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ABSTRACT

PRIME IDEALS IN A VECTOR LATTICE

AND ITS DEDEKIND COMPLETION

BY

K. Kumaran Kutty

Structure spaces are used to study vector lattices

by representing a vector lattice as a class of functions

on its structure spaces. Masterson has attempted to study

the relationship between the structure spaces of an Archimedean

vector lattice E and its Dedekind completion E. He has

proved that, in the presence of P-P-, starting with a

prime ideal P in B we can get a prime ideal 3 in E

such that S n E = P. We prove that if E is an arbi-

trary Archimedean vector lattice, starting with a prime ideal

P in E. wecangetaprime ideal Q in E9 QHE=P.‘

Masterson introduces the property: V x E El', the exis—

tence of y E E+ and scalar a such that ay g_x g_y.. and

points out that in the presence of this property, the

structure spaces of E and E are homeomorphic. ‘We Obtain

several conditions equivalent to this property and prove

that this pr0perty is strictly stronger than P-P° It is

well known that if 0 < x g_y1 + y2., 'where x, y1 y2 6 E,
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then x can be decomposed as x1 + x2 where O g_x1 g_y1

and 0‘s x2.g yz. If x 6 E and y1, 'y2 E E, it is not

necessarily true that x1 6 E,. x2 €.E. If every x can

be decomposed this way for all yl. y2 E E, starting with a

prime ideal P in E., we can Obtain a prime ideal E, in

E such that 3'0 E = P. This prOperty is strictly stronger

than P'P° and weaker than the property introduced by

Masterson. Also we Obtain a way of Characterizing this

pr0perty using prime ideals. If g(P) = B; then $ and

9($) are homeomorphic where $ is the structure space of

all prime ideals of E. We Obtain two ways of characterizing

P-P-, one by a property analogous to the one introduced.by

Masterson, and one by a property analogous to the one mentioned

above. Also we mention a property which is strictly stronger

than the one introduced by Masterson.
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Introduction

Several authors have attempted to study vector

lattices using prime ideals. Yosida (8), using prime

ideals, proved that every Archimedean vector lattice is

isomorphic to a vector lattice of extended functions on

some locally compact Hausdorff space. Nakano (7) has

proved that every Dedekind U-complete vector lattice E

Sis isomorphic to a vector lattice of extended functions

on some totally disconnected Hausdorff space X. The

space X is Obtained by providing the collection of all

maximal dual ideals in the distributive lattice of

projectors on E with the dual hull-kernel topology.

JOhnson and Kist (2) have shown that the representations of

Yosida and Nakano can each be Obtained by considering a

suitable subspace of the space of all prime ideals. They

have generalized Nakano's representation to arbitrary

Archimedean vector lattices. Using the concept of spectral

function, Amemiya (1) has developed a spectral theory for

vector lattices, generalizing Nakano's theory for the

o-complete and complete cases. Johnson and Kist (2) have

shown that Amemiya's theory can be Obtained by ideal -

theoritic methods. They do this by showing that the set

of all spectral functions defined on a vector lattice E

is essentially the same as the set of all prime ideals in E.

iv



The purpose of this thesis is to investigate

0

the relationship between structure spaces of an Archimedean

vector lattice E and those of its Dedekind completion

A

E . Masterson (5) has attempted to answer this question,

but his answers are incomplete. He has shown that if E

has projection prOperty, for every prime ideal P in E

A A A

there exists a prime ideal P in E such that P n E

A

P is minimal prime if P is minimal prime. If m is a

ll "
U

' structure space of E consisting entirely of minimal

prime ideals, 91 and f(fll) are homeomorphic where

f(P) = 9.. He also Obtains several conditions equivalent

to the homeomorphism of 8 and f(m), where 8 is any

structure space of E, in the presence of projection

property. He introduces a pr0perty in a vector lattice,

viz. for every x 6 El. the existence of y 6 E+ and

positive scalar on a ay 3 x g y , and shows that under

this condition B and f(m) are homeomorphic where Q is

any structure space of E.

We show that if P is any prime ideal in an

Archimidean vector lattice E., there exists a prime ideal

IQ in E such that Q n E = P . This prime Q is not

unique. We prove two partial converses to Masterson's

result: (1) if P is prime in E for every prime P in

A

E, then E has P-P-P- (2) If every prime in E is of

A

the form P for some prime P in E. then E has P-P-



Also the property introduced by Masterson is equivalent

~ A

to the prOperty that every prime ideal in E is of the form

9 for some prime P in E.. We Obtain other equivalent

conditions to this property. we give examples to show

that the implications in (l) and (2) above are not

reversible. Whether projection property is strictly stronger

than the property that P is prime in E for every prime

P in E, is an Open question.

We introduce another property: if 0 < x g_yl + y2,

where x 6 E+, 'y1, y2 6 3+' the decomposability of

x as = x1 + x2 where 0.3 xl'S-Yl and 0 3.x2 g_y2 where

x1, x2 6 E. It is well-known that if x1 yl, y2 are

positive elements of a vector lattice E such that

x g.y1 + y2, then x can be expressed as = x1 + x2 where

O g_xl g_y1 and O g_x2 g_y2 . This prOperty is known as

the Riesz dominated decomposition property. But if x E E+

and yl, y2 E El', it is not necessarily true that

1, x2 E E. In the presence of this property, starting with

a prime ideal P in El, we can define a prime ideal is

X

A ~ ~ A

in E :} P H E = P. Also if P is prime in E for all

prime P in B, then E has this property. If u is any

structure space of E.. 3 and f(fi) are homeomorphic under

the mapping f(P) = P . we show that the above mentioned

property is strictly stronger than P-P- The property
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introduced by Masterson is stronger than this property,

but it is not known whether it is strictly stronger.

We also introduce a prOperty strictly stronger than the

. A

one introduced by Masterson, viz. for every x1. x 6 E+

2

such that x1 < x2, the existence of y 6 E+ such

that x1 < y < x2.

The whole work is divided into four sections.

Section 0 consists of definitions, etc. necessary for

the understanding of the text. Sections 1, 2, 3,

constitute the main body of the work.

 



Section 0
 

Notation 0.1: E+ = {x c E : xig 0].
 

Definition 0.2: E is Archimedean iff x,y E E+
 

such that nx g_y for all positive integer n = x = 0,

for all x,y.

Definition 0.3: E is Dedekind Complete iff
 

[x ] c E, x < y P E V a = sup x exists in E.
a d- a a

Definition 0.4: If E and E' are vector lattices
 

a mapping ¢ : E ~ E' is a vector lattice homomorphism

iff

(i) ¢(aa) = a¢(a) for all a e E, for all

scalar a.

(ii) ¢(a v b) = ¢(a) v mm for all a,b e E.

Definition 0.5: A vector lattice isomorphism is
 

a one-one vector lattice homomorphism.

Definition 0.6: The vector lattices E and E'
 

are said to be isomorphic if there exists a vector lattice

isomorphism ¢ : E d E' such that ¢ is onto.

Definition 0.7: E' C E is said to be order dense
 

1n E if for all x c E, there ex1sts {Xa}aEA c E

such that x = sup xa.

a

 



Theorem 0.8: (Nakano, 6). If E is a vector
 

lattice, there exists a Dedekind Complete vector lattice

A

E such that E can be imbedded as an order dense sub-

A A

vector lattice of E, iff E is Archimedean. If E

exists, it is unique upto vector lattice isomorphism.

Property 0.9: (Riesz) If 0 < x < y1 + Y2:

x,y1.y2 E E, there exists a decomposition of x such

that x = + x where 0 < x1 < Y1 and 0 < x2 < y2.
x1 2'

This prOperty is known as Riesz dominated decomposition

property.

Definition 0.10: A subset E' C E is order

0 c ' O 0

closed 1ff [xd}a€A E , 52p Xa ex1sts in

E = sup XO 6 E'.

a

Definition 0.11: A linear subspace I c E is
 

an ideal iff I is solid, i.e. x E I, Iyl 3 IX] = y 6 I.

Definition 0.12: A principal ideal is an ideal
 

generated by a single element. Equivalently, an ideal I

is principal iff there exists a E E 9 I = [x:lx| g nlal,

for some integer n}.

Definition 0.13: A band is an order closed ideal.



Definition 0.14: A principal band is the order
 

closure of a principal ideal.

Notation 0.15:

For all x F E, x+ = x v 0

X I! >'< < O

 

IX! = X+ V X- = x+ + x-

in“

Definition 0.16: X l y iff 'x' A IYI = 0.

Notation 0.17: If A c.E, Al = [x c E: x l a In

 

for all a E A].

Theorem 0.18: AL is a band for any subset A
 

of E.

Theorem 0.19: E is Archimedean iff A11 = A,
 

for every hand A in E.

Definition 0.20: E has Projection Property (P.P.)

iff E = B @>B*. for any band B of E.

Definition 0.21: E has Principal Projection
 

Property (P.P.P.) iff E = B m BL, for any principal

band B of E.

Definition 0.22: E is Dedekind O-Complete iff
 

{x l
n nFN' xn 3.x 5 E = SUP {Xn} ex1sts in E.

n



Theorem 0.23:

E has P.P.
:

E Ded. Complete g E has P.P.P. = E
§ 0 o

E is Ded. O-Complete ls ArChlnedean

None of the above implications is reversible. Projection

Property and Dedekind O-Completeness are independent.

If E is Dedekind O-Complete and has P.P. it is Dedekind'

Complete.

Definition 0.24: An ideal P is prime e x A y C P

x,y G E = x 6 P or y 6 P.

Theorem 0.25: (Johnson & Kist, 2): The following
 

are equivalent:

(1) P is a prime ideal.

(2) If x A y = 0, then x 6 P or y 6 P.

(3) The quotient vector lattice % is linearly

ordered.

(4) If P D A 0 B, where A and B are ideals

in E, then either P D A or P 3 B.

Definition 0.26: Let h denote the collection of

all prime ideals in E. For $' C T, the kernel Of

$' = “{P : P 6 T'}. The kernel is an ideal, not

necessarily prime. The hull of an ideal is the collection

of all prime ideals containing that ideal.

 



Hence if $' c T, note that h(k($')) D T',

where h denotes the hull and k, the kernel. Taking

h(k($')) as the closure of h', the closure of any

subset of T is uniquely defined. And this closure

Operation defines a topology on T. This topology is

known as the hull-kernel topology. T, with this

topology is known as the structurespace of E. The

class {halaCE is a base for this topology, where

Ta = [P E T : a f P}.

More generally, let T denote any collection

of prime ideals in E such that “(P . P 6 T] = 0.

Define the topology on T as above. T, with this

topology is a structure space of E.



Section 1

It is well known that in a vector lattice,

maximal ideals are prime. Yosida (8) has generalized

this result. He has shown that relatively maximal ideals

are prime. An ideal is relatively maximal if it is

maximal with respect to not containing a fixed element.
I).
y,

In this section we given an alternative proof

of Yosida's result (Theorem 1.1). We also give some

generalizations of his result (Theorem 1.5, Theorem 1.9).

We obtain many beautiful results on prime ideals,

earlier obtained by Johnson and Kist (Johnson & Kist 2)

as easy corollaries to these theorems (Corollaries 1.3,

l.4,l.7,1.8).

Masterson (5) has shown that starting with a

prime ideal P in an Archimedean vector lattice E,

an ideal P can be defined in E, the Dedekind Completion

of BE, such that P H E = P. He shows that if E has

P.P., P is prime in E. We show that for a prime ideal

P in an Archimedean vector lattice E, there exists a

prime ideal Q in E such that Q n E = P (Theorem 1.10).

This prime ideal Q is not unique (Example 1.11). We

show that if P is prime in E for every prime P in

E, E has P.P.P. (Theorem 1.12). Also this property

is strictly stronger than P.P.P. (Example 1.13). We give



an example to show that Dedekind O-Completeness, a property

stronger than P.P.P., is not strong enough to imply

this property (Example 1.14). Recall Masterson's result

that P.P. implies this property. Whether P.P. is strictly

stronger than this prOperty is not known. Hence

we have the chain

A

P.P. = P prime in E for every prime = P.P.P.

& P in E 4

Bed. 0

Completeness

Theorem 1.1: Let E be a vector lattice and

a E E. Let I be an ideal in E, maximal with respect

to not containing a. Then I is prime.

Proof: Existence by Zorn's Lemma:

Let 3a = (I : I an ideal in E, a f I}. We can take

a positive for, a E I e la! 6 I. 3a is non—empty for,

3a empty = every ideal contains a = E has only one

non-trivial ideal = E_ is linearly ordered. Ra is

partially ordered by inclusion. If II C 12 C... is a

chain in q ,U Ii is an upper bound for this chain. .1
‘a

3a has a maximal element, by Zorn's lemma.

Let M be a maximal element. we show that

M is prime. Suppose not. Then S'b. C E E.‘b A C = 0.

and b )6 M, c E M. = a E (M,b) and a E (M,c) where

(M,b) denotes the smallest ideal containing all the
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elements of 1M and b etc. But a 3 Am + Bb and

a g A'm' + B’c where A,B,A',B' are positive scalars

I

and m, m 6M.

By Riesz dominated decomposition property (0.9),

a=a1+a2 where ogalgAm

0.3 a2 g_Bb

I I I I

a = a1 + a2 where 0.3 a1.g A'm

0 g,aé g_B’c

I I

a2 g_a — a1 + a2

. a2 = a21 + a22, where 0.3 a21 3 al

I

OSazz-gaz

b A c = 0 = a2 A a2 = 0 = a22 = 0

. I

.. a a21 g a1

. __ I II

.. a — a1 + a2 g_a1 + a1 g_Am + A m

= a 6 M , contradiction.

Corollary 1.2: The intersection of all relatively
 

maximal ideals in a vector lattice is [0}.

The following two results were Obtained by Johnson

and Kist(2). They are immediate from the above theorem.

Corollary_1.3: The intersection of all prime ideals

in a vector lattice is (0] .

Corollary_l.4: The intersection of all minimal
 

prime ideals in a vector lattice is {0}.



Theorem 1.5: Let I be an ideal in E and
 

O < a f I. Let M be maximal in the class of ideals

containing I and not containing a. Then M is

prime.

Proof: Existence by Zorn's Lemma:

Let JIa=[J: J an ideal in E,JDI, azJ} .1
I

JI,a is non—empty, for I E JI,a . JI,a is partially

ordered by inclusion. Let J1 C J2 C be a chain in ..

J - U J. is an upper bound for this chain.'.°J has a
La 1 La

maximal element, by Zorn's Lemma.

Let M be a maximal element. We show that M is

prime. Suppose not.

=3b,cEE, bAc=0,b£M, CEM

= a E (M,b) and a E (M,c)

=> agAm+Bb, agA'm'+B'c

I

where A, B, A', B' are sitive scalars and m, m E M .

By Riesz dominated decomposition property

a=al+a2 where 0_<_al_gAm

Cgangb

a=a£+ az’ where ogaiSA'm'

0_<_a2'_<_B'c

a2_<_a=ai+a2'

.. a = a21 + a22 where 0 3 a21 3 al



. _ I I I

.. a — a1 + a2 g_a1 + a1 g_Am + A m

= a E M.. Contradiction.

Definition 1.6 (Johnson and Kist): A prime ideal

belonging to an ideal I is a prime ideal containing the

ideal I. A minimal prime ideal belonging to an ideal I

is a minimal element in the class of prime ideals belonging

to I.

The following two results were obtained by Johnson

and Kist. (Johnson and Kist, 2). They follow immediately

from the above theorem.

Corollary 1.7: The intersection of all prime
 

ideals belonging to an ideal I is I.

Corollary 1.8: The intersection of all minimal
 

prime ideals belonging to an ideal I is I.

 

+

Theorem 1.9: Let {xa}a€A C E such that

x A x A °'°°° A x > 0,. for all integers k and
a1 dz Ok

for all choices of indices a1, a2,---, dk €.A.. Let M be

a maximal element in the class of ideals not containing any

of these finite infima. Then M is prime.

Proof: Suppose not. Then 3 a,b E E, a A'b = 0

and a EM, b £M.Hence 51 indices a1, 0L2,---, a and



ll

\
‘
4

Bl: 620 °°'o B

x A x A °°°° A x E (M,a)

m

a1 a2 an

XB AxE3 A°°°°Ame€(M,b)

l 2

= Xa A xa A -:-- A Xan g_Am + Ba

1 2

I

xB A xB A -- A me g_Cm + Db

1 2

where A, B, C, D are positive scalars and m, m' €:M .

So, }{ A x A ---° A x A x A ---- A x

d1 d2 an 61 8m

_<_ (Am + Ba)A(Cm’ + Db)

g (Am+Ba)ACm’ +(Am+Ba)ADb

gAmACm’+BaACm’+AmADb+Ba/\Db

.3 Am A Cm’ + Cm' + Amw, '3 a A'b = O

=9 O<xa Axa Au-AxomAxfi3 A...AmeEM,

l 2 l

a contradiction. Q.E.D.

0n the other hand if P is a prime ideal in a

vector lattice E and {xa} is the class of all positive

a€A

elements not belonging to P, P is the unique maximal

element in the class of all ideals not containing any of

the finite intersections of the xa's . P does not contain

any finite intersection, for, if it does, at least one xa

will be in P. P is maximal in the class, for we have

excluded all positive elements not contained in P. P is
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unique, for, if P and Q are distinct prime ideals,

the classes of positive elements not contained in P, Q

will be distinct.

As mentioned earlier, starting with a prime

ideal P in E, Masterson (5) defines an ideal P

in E, AWhere P = {y E E : IyI 3 IX), for some x in

P}. This ideal, in general, is not prime. This has the

property that P n E = P. If E has P-P-, P is

prime. The folloWing theorem shows that given a prime

ideal P in an Archimedean vector lattice E, there

A

exists a prime ideal Q in E :9 Q n E = P.

Theorem 1.10 Let E be an Archimedean vector

A

lattice, E its Dedekind completion and P a prime ideal

A

in E. Then there exists a prime ideal Q in E such

that Q n E = P.

Proof: Let [x ] be the class of positive

a a€A

elements of E, ‘which are not in P . This class has the

property that

x A x A ~-- A x > 0,, for all integers k and all
0.1 (12 Gk

choices of indices dl, d2,..., ak,. for if at least one

such infimum is 0 at least one Xa is in P. For

the same reason, this class is closed under finite

irJ fima o
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Consider the class

3 = [J an ideal in E: xa 2’? for all a,. J D P}. The

class 3 is non-empty for P E 3 where

Q = [y E E: IyI g_IxL, for some x in P} and 3 is

an ideal in E.

3 is partially ordered by inclusion. If Jl C J2 C°°~~

is a chain in 3, U Ji an upper bound for this chain.

.1 the class 3 has a maximal element, by Zorn's lemma.

Let Q be a maximal element in 3..‘We show that

Q is prime in E. Suppose not- Then 3 aib 6 E a a A'b = O

and a 2'0.. b E'Q

= 3 a 6 A a xa g_Aq + Ba

and 386A 7. ng’+Dbx

B

where A, B, C, D are positive scalars, and

l

Osq.q 60

= O < xa A x6 3 (Aq + Ba)A(Cql + Db)

_gAchq’+AqADb+BaAcq’+BaADb

gAqACq’+Aq+Cq’. aAb=0

='0 < xa A xB E Q,, contradiction. Q n E = P,, by construction.

The following example shows that the prime ideal Q obtained

in the above theorem is not unique, for a given P in E.

Example 1.11: Let E = C, the space of real

A

convergent sequences, E = m,. the space of real bounded

 

0' the space of zero convergent sequences is

AA

a prime ideal in C, but CO is not prime in E,

sequences. C
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A

where CO = [x E m: [XI 3 y,. for some y in

A

CO). CO is an ideal in m. By Corollary 1.7 there is

A

more than one prime ideal in m containing C0"

Let g be any

for,

I I O A

if there IS only one, it has to be CO'

one of them» Then q n C 3 C But q n C = C for,
0 ' 0'

if not,a sequence converging to a non—zero number is in

q = 1 E q = q = m. In fact we prove that there are an

Iinfinite number of choices for q.

Let a = (O O " 0 1 O --- O 1 O °°°° O 1 0 "'° )

d1 a2 a3

be an element of m,, which has 1's in the positions

a1, a2, --° and 0’s at N - {A} where N denotes the

positive integers and A = [a1]; . Let 38 a = (I:

0'

A

I an ideal in m, I:Co,a E I}. This class is non—empty for

A

C is in it. By Zorn's lemma, this class has a maximal
0

element. Let qa be one such. By methods similar to the

ones employed in the proof of Theorem 1.10, we can show

that qa is prime in m. Also a' E qa where a’ is the

element in m with zeros at A and 1's at N - A ,

since a' A a = 0 . = -there are at least two prime

ideals viz. qa and q;;qanC=C qénC=CO: O I

In fact there are an infinite number of choices for

qa. 'by lemma 2.4. For we can have a sequence

al < a2 < "'°° , where the inequalities are strict
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and each ai is an element of the type a. By lemma

2.4, Ra = Rb a Ia = Ib where Ra" Rb denote

the class of relatively maximal ideals not containing

a, b and I , Ia denote the principal ideals generated
b

by a,b. =R CR CR

a171a2¥a3

Masterson (5) has proved that if E has P°P-,

A

and if P is a prime ideal in E, P is a prime ideal

. A A A .

in E , where P = {y 6 E : IyI _<_ |x| , for some x in

A A

P]. We prove below that if P is prime in E for all

prime P in E, then E has P'P-P- The example given

after the Theorem shows that the converse implication is

not true.

Theorem 1.12: Let E be an Archimedean vector
 

lattice and P a prime ideal in B. Let

A A A

P = {y 6 E : IyI g_lxl, for some x in P}. If P

A

is prime in E, for all prime P in E, then E has

P'P°P-

Proof: Suppose E does not have P-P-P- Then 3

a, b E E+ such that sup (b A na) does not exist in E.

n
A

By theorem 0.23, 5gp (b A na) exists in E.

Let this sup be denoted by a(b).

A

.2 b = a(b) + b - a(b) in E.

A

Consider the class 3 = {I an ideal in E:

x E E. le < a(b) = x 6 I: a(b) Z I}. This class is
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non—empty, for, the ideal generated by all elements of

E less than a(b) is an element of the class. The

definition of I is consistent, for if 0 < x E E and

x < a(b), Z scalar a 3 a(b) < ax:7 for suppose such

an a exists. x < a(b) = x A (b - a(b)) = 0

= ax A'b = ax A (a(b) + b - a(b)),. in E

= ax A a(b) + ax A (b — a(b)), in E

ax A a(b) = a(b)

ax A'b = a(b).

But ax A'b 6 E = a(b) exists in E‘, which is not the

case.

Partially order the class 3 by inclusion. Each

chain has an upper bound. By Zorn's lemma the class 3

has a maximal element M. By Theorem 1.5, M is prime

in E.a(b) EM = b-a(b) EM. Let P=MnE. P

is prime in E. We will show that 3 y E E,. y > b — a(b)

such that y €.M. This proves that P is not prime in E.

Let y E E, y > (b - a(b) )

b 2_y A‘b > b - a(b)

#’

y A'b #’ b — a(b), since y A b E E and b — a(b) E E - E

This says: b-(b-aibl) > b - y A'b

i.e., a(b) > b - y A'b E E .

By construction, b — y A b 6 M

if yEM, then yAb EM
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= (b - y A b) + y A b = b EEM

which cannot be.

So, 3 y > (b - a(b)), y E B such that y E.M.

Q.E.D.

Example 1.13: Let L be the set of all

real bounded functions f on the point set

X = (1,2,..., 00} such that f(x) #'f(m), for at most t

finitely many x. This is a Riesz space with the usual.

point wise operations. This has P-P'P-, 'but does not

have P-P- and is not Dedekind G-complete. Let A be

an arbitrary principal band in L, generated by V E L+,

and denote the set (x: f(x) #'0 for at least one

f 6 A} = {x:v(x)> 0} by X If v(w) = 0, then X
1' 1

consists only of a finite number of points and X2 = X - Xl

contains the point m. If v(w) > 0, then X1 consists

of all but a finite number of points, and X1 contains

the point w.. Hence given f 6 L, we have in both cases

f = f + f - xx 'with f - XX 6 A: f - xx 6 A1X

X1 2 1 2

.2 L = A @ Al , .2 L has P-P-P-

L is not Dedekind complete by Theorem 0.23. To show that L

does not have P9P: , consider the band A in L, defined by

A (f E L f(x) = O for x = 1.3.5.'°° }

then A1 [f e L o for x = 2,4,6,--- }f(x)

A o Al = {f e L : f(w) = o] #'L.



min
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In this space, a prime ideal is the class of

all functions vanishing at a particular point. The

class of functions vanishing at a given point x0 is

clearly an ideal. It is a prime ideal, since if

f A g = 0, f(xo) = 0 or g(xo) = 0. These are all the

prime ideals, for suppose an ideal I contains only

functions which vanish on at least two points. Let the

two points be x1 and x2, x1 < x2, ‘where x can

2 L4
be = m. Consider the functions

h = 1 at x 3.x
1 l

= 0 at x > xl

h = O at x.g x1

= 1 at x > x1

hlAh2=O, but hlgl, hZKI.

Suppose an ideal I contains a function k which does

not vanish at any point. Let k(w) = a. = k(x) = a

for all but finitely many x. Let the points y with

k(y) #’a be yl, y2,..., ym. Let

(IkI (yl), Ikl (yz),..., Iklym) =b>0. Let Ial Ab=C>O

= k’ €I where k’(x) =c for x=l,2,..., co

= I = I, J. I is not proper.

Let the prime ideals be P1, P2,---, Pm. PCD

has the property that its elements are functions vanishing

A

at all but a finite number of points. L is the class of

A

all bounded functions on the point set X. Clearly POD is
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. . A A

not prime in L,. for POD contains only functions

which vanish at m and all but finitely many points.

Example 1.14: We have noted (Theorem 0.23)

that Dedekind O~¢omp1eteness is a prOperty stronger

than P-P-P. The example below shows that even this

property is not strong enough to imply the prnneness of

P, for every prime P in E.

Let L be the collection of all real bounded

functions f on [0 l]such that f(x) #'f(0) for at

most countably many x. This is a vector lattice with

the usual pointwise operations. Given that 0 g_un < v;

sup un exists in L and is the pointwise limit. Hence

L is Dedekind 0— complete. To ShOW’that L does not

have 'the 9-!» , let A be the band in L consisting

of all f E L vanishing on [0 %J. Then A‘L is the

band of all f e L vanishing on é, 1]. Any f e A

satisfies f(x) #’0 for at most countably many x. The

same is true for any f 6 Al and hence for any f in

A (+3 Al. L 9! A (+3 Al . L does not have P-P.

I0 is a prime ideal in L where I0 is the collection

of all functions vanishing at 0. The Dedekind completion

L of 7L is the class of all bounded functions on [0 l].

A A

I0 is not prime in L,. for let A C [0 1], such that

A

A and AC are uncountable. Let f, g, E L such that
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f=1 at A: g=0 at A

= 0 at AC ; = 1 at AC

A A o A 0

ng=0, but fEIO, gEIO, Since IO isthe

collection of functions vanishing at 0 and all but

countably many x in [0 l]. Henceathe example.

 



Section 2
 

We had noted in Section 1 that Masterson has proved

that if E has P'P- P is prime in E, if P is

prime in E. (Theorem 2.1, Masterson 5) We obtain a

partial converse to this result (Theorem 2.6) Masterson

has mentioned the property (which we will call the

property *), viz. V x E 94', the existence of y E E+ .9

a3] g.x g'y for some scalar a . He notes that if E has

this property, the structure spaces of E and E are

homeomorphic. He also obtains a characterization of this

property (Masterson 5, Theorem 2.6). We obtain other

characterizations of this property (Theorem 2.5). We show

that this property is strictly stronger than P-P- (Theorem

2.6, Theorem 2.7, Example 3.5). We also Obtain a

characterization of P-P° in terms of a property analogous

to prOperty1r (Theorem 2.7). We also mention a property

which is strictly stronger than prOperty* (Theorem 2.9,

Example 2.10).

Lemma 2.1: Let E be an Archimedean vector lattice
 

and A a band in E. Then any positive element x of E

can be written as x = x + x where x = sup (x )
1 l a a

2 I

A

— .L .

Xa E A and x2 — sap (XB)' xB E A , the sups taken in E

21
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Proof: If x e A (+3 A‘L , there is nothing to

prove. Assume x 6 E '\ A @ A‘L

A ll . A l . A . A
E = A (in E) (9 A (in E) (Since E has P°P~ by

A

Theorem 0.22) x = x1 + x2 , where x1 6 A1"L (in E)

l . A
x2 6 A (in E)

x2=sgp(xB), XBEE VB. XBEALHnE) VB

A

for if xB E A for some (3 , x2 EA‘L (in E) . Also if

x €E-—A<+>Al (inE)theanAy>O forsome yEA
B

A
. J- - _
= x2£A (in E). Also xl—sgp (xa), Xa 6E V OL

XO 6 A V a , for if XO 6 A‘L (in E) for some a then

0

11 . A l . .

xlflA (inE). xafl E-AOA (inE) V a for if

xa ’EE-A®A1(inE).then xa ’Az>0 forsome

O O

zEA‘L(inE) (forif xa’Az=O V ZEAl(inE),

0

then Xa ’ E A‘Ll (in E) = A, since E is Archimedean)

0

ii A
= x1 E A (in E) . Q.E.D.

Lemma 2.2: If E = A (43 AL , where A is an

. . A A A1. A
ideal in E, then E=A®A , where E, A, A are

 

the Dedekind completions of E, A, A1 respectively, as

vector lattices.

A

Proof: Let x E (E )+ and let x = sup xa . where

" —" "' 0L
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W-LoO-G- let, i xyg y E E+, for any element

A

of E is majorized by an element of E.

Let y = y1 + y2 where y1 E A,, y2 6 AL.

Let xa = x + Xoc where xa E A ,

0‘1 2 1

l
x E A V a

0‘2

x = sup x = sup (x + x )
a a a a1 a2 ‘

l

= sup (x ) + sup (x )

a 1l a 0‘2 I

Since x l x V d,B

0‘1 B2

A

(all the sups taken in E) . Also XO 3 yl, V d ,

1

Xa S-Y2 Va

2

sup (x ) g_y : SUP (X l g Y
a a1 1 a d2 2

A A .L

= sup (x ) E A ; sup (x ) E A

a 0‘1 a OL2

A A A

Corollapy 2.3: If E has P-P-, E = B O B
 

any band B of E.

Lemma 2.4 Let E be any vector lattice. Let
 

a 6.E+ . Let B = (b 6 3+ : 3 scalar o 9

a < a (b1 A b2 A ... A bk) V integers k and all choices

of b ‘b ---- b H scalar B .9 (b1 A'b A ... A bn)
ll 20 I RI 2

< B a, V integers n and all choices of b1,b2,---bn.}
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Then there exists a prime ideal P in E ,9 a E P,

Note: B is the class of all elements in E+

such that if b is any finite infimum of elements of
0

B , the principal ideal generated by a is a proper

subset of the principal ideal generated by bO . Also

B is closed under finite infima.

Prggf: Consider the class

3=[I:IanidealinE, aEI,InB=¢}

3 7! Q, for Ia E 8 , where Ia is the principal

ideal generated by a. Partially order 3 by inclusion.

Each chain has an upper bound. 3 has a maximal

element M by Zorn's lemma. We shall prove that M is

prime.

Supposenot.Thenax,y€E, xAy=0 XEM,y£M.

But ' ' ’3 ml 6M, b E B and pOSitive scalars C1, C1 3
1

b1 3C1 x-i-Cl mltalso 3 m2 EM, b2 EB and positive

I I

scalars C2, C2 3 b2 3C2 y+C2 m2

1:1Ah2 g(Cll’mx+C122)A(Cy+C2'm)

“(CXACém2)+(CimlAczy)+(C1’mlAC2'm2)

(Since x A y = 0)

CI . .

g sz2 + Cim1+ Clml E M . This is a

Contradiction, since B is closed under finite infima and

M is an ideal.
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Theorem 2.5: The following are equivalent:

' A r A

(1) Every ideal in E is of the form I,

 

for some ideal I in E.

+

(2) For each u E 3 V E E and scalar

(
A
s

t
n
>

c1 ) ov'g u v .

A

(3) Every prime ideal in E is of the form P

for some prime ideal P in E.

Proof: Masterson (5, TheOrem 2.6) has proved ‘

the equivalence of statements (1) and (2). .2 We have

only to prove the equivalence of (2) and (3).

 

A

(2) =q(;): Let Q be prime in E . Let

A A

Q 0 E = P to prove P = Q . P C Q., by definition.

A A

We have only to prove that Q C»P . Let u E Q n E+

by (2) 3 V E E and positive scalar a 9 av g_u g v

A

= av E P = VVE P = u E P

(3) = (2): Assume (3) and suppose (2) is not
 

true. Then, 3 u E E+- 9 for no x E E+ is x > u., 3

positive scalar d 9 OX S.u S.x.. Let X = [x E E+: u g x}.

The hypothesis of Lemma 2.4 are satisfied

3 prime Q in E 9 u E Q and Q 0 X = Q’:then Q

is not of the form P for any prime P in E, for

H v E E Q Q -) V > u . This contradicts the hypothesis“

Q.E.D.
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Theorem 2.6: Let E be an Archimedean vector
 

A

lattice and E its Dedekind completion. Let P be

A A

any prime ideal in E. Let P = [y 6 E : (yl g Ix},

A A

for some x in P}. If P is prime in E for all

A

prime P in E, and every prime in E is of the form

A

P for some prime P in E, then E has P°P°

nggf: Suppose E does not have P-P° Then 3

. l 1

band B 3 E\B®B #0“. Let E\ Bee ={Xa}aEA'

A_ 11 A J- A

Let xa E {Xa}d€A' E = B (in E) O B (in E) (Theorem 0.23)

0

Let Xao = X01 + x02 where x01 6 B

13y Lemma 2.1 x01 is the sup of a subset of elements of B.

A A

H (in E).x EB‘L (in E).
02

By theorem 2.5 3 yl €.E :) GYi g X01 g yl- Y1 6 B: for,

if not y1 = Xa for some a or y1 = yll + le where

y11 €.B, yl2 6 Bl (in E). y1 = xa e E \\ B e B1 (in E)

i .
=> 3 xa: EB (in E) 9; xa Axaz > 0. xa Axa: E Iyl and

1 . . . ll . A
X A x z E B (in E) which cannot be Since I C B (in E) .
a a y1

Similarly yl cannot be of the form yll + yl2 where

l . .
6'8, 6 B (in E) .. We have x01 < y1 where

yii Yiz

. . .l. . 3

y1 E B. Similarly 3 y2 E B (In E) , X02 < Y2

— L .

x — x + x02 < yl + y2 6.8 O B (in E) = x 6 B O B
d0 01

(in E) since B e Bl is an ideal- Contradiction!
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Theorem 2.7: Let E be
 

an ArchimEdean vector

A

lattice and E its Dedekind completion. Then E has

+A+
P'P° a V a E E 3 d E E

l

principal bands generated by a

identical

(=) Let c [cProof:

B be the band generated by

d > c V c 6 C . Such a

A+
x 6 E 3 y 6 E ) y > x . E =

d d

1

A

.2 B (in E) C B
a

d d

2' 1

A

(in E): also

Let = + 6.B,

d1

0 A o A 0

Bd (in E) C Ba (in E) ..

l

E does not have P

Boslso.

Suppose

E

11

Let 0\

A J. A

(in E) O B (in E) .

A

(in E), x

X0

11
6 B 02

By hypothesis 3 y1 6 E

A A

(in E) B (in E)

Y1

y1 6 B . Similarly

A A

(in E) (in E)By = y2

2

X01

B e B1

.. XO—

Since is an ideal.

) a < d1

and d

in

exists,

y1 6 BX

3 y2 6 E

1
x02 < yl + y2 6 B O B

and the

A

1 in E are

6 E+ c < a}. Let

E. Let d E E 3

for, if

B 6 Bl .

:0
1

d2 6 B .

d1

a < d a < d
l

A

E B C Ba (in E)

0 A o A

Ba (in E)— Bd1 (in E)

'P-Then 3 ‘band B in

< x e E \\ B e Bi
0

x + x where

01 02

A

6 B1 (in E) .

9 x01 < y1 and

A

(in E) c Bil(in E)

01

{3 x02 < y2 and

6 B1 (in E)

X(in E) 6 B @ Bi,
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2.8 A property strictly stronger than Property*.

Let E be an Archimedean vector lattice and

A

E its Dedekind completion. Consider the property:

A

for x, y 6 E+ such that x < y, 3 z 6 E+ such that

x < z < y’. We will show that this prOperty implies

prOperty* . The converse implication is not true. There

are vector lattices which have this property, but which

are not Dedekind complete.

/\

13"-Proof: Let x , 2x > x I. 3 z 6 E ;)

'k

6

A A

E) = Iz (in E) . Hence property .x<z<2x =Ix(in

The rationals is a vector lattice which has the above-

mentioned property. The following example shows that there

are spaces without this property, but which have property*.

Example 2.9: Let E be the set of bounded sequences
 

(an) of real numbers such that the set of points

{an : n = l,2,"°} has a finite or countable closure. E

is an Archimedean vector lattice with the usual pointwise

operations. E is not Dedekind complete since if

{rn : n = 1,2, °°° } is an ordering of rationals in the

closed interval [0 l] and (an) is the sequence which takes

the value rn at n and 0 elsewhere then the set

{(an) : n = l,2,--- } is bounded in E, ‘but does not have

A

a sup in E . E = m,, the bounded sequences of real numbers.
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Masterson (5) has proved that E has property* .

. = r r 0.0. r coo. .ConSider x ( 1, 2, , n' ) where [rn} is

the ordinary of rationals in [0 l], as mentioned above.

Let Y=(rlc r2: "'or )°X<Y:

n-l’

A

x, y 6 El'. .But there exists no 2 6 E 2 x < z < y.

rn + 1, rn+1,

for any 2 = (zl,zz,-°- ) has the property that the

closure of {21, 22, °°-- } is uncountable.

Theorem 2.10: If E has P-P‘ every prime ideal

A

Q in E is either

 

 

A

(a) of the form P for some prime ideal P in E. or

(b) order dense.

A

Proof: Let Q be prime in E . Let P = Q 0 E.

A

Suppose Qst’P. Then, EaEQ) 3b 6P 9 a<b. Let

A = {aa 6 E+ : am < a}. Let BA be the band generated

by elements of A. E = BA 6 BAL . Let c 6 E 9 a < c.

p . l .
Let c — c1 + c2 where cl 6 BA , c2 6 BA .. a < C1

by assumption ( 313 EP 9 a < b). C1 fl'P-

l . A . . A . A
c E'P = B (in E) C Q ,Since B (in E) = B (in E)
l A c1 A

also a 6 Q = Ia C Q = Q is order dense.



Section 3
 

It is well-known that if x, yl, y2 are positive

elements of a vector lattice E such that x g.y1 + y2,

there exists a decomposition of x = x1 + x2 where

0 g_x1 g_y1 and 0 g_x2 g.y2 . (property 0.9). If E

is Archimedean, x 6 E and yl, y2 6 E, it is not in

general true that x1, x2 6 E. If every x 6 E+ can

be expressed as, xi= x1+x2 for all yl, y2 6 El', we say

that E has property** . In the presence of property**,

starting with a prime ideal P in E, ‘we can obtain a

prime ideal P, in E. ‘Under the same conditions, if T

is the structure Space of all prime ideals in E, T and

f(T) are homeomorphic, where f(P) = P, (Theorem 3.2) .

Also there is a way of characterizing property** in terms

of prime ideals (Theorem 3.1). We show that Property*

a Property** = P-P° (Theorem 3.3, Theorem 3.4).Property**

is strictly stronger than P-P- (Example 3.5),but it is

not known whether prOperty* is strictly stronger than

property** . We also show that there is a way of characterizing

P'P: by a prOperty analogous to property** (Theorem 3.4)

Theorem 3.1: Let E be an Archimedean vector lattice,
 

A

P a prime ideal in E, and E the Dedekind completion

A

of E. Let P = [a 6 E : Aa C P} where

30
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Aa = (b 6 E : Ibl g_|al] . If E has property**, P

A x.

is prime in E . On the other hand if P is prime in

A

E for all prime P in E, then E has property**

Proof: Let E have property**

(1) Let a 6 P' and Ic| g_lal. If ldI g Icl and

d 6 E then d 6 P, since Id) 3 lal.

80. c 6 P = P is solid

~

L
A
_
_
_
_
_
-
—
‘
_
.
-

(2) If a 6 P , we show aa 6 P , where d is a

scalar: Let Ibl g_|aaal = la! la), 'b 6 E.

Ibl
glal =EEP =b6P =aa6P

T071

(3) To show that P! is closed under addition:

let a1, i2 6 P’. Let b g_al + a2, ‘Where

a1, a2 6 E4','b 6 E+. By property** , b = bl + b2

where ogblgal, ogbzgaz, b1,b26E,

al6P=b16P:a26;=b26P

b=b1+b26P=al+a26P

(4) To show that P is prime: let a A'b = o,

a, b 6 §.. Suppose" a EVE, 'b 6'3. Then, by definition,

3 al 6 E, a1 < a ) al Z'P; 3 b1 6 E,

bl < b ) bl KTP . This cannot be since

a A b = O = al A b1 = O . Contradiction.

On the other hand, assume P. prime in E for all prime P

E . Suppose E does not have property*f Then 3 a 6 E+,

b2 6 §+' ) a < bl + b2 and a cannot be written
1'
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as=a1+a2,a1,a26E, al<b1, a2<b2_

/\

SO. at last one of b1, b2 is in E \E .

. _ I + . l

ConSider the classes Bl — {b1 6 E . b1 3 b1]

_ I + . I

Bz—{bZEE .bngz}

1CA, BZCA]

3' c6 E )a<c<b1+b2 where c canbewritten

9"={Az A an ideal in E, aZA, B

as=c1+c c<b1. c2<b2,cl,c 6E;for1f

2 ’ l 2

such a c exists. a can be decomposed in the required

way. Hence the class 9.! is non—empty, for the ideal

generated by Bl U B is an element of 91 .

2

Partially order 91 by inclusion. Any chain has

an upper bound. 91 has a maximal element M. We

will show' that M is prime in E. Suppose not. Then 3 x,

y6E,xAy=O xZM, yEM.

So, 51 m1, m 6M and scalars s s s

2 S1'

3 a g slm1 + s3x

2' 3' 4

a _<_ 52m2 + 54y

a g (81ml + 33x) A (52m2 + 54y)

g slm1 A 32m2 + 33x A 52m2 + Slml A 54y

g Slml A 32m2 + 52m2 + Slml

6 M. This is a contradiction.

Hence M is prime.

~ ~A

By hypothesis, M is prime in E . b1, b2 6 M ,

since Blcm and BZCMo But bl+b2 EM since

a E M, a contradiction. Q.E.D.
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Masterson (5) has attempted to compare the

topological properties of structure spaces of E and

.8. He considers the homeomorphism under the mapping

f(P) = 9,, where P is a prime ideal in E and

Q = {y 6 E: ly[ g x}, 'when E has P'P- He shows

that if T is a structure space of E consisting

entirely of minimal prime ideals, T is homeomorphic

to f(T), where f(T) has the relative topology from

the structure space of E. He also has several conditions

which are necessary and sufficient for the homeomorphism

of pairs T and f(T) where T is any structure space

of E, and f(T) has the relative topology from the

structure space of Q, 'when E has the P.P- We

show below that if E has property** and 3m is the

structure space of E, 53 and g(TU are homeomorphic

~

where g(P) = P, defined above.

Theorem 3.2 Let E satisfy property** . Let Em
 

be the structure space of all prime ideals of E and m,

A ~

that of E. The mapping f :5m 4 m ‘where f(P) = P is

one-one, into. Under this mapping 3? and f(TO are

homeomorphic where f(TD has the relative topology from m.

Proof: Let ma=tpegm: aZP}, a6E+, be

a basic Open set in TL

aZP =>afrPd =9 f(fma)=‘flaflf(‘lm
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Hence f(mg) is Open in the relative topology. On the

/\

other hand, if b 6 E

f‘lmb 0 £010) uma : a e E, |a| < Ibl] .

since bfgefl lalglbl, a6E, aEP.

f is one—one onto from 5m to me) and

bicontinuous, SO. f is a homeomorphism.

Q.E.D.

Theorem 3.3 The following are equivalent:
 

A+ +
(1) For x6E, 3 y6E f-aygxgy,

A A

(2) Every ideal in E is of the form I for some

ideal I in E.

/\ A

(3) Every prime ideal in E is of the form P for some

prime ideal P in E.

A

(4) Every prime ideal in E is of the form P for some

prime ideal P in E.

A .~

(5) Every ideal in E is of the form I for some ideal

I in E.

Proof: We have already proved the equivalence

of statements (1), (2), (3) (Theorem 2.5). So it is

enough to prove the equivalence of (l), (4) and (5).

A

(l), = ,(4): Let Q be a prfimé ideal in E.
 

A

Let P = Q n E . Let a 6 Q n (E+\ E) . By hypothesis

H b 6 E+ and scalar a such that at) g_a g_b

a E Q = at) E P = 'b 6 P = A C P
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I +

where A={a 6E:a’<a] =>Q=P.

A

(4) => (1): Suppose 3 a 6E+ such that
 

,7! b 6 E+ and scalar (1 such that ab 3 a _<_b

.... 9
Then lbl, b2, , bk .

a(bl Ab2 A Abk) gag (bl Ab2 A Abk)

for any finite collection of elements of E. By Theorem

1.5, there exists a prime Q in E 1) a ZQ and

BCQ where B=[b6E+: b<a].

~

Clearly Q is not of the form P for any prime

P in E, since BCQ and aEQ.

 

A

(1) => (5): Let J be an ideal in E.

J n E = I is an ideal in E . Let x 6 J n El'. By

hypothesis 3 y6E+ ) aygxgy.ay_<_x =y61

= BX C I where BX = [z 6 E : lZ|.S x} = J = I

(5) = (1): Assume (5). Suppose (l) is not
 

A

true. 3 x 6 E+ such that there does not

exist y 6 E+ such that Qty 3 x _<_ y. Let

A = {y 6 E : Iyl _<_ x}. Consider the ideal generated by A

A

in E. Let it be IA. Consider IA: this is an ideal in

A A /\ ~

E; x E IA => IA is not of the form I , for any I

in E .

Theorem 3.4: E has P-P e V x 6 E+ ,
 

A

+ ayl,y26E ylly2 and x_<_y1+y2, xcanbe
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expressed as = x1 + x2 where xl < yl, x2 < y2 ,

x1, x2 6 E.

Proof: ((=) Suppose E does not have P.P. =

+

3 band B in E and a 6 E

9 aa 218 ® Bl

/\ A /\

13:13“L (in E) 6913JL (in E)

ll . A . A
a — a1 + a2, where al 6 B (in E) ,a2 6 B (in E) .

. _ I I I . I

By hypotheSIS, a — a1 + a2 where al g a1, a2.g a2,

I I I_ I_ .

al 6 E, a2 6 E. But al — al and a2 - a2 for If

I I _ I I _

al < a1 or a2 < a2 . a — a1 + a2 < a1 + a2 — a

s a"

Contradiction.

l
al 6 B and a2 6 B

E has P°P-

(e) Let a6E+ b b 6E\+ b +b b b
' 1' 2 ' as1 2' 1" 2

Let B = {b 6 E+ : bi < b1]. Let T be the band generated

‘ = $1 : SB, YB‘L.by B in E. E T 6 . a a1 + a2, a1 6 a2 6

A /\ Al A Al

Also E = T<D T and b1 6 8, 'b2 6 T

a g_bl +'b2 = a1 g_bl for al I b2 . Similarly

a2 g_b2

Q.E.D.

Example 3.5: Let E be the collection of all
 

bounded real-valued functions f on the positive real axis

such that there is a t, depending upon f, such that

f is finite valued on [t, 00). Under the usual pointwise

1
7
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operations E is a vector lattice.

Masterson (5) has shown that E has

A

Dedekind completion E of E

P-P- The

is the set of all bounded

functions on [O co) .

Now consider a to be the identity function on [O 00) and

b1. the function shown in the figure.

/ ‘
1'

l

I

I \ \ \

/ . ‘ \ \

. \

' ' 1‘ \

'. r '
‘3 ‘

\
1 Ii ‘ \

r
\ ‘

'0’ .\

‘
o

I

i a

 

b2 = l - bl . a g_bl + b2 , but a cannot be expressed

a 2 g_b2, al 6 E, a 6 E,

+

2

b then

as = a1 + a2, a1 g‘bl ,

for, if a = a1 + a2 g_bl

Hence the example.
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