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ABSTRACT
SYNTHESIS AND RECONSTRUCTIOM OF FUNCTIOMS
SATISFYING SIMULTANEOUS TIME AND FREQUENCY
DOMAIN CONSTRAINTS USING ALTERNATING CONVEX
PROJECTIONS WITH OVERRELAXATION: AN APPLICATION
IN IMAGE DESIGN
By

Hong, Joo Heng

A method of alternating projections with overrelaxation is
employed for synthesizing images that are band-limited in the frequen-
cy domain and with predetermined threshold crossings in the space
domain. This problem is encountered when we want to generate a pres-
cribed binary image at the output of a diffraction-limited imaging
system with high contrast recording. Such an imaging system is
modeled as a linear band-limited system followed by & noninvertible
poiat nonlinesrity. Some of the important applications of image syn-
thesis are the construction of masks for microlithography., laser
printing, fabrication of surface acoustic wave devices and the storage
of data using optical techniques. With a suitable choice of the over-
relaxation parameter for the algorithm, it is found that the number of
iterations required for this method is several orders of magnitude
smaller than that required for the Gerchberg-Papoulis type algoritham.
This improvement is very important in designing images that are much
more complex and of practical interest. Both incoherent imaging and

coherent imaging systems are investigated.



CHAPTER 1

INTRODUCTION

There are many problems of great interest in science and
engineering where one wishes to reconstruct or synthesize fuanctions
which are specified partially in the time (or space) domain and par-
tially in the frequency domain (Fourier domain). The task of finding
functions satisfying such simultaneous coastraints is a difficult one
and depends on the constraints themselves. The problem however is

very important as it arises in numerous situatioams.

An example is the extrapolation of band-limited functions where
only a finite segment of a band-limited function is given and it is
desired to find the value of the function everywhere 81. Another
example is the recovery of a real aonnegative signal from the
knowledge of the magnitude omly of its Fourier Transform. Such a
problem arises in X-ray crystallography, Fourier Transform spectrosco-
py and imaging through atmospheric turbulence using interferometer
data [9]. Still some other problems dealing with certain constraints
are blind deconvolution [10], computer holography [11], kinoforms
[12), design of radar signals, antenna arrays [13] and digital filters

[14].

One may divide the problems of searching for functions satisfying

simul taneous time and frequency domain constrains into two classes



restoration and synthesis problems. In restoration problems, one
wants to reconstruct a function (or a close replica of it) givean that
the function satisfies certain constraints. By the very nature of the
problem, a solution must exist. In the synthesis problems, one wants
to construct a function satisfying some specified constraints. A
solution, however, may or may not exist. For example, one canmot con-
struct a function that is of finite time extent and, at the same time,
of finite frequency extent. Another important point is the question
of uniqueness of the solution. If a whole class of functions satis-
fies the given <constraints in a restoration problem, we have to
determine which function within the class is the solution. In the
syathesis problem, on the other hand, one may be interested only in
finding a solution. For example, when designing filters with certain
time and frequency domain specifications, the primary concerm is in
finding some function satisfying all the given requirements. Later
one may (or may not) choose to seek an ‘optimum’ choice. Therefore
the uniqueness question is of more concern in restoration problems

than in synthesis problems.

In this thesis, I deal with the problem of ’'synthesis of images
through a diffraction—-limited imaging system with high contrast
recording’. This is to generate a prescribed binary image at the out-
put of an imaging system. Some important applications of this image
synthesis problem are the design of masks for microlithography, the
fabrication of surface acoustic wave devices, the storage of data

using optical techniques, laser printing and so forth.



The models for the imaging system I will deal with are shown in
Figure 2.1 and Figure 2.2 for the incohereant and coherent system
respectively. These are adequate models for a microphotographic sys-
tem where the linear system represents a diffraction-limitecd
microcamera operating near its resolution limit and the noninvertible
hard-limiter represents a very high contrast recording film (5). 1In
mathematical terms, the output § must be band-limited and after pass-
ing through the nonlinear device (noninvertible hard-limiter), will
produce a binary image according to the white (black) regions of the
binary desired image g that we want to construct. In other words, the
overall purpose of the image synthesis problem is to synthesize § such
that it satisfies the Fourier domain constraint which is band-limited

and the space domain constraint corresponding to predetermined thres-

hold crossings.

Some ad hoc methods for the solution of this image <construstion
problem have been proposed [3,4]. An example is corrections being
deliberately introduced in the original masks to compensate for the
distortions caused by the microcamera itself. More recently; it was
shown that this problem can be reduced to a linear programming problem
which can be solved by using well known techniques [6,7]. Although
the linear programming approach is superior to the ad hoc technique
proposed earlier, it still suffers from the heavy amount of computa-
tion required, which prohibits its use on real images except for some
very simple patterns. Another method for finding the solution is a

variation of the Gerchberg-Papoulis algorithm (also refered to as the



Gerchberg-Saxton algorithm) [1]. The algorithm itself{ is an iterative
cne, with an initial guess for the solution consistent with the given
information (constraint) in one domain, repeated transformations are
performed between the space domain and the frequency domain. In each
domain, the known information (contraints) is incorporated into the
current estimate of the desired function (solution), forcing the esti-
mate to satisfy the constraints corresponding to the information
specified in both domains. Depending upon the constraints themselves,

the algorithm may converge or fail to converge at all.

The method presented in this thesis is the method of alternating
projections with overrelaxation over closed convex sets in Hilbert
space [2]. The concept is that the function f which we want to syn-
thesize 1is belonging to the intersection Co of m well-defined closed
convex sets Ci's. i=19m. That is , the known properties (given infor-
mation or constraints) of the function f form m well-defined closed

convex sets Ci's, i=19m, and such that

m
feCO- ﬂ C1 .
i=1

Note that the intersection Cjy is also a closed couvex set con-
taining f. If the desired function f does satisfy the above
constraints, then the problem of synthesizing f from its m properties
is included inm that of finding at least one point (one function)

belonging to Co,



In chapter 2, both the incoherent and coherent mnmodels for the
imaging system mentioned previously and the known properties (con-
straints) corresponding to the closed convex sets of the function
which we want to construct are mathematically formulated. The algor-
ithm for finding the fixed point (solutiom) belonging to the
intersection CO which is closed and convex of the image design problem

will be considered in great detail.

In chapter 3, some examples of 2-dimensional patterns that were
designed using the algorithm presented in chapter 2 are preseanted. A
comparison based on convergence rate is made between this algorithm
and the Gerchberg-Papoulis type algorithm preseanted in [1]. Besides,
numerical results of an l-dimensional example for reconstructing the
phase of a band-limited function using the method proposed in chapter
2 are also presented. In chapter 4, some discussions and suggestions

are made for the image design problems in the future.



CHAPTER 2

MATHEMATICAL FORMULATION
2.1 General algorithm description

The image synthesis problem is closely related to the well known
problem of image restoration. The main difference between these two
problems is the existence of a solution. In image restoration, by the
very nature of the problem, a solution must exist. While in the image
synthesis problem, the solution does not necessary exist. An example
is that one cannot synthesize a functiom that is time-limited as well

as band-limited.

In the image restoration problem, the observed properties of the
output function restrict the input functionm f to have certain proper-
ties (given information or constraints). If every kmown property of
the input function f form a well-defined closed convex set Ci. i=19m,

in Hilbert space H, then m such properties place f in the intersection

m
i=1

of the corresponding closed convex sets CI,CZ....CE. The intersection
Co is also closed and convex and contains f. Comsequently, irrespec-
tive of whether C; contains elements other than f, the problem of

restoring the function f from its m properties is included in that of

finding at least one point (one function) belonging to Co. Therefore,



if the operator Pj; projecting onto Cy is known, the problem is solved,
for then PyxeCy for every xel. However, Cq in general can be consid-
erably more complex in structure than any of the Ci's corresponding to
the constraints and a direct realization of Py is usually not feasi-

ble.

An alternate approach (2] for solving the problem is to consider
every known oproperty of the fuanction f that places it ian a
well-defined closed convex subset, and search for the intersectionm.
If the projection operators P,'s on its respective C;'s, i.e., P;xeC;,
for xsH and Pixax for zeC;, is effectively realizable, i=13m, then to
find a point (function) satisfying the m given properties, a composi-

tion operator T will be defined as follows:

T=P PpyPp_;....Py.

The operator T is in general not the projection operator onto Cgy,
but every point of Cy is a fixed point for every P; and therefore of
T, i.e., if xeCy, then xeC;, P;x=x, i=19m and Tx=x. With the initial
guess other than the points belonging to Co, the iterative scheme has
been developed for the gemeration of fixed points of T by the standard

recursion

Xp+1=TOX , where
X : the arbitrary initial guess,

n : the number of iterations.



It has been shown that (2] a nonexpansive mapping T:[9H of a Hilbert
space onto itself is a reasonable wanderer and ,a fortiori, asymptoti-
cally regular, and the sequence {Tnx} converges weakly to a fixed
point of T. However, if the Hilbert space is of finite dimension, the

sequence {Tnx) will converge strongly to Pyx for every xell.

What is needed then is to define nonexpansive projection opera-
tors Pi"' i=19m, on the the respective C;'s, for a composition of two

or more nomnexpansive mappings is also nonexpansive.

Lemma 1 [16] ([17] : Let C denote any closed convex subset of Hilbert

space H, then there exists a unique geC such that

inf Hf-xn = Hf-gn )

teC

Now, the projection operator P; onto C;, is defined as follows:

|

That is, the projection assigns to every fed its nearest neighbor Pif

‘\f—?if

\- min ||f-x

xeC

in C;. This defines a nonlinear projection operator P;:A3C; unambigu-

ously by means of the minimality criterion.

The projection operators Pi's. i=19m, defined above can be shown
to be nonexpansive and continuous [2]. However the convergence rate

using the composition of these operators is not at a geometric rate.



The convergence can be speeded up considerably if we replace Pi by
T;=1+§;(P;-1), §;=192 (overrelaxation) with a proper choice of the ¢&;
(2]. It can also be shown that [2] the operators T;'s are nonexpan-

sive.

2.2 Mathematical formulation for the imaging system

Image construction involves determing the object distribution
which produces a prescribed image at the output of a given imaging
system. The imaging system I deal with in this thesis is a diffrac-
tion-limited imaging system with a high contrast recording device.
Such an imaging system is modeled as a linear band-limited system fol-

lowed by a bard-limiting point nomnlinearity (clipper).

The overall system is mathematically represented by the operator
G, where the input and the output image f and g, are related by g=Gf.
The system G is known and a prescribed image g is to be generated at

the output of the system.

2.3 Incoherent case

The mathematical model for an incoherent diffraction-limited

imaging system with high contrast recording device is shown in Figure

2.,1. This is an adequate model for a microphotographic system where
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the linear system represents a diffraction-limited microcamera operat-
ing near its resolution limit and the hard-limiter represents a very
high contrast film [5]. The input function represents the intemsity

distribution which is a nonnegative valued functionm.

Referring to this figure, we note that the value of g (inteasity
distribution) will be equal to 1 whenever § is above the threshold y
and will be equal O when § is below y. The value of y is determined
by the recording material characteristics. Because practical systems
are not expected to exhibit the infinitely sharp characteristics of
the hard-limiter shown in Figure 2.1, a forbidden zonme (-c.e) has been
introduced about the threshold. Without loss of generality, we shall
take y to be equal to zero since the threshold cam be adjusted without

affecting g by simply introducing a dc bias in the input function f.

2.3.1 Sets (constraints or known properties) and projection operators

1] C1: The subset of all functions band-limited to b rads/s, 1i.e.,
feCy iff F(w)=0 almost everywhere (a.e.) in lol>». It is obvious that
Cl is a closed convex sot devoid of interior points. Given am arbi-

trary feH, its projection omto C1 is realized by
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Plfb———OPb(m)F(w) ,where

1, lul <y,
Pb(m)={
0, lal>b,

F

f——F(uw).

2] C2: The subset of all functions with predetermined threshold
crossings and being the same as those of the desired given function
and the absolute value is greater than e¢. To demonstrate closure of
this set we must show that given a sequence (fn} with limit £ (written

f,2f) that (f,)eC, implies feCj.
Let f be the limit of the sequence (fn}, then we can write

HI £,-£1%dzdy>0.

This requires that f have the same threshold crossing as those of the
desired given function g and the absolute value be greater thanm ¢, and
C2 be closed as claimed. The set is also convex, for f; and f,eC;y,
u£1+(1-p)£2cc2 for 0<u<l. Therefore, C, defined as above is a closed

convex set. The projection onto this set is
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f(x), f(x) has same sign as g(x) and |fl)e
sz(l)’
sign(g(x))e, f(x) is of different sign as g(x)

;or lfl<e,

where g(x) is the desired given function. The values of g will be
negative if it is below the threshold (which is equal to O here) and

will be positive if it is above the threshold.

Since the algorithm will be implemented on a digital computer,
all the functions mentioned above will be described in discrete form
(the discretization is done using a square grid with N points). The

algorithm will be implemented as follows:

Pl[f(n.n)]=[W“BTW]£(m.n).
where

W[f(m.n)]=F(k.1)-Mz::iﬁ::°-j2nmk/N°-j2nnl/N

is the two-dimensional (cartesian) discrete Fourier Transform (2-D

DFT) of the sequence (f(m,n)}, W' is the inverse 2-D DFT, and

BrlF(k,1)]=F (k. 1) .B(k, 1),
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where H(k,1l) is an ideal low-pass filter in frequency domain taking

values zero and one only. Using overrelaxation, we form the functionm

f'(m,0)=(1-3,) f(m,n)+&; P (f(m,n) )=T, (f(m,0)].

Then,

£'(m,n), £'(m,n).g(m,n) is positive and |f'(m,n)|2¢

P,(f'(m,n)])=

g(m,n)e, f'(m,n).g(m,n) is negative or |f'(m,n)l<e

Using overrelaxation again, we form the function

£, (m,0)=(1-5) £’ (m, 0)+&P; (£ (m,0) 12T [£' (m,0)].

Note, the desired function g(m,n) takes the values -1 and +1 omnly for
the white and black region respectively. The ot jteration is real-

ized as follows:

fn(m.n)=T[fn_1(m,n)=T°[f(m.n)].
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where

f(m,n) is the initial guess,

T= Tl T2 ’

T1=1+€1(P1-1):( 1"{1)4’61?1 ’

‘1‘2=1+§2(P2-1)=( 1‘62)+C2P2.

2.4 Coherent case

The mathematical model for a coherent diffration-limited imaging
system is shown in Figure 2.2. The input functiom f represents the
field distribution instead of the intensity distribution as in the
incoherent case. In mathematical terms, the square of the magnitude
of the bandlimited field distribution § at each point is above (below)
a fixed threshold y according to the white (black) regions of the
desired binary patternm g. ¢ has been introduced about the threshold

for the same purpose as the incoherent case mentioned earlier.

Note that the set of input functioms can include complex func-
tions in this case. By extending the class of inputs to include
complex functions as well, we hope to have better resolution.

However, the algorithm proposed here is dealing with projections onto
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convex sets. If the class of input is allowed to include complex
functions as well, the restriction on |§| will lead us to a nonconvex
set, a problem that the algorithm preseated above cannot handle.
Therefore, for the time being, it is necesary for us to restrict our-
selves to the set of real functions. The problem iavolving nonconvex
sets will be discussed in more detail in chapter 4. Furthermore, some
numerical results for restoring the phase of a complex band-limited
function will also be presented in the Bmext chapter, where the res-

trictions are moanconvex.

2.4.1 Sets and projection operators

1] C1 : The subset of all functions band-limited to b rad/s, which is

the same as that defined in the incoherent case. Given the arbitrary

feH, its projection onto Cl is realized as that of before, i.e.,

where

Pb(m)=
0, lul>b

f ———F(uw).

2) C5: The subset of all functions whose square magnitude will have
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the predetermined threshold crossings and being the same as those of

the desired given image and does not fall in the regi
For the purpose of convexity, the negative values of the
never be smaller than -(7-:)1/'. Since, refering to the
below, if the negative values are allowed to be
-(7-3)’/’. then for two points, say x; and xj where xj
the magnitude square for these two points is above
However pxi+(l-u)xy, for 0<udl, will fall s
[-(7)‘/’,(7)1/'}. where the magnitude square is below
violate the convexity. As in the incokerent case, this

be shown to be closed.

+ (y+e)

+ (y-¢)
.xl
<-(7+t)‘/’

1 (y=e)t/?

$-(y-e)r/3

L~ (y+e)t/?

t-(y—e)

+=(v+e)

Figure 1.

on (y-e,y+e).
function will
figure shown
smaller than
is negative,
the threshold.
the region
threshold, and

set also can
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The projection operator P, on this set is defined as

r f(x), |£(x)|$(y-c)‘/l aand lg(x)lS(y-e)x/'

£(x), £(x)>(y+e)*/? and lg(x)|2(y+e)t/?

Pylf(x) )=t (y+e)*/*,  lg(x)|2(y+e)*/* and £(2) ((y+e)?/?

(y-e)*/3, lz(x)lS(y-c)‘/' and f(x)l(y-s)‘/x

-(y-0)*/3, lg(x) 1<(y=2)*/? and £(x)¢~(y-e)*/?

where g(x) is the desired given function and y is the threshold value.

In discrete—time form, the algorithm is implemented as follows:

Py (£(m, 0)=[W"*By¥ ]£(m, 0)
where

WCE(m, 0) ) =F (k, D)= WNIAW ¢ () o™ 52mak/Ng=j2nnl /N

is the 2-D DFT of the sequence (f(m,n)}, W' is the 2-D DFT, and



where H(k,1) is an ideal low-pass filter in

values zero and ome only.

Then,
r£'(m,n),
f'(m,n),
Py(f(m,n)]= (y+e)*/3,
(y—a)‘/’.
-(y-e)*/2,

18

Bp(F(k,1)]=F(k.1) .H(k, 1),

Using overrelaxation, we form the function

frequency domain

f’(m.n)=(1‘§1)f(m.n)+§1P1[f(m.n)l-Tllf(m.n)].

where g(m,n),

only corresponding to the white and black regions respectively of the

g(m,n)=0

g(m,n)=1

g(m,n)=1

g(m,n)=0

g(m,n)=0

and lf'(m,m)| S(y-c)‘/’
and £/ (m,0) [2(y+e)®/?
and lf'(m.n)zlﬁ(y*s)‘/z

and £'(m,n)2(y-e)*/?

and t"(m.n)S-(y-e)"l2

the desired output function, takes the values

desired given function, and y is the threshold value. Using

laxation, we form the function
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£1(m,n)=(1-&;) £' (m, 0)+&3Py (£ (m, )]

=T, (' (m,n)].

The oth iteration step proceeds as follows:

£,=T(f _, (m,n) =T [f(m,0)],

n—:

where

f(m,n) is the initial guess,

T=T112

Ti‘l*&l(Pl‘l)’(1‘61)*{1?1

T2:1+§2(P2‘1)'(1‘&2)*&2?2.



CHAPTER 3

RESULTS AND DESCRIPTIOMS

Five two—-dimensional patterns were designed for the incoherent

imaging system using the algorithm presented in this thesis.

3.1 Parameters specification

The parameters listed below are needed to specify the images and

the algori thm.

N: The number of pixels sampled on the pattern along

each dimension.

M: 1log,N

LWP: The bandwidth of the low pass filter along each

dimension corresponding to the diffraction-limited

microcamera.

§i: The overrelaxzation comstant for the algorithm.

e: The value for the forbidder zone about the threshold.

20
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The values of the parameters for the program (Appendix C) imple~-

mented on the PRIME 750 digital computer are as follows:
For patterns 1, 2 and 3

N=32
M=5
§1=8,=1.995

¢=0.001

6 ;for pattern 1
Lw 11 ;for pattern 2

11 ;for patternm 3.

For patterns 4 and §

N=64
M=6
§1=52=1.995

e=0.001

17 ;for pattern 4
LV/P=

26 ;for pattern 5
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3.2 Description of image synthesis results

Figure 3a represents the desired image which we want to construct
at the output of the imaging system-of Figure 2.1. If we feed this
image to the input of the imaging system, the output from the clipper
will be as shown in Figure 3b. Clearly, it is highly distorded by the
imaging system and therefore the straightforward approach consisting

of using the desired pattern itself as an input is not appropriate.

Using the algorithm proposed in this thesis, I succeeded in find-
ing the solution (required input image) that will produce an exact
replica of the desired pattern after passing through the imaging sys-
tem. The value of the solution (required input image) is then
quantized into 10 gray levels and showan in Figure 3c. Figure 4 to

Figure 7 are presented in the same format as Figure 3.

The number of iterations required to find the solutions for each
of the images are listed below in Table 1. In addition, the number of
iterations required for the Gerchberg-Papoulis algorithm [1] is also
included. It cam be seen that the algorithm presented here gives

great improvements over the Gerchberg-Papoulis algorithm,
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3.3 Numerical results for the phase restoration of an 1-D bandlimited

function

The numerical results presented in Table 2 represent the sum of
square error when I try to use the algorithm presented here to recover
the phase in the time domain of a one~dimensional band-limited func-
tion.The magnitude and phase of the function are known a priori. The
phase of the function is then thrown away and the function goes
through the algorithm with initial random phase and the original known
magnitude. It is found that, for the 1-D case, the sum of square
error is very small after a certain number of iterations, even though

the phase restoration leads to a nonconvex projection problem.
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Tabble 1

Number of iterations to reach convergence

Convex projections Gerchberg—-Papoulis
with overrelaxation algorithm (1)
Pattern 1 19 414
Pattern 2 14 216
Pattern 3 20 613
Pattern 4 13 e
Pattern § 80 .o
Table 2

(The values presented below represent the sum
of square error of recovering the phase of
an 1-D bandlimited function with N=128)

LWP=28
The value for &

1.50 1.70 1.74

0 |110.86 110.86 110.86

10 2.672 2.62 2.61

50 0.645 0.358 0.47

no. of

iterations 100 0.296 7.68x10% 0.138
150 0.173 5.10x107? 7.90x10°*
200 0.116 4.20x10°2 7.38x10°2
250 7.39x107? 4.09x10°2 6.99x107%
299 4.75x1072 4.03x107° 7.07x107?
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Table 2 (continue)

LWP=30

The value for &

1.75 1.84 1.85

0 | 115.93 115.92 115.92

10 3.502 3.880 3.939

50 1.485 0.816 0.971

no. of
iterations 100 7.34x107? 8.00x10°° 8.96x10"2
150 2.70x107% 2.56x10°* 8.95x10°2
200 1.35z10°? 7.57x10""* 8.95x10°%
250 8.82x10"° 3.21z10°° 8.95z10°*
299 6.37x107° 1.64x10"° 8.13zx10°?
LWP=34
The value for &

1.85 1.865 1.87

0 | 119.847 119 .847 119 .947

10 1.105 1.110 1.113
50 1.18x10°2 1.09x10°2 5.18x10°°%

no. of

iterations 100 4,27x10°° 1.69x10°% 7.32x10°°%
150 1.19x10°° 1.16x10°°? 7.52x107?
200 1.12x10°° 1.12x10°° 5.66x10°2
250 1.10x10°° 1.09x10°° 7.47x10°%
299 1.07x10°° 1.07x10”? 5.58x10?




CIIAPTER 4

CONCLUSIONS, DISCUSSIONS AND FURTIIER RESEARCIH

By using the alternating projections method and appropriately
defining the <closed convex sets corresponding to the constraints of
the functions which we want to construct, we can find a solution
whenever the solution exists. Furthermore, with the particular choice
of §1=§2=1.995. the number of iterations required is several orders of
magnitude smaller than that for the mcthod of Gerchberg-Papoulis.
This improvement is of great practical importance when we want to

design more complex images.

As mentioned in chapter 2 , for the case of coherent imaging, the
input function f represents field distribution and as such is a com-
plex function. By extending the class of inputs to include <complex

inputs as well, we hope to have better resolution.

Invoking the sampling theorem, to completely determine a real
function |T], band-limited to wg, we need 2wy samples/sec. To
represent a complex function ITleJQ? which is band-limited to «y, we
need 2w1 complex samples/sec or equivalently 4wy real samples/scc.
Therefore as long as w; is not smaller than wp/2, it may be possible
to find a phase 2 such that lT!eJQ? is band-limited to ;. For the
two-dimensional case, a similar argument shows that ©1 would bhave to

te larger than wo/(Z)x/z-
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The above arguments show that it may indeed be possible to obtain
better resolution using coherent imaging system with complex input and
it provides limits on what we could hope to achieve. However, the
problem of synthesis of the phase for a nonnegative function will lead
itself to a nonconvex set problem (this is similar to the well known
problem of recovering the phase from magnitude). The method proposed
here cannot handle this problem and will not converge to the solutioa.
An investigation of the alteration of this method or finding another

algorithm is necessary for solving this problem.

Another constraint on the input function that is of great
interest is the object itself being restricted to be of binary nature
or to be quantized to a finite number of intensity levels. This res-
triction is very important, because of physical implementation
considerations. Another example is computer holography [11] where the
magnitude of the function is given and the coefficient of its Fourier
Transform must be chosen from a set of quantized values (because of
the limitations of the display device and the materials used to syn-
thesize the hologram). However, the operation of quantizing a signal
is mnot equivalent to projection omnto a convex set, and therefore can-
not be handled by this method. Further research is necessary to

resolve this issue.



APPENDIX A

Definition 1
A DIFFRACTIOM-LIMITED optical imaging system is one which blocks

the high frequency components of the input object.

”mJﬂ“i“an KoYeDg vvennennnnnn. (1)

and strictly nonexpansive on D, if strictly inequality holds in (1)

whenever X#Y.

Definition 3

A point X* in the domain of T is called a fixed point of T if

TX*=x"*.

Definition 4

A sequence {fn) is said to converge strongly to f if

o

and is said to converge weakly to f if

lim 5o

limﬁea(fn.g)=(f,g)

28
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for every geRN, where (f,g) is the inner product operation of f and g.
Note that strong convergence to f always implies weak convergence to
f. In a finite-dimensional linear vector space, the converse is also

true.

Definition §
A subset D of RN js said to be conmvex if, together with x; and
x5, it contains pxy+(l-p)x, for all u, 0SS, It is closed if it com-

tains all its strong limit points,
ition 6
A mapping T:D< RM3RN is said to be asymptotically regular if for

every xeD, T2z-T%':30 as m=,

Definition

(B8]

A mapping T:DCRNIRN is said to be a reasonable wanderer if for

every xeD,

i

101 || 2o,

Jase

It is evident that a reasonable wanderer is automatically asymtotical-

ly regular.



APPENDIX B

Theorem 1 (2]

Let Pc:RN9C is a operator projecting RN onto C, CeRN and such

that

f-x

llf-Pcfil=nin

where £eRN, then P. is nonexpansive.

PROOF :

Coxollary 1 : Let C be a closed convex subset of RN, Then for any

xcRN

(x-P_ x,y-P.x)%0, all yeC.  iivvivinnnnaeaa(2)

In this guise it can be interpreted to mean that the vector x-ch is
supporting to C at the point chcc. As Figure A suggests, x-P.x is
“normal” to the “tangent plane” to C erected at the point ch. This
plane has C and x on opposite sides, and therefore seperates one from

the other. Note also that the angle © between the vectors x-ch and

y-P_y is never less than 90°.

30
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tangent_—_\y

plane

Figure A.

Corollary 2: Let C be any closed convex set. Then for every pair

of elements x and y in RN,

2=y, Pex=Pcy) . civiiiiiiinn (D)

P.x-P.y

proof: Since P.x and P_y both belong to C, it follows from (2) that

(x*?cx,Pcy-ch)SO e teceeeeaeen N € )

and

(y-Pcy.PCx-Pcy)SO. e teereneeans N -}

and (3) is obtained by addition of (4) and (5).
Now, Schwarz’'s inequality applied to (3), we will get,for every x

and y in RN,

[ e

Therefore, the operator Pc is nonexpansive.

P.x-P.y

\x-y“. e (6
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Theorem 2 [2]
For 0£%.€2, the operator T;=1+¢;(P,-1)=(1-¢;)+&;P; is nonexpan-

sive, where the operator P, is nonexpansive.

Proof :
The assertion is obviously correct for 0$§i$1, For 1<§i$2, it is

found that, with the aid of (3) and (6),

l‘Tix—Tin’ﬂu(l-ﬁi)(x-y)*{i(Pix-Piy)”z ............... NE))
=120 *||x-y || '+28, (1-8 ) xmy Px-Pyy) e H|Pyx-Pyy | ... (8)

$O1-8 ) ¥|x=y [P+ (3 2w2g  (1-g || Py xRy || oo e e (9
t(l-Ci)’“x‘y“’+¢i(2-&1)“Pix-Piy“z N S 1)

S(&i(z-ci)+(1-¢i)')"x-y“’-nx-y“’ e (11)

and nonexpansive is established. Thus, TtTan_‘,...Tl is also nonex-

pansive.

Theorem A3 (17] Let T:C3C be an asymtotically regular nonexpansive
operator with <closed convex domain CCH, and let its set of fixed

points ACC be nonempty. Then for xeC, the sequence [T“x} is weakly

convergent to an element of A. Moreover, the convergence is strong

iff at least one subsequence of (T2x} converges strongly.
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Theorem 3 (2]

The operator T=T T _, ..... T; is a reasonable wanderer for 0<§;<2,
i=1Jm.
proof :

For m=1, we have T=T1, Cp=C; and

RSP & &3

|Ix-Tx“‘=§13\x-Plx”’. ceeees

Moreover, for any yeCqy, Ty=P;y=y and

\‘Tx-y“'ﬂ‘x-y+§1(P1-x)“’ Cetteecieeretaeeentaeneas cee.(13)
=“x-y“’+2€1(x-y,Plx-x)+§11|x-Ple' R & €
=|l==yll*-81 (2= || x=Pye||*+28) (x-Py 2 y=Pyo) L.l 19)

s“x-y“’-gl(z-al)”x-plxn’ e eeeeeenean(16)

since the last term in (15) is nonpositive. Thus by combining (12)

and (16), it is found that

Jerme s

|Te=y|| /e (17

for 0<§1<2.
For arbitrary m2l, a straightforward induction on m yields the

inequality

lx-rxH‘sbm.z““(

=

\z-
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where yeCy and

b,= sup Léi/(2°§i)] .

(Clearly, (17) subsumes the case m=1.) In fact, let T=T K where

and observe that for m22,

“x-TxH'=Hx—Kx+Kx—Txnz
S("x-KxH+HKz-Tx“)‘
SZ(“x-KxH’+“Kx-Tx“’)

52(“x-Ktz+2m_’“Kx-Tth“z). .................. (19)

Thus, by induction hypothesis ((bp2&g) /(2-8,) and

bnz‘“p1$i$m-s[¢i/(2'¢i]‘ Note also that yeCy implies y C; and yeCp),

=y

x=Tx|| by 2 (277 |}-2=

Kx-y“z+2m-zuxx—yn‘-2m"lTx-y“')

abm.zm“(\x—yu’-nrx—yu’). ..................... (20)

the desired inequality. It now follows immediately from (20) that

TBy-TO"?

3 m=-1
Sbmz

2:,, x-y\z<¢.

and T is therefore a reasonable wanderer and, a fortiori, asymtotical-
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ly regular. By Theorem A3, the sequence (T%x} converges weakly to 2
fixed point of T, and convergence is strong iff some subsequence con-

verges strongly.



APPENDIX C

DIMENSION IDM(64,64)
COMPLEX ARRAY(64,64),CRRAY(64,64)
DIMENSION BRRAY(64,64)
ICOUNT=0
KIND=1
OPEN(S5,FILE='SAVWl')
OPEN(6,FILE='ABC')
CALL INITT(480)
CALL DWINDO(O.,1536.,0.,1170.)
CALL OPENTK('GSHADE',10)
READ(5,15)M,NPOINT
15 FORMAT(212)
DO 100 I=1,NPOINT
READ(5,11) (IDM(I,J),J=1,NPOINT)
DO 919 LI=1,NPOINT
919 IF(IDM(I,LI).EQ.0) IDM(I,LI)=-1
DO 110 J=1 ,NPOINT
ARRAY (I,J)=CMPLX(FLOAT(IDM(I,J)),0.0)
110  BRRAY(I,J)=REAL (ARRAY(I,J))
100 CONTINUE
11 FORMAT(6411)
500 IND=0

CALL FFT2D (ARRAY, ,KIND)

36
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901

696

299

200

37

CALL LPF(ARRAY,NPOINT)
KIND=-KIND
CALL FFT2D (ARRAY,M,KIND)
IF(ICOUNT.EQ.0) THEN
DO 901 NL=1,64
DO 902 NP=1,64
IF(REAL (ARRAY(NL,NP)) .GE.0.0) THEN
ARRAY(NL,NP)=(1.0,0.0)
ELSE
ARRAY (NL,NP)=(-1.,0.)
ENDIF
CONTINUE
CONTINUE
ELSEIF(ICOUNT.EQ.80) THEN
WRITE(6,696)
FORMAT(15X, ' THE OUTPUT AFTER 80 ITERATION ")
ELSEIF(ICOUNT.EQ.300) THEN
WRITE(6,299)
FORMAT(15X, "’ THE OUTPUT AFTER 300 ITERATION
ELSEIF(ICOUNT.EQ.600) THEN
WRITE(6,200)
FORMAT(15X, "’ THE OUTPUT AFTER 600 ITERATION
STOP
ENDIF
CALL OVRF (ARRAY,BRRAY,NPOINT)

CALL PROJ (ARRAY, IDM,NPOINT, IND)

")

")



444

421

38

IF(IND.EQ.0) THEN
DO 444 IT=1,NPOINT
DO 444 JT=1,NPOINT
CRRAY (IT,JT)=ARRAY (IT,JT)
KIND=1
CALL FFT2D(CRRAY,M,KIND)
CALL LPF(CRRAY,NPOINT)
KIND=-KIND
CALL FFT2D(CRRAY,M,KIND)
CALL PROJ (CRRAY, IDM,NPOINT, IND)
IF(IND.EQ.0) THEN
WRITE(6,421) ICOUNT
FORMAT(15X%,’ THE NUMBER OF ITERATION
CALL QUN(ARRAY)
CALL ANMODE
CALL CLOSTK(10)
sTOP
ENDIF
ENDIF
CALL OVRF (ARRAY,BRRAY,NPOINT)
ICOUNT=ICOUNT+1
KIND=-KIND
GO TO 500

END

=',13)



60

70

50

72

73

71
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SUBROUTINE FFT2D(A,M,KIND)
COMPLEX A(64,64) ,XX(64)
IPOINT=2**M

DO 50 IK=1,IPOINT

DO 60 JK=1,IPOINT

XX (JK)=A(IK,JK)

CALL FFT1D(XX,M,KIND)
DO 70 JK=1,IPOINT
A(IK,JK)=XX(JK)
CONTINUE

DO 71 JK=1,IPOINT

DO 72 IK=1,IPOINT
XX(IK)=A(IK, JK)

CALL FFT1D(XX,M,KIND)
DO 73 IK=1,IPOINT
A(IK,JK)=XX(IK)
CONTINUE

RETURN

END



114

113

125

123

135

133

SUBROUTINE LPF(B,NP)
COMPLEX B(64,64)
MPT=NP/2+1

LWP=15

EC=MPT-LWP
KD=MPT+LWP
L¥W=KC-1

DO 113 LP=1,LW

DO 114 KE=KC,EKD
B(LP,KE)=(0.0,0.0)
CONTINUE

DO 123 LE=KC,KD
DO 125 LF=1,NP
B(LE.LF)=(0.0,0.0)
CONTINUE

MC=KD+1

DO 133 MM=MC,NP
DO 135 NN=KC,KD
B(MM,NN)=(0.0,0.0)
CONTINUE

RETURN

END
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SUBROUTINE PROJ (AA, IBB, IP, IND)
COMPLEX AA(64,64)
DIMENSION IBB(64,64)
PP=0.0010
DO 333 I=1,IP
DO 433 J=1,IP
T=REAL (AA(I,J))
IF((ABS(T)-PP).LT.-0.00001) THEN
T=FLOAT(IBB(I,J))*PP
AA(I,J)=CMPLX(T,0.0)
IND=1
ELSEIF ((T*FLOAT(IBB(I,J))).LT.0.0) THEN
T=FLOAT(IBB(I,J))*PP
AA(I,J)=CMPLX(T,0.0)
IND=1
ENDIF
433  CONTINUE
333 CONTINUE
RETURN

END
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20
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SUBROUTINE FFT1D(X,M,KIND)
COMPLEX X(64).U,W,TT
N=2e+M

PI=3.14159265358979
IF(KIND.EQ.1) GO TO 9

DO 8 IL=1,N
X(IL)=CONJG(X(IL))/FLOAT(N)
DO 20 L=1,M

LE=2%#*(M+1-L)

LE1=LE/2

U=(1.0,0.0)

W=CMPLX (COS (PI/FLOAT(LE1)) ,-SIN(PI/FLOAT(LE1l)))
DO 20 J=1,LE1

Do 10 I=J ,N,LE

IP=I+LE1

TT=X(I)+X(IP)
X(IP)=(X(I)-X(IP))*U
X(I)=TT

U=UsW

NV2=N/2

NM1=N-1

J=1

DO 30 I=1,NM1

IF(I.GE.J) GO TO 25
TT=X(J)

X(J)=X(I)
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26

30

863

43

X(I)=TT

K=NV2

IF(K.GE.J) GO TO 30
J=J-K

K=K/2

GO TO 26

J=J+K

IF(KIND.EQ.1) RETURN
DO 863 Il=1,N
X(I1)=CONJG(X(I1))
RETURN

END
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37

44

SUBROUTINE OVRF (ARR, BRR, NPT)
COMPLEX ARR(64,64)

DIMENSION BRR(64,64)
RAN=1.995

DO 37 L1=1,NPT

DO 47 L2=1,NPT
TAT=(1.-RAN)*BRR(L1,L2)+RAN®*REAL (ARR (L1,L2))
ARR (L1,L2)=CMPLX(TAT,0.0)
BRR(L1,L2)=TAT

CONTINUE

CONTINUE

RETURN

END
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733

633

827

927
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SUBROUTINE QUN(GA)
COMPLEX QA(64,64)
DIMENSION IAA(0:10),I1CC(-10:0),IDD(64,64)
READ(5,27)IAA
FORMAT(811,311)
READ(5,27)ICC
DO 633 I=1,64
DO 733 J=1,64
TP=REAL(QA(I,J))
IF(TP.GT.1.0) THEN
IDD(I,J)=9
ELSEIF(TP.GT.0.0) THEN
MP=TP*10.0
IDD(I,J)=IAA(MP)
ELSEIF(TP.LT.-1.0) THEN
IDD(I,J)=0
ELSE
MP=TP*10.0
IDD(I,J)=ICC(MP)
ENDIF
CONTINUE
CONTINUE
DO 827 I=1,64
WRITE(6,927) (IDD(I,J),J=1,64)
CONTINUE

FORMAT(1X,6411)



CALL SHADE(IDD)
RETURN

END
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977

777

677

988

676
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SUBROUTINE PRINT(BL)
COMPLEX BL(32,32)
CHARACTER CA(96,96),BCC(98),AS,BS
DO 677 1I=1,32
DO 777 J=1,32
TM=REAL (BL(I,J))
Il=]*3-2
J1l=J*3-2
12=1*3
J2=J*3
IF(TM.GE.0.0) TOEN
DO 877 I1I=I1,I2
DO 877 JJ=J1,J2
CA(II,JT)="W’
ELSE
DO 977 II=I1,I2
DO 977 JI=J1,J2
CA(I1,JT)=" '
ENDIF
CONTINUE
CONTINUE
WRITE(6,988)
FORMAT(////15X, "’ THE OUTPUT IMAGE
DO 676 I=1,98
BCC(I)='#"’

AS='®e’

")
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BS='se"
WRITE(6,545) (BCC(I),I=1,98)

545  FORMAT(1X,98Al1)
DO 656 I=1,96

656  WRITE(6,545)AS, (CA(I,J),J=1,96),BS
WRITE(6,545) (BCC(I),1=1,98)
RETURN

END
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SUBROUTINE SHADE (M)
DIMENSION M(64,64)
CALL NEWPAG

DO 1 1=0,1152,1152
X=I

CALL MOVEA(X,0.)

CALL DRAWA(X,1152.)
CONTINUE

DO 2 J=0,1152,1152
Y=J

CALL MOVEA(O.,Y)

CALL DRAWA(1152..Y)
CCNTINUE

DO 10 IR=1,64

DO 20 IC=1,64
IMG=M(IR, IC)
IF(IMG.EQ.0) GOTO 20
XMIN=18*(IC-1)
XMAX=18*IC
YMIN=1152-18*1R
YMAX=1152-18+*(IR-1)
CALL MOVEA(XMAX, YMAX)
CALL DRAWA(XMIN, YMIN)
IF(IMG.EQ.1) GO TO 20

DO 30 J=1,IMG

CALL MOVEA(XMIN+ (XMAX-XMIN)®*J/(IMG),bYMAX)



30

20

10

50

CALL DRAWA(XMIN, YMAX-(YMAX-YMIN)®J/(IMG))
CALL MOVEA(XMAX, YMAX-(YMAX-YMIN)®J/ (IMG))
CALL DRAWA(XMIN+ (XMAX-XMIN)®*J/(IMG),YMIN)
CONTINUE

CONTINUE

CONTINUE

RETURN

END
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Figure 3a. Desired Pattern (Pattern 1)
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Figure 3b. Constructed pattern when the object in
Figure 3a. is used as an input to the
imaging system in Figure 2.1.
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/s 77

Figure 3c. Input pattern found by our iterative
procedure which has been quantized
into 10 gray levels.
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Figure 4a. (Pattern 2)
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Figure Sb.
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Figure 5c.
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Figure 6a. (Pattern 4) Surface acoustic wave device
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