ABSTRACT

INVESTIGATION OF OPEN-CAVITY RADIATORS

By

Min-Houng Hong

An open-cavity radiator, or a simplified model of recently
developed 'backfire'' antennas, is investigated in this research.
This antenna consists of a simple, open-ended circular cavity with
a primary radiator placed at an appropriate location inside the
cavity. The circuit property and the radiation characteristics of
this radiator are studied.

The waveguide excitation theory is employed to find the field
excited in the cavity. The aperture field is then determined by sum-
ming the propagating modes at the open end of the cavity. Subsequently,
the radiation field is calculated based on the aperture field. The input
resistance of the radiator is obtained from the total radiated power
carried by the propagating modes and the input current of the primary
radiator,

Various primary radiators such as a dipole, a dipole array,

a transmission line and a circular loop are considered in this study.
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An experimental study has been conducted in parallel with the
theoretical analysis and a satisfactory agreement has been obtained
between theory and experiment. This study may help clarify the
mechanism of radiation of this new radiator and prove useful in its

optimum design,
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CHAPTER 1

INTRODUCTION

Antennas employing the '"backfire!'' principle conceived by
ploying P P

2
(1, 2) have been the subjects of extensive experimental

Ehrespeck
studies. More recently, Ehrespeck(3) has developed a '"'short-
backfire' antenna which consists of a simple open-ended circular
cavity with a dipole exciter placed at an appropriate location inside
the cavity and a small reflecting plate placed in the open end. A gain
of 15 dB above isotropic, with side lobes of at least -20 dB and a
back lobe lower than -30 dB was achieved with this configuration,

In spite of its simple geometrical structure, this radiator has a
comparable performance as a more sophisticated reflecter-type
antenna. Although this antenna has been studied experimentally,
very little theoretical work has been conducted.

Chen, Nyquist and Lin(4)

have developed an approximate
calculation of the radiation fields of a short '"backfire'" antenna

based upon the assumption that the aperture field is distributed

approximately cosinusoidally in both horizontal and vertical planes



as evidenced by a near-zone measurement. They conclude that a
short '"backfire'' antenna is essentially a circular aperture antenna
with the dipole functioning merely as an exciter for the aperture
field. Zucker(s) has theoretically studied a long ''backfire' antenna
and has provided some useful information for design.

It is apparent that more extensive theoretical and experi-
mental studies are needed to understand the basic operational
principles of this radiator. It is also anticipated that if an adequate
theory is developed, it will not only lead to an understanding of the
basic principles of this antenna but perhaps may also lead to a better
design for the backfire antenna or the development of a new class of
open-cavity radiator type antennas., It is for these reasons that the
present investigation was made,

The model of the radiator for this study is similar to that
of a short '"backfire' antenna except that the reflecting plate at the
antenna aperture is ignored and the rim léngth of the antenna is
increased. The reasons for adopting this model are for theoretical
simplicity and for the experimental fact that a short ""backfire
antenna radiates the same if the reflecting plate is removed while
the antenna rim is increased.

In this investigation, both theoretical and experimental
studies have been conducted to find the radiation and circuit pro-
perties of an open-cavity radiator excited by various primary

exciters, For the primary exciters, a dipole, a dipole array, a



transmission line and a circular loop have been considered. The
current distribution on the primary exciter is assumed. The wave-
guide excitation theory is employed to find the expansion coefficients
of the normal modes excited in the cavity. The reflection coefficients
of the normal modes at the open end of the cavity are calculated
approximately, The aperture field is obtained by summing the pro-
pagating modes at the open end of the cavity; the radiation field is
then calculated based on the aperture field. The input resistance

is obtained by calculating the total radiated power carried by the
propagating modes.

The effects of the cavity dimensions and the geometries and
dimensions of the exciters on the radiation characteristics of the
radiator are studied. Theory has been confirmed by experiment,
The present investigation should prove useful in the understanding
of the basic operational principles of a '"backfire antenna'' and its

design.,



CHAPTER 2

WAVEGUIDE EXCITATION THEORY AND THE RADIATION
FIELDS OF THE OPEN-CAVITY RADIATORS

2.1 Geometry and Statement of the Problem

The geometry of an open-cavity radiator is as shown in
Fig. 2.1. This antenna consists of a simple, open-ended circular
cylinder with a primary radiator placed at an appropriate location
inside the cylinder. The configuration of the primary radiator can
be of various shapes. Various current sources _ja with the frequency
w are assumed to be on the primary radiator. The circular cylinder
is assumed to be perfectly conducting with a radius of A and a length
of L =1 l+ t,. This cylinder is short-circuited by a perfect plane

2

2 The center

reflector at z = -11 and the other end is open at z = {
of the primary radiator is located at z = 0. Inside the cavity, or
the open waveguide, cylindrical coordinates (r',4', z) are adopted

to express the waveguide fields. Outside the cavity, a new coordi-

nate system is used to express the radiation fields.
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2,2 Waveguide Excitation Theory

In a circular cylindrical waveguide with a radius A which is
relatively large compared with the wavelength, several waveguide
modes can propagate along the waveguide. With a known current
source located in the waveguide, the EM field can be expanded in
the normal waveguide modes and the expansion coefficients of all
modes excited by the source (propagating and evanescent) are deter-
mined by the waveguide excitation theory.

Since the cylindrical waveguide used in this study has a finite
length, the reflections due to the discontinuities at both ends also

need to be considered and evaluated.

2.2,1 General Field Expressions in a Waveguide
Fig. 2.2 illustrates a waveguide of finite length in which a
current source :T; is located in the region between z) and Z,. The
total volume of the source region is V., S is defined as the total
closed boundary surface of V and So is the total surface of conducting
wall in V,
The fields excited by the source may be expressed as an

infinite Fourier series in the orthogonal normal waveguide modes

as follows:

E1='E’l++'}§l'=zA’E'++zBE' (2.1a)
g 499 4q 929 7<Zl

- - + - - -> + - -

H = H +H, =XAH +3 BH 2.1b

1 1 1 q 9 9 q 949 ( )



- - 4+ — - - + - o
E, = E, +E, = YCE +ZXZDE (2.1c)
2 2 2 g 99 q 94 2> 2,
- - + — - - 4 — -
H,= H +H, = ZCH +ZDH 2.1d
2 Z Z g 99 4 941 (5. 1d)
- + - - +‘]qu
where E— = (e +e )e (2.2a)
q q— zq
+jB =z
- + R -
A = +h +h )e ¢ (2.2b)
q | zq

In eqgs, (2.1)and (2.2), q is a general summation index and
implies a summation over all possible TE and TM modes, and the
time dependence factor of ejoot has been suppressed. The Bq, e,
ezq, hq and hzq are the propagation constant, transverse and z-
components of E fields, transverse and z- components of H fields
for the qth waveguide mode, respectively. The super '"+'" and '"-"
indices represent the waves in positive and negative z directions,
respectively., The unknown constants Aq’ Bq’ Cq and D are the

expansion coefficients which are to be evaluated later.

We define reflection coefficients I', and qu as,

lq
Aq
rlq = B (2.3a)
q
Dq
qu = —CZ (2. 3b)

Substituting eqs. (2.2) and (2. 3) into eq. (2.1), the following are

obtained
- —_ ‘]ﬁ z - - -JB Z
f:EB[(e-e )eq+1" (e +e e q]y,<z (2.4)
q z 19" q zq 1



- - Jﬁq'f . -iBq” |
H, = >c:1 BI(E +h e v (B +h e ] 2< = (2.5)
- -JB z _]ﬁ zZ ‘
E,= SCl(_+e )e q+1"2q(e-ezq)e 9 2>z, (2.6)
. B T

H, = 2 Cq[( qt Pag'® ) qu(hq' hge 1 2>z (2.7

2.2.2 Lorentz Lemma
Consider a volume region V bounded by a closed surface S
as in Fig. 2,3. Let a current source?a in V produce fields Ea’

— . - . - -
Ha' while a second source Jb produces fields Eb, H The Lorentz

©6)

Lemma states °,

b

* . — - -—b - dv - b - .-u _ - . -
va (EaxH.b be Ha) v ‘Sv(Eb Ja Ea Jb)dv (2.8)

With divergence theorem eq, (2. 8) leads to

- — - -> A —> - — -
§S(Eabe- beHa) ends = S‘V(Eb Ja- Ea- Jb)dv (2.9)

where S is the total surface enclosing V.,

2.2.3 Excited Fields

In Fig. 2.2, let El and E

2 be the Ea' and Hl and H2 be the

_I:Ia. These fields are prodv;ced by the current source Ta defined in

the Lorentz Lemma. The -f? and -ﬁ are assumed to be

b b
B _z
-> — - — q
E. = E = e - e 2.10a
b= Eg =G-8, (2.10a)
B -H = (-h+h Je ¢ (2.10b)
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Both Eb and _I:Ib are fields in a source-free region correspond-

ing to J.= 0. Using Lorentz Lemma in our problem, V is assumed to

b

be a region between z) and Z, S is the total surface enclosing V and
So is the total area of the conducting wall in region V. Eq. (2.9) can

now be rewritten as follows:

[

G
o
"
ol
]
]
"
sy
>
(o))
/5]
"
—
et}
1
[
[o})
<

S S-S
o [o]
= ‘S:,E'-'J'dv (2.11)
q a

The surface S-So consists of two cross-sectional surfaces
at z) and z,. Since the boundary condition on the conducting wall

- A > o
So is nx Ea =nxE =0, the first term of eq. (2.11) vanishes

because
- - . - . — A — - o
S‘(E xH -E xH)-ﬁds:§[(an)'H
a’ q
] S
o
- MxE)-H]ds=0 (2.12)

Based on the power orthogonality property of the normal waveguide

modes,

— - A
S‘ EixHi-nds=0 n{m, (2.13)
L . ™ n

eq. (2.11) leads to



- -]Ec;x H_)- (z)ds

B (E"+T, E xH-ExEB(H "+ T H (-z)ds
ppplp)qqp lp)]

|
1
- 4 - _ - . = . - 4 - A
+S [ZC(E+T, ET)xH -E xXC (H +T, H )] (z)ds
p P P 2pp 9 9 pp P 2pp

2
* - = . - 4+ = o - . = . - o - 4
=‘S(-B xH -T BE xH +BE xH +B I E xH ). zds
. q q q 19 q q q q q q q lq q q
1
* -4 = o > _ = . e - = -
+3 (CE xH +4CTI_ E xH -CE xH -CT xH )-
, 449 a9 9299 q 99 q 29°q ' q
2

where‘S ds ands ds are the surface integrals over the cross sec-

z
. 1 2
tions at zl and z,.

By substituting eq. (2.2) into the above equation, we get

* — - - - - - —> - A
+ C e t+e x (-h +h -(e -e€ x(h +h - zds
q Sz [legte,q)x (hyth )= (egme g x (gth -2

2
- - A
= BT, -2C e xh ). zds
@B T )Scs(q o
or
° — — A > =
2 (B r -C)S (e xh )ezds=\E -J dv (2.
q 1lq q c. s qQ q q a

14)
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where ‘S ds is the surface integral over the cross-section of the
c.s.
waveguide and is independent of z.

Similarly, if —f; and _I:I; are chosen as the source-free

region fields E, and 0 corresponding to J

b b = 0, we obtain

b

* — — A '-»} -
2(Cr, -B e xh )+ zds = E"«J dv 2,15
(qu q)scs(q q) qu a ( )

It Mq and Nq are defined as

S—éc;"_fadv
M = v — - (2. 16&)
q zS' (e xh )- 2ds
L .. 9 g
‘S"E;. Tadv
N = = pr (20 16b)
9 25 (e xh ). 2ds
C. S. q
then r B-C =M
199 q q

' C-B = N
29 q g q

', M +N

or B = l_\zq_rq—lq (2.17a)
4 19 2q°
I Nt M
c = rqrq .__lq (2.17b)
4 19" 2q

The expansion coefficients for the EM field excited in the waveguide
by a primary source are therefore determined in terms of the source

current distribution -.-I.a and the reflection coefficients I, , T

19° 7 2q
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2.3 Calculation of Reflection Coefficients rlq and I‘zq

In section 2.2.1 and in Fig. 2.1, I‘lq and qu have been
defined as the reflection coefficients of qth waveguide mode due
to the discontinuities at z = -11 and z = 12, respectively. At
z = -4, the waveguide is short-circuited by a good conductor,

1
The E field in the region I of z < 0 is

. Lo B L iR
El = ‘2 Bq[ (eq- ezq)e + I‘lq(eq+ ezq)e ] 2z<0 (2.4)
Based on the boundary condition, rAlx_EEl= 0, over the con-
ducting wall, the transverse component of -ﬁl at z = -21 vanishes,
That is
-jp 12 ip 1
'ﬁlt(z = -1 = % Bq(é’qe Pq L, rlqie’qeJpq oo (2.18)

The surface integral of the scalar product of Elt and an

arbitrary mode -e;p over the short-circuited wall Sl is also zero.

.o N , -ip 1 B L
SE(z:-I)-e ds=5 ZB (e q1+1" eql)e-e ds =0
A 1t 1 P q 4 1q 9 P
S
1 1
-iB B, L
or ZB q1+r e ql)j e e ds=0 (2.19)
q 4 1q qQ p
°1

Due to the orthogonality of the waveguide modes, eq. (2.19) becomes

-ip 2 BE L
B Plir e PI)S e . e ds=0 (2. 20)
q lp ., P P
1

Since B and 3 e . e ds are both non-zero constants, it leads to

a S

1

-jp £ B £
e P 1 + T e P 1 =0
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where p represents an arbitrary mode. Thus, the reflection
coefficient due to the short-circuit discontinuity at z = -ﬁl (referred

to z = 0) is
-j2p ¢
Tig™ "~ e (2.21)

The calculation of qu’ the reflection coefficient due to the
open-end discontinuity at z = 12, is much more complicated than
rlq' The diffraction effects which are due fundamentally to the
fact that the sources are distributed over an open surface, can
cause the regenerations of other waveguide modes. This coupling
phenomenon which can be handled by a ray-optical theory(7) is
extremely complicated and not appropriate for the present analysis.

Fortunately, the experiment and also the ray-optical theory
indicate that whenever the dimensions of the aperture are not small
compared with the wavelength, which happen to be our case, the
diffraction effect is insignificant and the major portion of the

(8)

aperture field is due to the field from the waveguide An accurate

reflection coefficient at the open-end can only be determined by
extremely complicated methods”’ 9). Since the reflection coefficient
at a large aperture is usually small, a simple method based on trans-
mission line principle will be employed to calculate the reflection
coefficient. Assume that the reflection coefficient for the qth mode

at the open-end, z = Iz, is k, and it is defined as the ratio of

2q

(eq)r/ (eq)i or the ratio of the transverse components of the
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reflected and incident electric field vectors. When extrapolated

8
to the plane of the open-end, qu can be interpreted as, ()
L - Z
o q
= —— 2,22
2q §o+ zZ (2. 22)

where t;o and Zq are the field impedances of space and qth mode,
respectively. The transverse component of electric field in the

region II of z > 0 is

- - -J'ﬁqz - J'ﬁqz
E. = ¥ C (e_e +T e 2.23
2t q a®q 2q°q ) ( )
At z = £_ or the open end,
2 :
The incident wave = ZC e (r,¢)e
qg 94

. L,
The reflected wave= X C I, e (r,¢)e
qg 9 2949

By the definition of qu’ the reflected wave is equal to

B 2 -ip £
q 2 _ - q 2
z qu2 q (r, d)e = 2(')1 ququq (r,d)e
i B L,
or 2 C (I‘ qe 1 2- que E 2)eq (r,9)=0 (2.24)

If ;p is the transverse component of the electric field vector
of an arbitrary p th mode, the surface integration of the product of
Zp and eq. (2.24) over the waveguide open-end SZ should also be
zero, that is

. B, B,

Ssz[g ©qT2q° T gee T OE T



16

i ! B, oL L
or > C(r qu_k e c'lZ)S‘e .e ds =0
q 9 29 2q P P
s
2
jpl -jﬁ‘e L]
2 2 - -
C(r,e Pk e P )S e -e ds=0 (2.25)
P~ 2p 2p s P P
2

Eq. (2.25) has been derived with the help of the orthogonality

property of the waveguide modes. Since Cp and S‘ -ép . -e;p ds are
8
2
non-zero constants, eq. (2.25) leads to
iB 1 -jB ¢
q 2 q 2 _
I‘qu - kzqe =0
or
-j2B ¢ L -Z_  -j2p ¢
q 2 o g q 2
', =k, e = — e (2.26)
2 2 zZ
q q &t q
qu is the reflection coefficient of the gth mode at z=0 due to the

open-end at z= 12.

2,4 Input Resistance of the Primary Radiator

The input resistance Rin of the primary radiator is defined
at the terminals of the primary radiator and is equal to the total
real power radiateld divided by one half of the square of the input
current of the primary radiator. The real power radiated from the

exciter can be obtained by calculating the real part of the complex

Poynting vector of the propagating modes, That is

* —> - Sk A

P = 1 Re (EJxH_ )+ zds for propagating modes
2 27772

c. 8. only (2.27)

Substituting eqs, (2.6) and (2, 7) into eq, (2.27), and taking ad-

vantage of waveguide orthogonality, P is obtained as
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1 : - - 4 - . % oA
=>R E H .5 d
P eS (2 cq( q Ty E ) %[5 Fy, 41, F 0™ 2 ds
c.s. 4 q
1 2 * + - . - 4 - _ X A
== 3 |C Re E + E )x(H +T, H . zds
2 Z1C,| 3% s[( Ty E =@+ T, H)) - 8
] 2 * JZﬁqz " -32{32
-2 ZICg[ Ret1 - | T, Y -Tye )S 7 (€ e s

q

where q are for those propagating modes only. Because only the

propagating modes have been considered, the wave impedance and Y

i2p_ j2p z
"are real, and Re[rzqe - qu 1 ) ] = 0, therefore
2
1 Icq
P=3 z | )g e °e )ds (2.28)
Z
a q

The input resistance of the primary radiator, Rin’ is then defined as

Ic. |°

_ 2P _ 1 q' 2 - -
R, = . - Iy )g CREALH

%k 3
R O I1. 9
OO0

(2.29)

The reactive component of the input impedance was attempted
with an induced EMF method without much success, The reason is
that there are infi'nite number of higher order, cut-off modes present
on the exciter surface and it is hard to obtain a sensible and accurate

reactance,

2,5 Radiation Fields of the Open-Cavity Antenna

The radiation fields of an open-cavity radiator are calculated
based on the aperture fields at the open-end of the cavity.

2.5.1 Geometry and General Expressions for the Radiation
Fields

Figure 2.4 shows the geometry of the problem. The x'-y'
plane is the aperture plane and s'is the surface which forms the

aperture, The radiation fields are maintained by the aperture
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fields Ea and ﬁa' Spherical coordinates (r, 8, ¢) are adopted to
respresent the radiation fields, while the aperture fields are ex-
pressed in terms of cylindrical coordinates (r', ¢',! 2). P(r, 6, ¢)

is an arbitrary observation point in the radiation zone and P'(r', ¢', £ 2)

is a point on the aperture. The distance between P and P' is

R = |; - ?" and the radiation zone approximation for R is
r-r'h % --- for phase terms
R = (2. 30)
r --- for amplitude terms
y

P(r,9,¢)

Fig. 2.4 Geometry for calculation of the radiation fields
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The radiation fields at P(;) maintained by the aperture

fields Ea and -ﬁa are given by(lo)

-1k
r J'ko e o r r
Ej= -7 —— (L¢ +4 Ng) (2. 31a)
r J'ko e-Jkor r r
= - 2,3
E¢ 4 r (LG g‘o N¢) ( 1b)
where o
o A e o jk rter
Nr(r)zs nxH_(F')e ° ds! (2. 32a)
s! o
. jk r'er
—>r —> " — — le)
L (r)-= S -nxE (r') e ds! (2. 32Db)
s! 2
—> —> » — »r -
ry — ! ! 1 ]
Ea(r )=r Ear(r ) + & Ea¢(r ) (2. 32c¢)
—> —b' A —>' A' —»I 2 Zd
Ha(r)_ rHar(r)+¢ Ha¢(r) (2. 32d)

Since the aperture fields Ea and —ﬁa may consist of all possible
TE and TM modes, all exicted modes should be considered.

In section 2,3, the diffraction and coupling effects at the
aperture have been neglected, therefore the superposition method
will be employed to obtain the total radiation fields by summing up
the radiation fields maintained by the aperture fields of all excited
modes,

The unit normal vector n on the aperture is 2', therefore

eqgs. (2.32) for the qth mode yield the following:
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> r — " A A — A - jkor"f
L (r)=- z'x[r'E (r')+¢'E  (r")]e ds!
Q (F)=m ) FRIELE reE e
v A - \ N jk r'r'.r
= 5 [T'Ea¢(r') -¢'Ear(r')]e © ds' (2.33a)
Sl
N YT ) 1 A => - Jk ;'.;
N (r):\ zx—— [zxE_(r')]e © ds'
q Jgr Zq a A
: 1 [ — A - jkor'r"r
- - —_ [ ! 1 1 ' (2
Ss' Zq[r E L (r) He'E )] e ds' (2. 33b)

A A
The expressions of unit vectors r' and ¢' in terms of spherical

coordinates (r,0,¢) are

r' = ;sine cos(p-4') + 6 cosB cos(p-¢') - £sin (b-0") (2. 34a)
;1;' = ;sinO sin (b-0") + 8 cos 0 sin (¢-0') + ¢o cos (¢-¢"') (2. 34b)
Therefore
N (F) = L e (£ 1) r 8ind cos (b-d') + 6 cos 8 cos (b-d')
q = -S;' Zq ar {rsin6 cos (-9 co os (¢-¢

- é; sin (¢p-¢')} + an)(;') [r sin® sin (b-4¢') +0 cos® sin(¢p-4')

jk r'sin® cos (¢-9¢")
tcos(@-9"1] e ° ds! (2. 35a)

—I:;(;) = S‘[ Ead)(;l){; sin® cos(p-9"') +8 cos 0 cos(p-4"') —$ sin(¢-¢"')}
A

- Ear(;')f:' sin® sin(¢-9¢"') +9 cos 0 sin(p-4') +<1‘S cos(d-¢') 1]

jk r'sin6 cos($p-¢"')
o
e ds'
(2. 35b)

r r r r
The N N , L.~ and L, are then determined
89" " ¢q’ T0q bq !
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Ne;(;) = -cos® 3;' —Zl—q [ Ear(;')cos(¢-¢') +Ea¢(;')91n(¢-¢")] .
jk r'sin® cos(b-4")
e o ds! (2. 363)

N¢;(}') = - XS' Z—lq-[ Ea¢(}")cos(¢-¢')- Ear('r")sin(¢-¢')]

jk r'sin® cos(é-9¢"')

e ° ds' (2. 36b)
Le;(}’) = cos® 5;'[ Ea¢(?')cos(¢_¢') -Ear('r")sin(¢-¢')] )

jk r'sin® cos(¢-¢"')

e ° ds' (2. 36¢)
L) = - 55[ E,, 07)cos(6-¢") +E, (F)sin(-4")] -

jk(‘)r'sine cos(b-¢"')

e ds' (2. 364d)

Therefore the radiation fields maintained by the qth mode of the

aperture field are
|

j mIkST 4
Ee;(}’) = ﬁ < -~ 55'(1 +Z—: cos 0) Ear(}")cos(¢-¢') +
- jk r'sin® cos($-0')
E,,(F)sin(@-¢")] e ° ds’ (2.37a)
Ty
E'(r)-— % S (== +cosO) E__(r')cos(¢-¢")-E__(r')-
éq 4 r gt Zq a¢ ar
jk r'sin® cos(d-4')
sin(¢p-¢')] e ° ds' (2. 37b)

From eq. (2.23), the transverse component of _ﬁz at z = 12 is

-iB ¢ iB_ 1
T (z=0,)= a2 927 2.38
Eyplz=ty) = T Cyle +Toqe 9% (2.38)
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Then E and E of the qth mode can be found as
ar ad

(00 = Cle T e, e T he (e (2.39)

-iB 12 Bt
' a1 q 2 q 2 1 gt
an)(I‘ » ') Cq(e T )e¢q(r » ¢') (2. 39b)

1]

Substituting eqs., (2.39) into eqs. (2.37) and with (2. 38), the fol-

lowing are obtained:

r jk_ e'Jkor L -iBgL, B L,
Eg (r) = 7= — % Cyl +—Z—q cos8)(e +T, e )F.. (8, ¢)
. -jk . . (2.40a)
E (r):J—k—O e ° T C (E°— +cose)(e-”3q£2+l" emqu)p* ©, )
¢ 4w r q 4 Zq 2q ¢q
(2. 40b)
where

a ™
Foqg(® @)= [ {[e trtoncos-ore, (') ¢)sin(e-0")

O =T ¢
.err COS(¢-¢')r'd¢'dr' (2.413)

JUCRS =§ 5 5T #1)cOs(B-0")= e (x', o")sin(p-0")]
(o)

zr'cos -
o) (

¢ ¢')r'd¢'dr' (2.41b)
(2.41c)
o

2,5,2 Evaluation of Feq(e, ¢) and F(bq(e, ¢) for TE Modes

The Appendix gives the normal TE mode expressions. With-

out losing the generality, we choose the e and e‘bq as follows:

J (k r")
(T e = ¢ “r,c sin no' (2. 42a)
cq
e¢q(r', ') = Jn'(kcqr’) cos n¢' (2.42b)
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The Bessel function satisfies the following recurrence relations

m 1 m
Tm@ = 1@ =T =30 @=L = =TT (4T (=)
(2. 43a)
m 1
- Jm(z) = E[Jm+l(z) + Jm_l(z)] (2. 43b)

Therefore the e and e can be stated as
rq ¢q

e g™ $') = %[Jn_l(kcqr') + JnH(qur’)] sin no' (2. 44a)
e¢q(r', $') = %[Jn_l(kcqr') - .InH(qur')] cos no' (2. 44b)
and
e qcos($-9") + e¢qsin(<b-c|>')
= %[ Jn_l(kcqr'){sin n¢'cos(¢-¢')+ cosnd'sin(¢p-¢")}+ I _ (kcqr')

{sinn$'cos($-4')- cosnd'sin(¢p-¢')}]

| —

[ Jn_l(kcqr)sin{(n-l)¢'+¢}+Jn+l(kcqr)Sin{(n+1 )¢'-01] (2.45)

With the help of the Bessel -Fourier series, we have

N ' foe}
e %r cos($-¢7) =J (zr') + = ZjnJ (zr')cos n(d-4") (2. 46)
o n=1 n
LT
Also 5 sinmxcosnxdx = 0
-
™ ™
S‘ sinmxsinnxdx:S‘ cosmxcosnxdx = 0 form #n
- T -T
T2 T2
S‘ sin mxdx :S cos mxdx = w
-1 -

By substituting eqs. (2.45), (2.46) and the above egs. into Feq,

it becomes
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A _Tw
1 . .
Feq =2 S:) ‘S:n'[ J'n.l(kct'ir')ﬂm.(n.l)(bl'lh<1>}+‘1n+l(kcclri)sm{(nﬂ)d>'.¢}] )

oo
[Jo(zr')+ z ijJm(zr')cosm(¢-¢>')] - r'dé'dr!
m=1]

Ne-

A
= mj lsinndag ERNCIOURNCU R SRS S VSN D)
(o]

n+l
. r'dr! (2.47)

The Lommel integral formula gives

x d d
S; xJn(ax)Jn(Qx)dx = aZxBZ [Jn(o.x)a; Jn(ﬁx)-Jn(ﬁx)a—x Jn(ax)]

(2.48)
Eq. (2.48) and the recurrence relations are used to lead to

A
! 1 1 !
‘So Jn-l(kcqr )Jn_l(zr )r'dr

. S ' '
= 7 2 [Jn_l(quA)an_l(zA)-Jn_l(zA)kchn_l(kch)]
cq

A 2n
= kz ZZ [kchn(kch){ZA. .]'n(z.A)-Jn_I_1 (zA)}-2z Jn(zA)'
cq 2n

' =a
cq

Tk ATk (A)]] (2.49)

A
[} ] 1 ]
30 3o T, (artirtdr

_ A ' '
- kZ zZ I:Jn+l(kch)zJn+1(ZA).Jn+1(ZA)kchnJrl(kch)]
cq

A .

= —_— 2A)- 2.
kz ZZ [ Jn+1(quA)z Jn(7A) Jn+l(zA)kch’n(kch)] (2.50)
cq

With egs. (2.49) and (2. 50), Feq becomes
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.n-1 2nwsinn¢ . .
- 2
Feq(e,cb) j k B sin® Jn(ﬁoA s1n6)Jn(kch) (2.51)
cq o
In calculating deq(e, ¢), the same procedure is followed as for the
case of Feq
1
P A 3 -db!) = — 1 - 1
e¢qcos(¢ $') erqsm(cb ¢") Z[Jn-l(kcqr Jcosf(n-1)¢'+¢}

- Jn+1(kcqr')‘30S f(n+1)¢'-41]

A
l . »
Foq™ 2 SO ‘S-TEJn_l(kcqr')cosf(n-1)¢'+¢>}-Jn+l(kcqr')cosf(n+l)¢'-¢}] )
oo
[Jo(zr')+ > ijJm(zr')cos m(¢-¢")] r'do'dr’
m=1 :
.n-1 A '
Fcbq =j " mcosn¢ ) [Jn-l(kcqr ).]'n_l(zr')+Jn+1(kcqr')JnH(zr')] r'dr!

(2.52)

The integration of eq. (2.52) will be carried out differently in order
to take advantage of J' (k  A) = 0.
n cq

A
|} . ! 1 1
So Jn-l(kcqr )Jn_l(z.r )r'dr

A n ,
= ;T__ZZ [kchn(kch){J;x(ZAHE Jn(zA)}-z Jn(zA) (Jn(kch)
cq

k“A J_(zA)1] (2.53)
cq
A
!
50 Jn+1(kcqr')Jn+l(zr )r'dr!?

A [ ¢ n
2 2'2% A
k -z cq

cq

n
Jn(quA)-Jr'l(quA)} Jn(zA)—kcq{E Jn(zA)
- Jl"l(ZA)} Jn(quA)] (2.54)

By substituting eqs. (2.53) and (2. 54) into eq. (2.52), the final

expression becomes
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n-1 ZTrAkcqcos no
Fcbq(e’ )= 5 5 Jn(quA)J;l(BOA sin®) (2.55)

ko~ (Bysin®)

2.5,3 Evaluation of Feq(e, ¢) and F¢q(8, ¢) for TM Modes

The following field expressions are appropriate for the TM

modes:
erq(r', ¢') = Jr'l(kcqr')sin no' (2.56a)
n
ecbq(r" ') = kcqr Jn(kcqr')cos no' (2.56b)

Application of the recursion formulas leads to the alternate expres-
sion

erqcos(¢-¢') + e¢qsin(¢>-¢')

1 .
Z 0T kT =T G 1] sinngt)cos (¢-oN+(T (k")

+3,(k T} cosng!)sin(e-o)]

1 . .
3 [ Jn_l(kcqr')sm{(n-l)¢'+¢}- Jn+1(kcqr')sm{(n+l)¢'-¢}] (2.57)

Substituting eqs. (2.57) and Bessel-Fourier series into Feq and

results in

A
3 1 3 1 ! ! ! !
- VA d '
F9 =j v51n(n¢)§ [T 1(k r")J 1(zr )+J l(k r')J 1(/r )] r'dr

(2.58)
From eqgs. (2.53), (2.54) and the boundary condition of Jn(kch): 0

for TM modes

n+l ZvﬁoAsinGsin né
Feq(e. $) =1 > —— Jn(ﬁoAsme)J;l(quA) (2. 59)
k -(B sin®©)
cq o
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Similarly, F¢q(9, ¢) for TM modes can be evaluated as

A

.n-1
F¢q(9,¢)-_-3n ncosn¢S; [Jn_l(kcqr')Jn_l(zr')-Jn

k 1
+1( cqr )

" r'dr!
Jn+1(zr )] r'dr

.n-1 2nmwcosné
= s A = 2
) Jn(quA)Jn(7A) 0 (2.60)

z k
cq

2.5.4 Modified Foq(¢) and F, (9, 0)

¢

In the Appendix, there are two sets of waveguide mode
expressions for both TE and TM modes. The reason for keeping
both sets is that for some configurations of primary exciters both
sets of waveguide modes may all be excited. In the course of cal-
culating expansion coefficient Cq’ the proper set of waveguide
modes is picked according to the geometry of the primary radiator.
Since both sets of the waveguide modes may possibly be excited, it
is also necessary to calculate the Feq and F¢q for the second set of

waveguide modes since these are not covered in the two previous

sections.

The modified TE modes have the following forms

n
r!
cq

erq(r', ¢') = - k Jn(kcqr')cos no' (2.61a)

e¢q(r',¢') = Jr'l(kcqr')sin nd' (2.61Db)

and the modified Feq(e, ¢) and F¢q(9,¢>) can be evaluated to be



28

_.n+l Znﬂcos(ng) .
Feq(el ¢) - J k ﬁ 51ne ‘In(ﬁOASI‘ne)Jn(kch) (2. 62)
cq o
n-1 ZnAKCqsin(ncp)
F¢q(0, $) =] 5 5 Jn(kch)Jr'l(poAsme) (2.63)

kcq- (Bosme)

For the TM modes with the following expressions,

erq(r', ¢') = -Jr'l(kcqr')cos(ncp') (2, 64a)
e¢q(r', b') = kc:r' Jn(kcqr')sin(n¢') (2. 64b)

the modified radiation fields are calculated to be

2 .
1 nBOAs inOcos(n¢)

nNe-
F, (0,¢) =]
2
9q k Bozsinze

T (B Asin®)T'(k A)  (2.65)
n o n cq
cq

_ .n-1 2nnsinné . _
F¢q(9, $) =] kcqﬁoSine Jn(quA)Jn(ﬁoAmnO) =0 (2.66)

2,5.5 Radiation Fields Due to the Individual Waveguide Modes

-
The radiation field E' in eqs. (2.40) can be rearranged as

follows:
. -jk r . .
jk 0 -jB ¢ B _1
r _~ o e q 2 q 2
Ee(r. 9, ¢) "I T 2 C (e +r2qe )qu(e, $) (2.67a)
. -jk r .
Jjk o -iB ¢ i !
r _~ o e q 2 q 2
E¢(r. 8,¢) = T 2(:l Cq(e +I‘2qe )I¢q(e,¢)(2.67b)
go ,
where qu(9,¢) = (1 +—Z— cos O)Feq(e,cb) (2.67c)
éo
0 = (— 0 2,67d
I¢q( »d) = ( 7 + cos 9)F¢q( » ®) ( )

q
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qu and I¢q are defined as the qth waveguide mode radiation pattern
functions, since they describe the 6 and ¢ dependence of the radiation
field E”,

Figures (2.5) and (2.6) show some of the radiation patterns
in the E-plane (¢ = 12’) and H-plane (¢ =0) for TE and TM modes,

respectively., These patterns are calculated from the pattern

functions I_ and I, , for the case of radius A equal to A\ or one
6q $q o

free-space wavelength,
The solid line represents the E-plane pattern while the dotted
line indicates the H-plane pattern.

In Fig. 2.5(c), the H-plane radiation pattern of the TE21 mode

is same as that of the E-plane, In Fig, 2.6, the E-plane and H-

plane radiation patterns for the TM . mode are identical, and the

01

H-plane field patterns for both TM11 and TM12 modes are zero.









CHAPTER 3

OPEN-CAVITY RADIATORS WITH DIPOLE AND
DIPOLE ARRAY EXCITERS

3.1 Introduction

In this chapter, the radiation and circuit properties of an
open-cavity radiator with a dipole or a diplole array exciter are
studied.

Since the expansion coefficients of waveguide modes are
evaluated based on a given current distribution on the antenna, the
antenna currents in a dipole and a dipole array are determined first.
The zeroth-order currents for a dipole or for the dipole elements in
an array are determined by solving Hallen's integral equations(ll),

The total field excited in the cavity due to a dipole array is
obtained by summing up the fields excited by each array element.

Theoretical and experimental results on the radiation pattern
and the input resistance are obtained and compared., The effects of

the location of the primary exciter and of rim length of the cavity on

the radiation pattern and the input resistance are studied.
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3.2 Expansion Coefficients and Input Resistance of the Radiator
with a Dipole Exciter

3.2.1 Geometry and Trial Antenna Current
The geometry of the radiator with a dipole exciter is shown
in Fig. 3.1. A thin dipole of length 2h is center-driven and located
at the origin inside the open-cavity radiator, The current density

on this dipole can be mathematically expressed as

I

si:ﬁoh 6(:)0 (z)sinp (h-|y] for -h = y(_<3hl)

- ' A
Ja(x’ y,2) =y
where Io is the input current and ﬁo is the wave number in free -

space. The circular cylinder is the same as that defined in Chapter 2,

This cylinder is shorted at z = -11 and has an open end at z = £,.

3.2.2 Expansion Coefficients
From Chapter 2, the expressions for the expansion coefficients
for the qth waveguide mode in the open-cavity radiator are

', M +N
B = %99 4
q I‘lql"zq-l
' N +M

c - 199 g
q r  r, -1

19" 2q
where

‘B .T 4 Bt.T
S q “a v Eq Jadv
v

M, = ° — - A ’ N, = — — A

4 25 (e xh ).zds q ZS (e xh )-zds

C, 8, 1 1 C. S. E d

The numerators of Mq and Nq for the case of a dipole exciter can be

found as
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> — ~00 - - jﬁ z >
‘SVE - J dv=g 3 (e -e e 1, J (x,y,7)dzds
q a e s q zq a

I L
- rn"ﬁ—h 5 Sy v 8(x)sinB_(h-]y|)ids  (3.2)
(o] C.S.

s+ > o @ — - -Jﬁ z -
S,,E «J dv = ‘S S (e +e e d «J (%x,y,z)dzds
q a q zq a
Co Su - Q0
I

_ o : - A .
T 5 eq" ¥8(0)sinB_(h-|y|)ds (3. 3)
o C.s.
- - A - 1 A - A 1 — —-
Since e xh J)ez = e X(— zxe ). = — (e
(e xh) 7 2xe)z = 5 (e e e )
q q
therefore Mq and Nq become
. - A .
Iozq SC ] eq- y 0 (x)sin ﬁo(h-ly‘)ds
quNq: 2sinP h - - (3.4)
o g (e « e )ds
C.S. a
Let us define LNq and LDq as follows:
. - A .
INq = 5 ey’ y §(x) smﬁo(h-lyl)ds (3. 5a)
c. s.
I = e . e )ds 3,5b
ba SC JCEEA (3. 5b)

The cylindrical coordinates (r, ¢, z) and the rectangular coordinates
(%, y, z) have relations of

A

y

A A
rsin¢ + ¢ cosd

X

rcos¢, Yy =rsing

Substituting the above relations into eq. (3.5a), we have

h =«
N e Lo A . .
Iqu So 3." eq(r,cb)o (r sind + ¢ cos$)d(r cos $)sin ﬁo(h- | rsing |)r dedr
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In the integration w.r.t. ¢, 6 (r cos¢) can be expressed as
1
6(rcosd) = ;6(cos¢) (3.6)
Then

h o A A
INq: S\ S‘ eq-(r sind +$ cos)d (cos¢)smﬁo(h+rsm¢)d¢dr

o ‘=T
h .‘IT_. A A
+ ‘S‘ 5 eq *(r sind +$ cos ¢)d (cos¢)sinﬁo(h- r sind)dodr
o Yo
h ™ m
= S‘ [erq(cb:E) - erq(¢=-z)] sinﬁo(h—r)dr (3.7)
o

where erq is the r-component of the electric field of the qth wave-
guide mode, IDq can be expressed as
I gA e, Pr (e, )P 1rdpar (3.8)
= e r .
Dq A ‘S_n rq $q

Therefore, the expansion coefficients Bq and Cq can be written as

12 I T, +1
B = o q Nq 2q (3.9)
2 si h - °
q sin ﬁo IDq rlquq 1
127 I ., +1
c - —©°4a Nq 1q (3.10)
q Zsinﬁoh I 1 :

Dq 1-\lqrz.q-
Up to this point, the expansion coefficients are completely deter-
mined in terms of integrations w,r.t. r and ¢. The determination of
INq and IDq for all the TE and TM modes can be made by substituting
the mode field distributions into eqs. (3. 7)and (3.38).

(i) TE Modes:

The transverse electric fields for the qth TE waveguide

mode are
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n J‘n(kcqr)
erq = " < sin(n¢) (3.11a)
cq
e, = J'(k r)cos(n 3.11b
oq = Inlkgr) cos(ne) (3.11b)
Therefore I and I can be obtained as
Nq Dq
h n Jn(kcqr) nw nw
INq = S‘ = - [ 51n(—2—-)- sm(-—z—-)] sin ﬁo(h-r)dr
o cq
Znsm(—) hlJ (k r
= S‘ sinfB (h-r)dr (3.12a)
c (o) °
and 2
Anm 2 T ke gr) 2 2 2
LD =S' 5 [ a sin (n$)+J' (k_ r)cos (nd)] rdédr
q 2 2 n cq
o -1k r
cq
nZ Jj(kc r) 2
=1rS‘ [ > 3 +rJ' (k_r)]dr (3.12b)
L by n ' cq

(ii) TM Modes:
The transverse components of the electric field for the qth

TM mode are

erq = J;x(kcqr) sin(n¢) (3.13a)
n Jn(kcqr)

e = cos(nd) (3.13b)

éq kcq r

so that
h nw nm
- ' in(2Ty - sinf(e 2T si -
I q_S; Jn(kcqr)[ sin( > ) - sin( > )] sin ﬁo(h r)dr

h
- zsin(%_’-f)j I1 (k  r)sinB (h-r)dr (3. 14a)
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and 2
A 2 J (k_r)
n n cq

2
]
+r Jn (kcqr)] dr (3. 14b)

The integrations for INq and IDq are carried out numerically by a

CDC 6500 computer.

3.2.3 Input Resistance
From Chapter 2, input resistance has been defined as

2

|Cq!

R, =—— 3 -9 (-r |2)§ e . e ds (3.15)

. I | .
mn IoIo q Zq 29 c.s. 1 1

Equation (3.15) is summing up only the propagating modes.
Since the input current is real and IDq is defined in the previous
section, eq. (3.15) can be rewritten as

11 ,
zq (- ‘Fqu )IDq

1
Rin— 2 (Eq
o

(3.16)
I

3.3 Expansion Coefficients and Input Resistance of the Radiator
with a Dipole Array Exciter

As the extension, an open-cavity radiator with a dipole array
exciter wiil be considered in this section.

The currents inthe driven element and the parasitic elements
are determined first by solving Hallen's integral equations. The
superposition principle is then employed to calculate the expansion

coefficients due'to individual antenna elements. After some phase
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Fig. 3.1 Geometry of the radiator with a dipole exciter.

Fig. 3.2 Geometry of the radiator with a dipole array exciter.
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modifications, those expansion coefficients are summed up to yield
the total expansion coefficients which are then used to find the input

resistance,

3.3.1 Geometry

Figure 3.2 shows a dipole array with n parasitic elements
placed inside the circular cavity. The driven element is the zeroth
element of the array and has a length of Zho. The input current to
this driven array dipole is Io with a frequency of w. The n parasitic
elements are arranged along the z-axis and symmetric to the x-z
plane, For the ith element, Ii’ hi and di are the input current, the
antenna half-length and the distance between this element and the
driven element, respectively. The input current Ii is obtained by

(12)

solving the Hallen's integral equations for the array and taking
into account of a ground plane placed at a distance of !1 from the

driven element.

3.3.2 Expansion Coefficients Bq and Cq

Let us define Biq and Ciq as the expansion coefficients of
the qth waveguide mode excited by ith parasitic element. Bq and
Cq are the total expansion coefficients of the qth mode excited by
all the elements of the dipole array. If we use a new coordinate
system (xi, Yy zi) with X=X, Y=Y and z:zi-idi for the ith element,
we can find the Biq and Ciq by the same procedure as for single
dipole case as discussed in Section 3.2, The electric field due to

the ith element, from eq. (2.4), is



- - 2z, <0
E, 2 B llegme,q® ~ *T (et e,q)¢ Moz
(3.17)

where rllq is the reflection coefficient of the qth mode due to the

short-circuit at zi= - (di+11). It follows that

-j2B 1. -j2B (d.+12.) -j2B d.
I‘l = -e ql]':-e Q1 l:I‘ e a1 (3.18)
1q 1q

By substituting eq. (3.18) and z,= z-di into eq. (3.17), we obtain

— -jﬁ d. - - jp Z - - ..jﬁ Z
E. =Z B, e ql{(e -e e U, (e +e e 4 ] (3.19)
il 4 19 q 29 19" q z2q
Similary, EiZ is
jB d. -jB =z iB =z
E =xC. e Te+e je T4r, -2 ) 11 (3.20
i2” g Tiq q 29 2q° 'q zq

Summing up all the fields due to all the dipole elements, the total

E field in the waveguide is

n -jB d. iB z -jB =z
- q 1 - - q —> - q
E = B. e e -e€ e + I (e +e e
1 Z_: z 1q [( q Zq) lq( q Zq) ]
i=0 4
- - Jﬁ z — -> -Jﬁ z
=X B[(e -e e 1 +T. (e +e e E ] (3.21a)
q q9 9 z9q 19 9 zq
- —> - -quz -— - JBqZ
and E. =2 C|[(e +e e + I, (e - e 3.21b
n 2 . q[( q zq) Zq( q ezq) ] ( )
n -jB di
where B = ¥ B. e 1 (3. 22a)
q . 1q . .
i=0
n qudi
and C = T C., e (3.22Db)
a i=0 1q

are the total expansion coefficients for the qth mode excited by the



41

dipole array. It is noted that do in eqs. (3.22) is zero.

3.3.3 Input Resistance
Equation (3.16) is also valid for the dipole array case except
that Cq is the total expansion coefficient which has been found in
eq. (3.22b). INq remains the same as the case of a single dipole
because the field distributions of the qth modes excited by all the

array elements are assumed to be the same.

3.4 Experimental Sétup

The experimental setup for the measurement of the radiation
patterns and the input impedance of an open-cavity radiator is sche-
matically shown in Fig. 3.3, The open-cavity radiator is placed
inside an anechoic chamber, which is covered by microwave absorbers,
The radius A of the cylindrical cavity is 10 cm and is equal to one
free-space wavelength under the operating frequency. The rim

length £ + 12 of the radiator is made adjustable for the experimental

1
purposes., A movable receiving antenna is used to measure the
radiation patterns of the radiator. The distance between the radiator
and the receiving antenna is 50 cm (5 )\o) when the rim length is ad-
justed to be 10 cm. By rotating the position of the radiator, this
receiving antenna can measure both the E-plane and H-plane radiation
patterns,

The primary radiator, namely, the dipole exciter or the

dipole array excier, is excited by an R.F. oscillator at 3 GH~ and
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Fig. 3.3 Experimental setup for the open-cavity radiator.
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Fig. 3.4 Open-cavity radiator with a dipole exciter inside
the anechoic chamber.

Fig. 3.5 The experimental setup outside the anechoic chamber.
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with a square wave amplitude modulation of 1 KHz. Fig. 3.4 shows
a receiving antenna and an open-cavity radiator with a dipole exciter
all placed inside an anechoic chamber,

A balun(l3)has been employed to convert a GR coaxial line
to a balanced, shielded two-wire line which feeds the primary
radiator. A slot has been cut over a portion of the shielded two-
wire line and a movable probe has been inserted in the slot, for the
purpose of measuring the input impedance of the primary radiator.
A simple detecting system consisting of an amplitude detector and
an SWR indicator has been used to measure botil the radiation field
and the input impedance. An x-y recorder has been used to obtain
a direct plot of the radiation patterns. Fig. 3.5 is a photograph

showing the experiment setup outside the anechoic chamber,

3.5 Comparison between Theory and Experiment

Theoretical and experimental results on the radiation pat-
terns and the input resistance of an open-cavity radiator with a
dipole or a dipole array exciter are obtained and compared in this
section.,

In the theoretical calculation for the radiation patterns and
the input resistance, all the propagating TE and TM waveguide
modes are considered, Some of the cutoff modes have also been
considered in addition to the propagating modes to see their effect

on radiation patterns. The effect was found to be insignificant
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when the total rim length was over 0.6 )\O. The theoretical results
on the radiation patterns and the input resistance are calculated
numerically by a CDC 6500 computer,

Figures 3.6 to 3.17 show the E-plane ($=90°) and H-plane
(b= Oo) radiation patterns of open-cavity radiators with various di-
mensions, different locations of primary exciters, and various rim
lengths of the cavity., The theoretical results (dotted line) and
experimental results (solid line) are plotted together for easy com-
parison. In all these figures, a satisfactory agreement between
theory and experiment is observed.

Figures 3.6 to 3.8 show the radiation patterns of an open-
cavity radiator with a dipole exciter and a variable rim length, The
dipole exciter with a half length of )\0/4 is located )\0/4 away from
the shorted end. The rim lengths of cavity for these three figures
are 0.8 )\o’ 1. 0)\0 and 1.2 )\o respectively. The effect of the cavity
length on the H-plane pattern is found to be rather significant,
Figures 3.9 to 3.11 give the radiation patterns of open-cavity
radiators with three different dipole exciters placed at the same
position as the first three figures and with the rim length fixed at
1.0 )\0. The dipole half lengths for these three figures are 0.05 )\O,
0.15 )\o to 0. 35 )\0. The effect of the dipole length on the radiation
pattern is not very significant, Figures 3.12 to 3. 14 illustrate
the radiation patterns of the radiators with 'a dipole exciter placed

at three different distances, 0.15 )\o' 0.1 )\o and 0.05)\0 from the
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shorted end of the cavity. The rim length is kept at 1,0 )\o for
these three cases, The effect of the exciter location on the radiation
pattern is found to be insignificant.

Figures 3,15 to 3.17 show the radiation patterns of an open-
cavity radiator with a two-element dipole array primary exciter
for three different rim lengths, The driven element with a half-length
of )\0/4 is placed )\0/4 away from the shorted end of the cavity. The
parasitic element has a half length of 0. 22 )\o and is located 0. 25 )\o
from the driven element. The three different rim lengths are
0.8 )\o' 1.0 )\0 and 1. 2 )\o respectively., It is observed that the H-
plane pattern is greatly improved with a dipole array exciter com-
pared with the case of a dipole exciter,

The experimental result of input resistance of an open-
cavity radiator is compared with the theoretical input resistance,
while the experimental reactance is not checked due to lack of
theoretical reactance, Table 3.1 shows the comparison between
experimental and theoretical resistances of an open-cavity radiator
with a dipole exciter which has a half length of 0.25 )\o and placed
at a distance of 0.25 )\o from shorted end of the cavity. The rim
length is varied from 0.6 )\o to 1.2 )\o' Table 3.2 shows the same
comparison as Table 3,1 for a same radiator with a dipole exciter
of a 0,32 )\o half length. Table 3.3 shows the theoretical and experi-
mental input resistances of a same radiator with a dipole array

exciter with dimensions described in Fig, 3.15 to Fig. 3.17.
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Table 3.1 Experimental Input Impedance and Theoretical Input
Resistance of an Open-Cavity Radiator with a Dipole

Exciter h=0,25\ , £ = 0.25\ ,
o 1 o
Rim Length Experimental Theoretical Input
L=£l’+l2 Input Impedance Resistance
0.6 XO 86.5 +j19.5 60.97
0.8 )\o 71.1 +382.4 67.69
1.0 )\o 78.7 +j53.4 70.73
1.2 )\o 89.6 + j86.3 70.99

Table 3.2 Experimental Input Impedance and Theoretical Input
Resistance of an Open Cavity Radiator with a Dipole

Exciter h=0.32\, ¢ = 0.25\ .
o 1 o

Rim Length Experimental Theoretical Input
L=11+£2 Input Impedance Resistance
0.6 )\o 153.8 +j163.8 188,12
0.8 )\o 148.5 + j165,2 208.10
1.0 )\o 175.2 +j199.5 217,76
1.2 )\o 146. 2 +j172.8 218.5

Table 3.3 Experimental Input Impedance and Theoretical Input
Resistance of an Open-Cavity Radiator with a Dipole
Array Exciter ho= 0.25 )\o' hl: 0.22 )\o' 1 " 0.25 )\o
and dl-- 0.25 )\0.

Rim Length Experimental Theoretical Input
L= £1+£Z Input Impedance Resistance
0.8 )\o 52,1 +j118.2 56.6
1.0 )\o 68.6 +j71.2 60.6
1.2 )\o 57.6 +j121.9 49.3




43

In these three tables, a qualitative agreement is obtained

between theory and experiment.

3.6 Conclusion

A theoretical analysis on the radiation and circuit properties
of an open-cavity radiator with a dipole or a dipole array exciter has
been carried out in this chapter. Theoretical results have been con-
firmed by experimental results,

Concerning the radiation patterns, a few points of interest
are as follows: (a) The radiation patterns of a radiator are quite
independent of the length and the location of the dipole exciter, This
implies that a proper exciter may be chosen to improve the matching
with the driving line while keeping the desired radiation patterns
unchanged, (b) The rim length of the cavity has a rather significant
effect on the H-plane pattern. (c) A radiator with a two-element
dipole array exciter gives very desirable radiation patterns both in
the E-plane and the H-plane. No side lobes appear in the patterns,
A radiator with this exciter may prove to function better than usual
backfire antenna with a dipole exciter and a small reflecting plate.

Among these figures on the radiation patterns, rather large
disagreements between theory and experiment are recorded in some
cases, The sources of discrepancy are believed to be due to: (a)
negligence of the diffraction at the radiator aperture, (b) inaccurate

calculation of the reflection of the propagating modes at the aperture,
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and (c) the effect of the cut-off mode fields specially for the cases
of short cavity rims,

For the input impedance of the open-cavity radiator, the
present analysis yields only the theoretical input resistance which
is in qualitative agreement with the experimental results. Generally
speaking the input impedance is not strongly dependent on the cavity
dimensions.

From the results presented in this chapter, it is concluded
that the radiation property of the open-cavity radiator is essentially
controlled by the cavity dimensions while the circuit property of the
radiator is primarily determined by the geometry of the exciter.
These characteristics may lead to the advantages of separate controls
of the radiationand circuit properties and, therefore, an easier design

of an open-cavity radiator,.
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A=1.())‘0
2h = 0.5\, 2h =0,22\
) o 1 [}
=0.25\ = 0,25\
220,25, d;=0.25\
Li=1,2°X

o

Experimental Result
0 — —_—— Theoretical Result

Fig. 3.17 Radiation patterns of an open-cavity radiator with
a dipole array exciter (h = 0,25 \ , hl= 0.22 \,
£,=0.25), d;=0.25 xo‘,’ L= 1.z°x°). o



CHAPTER 4

OPEN-CAVITY RADIATORS WITH TRANSMISSION
LINE EXCITERS

4.1 Introduction

In this chapter, the radiation and circuit properties of an
open-cavity radiator with a transmission line type exciter are
studied,

A thin conducting wire is placed closely in the front of the
shorted end of the cavity, The wire and its image form a section
of a transmission line, With a proper termination, a traveling
wave of current can be excited on the transmission line,.

The waveguide excitation theory has been employed to deter-
mine the fields excited inside the cavity, The radiation fields are
calculated based on the aperture field, The Poynting vector method
is used to determine the radiated power and the radiation resistance.

Theoretical and experimental results on the radiation patterns

and the radiation resistance are obtained and compared.
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4.2 Expansion Coefficients and Radiation Resistance of an Open-
Cavity Radiator with a Transmission Line Exciter

4.2.1 Geometry

The geometry of an open-cavity radiator with a transmission
line exciter is shown in Fig. 4.1. A section of thin conducting wire
with a length of 2h is located on y-z plane. The total current flowing
in the wire is I0 and the frequency is . If the spacing between the
conducting wire and the shorted end, ll, is small, the conducting
wire and its image form a section of a transmission line with a
characteristic impedance of Zc. If this section of transmission
line is terminated with a resistor of Z*= Zc/ 2, a traveling wave of
current can be excited in the wire . Mathematically, this current

can be represented by a current density Ta such as,

- A ’jpo(Y+h)
Ja(x, V,2) =y 106(2)5 (x) e for -h<y<h (4.1)

where Io is the input current at y = -h, and {30 is the wave number
in the free-space, The two short ends of the transmission line will
be ignored in the theoretical analysis, The circular cylindrical

cavity is the same as that defined in the previous chapter.

4,2,2 Expansion Coefficients
The expressions for the expansion coefficients for the qth
mode excited in the open-cavity radiator have been given in Chap-

ter 2 as,
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Fig. 4.1 Geometry of an open-cavity radiator with a transmission
line exciter and the equivalent circuit of the transmission
line exciter.
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' M +N
B - 299 4
q I"lql"zq-l
' N+M
c - 1949 g4
q I‘lql"zq-l
Y - = T+ >
LE-J dv ‘SVE-J dv
q a q a
where M = », N =

1 23' (e xh )- 2ds e 25' (e xh )- 2ds
L .9 4 qQ q

C. S,

The numerators of Mq and Nq for the case of a transmission

line exciter can be found to be

b} - - ~ .lz — — jﬁqz A "jﬁo(Y'*'h)
SVE -Jdv=3 ‘X (e -e Je 3 .yI 6(2)6(x)e dz ds
q a q zq o
C.S 11
A - A -jpo(y+h)
= I 3 e .y 0 (x)e ds (4. 2)
c. s. 1
and
v > . -~ A ‘jpo(Y+h) .
‘SVE -Jadvz I‘S e -yb(x)e ds:SE o.]’adv (4. 3)
q °Je.s. q v 4
where 3 ds is the surface integration over the cross-section of
c. s. - - A 1 —- -
the waveguide., Since (e xh )ez=—-— (e - e ), M and N_can be
q9 q Zq 9 q q q
expressed as
s A -jB_(y+h)
IOZ BC ] eq-yﬁ(x)e ds
M =N = zq e (4. 4)
E q 5 (e + e )ds
qa q

C. S.

We define INq and IDq as follows:
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A 'Jp (Y+h)

Al — o
I = 3 e «y&(x)e ds (4. 5a)
Na~ ) .9
= @ -2 )as (4. 5b)
o= § Carcq

Converting to cylindrical coordinates, eq. (4.5a) becomes

how R A -jp (rsin¢ +h)
I = 3 e (r,¢). (rsind +dcos $)d (r cos ¢p)e © rdo¢dr
Nq b L q
a0 A -jp (rsin¢ +h)
:5 5 e «(rsind +¢ cos $)b (r cos ¢)e © rdédr
o =T d
h oo . A A —jﬁo(r siné +h)
+‘S 5 e « (rsind +dcos ¢)d (r cos d)e rdédr
o ‘o q
or
-iB h |h -jB rsind -jp rsin
IN=e oS[e e °© _T-e_e © _ m]dr
q o rq ¢’-2 rq ==3
(4.6)
and
nA \Tr 2 Z
1o 30 ‘S_ﬂ[ (e q) * (eyq) ] rdodr (4.7)

where erq and ecpq are the r and ¢-components of the electric field
of the qth - waveguide mode,
Substituting the waveguide fields, erq and e¢q, into eqgs.

(4.6) and (4. 7), INq and IDq can be evaluated and the expansion

coefficients for the qth mode are obtained as

Z1 1 +1
qgo Ng qu
By =2 1. T.r -1 (4.8)
Dq " 1q 2q
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Z1 1 L, +1
R 4 (4.9)

= > -
q qu I‘qu‘Zq 1

The results of I and I for all the TE and TM modes
Nq Dq

are given as follows,

(i) TE Modes:
From Appendix, the transverse components of the electric
field of the qth TE waveguide mode are

n Jn(kcqr) sin(n¢)

cq -cos (né)

cos(nd)
e =J'(k 1)
n c

4 d sin(nd)

Therefore, INq and IDq can be obtained as

-j h _h -ip r{ sinZT  jp r(sinst
o (' n o) 2 o 2
I .=e J (k_r)e +e ]dr
Nq k r n cq nmw ntw
‘o cq -cos—— cos—-
2 2
. . nmw
-jp h .hnJ (k r) | sins—cosP r
=2 ° | —2< 2 ° ar (4. 10)
r i cos =~ sinf r
o cq j > o
2
A hZ J (k r) 2
1= n‘g [ B9 4y r)]dr (4.11)
q 2 r n  cq
o k
cq

In eq. (4.10), we choose the proper waveguide field expres-
sion which gives non-zero value of INq' The n in eqs, (4.10) and

(4.11) is positive integer, and when
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(a) n is odd

I = Lo sin(ﬂ)e-moh " Jn(kcqr)COS PoT dr
Ng k 2 T
cq o
J (k r)
e = o< sin n¢
rq k r
cq
e =J'(k r)cosn
q nl cq ) ¢
(b) n is even
. 2 o (H)e-JBOh .h Jn(kcqr)mnﬁ by i
Ng 7k 2 ‘S r
cq (o]
J (k r)
n n cq
e = - cos né
rq k T
cq

e = J'(k r)sinn
q n(cq) $

IDq is given in eq. (4.11)

(i1) TM Modes:

(4. 12a)

(4. 12b)

(4.12c¢)

(4. 13a)

(4. 13b)

(4.13c)

The transverse components of the electric field of the qth

TM mode are

cos n¢
e =J"'(k r)

4 nocq sinnd

J'n(kcqr) -sinné

e =
9 kcq * cos no
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and
-jB h _h -jB r cos—t B r cos—~
I =e °©° Ik r)fe ° 2 _e ° Z]dr
Nq n cq . nmw .. nmw
o sinm5— -simr—
2 2
-iBh .k -jsinp rcosr—;E
= 2e ‘S J'(k ) ° dr (4.14)
n cq sinhT
(o} cos Bor n>-
2
A nZ Jn(kcqr) 2
- 1
Ing n‘s (S - tx (ke r)]dr (4. 15)
o k
cq
Choosing the proper set of INq and IDq’ we have for
(2) n is odd
nw -jpoh -h
= 2 sin=t '
Iyg™ 25ing" e ‘So 3! (k  F)cos B r dr (4.16a)
- ! ;
erq- Jn(kcqr)31nn¢ (4. 16Db)
n Jn(kcqr)
e, = cos né (4. 16¢)
k
9" kT
(b) n is even
nmw -jﬁoh h
= =23 —_ ! i
INq jeos>— e g Jn(kcqr)smﬁor dr (4. 17a)
— !
erq- Jn(kcqr)cos né (4.17b)
n Jn(kcqr)
e‘bq: "X - sinné (4. 17c)

cq
While qu is given in eq. (4.11).
Equations (4.12) to (4.17) give the proper expressions for

INq and the fields in an open-cavity radiator with a transmission



70

line exciter. The integrations for INq can be carried out numerically

by a computer.

4.2.3 Radiation Resistance

In Chapter 2, the radiation resistance of the primary radiator
has been obtained by calculating the total radiated power and then
dividing it by a half of the square of the input current of the primary
radiator, For the case of a transmission line exciter, the radiation
resistance is different from the input resistance because of the
presence of the terminal impedance Zt. The formula we derived in
Chapter 2 gives only the radiation resistance.

From the equivalent circuit of this transmission line in
Fig. 4.1(b), the input impedance of the exciter may be expressed

as

z. = 2 (4. 18)

where PI is the real power radiated by the radiator plus the loss

in the terminal resistor, and (Wm- We) is the stored energy in the
transmission line, the cavity and the transmission line terminator.
If we define the radiation and terminal resistance as R' and

Rt, respectively, then the real power, P,, is equal to

£

1

1 * _r % t
Pz = 5 IoIo R +3 I(th)I (h)R (4.19)

The first part of P, is the radiated power and is the same as

4

that defined in Chapter 2, therefore the theoretical radiation resistance
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can be calculated from eq. (2.29). The second part of Pl can be
calculated based on the wire current expressed in eq. (4.1) and a
measured value of the terminal resistance Rt. In this case, it is
found that the loss due to the radiation is small compared with the
loss at the terminal resistor. In other words, R" is small compared
with Rt.

4,3 Comparison between Theoretical and Experimental Results

The experimental setup for measuring the radiation field
and the input impedance of an open-cavity radiator with a trans-
mission line exciter is almost identical to the setup used for the
case of a radiator with a dipole exciter. A GR precision slotted
line is used to substitute the balun and the shield pair line for
measuring the input impedance,

In the course of measuring the input impedance, we can only
measure the total input impedance which includes the impedances
due to radiation and due to termination of the transmission line.
To measure the radiation resistance we conduct one more experi-
ment as follows: The open end of the open-cavity radiator is covered
by a perfect conducting plate and the length of cavity is properly
adjusted to avoid the resonance. The input resistance under this
condition should be due to the loss at the terminal resistor of the
transmission line only, If the total length of the transmission line
is half wave length, the difference between two measured resistances

mentioned above is the radiation resistance of the primary radiator,



72

Table 4.1 shows the experimental and theoretical radiation resistances

as functions of the cavity length

Table 4.1 Experimental and Theoretical Radiation Resistance of an
Open-Cavity Radiator with a Transmission Line Exciter

£.= 0,045\, 2h = 0.5\ .
(o] (o]

1

L=£1+12 Theoretical Radiation Experimental Radiation
(in )\o) Resistance Resistance
0.6 5.13 7.6

0.8 6.17 9.1

1.0 7.58 9.6

1.2 5.14 6.6

1.4 4,92 4.7

1.6 5.93 8.1

1.8 6.72 9.1

2.0 6.50 8.5

2.2 5.50 7.6

The theoretical results of the radiation patterns of an open-
cavity radiator with a transmission line exciter are obtained from
the formulas in Chapter 2, while the experimental results are
measured by a setup discussed in Chapter 3, Since the spacing
between the conductor and the shorted end of the cavity is kept

small, only the case of £ .= 0,045 )\o is considered, In Figs. (4.2)

1
to (4.4), the theoretical (dotted line) and experimental (solid line)
results are presented and compared. In these figures, the trans-
mission line has a length of 0.5 )\o and the dimensions of the cavity

are the same as the previous case in Chapter 3. A satisfactory

agreement was obtained between theory and experiment,
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4.4 Conclusion

In this study, the radiation fields and the radiation resistance
of an open-cavity radiator with a transmission line exciter have been
obtained theoretically and experimentally. A satisfactory agreement
between theory and experiment confirm the accuracy of the present
theoretical analysis,

For the radiation patterns a better agreement between theory
and experiment is obtained for the case of a longer cavity length,
The small value of the radiation resistance of this radiator suggests
a low radiation efficiency. The strong point of this radiator is its
broadband nature., Because of the resitance termination of the trans-
mission line exciter, the input impedance of this radiator is quite

frequency independent,
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Fig. 4.4 Radiation patterns of the open-cavity radiator with
a transmission line exciter at L = 1,2 )‘o'



CHAPTER 5

OPEN-CAVITY RADIATORS WITH CIRCULAR LOOP EXCITERS

5.1 Introduction

This chapter is devoted to investigate the radiation fields
and the input resistance of an open-cavity radiator excited by a cir-
cular loop. A circular loop is assumed to be either in a transverse
planc or in a longitudinal plane. The waveguide excitation theory and
Stokes'! theorem are used to find the expansion coefficients of the
waveguide modes which are excited in the cavity., The aperture
field is then determined. The expansion coefficients of the propa-
gating modes are also used to determine the input resistance of the
primary exciter., Experimental and theoretical results for radiation
fields and input resistance are obtained and compared. A satisfactory
agreement is obtained between theory and experiment. The effects
of the cavity length and the loop size on the radiation fields and the

input resistance are the main concerns of this analysis.

7
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5.2 Expansion Coefficients and Input Resistance of an Open-Cavity
Radiator with a Circular Loop Exciter Placed in a Transverse
Plane

5.2.1 Geometry
Figure 5.1 shows the geometry of an open-cavity radiator
with a circular loop exciter placed in the transverse plane. The
loop is made of a thin conducting wire with a radius of d. The loop
is located in a transverse plane at z=0 and with its center on the z-
axis., A cylindrical coordinate (r, ¢, z) is used in the analysis, The
current distribution for this circular loop can be mathematically

expressed as

I cosP d(m=|o])
T - 3 o 0

a

cos ﬁod" 6(r-d)b(z) -w<é<m (5.1)

where Io is the input current at (d, 0, 0) and Bo is the wave number

in the free-space.

1 2 z

Fig. 5.1 Geometry of an open-cavity radiator with a circular loop
exciter placed in a transverse plane,
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The circular cavity is the same as that defined in Chapter 2.

This cavity is shorted at z = -21 and has an open end at z = lz.

5.2.2 Expansion Coefficients
The expressions forthe expansion coefficients for the qth

waveguide mode in the open-cavity radiator are

', M +N
B - %949 a4
q I‘lql“zq-l

l"lN+M
C 9 9 q

qurzq- 1

Z lf-.}dv ZCLS }—f+.._]')dv
q) 9 "a , 94 "
M = - and N = -
q z‘g (e .o )ds 4 25 (e . )ds
C.S? 4 C.S.q q

where

The numerators of Mq and Nq for the case of a circular

loop placed in a transverse plane can be found as

I £ iB =z

- > _ o S (i g A A
S\:Eq. Jadv = cospodTT \S_lljc“ (se -e’lq)e ) ¢COSpod(n— [*1)
6(r-d)§ (2)dsdz
Io A T
= m 50 ‘S- eq(bcosﬁod(n-ldb‘)é(r-d)rdq)dr
Io b1
= Eo—s_Ed—TT Sw eq¢(r=d)cosﬁod(n-!¢>‘)d‘dq> (5.2)
and
‘o 4+ - ' Io T
E.Jdv=\E-Tdvs —— =d d(n-|o])dd
‘Sv q JaL M ‘Sv q va"V cospodn‘ S_“eq‘i’(r )COSBO (=16 ((4;.3)
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This leads to Mq: Nq and then Cq can be obtained as

. +1 172 d . +1 I
-1 "2 d - :
q q rlquq 1 cosﬁo ™ rquZq 1 IDq
where
T
= = d -
INq S-‘ﬂeqd)(r d)cosﬁO (mw l¢>|)d¢’ (5.5)
and
. — - -A 'TT 2 Z
I =S (e - e )ds:S 5 [(e_ )"+ (e ) ]rdedr (5.6)
Dq c.s.q q o Y rq $q

The value of IDq is the same as that obtained in Chapter 3,

INq should be evaluated separately for the TE and TM modes.

(i) TE Modes:

The transverse electric fields for the qth TE mode are

€ q " kcq Jn(kcqr)sin né (5.7a)
e¢q = J;l(kcqr)cos nd (5. 7b)
Substituting eqs. (5.7) into eqs. (5.5) and (5.6), INq and IDq can be
obtained as
T
INq = S Jl'_l(kch) cos né cosﬁod(n’- |4 e
™ s
= J;(kch | cosﬁodn Sﬁcosﬁod¢co snédd + sinﬁodnS"sinﬁod |¢| .
. cos nd do]
Zﬁod
= ———— sinf_dm J;(kch) (5.8)

(ﬁod)z- n
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and
2 2 2
— n 1
IDq S S\ [ > Jn (kcqr) +r Jn (kcqr)] dr (5. 9)
o kcqr

(i) TM Modes:

The transverse electric fields for the qth TM mode are:

= J'(k '
erq Jn( qu)s1nn¢> (5.10a)
e, = —— J (k_r)cos 5. 10b)
bq kcqr n'ecq '°° né (5.

Therefore, INq and IDq for the TM mode can be evaluated to be

n
INq _S T Jn(kch)cos no cosﬁod(rr- 16 1)dd
LT cq
2n f30
= > sin ﬁodn Jn(kch) (5.11)
k [ (B )"-n%]
and
A n2 2 2
— 1
g = ™ 5 [ T, tkgr) +x Ik r)]dr (5.12)
o kcqr

Up to this point, INq and I for the TE and TM modes are evaluated,

Dq

h i fI d ied ically b
The calculationso Nq an LDq are carried out numerically by a

CDC 6500 computer.

5.2.3 Input Resistance
After the expansion coefficients are completely determined,
the input resistance of the loop can be obtained by using eq. (2.29)

developed in Chapter 2,

AT e ¢

W
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5.3 Expansion Coefficients and Input Resistance of an Open-Cavity
Radiator with a Circular Loop Exciter Placed in a Longitudinal

Plane
5.3.1 Geometry and Expansion Coefficients

Figure 5.2(a) shows the geometry of an open-cavity radiator
with a circular loop located in the y-z plane or a longitudinal plane.
The circular loop has a radius of d and its center is located at the
origin of the cylindrical coordimtes (r, ¢, z). The cavity is the same
as the previous case and it is shorted at z = -ll and open at z = lz.

A new cylindrical coordinate system (r!, 6, x) is used to des-
cribe the circular loop exciter as shown in Fig. 5.2(b). For sim-
plicity, the radius of the circular loop is assumed to be small
compared with the wavelength., The current Ta for such a small

loop can be assumed to be

T - L 6(r'-d)5(x)0 (5.13)
a o]

where Io is the input current at (d, -TET » 0). The case of a more
general current distribution on a larger loop will not be considered
here to avoid mathematical complexity.

In order to find the expression for Cq' Mq and Nq are evalu-
ated first. Substituting eq. (5.13) into the expressions for Mq and

N , we have
q

+ .22 .ZTT .A + A
ELTav=1 3 ‘S 3 Bt 06 (r'-d)6 (x)r'dr'de dx
“q" "a o q

. -11 (o} (o)

* A .—’ -—
-1 5}f+-9dde -1 §E+-dl (5.14)
oJ. Ta oJ Ta

W,

o
Vv,
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\

|
|
c .
& A
|
I z-,-O

z=-1, z=1, %

(a) Geometry of the radiator

(b) Geometry of the circular loop exciter

Fig. 5.2 Geometries of an open-cavity radiator with a circular
loop exciter placed in a longitudinal plane,
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where

— A

£ = d.d6 6

Using Stokes' Theorem and a Maxwell equation, eq. (5.14)

becomes

A

= -jwpl ‘S _I:I+-nds
(o} S q

(5.15)

A A
where s is the total area enclosed by the loop ¢ and n = x or the unit

vector normal to s,

Similarly, we get

‘ E--T dv = -jopl S_I:I--;lds
q a 0 Jg q

(5.16)
lJv
-I-’Ic% has been defined in Chapter 2 as
FiB =z
HY - (+F +B )e ¢ (2. 2b)
q - q zq
Therefore C can be rewritten as
' N +M -jopl Z B2
C:rlqrq 1(1: o9 [rlﬁhe a7 4
a 19" 2q (r. T -1)-23e-eds EVA
197 2q q q
C.S.
L B
—S hqe - x ds] (5.17)

Since Kq is a function of r and ¢ only, the integration with respect to

z can be simplified and C_ becomes
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jwp.IZ (1-r. )

Cq= - 19 S hcosﬁ z-xds
25 (e.e )ds(I‘ r, -1)
. 8.3 19~ 2q
ja)pI Z (1-1" ) I
T 1)1q INq (5. 18)
lq 2q” Dq
where INq and IDq are defined as
P A
I = h cosP z.xds 5.19a
Nq ‘Ss q q ( )
and
I = e . e )ds 5.19b
g § g dy (5. 19b)

c.s.

The value of IDq is the same as that in the previous chapter,
but the calculation for INq is quite complicated, In the cylindrical
coordinates (r, ¢,2), x = r cos ¢ = 0 implies that ¢ = (2n-1)n/ 2 where
n is the integer. Also ;\: and Kq can be expressed as

A A A
x=rcos¢ - ¢ sin¢ (5. 20a)

—> A A
R =rh +éh

5.20b
q rq $q ( )

- A
Therefore, the scalar product of hq- x on the S surface is equal to

- N —— A
h «x = h (x=0)ex=(h cos¢-h, sin
q q( ( rq ¢ $q ¢ (Zn-l)
onS b= *——
= -h,  s8in¢ (5.21)
4q 2
n-l
p-t2nml)
Since r = xcos ¢ + ysin¢d, we have
™
b=3 r=y
3 (5. 22)

¢ == r=-y

s an

.
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Refer to Fig. 5.2(b), r' along the path C is expressed by

2 2 2 2
r' =y +z =d

or
2=+ Jas. y° (5. 23)

Substituting the above relations in the expression for INq' it leads to

I :Sﬁocosﬁ z-;;ds
s q

(¢=3, r=y)cosp zdzdy+§'

_dgw $q

n
]
OL/\.
1 —
]
1
"e'
Ne]
1

.cosPB zdzd
q Yy

d
. 3 / 2 2
S [ h¢q(¢: -—ZTT) - h¢q(¢:%)] sin Bq d -y dy (5. 24)

"
=2l

The final expressions for the expansion coefficients Cq for

the TE and TM modes are obtained as follows:

(i) TE Modes:

The fields for the qth TE mode are

= sinn¢

INq for the TE mode can be obtained as

k Y)
2 2

= (sin3 I. n— )S‘ sinﬁq Jd -y dy

2 n
Z k
ﬁq q cq
.. nmw
4ns1n—2— .d Jn(kcqy) ‘ > v
Z e m—— ————— sinf _yd -y dy (5. 25)
Bz k q
q q cq o

=
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With Zq: w""/pq’ Cq for the qth TE mode becomes

Z i 2 - d k i
sin(nr/2) T'1q 3 Tneq?) sinp Ja-y© dy
-1 y q

I ‘r. r
cq Dg 1q9° 2q o (5. 26)

C =j2nl
q o

(ii) TM Modes:

The fields for the qth TM mode are

n J'n(kcqr)
Peq® 7 Toxo o
q cq

1, .
hcbq_ = Jn(kcqr)smncb

q
Following the same process as in the TE mode case, INq and Cq
for the qth TM mode can be obtained as
4sin>  ,d Rz
= - ——— '(k i d - d 5,27
INq B Z S I qu)smﬁq y dy ( )
Q q o
2 z ¢ r 1 d
, . 2 - . 2 2
Cq = jZIO 02 sn;(nn'/ ) = qu 1 S J;l(kc y)sinf_yd -y dy
z Dq 19 297 4 4 (5. 28)

Up to this point, the expansion coefficients Cq for the TE and TM

modes are completely determined.

5.3.2 Input Resistance
After the expansion coefficients are completely determined,
the input resistance can be evaluated using eq. (2.29) developed in

Chapter 2,
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5.4 Comparison between Theory and Experiment

In this section, theoretical and experimental results of the
radiation patterns and the input resistance for an open-cavity radiator
with a circular loop exciter placed in a transverse plane or in a longi-
tudinal plane are obtained and compared. The experimental input
resistance for the case of a small loop placed in a longitudinal plane
is not presented here because it is so small that it is very hard to
conduct the measurement,

Figures 5.3 to 5.8 show the radiation patterns of open-cavity
radiators with various cavity length and two different circular loops
placed in transverse planes of the cavity. The theoretical results
(dotted line) and experimental results (solid line) are plotted together
for easy comparison, The E-plane (¢>:900) and H-plane (¢):Oo)
radiation patterns are presented in these figures. In all these
figures, a satisfactory agreement between theory and experiment
is obtained.

Figures 5,3 to 5.5 show the radiation patterns of the radiators
with a circular loop of 0.09 )\o radius and placed at 0. 25 )\o from the
shorted end of the cavity, and with the cavity length of 0.8 )\o 1.0 )\o
and 1.2 )\o, respectively., Figures 5.6 to 5.8 show the radiation
patterns of the three radiators treated in Figs. 5.3 to 5.5 but the
size of the circular loop is increased to have a 0.19 )\o radius. Com-
paring Figs. 5.3 to 5.5 with Figs. 5.6 to 5.8, it is observed that the

effect of the size of the loop exciter on the radiation patterns seems
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rather significant. It is also observed that in the case of a larger
loop exciter, the effect of the cavity length on the H-plane pattern
is found to be quite outstanding.

Since the theoretical analysis on the radiation and circuit
properties of an open-cavity radiator with a circular loop exciter
placed in a longitudinal plane is based on the assumption that the

loop is small and has a uniform current distribution, only the case

Far~— e Aary 1

of a small loop with a radius of 0. 06 )\o is investigated, Figures

5.9 to 5.11 give theoretical and experimental radiation patterns of

the radiators with a small circular loop as mentioned above, The
center of the loop is placed at 0.25 )\0 away from the shorted end
of the cavity and the cavity lengths are set to be 0.8 )\o’ 1.0 )\0,
and 1.2 )\0, respectively, It is observed that the radiation patterns
in these figures are broader than those produced with a loop placed

in a transverse plane.

The experimental results on the input resistance of an open-
cavity radiator with a loop placed in a transverse plane are compared
with the theoretical results, Table 5.1 shows the comparison be-
tween theoretical input resistance and experimental input impedance
of a radiator with dimensions specified in Fig. 5.3 and with the
cavity length varied from 0.6 XO to 1.2 )\O. Table 5.2 gives the
same comparison for a radiator described in Fig. 5.6. In these
two tables, a qualitative agreement is obtained between theory and
experiment. The agreement is better for the case of a larger loop

exciter,
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theoretical input resistance of an open-cavity radiator

with a small circular loop exciter placed in a longitudinal plane is

very small,

It ranges from one to three ohms when the radius of

the loop is 0. 06 )\0 and the cavity length is varied from 0.6 )\o to

1.2 )\o. It is very hard, if not impossible, to measure this small

input resistance using a conventional driving line, For this reason,

no experimental input resistance is available for comparison with

theoretical results.

Table 5.1

Experimental Input Impedance and Theoretical Input
Resistance of an Open-Cavity Radiator with a Circular
Loop Exciter Placed in a Transverse Plane, d = 0,09 \ ,
£,=0.25\ . ©

Cavity Length Experimental Theoretical
L= 11+ 12 Input Impedance Input Resistance
0.6 )\o 330.4 + j481.7 484.1
0.8 )\0 344, 3 + j411.6 557.9
1.0 )\o 406.7 + j381 671.3
1.2 )\o 315.8 + j356.2 481.6

Table 5.2 Experimental Input Impedance and Theoretical Input

Resistance of an Open-Cavity Radiator with a Circular
Loop Exciter Placed in a Transverse Plane, d = 0.19 )\0,

£ =0,25\,
1 o

Cavity Length

Experimental
Input Impedance

Theoretical
Input Resistance

0.6 \
o
0.8\
o
1.0 X\
o
1.2\
o

259.0 +j253.6
342, 7 +j190.5
373.6 + j95. 2

254,0 +j152.9

292.9
362.3
446, 3
309.9
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5.5 Conclusion

A theoretical analysis on the radiation and circuit properties
of an open-cavity radiator with a circular loop exciter placed in a
longitudinal plane or in a transverse plane has been presented in
this chapter. Most of the theoretical results have been confirmed

by the experimental results.

Concerning the radiation patterns, some facts of significance q

are pointed out as follows: (a)The E-plane radiation pattern of the

radiator is quite independent of the cavity length when the exciter

1=

is placed in a transverse plane, (b) The cavity length has a rather
significant effect on the H-plane pattern. (c) The size of the circular
loop exciter when placed in a transverse plane tends to have a rather
significant effect on the radiation characteristics of the radiator.

It appears that a good radiation pattern can be realized by a proper
choice of a loop exciter., (d) For the radiation with a circular loop
exciter placed in a longitudinal plane, the radiation resistance is
usually small and the radiation patterns are less directive. This
radiator may have a less value in practical applications,.

Among these figures on radiation patterns, rather large dis-
agreements between theory and experiment are recorded in some
cases, The sources of these disagreements are believed to be due
to the same reasons mentioned in Sec. 3.6,

Concerning the input resistance of the radiator with a loop

exciter placed in a transverse plane, theoretical input resistance

S ———
R .
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is in a qualitative agreement with the experimental input impedance.

The agreement is better for the case of a larger loop exciter. Generally

speaking, the input impedance is not strongly dependent on the cavity

dimensions,

N
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plane

en-cavity radiator with a

citer placed in a transverse

of an op
ircular loop ex
(d=0.09)~°, L=1.0 Xo).

Fig. 5.4 Radiation patterns



Fig. 5.5 Radiation patterns

circular loop excit

@=0.09%, L=1.2%).
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s A=1.0\
o

1
1| | £.=0.25
| 1 o
@¢—r——> ¢ a=0.060
! L=0.8X\
| o
| e srmeeni|

o ~——————— Experimental Result
0 — — — — —Theoretical Result

Fig. 5.9 Radiation patterns of an open-cavity radiator with a

circular loop exciter placed in a longitudinal plane
(@ =0,06 )‘o' L=0.8 ko).
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1 d A=1.0\
Tl : °
S— H £,=0.25\
_L.{B_'{u -t 4=0.06 %
I : L=1.0X\
I o
"
— 11—
0° Experimental Result
c = == — — ~Theoretical Result b
1

Fig. 5.10 Radiation patterns of an open-cavity radiator with a
circular loop exciter placed in a longitudinal plane
(d = 0,06 Xo, L=1.0 xo).



circular loop exciter placed in a longitudinal plane
[@=0.06X, L=1.2X).



APPENDIX

NORMAL MODES IN CIRCULAR WAVEGUIDING STRUCTURE

Part I - Normal TE Modes

Figure A,1 shows the geometry of a cylindrical waveguide
with a circular cross section of radius a. In view of the cylindrical
geometry involved, cylindrical coordinates are used in the analysis.
We assume that the waveguide is made of a perfect conductor and
filled with a dielectric.

The general equations for TE, or H, modes are

2 2
V, h, +kh =0 (A.1)
v Y
)
P(r, ¢, z) r 1
, ; |
a P'(r, ¢, 0) | :
|
s -—x | ! z
| >
| |
| |
| |
|
! ]

Fig. A.1 The circular cylindrical waveguide
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where
2 2
k- kS 4y (A. 2)

and hz in the longitudinal component of the H field in the waveguide.

The transverse components are

T . 31X
ht_ = Vthz (A. 3) F}
k
C
v!’-“‘
Py AR A4
et-i Axt (-)

The boundary condition in this problem is

:I
o 3

Z

on (r=a) = 0 (A. 5)

where k = wNp€E is the propagation constant in the medium and
kc = ZTrfC\/pTE- is the cutoff wave number with f being the cutoff fre-
quency for a certain waveguide mode, Z = is the field impedance
for TE modes and 7 is the propagation constant for the waveguide mode.
Using the separation of variables method, a solution for
eq. (A.1) is
cos né
hz(r, ¢) = C Jn(kcr) (A.6)

sin nd

where n is a positive integer. Subject to eq. (A.5), we have

3h7 (r=a) cos né
ﬁ—: = C'J'%k r) = 0
n n c .
sinné

or Tk r) = 0 (A. 7)
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Table A.1 below shows the £th root of Jr')(p;1 1) = 0, The eigen-
td

values kc, ng 2¥e given by
pl
n{
c,nf a (A. 8)
Table A.1 Values of p;l 2 for TE Modes
td
! 1 1 1 ! 1 !

'] Por P1s P2y P3y Pag Psg Peg
1 3.832 1.841 3.054 | 4,201 5.317 | 6.416 7.501
2 7.016 5.331 6.706 8.015 9.282 110,520 11.735
3110,173 | 8.531 9.969 |11.346 |12.682 | 13.987 | 15.265
413,324 |{11.706 | 13,170 |14.580 |16.202 [17.375 | 18.640

If q has been used as a mixed index of n, £ covering all of the

TE modes and normalize the fields by j f)—& C =1, egs. (A.3)and

cq d
(A. 4) will lead to
n sin né
= J (k1) (A. 9a)
rq kcqr n cq -cosnd
cos no
e = J'k 1) (A. 9Db)
4 no<q sinné
k cos n¢
. cq
h =-j—J (k r) (A.9c)
zq o noocd sin né
1 cos no
h =-— J"(k_r) (A. 9d)
h
ra 4 noca sinnd
q
sin n
J (k1) (A. 9e)
h
4 Z 'k r cd -cos né
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The propagation constant, ﬁq’ for the qth TE mode is

2 2 1 2 2 1
= (k_ -k ) = j(k =k_) =
Vg = (Kgqm K7 = 30Tk ) = B
1 w 1 w 1
1 2.1 2 1
or B = wie)?[1- (-1 - <4)%)2 (A.10)
q W w
The cutoff frequency and cutoff wavelength are
1 Pq
- "2 _ -4
mcq = kcq(ue) = v (A.11)
2
Neq — = = (A.12)
cq Pq

where v is the velocity of light in the medium. The field impedance

for this particular mode is

h _ jop _ wp _ 2 _ ch-——: B
Zq—,yq ﬁ[l ( )] = ¢[1 - ( )] épq

(A.13)
where { is the field impedance of the medium,. If the dielectric in the
waveguide is air, then { = §0 = 1207 ohms,

Figure A.2 illustrates the field distribution of some TE modes

in the guide. From these field distributions it is possible to deter-
rmnine a proper location to place the primary exciter., In general,
the primary exciter is placed in a location in such a way that the

field of the exciter matches best with the field of the desired wave-

guide mode,
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Fig, A.2, Field configurations in a circular waveguide for
TE modes.
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Part II - Normal TM Modes

The general equations for TM modes are
Vze + kze =0
t z c z
where
2 2 2
k = k +7v
c
The boundary condition is
ez(rza) =0

and the transverse fields are

PO
“t +k2 Vi e,
c
— 1 A >
htz i——e zxet
Z
where
A
Jwe

Using the same technique as for the TE modes we get

cos no
e (r,$)= DJ (k r)
z n c .
sinnd

(A. 14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

where D is a constant and n is a positive integer, The boundary

condition, ez(rza) = 0, implies that J (kca) = 0.
n

Table A. 2 below shows the £th root of Jn(pnl

eigenvalues k are given as
c

, nf

) = 0.

The

(A. 20)

oy
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Table A, 2 Value of P for TM Modes
?

Py, P1y P2y P3y Pyg Pgy Pey

1| 2.405| 3.832| s5.136| 6.830) 7.588| 8.771| 9.936
2| s5.520| 7.016| 8.417| 9.761| 11.065| 12.339| 13.589
3| 8.654 [10.173| 11.620 |13.015| 14.372| 15.708 | 17.030
4|11.792 |13.323| 14.796 |16.221| 17.667| 18.962 | 20. 308

If q has been used as a mixed index of n, £ covering all of

the qth TM modes and the fields are normalized by letting

v D
2 1. 1, egs. (A.17) and (A.18) become
cq

cos né

e = J"k r) (A. 21a)
rq n cq .
sinné
‘-sinnq)
e = l(" = J (k_.T) (A. 21b)
¢4 cq noe cos no
(
k cos no
e = -—33 (k 1) (A.21c)
=9 'Yq noc sinné
n -sinn¢
h = — J (k1) (A, 21d)
rd k rZ nocd cos no
cq q
1 cos nd
h = -— 7! (kC r) (A, 21e)
¢4 Zs n 1 sin no

The propagation constant, pq, for the qth TM mode is,

2
cq

[ 10

2
By = (K- K

®eq 2 1
)2 = B[l-(-a—) ] (A. 22)

i
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The cutoff frequency wcq and cutoff wavelength ch are

-1 Pq
= k 2 - k = e A.23
wcq cq(HE) M cq v a ( )
T A 2nf - 2ma (A. 24)
cq f A p

cq cq q

The field impedance of qth TM mode is defined as

Y w 1 w 1
€ q cq 2 3> cq 2
Z = T = - _— = - —_— A. 25
ce s E (227 e
g
e q
or Z = — A, 25b
q p ( )
Some typical field distributions of TM modes are shown in
Fig. A, 3,
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Fig., A.3. Field configurations in a circular waveguide for
TM modes,
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