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ABSTRACT

A THEORETICAL INVESTIGATION OF
ANNULAR MAGNETOHYDRODYNAMIC FLOW
WITH A MOVING BOUNDARY

by Dennis C. Kuzma

The problem considered is the laminar, steady flow of a viscous,
incompressible, conducting fluid in the annular space between two in-
finitely long circular cylinders under the action of a radially impressed
magnetic field end an axially impressed electric field when the outer
cylinder is given a uniform angular velocity. The conditions of the
problem reduce the magnetohydrodynamic equations to three equations in
pressure, velocity, and magnetic field. One equation gives the pressure
variation in the radial direction and the other two equations are coupled
equations for the velocity and the magnetic field. These thre}e equa-
tions are functions of one variable, and may be solved in closed fora.

In the limiting case vhere the radii become infinite but their differ-
ence remains finite, snd there is no velocity of the outer cylinder, the
solution becomes Hartmann's flow between infinite parallel plates with a

transverse magnetic field and a uniform applied electric field.
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INTRODUCTION

When an electrically conducting fluid moves in the presence of a
magnetic field, electric currents are induced in the flow. Electric
fields applied to the flow also produce electric currents. These elec-
tric currents interact with the magnetic field and produce mechanical
forces which modify the flow. The friction forces due to the viscosity
of the fluid also modify the flow.

Although the equations which describe these phenomena are very com-
plicated nonlinear partiml differentisl equations, some special problems
may be solved in closed form. The flow of an electrically conducting
fluid in sn sannular channel with moving boundaries may be solyed in closed
form in some special csses. Very few problems with moving boundaries
have been considered in cylindrical coordinates, other than that of the
‘impulsively accelerated flat plate with a transverse magnetic field as
the limiting case of the cylindrical problu.u)’ The solution presented
here pertains to the case of an annular channel with a moving boundary.

In this study, a viscous, incompressible, conducting fluid is con-
sidered in an infinitely long aimular channel of inner radius a and
outer radius b (Fig. 1). A magnetic field is applied to the channel
in the radial direction such that H_ = w/r, where w 1{s a constant.

A uniform electric field Eo is applied to the channel in the axisl
direction and the outer cylinder is given a uniform angular velocity o.

'Superscrlpt numbers in parentheses refer to the List of
References.
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The applied magnetic field is a line source magnetic field located
on ths common axis of the inner and outer cylinders. Although a line
source magnetic field does not exist in reality, it {s possible to obtain
a good approximation to such a field by the use of a core of material
with high permeability within the annulus and a cylindrical shell of
material with high peameadility outside the annulus. The flux lines
could close through these permeable paths at long distances from the
region of interest (Fig. 2). The source of the flux could be the core
itself, if the core is made of & permanantly magnetized material. Since
the purpose of this study is the theoretical investigation of the flow
snd not the experimental prodlems involved, the details of providing the
necessary magnetic field will not be discussed further.

I; there were no magnetic field, this problem would be the ordinary
flow in the annular space between a rotating outer cylinder and a
stationary inner cyundcr.(z) This case can be derived as a limiting case
of the annular magnetohydrodynamic flow.

If there were no angular velocity, this problem would be a cylin-
drical snalog of Hartmann's flow between infinite parallel plates with
8 transverse magnetic field and a uniform electric field applied parallel
to the plates.!3) It will be shon that Hartmann's flow can be derived

as a limiting case of the annular magnetohydrodynsmic flow.
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REVIEW OF PREVIOUS RESEARCH

Because of the great amount of work that has been done in magne-
tohydrodynamics, no attempt will be made to undertake a complete review
of previous research. This review will be confined to works which per-
tain in some way to the problea presented here.

The results of the first theoretical investigation in the field
vhich is now known as magnetohydrodynamics were publighed by
J. Hartsann'3) in 1937. Hartsann considered the laminar flow of an
electrically conducting l1iquid in s homogeneous magnetic field. This
investigation is considered the classic work in magnetohydrodynamics.

A cylindrical analog of Hartmann's flow has been considered by
S. Glohc.(h) Globe considered the laminar, steady flow of an electric-
ally conducting, incompressible fluid in the annular space between two
infinitely long circular cylinders under the action of a radially impressed
magnetic field and a constant longitudinal pressure drop.

I. G. Chzk-nrev(S) also considered the laminar, steady flow of an
electrically conducting, incompressible fluid in the annular space
between two infinitely long circular cylinders under the action of a
radially impressed magnetic field. Chekmarev considered three such
problems. The first problem concerned the flow under the action of a
constant longitudinal pressure drop and a radial injection of a liquid
with constant v?loclty at the surface of the inner cylinder. The second
problem concerned the flow under the action of a uniform axial electric
field and a radial injection of a 1iquid with constant velocity at the

surface of the inner cylinder. The third problem concerned the flow with

-5
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a uniform axial electric field and a constant longitudinal pressure
drop.

Few probleas in cylindrical coordinates have been éonsldered with
moving boundaries. One of the few such problems that has been con-

sidered is the work of G. F, Carrier and H. P, Greenspan(l)

concerning
the flow past an impulsively accelerated flat plate with a transverse

magnetic filed as the liaiting case of the cylindrical problena.



EQUATIONS

In order to determine which equstions to use, some assumptions must
be made about the nature of the fluid. It will be assumed that (1) the
fluid is incompressible, (2) the free charge density and the displacement
current are negligible, (3) the permeability, conductivity, permittivity,
and viscosity are constant scalar quantities, and (L) the Lorentz force
is the only body force acting on the fluid.

Under these assumptions, the equations of magnetohydrodynamics in
rational i zed nks units m(6’ 7):

PxAE = 3 (1)
PxF - - | 2
V.5 = 0 (3)
2.7 = 0 (L)
T = o(F+uVxH) _ | (5)
v.V =0 (6)
'?‘Z‘(T’\‘vﬁ - -.1‘.)vp+.v217‘+.%3\ H (7

Since the physical aspects of the problem suggest the use of
cylindrical coordinates, these equations will be used in their component
form in cylindrical coordinates. These equations simplify considerably
for the following reasons:

(1) Because of symmetry around the axis, (3/3¢) = 0.

-7~
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(2) PBecause of steady flew, (2/3t) = G,

(3) Because of the infinite dimensicn in the 2z directicn and the
fact that none of the applied fields are functicns of 2z, H  and v
cannot te functicns of =z.

(4) It is assumed that the applied field H = w/r fixes the
radial component of the magnetic ficld at r=a and r = b for all
values of z.

(5) It is assumed that there is no flow in the 2. direction. This
may be accomplished by making (3p/dz) = C.

(6) An electric field can only arise from an applied voltage, a
tire changing magnetic field, or free charges.

The ahove simplifications lead to the followirg results when
applied to the equaticns:

(a) Since V= '\_I\(r), equaticn (6) becomce

d(rVr)
dr

= C (8)

When the conditicns that Vf(a) - Vr(b) = 0 are applied, it is seen
that Vt = 0.
PO §
(») Since H = H(r), it follows from equation (3) that

d(rHr)
dr

-0 (9)

Arplylng the conditicns that Hr(a) = w/a and H.(b) = w/b, it is seen
that H_ = w/r. Thus, the radisl component of the magnetic field is not
affected by the fluid flowing in the annulus.

(c) Since neither a time changing magnetic field nor free charges
exist in the flow, the electric field must be given by the applied field.

Thus, Er = E¢ =0 and E, = Ej.

<
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(d) Equations (1) and (S5) may be comtined to elimirate J. Then
- - - - .
?xH = o (E+ uV xH) (10)

The radial component of this equation, including previous assumpticns

is

¢Hz = 0 (11}
But V¢ is not zero, so H2 = 0,

-
Combining equaticns (1) and (7) to eliminate J and irtroducing
the above simplificaticns, three scalar equations are obtained from

equation (l0) aud the combination of (1) and (7).

2,

d<v av, v d(rH )

g,1°¢_ ¢ . _w TP (12)
4 2 r dr 2 .2 dr

r r pwr

d(rH)
l——-—-ﬂ- - -&'—.w ! \
r dr ok, r ¢ (13,

v 2 pHy d(rH,)

R M i (14)
dr r T dr

The boundary conditions for the above equations are:

V¢(8) = 0 (15)
V¢(b) = wb (18)
Hy(a) = 0 | an

The boundary conditicns for V¢ are the no slip conditions at the walls,

The boundary condition for H¢ is obtained by requiring that no current

flow in the inner cylinder. Equation (1) in integral form becomes

'{f.d?-ﬂf.d§ (18)
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The path of integraticn is taken as the circle r = a. In the area

-

bounded by r = a, J s equal to zero. Thus

2ma Hy(a) = 0 : (19)



SOLUTION

The equations and boundary conditions may be obtained in a more

convenient form by the introduction of some dimensionless quantities.

Let
R = r/a (20)

c = b/a | (21)

v = (V¢/an)(m/a)1/ 2 (22)

h = Hylo lsoa)‘1 (23)

P = p(EZ a? o)t (2b)

n = w(o/pm/? (25)

P = aquv ’ (26)

In the above dimensionless quantities, =a 1is a cylindrical analog of
the Hartmann number and P.l is the magnetic Ptandt} number.

Introducing the above dimensionless quantities into equations (12),
(13), snd (14), the equations become:

jep) ., p (21)
) |

@ _ vo o hdRh

& "R "R & (28)

22_!*}_(1_\_'_}_ - --‘-dRh (29)

2 RA&™ 3 22 &R

-11-
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The boundary conditions from equations (15), (16), and (17) become:

W1) = o (30)
We) = (ab/Ea) (/)2 = v (31)
n(1) = 0 (32)

When equations (27) and (29) are combined, an equation involving only

v {is obtained:

2

dv,ldv (2, pHhe . _2 (33)
|2 R® R2 R

This equation may be solved by the introduction of a new variable.

Let
R = en (3k)
Then
- % (35)
2 2
d -2n d -2n d
——— - — - —— (
aR2 € d4n? ¢ @ 36)

When this new varisble is substituted into equation (33), the
following equation is obtained:

2
LE_ e v = - me” (37)
dn
The solution to this equation is well known. It is
v = C, sinh gn +C, cosh pn + e"/n (38)

where

B = (a+1)}/2 (39)
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The constants are found by applying the two boundary conditions on
v. The constants are:

L WV, * cosh(B In¢) - ¢
Ci ® " sinh(p In ©) (ko)

C, = -1/m (k1)

When these constants are substituted into the equation for the ve-

ocity and n is written in terms of R, the following equation is

obtained:
v = 1/m [A sinh(B In R) - cosh(p 1n R) ¢+ R) (L2)
vhere
mv, + cosh(B ln¢c) - ¢
A= sinh(p 1n c) (L3)

The velocity profiles are plotted for a range of values of the
velocity of the outside cylinder with m= 0, 2, 4, and 12 (Figs. 3-10).
The ratio of the inner and outer radii is arbitrarily chosen as 2.

The magnetic field is obtained by inserting equation (L42) into
equation (27) ‘and integrsting. Making use of the fact that h(1) = O,
the following is obtained:

R
nR) = 1R fl (x - mv) dx (Lh)
Then
n(R) ==1/m% (1 + B A) [cosh(p 1n R) - 1/R]

+ 1/02 [(8 + A) sinh(g 1n R)) (LS)

The pressure distribution is obtained by integrating equstion (28).
Thus

R 2 R
P(R) - P(1) = fl Lax+P ]1 halh) o0 (4¢)



Dimensionless Velocity - v

0o.L
003 - Vo - O.h
v, = 0.2
002 = °
Vo = 0.0
0.1
Vo - - 002
0.0
vo = -0,
-001 =
-002 -
«0.3 |-
-00" ‘ l l l
1.0 1.2 1.4 1.6 1.8

Fig.

Dimensionless Radius - R

3 Velocity Profiles for m = 2

2.0



Dimensionless Velocity - v

-15-

o.L

003 —

0.2—

001 P

inviscid fluid--
- v, = 0.k
~

~
”~

0.0

‘001‘
1.0

1.2 1.4 1.6 1.8
Dimensionless Radius - R

Fig. 4 Velocity Profiles for m = L

2.0



Dimensionless Velocity - v

O.LT
0.1—

-16-

0.2:—

0.1_

0.

o

inviscid

fluld\’ _

-001_

-0.

p. -

| Il 1

1.2 1.4 1.6
Di-cns!onlcss Radius - R

Fig. 5 Velocity Profiles for m = 12

1.8

2.0



Dimensionless Velocity - v

0.5

0.4

0.3

0.2

0.1

0.0

| | [l |

1.0 1.2 1.4 1.6 1.8 2.0

Dimensionless Radius - R

Fig. 6 Velocity Profiles for v, ® 0.4



Dimensionless Velocity - v

-18-

Ooh

0.3}—

0.2

0.1

o
L[]
o

1.0

1.2 1.h 1.6 1.8 2.0

Dimensionless Radius - R

Fig. 7 Velocity Profiles for v, = 0.2



Dimensionless Velocity - v

0.3

0.2

0.1

0.0
1.0 1.2 1.k 1.6 1.8 2.0

Dimensionless Radius - R

Fig. 8 Velocity Profiles for Vo " O



Dinensionless Radius - v

-20-

0.2
ne= i
0.1 n= 12
me 2
0.0
a=0
"001 —
-0.2 | 1 i ]
1.0 1.2 1.4 1.6 1.8

Dimensionless Radius - R

Fig. 9 Velocity Profiles for Vo = = 0.2

2.0



0.2

0.1

0.0

]
o
°
[

Dimensionless Velocity - v
&
~

‘003

1.0 1.2 1.4 1.6 1.8 2.0

Dimensionless Radius - R

Fig. 10 Velocity Profiles for v, = - O.4



-22~-
Since the magnetic Prandtl number is invariably small (10°7 for
mercury), the pressure due to the term containing the magnetic Prandtl

number is so small that it cannot be measured. Therefore,

R 4
P(R) - P(1) = fl ¥ ax (w7

x
The pressure is found by substituting for the velocity and completing
the integration. Thus

2 2
P(R) - P(1) = 1/m® [5-5%—1 sinh(28 1nR) + 254 1n R
-% s1nh%(8 1n R) - & (B + A) sinh (B InR)
n
2
+;% (BA + 1) cosh(g 1n R) +%---lé

- %5 (pa + 1)) (148)



LIMITIRG FORMS OF THE FLOW

In its liniting forms, the flow approaches solutions that have
already been determined. Liaiting forms of the flow may also be deter-
mined for special cases, such as no applied electric field or no vie-
cosity, which have not been previously determined. These special cases
will help in understanding the. flow processes.

If m*0, the flow should approach the ordinary flow between ro-
tating cylinders with no magnetic field. Equation (42) may be written in
a slightly different form to make the limiting process easier. The
equation then becomes

2 1/2
v, sinh (n€ + 1) 1n R 1/2

« [cosh (12 +1) InR -R] 1/n

v -
sinh (nz + 1)1/2 ln ¢

1/2 |
s n nce

The limit of the sbove equation as = <+ 0 s

lin v v, sinh(1n R)
n+0 — “sInh(in c)

1/2
..cgs_h.(.(.-__*.il_fvlza.sl-_c sinh [(a2 + 1)V/2 1 a]}(so)
sinh[(l +1) 1n c] :

In order for the 1imit in equation (50) to be finite, the quantity

+ 2’5%{!& - cosh [(n2 + 1)1/2 1n R]

in brackets must be zero when m = 0 so that the limit will be of the
form 0/0. If == 0, the quentity in brackets becomes the following:

costiln:nnz 1: c.S € sinh(1n R) - cosh(lnR) + R =

c+1l/c-2cR-1 +1[B
_.._@ 5 +R = 0 (51)

c-1/c

23
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Since the 1imit is of the form 0/0, L'Hospital's rule may be
applied. After applying L'Hospital's rule the 1imit becomes:

1im v v, sinh(1n R)
a0 sinh(1ln ¢) (52)

The dimensional quantities may now be inserted. After rearranging,
the equation becomes:
2 2 2

1ia V o b r - a
g = (53)
a0 l:.2_.2 r

But this is just the ordinary flow between rotating cylinders and is iden-
tical to Eq. 5.15 in Schllchtlng( 2) if the velocity of the inner cylinder
is set equal to zero and the necessary changes of symbols are made.

If a snd b approach infinity so that their difference is equal
to Z and w/r approaches H, with v =0, the velocity distribution
should approach that of Hartmann's flow between infinite parallel plates
with a transverse magnetic field and a }unlforn applied electric field
parallel to the plates (Fig. 11). Applying the limiting process, the

following is obtained:

-V I 13 (5)

vhere M is the regular Hartmann number uH_L(o/pv) 1/2,

Let y designate the distance from midchannel so that

R = 8_1.';_:! (55)

Then
1 a2 Y2 10R - ML+ yp) (56)

and
e (2 e )2 1nc = o (s7)

a>e
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JIR -1 (58)

Equation (42) is written in terms of the dimensional queantities and
the above limits are applied. The equation then becomes the following:

lim v

LE
aboll ¢ - -Ie (o/p‘)l./Z {COSh M-1

~Ssinh H sinh M(1 + y/L)

- cosh M(1 + y/L) + 1] (59)

Am”mmmmmymwﬁmrnmnmmmnm
velocity distribution becomess

E
lim . 0 cosh M
a-e'g Ei-l';“'_c_osh'sﬁ&l] (60)
But this is just the velocity distribution for Hartmann's flow and is
fdentical to Eq. 1-29 of Cowling(6) if P, the pressure gradient, is
set equal to zero in that equation. |
For the case of an inviscid fluid, the velocity may be determined

from equations (12) and (13) by setting v equal to zero. These result
in the equation

OEO_.%V¢ = 0 (61)

Although v 1is zero when v = 0, equation (61) may be written
in dimensionless quantities if it is observed that

avy = :%' (62)

o
The velocity distribution for. an inviscid fluid §s found by substituting

equation (62) into equation (61). The velocity distribution then becomes
(Fig. 12)s



Dimensionless Velocity - v

-27-

1.2

1.0 1.2 10!‘ 1.6 108 200

Dimensionless Radius - R

Fig. 12 Velocity Profiles for an Inviscid Fluid



-26-

v = R/m (63)

For the case of no applied electric field, the velocity distribution
may be determined from equation (L2). In order to do this v and v,

must be written in terms of V¢ and .

'}
1/2 b 1/2 sinh(8 1n R
-!f—.(m/o)/ - %o—‘(m/a)/ :—mﬁ%—h%

S+ 1/n [Eﬁgﬁ%ali‘n"%{ S sinh(B 1n R) - cosh(f ln R)+ R} (6k)

When equation (6l) is multiplied by an( pv/o)ll 2 and E, is set equal
to zero, the velocity distribution with no applled electric field becomes

(Fig. 13): {nh(8 1n R
- o RS (@)
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DISCUSSION

From the plots of dimensionless velocity versus the dimensionless
radius (Figs. 3-10) it is seen that the velocity profiles approach nesrer
and nearer to the velocity profiles for inviscid flow as the cylindrical
Hartmann number increases. It is also seen that the viscous effects are
confined more and more closely to the walls as the cylindrical Hartmann
number increases. This substantiates the idea that the viscous effects
may be neglected when the Hartmann number is much greater than unity.

The cylindrical Hartmann number is of the same order of magnitude as the
Hartmann nusber if b/a = 2.

From the plot of the velocity profiles for sn inviscid fluid (Fig. 12),
it is seen that the magnitude of the velocity increases with decreasing
values of the cylindrical Hartmann number. In a viscous fluid the maximum
velocity increases and then decreases with increasing cylindrical Hartmann
number. This also substantiates the idea that viscous effects are more
important at low Hartmann numbers.

From the velocity profiles it is seen that the effects of the
magnetic field sometimes oppose the viscous effects of the moving wall.
When the wall drags the fluid faster than the current due to the electric
field would drive the fluid, then the magnetic field opposes the motion
of the fluid. For the case of no applied electric field, (Fig. 13), the
magnetic field always opposes the viscous effect of the moving wall.

These results indicate the complexity of the magnetohydrodynamic flow
with moving boundaries. They show the interaction of electromagnetic and
viscous forces and indicate that moving boundaries further complicate a

complex problenm,
-30-



1.

2.

3.

7.

LIST OF REFERENCES

Carrier, G. F., and Greenspan, H. P., "The Time Dependent
Magnetohydrodynamic Flow Past a Flat Plate," J. Fluid Mech.,

Vol. 7, 1960, pp. 22-32.

Schlichting, H., Boundary Layer Theory, New York,
Pergammon Press, 19595.

Hartmann, J., "Hg-Dynamics I,"
Hﬂt.-f!!. neddo, VOI. 15’ 1937

Kgl. Danske Videnskab. Selskab,
s No, 6.

Globe, S., "Laminar Steady-State Magnetohydrodynamic Flow in
an Annular Channel," Phys. Fluids, Vol. 2, 1959, pp. LOL-LO7.

Chekmarev., 1. G., "Some Problems of the Stationary Flow of
a Conducting Liquid in an Infinitely Long Annular Tube in
the Presence of a Radial Magnetic Field,” Soviet Phys., Tech.
m’-” Vol. S’ 19&’ PP. 565'5690

Cowling, T. G., H;gctoﬂdrodm
Publishers, Inc., 194l,

Stratton, J. A,, Elect etic Theo
Publishers, Inc., 19L1.

ics, New York, Interscience

s New York McGraw-Hill



FCTA USE CLLY




