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ABSTRACT

SINIIIESIS AND RECONSTRUCTION OF FUNCTIONS

SATISFYING SIMULTANEOUS TIME AND FREQUENCY

DOMAIN CONSTRAINTS USING ALTERNATING CONVEX

PROJECTIONS wmI OVERRELAXATION: AN APPLICATION

IN IMAGE DESIGN

By

Bong. Joo Ueng

A method of alternating projections with overrelaxation is

employed for synthesizing images that are band-limited in the frequen-

cy domain and with predetermined threshold crossings in the space

domain. This problem is encountered when we want to generate a pres-

cribed binary image at the output of a diffraction-limited imaging

system with high contrast recording. Such an imaging system is

modeled as a linear band-limited system followed by a noninvertible

point nonlinesrity. Some of the important applications of image syn-

thesis are the construction of masks for microlithOgraphy. laser

printing. fabrication of surface acoustic wave devices and the storage

of data using optical techniques. With a suitable choice of the over-

relaxation parameter for the algorithm. it is found that the number of

iterations required for this method is several orders Of magnitude

smaller than that required for the Gerchberg-Papoulis type algorithm.

This improvement is very important in designing images that are much

more complex and of practical interest. Both incoherent imaging and

coherent imaging systems are investigated.



CHAPTER 1

INTRODUCTION

There are many problems of great interest in, science and

engineering where one wishes to reconstruct or synthesize functions

which are specified partially in the time (or space) domain and par-

tially in the frequency domain (Fourier domain). The task of finding

functions satisfying such simultaneous constraints is a difficult one

and depends on the constraints themselves. The problem however is

very important as it arises in numerous situations.

An example is the extrapolation of band-limited functions where

only a finite segment of a band-limited function is given and it is

desired to find the value of the function everywhere [8]. Another

example is the recovery of a real nonnegative signal from the

knowledge of the magnitude only of its Fourier Transform. Such a

problem arises in X-ray crystallography. Fourier Transform spectrosco-

py and imaging through atmospheric turbulence using interferometer

data [9]. Still some other problems dealing with certain constraints

are blind deconvolution [10]. computer holography [11). kinoforms

[12]. design of radar signals. antenna arrays [13] and digital filters

[14].

One may divide the problems of searching for functions satisfying

simultaneous time and frequency domain constrains into two classes



restoration and synthesis problems. In restoration problems. one

wants to reconstruct a function (or a close replica of it) given that

the function satisfies certain constraints. By the very nature of the

problem. a solution must exist. In the synthesis problems. one wants

to construct a function satisfying some specified constraints. A

solution. however. may or may not exist. For example. one cannot con-

struct a function that is of finite time extent and. at the same time.

of finite frequency extent. Another important point is the question

of uniqueness of the solution. If a whole class of functions satis-

fies the given constraints in a restoration problem. we have to

determine which function within the class is the solution. In the

synthesis problem. on the other hand. one may be interested only in

finding a solution. For example. when designing filters with certain

time and frequency domain specifications. the primary concern is in

finding some function satisfying all the given requirements. Later

one may (or may not) choose to seek an 'Optimum' choice. Therefore

the uniqueness question is of more concern in restoration problems

than in synthesis problems.

In this thesis. I deal with the problem of 'synthesis of images

through a diffraction-limited imaging system with high contrast

recording'. This is to generate a prescribed binary image at the out-

put of an imaging system. Some important applications of this image

synthesis problem are the design of masks for microlithography. the

fabrication of surface acoustic wave devices. the storage of data

using Optical techniques. laser printing and so forth.



The models for the imaging system I will deal with are showni in

Figure 2.1 and Figure 2.2 for the incoherent and coherent system

respectively. These are adequate models for a microphotographic sys-

tem where the linear system represents a diffraction-limited

microcamera Operating near its resolution limit and the noninvertible

hard-limiter represents a very high contrast recording film [5]. In

mathematical terms. the output 3 must be band-limited and after pass-

ing through the nonlinear device (noninvertible hardrlimiter). will

produce a binary image according to the white (black) regions Of the

binary desired image g that we want to construct. In other words. the

overall purpose of the image synthesis problmm is to synthesize 3 such

that it satisfies the Fourier domain constraint which is band-limited

and the space domain constraint corresponding to predetermined thres-

hold crossings.

Some ad hoc methods for the solution Of this image construction

problem have been proposed [3.4]. An example is corrections being

deliberately introduced in the original masks to compensate for the

distortions caused by the microcamera itself. More recently. it was

shown that this problem can be reduced to a linear prOgramming problem

which can be solved by using well known techniques [6.7]. Although

the linear programming approach is superior to the ad hoc technique

proposed earlier. it still suffers from the heavy amount Of computa-

tion required, which prohibits its use on real images except for some

very simple patterns. Another method for finding the solution is a

variation of the Gerchberg-Papoulis algorithm (also refered to as the



Gerchberg-Saxton algorithm) [1]. The algorithm itself is an iterative

one. with an initial guess for the solution consistent with the given

information (constraint) in one domain. repeated transformations are

performed between the space domain and the frequency domain. In each

domain. the known information (contraints) is incorporated into the

current estimate Of the desired function (solution). forcing the esti-

mate to satisfy the constraints corresponding tO the information

specified in both domains. Depending upon the constraints themselves.

the algorithm may converge or fail to converge at all.

The method presented in this thesis is the method Of alternating

projections with overrelaxation over closed convex sets in Kilbcrt

space [2]. The concept is that the function f which we want to syn-

thesize is belonging to the intersection C0 of m well-defined closed

convex sets Ci's. i=19m. That is , the known properties (given infor-

mation or constraints) Of the function f form m well-defined closed

convex sets Ci's. i=19m. and such that

m

ffic0= 0 Ci'

1:1

Note that the intersection C0 is also a closed convex set con-

tainiug f. If the desired function f does satisfy the above

constraints. then the problem of synthesizing f from its m prOperties

is included in that of finding at least one point (one function)

belonging to C0,



In chapter 2, both the incoherent and coherent models for the

imaging system mentioned previously and the known properties (con-

straints) corresponding to the closed convex sets of the function

which we want to construct are mathematically formulated. The algor-

ithm for finding the fixed point (solution) belonging to the

intersection Co which is closed and convex of the image design problem

will be considered in great detail.

In chapter 3. some examples of 2-dimensional patterns that were

designed using the algorithm presented in chapter 2 are presented. A

comparison based on convergence rate is made between this algorithm

and the Gerchberg-Papoulis type algorithm presented in [1]. Besides.

numerical results of an 1-dimensional example for reconstructing the

phase of a band-limited function using the method proposed in chapter

2 are also presented. In chapter 4. some discussions and suggestions

are made for the image design problems in the future.



CHAPTER 2

MATHEMATICAL FORMULATION

2.1 General algorithm description

The image synthesis problem is closely related to the well known

problem of image restoration. The main difference between these two

problems is the existence of a solution. In image restoration. by the

very nature of the problem. a solution must exist. While in the image

synthesis problem. the solution does not necessary exist. An example

is that one cannot synthesize a function that is time-limited as well

as band-limited.

In the image restoration problem. the Observed properties of the

output function restrict the input function f to have certain proper-

ties (given information or constraints). If every known prOperty of

the input function f form a well-defined closed convex set Ci. ialém.

in Hilbert space R. then m such properties place f in the intersection

of the corresponding closed convex sets C1.C2....C The intersectionm.

Co is also closed and convex and contains f. Consequently. irrespec-

tive of whether Co contains elements other than f. the problem of

restoring the function f from its m prOperties is included in that of

finding at least one point (one function) belonging to C0, Therefore.



if the Operator P0 projecting onto C0 is known. the problem is solved.

for then PoxeCo for every xefl. However. C0 in general can be consid-

erably more complex in structure than any of the Ci's corresponding to

the constraints and a direct realization of P0 is usually not feasi-

ble.

An alternate approach [2] for solving the problem is to consider

every known prOperty of the function f that places it in a

well-defined closed convex subset. and search for the intersection.

If th’ projection °P°ttt°r3 Pi's on its respective Ci's. i.e.. PixaCi.

for xaH and Pixax for xeCi. is effectively realizable. i-lém. then to

find a point (function) satisfying the m given prOperties. a composi-

tion operator T will be defined as follows:

T=PnPu-me_3....P1.

The operator T is in general not the projection operator onto Co,

but every point of Co is a fixed point for every Pi and therefore of

T. i.e.. if xeCo, then xeCi. Pix=x. i-19m and szx. With the initial

guess other than the points belonging to Co, the iterative scheme has

been developed for the generation of fixed points of T by the standard

recursion

Xn+xaTnX . where

X : the arbitrary initial guess.

u : the number of iterations.



It has been shown that [2] a nonexpansive mapping T:H9H of a Hilbert

space onto itself is a reasonable wanderer and .a fortiori. asymptoti-

cally regular. and the sequence [Tnx} converges weakly to a fixed

point of T. However. if the Hilbert space is of finite dimension. the

sequence [Tax] will converge strongly to For for every er.

What is needed then is to define nonexpansive projection opera-

tors Pi's. i=19m. on the the respective Ci's. for a composition of two

or more nonexpansive mappings is also nonexpansive.

Lemma 1 [16] [17] : Let C denote any closed convex subset of Hilbert

space H. then there exists a unique geC such that

3;; ns-xu = ur-sn .

Now. the projection Operator Pi onto Ci is defined as follows:

\.

That is. the projection assigns to every feH its nearest neighbor Pif

   

8 min f-x

xEIk

  

in Ci. This defines a nonlinear projection Operator Pizfléci unambigu-

ously by means of the minimality criterion.

The projection Operators Pi's. ialém. defined above can be shown

to be nonexpansive and continuous [2]. However the convergence rate

using the composition of these Operators is not at a geometric rate.



The convergence can be speeded up considerably if we replace Pi by

Ti-1+§i(Pi-1). {i=192 (overrelaxation) with a proper choice of the Si

[2]. It can also be shown that [2] the operators Ti's are nongxp‘n-

sive.

2.2 Mathematical formulation for the imaging system

Image construction involves determing the Object distribution

which produces a prescribed image at the output of a given imaging

system. The imaging system I deal with in this thesis is a diffrac-

tion-limited imaging system with a high contrast recording device.

Such an imaging system is modeled as a linear band-limited system fol-

lowed by a bard-limiting point nonlinearity (clipper).

The overall system is mathematically represented by the operator

6. where the input and the output image f and g. are related by g=Gf.

The system G is known and a prescribed image g is to be generated at

the output of the system.

2.3 Incoherent case

The mathematical model for an incoherent diffraction-limited

imaging system with high contrast recording device is shown in Figure

2.1. This is an adequate model for a microphotographic system where
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the linear system represents a diffraction-limited microcamera Operat-

ing near its resolution limit and the hard-limiter represents a very

high contrast film [5]. The input function represents the intensity

distribution which is a nonnegative valued function.

Referring to this figure. we note that the value of g (intensity

distribution) will be equal to 1 whenever 3 is above the threshold 7

and will be equal 0 when 2 is below 7. The value of y is determined

by the recording material characteristics. Because practical systems

are not expected to exhibit the infinitely sharp characteristics of

the hard-limiter shown in Figure 2.1. a forbidden zone (-e.e) has been

introduced about the threshold. Without loss of generality. we shall

take 7 to be equal to zero since the threshold can be adjusted without

affecting g by simply introducing a dc bias in the input function f.

2.3.1 Sets (constraints or known properties) and projection operators

1] C1: The subset of all functions band-limited to b rads/s. i.e..

faC1 iff F(m)=0 almost everywhere (a.e.) in lul>b. It is obvious that

C1 is a closed convex set devoid Of interior points. Given an arbi-

trary feH. its projection onto C1 is realized by
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Plf e——>Pb(u)F(m) .where

1. [m]$b.

Pb(m)={

o. lul>b.

.}
f¢—-——+F(m).

2] C2: The subset of all functions with predetermined threshold

crossings and being the same as those of the desired given functiOn

and the absolute value is greater than s. Th demonstrate closure of

this set we must show that given a sequence {fa} with limit f (written

fnéf) that [fn]eC2 implies feCz.

Let f be the limit of the sequence (fn}' then we can write

[Ilia-tl‘dxayeo.

This requires that f have the same threshold crossing as those of the

desired given function g and the absolute value be greater than c. and

C2 be closed as claimed. The set is also convex. for £1 and fzeCZ.

nf1+(1-u)f2eC2 for 0<p<l. Therefore. 02 defined as above is a closed

convex set. The projection onto this set is
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f(x). f(x) has same sign as g(x) and [f]>e

P2f(l)=

sign(g(x))e. f(x) is of different sign as g(x)

:or [f]<e.

where g(x) is the desired given function. The values of g will be

negative if it is below the threshold (which is equal to 0 here) and

will be positive if it is above the threshold.

Since the algorithm will be implemented on a digital computer.

all the functions mentioned above will be described in discrete form

(the discretization is done using a square grid with N points). The

algorithm will be implemented as follows:

91::(m.n)1=[w“3Tw]r(m.n).

where

W[f(m.n)]=F(k,1)a§§::>§;:o-jank/Ne
-jZnnllN

is the two-dimensional (cartesian) discrete Fourier Transform (2-D

DFT) of the sequence [f(m.n)]. W" is the inverse 2-D DFT. and

BT[F(k.l)]=F(k.l).H(k.l).
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where K(k.l) is an ideal low-pass filter in frequency domain taking

values zero and one only. Using overrelaxation. we form the function

f'(m.n)=(1‘€1)f(m.n)+§1P1[f(m.n)]-T1[f(m.n)].

Then.

f'(m.n). f'(m.n).g(m.n) is positive and [f'(m.n)IZe

P2[f'(m.n)]=

g(m.n)e. f'(m.n).g(m.n) is negative or lf’(m.n)l<e

Using overrelaxation again. we form the function

f1(m.n)'(1-§2)f'(m.n)+§2P2[f'(m.n)]=T2[f'(m.n)].

Note. the desired function g(m.n) takes the values -1 and +1 only for

the white and black region respectively. The nth iteration is real-

ized as follows:

fn(m.n)=T[fn_1(m.n)=Tn[f(m.n)l.
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where

f(m.n) is the initial guess.

T'Tlrz,

T131+§1(P1-1)3(1-§1)+§1P1e

T231+§2(P2‘1)3(1-§2)+§2P2.

2.4 Coherent case

The mathematical model for a coherent diffration-limited imaging

system is shown in Figure 2.2. The input function f represents the

field distribution instead of the intensity distribution as in the

incoherent case. In mathematical terms. the square of the magnitude

of the bandlimited field distribution 3 at each point is above (below)

a fixed threshold 7 according to the white (black) regions of the

desired binary pattern g. a has been introduced about the threshold

for the same purpose as the incoherent case mentioned earlier.

Note that the set Of input functions can include complex func-

tions in this case. By extending the class of inputs to include

complex functions as well. we hope to have better resolution.

However. the algorithm proposed here is dealing with projections onto
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convex sets. If the class of input is allowed to include complex

functions as well. the restriction on [3] will lead us to a nonconvex

set. a problem that the algorithm presented above cannot handle.

Therefore. for the time being. it is necesary for us to restrict our-

selves tO the set of real functions. The problem involving nonconvex

sets will be discussed in more detail in chapter 4. Furthermore. some

numerical results for restoring the phase of a complex band-limited

function will also be presented in the Bnext chapter. where the res-

trictions are nonconvex.

2.4.1 Sets and projection Operators

1] C1 : The subset of all functions band-limited to b rad/s. which is

the same as that defined in the incoherent case. Given the arbitrary

feH. its projection onto C1 is realized as that of before. i.e..

Plfe;£——9Pb(w)F(w).

where

1. [u]$b

Pb(M)’

0. Iul>b

fi—me).

2] C2: The subset of all functions whose square magnitude will have
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the predetermined threshold crossings and being the same as those of

the desired given image and does not fall in the region (y-e.y+e).

For the purpose of convexity. the negative values of the function will

never be smaller than -(7-e)‘/’. Since. refering to the figure shown

below. if the negative values are allowed to be smaller than

-(1-s)‘/3. then for two points. say x1 and x2 where x2 is negative.

the magnitude square for these two points is above the threshold.

HO'OVGI P11+(1-p)x2. for 0(n(1. will fall in the region

['(7)‘/’.(7)‘/:]. where the magnitude square is below threshold. and

violate the convexity. As in the incoherent case. this set also can

be shown to be closed.

j-(y+e)

«Y

i-(y-e)

4) x1

.. (7+e)1/3

‘:(1*e)1/’

 

O

"'(y-e)‘/’

«-<y+e>*/‘

.b {2

«-(.-a>
lI-Y

v-(7+e) 
Figure 1.
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Th0 projection operator 92 on this set is defined as

 

c f(x). lf(x)l$(7-e)1/1 and lg(x)]$(y-e)‘/‘

f(‘)' f(l)>(7+¢)1/3 and lg(x)|2(y+e)‘/3

1’2”“)13L (7+8)1/3. lg(x)]2(y+¢)‘/’ and f(x)<(y+¢)1/3

(7“)‘II- [8(8)]$(7-e)‘/' and f(x)2(y-e)‘/‘

L'(7")x/z' |8(x)]S(1-e)‘/3 and f(x)<-(y-e)1/'

where g(x) is the desired given function and y is the threshold value.

In discrete-time form. the algorithm is implemented as follows:

P1[f(m.n)=[W’1BTW]f(m.n)

where

W[f(m.n)]=F(k,1)=§:::2§;:f(m'n)e-j2nmk/Ne-j2nnl/N

is the 2-D DFT of the sequence [f(m.n)]. W" is the 2-D DFT. and
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BT[F(k.l)]=F(k.l).H(k.l).

where H(k.l) is an ideal low-pass filter in frequency domain taking

values zero and one only. Using overrelaxation. we form the function I

 y’l
a
w
n
-
1
4
-

f'(m.n)=(1-€1)f(m.n)+§1P1[f(m.n)]=T1[f(m.n)].

Then.

rf'(m.n). g(m.n)ao

f'(m.n). g(m.n)=1

P2[f(m.n)]=i(7+e)‘/'. g(m.n)-1

(y-e)1/z. g(m.n)=O

L-(y-e)"3. g(m.n)=0 

and [f'(m.n)l $(y-s)U3

and [f'(m.n)]2(7+e)‘/1

and lf'(m.n)z|$(y+e)‘/z

and f'(m.n)2(y-e)‘/'

and f'(m.n)I-(y-e)‘/’

where g(m.n). the desired output function. takes the values 0 and 1

only corresponding to the white and black regions respectively of the

desired given function. and 7 is the threshold value. Using overre-

laxation. we form the function
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f1(m.n)=(l-§2)f'(m.n)+§2P2[f'(m.n)]

'T§[f'(m.n)].

The nth iteration step proceeds as follows:

fnaTIf (m.n)]=Tn[f(m.n)].
I!“

where

f(m.n) is the initial guess.

T1'1+§1(Pl‘1)‘(1‘§1)*§1P1

T231+é2(P2-1)8(1-§2)+§2P2e



CHAPTER 3

RESULTS AND DESCRIPTIONS

Five two-dimensional patterns were designed for the incoherent

imaging system using the algorithm presented in this thesis.

3.1 Parameters specification

The parameters listed below are needed to specify the images and

the algorithm.

N: The number of pixels sampled on the pattern along

each dimension.

M: logzN

LWP: The bandwidth of the low pass filter along each

dimension corresponding to the diffraction-limited

microcamera.

ti: The overrelaxation constant for the algorithm.

a: The value for the forbidden zone about the threshold.

20
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The values Of the parameters for the program (Appendix C) imple-

mented on the PRIME 750 digital computer are as follows:

For patterns 1. 2 and 3

N=32

u-s

§1=§2=1.99s

e80.001

6 :for pattern 1

LW 11 :for pattern 2

11 :for pattern 3.

For patterns 4 and 5

N364

5:86

€13§2=1.995

830.001

17 :for pattern 4

LWP=

26 ;for pattern 5
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3.2 Description of image synthesis results

Figure 3a represents the desired image which we want to construct

at the output of the imaging system of Figure 2.1. If we feed this

image to the input of the imaging system. the output from the clipper

will be as shown in Figure 3b. Clearly. it is highly distorded by the

imaging system and therefore the straightforward approach consisting

of using the desired pattern itself as an input is not appropriate.

Using the algorithm proposed in this thesis. I succeeded in find-

ing the solution (required input image) that will produce an exact

replica of the desired pattern after passing through the imaging sys-

tem. The value of the solution (required input image) is then

quantized into 10 gray levels and shown in Figure 3c. Figure 4 to

Figure 7 are presented in the same format as Figure 3.

The number Of iterations required to find the solutions for each

of the images are listed below in Table 1. In addition. the number of

iterations required for the Gerchberg-Papoulis algorithm [1] is also

included. It can be seen that the algorithm presented here gives

great improvements over the Gerchberg-Papoulis algorithm.
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3.3 Numerical results for the phase restoration of an 1-D bandlimited

function

The numerical results presented in Table 2 represent the sum of

square error when I try to use the algorithm presented here to recover

the phase in the time domain of a one-dimensional band-limited func-

tion.The magnitude and phase of the function are known a priori. The

phase of the function is then thrown away and the function goes

through the algorithm with initial random phase and the original known

magnitude. It is found that. for the 1-D case. the sum Of square

error is very small after a certain number of iterations. even though

the phase restoration leads to a nonconvex projection problem.
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Tabble 1

Number of iterations to reach convergence

 

 

Convex projections Gerchberg-Papoulis

with overrelaxation algorithm [1]

Pattern 1 19 414

Pattern 2 14 216

Pattern 3 20 613

Pattern 4 13 ee

Pattern 5 80 “

Table 2

(The values presented below represent the sum

of square error of recovering the phase of

an 1-D bandlimited function with N-128)

LWP=28

The value for t

 

1.50 1.70 1.74

0 110.86 110.86 110.86

10 2.672 2.62 2.61

50 0.645 0.358 0.47

no. of

iterations 100 0.296 7.68:10" 0.138

150 0.173 s.10:10" 7.90:10"

200 0.116 4.20:10“ 7.38:10”

250 7.39:10" 4.09:10" 6.99:10"

299 4.75:10" 4.03:10“ 7.07:10" 
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Table 2 (continue)

LWP=30

The value for t

 

 

 

1.75 1.84 1.85

0 115.93 115.92 115.92

10 3.502 3.880 3.939

50 1.485 0.816 0.971

no. of

iterations 100 7.34x10" 8.00:10” 8.96:10"

150 2.70:10" 2.56:10“ 8.95:10“

200 1.35:10" 7.57:10" 8.95:10“

250 8.82:10" 3.21:10“ 8.95:10“

299 6.37:10" 1.64:10" 8.13:10“

Lfl2231

The value for t

1.85 1.865 1.87

0 119.847 119.847 119.947

10 1.105 1.110 1.113

50 1.18:10" 1.09:10" 5.18:10“

no. of

iterations 100 4.27:10" 1.69:10" 7.32:10“

150 1.19:10" 1.16:10" 7.52:10"

200 1.12:10" 1.12:10" 5.66:10"

250 1.10:10" 1.09:10" 7.47:10“

299 1.07:10" 1.07:10" 5.58:10" 



CHAPTER 4

CONCLUSIONS. DISCUSSIONS AND FURTHER RESEARCH

By using the alternating projections method and appropriately

defining the closed convex sets corresponding to the constraints of

the functions which we want to construct. we can find a solution

whenever the solution exists. Furthermore. with the particular choice

Of §1=§2=l.995. the number of iterations required is several orders of

magnitude smaller than that for the method of Gerchberg-Papoulis.

This improvement is of great practical importance when we want to

design more complex images.

As mentioned in chapter 2 . for the case of coherent imaging. the

input function f represents field distribution and as such is a com-

plex function. By extending the class of inputs to include complex

inputs as well, we hOpe to have better resolution.

Invoking the sampling theorem. to completely determine a real

function [I]. band-limited to mo. we need Zwo samples/sec. To

represent a complex function ITIeJQ? which is band-limited to ml, we

need Zwl complex samples/sec or equivalently 4u1 real samples/sec.

Therefore 33 1038 as “1 is not smaller than wO/Z. it may be possible

to find a phase QT such that lT]eJQI is band-limited to m1, For the

two-dimensional case. a similar argument shows that m1 would have to

be larger than uo/(2)1/3.

26
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The above arguments show that it may indeed be possible to obtain

better resolution using coherent imaging system with complex input and

it provides limits on what we could hope to achieve. However. the

problem of synthesis of the phase for a nonnegative function will lead

itself to a nonconvex set problem (this is similar to the well known

problem of recovering the phase from magnitude). The method prOposed

here cannot handle this problem and will not converge to the solution.

An investigation of the alteration of this method or finding another

algorithm is necessary for solving this problem.

Another constraint on the input function that is of great

interest is the Object itself being restricted to be of binary nature

or to be quantized to a finite number of intensity levels. This res-

triction is very important. because of physical implementation

considerations. Another example is computer holography [11] where the

magnitude of the function is given and the coefficient of its Fourier

Transform must be chosen from a set of quantized values (because of

the limitations of the display device and the materials used to syn-

thesize the hologram). However. the Operation of quantizing a signal

is not equivalent to projection onto a convex set. and therefore can-

not be handled by this method. Further research is necessary to

resolve this issue.



APPENDIX A

93 'nitio I
—n

A DIFFRACTION-LIMITED optical imaging system is one which blocks

the high frequency components of the input Object.

A mapping TzDCLRNekN is nonexpansive on a set DOC.B if

llTX-TYH i‘lX-YH X.YeDo .............. (l)

and strictly nonexpansive 03 Do if strictly inequality holds in (1)

whenever X#Y.

nginition 3

A point X. in the domain of T is called a fixed point of T if

Tx‘sx .

Dgfinition g

A sequence [fa] is said to converge strongly to f if

4-4

and is said to converge weakly to f if

ll

0lim

  

n90

Iimngactn.g)=(f.g)

28
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for every geRN, where (f.g) is the inner product operation of f and g.

Note that strong convergence to f always implies weak convergence to

f. In a finite-dimensional linear vector space. the converse is also

true.

De 'nitio ;

A subset D 0f RN is said to be convex if. together with x1 and

x2. it contains nx1+(l-p)x2 for all u. OSpS. It is closed if it con-

tains all its strong limit points.

De ' it'o g

A mapping T:DC-RN9RN is said to be asymptotically regular if for

every xeD. Tax-Tn*‘x90 as n90.

[
‘
4

De ' ' 'on

A mapping T:DC’.RN-)RN is said to be a reasonable wanderer if for

every xeD.

Tnx-TRI‘x‘ 1(G.

  

 
22..

It is evident that a reasonable wanderer is automatically asymtotical-

ly regular.



APPENDIX B

Ihgogem 1 [2]

Let PC:RN9C is a operator projecting RN onto C. CeRN and such

that

f-xamin

     

um

 

where feRN, then Pc is nonexpansive.

PROOF:

goggllgry 1 : Let C be a closed convex subset of R". Then for any

xeRN

(x-ch.y-ch)$0. all yeC. ................(2)

In this guise it can be interpreted to mean that the vector x-ch is

supporting to C at the point cheC. As Figure A suggests. x-ch is

"normal" to the "tangent plane" to C erected at the point ch. This

plane has C and x on opposite sides. and therefore separates one from

the other. Note also that the angle 9 between the vectors x-Pc; and

Y‘Pcy is never less than 90°.

30
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tangent

plane

 

Figure A.

Corollary 2: Let C be any closed convex set. Then for every pair

of elements x and y in R”,

l

PrOOfi Since ch and Pcy both belong to C. it follows from (2) that

‘$(x-y.pcx-Pcy). ..............<3)

 

Pox-Pcy

 

 

(x-ch.Pcy-ch)$O . ..... ........ .......(4)

and

(y-Pcy.ch-Pcy)$0. . .... ............ ...(5)

and (3) is Obtained by addition of (4) and (5).

Now. Schwarz's inequality applied to (3). we will get.for every x

and y in R“,

I \.

Therefore. the Operator Pc is nonexpansive.

 

ch-Pcy

  

i-y\\. ............ (6)
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Theorem 2 [2]

For 0$§i$2. the operator Ti=l+§i(Pi-l)=(1-éi)+éiPi is nonexpan-

sive. where the Operator Pi is nonexpansive.

Proof:

The assertion is obviously correct for OSgifil. For l<§i$2. it is

found that. with the aid of (3) and (6).

l‘Tix-Tiyuz=u(l‘§i)(x-y)+§i(Pix-Piy)H3 ............... .(7)

.(1'éi)3”x-y“1+2§i(l-§i)(x-y.Pix-Piy)+€i‘“Pix-Piyuz ....(8)

5(1-ti)’Hi-yu’+<¢i’+2¢i(i-§i)inpix-piyu‘ °'---'--‘9’

3(1‘Ci)zHX’yu3+§i(2'§i)HPiX‘Pin3 ... ............ (10)

$(§i(2-¢i)+(1-¢i)')“x-y”‘-Hx-y“’ ... ............. (11)

and nonexpansive is established. Thus. TaTmTh_1....T1 is also nonex-

pensive.

Ihggggg A; [17] Let T:C9C be an asymtotically regular nonexpansive

Operator with closed convex domain CCZH. and let its set of fixed

points A¢ZC be nonempty. Then for xeC. the sequence {Tax} is weakly

convergent to an element of A. Moreover. the convergence is strong

iff at least one subsequence of [Tax] converges strongly.
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Theogem 3 [2]

The Operator T=Tme_1 ..... T1 is a reasonable wanderer for O<§i<2‘

i=19m.

proof:

For m=1. we have T=T1, Coacl and

||x-Ix“‘=§1‘\x-Ple‘. .. ........... . ................ (12)

 

Moreover. for any yeCo. TyaPly'y and

|\Ix-y“’=“x—y+¢1(pl-nu’ .. ........................... (13)

=“X‘YH3+2§1(x'Y.P1x-x)+§g1‘x-P1xnz .. ............ (14)

=Hx-YH’-§1(2-§1>Hx-P1xu‘+2tl(x-Pli.y-plx) ....... (15)

SHx-y“‘-§1(2-§1)Hx-Plx“’ ........................ (16)

since the last term in (15) is nonpositive. Thus by combining (12)

and (16). it is found that

llx-Tx ‘:$§1(Hx-yH3f\Tx‘y“z)/(2'§1) ............... (17)

  

for O<él<2.

For arbitrary m21. a straightforward induction on m yields the

inequality

I

lx-Tx ’sbm.2m"(

 

x-y Tx-y‘z) ................. (18)

    

 

 

‘2-
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where yeCo and

bm= sup [fit/(Z-éi)] .

(Clearly. (17) subsumes the case m=1.) In fact. let TaThK where

and observe that for m22.

 

ii-Iiu‘=Hx-xx+xi-riH’

$(“x-K;H+Hxx-Ii“)‘

$2(“x-Kxu’+“Ki-Ix“’)

$2(“x-KxH1+2m-1HKx-TthHz). .................. (19)

Thus. by induction hypothesis ((bnlfin)/(2-§m) and

bmz‘uPISiSm-1[§i/(2'§i]‘ Note also that yeCo implies y Ci and yeCm).

x-y

  

x-Txuzibm.2(2m-z

 

XX'Y “3+2m- 1

  

‘2_zu-a

 

Kx-ynz-Zm'zHTx-y“z)

   

abn.2°"(\x-yH’-Hri-yu’). ................... ..(20)

 

the desired inequality. It now follows immediately from (20) that

Ins-I“*‘

 

  

3 m-l

sbmz

   

\‘<w.

 

.\°

Ana-o x-y

and T is therefore a reasonable wanderer and. a fortiori. asymtotical-
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ly regular. By Theorem A3. the sequence {Tux} converges weakly to a

fixed point of T. and convergence is strong iff some subsequence con-

verges strongly.



15

919

110

100

11

500

APPENDIX C

DIMENSION IDM(64.64)

COMPLEX ARRAY(64.64).CRRAY(64.64)

DIMENSION BRRAY(64.64)

ICOUNT=0

KIND=1

OPEN( 5 . FILE=' SAWI ')

OPEN(6.FILE=’ABC')

CALL INITT(480)

CALL DVINDO(O..1536..0..1170.)

CALL OPENTK('GSHADE'.10)

READ(5.15)M.NPOINT

FORMAT(212)

D0 100 I=l.NPOINT

READ(5.11)(IDM(I.I).J=1.NPOINT)

DO 919 LI=1.NPOINT

IF(IDM(I.LI).EQ.O) IDM(I.LI)=-1

DO 110 JSl.NPOINT

ARRAY(I.J)=CMPLX(FLOAT(IDM(I.J)).0.0)

BRRAY(I.J)=REAL(ARRAY(I.J))

CONTINUE

FORMAT( 64 II)

IND-IO

CALL FFTZD (ARRAY . N. KIND)

36



902

901

696

299

200

37

CALL LPF(ARRAY.NPOINT)

HINDI-KIND

CALL FFTZD(ARRAY.M.KIND)

IF(ICOUNT.EQ.0) THEN

DO 901 NL=1.64

DO 902 NP-1.64

IF(REAL(ARRAY(NL.NP)).GE.0.0) THEN

ARRAY(NL.NP)=(1.0.0.0)

ELSE

ARRAY(NL.NP)=(-1..O.)

ENDIF

CONTINUE

CONTINUE

ELSEIF(ICOUNT.EQ.80) THEN

VRITE(6.696)

FORMAT(151.' THE OUTPUT AFTER 80 ITERATION ')

ELSEIF(ICOUNT.EQ.300) THEN

WRITE(6.299)

FORMAT(15X.' THE OUTPUT AFTER 300 ITERATION ')

ELSEIF(ICOUNT.EQ.600) THEN

WRITE(6.200)

FORMAT(15X.' THE OUTPUT AFTER 600 ITERATION ')

STOP

ENDIF

CALL OVRF(ARRAY.BRRAY.NPOINT)

CALL PROJ(ARRAY.IDM.NPOINTZIND)



444

421

38

IF(IND.ED.O) THEN

DO 444 IT=1.NPOINT

DO 444 IT%1.NPOINT

CRRAY(IT.JT)=ARRAY(IT.JT)

KIND-1

CALL FFT2D(CRRAY.M.KIND)

CALL LPF(CRRAY . NPO INT)

KINDB-KIND

CALL FFTZD(CRRAY.M.KIND)

CALL PROJ(CRRAY.IDM.NPOINT}IND)

IF(IND.EQ.O) THEN

VRITE(6.421) ICOUNT

FORMAT(15X.' THE NUMBER OF ITERATION

CALL QUN(ARRAY)

CALL ANMODE

CALL CLOSTK(IO)

STOP

ENDIF

ENDIF

CALL OVRF(ARRAY.BRRAY.NPOINT)

ICOUNT51COUNT¥1

KIND3-KIND

GO TO 500

END

='.I3)



6O

7O

50

72

73

71

39

SUEROUTINE FFT2D(A.M.KIND)

COMPLEX A(64.64).XX(64)

IPOINT=2“M

DO 50 IK=1.IPOINT

DO 60 JK=1.IPOINT

XX(JX)=A(IK.JK)

CALL FFT1D(XX.M.KIND)

DO 70 JK=1.IPOINT

A(IK.JK)=XX(JK)

CONTINUE

DO 71 JX=1.IPOINT

DO 72 IK=1.IPOINT

XX(IK)=A(IK.JK)

CALL FFT1D(XX.M.KIND)

D0 73 IX=1.IPOINT

A(IK.JK)=XX(IK)

CONTINUE

RETURN

END



114

113

125

123

135

133

40

SUBROUTINE LPF(B.NP)

COMPLEX B(64.64)

MPTaNP/2+1

LWP-IS

KC=MPT-LWP

(ma-mm LWP

Lw-KC-l

DO 113 LP=1.LW

DO 114 KE=KC.KD

B(LP.KE)=(0.0.0.0)

CONTINUE

DO 123 LE-KC.KD

DO 125 LF=1.NP

B(LE.LF)=(0.0.0.0)

CONTINUE

MC=KD+1

DO 133 MM=MC.NP

DO 135 NNaKC.KD

B(MM.NN)=(0.0.0.0)

CONTINUE

RETURN

END



433

333

41

SUBROUTINE PROJ(AA.IBB.IP.IND)

COMPLEX AA(64.64)

DIMENSION IBB(64.64)

PP‘0.0010

D0 333 I=l.IP

DO 433 J=l.IP

T3REAL(AA(I.I))

IF((ABS(T)-PP).LT.-0.0000l) THEN

ThFLOAT(IBB(I.I))‘PP

AA(I.I)8CMPLX(T.O.O)

IND=1

ELSEIF((T‘FLOAT(IBB(I.J))).LT.0.0) THEN

T-FLOAT(IBB(I.J))‘PP

AA(I.I)=CMPLX(T.0.0)

IND=1

ENDIF

CONTINUE

CONTINUE

RETURN

END



10

20

42

SUBROUTINE FFT1D(X.M.KIND)

COMPLEX X(64).U.W,TT

N=2“M

PI=3.14159265358979

IF(KIND.EO.1) GO TO 9

DO 8 IL=1.N

X(IL)=CONJG(X(IL))IFLOAT(N)

DO 20 L31.M

LE-2"(M+1-L)

LE1=LEI2

U’(1.0.0.0)

w-CMPLX(COS(PI/FLOAT(LE1)).-SIN(PI/FLOAT(LE1)))

DO 20 J=I.LE1

DO 10 ISI.N.LE

IP=I+LE1

TTBX(I)+X(IP)

X(IP)'(X(I)-X(IP))‘U

X(I)=TT

U-U’W

NV28N/2

NM18N-1

131

D0 30 I=1.NM1

IF(I.GE.J) GO TO 25

TT=X(J)

X(J)=X(I)



25

26

30

863

43

X(I)=TT

K=NV2

IF(K.GE.J) GO TO 30

J-J-K

Rafi/2

GO TO 26

J-I+K

IF(KIND.EQ.1) RETURN

DO 863 Ilal.N

X(Il)=CONJG(X(Il))

RETURN

END



47

37

44

SUBROUTINE OVRF(ARR.BRR.NPT)

COMPLEX ARR(64.64)

DIMENSION BRR(64.64)

RAN=1.995

DO 37 L181.NPT

DO 47 L2=I.NPT

TAT=(1.-RAN)‘BRR(L1.L2)+RAN‘REAL(ARR(L1.L2))

ARR(Ll.L2)'CMPLX(TAT.0.0)

BRR(L1.L2)=TAT

CONTINUE

CONTINUE

RETURN

END



27

733

633

827

927

45

SUBROUTTNE QUN(OA)

COMPLEX QA(64.64)

DIMENSION IAA(O:10).lCC(-10:0).IDD(64.64)

READ(5.27)IAA

FORMAT(8 11.3 11)

READ(5.27)ICC

Do 633 I=l.64

DO 733 J=1.64

TP=REAL(QA(I.J))

IF(TP.GT.1.0) THEN

IDD(I.J)=9

ELSEIF(TP.GT.0.0) THEN

MP8TP‘10.0

IDD(I.J)=IAA(MP)

ELSEIF(TP.LT.-1.0) THEN

IDD(I.J)=0

ELSE

MP-TP‘10.0

IDD(I.J)-ICC(NP)

ENDIF

CONTINUE

CONTINUE

DO 827 121.64

WRITE(6.927)(IDD(I.J).J=1.64)

CONTINUE

FORMAT(1X.64I1)



CALL SHADE(IDD)

RETURN

END

46
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SUBROUTINE PRINT(BL)

COMPLEX BL( 32 .32)

CHARACTER CA(96.96).BCC(98).AS.BS

DO 677 131.32

DO 777 181.32

TM-REAL(BL(I.1))

IltI‘3-2

11'1‘3-2

12=I‘3

1281‘3

IF(TM.GE.0.0) THEN

DO 877 11811.12

DO 877 11811.12

877 CA(II.11)='W'

ELSE

DO 977 IIIIl.I2

DO 977 11811.12

977 CA(II.11)=' '

ENDIF

777 CONTINUE

677 CONTINUE

WRITE(6.988)

988 FORMAT(////15X.' THE OUTPUT IMAGE ')

DO 676 I=1.98

676 BCC(I)="'

Asa"!



545

656

48

as='t'

WRITE(6.545)(BCC(I).I=1.98)

FORMAT(1X.98A1)

Do 656 1:1.96

WRITE(6.545)AS.(CA(I.J).1=1.96).BS

wnITE(6.545)(8CC(I).I=1.98)

RETURN

BID



'
0

49

SUBROUTINE SHADE(M)

DIMENSION M(64.64)

CALL NEWPAG

DO 1 I=0.1152.1152

X‘I

CALL MOVEA(X.O.)

CALL DRANA(X.1152.)

CONTINUE

DO 2 1=O.1152.1152

Y=1

CALL MOVEA(O..Y)

CALL DRAHA(1152..Y)

CONTINUE

DO 10 IR=1.64

DO 20 IC=1.64

IMG=M(IR.IC)

IF(IMG.E0.0) GOTO 20

XMIN=18‘(IC-1)

XMAX=18‘IC

YMIN-llSZ-18'IR

YMAX=1152~18‘(IR-1)

CALL MOVEA(XMAX.YMAX)

CALL DRAMA(XMIN.YMIN)

IF(IMG.EO.1) GO TO 20

DO 30 1=1.IMG

CALL MOVEA(XMIN+(XMAX-XMIN)‘1/(IMG) .YMAX)



3O

20

10

50

CALL DRAWAUCMIN. YMAX-(YMAX-YMIN)‘1/(IMO) )

CALL ADVEAUIMAX. YMAX-(YMAX-YMIN ) ‘1/ (IMG) )

CALL DRAWA(XMIN+(XMAX-XMIN)‘1/(IMG) .YMIN)

CONTINUE

CONTINUE

CONTINUE

RETURN

DID
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Figure 3a. Desired Pattern (Pattern l)

 



 

 

 

 

Figure 3b. Constructed pattern when the object in

Figure 3a. is used as an input to the

imaging system in Figure 2.1.
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////

 
 
 

Input pattern found by our iterative

procedure which has been quantized

into 10 gray levels.

Figure 3c.
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Figure 48. (Pattern 2)
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Figure 4b.
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Figure 5a. (Pattern 3)



Figure 5b.
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Figure 6a. (Pattern 4) Surface acoustic wave device
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