
ABSTRACT

INVESTIGATION OF OPEN-CAVITY RADIATORS

By

Min-Houng Hong

An open-cavity radiator, or a simplified model of recently

developed ”backfire" antennas, is investigated in this research.

This antenna consists of a simple, open-ended circular cavity with

a primary radiator placed at an appropriate location inside the

cavity. The circuit property and the radiation characteristics of

this radiator are studied.

The waveguide excitation theory is employed to find the field

excited in the cavity. The aperture field is then determined by sum-

ming the propagating modes at the open end of the cavity. Subsequently,

the radiation field is calculated based on the aperture field. The input

resistance of the radiator is obtained from the total radiated power

carried by the propagating modes and the input current of the primary

radiator.

Various primary radiators such as a dipole, a dipole array,

a transmission line and a circular loop are considered in this study.
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An eXperimental study has been conducted inparallel with the

theoretical analysis and a satisfactory agreement has been obtained

between theory and experiment. This study may help clarify the

mechanism of radiation of this new radiator and prove useful in its

optimum design.
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CHAPTER 1

INTRODUCTION

Antennas employing the "backfire" principle conceived by

(1. 2)
have been the subjects of extensive experimental

(3)

EhreSpeck

studies. More recently, Ehrespeck has developed a ”short-

backfire” antenna which consists of a simple open-ended circular

cavity with a dipole exciter placed at an appropriate location inside

the cavity and a small reflecting plate placed in the open end. A gain

of 15 dB above isotropic, with side lobes of at least -2.0 dB and a

back lobe lower than -30 dB was achieved with this configuration.

In Spite of its simple geometrical structure, this radiator has a

comparable performance as a more sophisticated reflecter-type

antenna. Although this antenna has been studied experimentally,

very little theoretical work has been conducted.

(4)
Chen, Nyquist and Lin have developed an approximate

calculation of the radiation fields of a short ”backfire" antenna

based upon the assumption that the aperture field is distributed

approximately cosinusoidally in both horizontal and vertical planes



as evidenced by a near-zone measurement. They conclude that a

short "backfire" antenna is essentially a circular aperture antenna

with the dipole functioning merely as an exciter for the aperture

field. Zucker(5) has theoretically studied a long "backfire" antenna

and has provided some useful information for design.

It is apparent that more extensive theoretical and eXperi-

mental studies are needed to understand the basic operational

principles of this radiator. It is also anticipated that if an adequate

theory is developed, it will not only lead to an understanding of the

basic principles of this antenna but perhaps may also lead to a better

design for the backfire antenna or the development of a new class of

open-cavity radiator type antennas. It is for these reasons that the

present investigation was made.

The model of the radiator for this study is similar to that

of a short ”backfire" antenna except that the reflecting plate at the

antenna aperture is ignored and the rim length of the antenna is

increased. The reasons for adopting this model are for theoretical

simplicity and for the eXperimental fact that a short ”backfire"

antenna radiates the same if the reflecting plate is removed while

the antenna rim is increased.

In this investigation, both theoretical and experimental

studies have been conducted to find the radiation and circuit pro-

perties of an open-cavity radiator excited by various primary

exciters. For the primary exciters, a dipole, a dipole array, a



transmission line and a circular loop have been considered. The

current distribution on the primary exciter is assumed. The wave-

guide excitation theory is employed to find the eXpansion coefficients

of the normal modes excited in the cavity. The reflection coefficients

of the normal modes at the open end of the cavity are calculated

approximately. The aperture field is obtained by summing the pro-

pagating modes at the open end of the cavity; the radiation field is

then calculated based on the aperture field. The input resistance

is obtained by calculating the total radiated power carried by the

propagating modes.

The effects of the cavity dimensions and the geometries and

dimensions of the exciters on the radiation characteristics of the

radiator are studied. Theory has been confirmed by experiment.

The present investigation should prove useful in the understanding

of the basic operational principles of a ”backfire antenna" and its

design.



CHAPTER 2

WAVEGUIDE EXCITATION THEORY AND THE RADIATION

FIELDS OF THE OPEN-CAVITY RADIATORS

2.1 Geometfl and Statement of the Problem
 

The geometry of an open- cavity radiator is as shown in

Fig. 2.1. This antenna consists of a simple, open-ended circular

cylinder with a primary radiator placed at an appropriate location

inside the cylinder. The configuration of the primary radiator can

be of various shapes. Various current sources 3a with the frequency

w are assumed to be on the primary radiator. The circular cylinder

is assumed to be perfectly conducting with a radius of A and a length

of L = 11+ 1 2. This cylinder is short-circuited by a perfect plane

reflector at z : -£1 and the other end is open at z : £2. The center

of the primary radiator is located at z = 0. Inside the cavity, or

the open waveguide, cylindrical coordinates (r', ¢', z) are adopted

to express the waveguide fields. Outside the cavity, a new coordi-

nate system is used to eXpress the radiation fields.
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Fig. 2.1 Geometry of an open-cavity radiator
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Fig. 2. 3 Illustration for Lorentz Lemma



2. 2 Waveguide Excitation Theory
 

' In a circular cylindrical waveguide with a radius A which is

relatively large compared with the wavelength, several waveguide

modes can propagate along the waveguide. With a known current

source located in the waveguide, the EM field can be expanded in

the normal waveguide modes and the expansion coefficients of all

modes excited by the source (propagating and evanescent) are deter-

mined by the waveguide excitation theory.

Since the cylindrical waveguide used in this study has a finite

length, the reflections due to the discontinuities at both ends also

need to be considered and evaluated.

2. 2.1 General Field Expressions in a’Waveguide

Fig. 2. 2 illustrates a waveguide of finite length in which a

current source 3; is located in the region between z1 and 22' The

total volume of the source region is V. S is defined as the total

closed boundary surface of V and So is the total surface of conducting

wall in V.

The fields excited by the source may be expressed as an

infinite Fourier series in the orthogonal normal waveguide modes

as follows:

E1=El++fl‘=zAE++zBE' (2.1a)
q qq q qq Z<zl

fi=fi++fi'=zAfi++EB'fi' (2.1b)

1 l l qqq q qq



EZ=EZ++E2-= ZCE++ZDE' (2.1c)

fi=fi++fi'=ZCfi++EDI§' (2.1d)

2 2 2 q qq q qq

9-}- -> —> +J§qz

where E - = (e + e ) e (2. 2a)

q q- zq

—> -9 -> +jfi7

Hi = (h +h )6 q (2.2b)
q " q zq

In eqs. (2.1)and (2. 2), q is a general summation index and

implies a summation over all possible TE and TM modes, and the

time dependence factor of ejwt has been suppressed. The Bq, e ,

ezq’ hq and hzCl are the propagation constant, transverse and 7.-

components of E fields, transverse and z- components of H fields

for the qth waveguide mode, respectively. The super "+" and "-"

indices represent the waves in positive and negative 2 directions,

respectively. The unknown constants Aq, Bq, Cq and Dq are the

eXpansion coefficients which are to be evaluated later.

We define reflection coefficients rm and I‘Zq as,

Aq

= — 2.3

I“lq B ( a)

Cl

Dq
= —— 2.3b

I-‘2q Cq
I I

Substituting eqs. (2. 2) and (2. 3) into eq. (2.1), the following are

obtained

quz _. _. -quz
+ I‘lq(eq+ e )e I z<zl (2-4))6 Zq

‘1

H
I

l
l

.
o
M w 7
5
1

I

N
o
;



—> —> —> Jfiq7 —> —> "jflq/ .

HI = §Bq[(-hq+ hzq)e + rlq(hq+ hzq)e ] z < zl (2. 5)

.. _. I -3qu Jfiqz .
E2 = 2:1 Cq[(eq+ ezq)e + F2 (e - ezq)e ] z > 22 (2.6)

-> —> —o -JBqZ —> —> Jflqz

H2 = 221 Cq[(hq+ hzq)e - I‘quq- hzq)e ] z > 22 (2.7)

2. 2. Z Lorentz Lemma

Consider a volume region V bounded by a closed surface S

as in Fig. 2. 3. Let a current source-3a in V produce fields Ea,

Ha, while a second source Tb produces fields Eb, Hb. The Lorentz

Lemma states(6),

' o —> —> - —> —> d = ' —> . -> - -> . —> Z

‘3 V (EaXHb be Ha) v ‘8 (Eb Ja Ea Jb)dv ( .8)

v v

With divergence theorem eq. (2. 8) leads to

EHEHAd-ETEId 29
§s(ax b- bx a)°n 8-Sv(b a-a b)V (')

where S is the total surface enclosing V.

2. 2. 3 Excited Fields

In Fig. 2.2, let E and E be the E , and 11’ and 11’ be the
1 a l 22

Ha. These fields are produced by the current source Ta defined in

the Lorentz Lemma. The E and H are assumed to be

b b

-> —> - —> jfiqz

E : E : e - e 2.108.)b q ( q zq) (

-> -—> - -> -> quz

H = H = (-h + h )e (2. 10b)
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Both Eb and Hb are fields in a source-free region correspond-

ing to Tb: 0. Using Lorentz Lemma in our problem, V is assumed to

be a region between 21 and zz, S is the total surface enclosing V and

So is the total area of the conducting wall in region V. Eq. (2. 9) can

now be rewritten as follows:

§(+ax-H--—E XHa.) : SE--Tadv

s q q vq

S(E xH--—E-xHa)-nds+§ (EaXfiq-I- E-xH)-hds

a C1 C1 q a

5 8-08

0

= X’E-o-Idv (2.11)
q a

The surface S-S consists of two cross-sectional surfaces

0

Since the boundary condition on the conducting wall

1 2'

-> A —> ..

S0 is fix Ea : an = 0, the first term of eq. (2.11) vanishes

because

-(fixE )°H]ds=0 (2.12)

Based on the power orthogonality property of the normal waveguide

modes,

—> -> A

‘8‘ EixHi-ndszo nylm, (2.13)

CS m n

eq. (2. 11) leads to



5 (E xH-- E-xH)°f1ds : (E xH---E-x—H) fids

a q q a a q a

3-8 z

o 1

+5 (7 xH--E-xH)°1Aids
a q a

22

—> ->_ ->_ —> A -> -... -*- —> A

=5 (E xH - E xH ). (-z)ds +5 (E xH - E xH ). (z)ds

a q q a a q q a

21 z2

:S[ZB (Fl-+1" H+)xH' -E ’sz (H ”+r Hp+-)] (-2)ds

prplppqqppplpp

1

+5[23cp(E +1“ E )xH -E "'prC (H ++r2pHp'-)] (2)ds

2 p pr q q p P

2

= (-B E xH"—r BH+XH’+BH'XH'+B r H'xH+).2ds
z q q q lq q q q q q q Cl lq q

1

' —>+—->.. —>_ —>_ —>_. —->+ —>_ —>_ A

+5 (CExH +Cl" xH -CExH -C xH)°zds

q q q q Zq q q q q q q Zq q q

= 3 ( Jrx-H-) zds+C ‘8 (E+xH--E-x—H+) zds

q lq q q (12 q q q q

where‘s ds and‘s ds are the surface integrals over the cross sec-

Z2. l

tions at 21 and 22’

By substituting eq. (2. 2) into the above equation, we get

+C - :8: x-H+H -H-; xH+H - ds

q.1[(q zq)(qzq)(q zq)( ”2
Z

2

(Mr 261' ("'B’)“d= - ex '23

qlq <15 q q

01'

—> A '->.. —>

2(qu “.ch (exh)~zds= E -J dv (2.14)
1 c.s q q
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where 3 ds is the surface integral over the cross-section of the

c. s.

waveguide and is independent of 2.

Similarly, if E; and H; are chosen as the source-free

region fields Eb and Hb corresponding to IIb: 0, we obtain

' —> —> A '-+ —>

2(CI‘ -B)‘S (e xh)-zds=§E+-Jdv (2.15)

qu q CS q q Vq a

If Mq and Nq are defined as

 

SE-orl’dv

q a.

M = v (2.16a)

q 25 (3x3)-2ds

C.S q q

 

 

 

N: _ _. _. A (2.16b)

q 25 (e xh )- zds

C's. q q

then I“ B - C = M

lq q q q

r C - B e N

Zq q q q

F2 M +N

or B = rqrq lq (2.17a)

q lq Zq'

I‘l N +M

c = rqrq lq (2.17b)

q lq Zq

The eXpansion coefficients for the EM field excited in the waveguide

by a primary source are therefore determined in terms of the source

current distribution Ta and the reflection coefficients I‘lq, FZq'
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2. 3 Calculation of Reflection Coefficients qu and I‘Zq

In section 2. 2.1 and in Fig. 2.1, I‘lq and I‘Zq have been

defined as the reflection coefficients of qth waveguide mode due

to the discontinuities at z = ‘11 and z : 22, respectively. At

z = -11, the waveguide is short-circuited by a good conductor.

The E field in the region I of z < 0 is

—> —> —> quZ —> -> -quZ

EzEB e-e e +F e+e e <0 2.41 q q[(q Zq) 1q<q 2q) 12 < )

A —>

Based on the boundary condition, anI: 0, over the con-

ducting wall, the transverse component of E1 at z = ~21 vanishes.

That is

-10 1 35 1

E(z:-£):ZB(ee +I‘ ee :0 2.18)

It 1 q q q lq q I (

The surface integral of the scalar product of Elt and an

arbitrary mode Hp over the short-circuited wall S1 is also zero.

.8 E (z:-£ )-e ds=5 23B (e +I‘ e )e 0e ds:0

8 1t 1 p q q lq q p
s

l 1

-j(3 I 1(3 1 .__ _.
or EB(e ql+I‘ e ql)§ e-e ds:0 (2.19)

q q 1q q P

51

Due to the orthogonality of the waveguide modes, eq. (2.19) becomes

-Jfi £1 Jfipll

B(e 9 +1“ e )3 3.3ds=o (2.20)

q 1p S p p

1

Since B and ‘8 H . H ds are both non-zero constants, it leads to

C1 8 P

1

-jfi 1 jfi 1

e P l + P e p l : 0
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where p represents an arbitrary mode. Thus, the reflection

coefficient due to the short-circuit discontinuity at z : -fl (referred

toz:0)is

..‘Z l

Jfiql
:- 22qu e (.1)

The calculation of I‘ the reflection coefficient due to the

2q’

open-end discontinuity at z = [2, is much more complicated than

I‘lq. The diffraction effects which are due fundamentally to the

fact that the sources are distributed over an Open surface, can

cause the regenerations of other waveguide modes. This coupling

phenomenon which can be handled by a ray-optical theory”) is

extremely complicated and not appropriate for the present analysis.

Fortunately, the eXperiment and also the ray-optical theory

indicate that whenever the dimensions of the aperture are not small

compared with the wavelength, which happen to be our case, the

diffraction effect is insignificant and the major portion of the

(8).
aperture field is due to the field from the waveguide An accurate

reflection coefficient at the open-end can only be determined by

extremely complicated methods(7' 9). Since the reflection coefficient

at a large aperture is usually small, a simple method based on trans-

mission line principle will be employed to calculate the reflection

coefficient. Assume that the reflection coefficient for the qth mode

at the open-end, z : 22, is k2q and it is defined as the ratio of

(eq)r/ (eq)i or the ratio of the transverse components of the
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reflected and incident electric field vectors. When extrapolated

8

to the plane of the open-end, qu can be interpreted as, I )

Q - Z

0 q

k =
(2,22)

2 + Zq 120 q

where LO and Zq are the field impedances of Space and qth mode,

respectively. The transverse component of electric field in the

region II of z > 0 is

_. _. -quz _, quz

E = 2) C e e + 1" e e 2. 23

At 2 2 [2 or the open end,

The incident wave : E quq (r,¢ )e

_. mgr,
The reflected wave = E C I“ e (r,<b)e

q <1 2q q

By the definition of k2q’ the reflected wave is equal to

jfi l -js 1
-> q 2 —> q 2

E C I‘ e r e = E C k e r, e

59 1 -J'I3 1
q 2 q Z-*

or EC I‘ e -k e e r :0 (2.24)

If :p is the transverse component of the electric field vector

of an arbitrary p th mode, the surface integration of the product of

I; and eq. (2. 24) over the waveguide open-end SZ should also be

P

zero, that is

. jfi 1 fifl f.

XCF e -k e e -e ds:0

I; [q q( Zq Zq ) q] p

2



it” as! .. ..
or ZC(I‘ qu-k e qz)S‘e oeds:0

q q Zq Zq p p
s
2

jfi l -jfi I .
2 —> ->

C(I‘ e p -k e p )3 e .e ds:0 (2.25)

p Zp 2p S p p

2

Eq. (2. 25) has been derived with the help of the orthogonality

property of the waveguide modes. Since C and S‘ :p - Hp ds are

3
2

non-zero constants, eq. (2. 25) leads to

.19 l :13 l
q 2 q 2 _

I‘qu - que _ 0

or

-jZB 2 Q - Z -j28 l

q 2 o q q 2
r = k e = —— e (2.26)
2 2 Zq q 40+ q

1" is the reflection coefficient of the qth mode at z:0 due to the

Zq

open-end at z = 12.

2. 4 I_nput Resistance of the Primary Radiator
 

The input resistance Rin of the primary radiator is defined

at the terminals of the primary radiator and is equal to the total

real power radiated divided by one half of the square of the input

current of the primary radiator. The real power radiated from the

exciter can be obtained by calculating the real part of the complex

Poynting vector of the propagating modes. That is

' -> 4* A

P = l Re‘S (E xH )- zds for prOpagating modes

2 2 2

c. s. only (2. 27)

Substituting eqs. (2.6) and (2.7) into eq. (2.27), and taking ad-

vantage of waveguide orthogonality, P is obtained as



l7

1 ' 4+ —>_ —->+ -+_ >5:

Pz—Re 2C E + E x C H2 S [q q< q rzq qn [3 q.< q.

I Z ' *+ "’- ""+ "’-* A

=—zc Res E+ E xH+I‘H -ds

' ' jZB z -j2I32 ,
I Z 2 q * q 1 -> -->

=- E 'C | Re(1- |I‘ 1+1“ 8 - I" e )5 '-—-(e -e )ds
2 q‘ q 2g 2g 2q c s Zq q q

where q are for those propagating modes only. Because only the

propagating modes have been considered, the wave impedance and I;

J'Zfiqz 12an ,.
’are real, and Re[l"2qe -, (I‘qu ) ] = 0, therefore

 

1 Z —> -+

P :— Z (1 - II‘ ()5 (e 'e )ds (2.28)

2 q Z 2q c.s. q q

The input resistance of the primary radiator, Rin’ is then defined as

2

- e -e s.

q Zq 2q c.s. q q

2

R : P : 1

' * >I<

1“ 11 11
OO 00

   

(2.29)

The reactive component of the input impedance was attempted

with an induced EMF method without much success. The reason is

that there are infinite number of higher order, cut-off modes present

on the exciter surface and it is hard to obtain a sensible and accurate

reactance.

2. 5 Radiation Fields of the Open-Cavity Antenna

The radiation fields of an open-cavity radiator are calculated

based on the aperture fields at the open-end of the cavity.

2. 5.1 Geometry and General EXpressions for the Radiation

Fields

Figure 2.4 shows the geometry of the problem. The x'-y'

plane is the aperture plane and s' is the surface which forms the

aperture. The radiation fields are maintained by the aperture
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fields Ea and H3. Spherical coordinates (r, 9, ¢) are adopted to

respresent the radiation fields, while the aperture fields are ex-

pressed in terms of cylindrical coordinates (r', ¢',1 2). P(r, 9, 4))

is an arbitrary observation point in the radiation zone and P'(r', ¢', 1 Z)

is a point on the aperture. The distance between P and P' is

R = '3'. - if" and the radiation zone approximation for R is

-> A
r - r '. r --- for phase terms

R : ( (2. 30)

r --- for amplitude terms

Y

P(r.6.¢)

 

 
 

Fig. 2.4 Geometry for calculation of the radiation fields
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The radiation fields at P(I") maintained by the aperture

 

 

fields Ea and Ha are given by(lo)

r jko e'Jkor r r
E = - Z0 411 r (L4) + £0 N9) ( . 31a)

r jko ekaOr r r
= - 2E4) 4" r (L9 1; N¢) ( .3lb)

where .. A

—>r -> ' A —> —> Jk r '.r

N (r):5 ana(r')e 0 ds' (2.32a)

s' _. A

_ jk r'» r
->r —> r. —> —> O

L (r) = 5 - an (r') e ds' (2. 32b)

5' a

—> —> I. —> h —>

I = 1 1 1 1 Z
Ea(r ) r Ear(r ) + 4) Ea¢(r ) ( . 32c)

-> 4' A a. A. ->' 2 32d

Ha(r )— rHaru ) +4» Ha¢(r) <. )

Since the aperture fields Ea and H3 may consist of all possible

TE and TM modes, all exicted modes should be considered.

In section 2. 3, the diffraction and coupling effects at the

aperture have been neglected, therefore the superposition method

will be employed to obtain the total radiation fields by summing up

the radiation fields maintained by the aperture fields of all excited

modes.

The unit normal vector 91 on the aperture is :2', therefore

eqs. (2. 32) for the qth mode yield the following:
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—> r—b \' A A -> A —-> ‘jkor'.1‘.

: _ 1 1 I l a l
Lq (r) .281 z x[r Ear(r ) +4) Ea¢(r )] eA ds

. A ... A _. jk r'r'.r

: ‘8 [r'Ea¢(l") - ¢'Ear(r')] e 0 ds' (2. 33a)

3'

_> r_’ A 1 A jk r' r

Nq(r):8 zx-Z—-[sz (r')]e 0 ds'

\ l A A

S . lq ,. A jk r'r'or

: _ __ '1 HI 1 *1 O 1 Z
5' Z [r Ear(r ) +4) Ea¢(r )] e ds ( . 33b)

5 q

A A

The expressions of unit vectors r' and 4)‘ in terms of spherical

coordinates (r, 0, 4)) are

r' = 1’: sine cos(4)-4)') + 8 cost) cos(4)-4)') - 4)sin (4)-4)') (2. 34a)

4)’ = r sinB sin (4)-4)') + 0 cosG sin (4)-4)') + 4) cos (4)-4)') (2. 34b)

Therefore

N14?) : -S Z—Z.l— [E (F'){frsin0 cos (4)-4)') + 8 cosecos (4)-4)')

q s' q ar

.. $sin(4>-4)')} + Ea¢(?') {r sine sin (4)-4>') +0 c050 sin(4)-4)')

.\ jk r'sinB cos (4)-4)')

+4>cos(4)-4)')I] e 0 ds' (2.35a)

Eqr(;) = 5‘ (13”.; Sing COS(¢—¢I) +8 €059 COS(¢-¢')-$ Sin(4)-4)')}

[E

s' a
<I>

- Ear(;')flr sine sin(4)-4)') +9 cos 0 sin(4)-4)') +4) cos(4)-4)') }]

jk r'sine cos(4)—4)')

o

e ds'

(2. 35b)

r r r r '

The N N , L and L are then determined

eq’ ¢q Gq ¢q ’
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NGZG") : .. cose 3;'-Z-1:1-[Ear(?t)cos(¢-¢')+Ea (F')sin(¢_¢l)].

jk r'sinO cos(4)-4)')

e 0 ds' (2.36a)

<I>

r—’ _ - _!-__ “7| _ l _ 9| ' .. IN¢q(r)-— L thra¢<r >cos<¢ 4») Ear“ )sm<¢ 4» >1

jk r'sin9cos(4)-4)')

e 0 ds' (2.3613)

L93?) = cost) 5) Ea¢(?')eos(¢-¢') -Ear(?')sin(¢-¢')].

s

jk r'sinG cos(4)-4)')

e 0 ds' (2.36c)

L¢;(?) = - 584 Ear(?')cos(¢-¢')+Ea¢(?'>sin(¢-¢')] -

jk'r'sinG cos(4)-4)')

e 0 ds' (2. 36d)

Therefore the radiation fields maintained by the qth mode of the

aperture field are

I

 

 

. -jk r "

r -> Jko e O ' go —>
_ __ I I

_’ jk r'sinB cos(4)-4)')

E (r')sin(4)-4)')] e ° ds' (2,372.)

214)

..‘k

E r -> -J 0 e J Or ' E}; 9 E —>' ' E —>'

¢q(r) — 4” r 581(Zq +cos )[ a‘4)(r )cos(4)-4) )- ar(r )-

jk r'sinOcos(4)-4)')

sin(4)-4)')] e 0 ds' (2.37b)

From eq. (2. 23), the transverse component of E2 at z : £2 is

-J'I3 1 1'13 1
—> _ - q 2 q 2 —¢

E2t(z_£2) _ 2 Cq(e + 1"qu )eq (2.38)

q
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Then E and E of the qth mode can be found as

ar a4)

-J°(3 ’2 J'fi I
Ear(r"¢') : Cq(e q 2+rzqe q Z)erq(r|' 43') (2. 39a)

Ea¢(r"¢" - cq(e q +r2qe q )e¢q<r'.¢') (2.3%)

Substituting eqs. (2. 39) into eqs. (2. 37) and with (Z. 38), the fol-

lowing are obtained:

 

. -jk r . .

r JkO e 0 £0 'Jfiqlz .16qu

E6 (1‘) : Z‘lTr- ——;—— E Cq(1+ .5; COS 9H6 +I‘2qe )Feq(e, Cb)

. (2,40a)

. -Jk r .

Jk 0 Q “N3 3 J6 1
r _ o e _o q 2. q 2

(2.40b)

where

a 1r

Feqw, ¢) = 5; 5:7} erq(r'. ¢')cos(<1>-<t>')+e q(r'. ¢')sin(¢-¢')]

¢

°ejzr'COS(¢-¢')r'd¢'dr' (2.413.)

a ‘17

F¢q(e. 4n = 50 L} e¢q<r .¢ )cos(¢-¢ )- emu .¢> )81n(¢-<b >1

.err'COS(¢-¢')r'd¢'dr' (2.411))

2 = k sine (2.4lc)

o

2. 5. 2 Evaluation of F q(8, (b) and F9 q(9, 4)) for TE Modes

4)

The Appendix gives the normal TE mode eXpressions. With-

out losing the generality, we choose the er and e as follows:

Jn(kc r')

erq(r',¢’) : kn r' sinncb' (2.42a)

Cq

e¢q(r',¢') = Jn'(kcqr')cosn¢' (2.4Zb)
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The Bessel function satisfies the following recurrence relations

. _ £3 _ , _ 1 _ _ :11Jm(z)_ z Jm(z) Jm+l(/.) _ Z[Jm-l(z) Jm+l(z)] — z Jm(z)+Jm_l(z)

(2.43a)

m l

‘2' Jm‘z =zlJm+1‘z)+Jm-1‘Z)] (2'43“

Therefore the e and e can be stated as

rq ¢q

l I l .
I I : _ ' Zerq(r, 4) ) 2 [Jn-l(kcqr) + Jn+l(kcqr)] 8111 no ( . 44a)

1
I I __ ' _ ' I

e¢q(r ,4) ) —. 2. [Jn_l(kcqr) Jn+l(kcqr)] cos n4; (2.44b)

and

erqcos(¢>-¢') + e¢qsin(¢-¢')

_ -1. ' ' I I I - I '
_ Z[ Jn_l(kcqr){51nn¢ cos(¢-¢ )+cosn¢ 51n(¢-¢ )} + Jn+l(kcqr)

{sin n¢'cos(¢-¢')- cosn¢'sin(cb-¢')}]

_ l ' - _ I ' - I_ Z
— Z [In-1(kcqr)51n{(n 1M) +¢}+_Jn+l(kcqr)81n{(n+lM) ¢}] ( .45)

With the help of the Bessel-Fourier series, we have

jzr'cos(¢-¢') 0° n
e : J (zr') + E Zj J (zr')cosn(¢-¢') (2.46)

0 11:1 n

‘Tr

Also ‘8 sinmxcosnxdx : 0

-1r

TI' 11'

S‘ sinmxsinnxdx=§ cosmxcosnxdx: O formfn

-1r -17

TI' .TI’

5‘ sinzmx dx = 5 coszmxdx : 1r

-TI' -1T

By substituting eqs. (2.45), (2.46) and the above eqs. into Feq,

it becomes
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A 11'
1

' . '
I ' I

Feq : E S, 3:11}: Jn-1(k<:qr )SmHn-IW W}+Jn+l(kcqr )SmunHM) -¢}] °

00

[J (zr')+ E ijJ (zr')cosm(¢-¢')] or'dcp'dr'

o m:1 m

A

: fijn'lsinndDS [Jn_1(kcqr')Jn_l(zr')- J

o (kcqr' ”n+1 (kcqr')]n+1

.r'dr' (2.47)

The Lommel integral formula gives

x
d

S; xJn(ax)Jn(§x)dx = (12ng [Jn(ox)'§'; Jn(BX)-Jn(5X)a; Jn(0X)]
 

(Z. 48)

Eq. (2.48) and the recurrence relations are used to lead to

,A

I I I I

‘80 Jn-l(kcqr )Jn_l(zr )r dr

A

: —-—-— k ' - ' kkg 22 [Jn-l( ch)ZJn-1(ZA) Jn-l(ZA)kchn-l( CqA)]

Cq

A 2n

_ k2 zz [kchn(kch){z—A Jn(zA)-Jn+l(zA)}-zJn(zA)-

cq 2n

{k A
Cq

 Jn(quA)-Jn (quA)}] (2.49)
+1

,A I

I I I I
‘80 Jn+l(kcqr )Jn+l(zr )r dr

A
___ __ k I - ' k

k2 _ zZ [Jn+l( ch)z Jn+l(ZA) Jn+l(ZA)kchn+l( ch)]

cq

A . '
= —2——3[ Jn+1 (quA)z Jn(zA)-Jn+l (zA)quJn(quA)] (Z. 50)

k -z

Cq

With eqs. (2. 49) and (Z. 50), FGq becomes
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.n-l ZnTr sing

Feqm'd’)‘J k [3 sins J
cq o

 

n((3015; sin G)Jn(quA) (2. 51)

In calculating F (1(9, 4)), the same procedure is followed as for the

<1>

fcase 0 Feq

. 1

e¢qcos(¢-¢'>- erqsmww) =§[Jn_l(kcqr')cosr<n-1)¢'+<t>}

- Jn+1(kcqr')‘30S “n+1 mud)“

F¢q zéSéAS-Ejn_l(kcqr')cos{(n-l)¢'+¢}-Jn+l(kcqr')cosf(n+l)¢'-¢l] .

a) m

[J0(zr') + milzj Jm(zr')cos m(I>-¢')] r'do'dr'

n-l 'A

F¢q = j ncosncp ‘So [Jn_l(kcqr')Jn_1(zr')+Jn+l(qur')Jn+l(zr')] r'drI

(2. 52)

The integration of eq. (2. 52) will be carried out differently in order

to take advantage of J' (k A) : O.

n cq

.A

I r I I I

‘80 Jn-l(kcqr )Jn-1(1.r )r dr

A n I

:37 [kchn<kch>{Jg<zA>+a Jn<zAn-wn<zm Haw
 knA Jn(zA)}] (2.53)

cq

,A

I

‘80 Jn+1(kcqr')Jn+l(zr )r'dr'

____é___[ I. n

‘ 2 2 zk A
k z cq

 

n

Jn(quA)-Jr'l(quA)} Jn(zA)-kcq{j&-A- Jn(zA)

cq

— Jr'1(zA)} Jn(quA)] (2. 54)

By substituting eqs. (2. 53) and (2. 54) into eq. (2. 52), the final

eXpres sion becomes
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n-l 21rAkcqcos n4)

F¢q(9' 4)) =1 2 2 Jn(quA)J;1(BOA51n9) (2. 55)

k - ' 8Cq (5051n )

 

2. 5. 3 Evaluation of F9q(e' It) and F¢q(8, 4)) for TM Modes

The following field expressions are appropriate for the TM

 

modes:

erq(r', ¢') : Jr'1(kcqr')sin n¢' (2. 56a)

e (r',¢')= n J(k r')cosn¢' (2,56b)

cpq kcqr n cq

Application of the recursion formulas leads to the alternate eXpres-

sion

erqcos(¢-¢') + e¢qsin(¢-¢')

l ' I I
-Z-[ rJn_1(qur')- Jn+l(kcqr')} sm(n¢')cos(¢-¢ )+{Jn+l(kcqr )

+ Jn-1(kcqr')lC05(n¢')51n(¢‘¢')]

l

5”
(kcqr')sin{(n-l)¢'+¢}- Jn kcqr')sin{(n+l)¢'-¢}] (2. 57)

n-l +1(

Substituting eqs. (2. 57) and Bessel-Fourier series into Feq and

results in

A

_. ' 1.". ' I I I I I
+ ', d '

(2. 58)

From eqs. (2. 53), (Z. 54) and the boundary condition of Jn(quA): O

for TM modes

n+1 21rfloAsinesin n4)

Feqw. ct) =j 2 2 Jn([30AsinO)J;l(quA) (2. 59)

k -(B sine)

cq o
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Similarly, F¢q(8, 4)) for TM modes can be evaluated as

 

A

_ .n-l I I _ I

F¢q(9’¢)—J TrcosncpS; [Jn-l(kcqr )Jn-l(zr ) Jn+l(kcqr )

I I I
Jn+l(zr )] r dr

= jn'l ZnWOSM’ J (k A)J (zA) = o (2.60)
zkCq n cq n

2. 5.4 ModifiedF e, and]? e,qu ¢) ¢q( ch)

In the Appendix, there are two sets of waveguide mode

expressions for both TE and TM modes. The reason for keeping

both sets is that for some configurations of primary exciters both

sets of waveguide modes may all be excited. In the course of cal-

culating eXpansion coefficient Cq’ the proper set of waveguide

modes is picked according to the geometry of the primary radiator.

Since both sets of the waveguide modes may possibly be excited, it

is also necessary to calculate the Feq and F¢q for the second set of

waveguide modes since these are not covered in the two previous

sections.

The modified TE modes have the following forms

 

erq(r', ¢') : - k nr' Jn(kcqr')cos no' (2,6la)

Cq

e¢q(r',¢') : Jr'l(kcqr')sin nq)’ (2.61b)

and the modified Feq(9, (p) and F¢q(9,¢) can be evaluated to be
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.n+l 2n1r cos (ni)
 

 

Feq(e,¢) = J kcqpoSine Jn((3OAsine)Jn(quA) (2.62)

ZTTAK sin(n¢)

F (9,6) = {“1 2 Cq 2 J (k A)J'((3 AsinG) (2.63)

M qu-(fiosine) n cq “ O

For the TM modes with the following expressions,

 

erq(r', (p') = -JI;(qur')cos(nq>') (2. 64a)

I ._ n °
e¢q(r', ¢ ) — kcqr, Jn(kcqr')51n(n¢') (2. 64b)

the modified radiation fields are calculated to be

n l ZnfioAsinecosmcb)

F (9,4)) :j ' 2 J (p Asin8)J '(k A) (2.65)

Gq kcq' Bozsinze n o n cq

 

.n-l 2n1'rsinfl

F¢q(9. 4°) - J quBOSine
 

Jn(quA)Jn([30Asin9) = O (2. 66)

2. 5. 5 Radiation Fields Due to the Individual Waveguide Modes

-%

The radiation field Er in eqs. (2. 40) can be rearranged as

 

 

follows:

. -jk r . .
3k 0 'J5 1 J5 I

1‘ _ o e q 2 q 2

E9(r.9.¢) — 4" r )(31 Cq(e +1“qu )qu(9,¢)(2.67a)

. -jk r .

Jk 0 ~15 I 36 l
r _ o e q 2 q 2

E¢(r.e.¢)- 4" r 2 che +r2qe )I¢q(6,¢)<2.67b)

go
where 16q(9, 4)) = (1 +2— cos 0)F8q(9’ (ID) (2.67c)

q

60 _
I¢q(9, 4)) = (E— + cos 8) F¢q(6, 4)) (2. 67d)

q
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16q and I¢q are defined as the qth waveguide mode radiation pattern

functions, since they describe the 9 and 4) dependence of the radiation

field Er.

Figures (2. 5) and (Z. 6) show some of the radiation patterns

in the E-plane (c): = ) and H-plane (4): O) for TE and TM modes,

N
I
=
I

respectively. These patterns are calculated from the pattern

functions I and I , for the case of radius A equal to A or one

9Q ¢>q 0

free- space wavelength.

The solid line represents the E-plane pattern while the dotted

line indicates the H-plane pattern.

In Fig. 2. 5(c), the H-plane radiation pattern of the TE21 mode

is same as that of the E-plane. In Fig. 2.6, the E-plane and H-

plane radiation patterns for the TM01 mode are identical, and the

H-plane field patterns for both TMll and TM12 modes are zero.
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CHAPTER 3

OPEN-CAVITY RADIATORS WITH DIPOLE AND

DIPOLE ARRAY EXCITERS

3. 1 Introduction
 

In this chapter, the radiation and circuit properties of an

open-cavity radiator with a dipole or a dipole array exciter are

studied.

Since the eXpansion coefficients of waveguide modes are

evaluated based on a given current distribution on the antenna, the

antenna currents in a dipole and a dipole array are determined first.

The zeroth-order currents for a dipole or for the dipole elements in

an array are determined by solving Hallen's integral equations(l 1),

The total field excited in the cavity due to a dipole array is

obtained by summing up the fields excited by each array element.

Theoretical and eXperimental results on the radiation pattern

and the input resistance are obtained and compared. The effects of

the location of the primary exciter and of rim length of the cavity on

the radiation pattern and the input resistance are studied.

32
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3. 2 Expansion Coefficients and Input Resistance of the Radiator

with a Dipole Exciter
 

‘3. 2.1 Geometry and Trial Antenna Current

The geometry of the radiator with a dipole exciter is shown

in Fig. 3. l. A thin dipole of length 2h is center-driven and located

at the origin inside the open-cavity radiator. The current density

on this dipole can be mathematically eXpressed as

I
—> i A

Ja(X.y. 2) = y 51:60). a (xm (z)sinao(h- )y)) for -h 5 v 5 h

(3.1)

 

where Io is the input current and Bo is the wave number in free —

Space. The circular cylinder is the same as that defined in Chapter 2.

This cylinder is shorted at z : -l and has an open end at z : I
l 2'

3. 2. 2 Expansion Coefficients

From Chapter 2, the expressions for the eXpansion coefficients

for the qth waveguide mode in the open-cavity radiator are

r M +N
= Zq q q

q I‘qu‘Zq-l

I‘N+M

C- qu q

" -1q rlqrzq

IOE'JJ' dv ._,+._,

5 q a Eq Jadv

— v _

I;

where

M
 

 

q 23 (zxK)-2ds q ZS ( xK)-2ds

C S q q C S q q

The numerators of Mq and Nq for the case of a dipole exciter can be

found as
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‘-> -> «(D -> —> jfi Z -—>

‘XiE ~J dsz 3 (e -e )e q oJ (x,y,z)dzds

q a q zq a
c s

- i A 5 ' B h d 3 2
_ sinisoh 5c e -y (X)81n o( -|Y]) S ( ° )

.-’+ "’ 1 (I) -> —> ..jB Z _,

SVE -J dVZS S (e +e )e q ~J (x,y,z)dzds

q a q zq a

c.s. -oo

I

o " -’ A .
sinp hi eq.y6(x)smfio(h-|y()ds (3.3)

o c.s.

—> -> —> —-> A —> —»

Since (e xh)og = ex(-1- £xe)-z = —1—-(e-e)

q q q Zq q Zq q q

 

‘ _. A

I Z ‘8 eq- y5(x)sin Bo(h-(y()ds

q q Zsinfl h —> -> '

o S (e . e )ds

c 5.

Let us define INq and ID as follows:

' —> A .

INq = ‘8 eq- y5(x) Sin BO(h-'y|)ds (3. 5a)

c. s.

1 = S (E! . 3 )ds (3. 5b)
Dq C. s. q q

The cylindrical coordinates (r, q). z) and the rectangular coordinates

(x, y, 2) have relations of

A

Y

A . A

rsmct +¢cos¢

X rcosq), y:rsin4>

Substituting the above relations into eq. (3. 5a), we have

, h .17

1qu 5

.3.
:q(r,¢). (Ir sin¢ + 3) cos ¢)6(r cos ¢)sin [30(h- ( rsin¢> |)r d¢dr

“IT
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In the integration w. r.t. <1), 5 (r cos 4)) can be eXpressed as

H
I
)
—

6(r cos¢) : 6(coscb) (3.6)

_, A

eq . (r sincb +3) cos¢)6 (cos 4))sin [30(h + r sin¢)d¢ dr

0 -TT

h 'Tr—b A A

+5 .3 eq-(r sinct>+c1>cosd>)6(cos¢>)sinf‘3o(h-I'Si11<l>)d<l>dr

o o

h 1T 1T

:5“ [erq(¢:7) - erq(¢=-§)] sinBo(h-r)dr (3.7)

o

where erq is the r-component of the electric field of the qth wave-

guide mode. IDq can be expressed as

I S'A .n[(e )Z+( )2] d4) dr (3 8)= e r .

Dq 0 3n rq ¢q

Therefore, the eXpansion coefficients Bq and Cq can be written as

 

  

1 z I r +1

B = 0 q Nq zq (3 9)
2 ' h -1

.
q smfio IDq qurzq

1 z I F +1

(3 — 0 q Nq lq (3 10)
‘ 2 ' h -1 ’q sm £30 IDq F qu 2q

Up to this point, the eXpansion coefficients are completely deter-

mined in terms of integrations w. r. t. r and (p. The determination of

INq and IDq for all the TE and TM modes can be made by substituting

the mode field distributions into eqs. (3. 7)and (3. 8).

(i) TE Modes:

The transverse electric fields for the qth TE waveguide

mode are
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n Jn(kcqr) .
erq = k r 51n(n¢) (3.11a)

cq

e4“1 = J;(kcqr) cos(n¢) (3.11b)

Therefore I and I can be obtained as

Nq Dq

h J(k r)

 

 

 

 

IN = 5' kn nr Cq [sin(-r-lz-T-E)- sin(--rlZlT-)] sin Bo(h-r)dr

q o cq

2nsin(—) h Jnc(kqr)

: S——————-— sin [30(h-r)dr (3.12a)

kcq o

and J2

A 51’ n2 Jn(kcqr) 2 2 2

LDq=S S [ 2 2 sin (n<1>)+JI'1 (kcqr)cos (n¢)]rd¢dr

o -11’ kcq r

n an(kcqr) 2

an [ 2 r +rJ;1 (kcqr)]dr (3.12b)

0

(ii) TM Modes:

The transverse components of the electric field for the qth

TM mode are

 

_ I ’
erq- Jn(kcqr)sm(n¢) (3.13a)

n Jn‘kc r)

e = R q cos(n¢) (3.13b)

¢q Cq r

so that

h

INq: SI J;1(kcqr)[ sin(¥) - sink-{121)} sin [30(h-r)dr

,h

= 2 sin(£2T-I)5 Jr'l(kcqr)sin [30(h-r)dr (3.14a)
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and

2
I d 3.+rJn (kcqr)] r ( 14b)

The integrations for INq and IDq are carried out numerically by a

CDC 6500 computer.

3. 2. 3 Input Resistance

From Chapter 2, input resistance has been defined as

Z

)9)
R. = 2 z (l-II‘Z () e .6 ds (3.15)

q q q c.s. q q

  

Equation (3.15) is summing up only the propagating modes.

Since the input current is real and I is defined in the previous

Dq

section, eq. (3.15) can be rewritten as

Icqlz 2

Zq (l - iPqu )IDq

R. = ..1— 2

1n 2 q

0

 (3.16)

I

3. 3 Expansion Coefficients and Input Resistance of the Radiator

with a Dipole Array Exciter

 

 

As the extension, an open-cavity radiator with a dipole array

exciter will be considered in this section.

The currents in the driven element and the parasitic elements

are determined first by solving Hallen's integral equations. The

superposition principle is then employed to calculate the eXpansion

coefficients due‘to individual antenna elements. After some phase
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Fig. 3. 1 Geometry of the radiator with a dipole exciter.

 

 
 

  
 

I

z=-1 2:0 2:21 2:2

 
Fig. 3. 2 Geometry of the radiator with a dipole array exciter.
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modifications, those expansion coefficients are summed up to yield

the total eXpansion coefficients which are then used to find the input

resistance.

3. 3.1 Geometry

Figure 3. 2 shows a dipole array with n parasitic elements

placed inside the circular cavity. The driven element is the zeroth

element of the array and has a length of ZhO. The input current to

this driven array dipole is IO with a frequency of (L). The n parasitic

elements are arranged along the z-axis and symmetric to the x-z

plane. For the ith element, Ii’ hi and di are the input current, the

antenna half-length and the distance between this element and the

driven element, reSpectively. The input current I1 is obtained by

(12)
solving the Hallen's integral equations for the array and taking

into account of a ground plane placed at a distance of [I from the

driven element. 1

3. 3. 2 Expansion Coefficients Bq and Cq

Let us define Biq and Ciq as the expansion coefficients of

the qth waveguide mode excited by ith parasitic element. Bq and

Cq are the total eXpansion coefficients of the qth mode excited by

all the elements of the dipole array. If we use a new coordinate

system (xi, yi, zi) w1th xizx, yi=y and z=zi+di for the 1th element,

we can find the Biq and Ciq by the same procedure as for single

dipole case as discussed in Section 3. 2. The electric field due to

the ith element, from eq. (2.4), is



E. = E B. [(8 -e )e +1“ (9. +e )e 1'] Z. <0

11 q iq q Zq 1C1 C1 zq 1

(3.17)

where rlq is the reflection coefficient of the qth mode due to the

short-circuit at 21: - (di+I1). It follows that

-jZfi I . -j2{3 (d.+£ ) -J'ZF5 d.
I. :_e q11:_e C11 12F q1

3.18lq lqe ( )

By substituting eq. (3. 18) and zi: z-di into eq. (3.17), we obtain

E = - 3-
i1 iBiqe ][(eq ezq)e +I‘1q(eq+ezq)e ] ( l9)

Similary, Ei2 is

j[3 d. -jB z jB z

E =ZC e C11[(‘<‘§+?§)e q+r (2’55 )8 q] (3,20)
12 q iq q zq Zq q zq

Summing up all the fields due to all the dipole elements, the total

E field in the waveguide is

n -jI3 d. jf3 2 1'5 2

E=EZBe q1[(7§-2~' )eq+1"(;;+e> )e q]
1 ._ lq q zq lq q zq

1—0 q

—> —> jg Z -> -> -jfiqz

= z: B [(e -e )e ‘1 +1“ (e +e )e ] (3.21a)

q q q Zq lq q zq

-15 z 313 z

and E = 23 C [(3 +2.7 )e q +r (73' -3 )e q] (3.21b)
2 q q q zq Zq q zq

n -jp di

Where B = E B, e q (3. 22a)

<1 ._ lq. .
1—0

n jfi di

and C = )3 c, e q (3.226)

q 120 1q

are the total eXpansion coefficients for the qth mode excited by the
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dipole array. It is noted that (10 in eqs. (3. 22) is zero.

3. 3. 3 Input Resistance

Equation (3.16) is also valid for the dipole array case except

that Cq is the total eXpansion coefficient which has been found in

eq. (3. 22b). INq remains the same as the case of a single dipole

because the field distributions of the qth modes excited by all the

array elements are assumed to be the same.

3. 4 ExBerimental Setup
 

The experimental setup for the measurement of the radiation

patterns and the input impedance of an open-cavity radiator is sche-

matically shown in Fig. 3. 3. The open-cavity radiator is placed

inside an anechoic chamber, which is covered by microwave absorbers.

The radius A of the cylindrical cavity is 10 cm and is equal to one

free-Space wavelength under the operating frequency. The rim

length 11+ [2 of the radiator is made adjustable for the experimental

purposes. A movable receiving antenna is used to measure the

radiation patterns of the radiator. The distance between the radiator

and the receiving antenna is 50 cm (5 A0) when the rim length is ad-

justed to be 10 cm. By rotating the position of the radiator, this

receiving antenna can measure both the E-plane and H-plane radiation

patterns.

The primary radiator, namely, the dipole exciter or the

dipole array excier, is excited by an R. F. oscillator at 3 CH7. and
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Fig. 3. 3 Experimental setup for the open-cavity radiator.
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Fig. 3.4 Open-cavity radiator with a dipole exciter inside

the anechoic chamber.

 Fig. 3. 5 The experimental setup outside the anechoic chamber.
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with a square wave amplitude modulation of l KHz. Fig. 3. 4 shows

a receiving antenna and an open- cavity radiator with a dipole exciter

all placed inside an anechoic chamber.

A balun(13)lias been employed to convert a GR coaxial line

to a balanced, shielded two-wire line which feeds the primary

radiator. A slot has been cut over a portion of the shielded two-

wire line and a movable probe has been inserted in the slot, for the

purpose of measuring the input impedance of the primary radiator.

A simple detecting system consisting of an amplitude detector and

an SWR indicator has been used to measure both the radiation field

and the input impedance. An x-y recorder has been used to obtain

a direct plot of the radiation patterns. Fig. 3. 5 is a photograph

showing the eXperiment setup outside the anechoic chamber.

3. 5 Comparison between Theory and ExPeriment
 

Theoretical and experimental results on the radiation pat-

terns and the input resistance of an Open-cavity radiator with a

dipole or a dipole array exciter are obtained and compared in this

section.

In the theoretical calculation for the radiation patterns and

the input resistance, all the propagating TE and TM waveguide

modes are considered. Some of the cutoff modes have also been

Considered in addition to the propagating modes to see their effect

on radiation patterns. The effect was found to be insignificant
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when the total rim length was over 0.6 A0. The theoretical results

on the radiation patterns and the input resistance are calculated

numerically by a CDC 6500 computer.

Figures 3.6 to 3.17 show the E-plane (6:900) and H-plane

(4): 00) radiation patterns of open- cavity radiators with various di-

mensions, different locations of primary exciters, and various rim

lengths of the cavity. The theoretical results (dotted line) and

experimental results (solid line) are plotted together for easy com-

parison. In all these figures, a satisfactory agreement between

theory and eXperiment is observed.

Figures 3. 6 to 3. 8 show the radiation patterns of an open-

cavity radiator with a dipole exciter and a variable rim length. The

dipole exciter with a half length of Ao/4 is located A0/4 away from

the shorted end. The rim lengths of cavity for these three figures

are 0. 8 A0, 1. 0A0 and 1. 2 A0 reSpectively. The effect of the cavity

length on the H-plane pattern is found to be rather significant.

Figures 3. 9 to 3.11 give the radiation patterns of open-cavity

radiators with three different dipole exciters placed at the same

position as the first three figures and with the rim length fixed at

l. 0 A0. The dipole half lengths for these three figures are 0. 05 A0,

0.15 X0 to 0. 35 A0. The effect of the dipole length on the radiation

pattern is not very significant. Figures 3. 12 to 3. 14 illustrate

the radiation patterns of the radiators with'a dipole exciter placed

at three different distances, 0.15 A0, 0.1 A0 and 0.05AO from the
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shorted end of the cavity. The rim length is kept at l. 0 A0 for

these three cases. The effect of the exciter location on the radiation

pattern is found to be insignificant.

Figures 3.15 to 3.17 show the radiation patterns of an open-

cavity radiator with a two—element dipole array primary exciter

for three different rim lengths. The driven element with a half-length

of A0/4 is placed A0/4 away from the shorted end of the cavity. The

parasitic element has a half length of 0. 22 A0 and is located 0. 25 A0

from the driven element. The three different rim lengths are

0. 8 A0, 1. 0 A0 and 1. 2 A0 reSpectively. It is observed that the H-

plane pattern is greatly improved with a dipole array exciter com-

pared with the case of a dipole exciter.

The experimental result of input resistance of an open-

cavity radiator is compared with the theoretical input resistance,

while the eXperimental reactance is not checked due to lack of

theoretical reactance. Table 3.1 shows the comparison between

eXperimental and theoretical resistances of an open-cavity radiator

with a dipole exciter which has a half length of 0. 25 A0 and placed

at a distance of 0. 25 AC from shorted end of the cavity. The rim

length is varied from 0.6 A0 to 1. 2 X0. Table 3. 2 shows the same

comparison as Table 3.1 for a same radiator with a dipole exciter

of a 0. 32 A0 half length. Table 3. 3 shows the theoretical and eXperi-

mental input resistances of a same radiator with a dipole array

exciter with dimensions described in Fig. 3.15 to Fig. 3.17.
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Table 3. l EXperimental Input Impedance and Theoretical Input

Resistance of an Open- Cavity Radiator with a Dipole

 

 

 

Exciter h=0.25>\ , I = 0.25X .

o l o

Rim Length Experimental Theoretical Input

L: lli+£2 Input Impedance Resistance

0.6 A0 86.5 +jl9.5 60.97

0.8 A0 71.1 +j82.4 67.69

1.0AO 78.7 +j53.4 70.73

1.2 A0 89.6 +j86.3 70.99     
Table 3. 2 Experimental Input Impedance and Theoretical Input

Resistance of an Open Cavity Radiator with a Dipole

Exciter h: 0. 32 A0, I 1z: 0. 25 X0.

 

 

 

 

Rim Length EXperimental Theoretical Input

L: 11+22 , Input Impedance Resistance

0.6 A0 153.8 +jl63.8 188.12

0.8 A0 148.5 +jl65.2 208.10

1.0)\o 175.2+j199.5 217.76

1.2AO 146.2 +jl72.8 218.5

     

Table 3. 3 Experimental Input Impedance and Theoretical Input

Resistance of an Open-Cavity Radiator with a Dipole

Array Exciter ho: 0. 25 A0, hlz O. 22 X0, £1: 0. 25 X0

and d1: 0. 25 A0.

 

 

 

Rim Length Experimental Theoretical Input

L: 11-1-12 Input Impedance Resistance

0.8A0 52.l+jll8.2 56.6

1.0A0 68.6 +j71.2 60.6

1.2).0 57.6 +j121.9 49.3    
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In these three tables, a qualitative agreement is obtained

between theory and eXperiment.

3. 6 Conclusion
 

A theoretical analysis on the radiation and circuit properties

of an open-cavity radiator with a dipole or a dipole array exciter has

been carried out in this chapter. Theoretical results have been con-

firmed by eXperimental results.

Concerning the radiation patterns, a few points of interest

are as follows: (a) The radiation patterns of a radiator are quite

independent of the length and the location of the dipole exciter. This

implies that a proper exciter may be chosen to improve the matching

with the driving line while keeping the desired radiation patterns

unchanged. (b) The rim length of the cavity has a rather significant

effect on the H-plane pattern. (c) A radiator with a, two-element

dipole array exciter gives very desirable radiation patterns both in

the E-plane and the H-plane. No side lobes appear in the patterns.

A radiator with this exciter may prove to function better than usual

backfire antenna with a dipole exciter and a small reflecting plate.

Among these figures on the radiation patterns, rather large

disagreements between theory and eXperiment are recorded in some

cases. The sources of discrepancy are believed to be due to: (a)

negligence of the diffraction at the radiator aperture, (b) inaccurate

calculation of the reflection of the propagating modes at the aperture,
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and (c) the effect of the cut-off mode fields Specially for the cases

of short cavity rims.

For the input impedance of the open-cavity radiator, the

present analysis yields only the theoretical input resistance which

is in qualitative agreement with the eXperimental results. Generally

speaking the input impedance is not strongly dependent on the cavity

dimensions.

From the results presented in this chapter, it is concluded

that the radiation property of the open-cavity radiator is essentially

controlled by the cavity dimensions while the circuit property of the

radiator is primarily determined by the geometry of the exciter.

These characteristics may lead to the advantages of separate controls

of the radiation and circuit properties and, therefor e, an easier design

of an open-cavity radiator.
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Fig. 3. 12 Radiation patterns of an open-cavity radiator with a

dipole exciter (h = 0. 25 X0, 11: 0. lSAo, L = 1.0).0).
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A=1.0)\°

2h=0.5)., 2h=o.22).

o o l o

I =0.25A,d=0.25).

l o o

L=1.2).

o

l

 

 

Experimental Result

... ... _. _ Theoretical Result

  
Fig. 3. 17 Radiation patterns of an open-cavity radiator with

a dipole array exciter (h = 0.25 A , h = 0. 22 A ,

o
— a. o .-11- 0.25 x0, d1.— 0. 25 x0, 1. -1.2°>.°).



CHAPTER 4

OPEN-CAVITY RADIATORS WITH TRANSMISSION

LINE EXCITERS

4. 1 Introduction
 

In this chapter, the radiation and circuit properties of an

open-cavity radiator with a transmission line type exciter are

studied.

A thin conducting wire is placed closely in the front of the

shorted end of the cavity. The wire and its image form a section

of a transmission line. With a proper termination, a traveling

wave of current can be excited on the transmission line.

The waveguide excitation theory has been employed to deter-

mine the fields excited inside the cavity. The radiation fields are

calculated based on the aperture field. The Poynting vector method

is used to determine the radiated power and the radiation resistance.

Theoretical and eXperimental results on the radiation patterns

and the radiation resistance are obtained and compared.
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4. 2 ExPansion Coefficients and Radiation Resistance of an Open-

Cavitj Radiator with a Transmission Line Exciter

 

 

4. Z. 1 Geometry

The geometry of an open-cavity radiator with a transmission

line exciter is shown in Fig. 4.1. A section of thin conducting wire

with a length of 2h is located on y-z plane. The total current flowing

in the wire is IO and the frequency is 6). If the Spacing between the

conducting wire and the shorted end, I 1’ is small, the conducting

wire and its image form a section of a transmission line with a

characteristic impedance of ZC. If this section of transmission

line is terminated with a resistor of Zt: Zc/ 2, a traveling wave of

current can be excited in the wire . Mathematically, this current

_)

can be represented by a current density Ja such as,

_, A 'jpo(y+h)

Ja(x, y, z) = y 106 (z)6 (x) e for -h E y _<_ h (4.1)

where 10 is the input current at y = -h, and [30 is the wave number

in the free-Space. The two short ends of the transmission line will

be ignored in the theoretical analysis. The circular cylindrical

cavity is the same as that defined in the previous chapter.

4. 2. 2 EXpansion Coefficients

The expressions for the eXpansion coefficients for the qth

mode excited in the open-cavity radiator have been given in Chap-

ter 2 as,
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Fig. 4.1 Geometry of an open-cavity radiator with a transmission

line exciter and the equivalent circuit of the transmission

line exciter.
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r NII—N
B .. Zq <1 q

q rlquq-1

r N +64
c __ lq q q

‘ -1

q r‘quZq

dvC
-
I
I

1E...
q a

M = ' -) 4

25 (e xh )~ st
C.S.q q

where  

LE+T dv

q a

q 25 (:xK)-gds
c.s.q q

 

The numerators of Mq and Nq for the case of a transmission

line exciter can be found to be

\ - ‘3 ‘22 _. _. Jflq A -JBO(y+h)

st “Tm/=3 5 (e-e )e .y16(z)6(x)e dzds
q a q 0

c.s. £1

‘ ... II -jBO(y+h)

= I 3 e .y 5(x)e ds (4.2)
0 Cl

c. s.

and

' —> + —> ' -> A -jfio(y+h) '—> _ a

‘SVE ~Jadv = I 5 e y6(x)e ds:‘SE oJadv (4.3)

q 0 c.s. q v q

where 3 ds is the surface integration over the cross-section of

C.S.

the waveguide. Since (:qxhq) . 2 :

expressed as

‘ —> A

e . y5(x)e

5C.S. q

_1_ (Z

Z q

.3), M andN canbe

q q C1 q

-15 (y+h)

ds

 

I Z

M = N = O q _
q q 2 5

c.s.

We define INq and IDq

(4.4)

:.2 ds( q)

as follows:
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-J'I30(y+h)1 _, A

INq = 5 eq. y 6 (x)e ds (4. 5a)

c.s.

: x (g o: )dS
(4051))

1m 3.. q q

Converting to cylindrical coordinates, eq. (4. 5a) becomes

 

.h 37+ -j(3 (r sin¢ +h)

I =3 5 e (r,¢)o(iisin¢+</(\>cos¢)6(rcos¢)e O rd¢dr

Nq 0 —1r q

‘h _o_* A A -jfi (r sin¢+h)

=3 5 e o(rsin¢+¢cos¢)5(rcos¢)e O rdcbdr

0 --17 q

_h ,Tr _* A A —jf30(r sin¢+h)

+3 5 e . (r sin<b +4) cos 4))6 (r cos ¢)e rdcbdr

o o q

or

-j(3 h h -j(3 rsinq) -Jf3 rsin

IN=e OS[e e O "Tl-e e _E]dr

Cl 0 rq —2 rq —-2

(4.6)

and

*A ‘7' f 2 2
1Dq= ‘80 3-1} (erq) + (ecbq) ]rd¢dr (4. 7)

where erq and e4)q are the r and cp-components of the electric field

of the qth-waveguide mode.

Substituting the waveguide fields, erq and e¢q, into eqs.

4. 4. '( 6) and ( 7), INq and IDq can be evaluated and the expansmn

coefficients for the qth mode are obtained as

z I I +1

q o Nq 1“Zq
B = (4.8)
q 2 I r F -1

Dq lq Zq
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Z I I +

C10 Nq 1‘qu
C = 2 (4.9)

IDq I‘qu‘Zq-l

The results of I and I for all the TE and TM modes

Nq Dq

are given as follows,

(i) TE Modes:

From Appendix, the transverse components of the electric

field of the qth TE waveguide mode are

n Jn(kcqr) sin(n¢)

 

cq . -cos (n43)

cos(n¢)

sin(n¢)

Therefore, I and I can be obtained as

Nq Dq

 

 

 

-j(3 h .h -j(3 r sin-’31 jp r sing
O ‘ n o 2 o 2

I = e J (k r)[e + e ]dr
Nq k r n cq n1r nTr

‘o cq -cos-— cos-—
2 2

.36 h .6161 (k I) {51119235 6656 r

= 2e 0 n cq 0 dr (4.10)

k r ' s—nfl sinB ro cq JCO 2 o

2
__A h2 J (kC r) 2

1 = 1r [ n q +rJ' (k r)]dr (4.11)
Dq 0 k2 r n Cq

cq

In eq. (4. 10), we choose the proper waveguide field eXpres-

sion which gives non-zero value of I . The n in eqs. (4.10) and

(4.11) is positive integer, and when
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(a) n is odd

-J(30h (h Jn(kcqr)cos (Bor

 
 

 

2n n17

: ’ — dNq k Sln(2 )e r r

cq O

J (k r)

= n C sinncI)

rq k r

Cq

e =J'k rcosn<I>q n(cq) (I)

(b) n is even

 

 

I _ 2 COS (EI)e-Jfioh ,h Jn(kcqr)51n(30r dr

Nq‘ J k 2 3 r
cq o

J (k r)

e = - n cq cos n4)

rq k r

e =J'k rsinn¢q n(cq) <I>

IDq is given in eq. (4.11)

(ii) TM Modes:

(4. 12a)

(4.126)

(4. 12c)

(4.13a)

(4.136)

(4.13c)

The transverse components of the electric field of the qth

TM mode are

 

cos n4)

rq: J;(kc r) -
q 8111 no

e _ J (kcqr) -51nn¢

(bq— k r
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and

-jfi h ‘h -j£3 r c0591 jfi r cosfl

I = e o 3 J'(k r)[e 0 2 -e o Z]dr

Nq n cq , n'rr . n17

0 Sin— -31rr—
Z 2

—ijh .h -jsinp rcosE-ZE

= 2 e 5 J'(k 1') ° dr (4.14)
n cq si DTT

0 cos Bor n—Z

Z

,A n2 Jn(kcqr) Z

:
t d 4'

IDq n5 [ 2 r +rJn (kcqr)] r ( 15)

o

cq

Choosing the prOper set of INq and IDq’ we have for

(a) n is odd

 

 

nTr -jfioh "h
= 2 ' — 'INq Sln 2. e 50 Jn(kcqr)cos Bor dr (4.16a)

= ' k 'erq Jn( qu)51nn¢ (4. 16b)

n Jn(kcqr)

e = cos no (4.16c)

¢q kcq r

(b) n is even

nn -jBoh h
: _Z° -—

I '

INq J cos 2 e S Jn(kcqr)smfior dr (4.17a)

_ l
erq— Jn(kcqr)cos n4) (4.17b)

‘ n Jn(kcqr)
e : .. sinncp (4.17C)
¢q kcq r

While IDq is given in eq. (4. 11).

Equations (4.12) to (4. 17) give the proper expressions for

INq and the fields in an open-cavity radiator with a transmission
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line exciter. The integrations for INq can be carried out numerically

by a computer.

4. 2. 3 Radiation Resistance

In Chapter 2, the radiation resistance of the primary radiator

has been obtained by calculating the total radiated power and then

dividing it by a half of the square of the input current of the primary

radiator. For the case of a transmission line exciter, the radiation

resistance is different from the input resistance because of the

presence of the terminal impedance Zt. The formula we derived in

Chapter 2 gives only the radiation resistance.

From the equivalent circuit of this transmission line in

Fig. 4.1(b), the input impedance of the exciter may be expressed

as

P + ij(Wm- We)

2 = I (4.18)
in l

- I I

2 o o

 

where P! is the real power radiated by the radiator plus the loss

in the terminal resistor, and (Wm- We) is the stored energy in the

transmission line, the cavity and the transmission line terminator.

If we define the radiation and terminal resistance as Rr and

Rt, reSpectively, then the real power, PI’ is equal to

1 =3 r l ’3‘ t

= — - h 4.Pl Z 1010 R + Z I( )I (h)R ( 19)

The first part of P is the radiated power and is the same as
I

that defined in Chapter 2, therefore the theoretical radiation resistance
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can be calculated from eq. (Z. 29). The second part of PE can be

calculated based on the wire current eXpressed in eq. (4.1) and a

measured value of the terminal resistance Rt. In this case, it is

found that the loss due to the radiation is small compared with the

loss at the terminal resistor. In other words, Rr is small compared

with Rt,

4. 3 ComRarison between Theoretical and Experimental Results

The experimental setup for measuring the radiation field

and the input impedance of an open- cavity radiator with a tr ans-

mission line exciter is almost identical to the setup used for the

case of a radiator with a dipole exciter. A GR precision slotted

line is us ed to substitute the balun and the shield pair line for

measuring the input impedance.

In the course of measuring the input impedance, we can only

measure the total input impedance which includes the impedances

due to radiation and due to termination of the transmission line.

To measure the radiation resistance we conduct one more experi-

ment as follows: The Open end of the open-cavity radiator is covered

by a perfect conducting plate and the length of cavity is properly

adjusted to avoid the resonance. The input resistance under this

condition should be due to the loss at the terminal resistor of the

transmission line only. If the total length of the transmission line

is half wave length, the difference between two measured resistances

mentioned above is the radiation resistance of the primary radiator.
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Table 4. 1 shows the experimental and theoretical radiation resistances

as functions of the cavity length

Table 4. 1 Experimental and Theoretical Radiation Resistance of an

Open- Cavity Radiator with a Transmission Line Exciter

I = 0.045 x0, 2h : 0. 5X0.

 

 

 

l

Lz£l+£ 2 Theoretical Radiation Experimental Radiation

(in X0) Resistance Resistance

0.6 5.13 7. 6

0. 8 6.17 9. 1

1.0 7. 58 9.6

l. 2 5.14 6. 6

1.4 4. 92 4. 7

1.6 5. 93 8.1

l. 8 6. 72 9.1

2. 0 6. 50 8. 5

Z. Z 5. 50 7. 6     
The theoretical results of the radiation patterns of an open-

cavity radiator with a transmission line exciter are obtained from

the formulas in Chapter 2, while the experimental results are

measured by a setup discussed in Chapter 3. Since the Spacing

between the conductor and the shorted end of the cavity is kept

small, only the case of l = 0. 045 x0 is considered. In Figs. (4. Z)

1

to (4.4), the theoretical (dotted line) and eXperimental (solid line)

results are presented and compared. In these figures, the trans-

mission line has a length of 0. 5 X0 and the dimensions of the cavity

are the same as the previous case in Chapter 3. A satisfactory

agreement was obtained between theory and eXperiment.
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4. 4 Conclusion
 

In this study, the radiation fields and the radiation resistance

of an open-cavity radiator with a transmission line exciter have been

obtained theoretically and experimentally. A satisfactory agreement

between theory and experiment confirm the accuracy of the present

theoretical analysis.

For the radiation patterns a better agreement between theory

and experiment is obtained for the case of a longer cavity length.

The small value of the radiation resistance of this radiator suggests

a low radiation efficiency. The strong point of this radiator is its

broadband nature. Because of the resitance termination of the trans-

mission line exciter, the input impedance of this radiator is quite

frequency independent.
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CHAPTER 5

OPEN-CAVITY RADIATORS WITH CIRCULAR LOOP EXCITERS

5. l Introd uction
 

This chapter is devoted to investigate the radiation fields

and the input resistance of an open-cavity radiator excited by a cir-

cular loop. A circular 100p is assumed to be either in a transverse

plane or in a longitudinal plane. The waveguide excitation theory and

Stokes' theorem are used to find the eXpansion coefficients of the

waveguide modes which are excited in the cavity. The aperture

field is then determined. The expansion coefficients of the propa-

gating modes are also used to determine the input resistance of the

primary exciter. Experimental and theoretical results for radiation

fields and input resistance are. obtained and compared. A satisfactory

agreement is obtained between theory and experiment. The effects

of the cavity length and the loop size on the radiation fields and the

input resistance are the main concerns of this analysis.
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5. 2 Expansion Coefficients and Input Resistance of an Open-Cavity

Radiator with a Circular Loop Exciter Placed in a Transverse

Plane

 

 

5. Z. 1 Geometry

Figure 5. 1 shows the geometry of an open-cavity radiator

with a circular loop exciter placed in the transverse plane. The

loop is made of a thin conducting wire with a radius of d. The loop

is located in a transverse plane at z = O and with its center on the z-

axis. A cylindrical coordinate (r, 4), z) is used in the analysis. The

current distribution for this circular loop can be mathematically

expressed as

I cosfl d(1r- M)
:T' = g o o

a

 

cos 80d " 6 (r-d)6 (2) -1r 5 4) f 1r (5.1)

where I0 is the input current at (d, 0, O) and $0 is the wave number

in the free-space.

 

 

  
 

Fig. 5.1 Geometry of an open-cavity radiator with a circular loop

exciter placed in a transverse plane.
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The circular cavity is the same as that defined in Chapter 2.

This cavity is shorted at z = -11 and has an open end at z : f g.

5. Z. 2 EXpansion Coefficients

The eXpressions for the expansion coefficients for the qth

waveguide mode in the open-cavity radiator are

I‘ZM+N
B: qq

-lququ

F1N+M

C _ qq

q rlquq-

Z E-.Tdv 29.8 E+.Tdv

q q a q a

M = ,__ _> and N = _V_’ _,

q 23 (e . e )ds q 23 (e . e )ds

c.sfl q c.s. q

l

where

 

The numerators of Mq and N for the case of a circular

loop placed in a transverse plane can be found as

.—F —5
Io DIZ I _‘>

ngz A

5‘,qu Jadv : “COSflOdTT ‘8! 3C (eq- Czq)e o ¢COSBOd(TT- hp!)

9 so

1

5(r-d)5 (z)dsdz

IO ,A .TT

: W 50 -fleq¢COSBOd(fl-|¢‘)5(r—d)rd¢dr

IO 1r

= cosfiodn 5,. eq¢(r:d)c°sfiod‘"‘l¢l“1"” (5' Z)

'->+ —> '—>.. -> 0 '

5vK- Jadv = ‘8 Eq - Jadv = m5 eq¢(r:d)cosfiod(n- !¢‘)d (14>

0 -TI' (5. 3)
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This leads to qu Nq and then Cq can be obtained as

  

F +1 I Z d I‘ +1 I

lq o q lq Nq

CzN r 1“ 1:2cosfidrrr I“ 11 (5'4)
q q lq Zq o lq Zq Dq

where

TT

: :d d ..INq Sweqqph )cosfiO (Tr l¢pd¢ (5.5)

and

. a * .A.w 2 2.
I =3 (e-e)ds:‘S §[(e )+(e )]rd¢dr (5.6)

Dq c.s.q C1 0 --TI' 1“} cbq

The value of IDq is the same as that obtained in Chapter 3.

INq should be evaluated separately for the TE and TM modes.

(i) TE Modes:

The transverse electric fields for the qth TE mode are

 

n .

erq — k r Jn(kcqr)smn¢> (5. 7a)

CC}

6 = J' k r cosn 5. 7b¢q n< Cq > ¢ ( )

Substituting eqs. (5. 7) into eqs. (5. 5) and (5. 6), INq and IDq can be

obtained as

 

,1r

INq : 5.1T Jl'n(kch)cos n4) cosfiodhr- ‘¢|)d¢

17 TI'

: J'(k d)[cosf3 dug Cosf3 d¢C05n¢d¢+SinB (”S sinfi dl¢|°
n cq o -w 0 0 1T 0

. cos ncp d¢]

25 d

= 02 2 sinsodn Jykch) (5.8)

(f3 d) -n
o
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and

 1 - n Jzk J'Zk d 5-nS‘[Z n(qu)+rn(cqr)]r (.9)

(ii) TM Modes:

The transverse electric fields for the qth TM mode are:

 

: ' k 'erq Jn( qu)51nn¢ (5.10a) L a

- n J (k )c 5 10b)e¢q — kcqr n qu osncb ( .

Therefore, INq and IDq for the TM mode can be evaluated to be

 

 

 

 

11

n
: d -INq S k d Jn(kcq )cosnocosfiodhr |¢l)d¢

-Tl' cq

ZnfiO

: k [(3 (1)2 n2] SinBOdTr Jn(kch) (5-11)

cq o

and

'A n2 2 Z

: ' 2,IDq 1T5 [ 2 Jn (kcqr) + r In (kcqr)] dr (5.1 )

o kcqr

Up to this point, INq and IDq for the TE and TM modes are evaluated.

The calculations ofINq and qu are carried out numerically by a

CDC 6 500 computer.

5. Z. 3 Input Resistance

After the eXpansion coefficients are completely determined,

the input resistance of the loop can be obtained by using eq. (Z. 29)

developed in Chapter 2.
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5. 3 ExEnsion Coefficients and Inflt Resistance of an Open-Cavity

Radiator with a Circular Loop Exciter Placed in a Longitudinal

 

 

212.12

5. 3. 1 Geometry and EXpansion Coefficients

Figure 5. 2(a) shows the geometry of an open-cavity radiator

with a circular loop located in the y-z plane or a longitudinal plane.

The circular loop has a radius of d and its center is located at the

origin of the cylindrical coordimtes (r, q), z). The cavity is the same

as the previous case and it is shorted at z : -21 and open at z 2 [2.

A new cylindrical coordinate system (r', 9, x) is used to des-

cribe the circular loop exciter as shown in Fig. 5. 2(b). For sim-

plicity, the radius of the circular loop is assumed to be small

compared with the wavelength. The current Ta for such a small

loop can be assumed to be

A

'J' = 1 5(r'-d)5(x)9 (5.13)
a 0

where I0 is the input current at (d, —% , 0). The case of a more

general current distribution on a larger loop will not be considered

here to avoid mathematical complexity.

In order to find the eXpression for Cq, MC1 and Nq are evalu-

ated first. Substituting eq. (5.13) into the eXpressions for Mq and

N , we have

C1

+ IIZ .211- .A + A

E . J dv = 1 .l 3 ‘8 E - 96(r'-d)é(x)r'dr'd9dx
' q a o q

410 o

°->+’ .—p+—>

:15)Eo9dd9=1 §E - 12 (5.14)

ocq ocq

 .
.
J
‘
9
‘
.
"
1
4
"

l
l
?

‘
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(a) Geometry of the radiator

 
 

 
(b) Geometry of the circular loop exciter

Fig. 5. Z Geometries of an open-cavity radiator with a circular

loop exciter placed in a longitudinal plane.
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where

_, A

f : d . d6 9

Using Stokes' Theorem and a Maxwell equation, eq. (5. 14)

becomes

' —>+ —-> 1' —>+ " ' —>

iEonv=I§Eodf:I§(VxE)ds

q a 0 c q 0 s q

A

= -ij103 FIJronds

S q

(5.15)

A A

where s is the total area enclosed by the 100p c and n = x or the unit

vector normal to 5.

Similarly, we get

"‘ 5. 16)q (

iii = (+E’ +1? )e (2.2b)
q - q zq

Therefore Cq can be rewritten as

 

 

F1N+M -j(1)(LI Z . -j(3 7.

Cq: I‘qI‘q lq O ._. _. [171(15 hqe q-xds

1 2— 1“ I“ -l-Z e-eds sq q (lq Zq ) S q q

c.s.

. jfiz .
-> q H

-5 h e oxds] (5.17)

s q

Since hq is a function of r and <1) only, the integration with reSpect to

2 can be simplified and C becomes
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jwplqu (l-I‘ )

 

 

 

lq '4 1‘
Cq= , h cosfiquxds

25 (e.eq)ds(I" -1)
2c Sq lqr q

JO) poIquu - rlq) INq

2(1" l" _ 1) I (5.18)

lq Zq Dq

where INq and IDq are defined as n

'—> A

I : Sh cosfl z-xds (5.19a)

Nq s q q

and

I = . 3.? ds 5,191) ,1Dq 3C .( q q) ( ) g,

The value of IDq is the same as that in the previous chapter,

but the calculation for INq is quite complicated. In the cylindrical

coordinates (r, 4), z), x = r cos 4) = 0 implies that 4): (2n-1)1r/ 2 where

n is the integer. Also it and liq can be expressed as

A A A

x = r cos¢ - (p sin¢ (5. 20a)

-+ A A A

h = rh + h 5. 20b

q rq (b <1>q ( )

_,_ A

Therefore, the scalar product of hq- x on the S surface is equal to

-+ A

box

, _, A .

q : hq(x:0).x = (hrqcoscp -h¢qsin¢1 (Zn—LL)”

¢:_____

 onS

 

= - h sin¢ (5.21)
M 2

n-l¢_(___)1.

‘Since r = xcos q) + y sin¢, we have

11-

¢ = 3 r = Y

(5.22)

¢=~31 1' = -y
2
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Refer to Fig. 5. 2(b), r' along the path C is CXpressed by

2 22 2

r':y+z:d

OI‘

Zzi'd-y (5.23)

Substituting the above relations in the eXpression for INq' it leads to

I zghocosfiZoxds

s ‘1 C1

‘2 2 2 2

ed! -Y
,‘O d—y

-‘S S h (43:3, r:y)COSB Zdzdy +\ S‘ h

qq Z q . cm
0 _ ’ 2_y2 -d J 2_Y2

-cos[3 zdzdy

q

(9):"; 9 rz’Y)

d
2 ‘ 3 Tr .

B; So [hcquz-ZI) ' h¢q(¢:'2')] 5m Bq' d -3, dy (5'24)

The final expressions for the eXpansion coefficients Cq for

the TE and TM modes are obtained as follows:

(i) TE Modes:

The fields for the qth TE mode are

 

_ _1_ .
hrq — - Z Jn(kcqr)coan>

C1

11 Jn(kcqr)

h : sinn¢

Z k rM q Cq

INq for the TE mode can be obtained as

d k

2 n , 3n1r . nTr Jn( ch) . Z Z
: —— - (sm - sm—) ___________ 5mg " d “V dy

5., Y q

 

 

Zk 2 2

qu o

I

Nq

. nTr
4n51n—2- ,d Jn(kcqy) . 2 2

= _---——-—-———[3Z k 5 ———-——-—-—y Sinfiq d -y dy (5.25)

q q Cq 0
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With Zq: mp/fiq’ Cq for the qth TE mode becomes

Z sin(nn/2) F .dJ (k Y)
" 2 2

. “1 ——n-——C—q——sinfi »d -y dy
I I‘ F -l y q

cq Dq lq 2q 0 (5 26)

  

C =j2nl

‘1

(ii) TM Modes:

The fields for the qth TM mode are

n Jn(kcqr)

hrq : _ 72- 37—17- COS m);

q Cq

h - —1- J' (k r)sin n4)

(pq _ Z n cq

q

Following the same process as in the TE mode case, INq and C

for the qth TM mode can be obtained as

nn’

 

4sin— d ...____-

2 2 Z

: - —-———-—— ' k ' d - d 5.27INq (3 Z S Jn( qu)smfiq\( Y Y ( l

q q 0

and 7 Z I" l d.1 . Z - . 2 2
Cq : jZ-IO oZ 512(nrr/ ) r qu 1 ‘8 Jukc y)sinfi .d -y dy

zq Dq lq 2q 0 q q (5.28)

Up to this point, the eXpansion coefficients Cq for the TE and TM

modes are completely determined.

5. 3.2 Input Resistance

After the eXpansion coefficients are completely determined,

the input resistance can be evaluated using eq. (2. 29) developed in

Chapter 2.
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5.4 Comparison between Theory and EXperiment

In this section, theoretical and eXperimental results of the

radiation patterns and the input resistance for an open-cavity radiator

with a circular loop exciter placed in a transverse plane or in a longi-

tudinal plane are obtained and compared. The eXperimental input

resistance for the case of a small loop placed in a longitudinal plane

is not presented here because it is so small that it is very hard to

conduct the measurement.

Figures 5. 3 to 5.8 show the radiation patterns of open-cavity

radiators with various cavity length and two different circular loops

placed in transverse planes of the cavity. The theoretical results

(dotted line) and experimental results (solid line) are plotted together

for easy comparison. The E-plane (6:900) and H-plane (c1): 00)

radiation patterns are presented in these figures. In all these

figures, a satisfactory agreement between theory and experiment

is obtained.

Figures 5. 3 to 5. 5 show the radiation patterns of the radiators

with a circular loop of 0. 09 X0 radius and placed at O. 25 X0 from the

shorted end of the cavity, and with the cavity length of 0. 8 X0 1.. 0 X0

and 1. 2 A0, respectively. Figures 5.6 to 5. 8 show the radiation

patterns of the three radiators treated in Figs. 5. 3 to 5. 5 but the

size of the circular loop is increased to have a 0.19 X0 radius. Com-

paring Figs. 5. 3 to 5. 5 with Figs. 5.6 to 5. 8, it is observed that the

effect of the size of the loop exciter on the radiation patterns seems
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rather significant. It is also observed that in the case of a larger

loop exciter, the effect of the cavity length on the H-plane pattern

is found to be quite outstanding.

Since the theoretical analysis on the radiation and circuit

properties of an Open-cavity radiator with a circular loop exciter

placed in a longitudinal plane is based on the assumption that the f...

5‘

100p is small and has a uniform current distribution, only the case i

of a small loop with a radius of 0. 06 X0 is investigated. Figures

 5. 9 to 5. 11 give theoretical and eXperimental radiation patterns of

the radiators with a small circular 100p as mentioned above. The

center of the loop is placed at O. 25 x0 away from the shorted end

of the cavity and the cavity lengths are set to be 0. 8 KO, 1. 0 x0,

and l. 2 k0, reSpectively. It is observed that the radiation patterns

in these figures are broader than those produced with a loop placed

in a transverse plane.

The eXperimental results on the input resistance of an open-

cavity radiator with a loop placed in a transverse plane are compared

with the theoretical results. Table 5.1 shows the comparison be-

tween theoretical input resistance and eXperimental input impedance

of a radiator with dimensions specified in Fig. 5. 3 and with the

cavity length varied from 0.6 ho to 1. 2 X0. Table 5. 2 gives the

same comparison for a radiator described in Fig. 5.6. In these

two tables, a qualitative agreement is obtained between theory and

experiment. The agreement is better for the case of a larger loop

exciter.
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The theoretical input resistance of an open-cavity radiator

with a small circular loop exciter placed in a longitudinal plane is

very small. It ranges from one to three ohms when the radius of

the loop is 0. 06 RC and the cavity length is varied from 0.6 X0 to

l. 2 X0. It is very hard, if not impossible, to measure this small

input resistance using a conventional driving line. For this reason,

no experimental input resistance is available for comparison with

theoretical results .

Table 5.1 EXperimental Input Irnpedance and Theoretical Input

Resistance of an Open-Cavity Radiator with a Circular

Loop Exciter Placed in a Transverse Plane, (1 : O. 09 X0,

 

 

 

 

f = 0. 25 X .

1 o

Cavity Length EXperimental . Theoretical

L: [1+ 12 Input Impedance Input Resistance

0.6 X0 330.4 + j481. 7 484.1

0.8 RC 344.3 +j411.6 557.9

1.0)x0 406.7+j38l 671.3

1.2k0 315.8 +j356.2 481.6    
Table 5. 2 Experimental Input Impedance and Theoretical Input

Resistance of an Open-Cavity Radiator with 3. Circular

Loop Exciter Placed in a Transverse Plane, d : 0. 19 X ,

o

 

 

 

 

f = 0.25 x .

l o

Cavity Length Experimental Theoretical

Input Impedance Input Resistance

0.6 X0 259. 0 + j253.6 292. 9

0.8k0 342.7+j190.5 362.3

1. 0 X0 373. 6 + j95. Z 446. 3

1.2). 254.0+j152.9 309.9

0     
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5. 5 Conclusion
 

A theoretical analysis on the radiation and circuit properties

of an open-cavity radiator with a circular loop exciter placed in a

longitudinal plane or in a transverse plane has been presented in

this chapter. Most of the theoretical results have been confirmed

by the eXperimental results.

Concerning the radiation patterns, some facts of significance

are pointed out as follows: (a)'Ihe E-plane radiation pattern of the

radiator is quite independent of the cavity length when the exciter

 is placed in a transverse plane. (b) The cavity length has a rather

significant effect on the H-plane pattern. (c) The size of the circular

loop exciter when placed in a transverse plane tends to have a rather

significant effect on the radiation characteristics of the radiator.

It appears that a good radiation pattern can be realized by a proper

choice of a loop exciter. (d) For the radiation with a circular loop

exciter placed in a longitudinal plane, the radiation resistance is

usually small and the radiation patterns are less directive. This

radiator may have a less value in practical applications.

Among these figures on radiation patterns, rather large dis-

agreements between theory and eXperiment are recorded in some

cases. The sources of these disagreements are believed to be due

to the same reasons mentioned in Sec. 3. 6.

Concerning the input resistance of the radiator with a loop

exciter placed in a transverse plane, theoretical input resistance

11
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is in a qualitative agreement with the experimental input impedance.

The agreement is better for the case of a larger loop exciter. Generally

speaking, the input impedance is not strongly dependent on the cavity

dimensions.
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Fig. 5.4 Radiation patterns of an open-cavity radiator with a

circular loop exciter placed in a transverse plane

(d = 0.09 k0,.L = 1.0 X0).
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Fig.1 5. 7 Radiation patterns of an open-cavity radiator with a

circult loop exciter placed in a transverse plane

(d = 1.9 X0, L = 1.0 ha).
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Fig. 5. 8 Radiation patterns of an open-cavity radiator with a

circular loop exciter placed in a transverse plane

(d = 0.19 X0, L =1.‘Z X0).
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Fig. 5.10 Radiation patterns of an

circular loop exciter placed in a longitudinal plane

(d = 0.06 X0, L = 1.0 X0).
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Fig. 5. 11 Radiation patterns of an open-cavity radiator with a

circular loop exciter placed in a longitudinal plane

(d = 0.06 X0, L = 1.2 X0).



 

APPENDD(

NORMAL MODES IN CIRCULAR WAVEGUIDING STRUCTURE

Part I - Normal TE Modes r]

Figure A.1 shows the geometry of a cylindrical waveguide i

with a circular cross section of radius a. In view of the cylindrical

 geometry involved, cylindrical coordinates are used in the analysis.

‘
F

1
:
3
“
.
.
.

We assume that the waveguide is made of a perfect conductor and

filled with a dielectric.

The general equations for TE, or H, modes are

2

V h +kzh = 0 (A.1)

t z c z
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, Fig. A.1 The circular cylindrical waveguide
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where

2 2 2

RC = k +7 (A.Z)

and h in the longitudinal component of the H field in the waveguide.

z

The transverse components are

3'21th (A.3)
t 2 1:2

F3

k

c .-

T .2h/\ “'1: A4et—i zxt (.)

The boundary condition in this problem is

=1

ah L”
Z

8n (r=a) = 0 (A5)

 
 

where k : (LN (.16 is the propagation constant in the medium and

kC : Zn'fCVuE is the cutoff wave number with fC being the cutoff fre-

h .

quency for a certain waveguide mode. 2 : 13H
is the field impedance

for TE modes and 7 is the propagation constant for the waveguide mode.

Using the separation of variables method, a solution for

eq. (A. 1) is

cos no

hz(r.¢>) = C Jn(kcr) (A6)

sin n4)

Where n is a positive integer. Subject to eq. (A. 5), we have

3h? (rza) cos n4)

74 = C'J'(k r) = 0
n n c .

Sinno

or J'(k r) = o (A.7)
n C
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Table A. 1 below shows the ith root of J1;(p;1 f) = 0. The eigen-

k ' bvalues c,n are given y

pl

n!

c, nf — a (A°8)

Table A.1 Values of p; f for TE Modes

,

I I I I I I I I

pol p11 p21 p31 p42 p51 p61

1 3.832 1.841 3.054 4.201 5.317 6.416 7. 501

2 7.016 5. 331 6.706 8.015 9.282 10.520 11.735

3 10.173 8.531 9.969 111.346 12.682 13.987 15.265

4 13.324 11.706 13.170 14.580 16.202 17.375 18.640           
 

If q has been used as a mixed index of n, f covering all of the

TE modes and normalize the fields by j f1 C = l, eqs. (A. 3) and

 

q

0C1

(A. 4) will lead to

n sinno

erq = k r J (kC r) (A. 9a)

cq n q —cosn¢

cosn<1>

e = J’(k r) (A. 913)

(bq n cq sinn¢

k cos n4)

. cq

h =-J——J(k r) (A.9c1

zq W n cq sinncp

1 cos no

h = - -— J'(k r) (A. 9d)
h

rq Z n cq sinncp

q

sin n4)

= J (k 1.) (Ao9e)
h

(pq k n cq -cosn¢

q cq
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The propagation constant, Bq’ for the qth TE mode is

  

 

2 2 i 2 2 i

'y : - k 2 : k .. k 2 :q ( Cq ) J( Cq) 1%

1 (L) 1 CL) 1

~ 2 — cq 2 —

r = 3 1 - Cq ‘3 = (3 1 - 2 A. 0o flq w(H€)[ (03)] [ ((0)1 (1)

The cutoff frequency and cutoff wavelength are

__1_ P21 E

_ 2 _ _
wcq — kcqfllE) — v a (A. 11)

2

xcqz ?v— = 3:2 (A.12)

cq pq

where v is the velocity of light in the medium. The field impedance !

for this particular mode is

h j__ooE_ QB (1)ch l CC1 'i (3

z—7 ='[1-(w)13=r.[1-< Mama;-

q q

  

(A. 13)

where I; is the field impedance of the medium. If the dielectric in the

waveguide is air, then 2; = {,0 : 1201r ohms.

Figure A. 2 illustrates the field distribution of some TE modes

in the guide. From these field distributions it is possible to deter-

mine a proper location to place the primary exciter. In general,

the primary exciter is placed in a location in such a way that the

field of the exciter matches best with the field of the desired wave-

guide mode.
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Fig. A. 2. Field configurations in a circular waveguide for

TE modes.
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Part II - Normal TM Modes
 

The general equations for TM modes are

V26 +kze = 0 (A.14)

t z c z

where

2 Z 2

kC = k +7 (A.15)

The boundary condition is r:

F

ez(r:a) : 0 (A. 16)

and the transverse fields are

 
...7_

et: + 2 Vtez (A.17)

k

c

-> 1 A -—>

h:+——zxe (A.18)

t — e t

Z

where

28: J;

JmE

Using the same technique as for the TE modes we get

cosncb

e (r,¢>) = D J (k r) (A.19)

z n c .

Sinncb

where D is a constant and n is a positive integer. The boundary

condition, ez(r:a) : 0, implies that J (kca) : 0.

n

Table A. 2 below shows the 1th root of Jn(pn£) : 0. The

eigenvalues kc, n! are given as

P

k = .115 (A. 20)
c, n! a



Table A. 2 Value of pn
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for TM Modes

 

 

 

1

I pol p11 p21 p32 p41 p51 p61

1 2.405 3.832 5.136 6.830 7.588 8.771 9.936

2 5.520 7.016 8.417 9.761 11.065 12.339 13.589

3 8.654 10.173 11.620 13.015 14.372 15.708 17.030

4 11.792 13.323 14.796 16.221 17.667 18.962 20.308        
 

If q has been used as a mixed index of n, 2 covering all of

the qth TM modes and the fields are normalized by letting

'YD

qq

k

Cq

= 1, eqs. (A. 17) and (A. 18) become

 

 

cos n¢

e = J '(k r)

rq n Cq .

S111 114)

n -31n m);

e = r J (kC r)

(bq cq n q cos no

r

k cos ncp

e = - Cq J (k r)

Zq 7q n cq sin n4)

n -51n no

h = e J (kC r)

rq k r Z n q cos no

Cq q

1 cos no

h 2 -""'—e' J' (kc 1‘)

(bq Zq n q sin no

The propagation constant, (3g, for the qth TM mode is,

2

= k-
fiq ( k

2

Cq

)3_
(1)

(3[1-(
 

cq)2]%

(L)

(A. 21a)

(A. 21b)

(A.ZIC)

(A.21d)

(A. 216)

(A. 22)

 

 
if“
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The cutoff frequency wcq and cutoff wavelength XCq are

-4 Pg

= k 2 = k = -— A.23wcq “1046) V cq V a ( )

2
xngL23—“iz—Tr—a (A.24)
C (J)

cq cq pq

The field impedance of qth TM mode is defined as

7 (1) 1 0L) 1

e_.__q_._£ _ .2322- _ .232:

29 — jwe "'cmz [1 ( <0 )1 —€[1 ( (D )1 (A.25a)

(3

or ZS: 139'
(A.25b)

Some typical field distributions of TM modes are shown in

Fig. A.3.



Fig .3.

TM modes.

Field configurations in a circular waveguide for

 

 
110



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

REFERENCES

H. W. Ehrenspeck, ”The Backfire Antenna, a New Type of

Directional Line Source, " Proc. IRE, Vol. 48, pp. 109-110,

January 1960.

H. W. Ehrenspeck, ”The Backfire Antenna: New Results, "

Proc. IEEE, V01. 53, pp. 639-641, June 1965.

H. W. EhrenSpeck, ”The Short-Backfire Antenna, " Proc. IEEE,

Vol. 53, pp. 1138-1140, August 1965.

K. M. Chen, D. P. Nyquist and J. L. Lin, "Radiation Fields

of the Short-Backfire Antenna, " IEEE Trans. Antennas and

Propagation, Vol. AP-16, pp. 596-597, September 1968.

F. J. Zucker, "The Backfire Antenna: A Qualitative Approach

to Its Design, ”Proc. IEEE, Vol. 53, pp. 746-747, July 1965.

R. E. Collin, "Foundations for Microwave Engineering, "

McGraw-Hill Book Co., 1967.

H. Y. Yee and L. B. Felsen, "Ray-Optical Analysis of Electro-

magnetic Scattering in Waveguides, " IEEE Trans. on Microwave

Theory and Techniques, Vol. MTT-17, No. 9, pp. 671-683,

September 1969.

S. Silver, “Microwave Antenna Theory and Design, " Dover

Publications, Inc., 1965.

L. A. Wainstein, ”Theory of Diffraction and Method of Factori-

zation, " Moscow: Izd., Soviet Radio, 1966.

E. A. Wolff, "Antenna Analysis, " John Wiley 8: Son, Inc., 1965.

R. W. P. King, "The Theory of Linear Antennas, ” Harvard

University Press, 1956.

111



(12)

(13)

R. F. Harrington, "Matrix Methods for Field Problems, "

Proc. IEEE, Vol. 55, pp. 136-149, February 1967.

R. W. P. King, "Transmission-Line Theory, " Dover Publica-

tions, Inc., 1965.

 



  "'(WIIIITILIMILIIE(INJILII'IEIMMW)ES


