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ABSTRACT

PRIME IDEALS IN A VECTOR LATTICE
AND ITS DEDEKIND COMPLETION
By

K. Kumaran Kutty

Structure spaces are used to study vector lattices
by representing a vector lattice as a class of functions
on its structure spaces. Masterson has attempted to study
the relationship between the structure spaces of an Archimedean
vector lattice E and its Dedekind completion ﬁ. He has
proved that, in the presence of P°*P-, starting with a
prime ideal P in E we can get a prime ideal 3 in Q
such that S NE =P. We prove that if E 1is an arbi-
trary Archimedean vector lattice, starting with a prime ideal
P in E, we can get a prime ideal Q 1in g > Q NE =P.
Masterson introduces the property: V X € é*', the exis-
tence of y € E' and scalar a such that ay < x <y, and
points out that in the presence of this property, the
structure spaces of E and g are homeomorphic. We obtain
several conditions equivalent to this property and prove

that this property is strictly stronger than P°*P* It is

well known that if O < x £ Y+ ¥y where x, Y, Y, €E,



K. Kumaran Kutty

then x can be decomposed as Xy + X, where O < Xy < Yy
and O < X, < Y, - If x € E and Yy Y, € g, it is not
necessarily true that Xy €E, X, €EE. If every x can
be decomposed this way for all Y. Y, €E, starting with a
prime ideal P in E, we can obtain a prime ideal ; in

g such that ; N E = P. This property is strictly stronger
than P-P+ and weaker than the property introduced by
Masterson. Also we obtain a way of characterizing this
property using prime ideals. If g(P) = ;, then P and
g(P) are homeomorphic where P 1is the structure space of
all prime ideals of E. We obtain two ways of characterizing
P-P-, one by a property analogous to the one introduced by
Masterson, and one by a property analogous to the one mentioned

above. Also we mention a property which is strictly stronger

than the one introduced by Masterson.
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Introduction

Several authors have attempted to study vector
lattices using prime ideals. Yosida (8), using prime
ideals, proved that every Archimedean vector lattice is
isomorphic to a vector lattice of extended functions on
some locally compact Hausdorff space. Nakano (7) has
proved that every Dedekind o-complete vector lattice E
is isomorphic to a vector lattice of extended functions
on some totally disconnected Hausdorff space X. The
space X 1is obtained by providing the collection of all
maximal dual ideals in the distributive lattice of
projectors on E with the dual hull-kernel topology.
Johnson and Kist (2) have shown that the representations of
Yosida and Nakano can each be obtained by considering a
suitable subspace of the space of all prime ideals. They
have generalized Nakano's representation to arbitrary
Archimedean vector lattices. Using the concept of spectral
function, Amemiya (1) has developed a spectral theory for
vector lattices, generalizing Nakano's theory for the
o-complete and complete cases. Johnson and Kist (2) have
shown that Amemiya's theory can be obtained by ideal -
theoritic methods. They do this by showing that the set
of all spectral functions defined on a vector lattice E

is essentially the same as the set of all prime ideals in E.

iv



The purpose of this thesis is to investigate
the relationship between structure spaces of an Archimedean
vector lattice E and those of its Dedekind completion
g . Masterson (5) has attempted to answer this question,
but his answers are incomplete. He has shown that if E
has projection property, for every prime ideal P in E

A A A
there exists a prime ideal P in E such that P N E = P.

S is minimal prime if P is minimal prime. If ¥ 1is a
structure space of E consisting entirely of minimal
prime ideals, Y and £f(@{) are homeomorphic where

f£(P) = 3. He also obtains several conditions equivalent
to the homeomorphism of B and £(B), where 8 1is any
structure space of E, in the presence of projection
property. He introduces a property in a vector lattice,
viz. for every x € gf' the existence of y € E' and
positive scalar o J ay < x <y, and shows that under
this condition ®8 and £f(®) are homeomorphic where % is
any structure space of E.

We show that if P is any prime ideal in an
Archimidean vector léttice E, there exists a prime ideal
Q in Q such that Q N E = P. This prime Q is not
unique. We prove two partial converses to Masterson's
result: (1) if 3 is prime in g for every prime P in
E, then E has P+P'P- (2) If every prime in é is of

A
the form P for some prime P in E, then E has P-'P-



Also the property introduced by Masterson is equivalent

A
to the property that every prime ideal in E is of the form

S for some prime P in E. We obtain other equivalent
conditions to this property. We give examples to show
that the implications in (1) and (2) above are not
reversible. Whether projection property is strictly stronger
than the property that 3 is prime in é for every prime
P in E, is an open question.

We introduce another property: if O < x < Yy + ¥y
where x € E+, Yye Y, € £+' the decomposability of
x as = x; + X, where O < Xy < Yy and O < X, < Y, where
Xy. X, € E. It is well-known that if Xy Yq. Y, are
positive elements of a vector lattice E such that
x < Y, t v, then x can be expressed as = x; +x, where
o < Xy < Yy and O < X, < Yy - This property is known as
the Riesz dominated decomposition property. But if x € EX
and Yyr ¥, € §+ , 1t is not necessarily true that
1° %X, € E. In the presence of this property, starting with
a prime ideal P in E, we can define a prime ideal ;

X

A ~ ~ A
in E » PNE=P. Also if P is prime in E for all
prime P in E, then E has this property. If ¥ 1is any
structure space of E, ¥ and f(¥) are homeomorphic under

the mapping f(P) = P. We show that the above mentioned

property is strictly stronger than P-P- The property
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introduced by Masterson is stronger than this property,
but it is not known whether it is strictly stronger.
We also introduce a property strictly stronger than the

A
one introduced by Masterson, viz. for every X0 X € E+

2
such that Xy < Xy the existence of y € E such
that Xy <y K< X, .

The whole work is divided into four sections.
Section O consists of definitions, etc. necessary for

the understanding of the text. Sections 1, 2, 3,

constitute the main body of the work.




Section O

Notation 0.1: E' =[x ¢ E : x > 0).

Definition 0.2: E 1is Archimedean iff x,y € E

such that nx { y for all positive integer n = x = O,

for all x,y.

Definition 0.3: E 1is Dedekind Complete iff

c . .
(xa] E, x, <y €EVa-= sgp x, exists in E.

Definition 0.4: If E and E' are vector lattices

a mapping ¢ : E - E' 1is a vector lattice homomorphism
iff
(i) @(aa) = a@(a) for all a ¢ E, for all
scalar a.

(ii) @(a v b) = g(a) v gd) for all a,b € E.

Definition 0.5: A vector lattice isomorphism is

a one-one vector lattice homomorphism.

Definition 0.6: The vector lattices E and E'

are said to be isomorphic if there exists a vector lattice

isomorphism @& : E = E' such that @ is onto.

Definition 0.7: E' C E 1is said to be order dense

in E if for all x € E, there exists {xa]QEA C E

such that x = sup X,
a




Theorem 0.8: (Nakano, 6). If E 1is a vector

lattice, there exists a Dedekind Complete vector lattice

A

E such that E can be imbedded as an order dense sub-
A A

vector lattice of E, iff E 1is Archimedean. If E

exists, it is unique upto vector lattice isomorphism.

Property 0.9: (Riesz) If O < x < Yy + Yoo
X,Yq Y, € E, there exists a decomposition of x such
that x = x

+ x where O < 3 < Yy and O < X, < Yy

1 2'
This property is known as Riesz dominated decomposition

property.

Definition 0.10: A subset E' c E is order

. - . .
closed iff [xa]aéA E', szp X exists in
E = sup X, € E'.

a

Definition O.1ll: A linear subspace I C E is

an ideal iff I 1is solid, i.e. x €I, |y| < |x] =y € 1I.

Definition 0.12: A principal ideal is an ideal

generated by a single element. Equivalently, an ideal I
is principal iff there exists a € E 3 I = (x:|x| < nlal,

for some integer n}.

Definition 0.13: A band is an order closed ideal.




Definition 0.14: A principal band is the order

closure of a principal ideal.

Notation 0.15:

For all x € E, x+ =x VO

b
]

X
<
(@)

Ix] = xt vx =x"+x

Definition 0.16: x 1y iff |x| A |y| = o.

Notation 0.17: If A CE, A

for all a € a}.

IS

Theorem 0.18: A is a band for any subset A

of E.

Theorem 0.19: E is Archimedean iff A'! = a,

for every band A in E.

Definition 0.20: E has Projection Property (P.P.)

iff E=B »B', for any band B of E.

Definition 0.21: E has Principal Projection

Property (P.P.P.) iff E = B @ B!, for any principal

band B of E.

Definition 0.22: E is Dedekind o-Complete iff

(x ]}

n'nen’ Xn < X € E = sup [xn] exists in E.

n



Theorem 0.23:

~ E has P.P. =
E Ded. Complete E has P.P.P. = E
>

E is Ded. O-Complete is Archivedean
None of the above implications is reversible. Projection
Property and Dedekind o0-Completeness are independent.
If E 1is Dedekind o0-Complete and has P.P. it is Dedekind -

Complete.

Definition 0.24: An ideal P 1is prime ® x Ay € P

X,y FE=>x € P or y € P.

Theorem 0.25: (Johnson & Kist, 2): The following

are equivalent:
(1) P is a prime ideal.
(2) If x Ay =0, then x € P or y € P.
(3) The quotient vector lattice g is linearly
ordered.

(4) If P>oA NB, where A and B are ideals

in E, then either P DA or P D B.

Definition 0.26: Let P denote the collection of

all prime ideals in E. For P' < P, the kernel of
P =N{P: P € P'}. The kernel is an ideal, not
necessarily prime. The hull of an ideal is the collection

of all prime ideals containing that ideal.



Hence if P' < P, note that h(k(P')) > P',
where h denotes the hull and k, the kernel. Taking
h(k(P')) as the closure of P', the closure of any
subset of P 1is uniquely defined. And this closure
operation defines a topology on P. This topology is
known as the hull-kernel topology. P, with this
topology is known as the structure space of E. The
class {%a]aCE is a base for this topology, where
'pa=[pe‘1s:afp}.

More generally, let P denote any collection
of prime ideals in E such that N{pP : P € P} = O.
Define the topology on P as above. P, with this

topology is a structure space of E.



Section 1

It is well known that in a vector lattice,
maximal ideals are prime. Yosida (8) has generalized
this result. He has shown that relatively maximal ideals
are prime. An ideal is relatively maximal if it is

maximal with respect to not containing a fixed elewment.

In this section we given an alternative proof
of Yosida's result (Theorem 1l.1). We also give some
generalizations of his result (Theorem 1.5, Theorem 1.9).
We obtain many beautiful results on prime ideals,
earlier obtained by Johnson and Kist (Johnson & Kist 2)
as easy corollaries to these theorems (Corollaries 1.3,

1.4,1.7,1.8).

Masterson (5) has shown that starting with a
prime ideal P in an Archimedean vector lattice E,
an ideal Q can be defined in g, the Dedekind Completion
of E, such that Q N E = P. He shows that if E has
P.P., Q is prime in g. We show that for a prime ideal
P in an Archimedean vector lattice E, there exists a
prime ideal Q in g such that Q N E = P (Theorem 1.10).
This ptrime ideal Q is not unique (Example 1l.11). We
show that if 3 is prime in ﬁ for every prime P in

E, E has P.P.P. (Theorem 1.12). Also this property

is strictly stronger than P.P.P. (Example 1.13). We give

I



an example to show that Dedekind o-Completeness, a property
stronger than P.P.P., is not strong enough to imply

this property (Example 1.14). Recall Masterson's result
that P.P. implies this property. Whether P.P. is strictly
stronger than this property is not known. Hence

we have the chain

A
P.P. = P prime in E for every prime =
x P in E N
Ded. ©
Completeness

Theorem 1l.1: Let E be a vector lattice and

a € E. Let I be an ideal in E, maximal with respect

to not containing a. Then I 1is prime.

Proof: Existence by Zorn's Lemma:
Let g = {I : I an ideal in E, a £ I}. We can take
a positive for, a €I = |a] € I. ®, is non-empty for,
?a empty = every ideal contains a = E has only one
non-trivial ideal = E 1is linearly ordered. AN is
partially ordered by inclusion. If I1 c I2 C... 1is a
chain in Sa,U I is an upper bound for this chain. .%.
N has a maximal element, by Zorn's lemma.

Let M be a maximal element. We show that
M is prime. Suppose not. Then &b, ¢ €E, b A c =0,
and b £ M, c £ M. =»>a € (Mb) and a € (M,c) where

(M,b) denotes the smallest ideal containing all the
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clements of M and b etc. But a < Am + Bb and
a < A‘m’ + B'’c where A,B,A',B' are positive scalars
'

and m, m € M.

By Riesz dominated decomposition property (0.9),

a=a; +a, where o< al‘g Am
o< a, < Bb
a = ai + aé where o< ai <Am’

0 < aé < B'c

2
. - ¢
o a, = ay + a,,, where o< asy < a;
4
0L a3 L3,
bAc=0 = a, A a, = o = a,, = o

[\
Il

7 71
a; +a, < a; + a, <Am + A'm

= a €M , contradiction.

Corollary 1.2: The intersection of all relatively

maximal ideals in a vector lattice is (0} .
The following two results were obtained by Johnson

and Kist (2). They are immediate from the above theorem.

Corollary 1.3: The intersection of all prime ideals

in a vector lattice is (0} .

Corollary 1.4: The intersection of all minimal

prime ideals in a vector lattice is (0]} .



Theorem 1.5: Let I Dbe an ideal in E and

O<agI. Let M be maximal in the class of ideal

containing I and not containing a. Then M is

S

prime.
Proof: Existence by Zorn's Lemma:
Let J; _ = (J: J an ideal in E, J DI, a £ J)
’
JI,a is non-empty, for I € JI,a . JI,a is partially
ordered by inclusion. Let J1 c Jz C .-+ Dbe a chain in
JI,a' U Ji is an upper bound for this c‘ha:.n."JI,‘_J1 has a
maximal element, by Zorn's Lemma.
Let M be a maximal element. We show that M is
prime. Suppose not.
= % b, c €E, bAc=0, bZgM, c £M
= a € (M,b) and a € (M,c)
= a < Am + Bb, a<Am’+B'c
where A, B, A’, B’ are positive scalars and m, m’' € M.

By Riesz dominated decomposition property

a =a; +a, where Og_algAm
O_<_a2_<_Bb
_ ¢ ¢ ¢ “© 7
a=a; + a, where O_<_algAm
0_<_a2'_<_B'c
_ ’ ¢
azga—a1+a2
. _ ¢
o a, =a, +a,, where Oga21_ga1

V4
0 L ay, L3,



. _ ‘ VN
«.oa=2a; +a, < a; + a, <Am + A'm

> a €M. Contradiction.

Definition 1.6 (Johnson and Kist): A prime ideal

belonging to an ideal I is a prime ideal containing the
ideal I. A minimal prime ideal belonging to an ideal I
is a minimal element in the class of prime ideals belonging
to 1I.

The following two results were obtained by Johnson
and Kist. (Johnson and Kist, 2). They follow immediately

from the above theorem.

Corollary 1.7: The intersection of all prime

ideals belonging to an ideal I is 1I.

Corollary 1.8: The intersection of all minimal

prime ideals belonging to an ideal I is 1I.

+
Theorem 1.9: Let {xa}QEA C E such that

X A X AN sevee A X > 0, for all integers k and
oy a, o
for all choices of indices Qye Qopccey Oy €A. Let M Dbe

a maximal element in the class of ideals not containing any

of these finite infima. Then M 1is prime.

Proof: Suppose not. Then ¥ a,b € E, aANb=0

and a £M, b £M.Hence 3 indices Oge Qpetvey @ and



611620 ":Bm 7
X, A X, AN oo A Xon € (M,a)
1 2
A A.oac/\
xBl xBz xﬁm € (M,b)
= X, A Xy, Ncccc A Xan < Am + Ba
1 2
4
xBl A x62 A e A Xam < Cm + Db
where A, B, C, D are positive scalars and m, mn’ em.
So, x AN X A s+ A X A X AN s A X
oy a2 an Bl Bm
< (Am + Ba)A(Cm’ + Db)
< (Am + Ba)A cm’ + (Am + Ba) A Db
< Am ACm’ +Ba ACmn’ + Am A Db + Ba A Db
< AmACmn‘’+Cm’+Am, °.© aAb=o0
= 0 < X, Nx A eee A Xon A xB A oo A me €EM,
1 2 1
a contradiction. Q.E.D.

On the other hand if P is a prime ideal in a

vector lattice E and {xa} is the class of all positive
a €A

elements not belonging to P, P is the unique maximal
element in the class of all ideals not containing any of

the finite intersections of the xa's . P does not contain
any finite intersection, for, if it does, at least one X,

will be in P. P 1is maximal in the class, for we have

excluded all positive elements not contained in P. P 1is
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unique, for, if P and Q are distinct prime ideals,
the classes of positive elements not contained in P, Q
will be distinct.

As mentioned earlier, starting with a prime
ideal P in E, Masterson (5) defines an ideal 3
in ﬁ, where P = {y € g : |yl < |x], for some x in
P}. This ideal, in general, is not prime. This has the
property that 3 NE=P. If E has P-.P-, 3 is
prime. The following theorem shows that given a prime

ideal P in an Archimedean vector lattice E, there

A
exists a prime ideal Q in E 3 Q NE = P.

Theorem 1.10 Let E Dbe an Archimedean vector

A
lattice, E 1its Dedekind completion and P a prime ideal
A

in E. Then there exists a prime ideal Q in E such
that Q N E = P.

Proof: Let (x_} be the class of positive

Caen

elements of E, which are not in P. This class has the

property that

X A X, A cee A X, >0, for all integers k and all
k

choices of indices Qys Ooreces Ay for if at least one
such infimum is O at least one X, is in P. For
the same reason, this class is closed under finite

ir. fima.
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Consider the class
8 = {J an ideal in g: X, £ P for all o, J 2 P}. The
class J 1is non-empty for 3 € 3§ where
S = [y € é: lyl < |x|, for some x in P} and 3 is
an ideal in g.

3 1is partially ordered by inclusion. If Jl c J2 Ceoen
is a chain in J§, U J, an upper bound for this chain.
.. the class J has a maximal element, by Zorn's lemma.

Let Q Dbe a maximal element in J. We show that

A A
Q is prime in E. Suppose not. Then ¥ a,b € E a Ab =0

and a £Q, b £0
= da €A) Xy < Aq + Ba

and I8 €A 3 x, <Cq’+ Db

B
where A, B, C, D are positive scalars, and

’

0<q,q €0Q

=0 < x, Axg < (Aq + Ba)A(cqg’ + Db)
<Ag AcCg’+2ag ADb + Ba ACg’+ Ba A Db
<{AgACQ'+Ag+Cq‘. ' aAb=0

=0 < X, A X, €Q, contradiction. Q NE = P, Dby construction.

B

The following example shows that the prime ideal Q obtained

in the above theorem is not unique, for a given P 1in E.

Example 1.11: Let E = C, the space of real

A
convergent sequences, E =m, the space of real bounded

0"’ the space of zero convergent sequences is
A

A
a prime ideal in C, but CO is not prime in E,

sequences. C
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A
where C0 = (x €m: |x]| {y., for some y in
A
CO]. Co 1is an ideal in m. By Corollary 1.7 there is
A
more than one prime ideal in m containing CO R for,
A

if there is only one, it has to be C Let q be any

Oo

one of them. Then q N C O C But g NcCc=¢C for,

o° o'
if not,a sequence converging to a non-zero number is in
q=1€q =» gqg=m. In fact we prove that there are an

infinite number of choices for (.

et a=(00"°*"*010 -+ 010 *+++- 010 *°°°)
CLl 02 (13

be an element of m, which has 1‘s in the positions

Qg Qo *t and 0’s at N - {A)} where N denotes the

(-]
positive integers and A = [ai]l . Let J, = (I:
CO'a

A
I an ideal in m, I=C,.a £ 1I}. This class is non-empty for
A

CO is in it. By Zorn's lemma, this class has a maximal

element. Let q, be one such. By methods similar to the

ones employed in the proof of Theorem 1.10, we can show

4

that q, is prime in m. Also a ¢ q, where a’ is the

element in m with zeros at A and 1l's at N - A ,
since a‘’ Aa =0. =  there are at least two prime

ideals viz. q  and q;:;qa Nnc=cy gy Nc=cy.

In fact there are an infinite number of choices for

q, . by lemma 2.4 . For we can have a sequence

a, < a,  ovee . Where the inequalities are strict
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and each a; is an element of the type a. By lemma

2.4, Ra = Rb o Ia = Ib

the class of relatively maximal ideals not containing

where Ra' Rb denote

a, b and Ia' Ib denote the principal ideals generated

by a, b. = R, SR _CR_ "*"
1# %24 33
Masterson (5) has proved that if E has P°P-,

A
and if P 1is a prime ideal in E, P 1is a prime ideal

) A A A ]

in E, where P = ({y €E : |y| < |x|, for some x in
A A

P}. We prove below that if P is prime in E for all

prime P in E, then E has P°*P-P. The example given

after the Theorem shows that the converse implication is

not true.

Theorem 1.12: Let E be an Archim€dean vector

lattice and P a prime ideal in E. Let
A A A
Pp=1{(y €E: |y| < |x|], for some x in P}. If P
A
is prime in E, for all prime P in E, then E has

P-pP-P-

Proof: Suppose E does not have P:P:-P* Then d
a, b € E'  such that sup (b A na) does not exist in E.
n

A
By theorem 0.23, sgp (b A na) exists in E.

Let this sup be denoted by a(b).
A
o b =a(b) + b -a(b) in E.
A
Consider the class J = (I an ideal in E:

x €E, |x| <ca®) = x €1; a(®) £1I}. This class is
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non-empty, for, the ideal generated by all elements of

E less than a(b) 1is an element of the class. The
definition of I 1is consistent, for if O < x € E and
x < a(b), ¥ scalar a 3 a(b) <axi for suppose such
an a exists. x<a(®) = xA(Dd-ad)) =0

> ax ANb =ax A (a(b) + b - a(b)) , in g

A
=ax A a(b) + ax A (b - a(b)) , in E

ax A a(d) = a(b)
ax Ab = a(b).

But ax Ab €E = a(b) exists in E, which is not the
case.

Partially order the class J by inclusion. Each
chain has an upper bound. By Zorn's lemma the class J
has a maximal element M. By Theorem 1.5, M is prime
in }’s:\.a(b) £M = b - a(b) €M. Let P=MNE. P
is prime in E. We will show that ¥ y € E, y > b - a(b)
such that y € M. This proves that 3 is not prime in g.
Let y €E, y > (b - a(b) )

b>y Ab >Db - a(b)
#

Yy Ab# b - a(), since y Ab € E and b - a(b) € g - E
This says: b-(b-a(b)) > b -y AD

i.e., a(b) > b-y ADb €E .
By construction, b -y Ab €M

if y €M, then y Ab €M
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> b-yAb)+yAb=DbE€EM

which cannot be.

So, Zy> (b-a()), y €E such that y € M.
Q.E.D.

Example 1.13: Let L Dbe the set of all

real bounded functions f on the point set

X =(1,2,++., ®} such that f(x) # f(»), for at most b

finitely many x. This is a Riesz space with the usual
point wise operations. This has P:-P°P:-, but does not
have PP+ and is not Dedekind 0 - complete. Let A Dbe
an arbitrary principal band in L, generated by V € L+,
and denote the set ({x: f(x) # O for at least one

f €A} = {x:v(x)> 0} by X If v(®) =0, then X

1° 1
consists only of a finite number of points and X2 =X - X

contains the point «®. If v(«) > O, then X, consists

contains

1

of all but a finite number of points, and Xy
the point <« ., Hence given f € L, we have 1in both cases

£f=f- xxl + £ * ¥ with £ - xxl €A; £ - xX2 €At
2

R L =A®A" . 5. L has P:P-P-
L is not Dedekind complete by Theorem 0.23. To show that L

does not have P-P:, consider the band A in L, defined by

n

{(feL: f(x) =0 for x =1,3,5,*- )

Il

then A*' (f €L : f(x)

O for x = 2,4,6,-++ }

A®Ar = (feL: f(») =0)] L.
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In this space, a prime ideal is the class of
all functions vanishing at a particular point. The
class of functions vanishing at a given point Xq is
clearly an ideal. It is a prime ideal, since if
f Ag =0, f(xo) =0 or g(xo) = 0. These are all the
prime ideals, for suppose an ideal I contains only

functions which vanish on at least two points. Let the

two points be x1 and x2, xl < x2, where x2 can

£

be = =, Consider the functions

h, =1 at x < x

1 1

=0 at X > Xq
h, =0 at x < 3
=1 at X > Xy
hy Ah, =0, but h £1I, h2£I.
Suppose an ideal I contains a function k which does
not vanish at any point. Let k(®) = a. = k(x) = a
for all but finitely many x. Let the points y with

k(y) # a be Yye Yoeeeer Yo Let
(x| vp. Ikl wp)e.een Ixly) =b>0. Let lalAb=c>o0
= k'’ €1 where k‘(x) =C for x=1,2,..., @
= I =1 e I 1is not proper.
Let the prime ideals be Pis Pyserey Py Py
has the property that its elements are functions vanishing
at all but a finite number of points. £ is the class of

A
all bounded functions on the point set X. Clearly P_ |is
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A A
not prime in L, for P contains only functions

@®

which vanish at ® and all but finitely many points.

Example 1.14: We have noted (Theorem 0.23)

that Dedekind O-completeness is a property stronger
than P'P-P. The example below shows that even this
property is not strong enough to imply the primeness of
3, for every prime P in E.

Let L be the collection of all real bounded
functions f on [0 1l]such that £(x) # £(0) for at
most countably many x. This is a vector lattice with
the usual pointwise operations. Given that 0 < u < v,
sup u exists in L and is the pointwise 1limit. Hence
L is Dedekind 0- complete. To show that L does not
have the P-P- ' let A Dbe the band in L consisting
of all f € L vanishing on [O %]. Then A% is the
band of all f € L vanishing on (%q l1]. Any f €A
satisfies f(x) # O for at most countably many x. The
same is true for any £ € A' and hence for any f in
A®At. . L #A @A, .. L does not have P-P.
IO is a prime ideal in L where IO is the collection
of all functions vanishing at O. The Dedekind completion
ﬁ of L 1is the class of all bounded functions on [0 1].

A

A
I, is not prime in L, for let A c [0 1], such that

A
A and AS are uncountable. Let f, g, € L such that
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f =1 at A
=0 at ac

f ANg =0, but

collection of functions vanishing at O

countably many x in [0 1].

.
’

Hence: the example.

.
’

g

o
1

A A )
£ £ Io, 9 £ I, since

at A
at ac

A 0

IO is the
and all but

T3



Section 2

We had noted in Section 1 that Masterson has proved
that if E has P°'P- 3 is prime in ﬁ, if P is
prime in E. (Theorem 2.1, Masterson 5) We obtain a
partial converse to this result (Theorem 2.6) Masterson
has mentioned the property (which we will call the
property *), viz., V¥ x € 34', the existence of y € E J
ay < x <y for some scalar a . He notes that if E has
this property, the structure spaces of E and g are
homeomorphic. He also obtains a characterization of this
property (Masterson 5, Theorem 2.6). We obtain other

characterizations of this property (Theorem 2.5). We show

that this property is strictly stronger than P-:P: (Theorem

2.6, Theorem 2.7, Example 3.5). We also obtain a
characterization of P:P* 1in terms of a property analogous
to propertyf* (Theorem 2.7). We also mention a property

which is strictly stronger than property* (Theorem 2.9,

Example 2.10).

Lemma 2.1: Let E Dbe an Archimedean vector lattice
and A a band in E. Then any positive element x of E

can be written as x = x, + X where x, = sup (x.)
1 1 a a

2 4
A

_ L .
X, € A and X, = sgp (XB)' x6 € A~ , the sups taken in E .

21
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Proof: If x €A ® AL, there is nothing to

prove. e Assume x € E \ A ® A"
A 1L ,. A L, A . A
E=A (in E) ® A~ (in E) (since E has P:P. by
A
Theorem 0.22) .. X = % + Xy where Xy € att (in E)

1 . A
x2 €A (in E)

x, = sgp (xg) » x5 €E VB. x5 € A' (inE) VB

A
for if x6 €A for some B, X, £ at (in E) . Also if
xB €E - A ® At (in E) then xB Ay >0 for some y €A
A
1 . _
= X, £ A (in E) . Also X, = sgp (xa) . X, €EE V a .
X, €A vV a, for if X e at (in E) for some a then

(o}
r ., N L ,. .
xlﬁZA (in E) . xaz E-A®A" (in E) vV a for if

Xy, €E -A®A?t (in E) » then X, ., A z > O for some

(0] (0]
z € A% (in E) (for if x, ,Nz=0 ¥V zE¢ A' (in E) ,
(0]
then X, € att (in E) = A, since E 1is Archiredean)
(0]
1L A
= X £ A (in E) . Q.E.D.

Lemma 2.2: If E=A®A*t , Wwhere A 1is an
A A /\l A
ideal in E, then E = A @ A R where E, A, A are
the Dedekind completions of E, A, at respectively, as

vector lattices.

A
Proof: Let x € (E)+ and let x = sup X, where
- a

X €E vV a.
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x <y € E+,

for any element

A
of E 1is majorized by an element of E.

_ L
Let vy = Y + Y, where Yy €A, Y, € A",
Let x = x + x where x €A,
a =N a, oy
L
ble € A vV a
%2
X = sup X = sup (x. + x_)
a a ay ay ‘
l
= sup (x_, ) + sup (x_ )
a M1 a %2 !
Since x L X vV ao,B
@ 7 P
A
(all the sups taken in E) . Also X, S-yi' v a,
1
X, Y, Ya
2
sup (x, ) <y,: sup (x, ) Ly
a al 1 a2 2
A 1
= sup (x, ) €A ; sup (x. ) €A
a aq Q a,
A A Ay
Corollary 2.3: If E has P-P-, E=B ®B for
any band B of E.
Lemma 2.4 Let E Dbe any vector lattice. Let
a € E Let B = (b € E' : A scalar a pj
a<a (b1 A b2 A ses A bk) v integers k and all choices
of bl' b2, ceen, bk' ¥ scalar B ) (bl A b2 A seoe A bn)
<B a, vV integers n and all choices of bl' 2,---bn.}
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Then there exists a prime ideal P in E ) a €pP,
PNB=9.
Note: B is the class of all elements in E'

such that if bO is any finite infimum of elements of
B, the principal ideal generated by a 1is a proper
subset of the principal ideal generated by bO . Also

B 1is closed under finite infima.

Proof: Consider the class
J=1(I: I an ideal inE, a €I, I NB = ¢}
REE N for Ia €3, where Ia is the principal
ideal generated by a. Partially order J by inclusion.

Each chain has an upper bound. .. 3 has a maximal
element M Dby Zorn's lemma. We shall prove that M is
prime.

Suppose not.Then 3 X, vy €E, X Ay=0 x £M, v £M.

But 3 m, €M, b, €B and positive scalars Cyo Ci J

1 1
13 < C; x + C1 my ¢ also 4 m, EM, b2 € B and positive
4 s
scalars Cz, c, 3 b, < C,y+ C, m,
- 4
<. bl A b < (C x + c )A(Czy + C,m )
< (c X A c2 m ) + (cl 1 A c2y) + (C1 1 A sz )

(Since x Ay = 0)

’ 4 14 . .
< Cym, + Cymy + Cymy €M. This is a

contradiction, since B is closed under finite infima and

M is an ideal.
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Theorem 2.5: The following are equivalent:

A A
(1) Every ideal in E 1is of the form I,

for some ideal I in E.
A
(2) For each u € E+ 4 v € E and scalar
a ) av<ulv.

A
(3) Every prime ideal in é is of the form P

for some prime ideal P in E.

Proof: Masterson (5, Theorem 2.6) has proved A

the equivalence of statements (1) and (2). ... We have

only to prove the equivalence of (2) and (3).

A
2) = (3): Let Q be prime in E . Let
A A
QNE=P to prove P =Q. P < Q, by definition.
A A
e We have only to prove that Q © P. Let u €Q N E'

by (2) ¥ V € E and positive scalar a 3 av < u KV

A
= av €P = VEP = u €P

(3) = (2): Assume (3) and suppose (2) is not

true. Then, ¥ u € £+ ) for no x € E' is x >u, q
positive scalar a 3 ax Lu < x. Let X = {x € Et: u < x}.
The hypothesis of Lemma 2.4 are satisfied
e 4 prime Q 1in g 2 u €Q and Q N X =@ :then Q
is not of the form S for any prime P in E, for

¥ v €EENQ 3 Vv >u. This contradicts the hypothesis

Q.E.D.
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Theorem 2.6: Let E be an Archimedean vector

A
lattice and E its Dedekind completion. Let P be
A A
any prime ideal in E. Let P = {y €E : |y| < |x|,
A A
for some x in P}. If P 1is prime in E for all

A
prime P in E, and every prime in E is of the form

A
P for some prime P in E, then E has P°P-

Proof: Suppose E does not have P-P* Then &

- L L
band B ) E \NB@®B #¢g. Let E\ B®B = {Xa}aEA'

A - 11 A 1 . A
Let x € {x_} . E=B (in E) ® B~ (in E) (Theorem 0. 23)
ao o a €A
Let x = x + x where x € tt (in g) X € Bt (in g)
Qg - ‘ol 02 0ol ' %02 :
By Lemma 2.1 x is the sup of a subset of elements of B.

ol
By theorem 2.5 & y, €E 3 ay; %5 Ly, ¥p € B, for,

if not y, =x, for some o or Y; =Yy * Y15 uhere

€ B, € Bt (in E). Yy = %, €EE \ B® Bt (in E)

Y13 Y12

Lo,
= 9 X, € B~ (in E) 9 X, Nx, 1>0. x, AX, s € Iyl and

A
X, A X, € Bt (in E) which cannot be since Iy c ptt (in E) .
1l

Similarly Yy cannot be of the form Y11 t Yy, where

L. .
€ B, € B” (in E) . We have X5 < Yy where

Y11 Y12
. . L . 3

Yy € B. Similarly q Y, € B® (in E) = X5 < Y,

s X,0 = ¥o1

(in E) since B @ B* is an ideal. Contradiction'®

Lo, - L
+ X4, < Y, t Y, €B ® B~ (in E) X €EB ®B
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Theorem 2.7: Let E Dbe an Archimedean vector

A
lattice and E its Dedekind completion. Then E has

1 € E+  a < d1 and the

A
principal bands generated by a and d1 in E are

Nt
P-P- o V a €E 4 d

identical

Proof: (=) Let C {c € E :c< a}. Let

B Dbe the band generated by C in E. Let d € E
d > c v c €C. Such a d exists, for, if
A4 1
X €E 4 y €E ) y>x. E=B®B".
= L
Let dA— dl + d2, il €EB, d2 €B. a<d = a<id
e Ba(in E) ¢ B (in E); also d

1

A
a 1 €B C Ba (in E)

1

. 3 A . A . 3 A . A
. Bd (in E) C Ba (in E) o Ba (in E) = Bd (in E)

1 1
(¢<=) Suppose E does not have P-P.Then § band B in

E > E \ B®B'¥#¢g. Let 0<x, €E \ B ®B"

(0]
A A

1y . Lo, _
=B (in E)AD B™ (in E) . X5 = %o

o 1 . A
(in E) , X5 €EB” (in E) .

By hypothesis d Yy €EE X01 < Yy and

M >

+ x where

02

1L

X €B

ol

A . A . 11,. A
BX (in E) =B (in E) .. Yq € Bx (in E) € B " (in E)
o1 Y o1
RO 2] € i. Slmllarli d Y, €EE ) X592 < Y, and
B, (inE) =B_ (inE) = y, € B (in E)
02 Y

.o XO = Xol

since B ® B* is an ideal.

L . L
+ X5, < Y, t v, €EB ®B (in E) > x €B ®B
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2.8 A property strictly stronger than Property*.

Let E Dbe an Archimedean vector lattice and
g its Dedekind completion. Consider the property:
for x, y € £+' such that x < vy, 3 z € E' such that
x <z <y. We will show that this property implies
property* . The converse implication is not true. There

are vector lattices which have this property, but which

are not Dedekind complete.

A
Proof: Let x €ET ; 2x > x S %3 z €E )

€
. A . A *
x <z < 2x = Ix (in E) = Iz (in E) . Hence property .
The rationals is a vector lattice which has the above-

mentioned property. The following example shows that there

are spaces without this property, but which have property*.

Example 2.9: Let E Dbe the set of bounded sequences
(a,) of real numbers such that the set of points
{an :n=1,2,"**}] has a finite or countable closure. E

is an Archimedean vector lattice with the usual pointwise
operations. E 1is not Dedekind complete since if

[rn ;n=1,2, -+ } 1is an ordering of rationals in the
closed interval [0 1] and (an) is the sequence which takes
the value r. at n and O elsewhere then the set

[(an) :n=1,2,--+- ] 1is bounded in E, but does not have

A
a sup in E. E = m, the bounded sequences of real numbers.
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Masterson (5) has proved that E has property*

Consider x = (rl, Lyr ttcey E, «+++) where [rn] is

the ordinary of rationals in [0 1], as mentioned above.

Let y = (rl, r2, .., rn-l’ rn + 1, rn+1'
A
X, Yy € et . But there exists no z € E ;} x< z<Ky,

). x < vy,

for any z = (zl,zz,--- ) has the property that the
closure of [zl, Zye "ttt } is uncountable.

Theorem 2.10: If E has P:P* every prime ideal

A
Q in E 1is either

A
(a) of the form P for some prime ideal P in E, or

(b) order dense.

A
Proof: Let Q bDe prime in E. Let P =Q NE.

A
Suppose Q #P, Then, Ta €Q ) ¥Xb €P ) a<b. Let

A = [aa €cE : a < a}. Let B be the band generated

a A
by elements of A. E = BA ® BAL . Let ¢ €E ) a<c.
_ . 1 .
Let c¢ = < + c2 where cl € BA : c2 € BA . a < cl
by assumption ( ¥b €P ) a < b), cq £p.
r ,. A . . A A

c, £ P =B (in E) € Q ,since B (in E) = B, (in E)

1 A S A

also a €Q = Ia CQ = Q 1is order dense.



Section 3

It is well-known that if x, Yy, ¥, are positive
elements of a vector lattice E such that x < Yyt Y,
there exists a decomposition of x = X, + X, where
0 < Xy g_yl and O < X, < Y, - (property 0.9). If E
is Archimedean, x € E and Yy y2 € g, it is not in
general true that X1 X, € E. If every x € ET can

A
be expressed as, x = X,+X for all Yy Y, € E4', we say

1 72
that E has property** . In the presence of property**.
starting with a prime ideal P in E, we can obtain a
prime ideal ; in g . Under the same conditions, if P
is the structure space of all prime ideals in E, P and
f(P) are homeomorphic, where f£f(P) = ; (Theorem 3.2) .
Also there is a way of characterizing property** in terms
of prime ideals (Theorem 3.1). We show that Property*
= Property** = P-P* (Theorem 3.3, Theorem 3.4).Property**
is strictly stronger than P:P- (Example 3.5), but it is
not known whether property* is strictly stronger than

property** . We also show that there is a way of characterizing

P*P- Dby a property analogous to property** (Theorem 3.4)

Theorem 3.1: Let E be an Archimedean vector lattice,

A
P a prime ideal in E, and E the Dedekind completion

~ A
of E. Let P = (a €E : Aa C P} where

30



is prime in

A
E

A

bl < lal} .

E .

for all prime

(1)

(2)

On the other hand if P

P in E

3

1

If E has property**, P

then

is prime in

E has property**

Proof: Let E have property**
Let a € P and |c| < lal. If |d| < |c| and
d €E then d €P, since |d] < lal.
So, c €p = P is solid
If a € ;, we show aa € ;, where o 1is a
scalar: Let |b| < klal = |a] |a| » b €E,
. |b|g|a|=]_2_6p=bep=aae§

(3)

(4)

Tl

To show that ; is closed under addition:

let aj. iz €P. Let b < a; +a,, where

a;. a, € E+', b € E'. By property** , b = b1 + b2
where O < bl < a;» O < b2 < a, s bl, b2 €E,
alei;=bep:aze;=bzep

. b=b +b, €P = a +a, €P

To show that ; is prime: let a Ab =0,

a, b € é . Suppose a E’;, b £ ;. Then, by definition,
i a; €E, a; <a > a £p; 1 b, €E,

bl <b ) bl £P. This cannot be since
aAb=0 = a; A bl = 0. Contradiction.

On the other hand, assume

in

b

ll

E .

b

2

Suppose

AR

€ E

R

~

P prime in

A
E for all prime P

E does not have property*f Then ¥ a € E+,

a < b1 + b

2

and

a

cannot be written

— e .
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as=al+a2, ay . a2€E, al<b1;\ a2<b2_
1 b2 is in E \(E.

. - 4 + . L4
Consider the classes B; = {bl €E : by bl}

_ ’ +. ’
B2—[b2€E .bngz]
U=(A: A an ideal in E, a £A, B

So, at last one of Db

1CA, BZCA]

¥ c € E )a<c<bl+b2 where ¢ can be written

as=c1+c c<bl. c2<b2,cl,c € E; for if

2’ 71 2

such a ¢ exists, a can be decomposed in the required
way. Hence the class Y 1is non-empty, for the ideal

generated by Bl UB is an element of ¥ .

2

Partially order U Dby inclusion. Any chain has
an upper bound. ¥4 has a maximal element M. We
will show that M is prime in E. Suppose not. Then I X,
y €E, x ANy =0 x €M, y £M.

So, 4 ml, m, €M and scalars s s s

2 S1e
2 a < S;m; + s;X

2" 73" T4

a < S m, + S,¥Y

. a < (slml + s3x) A (szm2 + s4y)

< S1my A s m, + s3x A Som, + symy N s,y

< $1M A S m, + s m, + S

€ M. This is a c¢ontradiction.

Hence M 1is prime.

~ A ~

By hypothesis, M 1is prime in E. bl' b2 EM,

since Bl C M and B2 C M. But bl + b2 ZM since

a €M, a contradiction. Q.E.D.
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Masterson (5) has attempted to compare the
topological properties of structure spaces of E and
é . He considers the homeomorphism under the mapping
f(P) = S, where P 1is a prime ideal in E and
3 = {y € é: |yl < x}, when E has P°'P- He shows
that if P 1is a structure space of E consisting
entirely of minimal prime ideals, P is homeomorphic
to f£(P), where £(P) has the relative topology from
the structure space of g. He also has several conditions
which are necessary and sufficient for the homeomorphism
of pairs P and £(P) where P 1is any structure space
of E, and f(P) has the relative topology from the
structure space of g, when E has the P-P- We
show below that if E has property** and M 1is the

structure space of E, © and g(M are homeomorphic

where g(P) = ;, defined above.

Theorem 3.2 Let E satisfy property*™ . Let

be the structure space of all prime ideals of E and %,
N ~

that of E. The mapping £ : M * ® where £f(P) =P is

one-one, into. Under this mapping ¥ and £(M) are

homeomorphic where f£(M) has the relative topology from .

Proof: Let W = (P €m: a £PJ, a €E', be

a Dbasic open set in M.

agP = afgp = £m) =2, N £ .
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Hence f(mg) is open in the relative topology. On the
other hand, if Db € ﬁ

£l nEm) =um, : acE, lal < bl
since b £ P o 4 lal] < ||, a €E, agp.
. f 1is one-one onto from M to £(M) and

bicontinuous. So, £ 1is a homeomorphism.
Q.E.D.

Theorem 3.3 The following are equivalent:

Nt +
(1) For x € E , 4 y €E 2 ay £x<Kvy.
A A
(2) Every ideal in E 1is of the form I for some
ideal I 1in E.
A A
(3) Every prime ideal in E 1is of the form P for some
prime ideal P in E.
A ~
(4) Every prime ideal in E 1is of the form P for some
prime ideal P in E.

N ~
(5) Every ideal in E 1is of the form I for some ideal

I in E.

Proof: We have already proved the equivalence
of statements (1), (2), (3) (Theorem 2.5). So it is

enough to prove the equivalence of (1), (4) and (5).

A
(1) = (4): Let Q be a prirne ideal in E.

A
Let P=QNE. Let a €0 N (EY\ E). py hypothesis
@ b € E' and scalar a such that ob L£a<b

a€EQ =» ab €P = b €P = ACP
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7 +

where A = (a’ €E : a‘<a}] = Q=0p.

A
(4) = (1): Suppose d a € EY  such that

¥ b ¢ E' and scalar a such that ob < a<hb
e o o o %
Then ,Kbl, b2, ’ bk

a(bl/\b A seee /\bk) ga_<_(bl/\b A oo /\bk)

2 2

for any finite collection of elements of E. By Theorem
A

1.5, there exists a prime Q in E 3 a £Q and

B © Q where B={b€E+: b < ajl.

Clearly Q 1is not of the form P for any prime

P in E, since B CQ and a £0Q.

A

(1 = 5): Let J bYe an ideal in E.
JNE=1I is an ideal in E. Let x € J NET . By

hypothesis 3 yEE+) ay <x<y. ay <{x = y €1

= B, & I where BX={z €EE : |zl <x} = g=1

(5) = (1): Assume (5). Suppose (1) 1is not

true. ! x € }/3\+ such that there does not
exist y € E' such that ay < x<vy. Let
A=1(y €E: |yl < x}. consider the ideal generated by A
in E. Let it be Ip- Consider ?A:

A

A N ~
E; xEIA = IA is not of the form I, for any I

this is an ideal in

in E.

Theorem 3.4: E has PP e V¥ X €E R

A
+
Yy, ¥, €E J Y, +y, and x <Y+ Y, x can be
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expressed as = Xy + X, where X < Yy X, < Yy o
X0 X, € E.
Proof: (<=) Suppose E does not have P-P. =
+.

4 band B 1in E and a € E
) a £B @ B
A A A
E =B (in E) ® B! (in E)

. _ 1l
.. a = a1 + a, s where al €B

By hypothesis, a =a;+ aé where ai

:
fo]
N H>
., o
N
m
o9}
o
o]
9

7 ‘ r _ I_ .
ay € E, a, € E. But a; = a; and a, = a, for if
4 14 _ ? ‘ _
ay < a1 or a, < a2 , a = al + a2 < a; + a2 = a.
# #
Contradiction.
L
. al €B and a2 € B
. E has P-'P.
(=) Let ce', b, b, cE" b, + b b b
a + Pye By r @S D) + Dy, Byt by
Let B = [bi € E : bi < bl]. Let B be the band generated
i = %‘L = B, %l,
by B in E. E =88 ., a a; + a,, a; € a, €
A A A, A Ay
Also E=93® 8 and bl € 8, b2 €2
a < bl + b2 = < bl for a; L b2 . Similarly
a, g_bz .

Example 3.5: Let E be the collection of all

bounded real-valued functions f on the positive real axis
such that there is a t, depending wupon f, such that

f 1is finite valued on [t, «). Under the usual pointwise

T_‘_ﬁ
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operations E 1is a vector lattice.

Masterson (5) has shown that E has

A
Dedekind completion E

P-P- The

of E 1is the set of all bounded

functions on [0 =) .

Now consider a to be the identity function on [0 =) and

bl' the function shown in the figure.

1 y \\ )
; L ) l.\\ / \\\\
3 ,/" \ \\\ /
v —_— e - e -.--). S N A !
1 2 3 4 5
b2 =1 - bl . a g.bl + b2 , but a cannot be expressed
as = a; +a,, a, g_bl, a, g_bz, a; €E, a, €E,
for, 1if a = a; +a, §.b1 + b2 then a; = bl; a, = b2.

Hence the example.
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