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ABSTRNCT

A THEORETICAL IIVESTIGATIOI OF

AIIULAR.IAGIETOHYDRODYIAHIC FLOR

‘UITH.A HOVIIG BOUNDARY

by Dennis C. Kuena

The problea.considered is the laainar, steady flow of a viscous,

incoapressible, conducting fluid in the annular space between two in-

finitely long circular cylinders under the action of a radially iapressed

aagnetic field and an axially iapressed electric field when the outer

cylinder is given a unifora angular velocity. The conditions of the

problea.reduce the aagnetohydrodynanic equations to three equations in

pressure, velocity, and aagnetic field. One equation gives the pressure

variation in the radial direction and the other two equations are coupled

equations for the velocity and the aagnetic field. These three equa-

tions are functions of one variable, and may be solved in closed fern.

In the liaiting case‘vhere the radii becoae infinite but their differé

ence reaains finite, and there is no velocity of the outer cylinder, the

solution becoaes Hart-ann's flow between infinite parallel plates with a

transverse nagnetic field and a unifora applied electric field.
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WHO]!

When an electrically conducting fluid aoves in the presence of a

magnetic field, electric currents are induced in the flow. Electric

fields applied to the flow also produce electric currents. These elec-

tric currents interact with the aagnetic field and produce aechanical

forces which aodify the flow. The friction forces due to the viscosity

of the fluid also Iodify the flow.

Although the equations which describe these phenoaena are very coa-

plicated nonlinear partial differential equations, soae special problels

m be solved in closed fora. The flow of an electrically conducting

fluid in an ammlar chamel with loving boundaries an be solved in closed

fora in acne special cases. Very few probleas with aoving boundaries

have been considered in cylindrical coordinates, other than that of the

‘iapulsively accelerated flat plate with a transverse ngnetic field as

the liaiting case of the cylindrical problemuh The solution presented

here pertains to the case of an annular channel with a aoving boundary.

In this stucu, a viscous, incoapressible, conducting fluid is con-

sidered in an infinitely long annular channel of inner radius a and

outer radius b (Pig. 1). i aagnetic field is applied to the CWI

in the radial direction such that no - w/r, where w is a constant.

A unifon electric field £0 is applied to the channel in the axial

direction and the outer cylinder is given a unifora angular velocity on.

 

*Superscript iii-hers in parentheses refer to the List of

References.
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Fig. l Annular Channel
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The applied ngnetic field is a line source aagnetic field located

on the canon axis of the inner and outer cylinders. Although a line

source aagnetic. field does not exist in reality, it is possible to obtain

a good approxiaation to such a field by the use of a core of nterial

with high perneability within the annulus and a cylindrical shell of

nterial with high peaaeability outside the annulus. The flip: lines

could close through these per-sable paths at long distances fro. the

region of interest (Pig. 2). The source of the flux could be the core

itself, if the core is aade of a per-nantly ngnetised uterial. Since

the purpose of this study is the theoretical investigation of the flow

and not the experiaental probleas involved, the details of providing the

necessaq ngnetic field will not be discussed further.

I; there were no aagnetic field, this problea would be the ordinary

flow in the annular space between a rotating outer cylinder and a

stationary inner cylinder.(2) This case can be derived as a liaiting case

of the annular ngnetohydrodynaaic flow.

If there were no angular velocity, this problea would be a cylin-

drical analog of iiartaam's flow between infinite parallel plates with

a transverse ngnetic field and a unifora electric, field applied parallel

to the platen”) It will be shown that Hartaann's flow can be derived

as a liaiting case of the annular aagnetotvdrodynuic flow.



flux lines

cylindrical shell

COI‘C

 
Fig. 2 Hethod of Obtaining the Magnetic Field
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REVISE 0P PREVIwS REM

Because of the great aaount of*work that has been done in aagne-

totvdrodynaaics, no atteapt will be ude to undertake a coaplete review

of previous research. This review will be confined to works which per-

tain in soae way to the problea presented here.

The results of the first theoretical investigation in the field

which is now known as aagnetolwdrodynaaics were published by

J. Hartaann‘ 3) in 1937. Hart-um considered the laainar flow of an

electrically conducting liquid in a hoaogeneous aagnetic field. This

investigation is considered the classic work.in.aagnetohydrodynaaics.

A cylindrical analog of Hart-Inn's flow has been considered by

S. Globe.(h) Globe considered the laainar, steady flow of an electric—

ally conducting, incoapressible fluid in the annular space between two

infinitely long circular cylinders under the action of a radially iapressed

aagnetic field and a constant longitudinal pressure drop.

I. G. CheknrevG) also considered the laainar, steacw flow of an

electrically conducting, incoapressible fluid in the annular space

between.two infinitely long circular cylinders under the action of a

radially iapressed magnetic field. <Chekaarev considered three such

probleas. The first problea concerned the flow under the action of a

constant longitudinal pressure drop and a radial injection of a liquid

‘with constant velocity at the surface of the inner cylinder. The second

problea.concerned the flow under the action.of a uniforn.axial electric

field and a radial injection of a liquid with constant velocity at the

surface of the inner cylinder. The third problem concerned the flow with

-s-
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a uniform axial electric field and a constant longitudinal pressure

drop.

Few problems in cylindrical coordinates have been considered with

aoving boundaries. One of the few such problems that has been con-

(1)
sidered is thejwork of G. F. Carrier and H. P. Greenspan concerning

the flow past an impulsively accelerated flat plate with a transverse

magnetic filed as the liaiting case of the cylindrical problea.



muons

In order to determine which equations to use, some assuaptions aust

be rude m the nature of the fluid. It will be assumed that (l) the

fluid is incoapressible, (2) the free charge density and the displaceaent

current are negligible, (3) the permeability, conductivity, permittivity,

and viscosity are constant scalar quantities, and (it) the Lorentz force

is the only body force acting on the fluid.

Under these assimptions, the equations of nagnetohydrodynanics in

rationalized nks units are(6’ 7):

in- T (l)

vx?- ~|Aér§ . (2)

9.??- o. (3)

v.?- o (h)

T- “rum; _ l (s)

v.Tr‘- o (6)

.ggqvfivfi‘ - -15vpevv2v’eg3‘x'fi (7)

Since the physical aspects of the problem suggest the use of

cylindrical coordinates, these equations will be used in their coaponent

fora in cylindrical coordinates. These equations sinpl ify considerably

for the following reasons:

(1) Because of sy—etry around the axis, (a/ap) - 0.

-7.
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(2) Because of steady flow, (B/Bt) - O.

(3) Because of the infinite dimension in the z direction and the

fact that none of the applied fields are functions of 2, 'fi‘ and 7?

cannot be functions of z.

(u) It is assumed that the applied field Ho - w/r fixes the

radial component of the magnetic field at r - a and r - b for all

values of 2.

(S) It is assumed that there is no flow in the 2' direction. This

may be accomplished by making (op/52) - O.

(6) An electric field can only arise from an applied voltage, a

time changing magnetic field, or free charges.

The above simplifications lead to the following results when

applied to the equations:

(3) Since 7;- .\;(r), equation (6) become:

d(rVr)

dr

 - O (8)

When the conditions that Vf(a) - Vr(b) - O are applied, it is seen

that V ' 0.
r

.3 ...X

(b) Since H - H(r), it follows from equation (3) that

d(rHr)

- Q ‘

dr o L)
 

Applying the conditions that Hr(a) - u/a and Hr(b) - u/b, it is seen

that Hr - w/r. Thus, the radial component of the magnetic fitld is not

affected by the fluid flowing in the annulus.

(c) Since neither a time changing magnetic field nor free charges

exist in the flow, the electric field must be given by the applied field.

Thus, Er - E¢ - O and E2 - E0.



A

.y.-

_L

(d) Equations (1) and (5) may be combined to eliminate J. Then

_L A .L A. I

VxH . <*(E+u‘JxH) (10)

The radial component of this equation, including previous assumptions

is

v H - o (11}

93

But V¢ is not zero, so Hz - O.

..L

Combining equations (1) and (7) to eliminate J and introducing

the above simplifications, three scalar equations are obtained from

equation (10) and the combination of (l) and (7).

2. .

d v! avg? v d(rhé)

. 2 r dr 2 2 dr

dr t On?

I’SSEEQZ £2” r \

'E dr ’ 0 E0 - r ‘35 (13’

2

oV H d(r )

£32 . ...?— .. :1 ...:h. (11;)

dr r r dr

The boundary conditions for the above equations are:

V¢(8) ' 0 (15)

V¢(h) '- wb . (16)

H¢<a> - 0 i "(17)

The boundary conditions for Vfi are the no slip conditions at the walls.

The boundary condition for H¢ is obtained by requiring that no current

flow in the inner cylinder. Equation (1) in integral farm becomes

§.d§-fff.d§ (18)
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The path of integration is taken as the circle r - a. In the area

.5

bounded by r - a, J is equal to zero. Thus

2na H¢(a) .‘ O ' (19)



SLUTIOI

The equations and boundary conditions an be obtained in a note

convenient fora by the introduction of acne diaensionless quantities.

Let

R - r/a (20)

c - b/a - (21)

v - (Vglsoa)(m/o)l/2 (22)

n - ii¢(o 1:01;)"1 (23)

P - “150230)“ (2h)

. - “(o/m”? (25)

P - cw ' (26)

In the above diaensionless quantities, a is a cylindrical analog of

the Hartnann nuaber and P“ is the aagnetic Prandtl nuaber.

Introducing the above diaensionless quantities into equations (12),

(13), and (11;), the equations becoae:

«ii-”h - 1-51 (27)

2 .

.92 . .3... 3.1.9533
on R PaR an (28)

.23! +«lch..-!— I ..lL»<lFu‘ (29)

daz RdR Ra R2 an

-11-
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The boundary conditions froa equations (15), (16), and (17) becoae:

V(1) - 0 (30)

we) - (wb/Eofl)(PV/O)1/2 - v0 (31)

Mi) - o (32)

When equations (27) and (29) are combined, an equation involving only

v is obtained:

2

D
.

<

.%%-(m2+1)-:-§ - -5 (33)

M

(iii

This equation an be solved by the introduction of a new variable.

Let

R ' e" (314)

Then

fig - ems-5 (35)

2 2
d ~2n d -2n d

—— - -—- - (36)
(“,2 e dn2 e dn

When this new variable is substituted into equation (33), the

following equation is obtained:

2

g";- (menu - -ne" (37)

dn

The solution to this equation is well imovn. It is

v - C1 sinh pn + 62 cosh 5n + en/a (38)

where

B - (.2 + 1)”2 (39)
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The constants are found by applying the two boundary conditions on

v. The constants are:

avo s oosh(p In C) - c

snails in E) “‘0’

 

 ..l

Cl a

02 - - 1/: (hi)

when these constants are substituted into the equation for the ve-

ocity and n is written in terns of R, the following equation is

obtained:

v - 1/: [A sinh(p in R) - cosh(fl ln R) + R] (1:2)

where

av 4- cosh(p 1n c) - c

o slnhii in c) (1‘3)

The velocity profiles are plotted for a range of values of the

velocity of the outside cylinder with a - O, 2, h, and 12 (Figs. 3-10).

The ratio of the inner and outer radii is arbitrarily chosen as 2.

The aagnetio field is obtained by inserting equation ([12) into

equation (27) and integrating. flaking use of the fact that h(l) - O,

the following is obtained:

R

h(R) - l/R fl (x- av) dx (his)

Then

h(R) ----1/n2 (1 + p A) [cosh(B in R) - l/R]

+ 1/a2 [(3 + A) sinh(|3 ln 12)] (£6)

The pressure distribution is obtained by integrating equation (28).

Thus

R 2 a

P(R)-P(l) - f1 i-dx+P] 33mm: (1:6)
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Since the magnetic Prandtl number is invariably small (10'7 for

mercury), the pressure due to the term containing the mgnetic Prandtl

number is so sail that it cannot be measured. Therefore,

a 2

P(R)-9(1) - f1 fi-dx (h?)

The pressure is found by substituting for the velocity and coapleting

the integration. Thus

 

2 2

P(R) - P(l) - l/n2 [-A—Efi-l- sinh(2p In R) + 1 E A ln R

“g sinh2(p in R) - 3% (5 + A) sinh ()3 In R)
n

2
+3; (3A + l) cosh(fl lnR)*%---12-

"gait“ +1)1 (“8)



LIMITING ms 0)“ THE FLO!

In its liaiting forms, the flow approaches solutions that have

already been deterained. Limiting foras of the flow any also be deter»

ained for special cases, such as no applied electric field or no vis-

cosity, which have not been previously deterained. These special cases.

will help in mderstanding the flow processes. .

If a " O, the flow should approach the ordinary flow between ro-

tating cylinders with no magnetic field. Equation (1)2) an be written in

a slightly different fora to mks the liaiting process easier. The

equation then becomes

0 1/2 in R

I - 2 4

v sinh (a2 + 1)1/2 111 c [cosh (. 1)

mm 2+1

v s n ) 1/"’1nR--R] 1/n

cosh (g2 + l)”2 in c - c

mm (.2 + 0172 in c

+..1.[

I

sinh (n2 + 1)”2 In R) (h9)

The limit of the above equation as n '* 0 is

11. v _ "o "mu“ R) 11:- 1 2 1/2

a -' 0 siann c) * ir'O ;{R . cosh K. 1 1) in R]

2 1/2
,cosha+1 lnc-¢!m[(2+1)1/21R(SO

sinhKllz + 1)1 2 1:: c] s a n' I} )

In order for the liait in equation (50) to be finite, the quantity

 

in brackets aust be zero when a - 0 so thatthe liait will boot the

fora O/O. If a - O, the quantity in brackets becoaes the following:

6031;111:111: 6' ° sinh(ln R) - cosh(1n R) + R -

c+lc-2c£;§__l_ZB-L;.’_lfi+R-O (51)
c-lc

-23.
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Since the liait is of the fora O/O, L'Hospital's rule nay be

applied. After applying L'Hospital's rule the liait becoaes:

111 v vo sinh(ln R)

a-'O . sinhfin c) (52)

 

The diaensional quantities say now be inserted. After rearranging,

the equation becomes:

2 2 2

“IV - cob 1‘ ’8 (S3)

._.0 b2_.2 r

 

But this is just the ordinary flow between rotating cylinders and is iden-

tical to Eq. 5.15 in Schlichting( 2) if the velocity of the inner cylinder

is set equal to zero and the necessary changes of syabols are made.

If a and 13 approach infinity so tint their difference is equal

to a. and w/r approaches Ho with ”0 - 0, the velocity distribution

should approach that of Hartmann's flow between infinite parallel plates

with a transverse magnetic field and a unifora applied electric field

parallel to the plates (Fig. 11). Applying the liaiting process, the

following is obtained:

.13.“, n/a - fill. (51.)

where H is the regular Hartaann number uHOL(o/pv)1/2.

Let y designate the distance from nidchannel so that

R . 2.1.3.1.! (55)

Then

311‘. (n2 + 19” in R" - nu + y/L) (56)

and

1‘“ (n2 + 1)”? in c - 2a (57)
8".
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ll-
VHR - 1 (58)

Equation (142) is written in terns of the diaensional quantities and

the above Units are applied. The equation then becomes the following:

LE

3-?- V¢ - 19 (ml/2[W ...... nu + w

- cosh li(l * y/L) + 1] (59)

After substituting uHOL(c/pv)1/2 for ii and siaplifying, the

velocity distribution beconesi

E
ii: hi!

,-.v,-fi-u-£°—§;,—,—,%4=ll ‘60)
0

But this is Just the velocity distribution for Hart-arm's flow and is

identical to Eq. 1-29 of Cowling(6) if P, the pressure gradient, is

set equal to zero in tint equation. . I

For the case of an inviscid fluid, the velocity an be deterained

froa equations (12) and (13) by setting v equal to zero. These result

in the equation

o£0--%V¢ - o (61)

Although v is zero when v - 0, equation (61) nay be written

in dimensionless quantities if it is observed that

av - :4, ' (62)

O

The velocity distribution for. an inviscid fluid is found by substituting

equation (62) into equation (61). The velocity distribution then becoaes

(Fig. 12):
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v - R/a (63)

For the case of no applied electric field, the velocity distribution

m be deterained froa equation (112). In order to do this v and v0

aust be written in terns of V9, and to.

"v
12 b 121M! 1 R

EE;(m/O)/ - %;;(pv/a)/ ——)£——-(-:mh31:c

cosh(B In C) -

sinh(9 in c) c s‘“h(5 1“ R) - cosh(9 1n,R)+ R] (6h)«in:

When. equation (6h) is aultiplied by an( pv/o)1/2 and 50 is set equal

to zero, the velocity distribution with no applied electric field becoaes

(Fig. 13): inh 1 R

V¢ " ”b —‘(£—")':inhp12c (55)
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Pros the plots of diaensionless velocity versus the dimensionless

radius (Figs. 3-10) it is seen that the velocity profiles approach nearer

and nearer to the velocity profiles for inviscid flow as the cylindrical

iiartaann nuaber increases. It is also seen that the viscous effects are

confined sore and more closely to the walls as the cylindrical iiartaann

nuaber increases. This substantiates the idea that the viscous effects

an be neglected when the Hart-am number is nuch greater than unity.

The cylindrical Hartman number is of the sane order of aagnitude as the

Hartnam nuaber if b/a - 2.

From the plot of the velocity profiles for an inviscid fluid (Fig. 12),

it is seen that the ngnitude of the velocity increases with decreasing

values of the cylindrical Hartaann number. In a viscous fluid the aaximn

velocity increases and then decreases with increasing cylindrical Hartaann

number. This also substantiates the idea that viscous effects are acre

iaportant at low Hartaann nmbers.

Froa the velocity profiles it is seen that the effects of the

aagnetic field soaetines oppose the viscous effects of the aoving wall.

when the wall drags the fluid faster than the current due to the electric

field would drive the fluid, then the magnetic field opposes the notion

of the fluid. For the case of no applied electric field, (Fig. 13), the

aagnetic field alqu opposes the viscous effect of the loving wall.

These results indicate the complexity of the aagnetoivdrodynaaic flow

with moving boundaries. They show the interaction of electroaagnetic and

viscous forces and indicate that aoving boundaries further coaplicate a

complex problea.
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