch. Int.

 Med. 58:269, 1936.
- 91. West, J. W., Mercker, H., Wendel, H., and Foltz, E. L. Effects of renal hypertension on coronary blood flow, cardiac oxygen consumption and related circulatory dynamics of the dog. Circulation Res. 7:476, 1959.
- 92. Whitehorn, W. V., Grimmenga, A. F. Effect of exercise on properties of the myocardium. (abstr.)
 J. Lab. Clin. Med. 48:959, 1956.
- 93. Wolffe, J. B., and Mueller, G. W. The heart of the athlete. Phy. Educator. 6:3, May, 1949.
- 94. Woods, R. H. A few applications of a physical theorem to membranes in the human body in a state of tension. J. Anat. & Physiol. 26:302, 1892.

APPENDIX A

STANDARD EIGHT-WEEK, SHORT-DURATION, HIGH-INTENSITY ENDURANCE TRAINING PROGRAM FOR POSTPUBERTAL AND ADULT MALE RATS IN CONTROLLED-RUNNING WHEELS

TABLE A-1.--Standard eight-week, short-duration, high-intensity endurance training program for postpubertal and adult male rats in controlled-running wheels.

		•	ion (Time (sec)	Repetitions per Bout	uts	een n)	<u> </u>	. (ft/	Time of (min:sec)	ns TER	Work Time TWT
	f Wk.	of Tr.	erat (sec	Time sec)	Time	itio	f Bo	Betw (mi	(ma	peed		Exp utio	
Wk.	Day of	рау о	Acceleration Time (sec)	Work Time (min:sec)	Rest	Repet Bout	No. of Bouts	Time Between Bouts (min)	Shock (ma)	Run Speed sec)	Total Prog.	Total Exp. Revolutions	Total (sec)
1	1=M 2=T 3=W 4=T 5=F	1 2 3 4 5	1.0 1.0 1.0 1.0	00:10 00:10 00:10 00:10 00:10	10 10 10 10	40 40 40 40 40	3 3 3 3	5.0 5.0 5.0 5.0	1.2 1.2 1.2 1.2	2.0 2.0 2.0 2.5 2.5	39:45 39:45 39:45 39:45 39:45	600 600 600 750 750	1200 1200 1200 1200 1200
2	1=M 2=T 3=W 4=T 5=F	6 7 8 9 10	1.0 1.0 1.0 1.0	00:10 00:10 00:10 00:10 00:10	10 10 10 10	40 40 40 40	3 3 3 3	5.0 5.0 5.0 5.0	1.2 1.2 1.2 1.2	2.5 3.0 3.0 3.0 3.0	39:45 49:30 49:30 49:30	750 900 900 900 900	1200 1200 1200 1200 1200
3	1=M 2=T 3=W 4=T 5=F	11 12 13 14 15	1.0 1.5 1.5 1.5	00:10 00:10 00:10 00:10 00:10	10 15 15 15 15	40 40 40 40 40	3 3 3 3	5.0 5.0 5.0 5.0	1.2 1.0 1.0 1.0	3.0 3.5 3.5 3.5 3.5	49:30 59:15 59:15 59:15 59:15	900 1050 1050 1050 1050	1200 1200 1200 1200 1200
. 4	1=M 2=T 3=W 4=T 5=F	16 17 18 19 20	1.5 1.5 1.5 1.5	00:10 00:10 00:10 00:10 00:10	15 20 20 20 20	40 34 34 34 34	3 3 3 3	5.0 5.0 5.0 5.0	1.0 1.0 1.0 1.0	3.5 4.0 4.0 4.0	59:15 60:00 60:00 60:00 60:00	1050 1020 1020 1020 1020	1200 1020 1020 1020 1020
5	1=M 2=T 3=W 4=T 5=F	21 22 23 24 25	1.5 1.5 1.5 1.5	00:10 00:10 00:10 00:10 00:10	20 25 25 25 25 25	34 22 22 22 22	3 4 4 4 4	5.0 2.5 2.5 2.5 2.5	1.0 1.0 1.0 1.0	4.0 4.5 4.5 4.5	60:00 57:10 57:10 57:10 57:10	1020 990 990 990 990	1020 880 880 880 880
6	1=M 2=T 3=W 4=T 5=F	26 27 28 29 30	1.5 1.5 1.5 1.5	00:10 00:10 00:10 00:10 00:10	25 30 30 30 30	22 14 14 14 14	4 5 5 5 5	2.5 2.5 2.5 2.5 2.5	1.0 0.8 0.8 0.8	4.5 5.0 5.0 5.0 5.0	57:10 54:10 54:10 54:10 54:10	990 875 875 875 875	880 700 700 700 700
7	1=M 2=T 3=W 4=T 5=F	31 32 33 34 35	1.5 2.0 2.0 2.0 2.0	00:10 00:10 00:10 00:10 00:10	30 35 35 35 35	14 10 10 10	5 6 6 6	2.5 2.5 2.5 2.5 2.5	0.8 0.8 0.8 0.8	5.0 5.5 5.5 5.5	54:10 54:00 54:00 54:00 54:00	875 825 825 825 825	700 600 600 600 600
8	1=M 2=T 3=W 4=T 5=F	36 37 38 39 40	2.0 2.0 2.0 2.0 2.0	00:10 00:10 00:10 00:10 00:10	35 40 40 40 40	10 7 7 7 7	6 7 7 7 7	2.5 2.5 2.5 2.5 2.5	0.8 0.8 0.8	5.5 6.0 6.0 6.0	54:00 51:10 51:10 51:10 51:10	825 735 735 735 735	600 490 490 490 490

APPENDIX B

STANDARD EIGHT-WEEK, MEDIUM-DURATION, MODERATE-INTENSITY ENDURANCE TRAINING PROGRAM FOR POSTPUBERTAL AND ADULT MALE RATS IN CONTROLLED-RUNNING WHEELS

TABLE B-l.--Standard eight-week, medium-duration, moderate-intensity endurance training program for postpubertal and adult male rats in controlled-running wheels.

Wk.	Day of Wk.	Day of Tr.	Acceleration Time (sec)	Work Time (min:sec)	Rest Time (sec)	Repetitions per Bout	No. of Bouts	Time Between Bouts (min)	Shock (ma)	Run Speed (ft/ sec)	Total Time of Prog. (min:sec)	Total Exp. Revolutions TER	Total Work Time (sec) TWT
1	1=M 2=T 3=W 4=T 5=F	1 2 3 4 5	1.0 1.0 1.0 1.0	00:10 00:10 00:10 00:10 00:10	10 10 10 10	40 40 40 28 28	3 3 4 4	5.0 5.0 5.0 5.0	1.2 1.2 1.2 1.2	2.0 2.0 2.0 2.5 2.5	39:45 39:45 39:45 51:40 51:40	600 600 600 700 700	1200 1200 1200 1120 1120
2	1=M 2=T 3=W 4=T 5=F	6 7 8 9 10	1.0 1.0 1.0 1.0	00:10 00:10 00:10 00:10 00:10	10 10 10 10	28 27 27 27 27	4 4 4 4	5.0 5.0 5.0 5.0	1.2 1.2 1.2 1.2	2.5 3.0 3.0 3.0 3.0	51:40 50:20 50:20 50:20 50:20	700 810 810 810 810	1120 1080 1080 1080 1080
3	1=M 2=T 3=W 4=T 5=F	11 12 13 14 15	1.0 1.5 1.5 1.5	00:10 00:10 00:10 00:10 00:10	10 10 10 10	27 26 26 26 26	4 4 4 4	5.0 5.0 5.0 5.0	1.2 1.0 1.0 1.0	3.0 3.5 3.5 3.5 3.5	50:20 49:00 49:00 49:00 49:00	810 910 910 910 910	1080 1040 1040 1040 1040
4	1=M 2=T 3=W 4=T 5=F	16 17 18 19 20	1.5 1.5 1.5 1.5	00:10 00:15 00:15 00:15 00:15	10 15 15 15	26 19 19 19	4 4 4 4	5.0 5.0 5.0 5.0	1.0 1.0 1.0 1.0	3.5 3.5 3.5 3.5 3.5	49:00 52:00 52:00 52:00 52:00	910 997 997 997 997	1040 1140 1140 1140 1140
5	1=M 2=T 3=W 4=T 5=F	21 22 23 24 25	1.5 1.5 1.5 1.5	00:15 00:15 00:15 00:15 00:15	15 15 15 15	19 14 14 14 14	4 5 5 5 5	5.0 5.0 5.0 5.0	1.0 1.0 1.0 1.0	3.5 4.0 4.0 4.0	52:00 53:45 53:45 53:45 53:45	997 1050 1050 1050 1050	1140 1050 1050 1050 1050
6	1=M 2=T 3=W 4=T 5=F	26 27 28 29 30	1.5 1.5 1.5 1.5	00:15 00:20 00:20 00:20 00:20	15 20 20 20 20	14 11 11 11	5 5 5 5	5.0 5.0 5.0 5.0	1.0 0.8 0.8 0.8	4.0 4.0 4.0 4.0	53:45 55:00 55:00 55:00 55:00	1050 1100 1100 1100 1100	1050 1100 1100 1100 1100
7	1=M 2=T 3=W 4=T 5=F	31 32 33 34 35	1.5 1.5 1.5 1.5	00:20 00:25 00:25 00:25 00:25	20 25 25 25 25	11 9 9 9	5 5 5 5	5.0 5.0 5.0 5.0	0.8 0.8 0.8 0.8	4.0 4.0 4.0 4.0	55:00 55:25 55:25 55:25 55:25	1100 1125 1125 1125 1125	1100 1125 1125 1125 1125
8	1=M 2=T 3=W 4=T 5=F	36 37 38 39 40	1.5 1.5 1.5 1.5	00:25 00:30 00:30 00:30 00:30	25 30 30 30 30	9 8 8 8	5 5 5 5	5.0 5.0 5.0 5.0	0.8 0.8 0.8 0.8	4.0 4.0 4.0 4.0	55:25 57:30 57:30 57:30 57:30	1125 1200 1200 1200 1200	1125 1200 1200 1200 1200

APPENDIX C

STANDARD EIGHT-WEEK, LONG-DURATION, LOW-INTENSITY ENDURANCE TRAINING PROGRAM FOR POSTPUBERTAL AND ADULT MALE RATS IN CONTROLLED-RUNNING WHEELS

TABLE C-1.--Standard eight-week, long-duration, low-intensity endurance training program for postpubertal and adult male rats in controlled-running wheels.

. 40.1 2000	austrau en 1	er 4 - un estas.	EIR WURTER		-	-							SAN GET EL JEROSES
Wk.	Day of Wk.	Day of Tr.	Acceleration Time (sec)	Work Time (min:sec)	Rest Time (sec)	Repetitions per Bout	No. of Bouts	Time Between Bouts (min)	Shock (ma)	Run Speed (ft/ sec)	Total Time of Prog. (min:sec)	Total Exp. Revolutions TER	Total Work Time (sec) TWT
1	1=M 2=T 3=W 4=T 5=F	1 2 3 4 5	1.0 1.0 1.0 1.0	00:10 00:10 00:10 00:20 00:30	10 10 10 10	40 40 40 30 20	3 3 3 2 2	5.0 5.0 5.0 5.0	1.2 1.2 1.2 1.2	2.0 2.0 2.0 2.0 2.0	39:45 39:45 39:45 34:40 34:30	600 600 600 600	1200 1200 1200 1200 1200
2	1=M 2=T 3=W 4=T 5=F	6 7 8 9 10	1.0 1.0 1.0 1.0	00:40 00:50 01:00 02:30 02:30	20 25 30 60 60	15 12 10 4 4	2 2 2 2 2	5.0 5.0 5.0 5.0	1.2 1.2 1.2 1.2	2.0 2.0 2.0 2.0 2.0	34:20 34:10 34:00 31:00 31:00	600 600 600 600	1200 1200 1200 1200 1200
3	1=M 2=T 3=W 4=T 5=F	11 12 13 14 15	1.0 1.0 1.0 1.0	02:30 05:00 05:00 05:00 05:00	60 0 0 0	4 1 1 1	2 5 5 5 5	5.0 2.5 2.5 2.5 2.5	1.2 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0	31:00 35:00 35:00 35:00 35:00	600 750 750 750 750	1200 1500 1500 1500 1500
4	1=M 2=T 3=W 4=T 5=F	16 17 18 19 20	1.0 1.0 1.0 1.0	05:00 07:30 07:30 07:30 07:30	0 0 0 0	1 1 1 1	5 4 4 4 4	2.5 2.5 2.5 2.5 2.5	1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0	35:00 37:30 37:30 37:30 37:30	750 900 900 900 900	1500 1800 1800 1800 1800
5	1=M 2=T 3=W 4=T 5=F	21 22 23 24 25	1.0 1.0 1.0 1.0	07:30 07:30 07:30 07:30 07:30	0 0 0 0	1 1 1 1	4 5 5 5 5	2.5 2.5 2.5 2.5 2.5	1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0	37:30 47:30 47:30 47:30 47:30	900 1125 1125 1125 1125	1800 2250 2250 2250 2250
6	1=M 2=T 3=W 4=T 5=F	26 27 28 29 30	1.0 1.0 1.0 1.0	07:30 10:00 10:00 10:00 10:00	0 0 0 0	1 1 1 1	5 4 4 4 4	2.5 2.5 2.5 2.5 2.5	1.0 0.8 0.8 0.8	2.0 2.0 2.0 2.0 2.0	47:30 47:30 47:30 47:30 47:30	1125 1200 1200 1200 1200	2250 2400 2400 2400 2400
7	1=M 2=T 3=W 4=T 5=F	31 32 33 34 35	1.0 1.0 1.0 1.0	10:00 10:00 10:00 10:00 10:00	0 0 0 0	1 1 1 1	4 5 5 5 5	2.5 2.5 2.5 2.5 2.5	0.8 0.8 0.8	2.0 2.0 2.0 2.0 2.0	47:30 60:00 60:00 60:00 60:00	1200 1500 1500 1500 1500	2400 3000 3000 3000 3000
8	1=M 2=T 3=W 4=T 5=F	36 37 38 39 40	1.0 1.0 1.0 1.0	10:00 12:30 12:30 12:30 12:30	0 0 0 0	1 1 1 1	5 4 4 4	2.5 2.5 2.5 2.5 2.5	0.8 0.8 0.8	2.0 2.0 2.0 2.0 2.0	60:00 57:30 57:30 57:30 57:30	1500 1500 1500 1500 1500	3000 3000 3000 3000 3000

APPENDIX D

BASIC DATA--ALL ANIMALS

TABLE D-1.--Basic data--all animals.

Animal No.	Body Weight	% of Training Program Completed	Ventricle Length	Total Heart Weight	Ventricle Weight
000000000000000000000000000000000000	4484 448 88 88 88 89 89 80 88 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	87870870 89777 9998779 90492074 47107 4750847 ************************************	11.844 12.875 13.844 13.855	11.6615 11.6688 11.66988 11.5689 11.5689 11.572 11.5689 11.572 11.364 11.366 11.366 11.366 11.366 11.366 11.366	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
3	24.		.70	40	.30

TABLE D-1 (cont'd).

Animal No.	Atria Weight	Total Heart Wt. Body Wt.	Ventri- cle Wt. Body Wt.	Atria Wt. (10 ⁻³) Body Wt.	Ventricle Length Body Wt.
		08467862 06000 1482176 27	818270072 84402 8811284 4	77076746 74910 7970880 71	0
C-27 C-28 C-30 C-31 C-32	0.114 0.100 0.144 0.114 0.146	3.268 3.048 3.579 3.239 3.312	2.995 2.823 3.231 2.837 3.060	0.274 0.225 0.348 0.289 0.252	4.368 4.046 4.256 4.054 4.018

TABLE D-1 (cont'd).

L & R Ventricles and Septal Area (Total Section AreaL & R Chamber Area)	123.2 cm ³ s. 113.8 102.8 126.1 123.1 113.5	104.3 120.0 120.3 121.7 131.0 119.2 109.8	107.1 116.9 117.0 112.6
Right Chamber Area	5.4 cm ³ s. 6.7 5.3 7.5 9.3	7.07 & & & & C & & C & & C & & C & & C & C	6.44 6.20 7.00 8.40
Left Chamber Area	14.7 cm ³ s. 14.1 17.2 15.6 11.6	111 13.1 12.8 17.8 17.5 1.9.6	000 000 000 000 000
Total Section Area	143.3 cm ³ s. 134.6 125.3 149.2 144.0 131.8	123.8 136.7 140.4 133.3 152.2 143.1 138.7 137.2	119.8 132.4 131.3 124.6
Animal No.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LL RAMA LL 112 LL 113 L-114 L-123	C-27 C-28 C-29 C-32

TABLE D-1 (cont'd).

Left Ventricle Area and Septum Area Right Ventricle Area	3.7241 3.6072 3.4301 4.6547 4.8066	3.7844 3.9382 4.7014 4.1134 3.6289	3.6060 3.5200 3.6745 3.4453	3.8243 3.2977 3.4656 3.7510
Left Ventricle Area and Septum Area (L & R Ventricle Area and Septum Area - R Ventri- cle Area)	91.7 cm ³ s. 89.1 79.6 103.8 101.9 91.9	82.5 95.7 99.2 97.9 102.7	95.2 88.0 93.7 85.1	84.9 89.7 90.8 88.9
Right Ventricle Area	26.1 cm ³ s. 24.7 23.2 22.3 21.2 21.6	21.8 24.3 21.1 23.8 28.3	26.4 25.0 24.7 24.3	22.2 27.2 26.2 23.7
Animal No.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	M-9 M-11 M-15 M-16	1 1 1 1 1 1 1 2 3 4 3	C-27 C-28 C-29 C-32

APPENDIX E

HERXHEIMER'S HEART SIZE DATA ON THE 1928 OLYMPIC ATHLETES

TABLE E-1. -- Herxheimer's heart size data on the 1928 olympic athletes.

Classification	Z	Average Heart Volume Body Weight	Average Right Diameter	Average Left Diameter	Average Total Diameter
1922 Material					
Cross-country skiers	16	/50.			
Long-distance runners	12	/57.			
Middle-distance runners	19	/60.			
Heavy athletes	59	/63.			
Swimmers	15	/63.			
Decathlon men	17	1/67.2			
Boxers	16	/72.			
Six day cyclists	12	1/40.3			
1928 Material					
Marathon and distance					
runners	45	1/46.1	•	•	3
Long-distance cyclists	14	1/48.7	5.2	9.2	14.4
Oarsmen	56	/5	•	•	4.
Boxers	18	/5	•	•	3,
Sprint cyclists	16	\	•	•	.
Middle-distance runners	24	/55.	•	•	ش
Weight lifters	28	/5	•	•	4.
Long-distance runners	18	.09/	•	•	٠ ٣
Sprinters (track)	33	/62.	•	•	ش
Decathlon men	22	/63.	•	•	۳
Sprinters (swimming)	თ		4.6	•	e m

*Where the volume/weight ratio using volume equal to a sphere calculated from a radius equal to one-half the transverse diameter of the heart shadow.

