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ABSTRACT

COMPUTER SIMULATIONS OF

GRAVITATIONAL ENCOUNTERS BETWEEN

PAIRS OF BINARY STAR STSTEMS

by

James B. Hoffer

Encounters (collisions) between pairs of binary stars

were computer-simulated. The H1,564 collisions were divided

into five mass families and all binaries initially had

circular orbits.

The exchanged energy cross-section for collisions

between two binaries composed of identical mass stars was

found to be roughly 2-3 times that for a single star

colliding with a binary having components with masses equal

to that of the single star. Other results cannot be stated

so easily, but the energy released by hard binary collisions

appears to be significant.

A surprising.result is that roughly 40% of the binary-

binary collisions in a globular cluster core precipitate a

physical collision between two stars, possibly leading to

their coalescence.

To increase the speed of the integrator, a technique was

developed whereby each tightly bound binary is treated as a



James Brian Hoffer

single star until it is intruded upon by another member of

the system. Experiments have shown that this technique can

decrease the required integration time by an order of

magnitude without affecting the statistics of the collisions

appreciably.

Each collision was allowed a certain number of

integration steps (50,000-100,000) to reach a final, stable

configuration consisting of only single stars and binaries.

If such a configuration could not be reached .within the

prescribed limits, an attempt was made to find the (interme-

diate) results and the collision was aborted. These results

were not used in computing the statistics of that set of

collisions.
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CHAPTER 1

INTRODUCTION

1.1. Binary Systems in Star Clusters

In 1972 Aarseth and Hills performed a computer

experiment attempting to rectify the disagreement between

theory and observation regarding open clusters. ‘Star-

formation theory predicts that, if all the stars in a

cluster are formed from the same gas cloud, there should be

some clumpiness in their spatial distribution. This occurs

because, as the cloud contracts under the action of its

self-gravity, its density increases causing the gravita-

tional Jeans length to decrease. The cloud then breaks up

into subclouds. Each subcloud then contracts to the point

where it breaks up into sub-subclouds. This division‘

process continues until a typical subcloud has dimensions

appropriate for star-formation to occur. Thus the initial

cloud forms a hierarchy of subclouds. According to this

model, we should expect the density of a cluster to be non-

uniform; a certain clumpiness in the spatial distribution of

the stars should be observed. This clumpiness is not

observed in mature open clusters, however, it is found in

molecular-hydrogen proto-clusters observed by radio

telescope (Larson 1981).
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The Aarseth-Hills computer model began with a cluster of

stars having a clumpy appearance. The stars were arranged

so that a hierarchy of subclustering was present. The

cluster was then allowed to develop according to the law of

classical gravitation. :n: a single collapse time, it

evolved a fairly homogeneous form, but almost more

interesting was that the cluster was forming binary stars by

three-star encounters. By the termination of the experiment

at 4.2 collapse times, the cluster was composed of 6.2%

binaries. After subtraction of the number of stars that had

escaped from the cluster, this becomes 10.8%. While this is

not an incredibly large percentage, these binaries had

acquired more than 90% of the total binding energy of the

cluster. Clearly the dynamical evolution of this small

percentage of binary stars as mediated through collisions

becomes important in determining the dynamical evolution of

a cluster. As the number of binaries increases, the

frequency of collisions involving them also increases.

Another demonstration of the importance of binary stars

in the dynamical evolution of a star system was given by

Spitzer and Mathieu (1980) when they modeled the dynamics of

some globular clusters.‘ In their models, they attempted to

account for the effects of collisions between single and

binary stars as well as between two binaries. The single-

binary collisions were fairly well understood at the time,

but binary-binary collisions were not. Their treatment of

binary-binary collisions as successive single-binary



colliSions seems less than adequate, but better than

ignoring them altogether. Their globular cluster models

initially contained 50% and 20% of the total mass in

binaries. After 1600 Trh (Trh is the relaxation time of the

stars in a sphere about the center of mass of the cluster and

enclosing half of the mass), the central region of each

cluster contained 90% and 80% of its mass in binaries. At

such high concentrations of binaries, interactions involving

them become extremely important. Clearly these interactions

(collisions) must be understood if a correct model of the

dynamical evolution of the core of a globular cluster is to

be obtained.

1.2. Historical

After the Aarseth-Hills investigation of the dynamical

evolution of an open cluster, investigations were begun with

the goal of obtaining an understanding of collisions

involving binary systems. Probably because they are the

simplest as well as the most common at low binary densities,

collisions between single stars and binaries were investi-

gated firstq This investigation was launched from 'two

fronts.

Heggie attacked the problem from a purely theoretical

direction. His analytical treatment of the statistics of

these collisions (Heggie 1975) is quite complete and gives a

formalism into which experimental results can be cast. To

verify the accuracy of several equations, he performed a
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rather incomplete set of collisions on a computer.

Hills took the computer-experimental approach (Hills

1975). With Fullerton (Hills and Fullerton 1980; Fullerton

and Hills 1982), he has completed, analyzed, and published

the results of some 65,096 computer collisions between

single stars and binaries. While this treatment is complete

as far as it goes, nearly all of these collisionSwere

performed with the initial eccentricity of the binary being

zero. Whether these statistics are representative of

elliptical orbit statistics remains to be seen.

Valtonen also has performed simulations of interactions

between single and binary stars (Valtonen 1975). However,

his interest was the decay of quasi-stable three-body

systems and is not directly applicable here.

All of the above work concerns the interaction of single

stars with binaries. Presently only one experiment has been

performed involving two binaries. Saslaw, Valtonen, and

Aarseth (1974) have performed 200 simulations of the decay

of quasi-Stable two-binary systems. No collisions between

two binary systems have been performed.

1.3 Research Purpose

The purpose of this investigation is to examine

collisions between two binary star systems. These

collisions are assumed to be completely Newtonian-gravita-

tional in nature as well as independent of the structure and

evolution of the stellar components. The gravitational
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interaction among four point-masses is our only concern.

41,564 of these collisions were performed with the aid of

several computers. The salient features of the computer

program as 'well as the reduction of the data will be

presented in this dissertation.

The collisions are divided into five families, A-E,

according to the masses of the components. Only the

relative masses will be given since the equations of motion

for the system are linear in the masses and, hence, can

experience a mass scale change resulting only in a change of

scale of the physical time. The families and their

associated masses are:

A (1-1)-(1-1)

B (3-3)-(1-1)

C (1-3)-(1-3)

D (10-10)-(1-1)

E (1-10)-(1-10).

The notation (a-b)-(c-d) signifies that initially 21 star

with mass a is part of a binary with another star of with

mass b. This is similarly true for stars 0 and d. The two

binaries are then caused to collide. Each family contains

groups of collisions with usually 200 collisions in each

group. Each group is specified by: the initial ratio of the

kinetic energy of the binaries at infinite separation to the

energy required for complete dissociation of the system (a),

the ratio of the binding energies of the binaries (B), the



6

impact parameter (p) in units of the initial separation of

binary (a-b), and the initial eccentricities of the binaries

which are zero for all cases considered. The remaining

quantities are randomly sampled by a Monte Carlo technique

and will be discussed later in this dissertation.



CHAPTER 2

COMPUTATIONAL TECHNIQUES

2.1. Introduction

It is well known that the equations of motion for the

gravitational three-body problem (TBP) have no analytic

solution. Any analytic approximations break down nearly

completely during very close approaches among the members of

such a system during which the equations of motion become

mathematically poorly-behaved. The gravitational four-body

problem (FBP) suffers from the same difficulties as the TBP,

but they are even more severe because of the increase in the

likelihood of very close approaches. However, this

difficulty can be significantly reduced through the process

of regularization (simplification of the equations of motion

by reparameterization) to be described in some detail later.

Because the FBP is not analytically solvable, solutions to

its equations of motion must be found by some approximation

technique. In the present investigation, the solutions will

be found numerically with the aid of a computer. In

addition to integration and roundoff error, the length of

time the computer requires to find the final, stable confi-

guration of the entire system must be considered. In

particular, the formation of quasi-stable configurations is

7
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of interest. A common occurrence at low collision energies

is the formation of a tightly bound binary as a component of

a loosely bound binary, i.e. a quasi-stable trinary. While

this configuration is not generally mathematically stable,

an inordinately large quantity of computer time is usually

needed to test its long-term stability unless some special

technique is used to increase the integration speed.

The two problems described above constitute the major

problems encountered when integrating the equations of

motion for the FBP. The techniques developed to reduce

these difficulties introduced two fairly minor, additional

problems. These techniques required that Kepler's Equation

be solved more than 105 times. The large number of

solutions needed requires that the method devised to find

the solution be extremely reliable, sacrificing speed if

need be. The other additional difficulty occurs at the end

of a collision where the kinetic energies of all unbound

bodies must be found as the separations become infinite.

Since the FBP is not analytically solvable, approximations

to the problem must be made if these quantities are to be

found while the separations are still finite.

2.2. The Regularization Technique

In integrating the equations of motion for the FBP, one

finds that the separations between the masses can vary by as

much as several orders of magnitude. In order to maintain

accuracy, one would like to decrease the increment of the
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independent variable (time) when the group is compact while

increasing it when the group is dispersed. This can be

accomplished either explicitly or by the more elegant

technique of regularization which transforms the time

coordinate so as to remove the singularity produced when two

objects make an exceptionally close approach to each other.

Such close approaches may cause a large error in the total

energy of the system because of the large velocities

involved and because of the finite precision afforded by

computers.

The regularization method employed for this calculation

is the technique of multi-particle, quasi-regularization in

time developed by Heggie (1972). The equations of motion

are regularized by a replacement of the physical time with a

regularized time. These are related by

dT=h(xij, 1213-) dt (2.1)

where dt is the increment of the physical time, dT is the

increment of the regularized time, xij is the j—th

(cartesian) component of the i-th mass, and h is called the

regularizing function. The dot indicates the total physical

time derivative of the quantity under it.

The equations of motion can be written very simply as

iij = aij (2.2)

where aij is the j-th (cartesian) component of the accelera-

tion (force per unit mass) of the i-th mass. Now, by the
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chain rule of differential calculus, we have the operational

relation

d/dt : dT/dt d/dT (2.3)

or, after applying equation (2.1), we can write

d/dt = h(xij, iij) d/dT.. (2.4)

If a primed quantity denotes the total regularized time

derivative of the quantity, then we have from equation

(2.4),

iij = h(xij, iij)xij" (2.5)

Total differentiation of equation (2.5) with respect to the

physical time t gives

iij = 5(xij, iij)xij' + h(xij, iij)iij'° (2.6)

After applying equation (2.4) to equation (2.6), we obtain

iij = h(xij, iij)h'(xij; iij)xij'

+ h2(xij, iij)xij"° (2.7)

By solving equation (2.7) for Xij": we obtain a new set of

differential equations in xij:

xij" = h’2(xij, iij)aij

- h'(xij, iij) xij'/h(xij, iij) (2.8)

where aij has been written instead of in according to
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equation (2.2).

Even though equation (2.8) provides a recipe for finding

xij, it is more convenient to rewrite it utilizing a regu-

larizing function that contains the dynamical quantities and

their regularized time derivatives rather than keeping their

physical time derivatives. We define a new regularizing

function g(xij, xij') such that

g(xij. xij') = h(xij, iij). (2.9)

This gives a new, consistent set of equations of motion.

x.."- -2(x.. x..')a..

13 - 8 13' 13 13

- g'(Xij, Xij')xij'/g(xij, Xij') (2.10)

An appropriate g(xij, xij') will now be chosen so that

equation (2.10) is well behaved as the separations of the

component masses vanish.

If equation (2.10) is to be convergent as the

separations vanish, then the conditions

lim lg'2(xij, xij')aijl < a (2.11)

R+0

and

lim Ig'(xij, Xij')xij'/g(xij, xij')| < a (2.12)

R+0

must be satisfied. R is the minimum of the six separations

of each body from each other body. Relation (2.11) can be
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satisfied if g(xij, xij') diverges at leaSt as fast as I?

vanishes since the dominating term in aij is proportional to

1/R2. A function satisfying this condition is the total

potential energy of the system. For the FBP this is

4 i-1

U = - 2 2 Gmimk/rik (2.13)

i=2 k=1 -

where rik is the separation of the masses m1 and mk.

To find whether relation (2.12) is satisfied, we must

differentiate equation (2.13) with respect to the

regularized time.

s'(x1j. Xij') = dU/dT =

- g. :1E1(Gmimk/rik3)hikoFik'. (2.14)

i=2 k:1

We now see that the left side of relation (2.12) goes as

x'2/R for very close approaches which, by equation (2.5), we

can rewrite as isz. Conservation of energy tells us that

this quantity converges as R vanishes (it varies linearly

with R for the two-body case with zero angular momentum).

The use of the potential energy for the regularizing

function satisfies the necessary conditions and works well

in practice, so we will use it.
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In summary, the set of equations we wish to solve is

Xii" = 8'2(Xij’ Xii'>aij

- 8'(Xij, xij')xij'/g(xij, Xij') (2.15)

with

' 4 1-1 »

8(xij1x ij) = U = - I Z Gmimk/rik (2.16)

i=2 k:1

and

u , 2 +

aij : - kz1 Gmk/rik“ rik‘ (2.17)

The primed summation indicates that the sum is over all k

except for k=i. Notice that this set of equations contains

only the dynamical variables x and x'; the physical time has

been eliminated. When integrating the equations of motion,

we need not concern ourselves with the physical time.

Should it be required, we can compute it by integrating

equation (2.1) in the form

dt = dT/g(xij, Xij') (2.18)

giving

At : fT1 dT/S(Xij, xij') (2.19)

T0

as the physical time interval corresponding to the

regularized time interval T1-T0.
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2.3. The Reduction of Close Binaries

When a is less than three, the formation of quasi-stable

configurations such as trinaries and two mutually bound

binaries becomes common. Each of these may persist for a

very long time until it evolves into a stable configuration

composed of a combination of single stars and binaries. To

aid the computer in solving these cases in a reasonable and

affordable amount of time, we can often treat each tightly

bound binary system as a single star.

Consider a binary in the presence of a single star. The

binary has components with masses ma and rub and orbital

semi-major axis a. The single star has mass mi and is a

distance R1 from the center of mass of the binary. The grav-

itational force between the two members of the binary is

Fb = Gmamb/aZ, ' (2.20)

with the stars treated as point masses. The tidal force on

the binary due to the field star is

Ft, = 26(ma+mb)mia/Ri3. (2.21)

It tends to dissociate the binary. We can define a measure

of the total tidal force due to this and all other field

stars in the system to be

(2.22)
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We will call the ratio of these two forces Q:

Q : Fb/Ft‘ (2.23)

When 0 is large, the disruptive efficiency of the field

stars is small. When 0 equals or exceeds some value (105 was

used in practice), the perturbative effect of the field

stars is considered negligible and the binary is treated as

a single star until 0 becomes small enough so that perturba-

tive effects again become important. This replacement

effectively eliminates a Ilarge term from the potential

energy (the regularizing function), which increases the

regularized time step and decreases the real computer time

required to integrate the equations of motion.

The process of replacing a tightly bound binary by a

single star will be called "reduction" while the inverse

process will be "resolution." The reduction of a binary is

accomplished by a standard procedure: the coordinates of

the binary components are first transformed into the binary

center-of—mass coordinate system so the orbital elements can

be found. The five classical orbital elements, the semi-

major axis, the eccentricity, the inclination, the longitude

of the ascending node, and the argument of periastron

passage are then found. A sixth quantity, the true anomaly,

giving the phase of the orbit relative to periastron

(closest approach in orbit), is also calculated. (For

definitions of these quantities, see Appendix B.) After

saving these six quantities along with the physical time, we
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replace the binary by a single star with a mass equal to the

sum of the masses of the binary components and coordinates

(both position and velocity) described by the motion of the

binary center-of-mass. The integration routine then

continues with one fewer star and the absence of a large,

real time-consuming term in the regularizing function._

When a reduced binary system is perturbed strongly by

another star or by a group of stars, it is resolved into its

original components through a knowledge of its five orbital

elements, the time, the true anomaly when reduction

occurred, and the new time. Kepler's Equation is used to

relate these last three quantities to the new true anomaly.

It is worthwhile to note the magnitude of the contribu-

tion to the random energy error intruduced by the reduction-

resolution process. If a binary having components with

masses ma and mb and semi-major axis a is perturbed by a star

with mass m separated from the binary center of mass by a

distance R, the random energy error introduced is of order

(Hoffer 1982)

(SE/E = 0.25 (a/R)2 = [mambnsmmambmfl/B, (2.21:)

If ma=mb=m and 0:105, 6E/E=4.6x10'5. The maximum allowed

relative energy error is 0T01 and this is well within that

limit» In practice, the energy error was computed by

actually resolving any reduced binaries and computing the

energy associated with their components. The median

relative energy error was approximately 10'”. This is
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consistent with the median error obtained in previous

similar experiments by Hills (1975).

2.4. Kepler's Equation

When a reduced binary is resolved, the new true anomaly

must be related to the new time, the old true anomaly, and

the old time. The recipe to do this involves Kepler's

Equation (Marion Chapter 8):

2n(t-to)/T : w — W0 - esinp + esinpo, (2.25)

where t is the new physical time, to is the old physical

time, T is the orbital period,'1p is the new eccentric

anomaly, 1110 is the old eccentric anomaly, and e is the

eccentricity of the orbital ellipse. Once p is obtained,

the true anomaly a can be found through the relation

tan(6/2) = [(1+e)/(1-e)11/2 tan(w/2). (2.26)

(e and w are defined in Appendix B.) As long as e<1, no

problems arise with equation (2.26). Notice that if the

tangent function is defined to exist on the half-open

interval [-n/2, n/2) radians, a unique 6 exists for each w

in the interval [-n, n).

Kepler's Equation must be solved numerically since all

attempts at analytic solution have failed (Moulton p. 162f).

Since we must extract a solution several thousand times in

this experiment, the most important feature of the method

developed must be its consistency. We would rather use a
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fairly slow method which always converges on the solution

than a fast one that works only 99% of the time. For the

method to be usable, it should not fail more often than once

in 10“l attempts. A higher failure rate than this would

cause an unacceptable program failure rate.

In this experiment, a hybrid method was used. This

hybrid consists of two parts: the first part is used to find

an approximate solution and the second part uses the

approximate solution to find a solution to within an

accuracy of one part in 10'10.

The first part of the hybrid method is the technique of

successive substitution. To utilize it, we must arrange

Kepler's Equation so it has the form

w = f(w). (2.27)

We then substitute an approximate solution into the right

side of equation (2.27) and compute a better approximation

to the solution. We can write this process in iterative

notation as

vi+1 = f<vi)- (2.28)

If we call the exact solution to equation (2.27) U,,

then the error in successive approximations to p, is

(Hildebrand p. 567f)

v.-wi . [f'(w*)]i. (2.29)

For convergence If'(p*)|<1. Clearly the choice of f(p) in
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equation (2.27) must be made judiciously if the process is

to converge upon the solution. We will choose

f(1,')) : 1410 - esimpo + esinp + 21r(t-t0)/T. (2.30)

The only other choice is to solve for w in the sine term, but

consideration of computing the inverse sine at each

iteration as well as the ambiguity in to quadrant of w

discourages us from choosing f(¢) to be this.

The derivative of our chosen f(w) is

f'(w) = ecosw. (2.31)

For bound orbits lf'(p)|<1 so apparently we have made a good

choice for f(p).

This successive substitution technique was initialized

with p0=1. Five iterations were then performed resulting in

a reasonable approximation to the solution of Kepler's

Equation.

After obtaining a reasonable approximation to w* through

the method described above, we used the Newton-Raphson

iterative technique to bring the error in the solution to

within 10‘10. Even though this technique was developed by

Newton expressly for the purpose of solving Kepler's

Equation, unless the seed is reasonably' near the exact

solution, the Newton-Raphson technique may not converge.

The successive substitution technique is simply a way of

obtaining such a seed.
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The Newton-Raphson technique is iterative in nature and

may be summarized by the equation

Wi+1 = vi - f(wi)/f'(ui) (2.32)

where, for the exact solution ¢,,

f(w*) = 0. (2.33)

For Kepler's Equation we choose

£110 = w - W0 - esinw + esinwo - 2n(t-t0)/T (2.34)

so that

f'(w) = 1 - ecosp. (2.35)

Explicit substitution of equations (2.34) and (2.35) into

(2.32) gives

Wi+1 = vi - [w - W0 - esinw + esinwo - 2n(t-t0)/T]

/[1 - ecoswi]. (2.36)

It is easy to show (Hildebrand' p. 575f) that the

difference of Wi+1 and w, is proportional to the square of

the difference of Pi and w*:

vr-vii1 « -[f"(w,)/2r'(w,)] (w,-wi)2. (2.37)

As long as l¢,-wi|<1, convergence will occur.

The hybrid technique presented above performed very

well. There was not a single instance of the program
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failing to find the true anomaly. In addition, over 2X106

tests of this method with e:0.999 have been performed

without a single failure indicating that an excellent method

of solution has been found. After performing five

successive substitutions, the technique required typically

three or four iterations of the Newton-Raphson technique

before lv,-wil<10'l°. All in all, the technique is quite

satisfactory.

2.5. Kinetic Energy at Infinite Separation

One of the quantities of interest after a collision is

the kinetic energy of each of the subsystems (single or

binary) when it is effectively out of range of the other

surviving subsystems. Since. the FBP has no analytic

solution, we must make approximations to it if we are to

.find these kinetic energies as the separations become

infinite.

The only situation involving gravitational motion for

which it is possible to find the exact kinetic energies of

the objects at infinite separation given conditions at

finite separations is the two-body case. Consider two

unbound masses m1 and m2 separated by a distance r and

moving with relative speed V. If the two objects interact

only gravitationally, the total energy of the system in

relative coordinates is

E : uV2/2 - k/r (2.38)
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where u is the reduced mass and k=Gm1m2. If we call the

relative speed at infinite separation Va and the speed of mi

(i=1,2) at infinite separation in the center-of—mass

reference frame Vie, then

miviw = 1.1V... (2.39)

If we square equation (2.39) and divide by 2mi, we find

miv112/2 = (u2/mi)Vm2/2. (2.40)

This gives

KEim = (Ll/mi”: (2.41)

where KEim is the kinetic energy of the i-th mass when the

separation is infinite. Equation (2.41) can be written in a

slightly more useful form if we define Vi as the speed of the

i-th particle at finite separation in the center-of—mass

reference frame. Application of the distributive law of

multiplication over addition to equation (2.38) as well as

utilization of Vi results in

mivim2/2 = uvi2/2 - (u/mi)k/r; (2.42)

therefore, the potential energy partitions as u/mi.

In practice, equation (2.42) was used to find the

kinetic energy of a subsystem (single or binary) when

removed to infinity with respect to the coordinates of the

center of mass of the remaining subsystems. While this is

only an approximation for the FBP, it appears to be the best
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approximation available in the absence of unlimited computer

time.



CHAPTER 3

THE PROGRAM

3.1. Introduction

This computer experiment of numerical simulations of

collisions between two binary stars was carried out by a

computer program which was executed on several different

computers. The program initialized the collisions, solved

the equations of motion, and then tabulated the reSults;

thereby it performed the duties of "experimental setup."

The program's central role in the completion of this disser-

tation warrants a discussion of the techniques incorporated

into it as well as the organization of the collisions.

3.2. Organization of Collisions

Collisions were performed in groups with members of the

same group having identical masses, initial orbital eccen-

tricities, impact parameters, initial ratio of binary

binding energies (B), and collision energies (c). The

quantities which were varied within a given group by Monte

Carlo sampling are several of the orbital elements of each

binary. They are: the orbital inclinations, the arguments

of periastron, the longitudes of the ascending nodes, and

the mean anomalies. These quantities were determined by a

24
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pseudo-random process for each binary in each collision.

Typically, a group contained 200 collisions although groups

of hard collisions (a<1) often contained fewer.

When the simulation of the collisions in a group was

completed, the data were tabulated. The quantities which

were tabulated are: the total "macroscopic" kinetic energy

of the surviving components of the system, the total binding

energy residing in binaries, the average eccentricity of the

surviving binaries, the distance of closest approach during

each collision, and the time span of each collision. Also

of interest was the final configuration of the system--which

stars were components of binaries and which were single

stars. These quantities were summarized in a single-page

report produced at the end of each group of runs. A typical

run summary is shown in Figure 1 and the results of a

completed colliSion followed by an uncompleted collision are

shown in Figure 2.

3.3. Initializing a Collision

After the appropriate orbital elements were found and

Kepler's Equation was solved by the method presented, the

cartesian coordinates (both position and velocity) of each

mass were found. This was accomplished by the Standard

transformation from the orbital elements and the true

anomaly to cartesian coordinates as given in Bate, Mueller,

and White (pp. 71-83). At this point the binaries exist "on

top of each other." They must be separated into independent
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BINARY 1

M1

M2

E1

1.000000E 00

1.000000E 00

0.000000E-01

6

M3

M4

E2

RATIO OF BINDING ENERGIES

IMPACT PARAMETER

RATIO OF KE TO BE

NUMBER OF ATTEMPTED COLLISIONS :

PERCENT COMPLETED

QUANTITY

BINDING ENERGY

KINETIC ENERGY

ECCENTRICITY

CLOSE APPROACH

TIME/TREF

STEPS

Figure 1.

PERCENT FAILED

- ENERGY
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FINAL STATES

STATE NUMBER

1 2 3 4 76

12 3 4 49

13 2 4 6

14 2 3 2

1 23 4 0

1 24 3 3

1 2 34 36
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13 24 0

14 23 1

PERCENT
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087210E 01

A typical run-summary for a group of collisions.
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binaries and given the appropriate center-of—mass positions

and velocities; they must be made to collide. These center-

of-mass quantities were not found randomly, but from the

initial kinetic energy and the impact parameter, two of the

quantities which define a group.

After the above procedures were performed and the

cartesian positions and velOcities were found, the system

was in a form appropriate for computer solution of the

equations of motion. Control of the program then passed to

the integration routine.

3.4. The Integration Routine

The integrator used to solve this problem was developed

to solve the equations of motion for just such a system and

to reduce the difficulties previously outlined. Its purpose

is to simulate collisions between binary stars; however, if

implemented appropriately, it can be generalized to trace

the dynamical evolution of a cluster of stars.

The equations of motion were regularized as described so

that the integrator could solve them accurately during close

approaches. This transformation, was accomplished

immediately after entering the integrator. Upon leaving, a

transformation back to normal, physical space and time was

effected. Thus the integrator dealt almost excusively with

the regularized quantities.

The routine which actually solved the equations of

motion uses the fourth-order Adams-Moulton predictor-
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corrector integrator which is started by a fourth-order

Runge-Kutta integrator. One of the advantages of using a

predictor-corrector integrator is that an indication of the

error introduced by the integrator can be obtained from a

comparison of the predicted with the corrected values. An

estimate of that error is (Bate, Mueller, and White pp.

414-420)

e = 19/270 IxP-xcl. (3.1)

x9 is the predicted result and xc is the corrected result.

If the error, e, exceeds some upper limit, the time step may

be reduced, while it may be increased if 6 becomes less than

some lower limit. The first time a particular collision was

performed, the upper and lower limits on 6 were 10"6 and

10'8, respectively. If, during the course of integration,

the relative energy error exceeded 10-2, the collision was

restarted from the beginning with the limits on 6 reduced by

a factor of ‘HTJK If this limit was exceeded again, the

collision was again restarted with the limits on e further

reduced. This was repeated until either the collision was

completed or three attempts were exhausted. If the latter

situation occurred, an attempt was made to find the interme-

diate configuration and the energy of each component of the

system after which the collision was aborted. The lowest

limits on 8 were 10‘1” and 10'16. At this level, the number

of integration steps required to complete the collision

becomes prohibitive even for a relatively simple collision.
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As mentioned previously, one of the major problems

plaguing this problem is the formation of quasi-stable

systems involving binaries. The integrator developed

reduces this problem by treating each tightly bound binary

as a single star when other members of the system are

distant enough to give Q in excess of 105. The components of

the system were checked every 20 integration steps to

ascertain whether any binaries should be reduced or any

reduced binaries should be resolved. Ineither case, the

appropriate remedial measures were taken and the integration

routine continued solving the modified equations of motion

of the system.

3.5. The Beginning and Ending of a Collision

A collision such as the ones with which we are concerned

theoretically requires infinite real time to complete if we

ignore the finite lifetimes of the stars. Clearly we cannot

run the simulation for even a fraction of that time; certain

sacrifices in the form of approximations must be made. A

requirement for the use of an approximation such as

reduction is that it be applied consistently. We have made

every effort to do just that, even when beginning and ending

a collision, as will now be illustrated.

The separation of the binaries at the beginning of a

collision is determined through the reduction process with

the requirement that 0:105 (equations (2.20)-(2.23)). For

equal mass binaries composed of equal mass stars with equal
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separation, the initial separation of the binaries is 92.8

times the separation of the components of either binary.

This initial separation is somewhat more stringent than that

used in previous work by Hills (1975), who somewhat

arbitrarily chose a factor of 60 for all cases. According

to our criterion, he Should have used a factor of 73.6 for

the equal mass case. If such a technique is used to find the

initial separation of the binaries, then the reduction

approximation contributes a term to the total error that is

typical of the error contributed by beginning a collision at

finite separation.

A major logical problem in this computer experiment was

deciding when a collision is effectively finished. For a

stable final configuration, the collision must be carried

out for a sufficient enough time so the final products do

not interact with each other sufficientLy to appreciably

change the final results. Thus we have developed a set of

tests to apply to each subsystem to ascertain whether the

collision is to be terminated. A collision is terminated

when four conditions are simultaneously met:

1. Each star is energetically either a single

star or a component of a binary;

2. Each binary has Q>105;

3. Each subsystem is energetically unbound to

all possible combinations of the remaining

subsystems;
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4. Each subsystem is moving away from all other

subsystems.

Determining whether a given star is a member of a binary

is similar to deciding whether a binary is to be reduced to a

single star. If the star has a negative energy with respect

to another star, then the two stars form a binary. The

binary is considered far enough from all other subsystems if

Q for that binary exceeds 105. When all stars are single or

are members of relatively isolated binaries, we have

completed tests 1 and 2. We now move on to test 3.

Testing the energy of a subsystem relative to all other

subsystems is very simple. Consider the subsystem to be

tested. Compute the total energy of it with respect to all

possible combinations of the remaining systems. If all

energies are positive, the system passes test 3.

This leaves us with test 4. This test is also quite

simple to carry out. Again consider the .subsystem to be

tested. For all possible combinations of the remaining

subsystems, compute the coordinates of the center of mass.

If the two subsystems (the subsystem to be tested and the

subsystem composed of combinations of the remaining

subsystems) are moving apart, the inner product of the

relative velocity and the relative position is positive and

the subsystem to be tested passes test 4.

When each subsystem passes each of the above tests, the

collision is over and the various energies and other

parameters are tabulated. It is difficult to ascertain



33

whether these tests will be passed only by stable systems.

I suspect not, but I have not imagined a case these tests do

not cover.



CHAPTER 4

ANALYSIS OF RESULTS

4.1. Introduction

In performing this computer experiment, we have

simulated 41,564 collisions between pairs of binary stars,

thereby producing prodigious amounts of data. Extracting a

considerable portion of the possible generalizations and

conclusions from this data could require years. We cannot

do this here. Instead, we will reduce the data to a fairly

concise form, a series of plots of the quantities given in

Appendix A, and then draw some very general conclusions

regarding this experiment.

The set of quantities we will consider in this analysis

will be divided into three categories: the exchange of

energy; the final configuration (which stars are single and

which are components of a binary) of the system; and other,

miscellaneous quantities such as the average eccentricity of

the surviving binaries and the average distance of closest

approach. These quantities in IN) way exhaust the set of

those that might be tabulated, however, if we understand the

relationship of these quantities to the independent

parameters, we probably have a good understanding of the

dynamics of collisions between two binary systems.

34
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4.2; The Exchange of Energy

4.2.1. Introduction

When a binary star becomes more tightly bound because of

a collision with another star or with a group of stars, it

gives up its orbital energy to the other stars. The energy

released or absorbed through a collision may be the most

important quantity obtainable from this experiment since the

dynamical structure of‘ a group of stars is extremely

dependent upon the available kinetic energy.

Since each of these collisions conserves energy, the

kinetic energy added to the stellar system in which the two

colliding binaries are imbedded divided by the initial total

binding energy of the binaries, E, (hereafter relative

energy exchanged) is equal to the relative binding energy

increase of the surviving binaries as the separations of the

unbound products become infinite. The total energy may be

decomposed into two terms, Eext and Eint: the total

macroscopic energy and the total internal energy of the

binaries, respectively. From conservation of energy, the

total energy before the collision

equals the total energy after collision

E : Eextf + Eintf. (4.2)
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If we subtract equation (4.1) from equation (4.2) and divide

by the initial total binding energy of the binaries, BEi, we

obtain

(Eextf‘Eexti)/BEi + (Eintf-Einti)/BEi = 0 (”-3)

OI“

g = AEext/BEi = -AEint/BE1 . (4.4)

where AEext = Eextr-Eexti and Mimi = Eintf'Einti° The

binding energy is the energy required to dissociate 'both

binaries. We can therefore write

5 = AEext/BEI : ABE/8E1 (4.5)

where ABE : BEf-BEi. By examining the effect of a collision

on the total binding energy of the four masses, we can find

the kinetic energy released throUgh the collision.

4.2.2. The Exchange of Energy at Zero Impact Parameter

In the upper graph in each of Figures 3-7, we show a

plot of the exchanged energy (6) versus the common logarithm

of a (loga) for one of the five families of collisions. (As

a reminder, a is the initial kinetic energy of the binaries

expressed in units of the minimum energy required to

dissociate the binaries.) The impact parameter is zero for

all cases. Each cross represents a data point and the

vertical extent of the cross is the error associated with

that datum. The curve drawn through the points as well as
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each lower graph will be explained below. Even though these

plots are quite complicated, we can make some general

statements about them.

Each of the plots contains two regions, the region where

g>0 (small a) and the region where §<0 (large a). We will

call collisions with C>0 "hard" collisions and those with

g<0, "soft." The point separating these two regions will be

labeled (c0, 0) since 5:0 at this point. do is usually near

unity.

In the extremely large-a region (a>30), we might expect

E to vary roughly linearly with the time the binaries are

close enough to interact with each other. If this is true,

then gal/2 should be roughly constant in this region.

Taking this as a clue to possible later simplifications, we

plot log(|€a1/2|) versus loga for each family. This results

in the lower plots in Figures 3-7. As expected, £a1/2 is

approximately constant for a>30 for each of the plots with

the remainder being surprisingly well-behaved.

As a approaches zero, we expect 5 to approach some

finite, non-zero value (Hills 1975) requiring that 5.11/2

vanish. In the region 0<a<a0, g>0 causing 561/2>0.

Any function which is to pmedict gal/2 must increase

from zero at a=0, peak, then decrease to negative values as

a passes do. It must then become constant and negative as a

passes 30. A function possessing these qualities is

gel/2 = A11-exp<-ee)1[(eo/e)'/2-11 (4.6)



43

as we will now verify. AS a approaches zero, we have

5011/2 = Ab(01010)1/2 (4.7)

so that

E = AbaO1/2, (4.8)

a cOnstant as expected. For extremely large a, we write

Eel/2 = -A (4.9)

or

g = -A/e1/2, (4.10)

again, as expected. Of course, if a:a0, then 5:0.

By choosing the parameters appropriately, equation

(4.6) can be made to fit the boundary conditions given. We

have accomplished this fit by using the method of least

squares. Since equation (4.6) can not be made linear in the

parameters, we used a grid search of parameter space'to

minimize XVZ as given by Bevington (Chapter 11). The

results of these fits are given in Table 1. The curves in

Figures 3-7 are those generated by graphing equation (4.6)

with the parameters appropriate for each family as given in

Table 1. Although “2 is quite large for most of the

families, the curves do appear to roughly fit the data.

In performing the least squares fits of the data to

various curves, we minimized Xu2 in the form



44

Table 1. The results of least squares fits of

the data to equation (4.6).

 

 

 

 

Family A b do X02

A 3.048 0.286 0.959 3.34

B 1.083 1.338 0.461 0.86

c 4.676 0.137 0.928 8.41

D 0.170 329.524 0.156 1.99

E 14.381 0.009 0.030 31.31

N

Xv2 e 1/(N-n) .21 [yi-y(xi)]2/012, (4.11)

1:

where N is the number of data points, n is the number of

parameters in the fitting function y(x), 3’1 is the i-th

dependent data point, and xi is the corresponding

independent data point. °i is the standard error of Y1

since each 3’1 is a mean obtained from roughly 200 data

points. When defined in this manner, Xv is approximately

the root-mean-square of the standard scores of the data. We

consider an excellent fit to occur when sz‘l for the fit.

This form of X02 is used throughout this dissertation.
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4.2.3. The Exchange of Energy Versus Impact Parameter

The relationship between the exchanged energy and the

impact parameter appears to be fairly simple. The exchanged

energy (E) is roughly gaussian in the impact parameter (p):

a = 50 epr-(p/po>21, ' (4.12)

where 50 is the energy exchanged at zero impact parameter

and p0 is the width of the distribution. While the data do

not follow this relationship exactly, they do follow closely

enough for certain general features to be found.

In allfairness, we must criticize the present use of

equation (4.12). Examination of the data reveals that a

gaussian is probably not representative of the relationship

between E and p; the data have certain anomalies which

preclude the validity of equation (4.12). For example, it

is common to find a depression in the 151 versus p curve

about p=0. This depression occurs most frequently with

family A. Usually a curve with no depression can be fit to

the data within the given error limits leaving one to wonder

whether the depression is simply a statistical fluctuation.

To reduce this uncertainty, 3 significant increase in the

number of collisions contributing to these points must be

obtained. The high cost of performing these collisions

which are at small a prevents us from resolving this

uncertainty at this time. Another difficulty with using a

gaussian is that, for some values of a, the exchanged energy
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often changes Sign as p becomes large.

Even though they will not predict either of the above

behaviors, we will use fits to a gaussian to provide us, in a

systematic manner, information regarding the width and the

depth of the distribution for the energy exchanged. Since

the gaussian has only these two parameters, it is ideally

suited to give us this information. Other reasonable curves.

such as the sum of two gaussians have too many parameters

for them to be fit to data consisting of only a few points.

Preliminary investigations indicate that, when more data is

available, the sum of two gaussians will be the curve used

to fit the data at low kinetic energy.

We performed least squares fits of equation (4.12) to

‘data of a given family with identical binding energy ratios

(8) and identical kinetic energies (a). Families A and B

(with 8:0.111) are the only ones with extensive data for

non-zero impact parameters so they are the only ones for

which these fits were performed. The results are summarized

in Table 2. As expected, X02 is quite large for several of

the fits, however, enough give values which are less than or

roughly equal to unity to indicate that the gaussian

function can provide a reasonable fit to the data.

Since 50 is the exchanged energy at zero impact

parameter, it should be calculable from equation (4.6) and

the data of Table 2. Coupled with a relation giving p0)

these allow us to find an expression for the cross-section

for energy exchange at any a for a given family.
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Table 2. A summary of least squares fits of the data to

equation (4.12).

a 50 P0 oE x92 °Eg

FAMILY A: (1-1)-(1-1)

1.01 .300+-.035 1.881+-.076 -1.062+-.210 22.494 -1.462

3.00 -.615+-.018 1.599+-.O44 -1.572+-.133 4.482 -1.586

5.00 .513+L.019 .1.397+-.047 —1 001+-.103 .902 -0.897

10.00 .554+-.015 1.164+-.039 -.750+-.071 1.168 -0.689

20.00 .527+-.017 .822+-.040 -.356+-.046 2.330 -0.359

30.00 .454+-.012 .802+-.031 -.292+-.030 .701 —0.337

100.00 .285+-.011 .651+-.032 -.121+-.017 2.191 -0.142

300.00 .139+-.007 .667+-.027 -.062+-.008 .617 -0.056

1000.00 .065+-.006 .652+-.030 -.028+-.005 .356 -0.028

FAMILY B: (3-3)-(1-1)

3.00 .337+-.028 1.384+-.065 -.645+-.113 3.890 -0.503

5.00 .260+-.027 1.272+-.067 -.421+-.088 2.829 -0.338

10.00 .212+-.026 1.037+-.097 -.228+-.070 -1.842 -0.191

20.00 .195+-.020 .985+-.077 -.189+-.049 2.820 -O.163

50.00 .115+-.016 .696+-.081 -.056+-.021 .613 -0.076

100.00 .101+-.007 .726+-.038 -.053+-.009 .758 -0.055

300.00 .035+-.005 .757+-.057 -.020+-.006 .865 -0.020

1000.00 .026+-.003 .582+-.047 -.009+-.003 .484 -0.008
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We have found that p0 depends on a roughly as

P0 = P» + k/log(a+1). (4.13)

p, is the width of the E-p curve as a+w. Least squares fits

of the data for families A and B give the parameters shown in

Table 3. A summary of least squares fits of the

data in families A and B to equation

(4.13).

 

 

 

Family pm k xvz

A 0.5679 0.4584 0.035

B 0.4411 0.6033 0.006

 

Table 3. The Xv2 given in Table 3 were calculated with the

errors in 01, 00,, set equal to unity since a is an input

parameter and is taken to be exact. The fits appear to be

quite good.

4.2.4. The-Exchanged Energy Cross-Section

As a measure of the total effectiveness in releasing

energy of a set of collisions from the same family with the

same a and 8, we will define the exchanged energy cross-

section:
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total energy released (4 1”)

energy incident per area‘ '

 

Of course, we would like to find a form for equation (4.14)

that we can use for computational purposes.

Consider- a single binary acted upon by a beam of

binaries which interact with only the target binary. The

total binding energy of each binary in the beam and the

target binary is EL The kinetic energy added to the two

binary system by the collision is AE and the beam has a

cross-sectional surface number density of binaries, n. With

these definitions, we can write

25 = 2wnf: AEbdb/nE (4.15)

where b is the impact parameter. Since the units of b have

not yet been specified, let us define a unitless impact

parameter pzb/a (the impact parameter actually used in the

experiment) and a corresponding unitless cross-section

OE=ZE/fl82. We can then write

OE : ZE/na2 : 2f: gpdp. (4.16)

We can obtain an analytical eXpression for the cross-

section by substituting for E from equation (4.12):

CE = 280]: epr-(p/p0)21 pdp (4.17)

which integrates to

CE = $0002. (4.18)
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In practice, we have computed the cross-section by two

different techniques. We used equation (4.18) with the data

in the third and fourth columns of Table 2 as well as

plotting the data points (p, 5p) manually on graph paper,

drawing a smooth curve through the points, and integrating

by counting the squares under the cnuwe. Cross-sections

computed by both of these techniques (9E and 058, respec-

tively) are given in Table 2.

We have now developed all the tools necessary to give an

expression for the cross-section for any a for families A

and B. By combining equations (4.6), (4.13), and (4.18), we

can write

0E = A[1-exp(-ba)][(aO/a)1/2-1]

xtp, + k/1og(a+1)]2/a1/2. (4.19)

We can use this equation with the data in Tables 1 and 3 to

obtain graphs of GE .versus a for families A and B. Since p,

and k are similar for families A and B, we will assume they

do not vary significantly for the other families and will

use the average of the p... for families A and B for these

families. With this assumption, we can include graphs of CE

for families C, D, and E. All of the graphs are shown in

Figure 8.
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4.3. The Final Configuration

When a collision has been terminated, we would like to

find quantities such as the relevant kinetic and binding

energies and the eccentricities of the surviving binaries.

Before we can find these quantities, we must ascertain which

stars are binary components and which are single stars; we'

must find the final configuraration of the system. By

tabulating the final configurations of a group of

collisions, we can find the probability of occurrence of

processes such as an exchange collision, complete dissocia-

tion of the system, and no change in the system. We will

examine, in turn, each of the relevant quantities of the

table in Appendix A.

First we will examine the probability of no change (PNC)

occurring. In this case the surviving binaries are the same

as the initial binaries, only the kinetic energies and the

orbital elements change. Plots of PNC versus loge are given

in Figure 9. The plot for each family hovers near zero when

loga<1. In this region, virtually all "memory" of the

initial configuration is lost. Then, as a increases past

unity, the plot for each family, except family E, increases,

reaching at least 0.845 when loga=3. Beyond this we have

not investigated.

Another way of forming two surviving binaries is through

an exchange collision whereby the two surviving binaries are

not the initial ones, but are composed of a (different
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Figure 9. Probability of no change versus logo.
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combination of stars. 1%”: binary-binary colliSions, this

implies that an exchange collision has taken place. When

the masses of the stars are identical, the exchange

collision is not important, but when each star has a

distinct mass, it becomes interesting and potentially very

important (Hills 1977). Plots of the probability of

exchange (PE) versus logs for the five families are given in

Figure 10. As expected, there is a much higher incidence of

exchange collision for families with binaries having a large

difference in their component masses (families C and E) than

for families with binaries having identical mass components.

However, the explanation of this effect is not the usual

one. One might expect exchange collisions for families C

and E to result in a binary containing the two most massive

stars. This does not occur because in the region where

exchange collisions become important, a is too large for the

system to reach any degree of (dynamical equilibrium as

required for the usual argument giving the ejection of the

lightest stars. In fact, most of the exchange collisions

(75% at 6:1.01 increasing monotonically with a for family C

and 100% for all a for family E) were simply an exchange of

the lighter components. This is not really surprising since

it is much easier to change the course of’a less massive star

than of'a more massive star.

Quite often only a single binary will survive the

'collision. Figure 11 summarizes the probability that this

occurs (PSB) for each of the families of collisions. These
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plots are somewhat erratic making it difficult to draw many

general conclusions from them, tun; we can describe their

general forms. The plots for families C and E reach a local

nunimum I“) the range a=10-100 after which they peak and

then, at least for family C, asymptotically decrease to

zero. Presumably the plot for family E would also exhibit

this behavior were the_data extended to larger 8. The plots

for families B and D are at a plateau until a exceeds approx-

imately 50 where they both asymptotically approach zero.

Family A, not surprisingly, appears to be a hybrid of the C-

E and the B-D cases. The low-a plateau gives way to a lower

plateau when a exceeds three. This plateau exists until a

exceeds 50 where the plot asymptotically approaches zero.

We will now examine the last possible final configura-

tion of the system, that of complete dissociation (PD) or

the formation of four single stars. The plots in Figure 12

summarize the dependence of PD on loga for the five families

of collisions. -A feature we should note is that, for all

families, PD=0 when a<1. This is reassuring since the total

energy ceases to be positive in this region thereby

precluding complete dissociation of the system. Upon

comparing families A, C, and E, we find that PD increases

with the difference in the component masses of the binaries,

peaking at high values of a. It would be interesting to

perform collisions between binaries with component mass

ratios of 100 of 1000. Unfortunately, we have not done this

here so we will not attempt to extrapolate these results to
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their‘ asymptotic limits. We leave this to later

experiments. When we compare families A, B, and D, we find

that dissociation becomes extremely rare when the two most

massive stars form a binary. We have already reached the

asymptotic limit for these cases.

4.4. The Average Eccentricity of the Surviving Binaries

It has been postulated (Hills 1977) that the eccentri-

city of a binary can give a clue to its origin. One with a

high eccentricity (e>0.5) was probably formed by an exchange

collision between a binary and a single star. We will now

examine the average eccentricity of the binaries surviving

the collisions between two binaries.

The _data regarding the average eccentricity of the

surviving binaries when the collision impact parameter is

zero are summarized by the plots of Figure 13. As one might

expect, when a is small, the average eccentricity is near

2/3. This is the average eccentricity expected for a group

of binaries in statistical equilibrium. The departure of

family' D from this "rule" is not surprising since the

massive binary should, on the average, be affected little by

colliding with a binary of one-tenth its mass. For each

family except family D, the peak eccentricity occurs for

fairly large a. The error bars indicate these are real

peaks, not just statistical fluctuations. By comparing the

peaks for families A, C, and E, one finds that the height of

the peak increases as well as shifting toward increasing
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kinetic energy as the difference in the masses of the binary

components increases. Thus, high-energy collisions can be

very effective in disrupting one of the binaries. Figure 11

bears this out. As 0 increases for family E, the

probability that only a Single binary will remain increases.

We have been able to offer support to Hills's postulate, but

we see TH) way of ascertaining whether a given binary was

formed through a single-binary or a binary-binary collision.

We can say only that if the eccentricity of a binary is less

than approximately 0.2, the probability is high that the

binary has not undergone a collision of some type.

4.5. The Distance of Closest Approach

Although the collisions we have performed neglect the

physical sizes of the stars, it is quite possible that a

dynamical collision may precipitate a physical collision

between stars in the system. If this occurs, then the

assumptions implicit 131 this experiment 1K) longer apply.

(This experiment does not allow us to begin with four stars

and end with three!) We can, however, obtain the likelihood

that a physical collision occurred by examining the distance

of closest approach between any two stars in the system.

Figure 14 summarizes the dependence of the logarithm of

the average distance of closest approach on loga and on the

masses of the binary components. The vertical axis is the

logarithm of the minimum distance of closest approach in

units of the initial semi-major axis of the binary
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containing m1 and m2. As expected, this distance decreases

with decreasing a. The unexpected occurrence is with family

E; the distance of closest approach is between 0.210 and

0.085 for all a considered.

While we cannot predict actual physical collision rates

without a knowledge of the stars composing the binaries or

of the orbital elements of the binaries themselves, we can

find the likelihood of physical collisions in a typical

situation such as in dense, globular cluster cores. We will

assume that the core contains equal mass binaries, each with

components having mass m:0.4M, where M is the mass of the

Sun. This gives a diameter for each star of d:0.5D, where D

is the diameter of the Sun (Hills and Day 1976). Spitzer and

Mathieu (1980) find from their compUter models of globular

clusters that the maximum (x is about 0.03. A reasonable

average a is then <a>=0.1, which we will assume. We will

also assume (V2>1/2=10 km/s as obtained by Hills and Day

(1976). These values give a semi-major axis for the orbit

of a binary of a=0.357 A.U. resulting in d/a=0.013. From

our experiment, the median of Fmin/a is 0.016 when a:O.1.

Thus we may conclude that binary collisions can signifi-

cantly increase the rate of physical collisions between

stars in globular cluster cores. The data indicate that,

for every 100 binary-binary collisions, 40-50 of them may

involve physical collisions. It seems that globular cluster

cores can no longer be treated as a group of point masses;

the physical sizes of the stars must be included so that the
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effects of physical collisions and the possible coalescence

of stars as well as very close approaches resulting in

significant tidal distortion can be included in the models.

Otherwise, an accurate picture of the dynamics of globular

clusters will not be obtained.



CHAPTER 5

CONCLUSIONS

5.1. Comparison of Present with Previous Results

As mentioned in the Introduction, computer experiments

have been performed for collisions between binary and single

stars (Hills 1975; Hills and Fullerton 1980; Fullerton and

Hills 1982). Therefore, it would be most instructive to

compare our results with these previous results. Rather

than compare all of our results, we will compare only those

which can be associated quantitatively: namely, the energy

exchanged by a collision and the relevant cross-section.

Before we can make comparisions between our data and the

only comparable previously acquired data, that of Hills

(1975) and Hills and Fullerton (1980), we must find

conversion factors between their data and our data. (The

experiments of Hills and Fullerton will be referred to col-

lectively as HF.) HF'S energies were measured as multiples

of the total initial binding energy as are our's, except

they had only a single binary where we have two. We would

like to convert our energies into energies measured in terms

of the binding energy of only one of the binaries. The

relation which accomplishes this is
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5' : (1+f1/f2)5. (5.1)

f2 is the fraction of the initial binding energy in the

binary now considered to contain the reference energy and f1

is the fraction in the other binary. The quantity in

parentheses is the factor by which we must multiply the

energy given in column five of the table in Appendix A to

convert it to HF'S units. These factors are given in Table

Table 4. Conversion factors from the present

experiment to HF's experiment.

 

 

Present HF 1+f1/f2 (€'/5HF)a=0

 

(1-1)-(1-1) (1-1)-1 2 2.7

(3-3)-(1-1) (3-3)-1 1.11 4.7

(1-1)-3 10 3.7

(1-3)-(1-3) (193)-1 2 5.5

(1-3)-3 2

(10-10)-(1-1) (10-10)-1 1.01 253

(1-1)-10 101 748

(1-10)-(1-10) (1-10)-1 2

(1-10)-10 2

 

4. The first column gives the family in the present

experiment in terms of the masses while the second gives the
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masses of families in HF's experiments. The third column

gives the conversion factors described by equation (5.1).

Into the last column of Table 4, we have entered the ratio of

our exchanged energy in HF's units to HF's when a=0. We used

equation (4.8) to find the appropriate 5's for this

experiment. a=0 was chosen because, if a¢0, a also must be

transformed into HF's units. Direct comparison then becomes

difficult because of the sparseness of data in both

experiments. Blanks in Table 4 occur where data is not

available for the single—binary collisions. While there

appears to be no rule for finding 5' given 531:, we may

conclude, not surprisingly, that a binary-binary collision

releases several times the energy of a single-binary

collision. The ratio (5'/5HF)a=O increases rapidly with the

largest mass star partaking in the collision.

alt is difficult to compare the cross-sections obtained

in the present experiment with those obtained by HF for the

reason mentioned above, namely, a is different for the two

experiments. Rather than attempt a conversion of a, we note

that each of the curves in Figure 8 reaches a peak in the

region a>a0 as do the corresponding curves in Hills's (1975)

Figure 8. As a comparison of the cross-section of the two

experiments, we will compare the height of these peaks after

applying equation (5.1) to the peak height of the present

experiment. Hills's results will allow us to compare only

the top. three entries in Table 4. We find that the

(1-1)-(1-1) case has a cross-section which is approximately
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2.0 times (flue (1-1)-1 case. (3-3)-(1-1) versus (3-3)-1

gives a factor of 1.8 while (3-3)-(1-1) versus (1-1)-3 gives

16, both larger in the present experiments.

There are two reasons for the difference in the cross-

sections of the binary-binary experiments compared with that

of the single-binary, aside from simply a difference in the

collision type. The binary-binary collisions have

geometrical cross-sections that are a factor of four larger

than the single-binary case. This is beacuse there are two

finite-sized binaries rather than a binary and a point mass.

The second is the reason for the application of equation

(5.1) to adjust the units of GE. (M‘course, these two expla-

nations do not account for all of the differences in the two

experiments. They do, however, help one to live with the

large differences in the released energy obtained above.

5.2. Future Investigations of Binary-Binary Collisions

By performing this eXperiment and analyzing the

subsequent data, we have begun to obtain an understanding of

these collisions. However, the large majority of our

collisions were soft collisions (6(0). While these

collisions can be quite well understood after this

experiment, hard collisions are not well understood. This

is because hard collisions can cost 100 times more than soft

collisions. ha addition, even with reduction, only about

half of the hard collisions formed stable configurations

within 105 integration steps. Because of -this, our



69

conclusions for these collisions may be unreliable.

Therefore, we need to simulate more hard collisions,

allowing perhaps 106 integration steps. This would require

a significant amount of computer time.

All collisions in this experiment were begun with the

initial eccentricities of the binaries set to zero. While

probably not a bad assumption if the binaries are undergoing

their first collision, for subsequent collisions, the orbits

are Ilikely 1x1 be eccentric. we should investigate the

effect of eccentricity of the binaries on the collisions.

We might, at some later time, wish to perform binary-

binary collisions with differing values of 8. The B's used

in this experiment were chosen so that the binaries had

equal initial separations. While varying 8 might be

interesting, when one binary is close, the collision results

should be similar to those obtained in single-binary

collisions. This should be verified, however.

The five families investigated provide us with a

reasonable mass spectrum. Families B and D appear to

describe the case of a massive binary colliding with a light

binary quite well. Familes C and E, however, which involve

collisions between two binaries, each with components with

quite different masses, do not appear to give a complete

picture of this type of collision. We cannot state, with

any degree of certainty, what will happen as the masses of

the components become more discrepant. This also remains to

be investigated.
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The above "list of things to do" simply expresses the

fact that there is a large parameter space to be investi-

gated. While the completion of this investigation as

described is important and necessary and should be carried

out, a more expedient approach might be considered. Since

one of the major uses of the results of this experiment was

to be its application to clusters, we might consider

modeling such clusters directly. The technique of reduction

developed expressly for this experiment is ideally suited to

such modeling. Not only would binary-binary collisions be

considered, but higher order effects such as single-binary-

binary and binary-binary-binary collisions would be automat-

ically taken into account by the model. This might actually

be the best next step, considering the expense of obtaining

an understanding of the effects of binaries on real physical

systems by the present technique. We have only begun to

understand the effects of collisions between two binary

systems on the evolution of a stellar system.
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APPENDIX A

THE DATA

The following table is a summary of all the data

regarding collisions between two binary stars used in

compiling the conclusions of this dissertation. All of the

entries should be self-explanatory for anyone who has read

the text of this dissertation. A quantity listed

immediately after a +- is the absolute error of the

preceeding entry.
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APPENDIX B

GLOSSARY OF TERMS

The following glossary contains the definitions of some

of the terms used in this dissertation. The orbital

elements are defined using Figures 15 and 16, which are also

contained in Appendix B.
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GLOSSARY OF TERMS

a - the ratio of the kinetic energy of the binaries at

infinite separation to the energy required to

dissociate both binaries.

anomaly, eccentric - (u) the angular position of a

fictitious point related to the real position of the

orbiting object, but measured in :a coordinate system

centered on the center of the orbital ellipse (see

Figure 16).

anomaly, mean - (M)=2nt/T where t is the time since

periastron passage and T is the orbital period.

anomaly, true - (6) the angular position of the object in

orbit relative to periastron (see Figures 15 and 16).

ascending node - the point where the orbiting body crosses

the reference ellipse from south to north.

ascending node, longitude of - (0) the angle between a

reference point and the point where the orbiting body

crosses the reference ellipse from south to north (see

Figure 15).

B - the ratio of the binding energy of the second binary to

the binding energy of the first binary.

eccentricity - (e)=[1-(b/a)2]1/2 a measure of the shape of

the orbital ellipse.

inclination - (i) the angle between the orbital angular

momentum and some reference direction (see Figure 15).

periastron - the point of closest approach in the orbit.

periastron passage, argument of - (u) the angle between the

ascending node and the point of closest approach in the

orbit (see Figure 15).

semi-major axis - (a) half the length of the line segment

which passes through both foci of the orbital ellipse

and terminates on the orbital ellipse (see Figure 15).

semi-minor axis - (b) half the length of the line segment

which bisects the line segment passing through both

foci of the orbital ellipse and terminating on the

orbital ellipse (see Figure 15).
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Figure 16. The orbital plane.


