ABSTRACT PREPARATION AND CHARACTERIZATION OF TRANSITION METAL COMPLEXES OF SEVERAL S-SUBSTITUTED TETRAZOLES \ by Paul Labine In this investigation, cobalt (II), cepper (II), zinc (II) and chromium (III) ions were caused to react in aqueous solution with the sodium salts of 5-O-chlorophenyltetrazole, 5-p-chlor0phenyltetrazole, S-p—methoxyphenyltatrazole, 5-p- chlorobenzyltetrazole, and 5-phenyltetrazole. The divalent ions generally formed complexes of the type MT .nH 0. However, 2 2 nickel (II) ions formed MT -h 0 complexes. With copper (II) 1.8 2 ‘ ions, two of the tetrazoles formed M(T)(Oh) complexes. The chromium (III) ions formed MTZOH-nhzo complexes. No complexes could be obtained for iron (II), iron (III), or manganese (II). The complexes were generally insoluble in acetone, nitro- methane, 1,4 dioxane, methylenechloride, benzene, acetonitrile and methanol. A few of the complexes were insoluble in dime- thylsulfoxide, N,N-dimethylformamide, and pyridine. The complexes were usually decomposed by treating the solids with aqua regia. The c0pper (II) complexes could also be decomposed with concentrated ammonia but the complexes could be reformed by neutralizing the ammonia with hydrochloric acid. Paul Labine A comparison of the infrared spectra of the complexes with the spectra of the tetrazoles and their respective sodium salts indicates that the tetrazoles coordinate as the anion. That is, the l—nitrogen on the tetrazole ring is not protonated during complexation. In most cases, the metal-nitrogen stretching hands arise, on complexation, from the splitting of ligand hands into two new bands. Very few of the hands in the 130-320 cm.1 re~ pion could be assigned to metal-nitrogen stretching bands due to the presence of broad bands which could not he re- solved hy usinp thicker mulls or by increasing the attenuation. It was therefore impossible to compare the tetrazolcs in terms of the respective copper-nitrogen stretching frequencies might have been sufficient to list the tetrazoles in the order of increasing ligand strength. The hand positions in the electronic absorption spectra, could he utilized to list the ligands in the order of increasiny ligand strength. The electronic absorption spectra of the solid nickel (II), cobalt (II), and chromium (III) complexes indicate octahedral symmetry. The spectra of the copper (ll) complexes indicate tetragonal distortion. The calculated magnetic moments indicate that most of the complexes are of the high-spin type. however, a few of the capper (II) complexes have subnormal magnetic moments which may indicate metal-metal bonding. Paul Labine The esr spectra of the copper (II) complexes, diluted with zinc (II) ions, indicate tetragonal distortion due to differences of approximately 0.15 between g!l and gl for several of the copper (II) complexes. The esr parameters for the chromium (III) complexes were quite similar to those obtained for octahedral complexes of chromium (III). The esr spectra of the nickel (II) and cobalt (II) complexes were generally quite complex and poorly resolved. Only his (5-0-chlorophenyltetrazolato)cobalc(II) monohydrate gave an esr signal that could easily be interpreted. The gave value of this complex increased with a decrease in temperature. This unusual behavior may be due to changes in the structure of the complex with changes in temperature. PREPARATION AND CHARACTERIZATION OF TRANSITION METAL COMPLEXES OF SEVERAL 5-SUBSTITLTED TETRAZOLES hy‘\ Paul Labine A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1970 MI KNUNLEDCM MT The author gratefully acknowledges Carl U. Bruhaker, Jr. for his guidance, patience and encouragement. The author wishes to acknowledgment his wife, Joyce, whose understanding, assistance and reassurance made this dissertation possible. Appreciation is extended to Dr. C. Van hall, Dow Chemical Company, for permission to use the Beckman Mode] UK-2 with reflectance attachment. Appreciation is also extended to my fellow graduate students for their helpful suggestions. Financial assistance from the National Institutes of health is gratefully acknowledged. Tabl e of Contents 1. historical................................ II. Experimental.............................. A. Purity of Chemicals and Solvents..... B. Preparation of Tetrazoles and Related (:l‘emicalSOOOO0.0000000000000I. C. Preparation of Metal Complexes U. Analytical Methods. CObaICOOOOCCOOOOCOO :JiCkel-OOOOOOC. .0... copper............. Cllromium.OOOCOOOOOOOOOOOO and Carbon, Hydrogen h. Magnetic Measurements....... F. Spectrosc0pic Measurements. Discussion of Results.......... Preparation of Metal Complexes. Infrared Spectra............... Electronic Absorption Spectra.. Magnetic Electron Spin Resonance Measurements. o o o o o o oo o Spectra. liefcrche-QOO00000000000000.000000.00. iii Nitrogen. O O O l ..12 ..12 ..12 ...lS ..22 ...22 ..23 ..23 ..2A ..24 0027 ..29 ..30 ..n5 .117 .l?l .130 Table 1. II. IV. VI. IX. List of Tables page Solubility of the Cobalt (II) Complexes in . 0 Various Solvents at 22 ........................34 Solubility of the hickel (II) Complexes in . . 0 ,- Various Solvents at 22 ........................3) Solubility of the Coppgr (II) Complexes in VEII‘IOUS SOIVCHCS at 22 .ooooooooooooooooooooooo?’(I Solubility of the Chromium (III) Complexes in Various Solvents at 22 .....................37 Solubility of the Zinco(II) Complexes in Various solvents at 22 0......OCOOOQOO0.0.0....38 Infrared Spectra of 5-Phenyltetrazole, Sodium 5-Phenyltetrazolate and Various Complexes of 5-Phenyltetrazole in Nujol and Hexachloro- butadiene Mulls from 4000 to 167cm 1...........39 Infrared Spectra of 5-Phenyltetrazole and Sodium S-Phenyltetrazolate with Assignments....44 Infrared Spectra of S—p-Methoxyphenyltetrazole, Sodium 5-p-Hethoxyphenyltetrazolate and Various Complexes of S-p-Hethoxyphenyltetrazole in hujol and Hexachlorobutadiene Mulls from 4000 to 1(7cm- 0.0.0....0......OOOOOOOOOOOOOOOOOI.000004;; Infrared Spectra of 5-p-Methoxyphenyltetrazole and Sodium S-p-Methoxyphenyltetrazolate with ASSiFl‘mcntsOOOOOOOOOOOO0......00....OOOOIOOOOOOSS Infrared Spectra of S-p-Chlorophenyltetrazole, Sodium 5-p-Chlorophenyltetrazolate, and Various Complexes of 5-p-Chlor0phenyltetrazole in Nujol and Hexaehlorobutadiene Hulls from 4000 to 1(‘7cm‘ 0.00.00.00.0000...}...OOOOOOOOOOOO.0.0.0060 Infrared Spectra of 5-p-Chlorophenyltetrazolc and Sodium S-p-Chlorophenyltetrazolate with Assign— Int‘ntSOOOCCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.OOOOOO()S iv l.ist of Talileti (Ctvutlxuled) Table page XI. Infrared Spectra of S-p-Chloropheuyltetrazole and Sodium S-p-Chlorophenvltetrazolate with Assipn- n’t‘!1t80000000000OOOOCOOOOOOOOOOOOOOOOOOOOOOOO.OO(’) XII. Infrared Spectra of S—p-Chlorohenzyltetrazole, Sodium S—p-Chlorobenzyltetrazole, and Various Complexes of S-p-Cblorobenzyltetrazole in Sujol and Hexachlorohutadiene hulls from 4n00 L“)1(‘7cm100......OOOOOOOOOOOCOOCOOOOO.00.0.0.0(I’; XIIl. Infrared Spectra of 5-p-ChlorohenzvltetraZole :uml Sodiimn b-p-(Hilorohcuizyltcn:razolc!\Jith [\SSiv.I‘InentSOOOOOOOOOOOOOOOOOOIOOOOO0.0.00.0000075 XIV. Infrared Spectra of S-o-Chlorophenyltetrazole Sodium 5-o-Chloropheny]tetrazolate, and Various Complexes of S-o-Chlorophenyltetrazole in Nujol and Hexachlorobntadiene Mulls from 4000 to l()7cm 1.0.0.000000000000OOOOOOOOOOOOOOOOOOOOOO0.?)() XV. Infrared Spectra of 5-o-Chlorophenyltetrazole and Sodium S—o-ChlorOphenyltetrazolate with ASSinnmentSOOOOOOOO0.000.000.00000.000.00one.to"? XVI. Results of the Normal Coordinate Analysis Calculation for Sodium Tetrazolate Honohydratc....................................Ul XVII. Infrared .‘2 ectrum for Sodium 'l'etrazolate P Nonohydrate with AssignmentS................ ..06 thII. Reflectance and Sujol Hull Spectra of Copper(ll) Perchlorate Hexahydrate and the Copper(ll) Com- plexes of Various S-Substituted Tetrazoles.....99 XIX. A Comparison of the Reflectance, Nujo] Hull, and Solution Spectra of C0pper(II) Perchlorate bexahydrate and the C0pper(II) Complexes of Various S-Substituted Tetrazoles..............102 XX. reflectance and Hujol Mull Spectra of Cobalt(ll) Perchlorate Hexahydrate and the Cobalt(II) Com- plexes of Various S-Substituted Tetrazoles....l04 AAI. A Comparison of the Reflectance, Nujol Hull, and Solution Spectra of.Coba]t(lI) Perchlorate Hexahydrate and the Cobalt(II) Complexes of Various 5-Substituted Tetrazolts..............106 List of Tables (Continued) Table XXII. XXIII. XXIV. XXV. XXVI. XXVII. XXVIII. page Reflectance and Nujol Mull Spectra of Nickel (11) Perchlorate Hexahydrate and the Nickel (II) Complexes of Various 5-Suhstituted Tetrazoles....................................109 A Comparison of the Reflectance, Nujol Hull, and Solution Spectra of Nickel Perchlorate Hexahydrate and the Nickel(II) Complexes of Various 5—Suhstituted Tetrazoles..............111 Reflectance and Nujol Hull Spectra of Chromium (III) Perchlorate Hexahydrate and the Chromium (III) Complexes of Various S-Suhstituted Tetrazoles....................................ll3 A Comparison of the Reflectance, Nujol Hull, and Solution Spectra of Chromium(III) Perchlorate Hexahydrate and the Chromium(III) Complexes of Various 5-Substituted Tetrazoles..............lIS Magnetic Moments of the Coba1t(II), Nickel(II), Chromium(III), and C0pper(II) Canplex of Various 5-Substituted Tetrazoles..............119 ESR Parameters for the C0pper(II) Complexes of Various 5-Suhstituted Tetrazoles..............123 FSR Parameters for the Chromium(III) Complexes of Several S—Suhstituted Tetrazoles...........125 vi Figure 10. List of Figures page Far Infrared Spectra of S-Phenyltetrazole, Sodium S-Phenyltetrazolate, and Various Complexes of 5-Phenyltetrazole..................47 Far Infrared Spectra of S-p-Methoxyphenyltetrazole, Sodium S-p-Nethoxyphenyltetrazolate, and Various Complexes of 5-p-Methoxyphenyltetrazole.........59 Far Infrared Spectra of 5-p—Chlorophenyltetrazole, Sodium 5-p—Chlorophenyltetrazolate and Various Complexes of S-p-Chlorophenyltetrazole..........68 Far Infrared Spectra of S-p-Chlorobenzyltetrazole, Sodium S-p-Chlorohenzyltetrazolate and Several Complexes of 5-p-Chlorobenzyltetrazole..........79 Far Infrared Spectra of S-o-ChlorOphenyltetrazole, Sodium 5-p-Chloropheny1tetrazolate and Various Complexes of 5-o-Chlor0pheny1tetrazole..........92 Reflectance Spectra of (A) C0pper(II) Perchlorate Hexahydrate (B) Bis (5-p-Chlorophenyltetrazolato) C0pper(II) Monohydrate and (C) Bis(5-o-Chloro- phenyltetrazolato) C0pper(II) Monohydrate......101 ReerCtance Spectra of (A) Coba1t(II) Perchlorate Hexahydrate and (B) Bis(5-p-Chlorophenyltetrazolate) COhalt(II)CCICOOOCOOOOCOICOOCOOOOOCOOOOOOOOOO.0105 Reflectance Spectra of (A) Nickel(II) Perchlorate Hexahydrate and (B) Nickel Complex of S-o-Chlorophenyltetrazole......................IIO Reflectance Spectra of (A) Chromium(III) Perchlorate Hexahydrate and (B) Hydroxobis (5-pheny1tetrazolato) Chromium(III) Tetrahydrate...................................114 ESR Spectra of Bis(5-o-Chlorcphenyltetrazolato) C0pper(II) Monohydrate at Various Zn:Cu Ratios.126 vii List of Figures (continued) Figuire 11. 12. 13. page ESR Spectra at Various Temperatures of his (5-p-Chlorohenzyltetrazolato) C0pper(II) Trihydrgte Dilutedohy a facgor of 95:10(Zn:Cu) (A) 30 . (B) -40 to -100 ; (C) -120 ; (D) -130?oooooo 0......O...00.000.00.00000000000127 A Comparison of the ESR Spectra at ~16O0 of the C0pper(II) Complexes Diluted by 1000:l (2n:cu).‘C................CCCOOOO.00...OOOOOOOOIZéB ESR Spectrum of Bis(5-o-Chlor8phenyltetrazolato) Cobalt(II) Honohydrate at -40 0.0.0.00000000000129 viii I. Historical A. General Tetrazoles are five membered ring compounds which contain four nitrogen atoms and one carbon atom. For the structure of the parent compound, tetrazole, refer to (I). Thorough reviews (1,2) are available on the preparation and properties of 5-substituted, 1-substituted, and 1,5-disuh- stituted tetrazoles. In addition, Popov(3) has prepared an excellent review of the acidities and complexinp abilities of various 1,5 disubstituted tetrazoles includinp pentamethvlene- tetrazole and substituted-pentamethvlenetetrazoles. B. Acid-Base Properties The acid-base pronerties of substituted tetrazoles were investigated as earlv as 1914 hv Olivera-Mandala (A). Tetrazole and S-suhstituted tetrazoles usuallv have pKa values of 7 or less. Thus, these tetrazoles can be titrated wifii strone bases hv usine phenolphthalein as the indicator. The S-suhstituted tetrazoles can also exhibit basic properties due to the presence of three other nitrogen atoms. The hasicities of these S—suhstituted tetrazoles were calculated from the hydrolysis constant of the resoective hydrochlorides and appear to he of the same order of magnitude as aniline (l). Herhst and Hihina (S) and herhst and Wilson (6) determined potentiometrically the pKa values for S-phenyl and S—alkyl tetrazoles in water—methanol mixtures. In 1967, Caruso, Sears, and Popov (7) determined conductometrically the acidlties of several S-alkvl and S-aryl tetrazoles in l,l,3,3- tctramethylguanidine. Caruso et al., doubted the usefulness of the pKa values obtained previously in water-methanol mixtures because changes in liquid junction potential had not been considered in the previous calculations. More recently, Charton (8) has calculated the macrosconic ionization constant KN of several S-substituted tetrazoles. These macrosconic constants were calculated from microconstants K1 and K2 which were themselves obtained from the extended Hammett equation. Since S-substituted tetrazoles exist in two tautomeric forms, K1 is the ionization constant {or tautomer (I) and K2 is the ionization constant K”, is then calculated from k K K . V, :: 1 2 K + K I 2 Unlike S-suhstitutcd tetrazoles, l-suhstituted tetrazolvs do not behave as acids. Stollc SE 31. (9) reported that they had removed the S-carhon hydrogen from l-phenyltetrazole with methyl magnesium iodide in ether. Gilbert (10), however, was unable to remove the 5-carbon hydrogen From l-phenvltetrazole by their method. In 1967, Barber (11) was successful in re- moving the S-carbon hydrogen From l-methyl and l-cyclohexvl- tetrazoles by using n-butyl lithium in anhydrous tetrahydrofuran. The l-methyltetrazole was converted to l-methyl-S-tetrazolyl lithium oi tetrahydrofuran, which is insoluble in tetrahvdrofuran and ether. Although the lithium salt of l-cvclohexyltetrazole was not isolated as a solid, l-cvclohexvltetrazole is probably converted to l-cyclohexyl— 5-tetrazolyl lithium. The lithium salts were then caused to react with dichlorohis(triethylphosphine)nickel(IIJ and gave bis(l-methvl-S-tetraaolyl)nicke1(II) and bis(1—cyclohexyl-S- tetrazolyl)nicke1(II). In a recent publication, Erlich and Popov (12) investi- gated the acid-base properties 0F cvclopolymethylenetetrazo1es in formic acid. The unsubstituted cyclopolymethylenctetrazoles act as fairly strong monoprotic bases in formic acid solution but show little proton affinity in aqueous solutions. The length of the hydrocarbon chain does not influence the basic strength of the tetrazole ring. C. Characterization of Tetrazoles Several tetrazoles and azoles have been characterized by nuclear magnetic resonance spectroscopy (13,14,15) and by mass spectroscopy (13). In addition, Cuibe and Lucken (16) reported the 14N pure quadrupole resonance spectra of several azoles. D. Coordination Compounds Since 1892, a large number of metal complexes have been prepared with S-substituted tetrazoles. Bladin (17) prepared the first silver complexes of tetrazole and S-substituted tetrazoles by adding hot silver nitrate to aqueous solutions of the respective tetrazoles. Herbst and Garbrecht (18) and Herbst and Mihina (5) prepared silver complexes of other 5-substituted tetrazoles by a similar method. In 1960, Brubaker (19) prepared two crystalline forms of bis(S-aminotetrazolato)copper(II). By using spectro- photometric and pH data, Brubaker calculated the formation constant for the copper(II) complex formed with S-amino- tetrazole in aqueous solution. His value of 1012 for the formation constant indicates that S-aminotetrazole forms a very stable 2:1 complex with copper(II). Brubaker also found that there is very little interaction between the copper(II) ion and 1,5—dimethyltetrazole. This, in addition to the relatively small formation constant for the 2:] complex (20) of silver(I) with pentamethylenetetrazole (hereafter abbreviated PMT), indicates that a replaceable hydrogen is required to form very stable complexes. In 1961, Daugherty and Brubaker (21,22) prepared various bis(5-substituted tetrazolato)copper(II) and nickel(II) complexes. Methanol solutions of each tetrazole were added to methanol solutions of capper(II) or nickel(II) salts. Sulfate and chloride salts induced the rapid precipitation of solid complexes; whereas, the nitrate salts were ineffective in inducing precipitation. The nickel(II) and Copper(II) complexes displayed a few interesting pronerties. The complexes were insoluble in most solvents. As a result, they could not be purified by recrystallization. The complexes usually decomposed below their melting points. Hence, they could not be purified by sublimation. The insolubility of these complexes in both nonpolar znd polar solvents suggests polymer formation. Jonassen £5 31. (23,24,25) have prepared bis(5-tri- fluoromethyltetrazolato)iron(II), cobalt(II), nickel(II), and copper(IT) complexes as well as his(5-chlorotetrazolato)— iron(II) and bis(5-nitrotetrazolato)iron(IT). The reflectance spectrum of bis(S-trifluoromethyltetrazolato)iron(II) indicates that the S-trifluoromethyltetrazolate anion lies between 2,2’. bipyridine and 1,10-phenanthroline in the spectrochemical series. The low magnetic moment of 1.1 B.M. observed for bis(trifluoromethyltetrazolato)iron(II) indicates that "the paramagnetic state lies close to the spin-paired ground state." Pyrolysis (26) of the bis(5-trifluoromethyl- tetrazolato)iron(II), coba1t(II), nickel(II), and copper(II) complexes yields the components H O, CF3, CN, CN 2 2’ 2’ (CN) for each complex. The residues consisted of CoF 2 3’ NiF FeF The enthalpy of decomposition was calculated 2’ 3' from differential thermal analyses of the complexes. In 1967, Beck and fehlhammer (27) prepared bis(5-tri- fluoromethyltetrazolato)bis(triphenylphosphine)palladium(II) by reacting bis(triphenylphosphine)palladium(II) azide with trifluoroacetonitrile in dichloroethane at 00 C. Recently Beck fig 3l° (28) have prepared several other trans-bis(5- substitutedtetrazolato)bis(triphenylphosphine) palladium(ll) by a similar method. Addition of HCl or HN3 in ethanol to the palladium complexes yields the respective 5-substituted tetrazoles. A large number of complexes of l-substituted tetrazoles are known. In 1910, Olivera-Mandala and Alagna (29) prepared tetrachlorobis(l-ethyltetrazolato)platinum(IV) by adding an alcoholic solution of platinum(IV) chloride to an alcoholic solution containing “Cl and l-ethyltetrazole. In 1963, Brubaker and Gilbert (30) prepared various dichloro bis(l—substituted tetrazole)cobalt(II), nicke1(II), platinum(II) and zinc(II) complexes. Like other tetrazole complexes, these l-substituted tetrazole complexes cannot be recrystallized or sublimed. As mentioned previously, Garber (11) prepared bis(l-methyl-S-tetrazolyl)nickel(II) and bis(l-cyclohexyl-S-tetrazolyl)nickel(II) by heating'the respective lithium salts with dichlorobis(triethylphosphine) nickel(II). These nickel complexes are insoluble in all common solvents, will decompose when heated, and are seni— tive to the atmosphere. The reflectance spectra of these two complexes indicate octahedral symmetry. The magnetic moments of these nickel complexes indicate that the com- plexes are high spin. In 1967, Beck and Fehlhammer (28) prepared tetra- phenylarsonium tetrakis(l-cyclohexvl-S-tetrazolyl)gold(III) by reacting tetraphenylarsonium tetrazidogold(III) with cyclohexylisonitrile in dichloroethane at 0°C. The proton nmr spectrum in DCCl3 showed three signals at 1-2.4,5.2,8.3 corresponding to the twenty phenyl protons, the four tertiary hydrogen atoms on the cyclohexylring, and the 40 methylene protons on the cyclohexvl ring. Tetrazole itself forms metal complexes. Holm and Donnelly (31) prepared bis(tetrazolato)iron(II), cobalt(II), nickel(II) and cadmium(II) complexes by adding aqueous solutions of tetrazole to aqueous solutions of the respect- ive metal ions. The iron(II) complex is very poorly de- fined and is easily oxidized by oxygen in the air. Mole ratio studies indicate that the tetrazolate anion forms very weak complexes with nickel(II) ions in dimethvlformamide. In 1967, Carber (11) prepared bis(tetrazolato)cooper(TT) monohydrate by adding an aqueous tetrazole solution to an aqueous solution of copper(II) nitrate. The copper(II) complex decomposes upon heatine and is insoluble in all common solvents. The reflectance spectrum of the complex indicates octahedral symmetry. The magnetic moment of the complex is 1.73 B.M. (l electron value). The esr spectrum of the undiluted power showed no hyperfine splittings. Garber (11) was unsuccessful in diluting the copper complex by precipitat-. ing the c0pper complex as an impurity in bis(tetrazolato) zinc(II). (Carber et.al. (11,32) performed a vibrational analysis of sodium tetrazolate monohydrate. Vibrational assignments for bis(tetrazolato)copper(II) monohydrate and l-methvl- tetrazole were made based on their normal coordinate analysis of sodium tetrazolate monohydrate. Recently, Washburn and Peterson (33) prepared ferro— cenyl tetrazole by reacting cyanoferrocene with trimethylazido- silane and aluminum(III)chloride in refluxing o-chlorobenzene. 1,5 disubstituted tetrazoles and substituted pentamethy- lenetrazoles form complexes with transition metal ions, interhalogens, and organic molecules. Interhalogen and molecular complexes of tetrazoles are reviewed by Popov (3). Zwikker (34) Rheinboldt (35) and Dister (36) have pre- pared silver complexes of various substituted pentamethylene- tetrazoles. Popov and Holm (20) studied the silver complexes of pentamethylenetetrazole, substituted pentamethylene— tetrazole, and l-cyclohexyl-S-methyltetrazole in acetonitrile. They determined potentiometrically that the formation constants for these complexes were approximately 102. By using polarographic techniques, they found that pentamethye lenetetrazole forms extremely weak complexes with cobalt(II), thalium(I) and cadmium(II) in aqueous solution. D'Itri and Papov (37,38) prepared anhydrous hexakis (PMT) manaanese(II), iron(II), cobalt(II), nicke1(II), copper(II), and zinc(II) complexes. Since the magnetic moments indicate that the complexes are high spin complexes, it is not surprising that the infrared spectra of the com- plexes were almost identical with the infrared Spectrum of PMT. Kuska, D'Itri and Popov (39) have obtained electron spin resonance spectra for Mn(PMT)6(C104)2, Cu(PMT)6(C104)2 and Cu(PMT)6(C104)2. The ear spectrum of Mn(PMT)6(C104)2 dispersed in Zn(PMT)6(C104)2 indicated that the metal ligand bonds are 91 per cent ionic and that the complexes are essentially octahedral. Nuclear hyperfine splittings were resolved in the ear spectra of the undiluted copper(II) complexes. Both Cu(PMT)6(C104)2 and Cu(PHT)4(CIOA)2 10 exhibit tetragonal symmetry. The copper ligand bonds were found to be more covalent than the manganese ligand bonds. Recently, Bowers and Ponov (40) prepared complexes of the type HII(PMT)1X2 and “11(PMT)2X2 by causing pentamethyl- enetetrazole to react with first row transition metal chlorides and bromides. These complexes were insoluble in polar and nonpolar solvents and have high melting or decomposition points. Prom magnetic and spectral evidence, it appears that the metal ions in MII(PMT)X2 complexes are in octanedtal environments whereas the MII(PMT)2X2 complexes may be tetra- hedral. The MII(PMT)X2 complexes probably contain haloeen bridges and are most likely polymeric. The M(PMT)2X2 complexes, on the other hand, are probably monomeric and seem to have a tetrahedral structure. Pentamethylenetetrazole (41) was found to form 1:] complexes with iodine monochloride, iodine monohromide, and iodine in carbon tetrachloride. The pentamethylenetetrazole- ICl complex could be obtained as a crystalline solid which could be purified by recrystallization from chloroform. Two independent structure determinations of the PMT-ICl complex (42) showed that PHT acts as a unidentate ligand and that ICl is bonded to the 4-nitrogen of the tetrazole ring. The linear ICl molecule is coplanar with the tetrazole ring. The seven membered ring of PMT is in a chair conformation. At present, it is uncertain whether the 4-nitrogen is the 11 donor site in all tetrazole complexes. The crystal structure of dichlorobis(l-methyltetrazole) zinc(II) complex has also been determined (43). Crystals of this complex show that the zinc atom is in an approximately tetrahedral environment and that the zinc atom is ceplanar with the two tetrazole rings with coordination through the four position of the tetrazole ring. II. Experimental A. Purity of Chemicals and Solvents Reagent grade chemicals were used throughout this investigation. B. Preparation of Tetrazoles and Related Chemicals 5-phenyltetrazole: This compound was prepared according to the method of Finnegan and Henry (44). Tn a SOOm].3-neck flask, 28.6g(0.44 mole) of sodium azide, 21.2n(0.40 mole) of ammonium chloride, 17.0g (0.40 mole) of lithium chloride and 41.2g (0.40 mole) of benzonitrile were suspended in 300ml of N,N-dimethy1formamide. The mixture was stirred and heated at IOU-110° for 17 hours. In accordance with Daupherty's observations (45), the color of the reaction mixture changed from colorless to orange-brown after a few hours. After 17 hours, the reaction mixture was allowed to cool to room temperature. The first batch of crude sodium salt was separated from the reaction mixture by filtration. The filtrate was distilled at reduced pressure until 50ml of filtrate remained in the distillation flask. The second batch of crude sodium salt, which precipitated durine the distillation, was collected on a porcelain filter funnel. Both batches of crude sodium salt were combined and then dissolved in 200 ml of water. Insoluble materials were re- 12 13 moved by filtration. The filtrate was then acidified to pH=2 to precipitate the water-insoluble 5-phenyltetrazole. The crude product was collected on a porcelain filter funnel and thoroughly washed with ice water. The product was finally recrystallized twice according to the method of Caruso, Popov, and Sears (7). Crude S-phenyltetrazole was added to 1,2- dichloroethane and the mixture was brought to boiling. Just enough methanol was then added to dissolve the tetrazole. As the solution cooled, needle-like crystals formed. These crystals were collected by filtration and were then dried to constant weight in a vacuum dessicator. The melting point of 215° agreed with that previously reported (7). 5-p-chlorobenzyltetrazole: The procedure for the preparation and recrystallization of S-phenyltetrazole was used. 5-p-chloroacetonitrile Eastman Organic Chemicals was used in place of benzonitrile. The melting point of 162-1630 for the recrystallized product agreed with that previously reported (7). 5:9-methoxyphenyltetrazole: The same procedure used for the preparation and recrystallization of 5-pheny1tetrazole was employed. S-anisonitrile was used in place of benzonitrile. The melting point of 239-2400 for the recrystallized product agreed with that previously reported (4). 14 Anisonitrile was prepared according to the method of Van Es (46). 136g of p-anisaldehyde (1 mole), 80g of hydroxylamine hydrochloride (1 mole + 15%), 125g of sodium formate, and lSOOmI of 98% formic acid were refluxed for one hour. A six fold dilution oF the reaction mixture with water caused the anisonitrile to precipitate. 5-p-chlorophenvltetrazole: The procedure was the same as for the preparation and recrystallization of S-phenyltetrazole. 5-o-chlorohenzonitrile was used in place of benzonitrile. The melting point of 179-1800agreed with that previously reported (6). 5—o-ch1orobenzonitrile was prepared according to the method used in preparing anisonitrile. S-o-chlorobenzaldehvde used in place of anisaldehyde. S-p-chlorophepyltetrazole: The procedure was the same as for the preparation and recrystallization of 5-phenyltetrazole. 5-p-chlorobenzopitrile was used in place of bepzonitrile. The meltinr point of 260-26lo’aoreed with that previously reported (7). '5-p-chlorobepzonitrile was prepared accosdine to the method used in preparine anisonitrile. 5-p-chlorohen2a dchwin was used in place of anisaldehyde. sodium salts of tetrazoles: Suspensions of the respective tetrazoles in water were titrated with 0.10M NaOh. The tetrazoles dissolved before the equivalence point was reached. The aqueous solutions of the sodium salts were evaporated nearly to dryness on a steam bath. The salts were then re- crystallized from acetone and dried at 1100 before use. C. Preparation of Metal Complexes Bis(5-phenyltetrazolato) cobalt(II)monohydrate: A complete description of the preparation of this compound will be pivcn. This method applies to all cobalt(II), nickel(ll), zinc(II). and copper(ll) complexes. In all cases, precipitation occur— red within a few minutes. Forty m1 of an aqueous 0.10M solution of sodium S—phenyl- tetrazolate were added drOpwise to 200ml of a magnetically stirred aqueous 0.01M solution of cobalt(II) perchlorate hexa— hydrate. Since the complex was insoluble in most solvents, it could not he recrystallized. The pink product was washed six times with distilled water, partially dried with anhydrous diethylether, and finally dried to constant weight 13 vacuo over P20 Digestion and prolonped 5. washing of the precipitate were avoided because Daugherty (45) had reported that bis(5-phny1tetrazolato) copper(II) monohydrate was partially hydrolyzed to hydroxo(5-pheny1tetrazolato)copper(II) by stirring the complex with water for twenty hours at room temperature. 16 Anal. Calcd. for Co(C7H5N4)2-H20: Co,16.0; C,45.78; H,3.29; N,31.45; Found: Co,l6.1; C,44.24; H,2.89; N,30.86. Bis(5-0-Chlorophegyltetrazolato)cobalt(II)menohydrate: This pink product formed in a few minutes. Anal. Calcd. for Co(C7H4N4C1)2-H20: Co,l3.5: C,38.SS; H,2.31; N,25.68; Found; Co,13.3; C,37.65; H,l.91; N,26.06. Bis(S-n-chlorophenyltetrazolato)cobalt(II)monohydrate: This pink product formed in a few minutes. Ana1.Ca1cd. for Co(C7H4N4C1)2'H20: Co,l3.5; C,38.55; H,2.31; N,25.68; Found: Co,l3.4; C,37.85; H,l.95; N,25.95. Bis(S-p-methoxyphenyltetrazolato)cobalt(Il)monohydrate: This pink product formed immediately. The solid turned tan in color on drying to constant weight. Aggl. Caled. for Co(C8H7N40)2-H20: Co,13.5; c,44.03; H,3.90; N,25.68; Found: Co,l3.9; C,42.78; H,3.23; N,25.85. Bis(5-p-chlorobenzyltetrazolato)cobalt(II)monohydrate: This pink product formed immediately. The product turned brownish pink on drying to constant weight. 5231. Calcd. for Co(C8H6N4C])2'H20: Co,IZ.6; 0,41.34; H,3.0]; N,24.05. Pound: Co,lZ.5; (3,150.4; H,2.73; N,23.‘M. Nickel complex of Sap-chlorohenzyltetrazole: This blue-violet 8011d precipitates immediately. Anal. Calcd. for l7 Ni(C7H4N4Cl)1.8-H20: N1,14.7; c,37.70; n,2.29; n,25-20; Pound: Ni,14.7; C,37.0; H,2.03; N,25.06; Nickel complex of 5-p-methoxyphenyltetrazole: This metric blue violet solid precipitates immediately. Anal. Calcd. ‘or N1(c8n7N40)1.8-n20: Ni,13.16; C,44.95; H,a.10; N,26.2; Found: Ni,13.0; C,43.06; H,3.37: N,25.92: Nickel complex of S-phenyltetrazole: This blue violet solid precipitates immediately. Anal. Calcd. for Ni(C7l O {5N4)1.8°“2 n1,15.2; C,43.6; u,2.6]; N,29.1; Found: Ni,15.5: C,44.6; u,2.82; N,30.l3; Bis(S-p-chlorohenzyltetrazolato)zinc(IT): This white solid precipitates immediately. Anal. Calcd. for Zn(C8H6N4Cl)2: C,42.40; H,2.66; N,26.72; Found: C,42.33: H,2.33: N,25.05: Bis(5-o-chlorophenvltetrnzolato)zinc(ll): This white nnild precipitates immediately; Anal. Calcd. for Zn(C7H4N4Cl)2: C,39.55; H,l.89; N,26.3S; Pound: C,39.78; H,l.80; N,26.SS: Bis(5-p-chlorophenyltetrazolato)zinc(II) 3/2hydrate: This white solid precipitates immediately. Anal. Calcd. For 2n(c7uanac1)2°3/2u20: C,37.10; n,2.44; N,26.80; Found: c,37.16; u,2.78; N,25.07; l8 Bis(5-p-methoxyphenyltetrazolato)Zinc(II): This white solid precipitates immediately. Anal. Calcd. for Zn(C8H7N40)2: C,46.16; H,3.36; N,26.92; Found: C,45.86; H,3.31; N.27.00; Bis(S-phenyltetrazolato)Zinc(II): This white solid precipitates immediately. Anal. Calcd. for Zn(C7H5N4)2: C,47.20;1H,2.82; N,31.4S; C,46.95; H,2.69; N,3l.53; Bis(S-p-chlorobenayltetrazolato)copper(II)trihydrate: This blue-violet solid precipitates immediately. Anal. Calcd. fOr CUHom maoHuo> CH moerezoo AHHquosou was we muHHHnsHom .H eHsob 35 q mHnuHOu >Huueuoo h I m.e mHsaHtm sHsecHHu I H.Hv oHcaHom I m eHnchmcH I H H H H H H cHHHuHceuoo< H H H H H mcemcom H H H H H ,meHHoHsumcmHssamz m.E v.5 m m m cchHuhm H H H H H Hccmsuwz v.6 m.E m m e opHEmEuoHHmsumEHoIz.z H H H H H mcmoncuq.H m.E m.E m.E m m wvonHHamHzcuoEHc H H H H H ocozumEcwqu H H H H H acoueo< zuwmoqmaeHeucum excazsecfixcucfm azoqzceHoup-m «zuazeeHoucnm «zomzsenm 0mm um mucw>Hcm mschc> CH mewacEce Aphv Hequz ecu we auHHHLchm .HH eHLmH 36 oHnsHOm meumuonoa I m.E eanHom zHuanHm I m.Hm mHssHom I m mHasHomeH . H H . H H H H .mHHHHHconu< H H H H H «caucus H H H H H oeHHcHHuucuHssuaz m H H m H . ocHeHusm H H H H H Hosanna: m.e H H a H oeHemaHoeHsnuwaannz.z H H H H . H uaaonaus.H a.Hm H H a H ueonHHamHsauuaHn m.Hm H H H H mewsuoeouqu H H H H H esouoo< ¢ 0 q n c a a a a s n s20 = uHuaoIH 20 = sum c N c . m we :UIeIn 20 a UHoIeIm c .. q .ZU mu m UHUICIm nos oNN um nu=w>Hom maoHuw> cH mooncEcu AHHV Moscow enu we huHHHnanw .HHH anwH mHnaHom hHoumuovoa I m.a meaHom mHuanHm I m.Hm oHnsHom I m oHnsHomeH I H H H H H H «HHHchauoo< H H H H H usuwsom H H H H H oeHHOHaoucoHsnuo: m m m o.E m .osHvHuhm H H H m.Hm n , Hoesnuoz 7 m m.E o o.E m evHEmEuomthuoaHnIz.z 3 H H H H H osmoneua.H m m.E m «.5 m ovonHHathsueEHa H H H H H acmnuosouqu H H w H H .ocOuou< «seamesceoHeIoIm azoamoechcIcIm azoazouHuueImp«zeamooHeIoIm a2Umzeuum oNN um mucw>Hcm msonm> cH mmoncho HHHHV EDHEousu ecu Ho saHHHnchm .>H «Hams 38 oHcche :Heumtovoe I m.s mHozHcm zHuszHm I m.Hm eHnoHom I m 02335 I H H H H H H mHHuuH:0uoo< H H H H H ocmwcem H H H H H meHHcHzomcoHsaum: m m m e H mcHwHuzm H H m H H Hocmcumz H H a H H oeHsmeHoHHsaaoeHoIz.z H H H H H ocmonaIa.H w w w H H mvonHHamHmnueEHa. H H H H H measuoEouqu H H H . H ocoueu< azommosmaeHeIeIn HzoszoocHzoIcIm Hzoa=eoHoIeIn azoamsoHeIoIm szonzooIm .NN Hm mucm>Hcm macHHm> cH mmmecsoe HHHV ucHN as“ e0 saHHHpchm .> «Hews 39 weDCHucoo Hmmcsb n 2H mucxucwe cH execs we :uwmeum .prvfisczv n :m .xch >um> I.3> .xmos u 3 .EwacE n E .ucowum I my mHmocucwumc cH moHuHmmeucH m Hsaflmvoeem Havossa HavoHom Hsvcaom Havomom Havoaom HavoaaH Hsaxmvoocm Havowaa Havomcm Havosom Havoeom Hmvcscm Havosom Havomom Hevcmom HevmmHH HstNHH HEVONHH HavomHm HEVOHHH HH_HmvosHm HavoaHH HEVOHNH H;_Hmvoosm HHHHmVocam Hs.Hmvoosm Ha_HmvoHHm Havomam Havoomm Amvosmm Havoomm Havossm o~:H.HmoVaHeo NHHVcN omm.NH=o oN=.w.HHHz om:.~soo emz Hm eumHowmpuouH>cm£eIm EsHpom .eHoumwuoqucmneIm we muuomem woumuwcH HIEumoH Cu oooq Eouw mHHsz ecchmuoa Ioonmumxm: was HoHaz :H chwmuuouH>ceceIm we mmwaeEcu msoHum> mam .H> magma 40 coscHucoo Hs_HavoamH HEVCHHH HavosmH HmVCHHH HEVOHHH HavoHHH HLHHavoNeH HevcHoH HsVoNeH HEVOHsH HavoosH Hs_HmvoHsH HmVoHsH HavcoHH _;_HsvoHHH HevcoHH HavomsH HavanH Hp_HavooHH HavomHH AsconH HavcawH HavonH HzVonH HavonH szcsmH Hs_HevommH HEHHNHH HpaHaVoHaH H;_AsvmsaH Hs_szosaH HHHszommH Hn_xzvomsH HsaxavoHaH HaHHHHH Havooom Havoamm _n_xmvoss~ Hs_HmvomHH HIVOHHH cmmq.xmovmsuu HHHVcN o~=.~sse c~m.m.HHHz c~=.~Hcc Hex H: woacHucou I ow> mHsmP 4] wmscHucoo Havoon Havoon HEHHHOH HavoHOH HavomoH H3>VomoH HmHHHOH HavocHH HavooHH H2VOOHH HavooHH HaHOHHH HsvaHH HaemOHH HavoaHH HavomHH HavoNHH HavomHH HEHHNHH HavesHH HavHsHH HstHHH HEVOHHH HavoHHH HavoHHH HavHHHH HEVOHHH HEVOHHH HavoHHH HmHoHHH Ha>v HHH HavoaHH AEVONNH HavmmHH HavooHH HavooNH HavomNH HEVOHHH HavoeaH HsvHHNH HsvquH HsHooaH HavoHNH HavowHH HavomNH HavomaH HavomaH HEVOHHH HavomHH HavoaaH HavosmH HavoamH HavosmH HavosmH HavoamH HavosmH Havome HavoamH HavoamH HavommH HavooaH HmvcmaH Havoqu HavoeaH HmVoHHH HmVoHHH HavomaH HavonaH AmHoHHH HavquH HavoeaH HavosaH HmHoHaH HsVoHHH HavoamH HEHOHHH HavommH HavonH Ha>vm~mH HavoomH om:H.HmcvaHHo HHHVcN o~z.~eao o~:.w.HHHz oN:.NHco Hmz am ewacHucce I .H> ”Home 42 cesoHusou Havens Hmvmss Havoos Haemaa Amooss Haaows Havoas Havens Amocoo Havoas Haemwo Haynes HmHHoH HavooH Havoos Havens AmVoHH Havoas Havana Havens HmHHHH HmHHHH Havoma Havoms Havoas Havana Havoaa Havoas Havoms Hsaxavomm Hs_H3Homm _H_H3vomm Havana HHHHaHoaw Havoow Havens HavoHa Havon HsVONH Havoaa Havoaa HavoHs Havaam HH_H3Hoea Hpaxavomm Ha_Hsvosa HHHszmam HHHHavoaa .nHHzHoma Havama HeHoHoH HEHHHOH H3VOHOH HeVOHoH HeHoHoH HaVoHOH HeHHHoH HanHoH Havoqu HsveHoH HsvwaoH HavaoH HanHoH HsHaHoH HsHoHoH HavoooH HeHoHoH HsHoHoH HsHHHOH onH.Hmcv~HHe NHHVcN o~:.~H=e oH:.m.HHHz o~m.~ch Haz H: soacHucou I >H meaH 43 HsvcmH HaHHsVomH HQHAEVOHH HavomH HavoaH Havacm Hevsom AcmvHCN Havon HaveHH HeVeHN HLHHmvHHN Havaam Havamm HIEUHHH ea oHN “can; seas HsvaH Hatm>om Hamvoma HachHH Havama Havasa Assess Heaxzvcam Hp_Hqum~ Haemaa HmvHom Aavmom szsom Havmmm Amvch HH_HzVaN HavHam HsHHemem Hmvmmm Havmwm Asvcca Havemm Hmvsam Hevmmm Hsafiavmam AavaH Hsvsma Havoma Heavens Hamvsoa szsms Asvmma Hevmaa Hevmma Havana HauHmvmsa Hevmcm szHHH HevHHH HmVHOH Havosa Haexevamm Hevmmm Havamm Hechm Hamvosm Heuvosme HemvaHoe szmHs HemvoHe CN:H.H:cv~HHe «ecu o~s.~s=u c~:.m.HHHz 0N:.msou sax s: emscHacou I .H> mHsaH LHJ 44 Table VII. Infrared Spectra8 of 5-Phenyltetrazole and Sodium S-Phenyltetrazolate with Band Assignments Genuine hT NaT Vibrational Assignment Node 3690(9) 3560(m) 3570(5) [“1 + V11) 3500(s) 3370(s)[b] V13 O-H stretch 3210(m) 3140(m)_ 3160(s)[b] ”1 ring c-n 3050(m) 3050(5) [“2 + 1600] 2980(m) 3000(s)[b] 2760(3) “14 [N—H stretch] 2660(s)[b] 2590(5) 3] 2530(s)fb] 2000(m) 1965(m) 1923(m) 1850(m)[b] 1780(w) l760(w)[bl 2290(w) 1950(w)[b] 1860 (w) +V51 2 + 8] +V81. 2 3v10] V7 + 10] 8 + 10] 4 C V V [2 [V [V [V l [ [ [ + 9i [V5 + V9] a Units are in cm- b Brackets indicate possible assignments Continued 45 Table VII. - Continued Genuine "T NaT Vibrational Assignment Node - 1730(w)[b] 1680(m) O-H bend 1610 1610(m) 1570(s) 1560(m) [ V9 + V10] 1500(m) 1525(vw) I v7 + v11] 1470(s) 1460(s) V2 ring deformation 1430(w) 1450(5) V6 C-H in plane bend 1400(s) 1380(m) [ V10 + ”12] 1360(m) [ V10 + V11] 1290(m) 1290(m) V3 rino vibration 1260(m) 1260(w) V9 + V12 1200(m) V9 + VII 1170(s) V4 ring breathing 1130(m) [ V12 + 650] 1125(m) [ V12 + 615} 1103(w) 1105(w) [ 011 + 650] 1087(s) 1090(vw) [ V11 + 615] 1057(m) 1070(m) V5 ring deformation 1036(m) 1025(m) V7 ring deformation 1015(m) 1010(m) V8 rinzdeformation 994(s) 980(w)[b] [ V11. + V12] Continued Table VIT. - Continued 46 Genuine HT NaT Vibrational Assignment Mode 924(w) 910(w) v10 4 C-H out of plane bend 850(m) 860(m) I v12 + 350] 796(m) 780(m) 725(5) 725(3) v9 ring deformation 700(3) 700(5) [2(355)] 685(3) 685(5) I V4 - V11] 670(s) 675(8) 660(m) 665(3) 540(sh) 490(5) 505(3) V12 out-of-nlane ring bend 449(w)[b] 459(s) v11 out-of-plane ring bend 407(sh) 420(sh) [ V2 - V7] 345(w)[b] 355(m) I V5 - V91 307(w) 308(w) . I V7 - V9] 250(sh) I V9 — V11] 207(sh) [ V10 - V9] 108(3) ‘ l70(s)[b] 47 (I ll ll 7 6 4 I I l I l I I J"\ I I I l l I 1 Co(C7H5N4)2-H20 4 l 1 ' I I N1(C7”5N4)1.8."20 Cu(C7H5N4)2.nzn J. I I 1 L l 2n(c nrn ) \VVV vf\//V\ 7 3 4 2 . .‘V/V \ / \/‘\v\ I I l I l J Cr(C7N5N4)2(0H)°4H20 .J’k L l L l 1 I 100 200 300’ 400 500 son 7uo cm'1 Figure 1 Far Infrared Spectra oF S—Phenyltetralole, Sodium S-Phenvltetrazolate and Various Complexes of Sodium S-Phenvlretraznlnrr 48 .H> emcee pcoecH com I m UQDCquOU _;_AmvoxozuezIeIn we mmerchu maoHuma was oHowmuuwuHacoccmxcnumZICIn EaHpom .chNoHueuH>coxc>xozuerlolm Ho muuoocm puumuucw m .HHH> MHDMH 49 omscHuccg HmVOHHH HuvchH HEVONQH HcVoNsH szmHsH HEVQHHH HavousH HavoosH HavooHH HaVOHHH HavonHH HavoHHH _s_HavoowH Hs_szoomH Havome HsvamH HavommH _n_H3vooaH HavoHaH HHHHavonH Hs_HaHoHaH .s_H:HoHHH _n_H3Voao~ _n_H3Voao~ Havomoa Haeommm Havomsa Haixevoonm HuvcHHN Havommm _L_H¢Hoos~ c~=s.HmcvaHo NHcN Hzovsze c~:.e.HHHz o~:.~Hce Hex H: pmscHusoo .HHHD mHan 50 poocHucoo HavoaNH HavomHH HavomaH HavoaaH HavmmHH HavcoHH HavoomH HavoomH HavoHHH HavoomH HavooHH HavoHHH HavoomH HmvcmmH HEVOHHH HmVonH HaHoHHH HavosmH _p_HevoomH HHHHeHoHHH HavosmH nufiuvoonH HsVoHHH HmvHaHH HavownH _a_HeHomnH HavomHH HavonH HavomnH HavoHaH HcmvmaaH HavnoaH HavoHHH HavoaaH HmvHHQH HmHoHHH HnHoHHH. HavoasH HmVOHHH -HuHoHHH HmvHHsH HmvmsaH HavooaH HavosaH HavnnaH HmHoHHH HaHoHHH HHHHHHH. HaeosaH HavoomH HeVoHHH _n_HaVoHHH HavoonH HeHonH HEVOHHH HavoamH HaemanH HavoaHH HavoamH HEHHHHH HmHoHHH HavomHH HEVOHHH szmmmH HEVCHHH HavomHH HmvHHHH HavoaHH ONxH.H:cV~HHu HHcN Hzcvsso o~=.m.HeHz o~=.~Hco Hmz H: coocHuccu .HHH> 0H£mb 51 peocHucco HanHOH HmvaoH HstHOH HavoaoH HmVOHOH AmvmaoH HavomoH HevcHoH HavoaoH HsVoHoH HavoHOH HeHoHoH Ha,oHOH HavoHoH. HonHoH HavoHoH HavoooH HavosoH HavooOH Hs>vom0H HavoHoH HavomoH HavooHH HEHOOHH HavooHH HevHoHH HavooHH HavoaoH HmHoHHH AeVoHHH HmHoHHH HsVOHHH HavoHHH HavonHH HavoHHH HEVOHHH H3>VomHH HavomHH HavoHHH HavoaHH HavosHH HavoaHH HavoaHH HavoaHH HavoaHH HavosHH HavomHH HavosHH HavooHH HaHoHHH HonHHH HaaHoHHH HavoHHH HavomHH HavomHH HavomHH HmHnHHH HaemoaH HavooNH HaemoaH HmVoHNH Havmo~H HavoaHH HmHoHHH HavomaH HavosaH HavommH HavoHNH HavomaH HavomHH HavonuH HuHoHNH ouxo.fimovmeuo menu Hzovsso o~=.m.HHHz o~=.~sou Hmz a: zeaaHucou .HHH> chwb 52 poacHucou HmVoHo Havens HEVOHH Havoms Havens Hevcse Havooo Assess HEVHQH Havooa HEVHHH HevsoH Havoma AeVmNH AEHOHH Havoaa HEVOHH HavoHH Havoas Havens Havoss Hmvcsa Havoaa Havosa Havens Havess Havens Havoak Havoms Havoaa Havoaa Havesa HavoaH Havon Havomm Havens Havana Havens Havana Havana Havoam Havens Havens Havomw Havomm Havosm Havomm Havosm Hs_H3>Vomm Havoam H3>Vomm Havens Assess lexavoom Hsaxmvoma Havoam Havens Assess Hp_H3voma Havana Havowm HavoooH .HevoooH HavoooH HavoooH HavoooH HavoooH HavoooH owes.HmoHHHHo NHHN Hzcvsao o~=.m.HHHz oax.msoo Hmz H: CQ:CHucoo I H-> mHLwB munQDCVUCCL HLHAmeqm Haaxzvmmm Haafimvomm Havoem Havosm Assess Hemvoam Assess Hs_fizvaem HsixsvHeN Haemaa Havamm Hsaxmvsmm Haifizvoem Havawm szmam Hsvam Hmvam Havamm Aevsom szmqm Hemvomm Hs_xevmmm Hsvmsm HEHHHH HevNHm Hsvcam Havaoa Havoom Hamvqu Havana 3 Havmma _:_H2Vama 5 H:«vsma Haveea AmVeHa Haemos HnaHsvmma Hmvsaa Haynes HuvHom HemvHom Asasms Amvsaq Havaaa Hmaflevamm Havosm HmeNm Havamm Hevsmm Havomm Hmvmmm szcmm HmvHHs Huvmma HIVcHa HIVHHs HmVaHs HmvHHs Assess HIHHHH Assess HsvHHs om:H.H:cva»e NecN HecVAHvse omz.:.HHHz oN:.uHoe Hm: H: emscHuaco I .HHH> oHsmH r) H3>VHHH HavowH HavamH HmvaH HavHaH HaemaH HmvHaH Hevmoa Havooa Hs>vHH~ HaaxsvaH HevaH came.HecvaHo mace AchHsvse om:.m.HHH: o~:.msco Ha: H: woscHucou I .wa> mHan Table IX. 55 a Infrared Spectra of S-p-Methoxyphenvltetrazole and Sodium S—p-Methoxyphenyltetrazolate Cenuine HT NaT Vibrational Assignment Mode ~_ _‘ 3500(m)[b] 3570(3) [VI + “111 3400(s)[b] v13 O—H stretch 3200(sh) 3200(sh) 1620 + 1585 3160(s)[b] V1 ring C—H stretch 3100(sh) 3080(sh) [ V2 * 16001 3040(sh) 3000(m) I2(1 V2)] 2780(s)[b] V14 [N-U stretch] 2650(s)[b] 2600(s)[b] [2( v3)] 2500(s)[h] I “2 + ”5] 2280(w) I “3 + V8] 2080(w) I2( V7)l 1950(w)[b] I “5 + “10] 1910(w)[b] 1920(w) I 98 + “10] 1870(w) 1880(w) I “A + V9] 1800(w)[b] I2 “10] 1170(w) I ”5 + \b] 1730(w) I V7 + lsl 1710(w) I V8 + V9] A a Units are in cm‘] b Brackets indicate possible assignments Continued 56 Table IX. - Continued nenuine HT NaT Vibrational Assignment Mode 1700(w) 1690(m) [ V1 - v2] 1620(s) 1620(m) 1590(5) 1585(3) [ V9 + v10] 1520(9) 1535(m) I ”5 + V11] 1480(m) I “7 + V11] 1480(5) 1450(5) “2 ring deformation 1450(9) 1440(s) v6 c—n in-plane bend 1420(3) [2(700)l 1380(m) 1370(5) I V10 + v12] 1360(s)sh I V10 + Vll] 1320(m) 1310(3) 1300(3) 1300(m) 3 ring vibration 1290(s) 1270(8) 1250(9) I ”9 + V12] 1190(w) 1205(m) I “9 + V11] 1175(8) 1170(8) 1170(sh) “a ring breathing 1150(m) 1140(m) I ”12 + 650] 1140(9) I v12 + 8151 1130(m) 1120(m) I Vl] + 650] 1090(n) 1100(m) I v11 + 615] Continued Table TX. - Continued Genuine HT NnT Vibrational Assienment Mode _ 1070(n) 1080(vw) V5 ring deFormntion 1050(m) 1030(m) V7 rinp de‘ormation 1020(m) 1025(3) V8 ring de‘ormntion 1000(m) 1000(9) (1454-454) or 2(500) 950(m) 880(w) 890(vw) V10 C-H out-of—plane bend 860(3) [”12 + 350) 820(m) 830(5) 810(m) 7§O(w) 750(9) 760(8) 720(w) 720(u) V” ring de’ormnrfon 70H(m) LIMI(\:) 0(M)(VJ) 631(w) 638(w) 608(5) 611(9) I “5 - V11] 522(9) 520(3) v12 out-oF-plane ring bend 499(w) 497(9) 447(3) 447(3) ”1] out-of-nlane rinn bend 409(sh) I “2 - V7] 387(m) 387(sh) I “3 - V10] 312nm 319m” I V7-”9] Continued Table IX. - Continued Genuine HT NaT Vibrational Assignment Mode 249(9) 261(m)[b] I V9 - v11] 213(m) 200(w) 205(m) [ V10 - V9] 169(s) 191(5) 59 C8H8NAQ \V/*’\//“\//‘\ CO(C8”7N40)2.“20 W N1(C8H7N40)1.8.H20 \aAA\xv~\/\//fi~‘vox\\\V//\\\f\\ db \ CU((:8H7N40) (0H) 7N4”)2 . C" 7n( 8 Cr(C8H7N40)2(OH)o6H20 a.7KI7l\-I.\lAfVr7xP’\/\\\'\\\\_/\\NV L___-l l 1 l 1 l l_ 100 200 300 400 500 600 700 -1 cm Figure 2 Far Infrared Spectra of S-p—Methoxyphenyltetrazole, Sodium S-p-Methoxyphenyltetrazolate,and Various Complexes of S-p-Methoxyphenyltetrazole 60 vmscwucou. H> oasmh ccmuwfi WMM I w H;_A3vomafi _£~Asv0sflfl _L~szmflmfl .n.fiavohmm Hn_Aevoqm~ ”n.5evomom H£_Aevo-~ _n_AsVom~H Asvoowm Amvowom Asvohom Amvooom Asvooom AmvoOHm Amvoofim flavoonm .p_hmeomfim _L_Amvomfim Hn_amvomfim “evomom .aafisvommm .cefimvommm .neawvomnm _n_nevommm .eeAmvoomm .neheeoemm Amvowcm Amvommm Amvomnm o~m¢.Amcv~suu swam.~eam o~s.~e=u om:.m.aawz o~=.meou Hmz em Hususoa cu ccoq Ecru wfiflzr mcwwtwuacochxumxom vcm Horsz Cw mficnmuuoua7co£copoHLUIcam mo mmeHCECL mchLc> vcm wumHCNCHquH>CmLCCMOH£U|Clm Esfivcm .macswpumua>cwnccuoHLUICIm we Muuuocm vmumuwcH x mHan 61 woscwuccu Asvmfima AeVoHNF Asvmomfi Amvommfi Asvoomfi Aevowmfl Acvommfl Aevcwwfl AmvommH Asvc~ma Aevmsmfi szmswfl . mseanOOMH HL_AsvoomH flavoamfl AavoOMH Aevcomfi flavo~m_ AEVOmmH Aevonmfi _neAsvomMH flavomma AmvoNMH Amvmoqfl AmVONqH Amvcmqfi AmvaQH Amvooem AmvaQH AmVONQH AmvmeH AmVOOQH AmVCnQH Amvooqfi Amvomqfi Amvoqea AEVQOQH Amvomqfi Aavohqfl flavowqfi szoocfi flavowQH Aavowqfl .pehavomqfi Amvmoqfl flavommm szocmH flavofimfi havonH Aavmfima A3Vc~mH Aavmmmfl Aevooms AmVOmmH Aevoomfl Amvohmfi szmomH Asvmomfi Amvommfl Amvooofl vaoflcfi Amvooofi AmVoNoH Aevoflofi Amvofiofi AmVCOOH Aavocmfi Asvommfl o~:q.fimcvmsue o~zm.~ecm cm:.me=e om:.w.fiefiz o~=.~ecu amz e: em:Cfiucou I x ofinmh consaucce _n_fischm Amvoeo Amvcem Asvomo .pefischo Amvcea Aevocm Aevomo. Aevowo Amvcmo Acvowa Asvowm Amvomm Amvcac_ Aechofl Amvcmofi AmV0mofi Amvcfica Amvcocn Amvoccfi Amvmfiofi Aevcmofl AEVONOH AmvoNOH AzVOmoH AEVONOH AsvomCH AEVONCH AEVOmoH Amvomoa Anemooa m Amvmmcfi Amvomofi AmVCOHH Amvocfifi AmvooHH Amvooofl Amvoofifi Amvomoa Aavomfifi AEVOMHH AmVOmHH Aevmmfifl havomfim Amvmmafi Aevomflfi flavoefifl “EVOOHH Amvosfle Amvmmfifi Acvcwen .LHAsvcomfi Asvcmfia AmVOOHH szomHH ommq.hmcv~sue cmzm.~ecw o~:.~eze cm:.m.mbwz o~=.~ecu Fez H: wwscfiucco I x mamas 63 wwacvucco Asvome flavoqo Aevomo Aevoco Aaeomo Aevomo Amvomo AmVONN AevoNs Amvmms AmvaN flavoms Amvomn Amvomu Amvoen Aevoms AEVONN Amvoos flavoms Amemsh Aevoeh Amvoms Amvoqs Aavoas Asvoow Aevoom Aavomu Amvooh Asvomh Amvon Amvoqw Amvomm Amvomw Aevcmm Amvoqm Amvoqm Amvcmw AmVme Aevocw Amvosw Aevcmw Amvomm Amvomm _L_Asvowm Asvoom szcos szoom Hn_nmvmsm :q.Amov~eue m.~ecN c~:.Ne=u. cum.m.fieez om:.~sou anz p: ewscfiuzou I x mfinae 64 HLHAchmfi _;~Aquwm Amvomfi Amvosfl AEVCCN .LHAmvmofi _i_fimveo~ Amvomfl szewfl asvmmm mgefimvfimm havmflw flaonN ~£_Asvmqm AmquN haveqm Asvhew _;_Asvme~ AmvomN Aevmhm Amvmsm asvmum ,n_fievom~ AzmvwnN Aevfiom Aeemom Amvcom ~s_fisvew~ Asvmmw Aqumw .a_haveo~ AEVOmm Asvmmm Aevhmm _;Haev¢mm .neAavsmm Asvaum AEVONm “avosm Aevsmm Acvosm szosn “semen Aaveom Aevhcq Acvqsq Aquse Acvmsq Aevohq .Amvsoq Amvmmq Amvscm AmVMHm Aevmom Amvsam Amvsfim “meson Anemom Amvmmm Acevooe .Leficvmmc AsymNQ Acmvmmo Anmvmfio cmgq.fl;ovueuu nmem.mecs om:.msae c~x.x.fisrx owm.mpcu Hmz H: emacwuccu .x «Hams 65 {1 Table XI. Infrared Spectra of S-n-Chloronhenyltetrazole and Sodium S-n-Chloronhenyltetrazo]ate with Band Assignments Genuine HT NaT Vibrational Assienment ‘fode k 3570(s) I”1-+‘h1] 3420(9) “13 0-H stretch 3300 (m) [It] 3090(m) 3]50(s)[b] v1 rine c-v stretch 3060(m) 2800(m) 2750(m)[b] 2720(m)[b] 2630(m)[b] 2540(n)[b] 2270(m)[b] 1‘H)(w)[‘v] 1600(8) 1550(9) 1525(w) 1495(5) 3060(5) 7270(")IP] 193an)Ih] 1920(m) 1900(w) 1610(s) 1565(m) 1520(w) 1490(w)[b] I”: + 1(00] [N~I’ strwiteh] [”2 + V31 [“3 4 V6] [“2 4~ WI [V2 + V5] {V7 + V10] [“8 + V10] IV4 + V9] [V9 + “10] [V7 + V12] a Units are in cm‘1 b Brackets indicate possibJe assiqnments Continued 66 Table XI. - Continued ‘_ *g- HT NaT Vibrational Assignment Mode 1480(5) 1460(m) v2 ring deformation 1435(3) 1420(5) V6 C-H in-plane bend 1405(5) [“10 + “12] 1370(5) 1350(m) [”10 + “1n 1700(w) 1310(m) V3 ring vibration 1275(w) 1275(m) 1260(w) 1250(n) 1255(m) [”9 + V12] 1180(w) [”9 + V111 1160(5) 1150(w) ”4 ring vibration 1140(m) IV12 + 650] 1120(m) 1125(3) IV12 + 615] 1090(3) 1100(3) [”11 + 650] 1085(5) [”11 + 615] 1065(5) [“9 + ”366] 1050(8) 1050(m) VS ring deformation 1020(5) 1020(m) 07 ring deformation 1015(3) I2 v12] 1000(8) 1000(5) v8 ring deformation 980(3) 980(m) [“11 + V12] 960(m) 900(m) [“2 - v12] 875(s)[b] 900(w) v10 C-H out-of-plane Continued 67 Table XI. - Continued Genuine HT NaT Vibrational Assignment Mode 850(3) 850(9) [v12 + 368] 840(9) 840(6) ["12 + 321] 790(w) 760(5) [”2 - ”9] 740(9) 750(9) 'Ive - V91 730(5) 720(8) 09 ring deformation 680(3) 650(m) [V4 - V111 615(sh) [“5 - ”11] 505(3) 507(8) v12 (out of plane ring bends) 459(8) 467(5) U11 . (out of plane ring bend ) 366(w) 368(m) _ [”5 -V9] 321(w) IV7 -V9] 296(w)[h] 294(m) [”8 -V91 258(sh) 256(m)[b] [“9 - V11] 215(w) 221(s)[b] [“9 - v12] 186(w) 186(5) [V10 - V9] 17o 1300:) I680 - "12] CHNCl NaC7HaN4C1 C0(C7114N4C1)2'H20 Ni(C7H4N4C1)1 8'" 0 2 Cu(C7HI.NAC1)2°HZO 2n(C7H4N4C])2-%H20 Cr(C 7"4N4 Figure 3 68 4P 3 1 I I l j l I C1)2(0H) '41120 \4/‘ I l L I 1 l 4 l g 1 L A _1 l 1 100 200 300 400 500 600 700 cm Far Infrared Spectra of SQp-Chlorophenylf tetrazole, Sodium S-p-chlorOphenyltetra- zolate and various complexes of S-p-chlorOphenyltetrazole 69 coauwuccu .x emctw ccccofi mom a w Amvcomm Hn_nnvoqmm Anvocom AnVQONN Aevoqcm AschOm Aevcoom Aevooom AsvomOM Atnvccam AsvoHam Atnvooam _£aasvoon _L_Anvooam szcmam AchOONm Acnvccmm .s.AnV03mm Hn_anvoomm _L_Anvccem _n_AsVOmmm _t_asvommm Aevoqmm envoqmm “envooem Atnvoocm Agnvomcm AthOOQM asnvocom cmzq.:c~eno menu emxm.msso o~:.w.aeaz o~=.~ecc ann a: automofi Cu ocoq Eco» mfianr mcmwvmusncucfisoexo: 6cm Mowsz aw oflcumkueuH>~cmncuofizu1clm no moxoficfcu catwum> can .mumacnmuumuH>~conoucfinu1c1m Eswch .6ficnmuuoufi>uco20ucfixuucnm ec cuuumCm noumuwcH me oflxce r. 70 voacwuccu Azoomna Aevomma Aevomma Aevoana asvnhna asvoooa asvooea Hn_aevoaca Revoama Aavoama Aavomna _p_A2voqoa .naasvocea _a_asvomoa _n_aavomoa Anvomoa flavomaa Anvoqoa Aavomaa Aavowha Aavoaaa Aavooma Aaoooma _n_anoo~ma Aavooma Azoowwa Aavoowa _n_asvo~oa Aavomma _n_aavo~oa _n_aavo~ma “zoomed Aavoama Anvoama szonaa Aavocafi Aavoeam _n_aevceo~ AnvoeeN .AnvoweN o~z«.=o~auu «ecu o~=m.~a=u o~=.m.aaaz o~m.~eou sea a: vwscaucoo n max «Hana 71 voDCHuccc AavcoN_ Anvcoafi havooma asvcoma .tHAtVOONH Anvoamfl AanONH Mn_asvmema Anvomaa Aschma _n_Aavmqma aeaasvcnma Asoonaa Aavmqma Anvmwma flavoowa _t_azocmma Aevmoma nevoama “sycama AevomNH Acvowma Aavoama _n_AeVona AsvonH _n_aavonH AaVona AnvonH flavoana Aavonna Asymmma _p_A2VommH _£_A2Vo~ma Aaoouma Aavnmma Aeneasma Aevomma Anvooqa asnvommH “accoma Anvoona Anymoqa Aevcaqa Amvomqa Anvoaqa Anvoaqa Anvoaea Anvcmqa Anvoaea _n_aevomqa Anvmqea _n_A2VquH Anvomqa Anvmmqa anvomna Anvoeea Andeaqa . ~n_aaV0nqa Anvowna AsVONnH Anvomefl .e_aevc~qa AnvcaqH Anvoqu Anvoqu Aneocmn Anvnoqa Amvoaqa Anvnmqa Anvmmqa o~:e.A=cv~euo «one o~=~.~eao o~:.w.aaaz o~:.~hcu Fez a: unscauaou . HHx manna 72 vmscfiuccu szmmo _n_aevcem Hn_aavoem ”peasvoeo Aevoea _n_azvcma AEVOmm Anyone Asvoeo Hn_aevomm _p.asvonm Aevowo AEVONm flavomm Asvmnm Anomaoa AanHoH Anvoaoa Anvoaoa AnvaoH AnvmaoH Anyone AmvoaoH Aevomoa Anomaoa _c_aevomoH Anvmeca Asvomoa havoeofi Anvoaoa AnvomoH Anyone” AnvmmoH Anvomoa AnvomoH Anvomoa Anvomoa Anvmwoa Agnvoaaa AnVoHcH Anvmwaa Anvoaaa Annemaaa Anvonaa Anvoqaa Anvoqaa Asvoqaa Anvoeaa Amvmmaa Anvomaa Anvomfia .t.aevocaa AEVOmHH Asvomaa _;aasvc~aa Aevoana AnVONHH AsvcoHH Anvmxfifi Atvmwfifi cwmq.amcvmene mean emmm.mese o~:.w.aeaz mm.msco enz em emscaucou 1 box nanny vmacfiucoo 73 Asvome Aevcmo .nHAavomo flavomo A3V0mo Aevoco havomo Asvooc Asymme Aeooae “tonne Anyone havomo Aevooe Anvmcn Anvm0a Anomaa AgnVAeVmON Anvoaa flavomo Anvo~a Anomaa Atvmma Anvomn mgefievoqa Aevomn _;n_asvown Anvoma Atnvmoa asvoma Anvoma Andean Anvmwa Anvoma Anvoan Anvoon Amvomn Anvmma Anvoow Anemox asnvmom Anvoam Anemow _t_hevmaw Anvmaw anaaevomm Anvowm Amvomw flavoew Amvmmw Asvoqw flavomw Asvomw Aseomw _c_aeemqm Anyone AEVOmm _n_aavomm _;_A3Voaw _n_asvoaw Asvoaw .naasvmao Anvmam Aevmam .naaevooa Anemoo Anomao omze.A:cvmeno Necm cmzm.~a=o o~=.m.aeaz o~:.~eoo enz a: tbSCHUCCU I HHX 74 Agenda szama Atvana _t_A2VamH Asoka“ Annveaa .nuanveaa atvnoa Aavmcm szaam Asymmm Asvmam RDHAnvaHN _n_anvmmm Atvamm szcqm Anv~ea AanMN Aavmam Anvnam _naazvoau MLHAnVcaN .peaavmmm Aav~w~ Aavmmm szaCM Atvoam Asvwcm Aachen havaom Anvamm Atom“ Anvmmm Asvmmm Asymmm Aevmam Aavcmm szcwm szomm Asvaqm flavonm Atvmnm Asvcwm anafiaveam _n_atvnom szaqm Anvomm Amvmee Asymmq “semen Arvaeq Anvnqc Aquwq Amvnnq Anvqmq Anvcmq at_Anvowq Atnvmmn Aavaom Asvmoq Anvmmq H;_Anvooq Anvamq Anvome an_iaennm an_anvsan AnneHNn Aznvmae cmmq.;c~eno “new omzm.me:e cum.m.~w a o~:.~ecu enz a: vengeance I .Hax natty Table XTTT. 75 a Infrared Spectra of 5—p-Chlorobenzvltetrazolate and Sodium S-n-Chlorobenzvltetrazo]ate Genuine HT NaT Vibrational Assignment Mode 3660(sh) 3540(sh) [V1 1 V111h 3340(m) “13 o.“ stretch 3300(5)[b] 3120(w) 3100(s)[b] “1 rinn c—n stretch 3080(0) [V2 * 16001 2700(3) “14 [N—H stretch] 2600(3) [“2 + “4] 2540(s)[b] [“2 + “51 2500(9) 2480(5) Iv3 + v4] 2440(3) 2160(m)[b] 2140(w) I2“sI 1910(5) 1920(w) [“7 + “10} 1890(w) [“4 + “9] 1820(s)[b] 1800(w) I2 “10] 1770(w) [“5 + “9] 1640(3) o-n bend :1 Units are in cm"1 b Brackets indicate possible assienments Continued Table XIII. Continued Genuine HT NaT Vibrational Assienment Mode 1630(5) Iva-tvlll 1580(m) 1590(m) [“9-tv10] 1.575(m) 15mm) [850 + “91 1530(w) [V5 + v11] 1495(3) 1495(5) [V7-Fvll] 1470(3) [VS-tvlll 1440(5) 1430(3) ‘Jz ring deformation 1410(s) 1420(3) V6 C-H in plane bend 1405(3) 1400(9) [2‘@] 1355 1320(w) [v10 + v11] 1330(w) 1310(u) 1310(w) 1290(m) 11280(m) V3 ring deformation 1260(m) 1245(m) 1240(w) [v9-+V12] 1205(9) 1210(9) [v9-tvlll 1180(w0 T1170(s) 4 ring breathing .1150(m) [“12 + 650] 1135(s) [“12 + 615] 1130(5) 1110(9) 1125(9) [“11 + 650] Continued Table XTIT - Continued 77 Genuine HT NaT Vibrational Assienment Mode 1085(3) 1090(9) [“11 + 615] 11150(s) l(l70(s) V5 ring deformation 1015(5) 1020(m) V7 ring deformation {390(5) 11}15(S) V8 ring deformation 075(n) 980(w) [“11 + “12] 960(m) 940(3) 950(m) [02 - 012] 935(w) 915(3) 965(m) V10 C—H out of plane bend 850(5) 850(s) 835(3) 820(3) 805(9) 810(3) 795(3) 770(3) 780(9) [V2 - V9] 720(m) 740(sh) [“6 - V9] 690 7]J)(S) 09 ring deformation 680(m) 690(9) [04 + V11] 650(0) 640(m) 618(sh) [“5 - “11] 521(3) In] V12 out-of-plane ring bend Continued Table XIIT. - Continued Genuine HT NaT Vibrational Assipnment Mode 486(9) 497(9) 437(8) 424(9) V11 out—of-plane ring bend 367(w)[b] I“5 - “9] 319(m) [“7 - “9] 307(m) 307(w) [“0 - “9] 285(m) 282(m) 233(w) 242(9) [“9 -“11] 217(9)[b] 196 174(s)[b] [“10 - “9] 157 79 C Y ‘ 8170461 ' 1 1 1 J 4 ’ W\ rC N1 8H6N4C] 1 1 J 1 1 L CO<("8”6N.’IC1)2.HZO 1 1 £ ‘ 5 J i Ni(C8H6N4C1)l.8°Hzn _L L l l l I I Cu(C8H6N4C1)2°3020 ‘“ _‘_ 1 J 1 I ' .1.-- /W \"J An(C8”6NéCJ )2 1 A 1 1 L 4 Cr(CBH6N4Cl)2(0H)-4H20 _L A ‘ l L L i 100 200 300 400 500 600 700 0 cm'1 Fiwure 4 Far Infrared Spectra of S-p-CblorobenzyItetrazole, h Sodium 5-p-Chlorobenzyltetrasolate and Several Complexes of S-p-Chlorobenzyltetrazole 80 vaCwuccu .e_arvomcm .eaaevcmam Heianvoomm .eHAnVOmmm .5 nanny ecoeefi new I n l) I.“ Aavooom ArvomOM flavoecm Aevoeom _e_anvocam _e_anvocem Heianvmamm .eaA3VOmmm _e_aevocmm _e_anvommm fleecema _e_anvooem .eaanvooem .e_anvooN~ o~x<.mo~sno NecN o~:.~a=e o~:.m.aeaz Anvoomm AnvomwN AnvomeN “evoeom Asvomcm Anvomom Aavo_am Aavomam _e_aevommm _e_aevonmm _e_anoonem Aavomem Anvcnmm .eaanvommm o~:.~eoo 962 H: snanom HIEoneH cu cooq Eoum mafia: mcmwvcusncuofisomxo: can Henna :« waoumuuoua>cwnccuoHcousin ec wmxoficsou mscwum> can wueflcumuuwuakcmno0po”cousin .maoumuuou~>cmzcoucfisuuolm we muuownm vmumumcu >Hx manna m 8] benefiuccu Anvoema Aevomma asvcema Aevmema Asvoema Aevmema flavoema flavoema Anvoema Aevooea Aevocea Asvooma Aevooma Aevocea He_asvomma Anvooma Aevmmea Aevoeea Aevoeea Aaoonea AEVOmeH AEVOONH AEVOONH AEVOONH havomaa Aevooma szoowa me_aavooma AEVONwH .eaaevomma _e_AsVoNoH AevoHea _eiA2VCCmH _n_aavomea .eaaavcmoa _e_azvowaa .e_aavc~¢9 Aevomea flavomma Aavocom Aevomow o~m¢.mo~ene were ch.~e=c o~=.w.asez o~=.~seo eez em menswucou I >Hx mHLmH 82 menswuccu Aevomaa Aavomaa Anvomaa Atvceaa .e_aevcmna _raasvoeflfi Aevoeaa Anvoeaa .LHAEVONHH Atvcman .eaasvoaaa _e_fitvoaaa _e_acvoaaa Acvoaaa Andeaaa AEVONNH szomma szooma Ascoama AEVOHNH Aevomma Aevomma Aevmewa Aevcema Aevonma flavomma Heaaevooma havomma _e_aevmoma aspvoomfi _e.Asvc0mH _e_atvona Asoomma AeVOWmH ArVCmmH flavoema Asvoema Aavomma AeVOmmH Anvoema Aevccma AnVCBmH Aevmwea Aevocqa AchHeH Amvomea nevcmea Anvcmea Anvooqa Aevceea Anvmmea Arvoeea Aevceea “recess Arvoeea Aevomea Anoomea Aevmmea Aevmuma Acvoama szchH asvmmma flavoama Ardooma Aevoeea o~m<.:c~euo NecN o~m.~e=e omm.m.aeaz o~=.~ecu 962 e: cmscauccu I >Hx capes ‘111 nllr ensceucoe asvooe A3voco AavoHo _e_az>voam .eaasvon ~t_az>voao Amvoqo Aevmem flavome Aevoeo He_asvomm fleeces Aryans Aevomo Aevcme Aevowe Aevowe szomo Aromas Aryans Anyone Anyone Asymmca Aevmmcr AEVCNOH Asvomoa Arvoaoa AnvoHcH Anvcaoa Anvomoa Aevoee_ “evened Asymmea Aevoeea Aeoemea Aevoeoa Aeveeea m Aevoeoa AEVONOH asvmeoa AsvcaoH Aevmeoa AsymmoH Andeaca Amvcsca AmoceOH AsymmoH AevomcH asvoeca Aavomoa Asymmoa Areas—a ArvmmcH Anvooaa Aevocaa ASVQNHH Aevmmaa AEVOeHH Aevomaa Aevomfia Aevmnaa Arvmmfia Arvowfla o~z<.momepo Necm c~=.~eso o~:.w.aeaz ~:.~eto are H: eezeauccn I be manna 84 coacHucou Anyone Aeocme Aevome AEVOme Aevome Anyone anyone Aevoon AnvoNn Anvomn Anvomn Aevcma Aevcmn Aevomn Anvoaa Aeooma Anvoea Anyone Aevoma Anyone Anvoma Arvoea Anyone Anvoma Aeooma Anvoma Aromas Arden“ anvoma AeV09n Aeooxa Aevomn _e_acvoma _e_asvoma Aevcwn Anvoma Aavo~m Aavoom asvoow flavoow Aavoma asvmma AnVOmm Aevomw AnVOmx Asvomw Acvomw Asvomw Aavomw Azeoow Aa>vomm Az>vmwm Aaooem anvowm omme.chanu when c~z.~e=o on.m.Heaz o~=.~aco anz e: umzcwuccu I >Hx oHnnH moSCMuccc Atomam AsVon A2>voaa Anomam .eaaavomm arevamm Atommm A2>vamm szmma ~e_aaveem Aevemm _e_asvema A2>vcm~ eeem 2> Aevmmm _e_aavaam Aroma“ meianvmem ariazvmmu HeHAeVaaN ae_anvoa~ Aevmmm Anvmcm He_anvaam Anvmmm atvqmm Aenvcmm mafiaevmmm Anvmmm asvmmm Aevmem AeVCNM Aeveem Revemm Aevmme Aevmee Aevwee Anvmme Aevmme szome 5 Arvmme Aevmme Aevnme Aevama Anvame Aevmme szoee 3 Aromas Aromas szmas HLHAaVcOe ~e_azvcoq Aeveee Aeveme Asvamm szamm asvemm Aavmem _eaazvmem _e_fizvmmm Anevcxm As>vc~m Aevome Arvome Aevcme Aavome Atvome Anveme Arvcmo omme.:oNHnu when cmz.msso om:.m.aeaz o~:.~eoo Haz a: vmzcwuccc I.>Hx macaw 86 Asvoma Aevema Anomaa Anvnaa Anvmea _e_asvmoa .eaazvch Aroma“ szmoN _e_a2vmom Aa>von ecmo~ Aaveom (‘4 H: [-4 a: 7. oeze.mcuene has om:.usse o~:.w Heme c~:.~eeo teacufiuccu I .555.“ waned. 87 Table XV. Infrared Spectr: of S-o-Chlorophenyltetrazole Sodium S-o—Chlorophenyltetrazolate with Assignments Genuine I HT NaT Vibrational Assignment Mode 3550(s){b] [“1 + “11]b 3450(w) 3450(8)[b] “13 O-H stretch 3250(m)[b] 3190(m) 3120(m) “1 ring C-H stretch 3050(3) 3050(m) [1600 + “2] 2990(8) [2(1500)] 1820(8) 2800(8) V14 [N-H stretch] 2700(s)[b] [“3 + “6] 2600(s)[b] [2 “3] 2400(s)[b] 2390(m) 2050(m) [“7 + “8] 2000(m) I2 “10] 1950(m) [“7 + “10] 8 Units are in cm"1 b Brackets indicate possible assignments Continued 88 Table XV. - Continued _ Genuine HT NaT Vibrational Assignment Mode l920(w)[b] l920(w)[b] [“8 + “10] 1850(m)[b] [“4 + “9] 1800(m)[b] 1800(w) I2 “10] 1750(m) [“5 + “9] 1700(m) [“8 + “9] 1650(m) 1650(m) [“4 + “11] 1590(3) 1590(m)[b] [“9 + “10] 1560(9) 1560(m) 1550(9) 850 + “9] 1540(8) [“5 + “11] 1490(9) 1500(m) [“7 4 “11] 1455(9) 1450(9) “2 ring deformation 1435(9) ‘6 C-H in-plane bend 1400(3) 1420(9) [2(700)] 1370(9) 1360(9) [“10 + “11] 1360(9) 1350(5) 1290(m) 1310(m)[b] “3 rine vibration 1280(w) 1270(m) [‘9 +‘fi21 Continued 89 Table XV. - Continued Genuine HT NaT Vibrational Assignment Mode 1245(5) 1220(In) [“9 + “11] 1210(m) 1170(8) 11700“) v4 ring breathing 1160(3) 1160(3) (702 + 454) 1150(3) 1150(m) [“12 + 650] 1120(5) 1135(s) [“12 + 615] 1120(w) 1100(In) 1100(8) [“11 + 650] 1075(III) 1090(w) [“11 + 615] 1070(8) 1070(8) V5 ring deformation 1060(3) 1040(8) 1040(3) “7 ring deformation 1030(8) 1010(8) 1010(8) v8 ring deformation 990(8) 980(3) 9700a) [“11 + “12] 950(n) 9500!!) [“2 - “12] 940(8) 910(vw)[b] Continued 90 Table XV. - Continued Genuine HT NaT Vibrational Assignment Mode 880(9) 890(w) 010 I C-H out of plane band 850(m) 785(m) 780(3) 780(3) [”2 - “9] 750(9) 750(9) [“6 - “9] 740(8) 730(8) 710(8) 720(8) V9 ring deformation 700(m) 650(3) 650(9) [“4 - ‘11] 521(m) 494(n) ‘12 out-of-plane rinn bend 475(w) 478(8) 440(w) 453(3) “11 out-of-plnne rinI' bend 435(w) 435(3) [‘2 - ‘7] 332(8) 333(8)[b] [‘7 - \9] 259(m) 270(8)[b] [\5 - ‘11] 252(m) 223(w) I 9 - 12] 212(w) Continued 91 Table XV. - Continued Genuine HT NaT Vibrational Assignment \fode 206(w) 208(w) [“10 - “9] 193(w)[h] 169(9) 177(9) [600 “12] 92 c705n4c1 1 L 1 1 1 1 1 l l l 1 1 1 1 Co(C7n4N4c1)2.H20 1 l l 1 1 4 J Ni(C7H4N4C1)1 8.n20 l J I n 1 l 1 +1 I 1 1' l I 1 Zn(C7H4N4c])2 1 1 l £- 1 1 I Cr(C7"4"4C‘)2(0n)-4u20 J. l l J 1 l 114 100 200 300 400 500 600 700 FigureS Far Infrared Spectra of S-o-ChlorOphenyltetrazole,Sodium S-oChlorOphenyltetrazolate and Various Complexes of S-o-Chlorophenyltetrazole Table XVT. 93 Raoults of the Normal Coordinate Analysis Calculation for Sodium Tetrazolate. 32 Species Vibrational Observed Calculated Modes Frenuency PchuenCy A__ A1 “1 3120 3125 “2 1455 1461 “3 1290 1243 “4 1161 1138 “5 1065 962 ”1 V6 1445 1453 “7 1023 1063 “8 1015 1013 “9 702 730 92 “10 910 910 “11 454 456 v I." A2 12 --- 537 aUnits are in cm"1 Table XVII. 94 Infrared Spectrum for Sodium Tetrazolate Monohydrate32 with Assignmentsa. Vibrational Observed Assignment Frequency, cm 3300 O-H stretch “1 3120 C-H stretch 2930 [“2 + “m 2370 [“2 + “10] 1785 “ “9 1685 “8 “9 1640 O-H bend V2 1455 sym. ring deformation v6 1445 C-H in-plane bend V3 1290 sym. ring deformation 1210 “9 + “12(8) V4 1161 sym. rinp breathing 1132 “o + “11 v5 1065 sym. ring deformation v7 1()23 :Isynl. rilin (lvf()rm:ILioxI vi) 1015 asym. rlnw, deformation v10 910 C-H out—of-plane bond V9 702 asym. ring deformation 660 1640-08 V11 454 out—of-plane ring bend asym. with reopect to (In axis 2 “12 is taken as the calculated value. Electronic Absorption Spectra The band maxima for the complexes are displayed in Tables XVIII to XXV. In most cases, additional bands were found in the near infrared region (4000—10000 cm_1). These bands are possibly overtone or combination bands of infrared bands found in the 650-4000 cm.-1 region. The data in Table XVIII indicated that substituted 5-phenyltetrazoles and S-benzyltetrazoles are similar in ligand strength to 5-trifluoromethyltetrazole (25), tetrazole (32), and other strong nitrogen donors (64,65). Unlike hexaaquocopper(II) and copper(ii) perchlorate hexahydrate which may have a slightly distorted octahedral structure, the appearance of the 281g+ “A13 band (64,65) seems to suggest Jahn Teller distortion. Jonassen _£ 31. (25) have suggested the utility of the 3. 3 ratio of the energy of the A2,» 13? (F) transition in the nickel 2 complex to that of the 81p» 2A1, transition in the corresponding copper(II) complex. Jonassen gt _1. (25) reported that their energy ratio of 1:3 is intermediate between that for complexes containing six ligands ($1.4) and that for complexes displaying weak tetragonal distortion ($1.1). This ratio is also shallor than that for complexes displaying strong tetragonal distortion ’\; (~1.6). The value for the energy ratio of approximately 1.1 in this study indicates that the copper(II) complexes only QXperionce 95 weak tetraponal distortion. This value of 1.1 is very similar to that obtained for diaquo bis(dipyridyl)copper(II), and tris (dipyridyl)copper(II) (64). In Table XVIII, the band positions in the complexes for the 281px 281g transition are listed in order of increasing energy. It is expected that the maximum error in these bands is 100 cm- at the slowest scan rate on the Cary Model 14 spectrophotometer. Therefore it seems reasonable to suggest the following order of ligand strengths: .. _ ' 1 - — l l = 5 p C1C6H4Ch2Ch4>5 p CH30C614CR4 5-C6H5Ch4>5-p-C1C6H4CN4>5-o-C1C6HACb4 Although the copper(II) complexes with 5-p-methoxyphenyl- tetrazole is a hydroxo complex there is apparently little differ" ence between the spectra of hydroxo(5-substituted tetrazolato) COpper(II) and that of bis-(5-substituted tetrazolato)c0pper(11). For example, the spectrum of bis(5-phenyltetrazolato)copper(II) monohydrate and hydroxo(5-phenyltetrazolato)c0pper(II) are quite similar as shown in Table XVIII. 2 2 It should be stressed that the B1p+ Hg was not observed in this work nor in that by Carber gt 1. (32). An examination of Table XIX reveals that 5-o-chlorophenyl- tetrazole is a stronger ligand than dimethylsulfoxide and dimethyl- formamide, but it is slightly weaker than pyridine as evidenced by a comparison of the band positions in the complex with those _...~r 97 in the copper perchlorate hexahydrate in the same solvent. Because of experimental difficulties in obtaining spectra that are free of solvent peaks in the near infrared region (4000-10000 cm-l), one cannot be certain wether the complexes are tetragonal in solution. The reflectance spectra, however, do suggest tetragonal symmetry. The data in Table XX seem toindicate that the solid cobalt complexes are octahedral because of similarities in the spectra of the complexes with those of high spin 6—coordinate cobalt(II) complexes and Co(Cl04)2°6H20. The band position of the shoulder at approximately 19000 cm.1 was very difficult to determine in this study. The band positions in the solution Spectra listed in Table XXI and associated molar absorptivities indicate octahedral symmetry in solution. Based on the band positions in solution, it appears that dimethylformamide, dimethylsulfoxide, and pyridine are slightly stronger ligands than the tetrazoles. In the case of the nickel(ll) complexes, it appears that these complexes are octahedral as shown in Tables XXII and XXIII by a comparison of the band positions and molar absorptivities of these complexes with those of known octahedral complexes. A comparison of the 3A2g + 3Tlg (F) band positions for all of the nickel(II) complexes indicates that the S-p-chlorobenzyltetrazole is the strongest ligand in the series and that 5-o-chlorophenyl— tetrazole is again one of the weakest ligands. A ratio of 1.8 98 for the band positions of the JA2g + 3T1? (F) transition to the 3 V . band Position for the 3A28 + ng (F) transition indicates octahedral symmetry as well (64). The chromium(III) complexes also appear to be octahedral as shown in Tables XXV and XXVI by comparing the band positions and molar absorptivities in the spectra of the complexes with those of known octahedral complexes. From Table XXIV, it again appears that S-p—chlorohenzyltetrazole is the strongest ligand in the series due to the relative magnitudes of the band positions + 4 4 of the A?y T0 (F) band. Chromium(III) also appears to have ‘- ) octahedral symmetry in solution as shown in Table XXV. UODGMLCLU >uw>flueuomzm snacE wLu oars «oumowwcfi Ase .ccme ccwom»0mpa use mo Auw>wua~omnm peHcE mnu mucmmmpcmu preac m;unfiuop52cv .mewews>m Mucmmmheou 2mmmu was .ueHEQEHCufizcquwmlx.z mucomoscmp hZo .meHxCuHsm~>rumEfiv mucmmmscm» Caz: . IEo .muoassc m>m3 aw vowmmuexm mum mcowufimoc ecwmm 99 H oocwm .exssfie cocoa Aswacmvoumm.quzummossoufio-eunv=u ooemm Hakesfl_ AcmVOOQOH Aeaacmvx=cvAezxqmouomeuuaumvso ooomm Hoomsae Aamvoceoa AeaacmVCNe.«Aezunmouumvsu coemm HOmMNHH oceoH Aeaacmvxmovxqzomeau-mvsu cowsm Homosaw ooeoH Aeaaomch=.~Aazoqzeomu-eumv=o cowsm Homaoae Aemvcoaaa AeHHCmvc~:.uAezoezeoauuoumvso eonsm comes mmfieaaomvo~z.~xzqzuvsu ccosa ocean oooo mmAeaficmeomz.uxqzcemenmvso uoomNH AeaHOmvomee.NchHoV=o peooe.ma ~+vo~mv=u thwcwHu , . wepwxo cum i cammmommm i damn LHK ofitns HIEuoowo um vcscw ems can; Hmcowufivwm :< u 100 ansuooma .cmmm .ooam .ooqe um canoe meme mecma Hmccauaee< a .swumEOuoscouuooem «H H0102 aumu mLu cc AoHw> cmcHEuoumw was Lovzz newuwmoe been use ma muwxomua CH Humans ugh .wcxuoc oocouumaecs mgu cam coxumfi Hana Horn: wnu zoo; ma base» we? mumxumss CH coHuwmoe came ozu uccu mmumUHtcH ”prEDCH .zmq uuoLEeAILomm mxu 70:0 uoc meow Coum>m HoUowzo mxu macaw woueHSUHmo we uoccmu lOl (B) 1 3 L 1 (C) , __ i l 1 5000 10000 20000 25000 cm-1 Figure 6. Reflectance Spectra of (A) C0pper(II) Perchlorate Hexahydrate (B) Bis(S-p~ ChlorOphenyltetrazolato) C0pper(II) Monohydrate and (C) Bis(5-o-Chloro- phenyltetrazolato) C0pper(II) Monohydrate 102 Tonewuccp HHH>x oméch w ouQCuoow mew m Axmzmevc~;.m“azumzoqmoononenmvso ooomm Ammvccema oosem Hoaxes. coqofi axesscuch:.Nquowxoqzoofioue-mvso OOMNM AceHVOCNmH Azmemevc~x.~xqzoexeeaeuo-mvao cccmm Acmvoomma AtrCVCNm.~Aax azoeauuonmvso ooomm Aeevoomma hemxcvc~:.~Aezoqmoeaououmvso ocms~ homacfle Azmvocfim uAeaaomvc~:.~Aeaeezeoaeucumvau oooam Acmvccucfi Aemznuvcmxo.~xecmovae ocomm Ammvoomma Anzavcmzo.uxecflov=o ooomm AeovoomNH AcMzavcmzs.~chHuvso oooNH Ac~zvc~es.wxqcaov:o oomNH uAechmvcmzc.~Aecauvse pmwmcmpu oupmnu wu wH wmmm f wficm wH<~ + wfimm umm + was eczoaeou wousuwuugamln «sowsm> AHHvumeeou no ouuocem c mmmcuesum+ moxcflmtce AHHvsmpaou ecu 1cm scumpn>xoxo= ouwpcflxoumm tc cmusrcu TC“ .HH22 Hens: m .QUCCuuwmed m£u we comwumascu < .xpx Q~;ch 103 Huguowas sum .oowm .omam um sauce onus magma Hmchuaeea omuCN>HOm CCEEOU CQU CH >uafiapsficmcm sawed as one :chzoqmoecMmeucumvso ecm .c~=.~quee:suHoucumv=o .cmm.ofiqwomacenmvsu .AzcvnqzomchImvsu new emuucemu mum euuumCm coauaacm oz 104 .vm>ummno cmumo ucz w .eoxume HH=E Hows: may >L venom >Hco mw vamp mask 0 .H-20¢coc ecu osam .oman .onne um ecaow one: means Hocoauaee< a HHHDN 0H£wh fl QUOCUOOM 00m 5 ooeHNN Azmvooomfi comes” cocoa AeHHOch~=.Nxezuazuezouauuaunvou oesom Aamvooooa oNna Audacmvc~=.~Aezocmooaouounvoo COHHN Aemvooooa uonoaa owes Academvomm.~Aezoczouonmouaunvoo onoHN oaom Aeaaomvo~=.~Aezonmouunvoo ooqow Agmvoooan exam Aeaaomvo~=.~Aezoemoofluuaumvou oom- ooqu Aeaaomvommo.uxezounmvoo oooa~uo~e ooomaneaa noooaae oooauwe Assam swans ~+ehavoo momHN momma ommm Aeaaomvo~:o.~fieoaovoo onufiwq + wake Amvmw «o ammxmanaoo AHHqumnoo ecu van uumuuxsmxw: wumuoanuumm aHHqumnou we mwuuumam Han: Hensz was measuomawmm .xx magma 105 mumuv%£ocoz AHHqunsoo Acumaoumuumuamcmnaou0H201atmV mwm Amv was mumuexzwxw: mumuoHsuuom AHHVUHWQOU A/«v W0 NHUUQQW wUCWUUQHMUM— ox- UHSWHM cosmm ococm cocoa coom a _ _ _ u — 4 a lid. / / / concaucou Ammvooeafi Aomxovo~=.~quoemooauuoumvoo AkweoomoN AemvooHoH Aezovc~=.~Aezoezooaououmvou RHHVCCNHN Azmvcocoa AzmmmevoN:.~Aezoemeoauuoumvou comes Acmvoooaa mmno Aeaaomvc~:.~Aezeexmuauuounvou ooeom comm anxeaaomvmxeoaovoxazmvoo oomHN cocoa «Naeaaomvo~mo.Nxezummounvou 6 oomam Aouvooama howznvo~=0.~xcoaovoo 0 1 oomHN ANmVoomoH Anzavonzo.uxqcauvou Aaavoo~o~ Aznxnuvc~me.uxecauvou momam comma Agavommm Awesomvc~ee.uxecaevcu oooooae oooo-me Assam soggy N+ +eaou ma «a am as m «H mN «a now He + be any umwso :muwo ucz tozuofi HH28 Hers: esu a: canoe >Hcc mecca fiscucooe ecm exam .omfim .Omme “a enact cmflm mum means HHH>x manna m auoaucoe mum muUDCflUCOU .l oH /. k7 mHLmH 109 .Acoc ezu uc >uwmcmucH ogu we mmnoome voucwadmeu was ucmEcufiuum oxu. aka f cmx oases m oucauoom mum m coemw .oosmfi. ooqofl o~:.m afiezu~zoqmooaunaunvaz comma Messed. cocoa omm.w.quzoqeouommu-esmvaz comma acoeea_ ooqoa omm.m.flxqzuq:ooauucumvaz comma mocmsfie ooqoa o~=.w axqzuezouaouolmvaz comma aflcowsfle ooqoa own.m.afiezummeoumvaz comma canes moonav aces” mmxeaaomvo~=e.~hezeuonevaz cocoa coho mmxeaaoquoHooAaxmvaz ooomw Agmvomama ommMH comm Awesomvommo.uxeoHuvaz Anvuae + «Na Aavua. + em. ue + e~< Anyway + u~< ecaoeeoo m m gm m a m m m .amacnmpuea muwunaswxwm mumpcfigu»mm AwsvfioxUWR uc wouaomumxzmnm unawum> uc L umxoficEce Awwvaoxuwz may paw muuomam “as? acmsx wan oucmuuoammm .HHxx prmb w 110 maoumuumufi%cwzeouoflnotoum mo meano aHHvaxowz Amv cam mumuvmsmxw: mumhonuuwa AHHvaxofiz Auomcc owam mos Acmv AIEUQONmH um scan < u ausooooo .oamm .ooam .omoq on ocooe came «so: mocmo amcoaoaoo< o HHH>x «Hash w muocuoou mom m Aaeflmwmmmwa Auvooawa AZmszVCa:.w.afiozomzooumvaz Amooooaa Amvoomaa Amroooa=.o.aquomzooumoaz oomoa .oooaa_ ooeoa Aoaaomooao.m.axozomzooumoaz oomam Aaavoooaa Azmzmoooa=.o.aAozoomoo-aououmoaz Aomvoooaa Amavoomaa Aezovoa=.o.aaouoozoouauuoumvaz oomma Hoooaaa ooqoa Aeaaomooam.a.anozoqmoouaouosmoaz ooaam Aoooooaa AZmomoooax.a.aaozuozooomxoua-moaz Amaooomaa Aooooaaa Aexooca=.m.axezoqzooomoouonmoaz oomoa .ooeoa_ ooooa moaacmooam.m.aAozooxooomzu-csmoaz umddddue wahmzu ALqubmfomam Aevvahm+rmx cases a muccucow mom a oomea _ooaoao Aoaacmo oazo.:CaAozoaooozooauucumouo oooma Hooaaaa Aoaacmooazo.zcaaozuezooaouosmvao ooooa HoooaHH Aoaaomvoamo.mcaxemeqzoolmouo ooaoa .ooaaao AoaHOmvcazo.=caaezoo:ooaoaeumvso. .ooqaa. Aooacmooazo.Ascoaaqxocoooomzoucumoao comma oooaa nos m+mnoooao oomoa oomaa Aoo m+oamozvuo oooam ooaea oooaa . ago aaoaoaooao ooooa oooqaa AoaaomVoaeo.onoaoouo Acvewbq + uu to nemxeasccu AHHchswEszu may cam ouwsthcmxmm oumuefizusmm Aassvfiachpxe we mpuumcm Has: Homsz cam oucououmuua .>~xx oHan 114 mumsvazouaob AHuwvesmsouno Acummoamuumuahcmzeamvmwn oxouc»: nmv can ououvwnmxox oumuonuuom AHHHVEDmaousu Ax «Heah m ouocuCOM mom « Aoaoooooam Aaooooaoa WAhmtmoooaoo.:CaAozoozoocmze-enmoao .ooeaa. mAemaceooazo.ICaAozeoooUCmooupumosu m .A-ooowam Ammoooqma. Amooooooa * Ammomoocaee.ooaaazoozmoao-oumoto oooma .ooaoao M AoaacmVCazo.zoaxqzoomooaoucumouo . w . .oamoooeam Aaaooooma Aoaoooaaa Azmomoooaoo.=caAozoqoooaouc-moao Auoooooa Aoaooooma Aaooooaoa Atxoooazo.=oaaozoq=ooao-c-moto Auoooomm Aonvooaea Aaavoomaa AcmchCaze.=Caaezuozooaouo-moao ooaoa _ooaaa. Aoaacmocaoo.=oaAozoooooaoaaumouo aaoooomam Amaooooma Aoaoooooa AZmomovoaoo.aaeoaoouo Auooomam Ammooomoa Aoaooooaa aezoooaao.maooaoopo Aomoooomm Ammooooma Aomoooooa Aomroooaoo.maooaoouo ooooa oooaa moaaomooazo.maooauvue Acvofihq + a~ mo nmoonanu AHHHVEDHEOMAU m:u vac wudsvhzcxmm messencuuokfiwhm¢zzmecuzu mo muuuoum newusaom new .Hasi Hansz d.oucmuuwmwmd osu uo ccwmsomsou < .axy odeeh 116 Aaaaooooaa Aemooooma aaooooaaa Aamomoooaoo.ooaxezomzooumouo ooooa _oooaae moaacoVCaeo.ooaquemeoosmopo Ammaooooam Aooooooea Amoooama mamamoocamo.=oaAozoamoqzooaouesmouo oomaa Hooaoao moaacmooaeo.zoaaozeazoezooaououmouo Anvaabq + emfV hhvuaeq + omH~mseoc as . a >>u we: xxu ucououtm» apoarsc ozu HO :unwa mafia mzu - vuflzu oco newxou ct «cuvwa oaac> use .gw you ue>wu cum mosflc> czu :053 u Amoofic>v A an pdudflwumo o :8 mgr AHH.NV AHH.NV "mm «zomzoqzooausaam "com qzo~zoszouHoucum a coca qzomzoqzooH01aum (\J r-4 (‘4 (‘1 Amo.N.wo.~v Amo.~.mo.av Amo.~.mo.~v ummz HuoooH qzuqzooaunpam exce:coauuaum qchzooaouc1m szoszsoauuoum come QNH. Cuoomfil UWX®H(F.OU lfi r\ H § v—1 (' AHMVLQLLCU may uooz muoooa :u :N veficNouuoH ueoucroumc um ezuezoofionoun qzuszoofiuuccm szuqzoufiusoam qzoszooaonoum ouchNmuuoh .HH>xx gamma 125 azuqzoocnzunaun was; o~sm>aowouc= coop; use: an HH.~ snoooa «zesmouonzo-aum Hmcmum oz unwz «zomznolm sums szummounn mm HH.~ mo.~ oh os.~ auoooa «zommousm coe ma.~ .omau ma.~ Hana «zummesmooaunasm m~.N .oNH- HN.~ ems. mm.~ Hana azumchsouau-ann a~.N .ccau as .Cs- ma.~ chm mm.a sumo «zeamoszooaosaum o~.N .om mwwm mmw om.“ Hana szoamuszaufie-aum lfl M chH 4 wm< __w NMfiMM ouoHONmuumh I .04 we:Cwucou I .wwaxm wHLmH 126 mmfiumumcEH AHHchcccu cu one cum omo;e v .mo:am> m we cowumasuHou usage; uoc ems cofiuSHfin HuoooH on cue“: ocaa was ma < o mocfiouno muuumom any a AaIEquOHV mmaow c“ cm>wu mum smouuuvacm ucwmuoezm o . . s m.a cos oaa a a.o a 20 r cum ems o~m.a Hue pszuamouonzunaun can o~o.a Hue pszo~=osmauaouann cos oma.a auo aezuqzeoauuaum can o~a.a Hue szeqonauucum ao~c.~ coec.~ coma ace~.~ Huoooa azuszooaeuouny _ _ _ 1s ... . . _r _ H< .s __< ~_u u< u po.:~ ouoaoumuuuh s. p s nmuauwumLaulm Hmum>mu we vmxoflcecu m moacumuuua AHHpvsachezo ozu he» muouoEmumm umm .HHH>xx magma 127 1000:] 333:1 1 60:1 1 /’*__’__,,,_ 1 1 1 Neat P Figure 10. ESD‘Spectra of 01s(5-o-Chloronhenvltetrazolato) Copper(TT) “onohydrate at Various Zn:Cu Patios 128 30° N ~40° to ~100° ~120° ~130° Figure 11. ESR Spectra at Various Temperatures of Bis(S-p-Chlorobenzyltetrazolato) C0pper(II) Trihydrate Diluted.by a Factor of 95:1 (Zn:Cu) Cu(5‘0-C1C6114CN4)2'1120 Cu(5-p-C1C6H4CN4)2'U20 Cu(5-n-C1C6H4CH2CN4)2'3H20 h-————’/////\\\\//~/—*"’___ CU(5'C6”5CN4)(OH) Cu(5-p-Cll3OC6114CN4) (on) J\r\ 1 I. Figure 12. A Comparison of the ESR Spectra at -l60' of the Conser(II) Complexes Diluted by 1000:1 (Zn:Cu) 130 coal um uumuuzcocox AHHqumnovouchumpumuHmcoxc0poazolc1mvmwm mo aauuumcm mmm .MH ouauwm 10. 11. 10. 17. 18. 19. BIBLIOGRAPHY Benson, F.R., Chem. Rev., 41, l (1947). Benson, F.R., "Heterocyclic Compounds", 32, Tnterscience Publishers, New York, 1967. Popov, A.I., Coord. Chem. Rev., 3, 463 (1969). Olivera-Mandala, E., Cazz. Chim. Ttal., ii, 175(1914). Herbst, R., Mihina, S., J. Org. Chem., 15, 1082(1950). Herbst, 2., Wilson, K.R., J. Org. Chem., 32,.142(l957). “37.1190, J.A., sears, p.C., POPOV, A'T°! '1‘ Phys. Chem.’ 11, 1756(1967) . Charton, M., J. Chem. Soc. B, 1969, 1240. Stolle, R., Ehrmann, K., Reider, D., Willie, 0., Winter, H., and Henke-Starke, P., J. Prakt. Chem. 134I 282(1932). Gilbert, G.L., Ph.D. Thesis, Michigan State University, East Lansine, Michiesn (1963), p. 44. Carber, L.L., Ph.D. Thesis, MiChigan State University, East Lansinp, Michipan (1967). Erlich, R.H., Popov, A.T., J. Phys. Chem., 13, 338(1970). Fraser, R.R., Hanue, K.N., Can. 1. Firm., :2, 2855(1968). Barlin, C.H., Batterham, J.J., J. Chem. Soc. B, 1967, Slb. Heipert, F.J., Roberts, J.D., J. Am. Chem. Soc., 22, 3543(1968). Cuile, L., Lucken, F.A.C., Mol. Phys., 14, 73(1968). liladin, 1., 8cr., 32, 1413(1842). Carbrecht, U.L., and Herhst, R.H., J. Ora. Chem., ifi 1003(1953). ' ’ Bruhaker, C.H., J. Am. Chem. Soc., £2, 82(1960). 131 22. 23. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 132 T a Popov, A. . n‘ 3250(195)) Holm, R.D., J. Am. Chem. Soc., él, Daunhertv, N.A., Brubaker, C.H., J. Am. Chem. Soc., £2, 3779(1961). Brubaker, C.H., Dauehertv, V., J. THOT". YucT. Chem., 22, 193(1960). Harris, A.D., Herber, R.H., Jonassen, N.B., and Werthein, C.K., J. Am. Chem. Soc., £2, 2927(1963). Jonassen, H.B., Harris, A.D., Archer, R.0., Inore. Chem., 3, 147(1965). ' Jonassen, H.B., Terrv, J.0., and Harris, A.D., J. Tnore. Nucl. Chem., 32, 1239(1963). Jonassen, H.B., and Smith, R., private communication. Beck, 0., and Fehlhammer, W.P., Angew. Chem., 12, 146(1967). Beck, W., Fehlhammer, W.P., Bock, B., Bauder, M., Chem. Ber., 102, 3637(1969). Olivera-Handala, E., and Alapna, B., Cazz. Chim. Ita1., 32, II, 441(1910). Gilbert, C.L., Brubaker, C.H., Inorg. Chem., 2, 1216(l963). Holm, R.D., Donnelly, P.L., J. Tnorr. Nucl. Chem., 32 1887(1966). Carber, L.L., Sims, L.B., and Brubaker, C.H., J. Am. Chem. Soc., 0, 2518(1968). Washburn, S.S., Petersen, J., J. Organometall. Chem., 31, 427(1970). Zqikker, J.J.L., Pharm. Weekblad, 11, 170(1934). Rheinboldt, H. and Stelliner, H., Bol. Fac. filosof. ' iven., Univer. Sao Paulo, Ouimica, l, 27(1942) C.A., £2, 1502(1943). Dister, A., J. Pharm. Belg., 3, 190(1948). D'Itri, F.H., and Popov, A.I., Inorg. Chem., é, 597(1967). D'Itri, F.M., and POpov, A.I., ibid, 2, 1670(1966). 39. 4 O . 41. 42. 43. 44. 45. 46. 47. 48. 53. 54. 55. 133 Kuska, H.A., D'Itri, F.V., and Popov, A.I., ibid, 2 1275(1966). Bowers, D.H. and Popov, A.I., ibid, l, 1594(1968). Ponov, A.l., Bisi, C.C., and Craft, H., J. Am. Chem. Soc., 82, 6513(1958). Baenziwer, N.C., Nelson, A. Dwayne, Tulinsky, A., Bloor, J.H., Popov, A.I., J. Am. Chem. Soc., 82 6463(1967). Baenziecr, N.C., and Schultz, R., unpublished results. Finneoan, w.n., Henry, R., J. Am. Chem. Soc., 82, 3908(1958). Daugherty, N.A., Ph.D. Thesis, Michigan State University, East Lansing, Michiran,-(l961). Van Es, T., J. Chem. Soc., 1965(1564). Schwarzenback, 0., Complexometric Tetrations Interscience Publishers, Inc., New York, (1957), pp. 78-83. Vander Vennen, B., Ph.D. Thesis, Michigan State University, 1954. Fiepis, B.N. and Lewis, J., "Modern Coordination Chemistry" Interscience Publishers, Inc., New Vork, 1960, p. 412 Fieeis, B.N. and tholm, J. Chem. Soc., 1958, 4190. Fipeis, B.N. and Lewis, J., "Modern Coordination Chemistry" Tnterscience Publishers, Inc., New York, 1960, p. 403 Cotton, F.A. and Coodgame, H., J. Am. Chem. Soc., 83, 1777(1961). Lefebre, R.J.w., and Werner, R.L., Aust. J. Chem., 12, 26(1957). Miller, F.A., Carlson, G.L., Bentley, F.F. and Jones, W.H. Spectrochimica Acta, l2! 135(1960). D'Itri, P.M., M.S. Thesis, Michigan State University, East Lansinr, Michigan, 1966. 66. 67. 68. h", 70. 71. 134 Ahuin, 1.9., Brown, D.N., Nettall, P.”., and Sharp, 0.U.A J. Inorg. Nucl. Chem., 31, 1625(1965). Junpbauer, H.A., and Curran, C., Spectrochimica Acta, ‘21, 641(1965). ' HeWinnie, H.R., J. Inorp. Nucl. Chem., 27 16l9(1965). 9 Coldstein, M., Mooney, F.P., Anderson, A., Gebhie, U.A., Spectrochimica Acta, 31, 105(1965) Clark, 8.J.n., and Williams, c.s., Chemistry and Industry, 1317(1964). Frank, C.w. and Ropers, L.B., Inorp. Chem., 2, 615(1966). Pipeis, B.N. and Lewis, J., "Modern Coordination Chemistry", Tnterscience Publisher, Inc.,‘New York, 1960, p. 287. Ballhausen, C.J., "Liaand Field Theory", McCraw Hill Book Company, Inc., New York, 1962. March, w. and Fernelius, W.C., J. Chem. Ed., 28, 192(1961). Jorpenson, C.K., "Absorption Spectra and Chemical Bonding in Complexes, Perpamon Press, Oxford, 1962, n. 123’1250 Kuska, H.A., D'Itri, P.M. and Pepov, A.T., Inoro. Chem., 2, 1272(1966). 0ston, J.w., "Electron Paramapnetic Resonance", Ilif‘e Russ, London, 1968. ~ ' Kuska, H. and Ropers, M.T., Radical Tons, Interscience Publishers, New Vork, 1968. 5arefield, E. Kent and Busch, D.H., nuart. Pev., i, 457 (1968). Cotton, F.A., Wilkinson, 0., "Advanced Inorganic Chemistry", Interscience Publishers, New York, 1966. Kato, M., Jonassen, H.B. and Fanning, J.C., Chem. Rev., 1964, 99. ‘ .