ABSTRACT

PREPARATION AND CHARACTERIZATION OF TRANSITION METAL

COMPLEXES OF SEVERAL 5-SUBSTITUTED TETRAZOLES

by Paul Labine

In this investigation, cobalt (II), copper (II), zinc (II) and chromium (III) ions were caused to react in aqueous solution with the sodium salts of 5-0-chlorophenyltetrazole, 5-p-chlorophenyltetrazole, 5-p-methoxyphenyltatrazole, 5-p-chlorobenzyltetrazole, and 5-phenyltetrazole. The divalent ions generally formed complexes of the type $\mathrm{MT}_2 \cdot \mathrm{nH}_2\mathrm{O}$. However, nickel (II) ions formed $\mathrm{MT}_{1.8} \cdot \mathrm{H}_2\mathrm{O}$ complexes. With copper (II) ions, two of the tetrazoles formed M(T)(OH) complexes. The chromium (III) ions formed $\mathrm{MT}_2\mathrm{OH} \cdot \mathrm{nH}_2\mathrm{O}$ complexes. No complexes could be obtained for iron (II), iron (III), or manganese (II).

The complexes were generally insoluble in acetone, nitromethane, 1,4 dioxane, methylenechloride, benzene, acetonitrile and methanol. A few of the complexes were insoluble in dimethylsulfoxide, N,N-dimethylformamide, and pyridine.

The complexes were usually decomposed by treating the solids with aqua regia. The copper (II) complexes could also be decomposed with concentrated ammonia but the complexes could be reformed by neutralizing the ammonia with hydrochloric acid.

A comparison of the infrared spectra of the complexes with the spectra of the tetrazoles and their respective sodium salts indicates that the tetrazoles coordinate as the anion. That is, the 1-nitrogen on the tetrazole ring is not protonated during complexation.

In most cases, the metal-nitrogen stretching bands arise, on complexation, from the splitting of ligand bands into two new bands. Very few of the bands in the 130-320 cm requion could be assigned to metal-nitrogen stretching bands due to the presence of broad bands which could not be resolved by using thicker mulls or by increasing the attenuation. It was therefore impossible to compare the tetrazoles in terms of the respective copper-nitrogen stretching frequencies might have been sufficient to list the tetrazoles in the order of increasing ligand strength.

The band positions in the electronic absorption spectra, could be utilized to list the ligands in the order of increasing ligand strength. The electronic absorption spectra of the solid nickel (II), cobalt (II), and chromium (III) complexes indicate octahedral symmetry. The spectra of the copper (II) complexes indicate tetragonal distortion.

The calculated magnetic moments indicate that most of the complexes are of the high-spin type. However, a few of the copper (II) complexes have subnormal magnetic moments which may indicate metal-metal bonding.

The esr spectra of the copper (II) complexes, diluted with zinc (II) ions, indicate tetragonal distortion due to differences of approximately 0.15 between g_{\parallel} and g_{\perp} for several of the copper (II) complexes.

The esr parameters for the chromium (III) complexes were quite similar to those obtained for octahedral complexes of chromium (III).

The esr spectra of the nickel (II) and cobalt (II) complexes were generally quite complex and poorly resolved. Only bis (5-0-chlorophenyltetrazolato)cobalt(II) monohydrate gave an esr signal that could easily be interpreted. The qavg value of this complex increased with a decrease in temperature. This unusual behavior may be due to changes in the structure of the complex with changes in temperature.

PREPARATION AND CHARACTERIZATION
OF TRANSITION METAL COMPLEXES OF
SEVERAL 5-SUBSTITUTED TETRAZOLES

Paul Labine

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry 1970

ACKNOWLEDGMENT

The author gratefully acknowledges Carl H. Brubaker, Jr. for his guidance, patience and encouragement. The author wishes to acknowledgment his wife, Joyce, whose understanding, assistance and reassurance made this dissertation possible.

Appreciation is extended to Dr. C. Van Hall, Dow Chemical Company, for permission to use the Beckman Model DK-2 with reflectance attachment.

Appreciation is also extended to my fellow graduate students for their helpful suggestions.

Financial assistance from the National Institutes of Health is gratefully acknowledged.

Table of Contents

١.	His	toricall	
fI.	Ехр	erimental	
	Λ.	Purity of Chemicals and Solvents	
	В.	Preparation of Tetrazoles and Related Chemicals	
	С.	Preparation of Metal Complexes	
	D.	Analytical Methods22	
		Cobalt	
	Ε.	Magnetic Measurements24	
	F.	Spectroscopic Measurements27	,
III.	Dis	cussion of Results29)
	Pre	paration of Metal Complexes29)
	Inf	rared Spectra30)
	Ele	ctronic Absorption Spectra)
	Mag	netic Measurements	,
	Ele	ctron Spin Resonance Spectra	
Ref	erenc	es)

List of Tables

Table		page
1.	Solubility of the Cobalt (II) Complexes in Various Solvents at 22°	34
11.	Solubility of the Nickel (II) Complexes in Various Solvents at 22	3 5
111.	Solubility of the Copper (II) Complexes in Various Solvents at 22	36
1 V .	Solubility of the Chromium (III) Complexes in Various Solvents at 22	37
v.	Solubility of the Zinc (II) Complexes in Various Solvents at 22	. 3 8
VI.	Infrared Spectra of 5-Phenyltetrazole, Sodium 5-Phenyltetrazolate and Various Complexes of 5-Phenyltetrazole in Nujol and Hexachlorobutadiene Mulls from 4000 to 167cm 1	. 39
VII.	Infrared Spectra of 5-Phenyltetrazole and Sodium 5-Phenyltetrazolate with Assignments	. 4 4
VIII.	Infrared Spectra of 5-p-Methoxyphenyltetrazole, Sodium 5-p-Methoxyphenyltetrazolate and Various Complexes of 5-p-Methoxyphenyltetrazole in Nujoland Hexachlorobutadiene Mulls from 4000 to 167cm ⁻¹	s > 1
1 X .	Infrared Spectra of 5-p-Methoxyphenyltetrazole and Sodium 5-p-Methoxyphenyltetrazolate with Assignments	. 5 5
х.	Infrared Spectra of 5-p-Chlorophenyltetrazole, Sodium 5-p-Chlorophenyltetrazolate, and Various Complexes of 5-p-Chlorophenyltetrazole in Nujol and Hexachlorobutadiene Mulls from 4000 to 167cm	l
х1.	Infrared Spectra of 5-p-Chlorophenyltetrazole a Sodium 5-p-Chlorophenyltetrazolate with Assignments	-

List of Tables (continued)

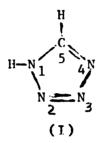
Table	page
Х1.	Infrared Spectra of 5-p-Chlorophenyltetrazole and Sodium 5-p-Chlorophenyltetrazolate with Assignments
хіі.	Infrared Spectra of 5-p-Chlorobenzyltetrazole, Sodium 5-p-Chlorobenzyltetrazole, and Various Complexes of 5-p-Chlorobenzyltetrazole in Nujol and Hexachlorobutadiene Nulls from 4000 to 167cm ⁻¹
XIII.	Infrared Spectra of 5-p-Chlorobenzyltetrazole and Sodium 5-p-Chlorobenzyltetrazole with Assignments
XIV.	Infrared Spectra of 5-o-Chlorophenyltetrazole, Sodium 5-o-Chlorophenyltetrazolate, and Various Complexes of 5-o-Chlorophenyltetrazole in Nujol and Bexachlorobutadiene Mulls from 4000 to 167cm ⁻¹ 80
XV.	Infrared Spectra of 5-o-Chlorophenyltetrazole and Sodium 5-o-Chlorophenyltetrazolate with Assignments
	Results of the Normal Coordinate Analysis Calculation for Sodium Tetrazolate Monohydrate
. IIVX	Infrared Spectrum for Sodium Tetrazolate Monohydrate with Assignments94
AVIII.	Reflectance and Nujol Mull Spectra of Copper(II) Perchlorate Hexahydrate and the Copper(II) Com- plexes of Various 5-Substituted Tetrazoles99
XIX.	A Comparison of the Reflectance, Nujol Mull, and Solution Spectra of Copper(II) Perchlorate Exabydrate and the Copper(II) Complexes of Various 5-Substituted Tetrazoles
хх.	Perflectance and Mujol Mull Spectra of Cobalt(II) Perchlorate Hexahydrate and the Cobalt(II) Com- plexes of Various 5-Substituted Tetrazoles104
XA1.	A Comparison of the Reflectance, Nujol Hull, and Solution Spectra of Cobalt(II) Perchlorate Hexahydrate and the Cobalt(II) Complexes of Various 5-Substituted Tetrazoles

List of Tables (Continued)

Table	pag e
XXII.	Reflectance and Nujol Mull Spectra of Nickel (II) Perchlorate Hexahydrate and the Nickel (II) Complexes of Various 5-Substituted Tetrazoles
XXIII.	A Comparison of the Reflectance, Nujol Mull, and Solution Spectra of Nickel Perchlorate Hexahydrate and the Nickel(II) Complexes of Various 5-Substituted Tetrazoles
XXIV.	Reflectance and Nujol Mull Spectra of Chromium (III) Perchlorate Hexahydrate and the Chromium (III) Complexes of Various 5-Substituted Tetrazoles
xxv.	A Comparison of the Reflectance, Nujol Mull, and Solution Spectra of Chromium(III) Perchlorate Hexahydrate and the Chromium(III) Complexes of Various 5-Substituted Tetrazoles
XXVI.	Magnetic Moments of the Cobalt(II), Nickel(II), Chromium(III), and Copper(II) Complex of Various 5-Substituted Tetrazoles
XXVII.	ESR Parameters for the Copper(II) Complexes of Various 5-Substituted Tetrazoles
XXVIII.	FSR Parameters for the Chromium(III) Complexes of Several 5-Substituted Tetrazoles

List of Figures

Figure	p ag e
1.	Far Infrared Spectra of 5-Phenyltetrazole, Sodium 5-Phenyltetrazolate, and Various Complexes of 5-Phenyltetrazole
2.	Far Infrared Spectra of 5-p-Methoxyphenyltetrazole, Sodium 5-p-Methoxyphenyltetrazolate, and Various Complexes of 5-p-Methoxyphenyltetrazole59
3.	Far Infrared Spectra of 5-p-Chlorophenyltetrazole, Sodium 5-p-Chlorophenyltetrazolate and Various Complexes of 5-p-Chlorophenyltetrazole68
4.	Far Infrared Spectra of 5-p-Chlorobenzyltetrazole, Sodium 5-p-Chlorobenzyltetrazolate and Several Complexes of 5-p-Chlorobenzyltetrazole
5.	Far Infrared Spectra of 5-o-Chlorophenyltetrazole, Sodium 5-p-Chlorophenyltetrazolate and Various Complexes of 5-o-Chlorophenyltetrazole92
6.	Reflectance Spectra of (A) Copper(II) Perchlorate Hexahydrate (E) Bis (5-p-Chlorophenyltetrazolato) Copper(II) Monohydrate and (C) Bis(5-o-Chlorophenyltetrazolato) Copper(II) Monohydrate101
7.	Reflectance Spectra of (A) Cobalt(II) Perchlorate Hexahydrate and (B) Bis(5-p-Chlorophenyltetrazolate) Cobalt(II)
8.	Reflectance Spectra of (A) Nickel(II) Perchlorate Hexahydrate and (B) Nickel Complex of 5-o-Chlorophenyltetrazole
9.	Reflectance Spectra of (A) Chromium(III) Perchlorate Hexahydrate and (B) Hydroxobis (5-phenyltetrazolato) Chromium(III) Tetrahydrate
10.	ESR Spectra of Bis(5-o-Chlorophenyltetrazolato) Copper(II) Monohydrate at Various Zn:Cu Ratios.126


List of Figures (continued)

Figu	ire p	age
11.	ESR Spectra at Various Temperatures of Bis (5-p-Chlorobenzyltetrazolato) Copper(II) Trihydrate Diluted by a factor of 95:1 (Zn:Cu) (A) 30 (B) -40 to -100; (C) -120; (D) -130	127
12.	Λ Comparison of the ESR Spectra at -160° of the Copper(II) Complexes Diluted by 1000:1 (Zn:Cu)	128
13.	ESR Spectrum of Bis(5-o-Chlorophenyltetrazolato Cobalt(II) Monohydrate at -40°	129

I. Historical

A. General

Tetrazoles are five membered ring compounds which contain four nitrogen atoms and one carbon atom. For the structure of the parent compound, tetrazole, refer to (I).

Thorough reviews (1,2) are available on the preparation and properties of 5-substituted, 1-substituted, and 1,5-disubstituted tetrazoles. In addition, Popov(3) has prepared an excellent review of the acidities and complexing abilities of various 1,5 disubstituted tetrazoles including pentamethylenetetrazole and substituted-pentamethylenetetrazoles.

B. Acid-Base Properties

The acid-base properties of substituted tetrazoles were investigated as early as 1914 by Olivera-Mandala (4).

Tetrazole and 5-substituted tetrazoles usually have pKa values of 7 or less. Thus, these tetrazoles can be titrated with strong bases by using phenolphthalein as the indicator. The 5-substituted tetrazoles can also exhibit basic properties due to the presence of three other nitrogen atoms. The

from the hydrolysis constant of the respective hydrochlorides and appear to be of the same order of magnitude as aniline (1). Herbst and Mihina (5) and Herbst and Wilson (6) determined potentiometrically the pKa values for 5-phenyl and 5-alkyl tetrazoles in water-methanol mixtures. In 1967, Caruso, Sears, and Popov (7) determined conductometrically the acidities of several 5-alkyl and 5-aryl tetrazoles in 1,1,3,3-tetramethylguanidine. Caruso et al., doubted the usefulness of the pKa values obtained previously in water-methanol mixtures because changes in liquid junction potential had not been considered in the previous calculations.

More recently, Charton (8) has calculated the macroscopic ionization constant K_{11} of several 5-substituted tetrazoles. These macroscopic constants were calculated from microconstants K_{11} and K_{22} which were themselves obtained from the extended Hammett equation. Since 5-substituted tetrazoles exist in two tautomeric forms, K_{11} is the ionization constant for tautomer (1) and K_{22} is the ionization constant K_{31} , is then calculated from $K_{11} = K_{11} + K_{12} = K_{12} + K_{12} = K_{11} + K_{12} = K_{12} + K_{12} = K_{$

Unlike 5-substituted tetrazoles, 1-substituted tetrazoles do not behave as acids. Stolle et al. (9) reported that they had removed the 5-carbon hydrogen from 1-phenyltetrazole with methyl magnesium iodide in ether. Gilbert (10), however, was

unable to remove the 5-carbon hydrogen from 1-phenvltetrazole by their method. In 1967, Carber (11) was successful in removing the 5-carbon hydrogen from 1-methyl and 1-cyclohexyltetrazoles by using n-butyl lithium in anhydrous tetrahydrofuran. The 1-methyltetrazole was converted to 1-methyl-5-tetrazolyl lithium ·½ tetrahydrofuran, which is insoluble in tetrahydrofuran and ether. Although the lithium salt of 1-cyclohexyltetrazole was not isolated as a solid, 1-cyclohexyltetrazole is probably converted to 1-cyclohexyl-5-tetrazolyl lithium. The lithium salts were then caused to react with dichlorobis(triethylphosphine)nickel(II) and gave bis(1-methyl-5-tetrazolyl)nickel(II).

In a recent publication, Erlich and Popov (12) investigated the acid-base properties of cyclopolymethylenetetrazoles in formic acid. The unsubstituted cyclopolymethylenetetrazoles act as fairly strong monoprotic bases in formic acid solution but show little proton affinity in aqueous solutions. The length of the hydrocarbon chain does not influence the basic strength of the tetrazole ring.

C. Characterization of Tetrazoles

by nuclear magnetic resonance spectroscopy (13,14,15) and by mass spectroscopy (13). In addition, Guibe and Lucken (16)

reported the $\mathbf{14}_{\mathrm{N}}$ nure quadranole resonance spectra of several azoles.

D. Coordination Compounds

Since 1892, a large number of metal complexes have been prepared with 5-substituted tetrazoles. Bladin (17) prepared the first silver complexes of tetrazole and 5-substituted tetrazoles by adding hot silver nitrate to aqueous solutions of the respective tetrazoles. Herbst and Garbrecht (18) and Herbst and Mihina (5) prepared silver complexes of other 5-substituted tetrazoles by a similar method.

In 1960, Brubaker (19) prepared two crystalline forms of bis(5-aminotetrazolato)corper(II). By using spectrophotometric and pH data, Brubaker calculated the formation constant for the copper(II) complex formed with 5-aminotetrazole in aqueous solution. His value of 10¹² for the formation constant indicates that 5-aminotetrazole forms a very stable 2:1 complex with copper(II). Brubaker also found that there is very little interaction between the copper(II) ion and 1,5-dimethyltetrazole. This, in addition to the relatively small formation constant for the 2:1 complex (20) of silver(I) with pentamethylenetetrazole (hereafter abbreviated PMT), indicates that a replaceable hydrogen is required to form very stable complexes.

In 1961, Daugherty and Brubaker (21,22) prepared various bis(5-substituted tetrazolato)copper(II) and nickel(II) complexes. Methanol solutions of each tetrazole were added to methanol solutions of copper(II) or nickel(II) salts. Sulfate and chloride salts induced the rapid precipitation of solid complexes; whereas, the nitrate salts were ineffective in inducing precipitation.

The nickel(II) and copper(II) complexes displayed a few interesting properties. The complexes were insoluble in most solvents. As a result, they could not be purified by recrystallization. The complexes usually decomposed below their melting points. Hence, they could not be purified by sublimation. The insolubility of these complexes in both nonpolar and polar solvents suggests polymer formation.

Jonassen et al. (23,24,25) have prepared bis(5-trifluoromethyltetrazolato)iron(II), cobalt(II), nickel(II), and
copper(II) complexes as well as bis(5-chlorotetrazolato)iron(II) and bis(5-nitrotetrazolato)iron(II). The reflectance
spectrum of bis(5-trifluoromethyltetrazolato)iron(II) indicates
that the 5-trifluoromethyltetrazolate anion lies between 2,2'=
bipyridine and 1,10-phenanthroline in the spectrochemical
series. The low magnetic moment of 1.1 B.M. observed for
bis(trifluoromethyltetrazolato)iron(II) indicates that "the
paramagnetic state lies close to the spin-paired ground
state." Pyrolysis (26) of the bis(5-trifluoromethyl-

tetrazolato)iron(II), cobalt(II), nickel(II), and copper(II) complexes yields the components H_2^0 , CF_3 , CN, CN_2^0 , N_2^0 , $(CN)_2$ for each complex. The residues consisted of CoF_3^0 , NiF_2^0 , FeF_3^0 . The enthalpy of decomposition was calculated from differential thermal analyses of the complexes.

In 1967, Beck and Fehlhammer (27) prepared bis(5-tri-fluoromethyltetrazolato)bis(triphenylphosphine)palladium(II) by reacting bis(triphenylphosphine)palladium(II) azide with trifluoroacetonitrile in dichloroethane at 0° C. Recently Beck et al. (28) have prepared several other trans-bis(5-substitutedtetrazolato)bis(triphenylphosphine) palladium(II) by a similar method. Addition of HCl or HN3 in ethanol to the palladium complexes yields the respective 5-substituted tetrazoles.

A large number of complexes of 1-substituted tetrazoles are known. In 1910, Olivera-Mandala and Alagna (29) prepared tetrachlorobis(1-ethyltetrazolato)platinum(IV) by adding an alcoholic solution of platinum(IV) chloride to an alcoholic solution containing HCl and 1-ethyltetrazole.

In 1963, Brubaker and Gilbert (30) prepared various dichloro bis(1-substituted tetrazole)cobalt(II), nickel(II), platinum(II) and zinc(II) complexes. Like other tetrazole complexes, these 1-substituted tetrazole complexes cannot be recrystallized or sublimed. As mentioned previously,

Garber (11) prepared bis(1-methyl-5-tetrazolyl)nickel(II) and bis(1-cyclohexyl-5-tetrazolyl)nickel(II) by heating the respective lithium salts with dichlorobis(triethylphosphine) nickel(II). These nickel complexes are insoluble in all common solvents, will decompose when heated, and are senitive to the atmosphere. The reflectance spectra of these two complexes indicate octahedral symmetry. The magnetic moments of these nickel complexes indicate that the complexes are high spin.

In 1967, Beck and Fehlhammer (28) prepared tetraphenylarsonium tetrakis(1-cyclohexv1-5-tetrazoly1)gold(III)
by reacting tetraphenylarsonium tetrazidogold(III) with
cyclohexylisonitrile in dichloroethane at 0°C. The proton
nmr spectrum in DCC1₃ showed three signals at τ =2.4,5.2,8.3
corresponding to the twenty phenyl protons, the four
tertiary hydrogen atoms on the cyclohexylring, and the 40
methylene protons on the cyclohexyl ring.

Tetrazole itself forms metal complexes. Holm and Donnelly (31) prepared bis(tetrazolato)iron(II), cobalt(II), nickel(II) and cadmium(II) complexes by adding aqueous solutions of tetrazole to aqueous solutions of the respective metal ions. The iron(II) complex is very poorly defined and is easily oxidized by oxygen in the air. Mole ratio studies indicate that the tetrazolate anion forms

very weak complexes with nickel(II) ions in dimethylformamide.

In 1967, Garber (11) prepared bis(tetrazolato)copper(II) monohydrate by adding an aqueous tetrazole solution to an aqueous solution of copper(II) nitrate. The copper(II) complex decomposes upon heating and is insoluble in all common solvents. The reflectance spectrum of the complex indicates octahedral symmetry. The magnetic moment of the complex is 1.73 B.M. (1 electron value). The est spectrum of the undiluted power showed no hyperfine splittings. Garber (11) was unsuccessful in diluting the copper complex by precipitating the copper complex as an impurity in bis(tetrazolato) zinc(II).

Garber et.al. (11,32) performed a vibrational analysis of sodium tetrazolate monohydrate. Vibrational assignments for bis(tetrazolato)copper(II) monohydrate and 1-methyltetrazole were made based on their normal coordinate analysis of sodium tetrazolate monohydrate.

Recently, Washburn and Peterson (33) prepared ferrocenyl tetrazole by reacting cyanoferrocene with trimethylazidosilane and aluminum(III)chloride in refluxing o-chlorobenzene.

1,5 disubstituted tetrazoles and substituted pentamethylenetrazoles form complexes with transition metal ions,
interhalogens, and organic molecules. Interhalogen and
molecular complexes of tetrazoles are reviewed by Popov (3).

Zwikker (34) Rheinboldt (35) and Dister (36) have prepared silver complexes of various substituted pentamethylenetetrazoles. Popov and Holm (20) studied the silver complexes of pentamethylenetetrazole, substituted pentamethylenetetrazole, and 1-cyclohexyl-5-methyltetrazole in aceronitrile. They determined potentiometrically that the formation constants for these complexes were approximately 10². By using polarographic techniques, they found that pentamethylenetetrazole forms extremely weak complexes with cobalt(II), thalium(I) and cadmium(II) in aqueous solution.

D'Itri and Popov (37,38) prepared anhydrous hexakis (PMT) manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes. Since the magnetic moments indicate that the complexes are high spin complexes, it is not surprising that the infrared spectra of the complexes were almost identical with the infrared spectrum of PMT.

Kuska, D'Itri and Popov (39) have obtained electron spin resonance spectra for $Mn(PMT)_6(C10_4)_2$, $Cu(PMT)_6(C10_4)_2$ and $Cu(PMT)_6(C10_4)_2$. The esr spectrum of $Mn(PMT)_6(C10_4)_2$ dispersed in $Zn(PMT)_6(C10_4)_2$ indicated that the metal ligand bonds are 91 per cent ionic and that the complexes are essentially octahedral. Nuclear hyperfine splittings were resolved in the esr spectra of the undiluted conner(II) complexes. Both $Cu(PMT)_6(C10_4)_2$ and $Cu(PMT)_4(C10_4)_2$

exhibit tetragonal symmetry. The copper ligand bonds were found to be more covalent than the manganese ligand bonds.

Recently, Bowers and Ponov (40) prepared complexes of the type $M^{II}(PMT)_{1}X_{2}$ and $M^{II}(PMT)_{2}X_{2}$ by causing pentamethylenetetrazole to react with first row transition metal chlorides and bromides. These complexes were insoluble in polar and nonpolar solvents and have high melting or decomposition points. From magnetic and spectral evidence, it appears that the metal ions in $M^{II}(PMT)X_{2}$ complexes are in octanedtal environments whereas the $M^{II}(PMT)_{2}X_{2}$ complexes may be tetrahedral. The $M^{II}(PMT)X_{2}$ complexes probably contain halogen bridges and are most likely polymeric. The $M(PMT)_{2}X_{2}$ complexes, on the other hand, are probably monomeric and seem to have a tetrahedral structure.

Pentamethylenetetrazole (41) was found to form 1:1 complexes with iodine monochloride, iodine monobromide, and iodine in carbon tetrachloride. The pentamethylenetetrazole-IC1 complex could be obtained as a crystalline solid which could be purified by recrystallization from chloroform. Two independent structure determinations of the PMT-IC1 complex (42) showed that PMT acts as a unidentate ligand and that IC1 is bonded to the 4-nitrogen of the tetrazole ring. The linear IC1 molecule is coplanar with the tetrazole ring.

The seven membered ring of PMT is in a chair conformation.

At present, it is uncertain whether the 4-nitrogen is the

donor site in all tetrazole complexes.

The crystal structure of dichlorobis(1-methyltetrazole) zinc(II) complex has also been determined (43). Crystals of this complex show that the zinc atom is in an approximately tetrahedral environment and that the zinc atom is coplanar with the two tetrazole rings with coordination through the four position of the tetrazole ring.

II. Experimental

A. Purity of Chemicals and Solvents

Reagent grade chemicals were used throughout this investigation.

B. Preparation of Tetrazoles and Related Chemicals

5-phenvltetrazole: This compound was prepared according to the method of Finnegan and Henry (44). In a 500ml.3-neck flask, 28.6g(0.44 mole) of sodium azide, 21.2g(0.40 mole) of ammonium chloride, 17.0g (0.40 mole) of lithium chloride and 41.2g (0.40 mole) of benzonitrile were suspended in 300ml of N, N-dimethylformamide. The mixture was stirred and heated at 100-110° for 17 hours. In accordance with Daugherty's observations (45), the color of the reaction mixture changed from colorless to orange-brown after a few hours. After 17 hours, the reaction mixture was allowed to cool to room temperature. The first batch of crude sodium salt was separated from the reaction mixture by filtration. filtrate was distilled at reduced pressure until 50ml of filtrate remained in the distillation flask. The second batch of crude sodium salt, which precipitated during the distillation, was collected on a norcelain filter funnel. Both batches of crude sodium salt were combined and then dissolved in 200 ml of water. Insoluble materials were removed by filtration. The filtrate was then acidified to pH=2to precipitate the water-insoluble 5-phenyltetrazole. crude product was collected on a porcelain filter funnel and thoroughly washed with ice water. The product was finally recrystallized twice according to the method of Caruso, Popov, and Sears (7). Crude 5-phenyltetrazole was added to 1,2dichloroethane and the mixture was brought to boiling. Just enough methanol was then added to dissolve the tetrazole. As the solution cooled, needle-like crystals formed. crystals were collected by filtration and were then dried to constant weight in a vacuum dessicator. The melting point of 215° agreed with that previously reported (7). 5-p-chlorobenzyltetrazole: The procedure for the preparation and recrystallization of 5-phenyltetrazole was used. 5-p-chloroacetonitrile Eastman Organic Chemicals was used in place of benzonitrile. The melting point of $162-163^{\circ}$ for the recrystallized product agreed with that previously reported (7). 5-p-methoxyphenyltetrazole: The same procedure used for the preparation and recrystallization of 5-phenyltetrazole was employed. 5-anisonitrile was used in place of benzonitrile. The melting point of 239-240° for the recrystallized product

agreed with that previously reported (4).

Anisonitrile was prepared according to the method of Van Es (46). 136g of p-anisaldehyde (1 mole), 80g of hydroxylamine hydrochloride (1 mole + 15%), 125g of sodium formate, and 1500ml of 98% formic acid were refluxed for one hour. A six fold dilution of the reaction mixture with water caused the anisonitrile to precipitate.

5-p-chlorophenvltetrazole: The procedure was the same as for the preparation and recrystallization of 5-phenyltetrazole.
5-o-chlorobenzonitrile was used in place of benzonitrile.
The melting point of 179-180° agreed with that previously reported (6).

5-o-chlorobenzonitrile was prepared according to the method used in preparing anisonitrile. 5-o-chlorobenzaldchvde used in place of anisoldehyde.

5-p-chlorophenyltetrazole: The procedure was the same as for the preparation and recrystallization of 5-phenyltetrazole. 5-p-chlorobenzonitrile was used in place of benzonitrile. The melting point of 260-261°, agreed with that previously reported (7).

5-p-chlorobenzonitrile was prenared according to the method used in prenaring anisonitrile. 5-p-chlorobenzaldehode was used in place of anisaldehode.

sodium salts of tetrazoles: Suspensions of the respective tetrazoles in water were titrated with 0.10M NaOH. The tetrazoles dissolved before the equivalence point was reached. The aqueous solutions of the sodium salts were evaporated nearly to dryness on a steam bath. The salts were then recrystallized from acetone and dried at 110 before use.

C. Preparation of Metal Complexes

Bis(5-phenyltetrazolato) cobalt(II)monohydrate: A complete description of the preparation of this compound will be given. This method applies to all cobalt(II), nickel(II), zinc(II), and copper(II) complexes. In all cases, precipitation occurred within a few minutes.

Forty ml of an aqueous 0.10M solution of sodium 5-phenyl-tetrazolate were added dropwise to 200ml of a magnetically stirred aqueous 0.01M solution of cobalt(II) perchlorate hexahydrate. Since the complex was insoluble in most solvents, it could not be recrystallized.

The pink product was washed six times with distilled water, partially dried with anhydrous diethylether, and finally dried to constant weight in vacuo over P_2O_5 . Digestion and prolonged washing of the precipitate were avoided because Daugherty (45) had reported that bis(5-phnyltetrazolato) copper(II) monohydrate was partially hydrolyzed to hydroxo(5-phenyltetrazolato)copper(II) by stirring the complex with water for twenty hours at room temperature.

Anal. Calcd. for Co(C₇H₅N₄)₂·H₂O: Co,16.0; C,45.78; H,3.29; N,31.45; Found: Co,16.1; C,44.24; H,2.89; N,30.86.

Bis (5-o-chlorophenyltetrazolato) cobalt (II) menohydrate: This pink product formed in a few minutes. Anal. Calcd. for Co(C₇H₄N₄Cl)₂·H₂O: Co,13.5; C,38.55; H,2.31; N,25.68; Found; Co,13.3; C,37.45; H,1.91; N,26.06.

Bis (5-p-chlorophenyltetrazolato) cobalt (II) monohydrate: This pink product formed in a few minutes. Anal. Calcd. for Co(C₇H₄N₄C1)₂·H₂O: Co,13.5; C,38.55; H,2.31; N,25.68; Found: Co,13.4; C,37.85; H,1.95; N,25.95.

Bis(5-p-methoxyphenyltetrazolato)cobalt(II)monohydrate: This pink product formed immediately. The solid turned tan in color on drying to constant weight. Anal. Caled. for Co(C₈H₇N₄O)₂·H₂O: Co,13.5; C,44.03; H,3.90; N,25.68; Found: Co,13.9; C,42.78; H,3.23; N,25.85.

Bis(5-p-chlorobenzyltetrazolato)cobalt(II)monohydrate: This pink product formed immediately. The product turned brownish pink on drying to constant weight. Anal. Calcd. for Co(C₈H₆N₄Cl)₂·H₂O: Co,12.6; C,41.34; H,3.01; N,24.05. Found: Co,12.5; C,40.4; H,2.73; N,23.94.

Nickel complex of 5-p-chlorobenzyltetrazole: This blue-violet solid precipitates immediately. Anal. Calcd. for

Ni(C₇H₄N₄C1)_{1.8}·H₂O: Ni,14.7; C,37.70; H,2.29; N,25-20; Found: Ni,14.7; C,37.0; H,2.03; N,25.06;

Nickel complex of 5-p-methoxyphenyltetrazole: This metric blue violet solid precipitates immediately. Anal. Calcd. for Ni(C₈H₇N₄O)_{1.8}·H₂O: Ni,13.16; C,44.95; H,4.10; N,26.2; Found: Ni,13.0; C,43.06; H,3.37: N,25.92;

Nickel complex of 5-phenyltetrazole: This blue violet solid precipitates immediately. Anal. Calcd. for $Ni(C_7H_5N_4)_{1.8}\cdot H_2O$ Ni,15.2; C,43.6; H,2.61; N,29.1; Found: Ni,15.5; C,44.6; H,2.82; N,30.13;

Bis(5-p-chlorobenzyltetrazolato)zinc(II): This white solid precipitates immediately. Anal. Calcd. for Zn(C8H6N4Cl)2: C,42.40; H,2.66; N,24.72; Found: C,42.33; H,2.33; N,25.05;

Bis(5-o-chlorophenyltetrazolato)zinc(II): This white solid precipitates immediately; $\underline{\text{Anal}}$. Calcd. for $\text{Zn}(C_7\text{H}_4\text{N}_4\text{Cl})_2$: C,39.55; H,1.89; N,26.35; Found: C,39.78; H,1.80; N,26.55;

Bis (5-n-chlorophenyltetrazolato) zinc (II) 3/2hydrate: This white solid precipitates immediately. Anal. Calcd. for Zn(C₇H₄N₄Cl)₂·3/2H₂O: C,37.10; H,2.44; N,24.80; Found: C,37.16; H,2.78; N,25.07;

Bis (5-p-methoxyphenyltetrazolato) Zinc(II): This white solid precipitates immediately. Anal. Calcd. for Zn(C₈H₇N₄O)₂: C,46.16; H,3.36; N,26.92; Found: C,45.86; H,3.31; N,27.00;

Bis (5-phenyltetrazolato) Zinc(II): This white solid precipitates immediately. Anal. Calcd. for $Zn(C_7H_5N_4)_2$: C,47.20; H,2.82; N,31.45; C,46.95; H,2.69; N,31.53;

Bis (5-p-ch1orobenzy1tetrazo1ato) conner (II) trihydrate: This blue-violet solid precipitates immediately. Anal. Calcd. for $Cu(C_8H_6N_4C1)_2\cdot 3H_2O$: Cu,12.57; C,39.02; H,3.58; N,22.16; Found: Cu,12.37; C,38.40; H,3.41; N,22.43;

Bis (5-o-chlorophenyltetrazolato) copper (II) monohydrate: This light green solid precipitates immediately. Anal. Calcd. for Cu(C₇H₄N₄Cl)₂·H₂O: Cu,14.39; C,38.10; H,2.28; N,25.39; Found: Cu,14.66; C,37.47; H,1.58; N,25.41;

Bis (5-p-chlorophenyltetrazolato) copper (II) monohydrate: This light blue solid precipitates immediately. Anal. Calcd. for Cu(C₇H₄N₄Cl)₂·H₂O: Cu,14.35; C,38.11; H,2.28; N,25.39; Found: Cu,14.37; C,37.01; H,1.98; N,25.32;

hvdroxo(5-p-methoxyphenylterrazolato)copper(JJ): This light blue solid precipitates immediately. Anal. Calcd. for Cu(C₈H₇N₄O)(OH) Cu,24.82; C,37.53; H,3.12; N,21.88; Found: Cu,25.01; C,37.68; H,2.93; N,22.20;

Hydroxo(5-phenyltetrazolato)copper(II): This dark blue solid precipitates immediately. Anal. Calcd. for $Cu(C_7H_5N_4)(OF)$: Cu,28.12; C.37.20; H,2.67; N,24.80; Found: Cu, 23.05; C,36.91; H,2.31; N,24.82;

Bis (5-phenyltetrazolato) copper (II) monohydrate: This complex could not be prepared from aqueous solution. It was finally prepared in methanol by a method previously reported by Daugherty (45). When methanol solutions of $CuSo_4 \cdot 5 \times 20$ and 5-phenyltetrazole are mixed in any proportion, $Cu(C_7 \times 5^N_4)_2 \cdot \times 20$ precipitates from solution after several hours. Anal. Calcd. for $Cu(C_7 \times 5^N_4)_2 \cdot \times 20$: Cu, 17.1; Found: Cu, 17.3; Attempted preparation of bis (5-p-methoxyphenyltetrazolato)

Daugherty was unable to obtain this complex from methanol solution. Instead, he obtained a mixture which appeared to contain $\text{Cu}(\text{C}_8\text{H}_7\text{N}_4\text{O})$ (OH) and $\text{Cu}_2(\text{C}_8\text{H}_7\text{N}_2\text{O})_2\text{SO}_4 \cdot 2\text{H}_2\text{O}$. In the present investigation, $\text{Cu}(\text{C}_8\text{H}_7\text{N}_4\text{O})$ (Oh) was obtained instead of the desired product.

copper(II):

Hydroxo bis(5-p-chlorobenzyltetrazolato)chromium(III)tetrahydrate

The procedure for the preparation of this complex will be outlined in detail. The other chromium(III) complexes were prepared in the same manner. 60.0ml of aqueous 0.10% sodium 5-p-chlorobenzyltetrazolate was mixed with 200ml of

anucous 0.01M chromium(III) perchlorate hexahydrate. Initially, the solution changed from dark green to yellow green as the reactants were mixed. After three minutes, 5-p-chlorobenzyletetrazole, a white solid, precipitated from the solution. The 5-p-chlorobenzyltetrazole was removed by filtration and the filtrate was retained. Another 60.0ml of aqueous 0.10M sodium 5-p-chlorobenzyltetrazolate was then mixed with the filtrate. After a few minutes a pinkish-violet solid precipitated from the solution. Anal. Calcd. for $Cr(C_8H_6N_4Cl)_2$ (OH)·4H20: Cr,9.8; C,36.1; H,3.98; N,21.15; Found: Cr,9.4; C,35.5; H,3.42; N,21.13;

Hydroxo bis (5-o-chlorophenyltetrazolato) chromium (TII) tetrahudrato

5-Orthochlorophenyltetrazole did not precipitate from solution. After an hour, the grey complex precipitated from solution. Anal. Calcd. for $Cr(C_7H_4N_4C1)_2OH \cdot 4H_2O$: Cr, 10.4; C, 33.62; H, 3.40; N, 22.5; Found: Cr, 10.0; C, 33.16; H, 2.31; N, 21.92.

Hydroxo bis (5-n-chlorophenyltetrazolato) chromium (III) tetrahydrate:

This grey solid precipitated within four hours after the 5-n-chlorophenyltetrazole was removed by filtration. Anal. Calcd. for $Cr(C_7H_4N_4Cl)_2OH\cdot 4H_2O$: Cr,10.4; C,33.62; H,3.40; N,22.5; Found: Cr,10.0; C,33.54; H,2.64; N,21.91.

Hydroxo bis(5-p-methoxyphenyltetrazolato)chromium(III) hexahydrate:

p-Methoxyphenyltetrazole, a white solid, precipitated immediately. The grey complex precipitated from the filtrate within a few minutes after the addition of excess .10M sodium 5-p-methoxyphenyltetrazole. Anal. Calcd. Cr(C₈H₇N₄O)₂OH·6H₂O: Cr,9.9; C,36.3; H,5.22; N,21.21; Found: Cr,9.5; C,35.3; H,4.03; N,21.04.

Hydroxo bis(5-phenyltetrazolato)chromium(III)tetrahydrate:

5-Phenyltetrazole did not precipitate from solution. The pinkish violet complex precipitated from solution within four hours. The analytical data indicate that it contains impurities. Anal. Calcd. for $Cr(C_7H_5N_4)_2OH$ $4H_2O$: Cr,12.2; C,39.80; H,4.43; N,26.57; Found: Cr,11.5; C,39.13; H,3.68; N,25.99.

Attempted preparation of manganese(II)complexes: No color change or precipitation occurred when aqueous manganese(II) solutions were mixed with aqueous solutions of the sodium 5-substituted tetrazolates.

Attempted preparation of iron(II) or iron(III) complexes: In all cases, small quantities of an orange solid, probably ferric hydroxide, precipitated from solution.

D. Analytical Methods

Cobalt: weighed samples of the cobalt complexes were decomposed by heating the solids with aqua regia. The resulting blue-green solutions were evaporated to dryness on a hot plate. The residues were reheated with aqua regia and the solutions were evaporated to dryness. This process was continued until the residues were completely water soluble. The pink residues were then dissolved in water and the resulting solutions were made slightly acidic (pH 6). Murexide indicator was added and the pH of the solutions were adjusted with ammonia until the color of the indicator changed from orange to yellow. The solutions were then titrated with 0.01001M ethylenediaminetetracetic acid (EDTA) to a color change from yellow to yiolet (47).

Mickel: Only one of the nickel complexes could be titrated with EDTA. Evidently, the tetrazolate anion is incompletely destroyed by nitric acid and interfers with the color change of the indicator. Thus, the nickel samples were analyzed by the cyanide method. Weighed samples were treated with 20ml of 0.1068M KCN solutions, 5ml of concentrated aqueous ammonia, and lml of a KI solution centaining 1.1e of KI per ml of solution.

The samples were allowed to stand overnight. The complexes dissolved to give pale wellow solutions. The excess evanide in the sample solutions was titrated with

0.100M AgNO₃. Silver nitrate dried at 110° was used as a primary standard. The 0.1068M KCN solution was standardized with the 0.100M AgNO₃ solution.

Daugherty (45) found that titrations of known nickel samples in the presence of tetrazole resulted in an error of less than 2%.

Copper: Only a few of the copper complexes could be analyzed by EDTA titration due to interferences in the color change of the indicator.

absorption spectroscopy. Samples for atomic absorption were dissolved in ammonia and were diluted to volumes such that the solutions contained less than 10 ppm of copper. All of the solutions were stored in plastic bottles to avoid contamination by impurities in glass or pyrex. Standard solutions containing 0 to 10 ppm of copper(II) ion were prepared from aqueous 0.009898M Cu(ClO₄)₂·6H₂O solution. The aqueous Cu(ClO₄)₂·6H₂O solution was standardized with 0.01001M EDTA. Analytical results obtained by the atomic absorption method agreed very closely with those that could be obtained by EDTA titrations.

Chromium: Samples for analysis were decomposed by heating the solids with aqua regia. The resulting green solutions were evaporated to dryness. The residues were treated several times with aqua regia. The excess chloride

ions, not used in complexing the metal ions, were precipitated with silver nitrate solution. The AgCl was removed by filtration. The Chromium(III) ions were then oxidized to dichromate ions by the use of 5.0 ml of a solution containing 0.10 M $(\mathrm{NH_4})_2\mathrm{S}_2\mathrm{O}_8$ and 0.10 M $\mathrm{NH_4}^{\mathrm{NO}}_3$. A few milliliters of 0.10AgNO $_3$ were added to catalyze the oxidation. The oxidation was complete within five minutes. The oxidized samples were diluted to volume with enough water so that the absorbance values at 445 nm were less than 1.0 when 10.0 cm cells were used. The samples were compared against standard dichromate solutions which obeyed Beer's law at 445 nm.

The dichromate standard solution ranged in concentration between 0.0002 N and 0.0014 N and were prepared from a 0.009819 N ${\rm K_2Cr_2O_7}$ solution. The 0.009819 N ${\rm K_2Cr_2O_7}$ solution was prepared by using ${\rm K_2Cr_2O_7}$ as a primary standard.

Carbon, Hydrogen, and Nitrogen Analyses: The carbon, hydrogen and nitrogen analyses were performed by the Micro-analytical Laboratory of the Institute of Water Research, Michigan State University, East Lansing, Michigan.

E. Magnetic Moment Measurements

Magnetic susceptibilities were measured by the Gouy method by use of methods similar to those described by Vander Vennen (48). However, the apparatus was modified in order to

allow a constant stream of helium to pass over the sample tube. Thus, water was prevented from condensing on the sample tube at low temperatures and the sample was protected from hydrolysis.

The calculation of the magnetic moment was made by the use of the equation: (49)

$$10^{6} \chi = F' \chi \frac{\beta}{W_{s}} \tag{1}$$

where χ is the gram-susceptibility of the sample: F' is the force exerted on the sample alone, <u>i.e.</u>, the measured force corrected for the force experienced by the tube alone; W_s is the weight of the sample in grams; and β is the tube constant, for a given magnetic field and a given temperature.

In practice, each β value must be determined for a particular tube by use of a material of known susceptibility. F' values are obtained at several magnetic fields and at several temperatures. At a given temperature, the χ value of the calibrant will be constant and will be independent of the magnetic field. The F' values, however, are dependent on the magnetic field at a given temperature. Therefore, a β value can be calculated for each magnetic field at a given temperature, other β values can be calculated from F' values at other temperatures.

In this work, $Hg[Co(SCN)_4]$ was used as a calibrant. Its susceptibility is 16.44×10^6 cgs units at 293^0 K and it obeys

the Curie-Weiss Law, $\chi_g = \alpha (T + 10)^{-1}$ where T is expressed in degrees absolute. Figgis and Nyholm (50) reported that $Hg[Co(SCN)_4]$ is a much better calibrant than $CuSO_4 \cdot 5H_2O$ or $Fe_2(NH_4)_2(SO_4)_2 \cdot 6H_2O$.

The molar susceptibility, χ_m ' of the sample is obtained by multiplying the gram-susceptibility by the molecular weight. The susceptibility of the metal ion, χ_m ' is obtained by correcting the molar susceptibility for any diamagnetic species present. Pascal's constants (51) were used to estimate the diamagnetism of the ligands and cations.

In normal paramagnetic substances, $\chi_{\tilde{m}}^{}$ related to the absolute temperature as

$$\chi_m' = \frac{C}{T}$$
 Curie Law (2)

or

$$\chi_{\rm m}' = \frac{C}{(T+4)}$$
 Curie-Weiss Law (3)

For the latter case, a plot of $1/\chi_m^{-1}$ against T allows evaluation of 0 from the intercept.

The magnetic moment μ of the sample may be calculated from the molar susceptibility by

$$\mu = 2.84 \, \left(T \, X \, \chi_{\rm m}^{\, 1}\right)^{1/2} \tag{4}$$

The low temperature studies were performed by using a specially constructed Dewar flask similar to that described by Vander Vennen (48). The magnetic moments were measured at

room temperature, 195°K, and 77°K.

F. Spectroscopic Measurements

The infrared spectra of the complexes were obtained by use of nujol and hexachlorobutadiene mulls, a Perkin Elmer Model 457 spectrophotometer (4000 cm⁻¹ to 250 cm⁻¹) and a Perkin Elmer Model 301 spectrophotometer (680 cm⁻¹ to 167cm⁻¹). Cesium iodide and polyethylene plates were used. The visible and ultraviolet solution spectra were obtained by use of a Cary Model 14 spectrophotometer.

The near infrared, visible and ultraviolet spectra of the solids were obtained on a Beckman Model DK-2 spectrophotometer (equipped with a reflectance attachment) at Dow Chemical Company, Midland, Michigan. The spectra were also obtained by the method of Cotton and Goodgame (52) by use of a Cary Model 14 spectrophotometer. In the Cotton and Goodgame (52) method, a nujol mull of the complex was painted onto a sheet of filter paper. The sheet of filter paper was then taped to the exit window of the sample compartment. Another sheet of filter paper was painted with nujol and this sheet was taped to the exit window in the reference compartment. The nujol mull method was generally quite satisfactory for bands in the ultraviolet and visible regions but gave rather poor results in the near infrared region. The major advantage of the nujol mull method lies in the accurate location of band maxima by use of the slowest scan rate on the Cary Model 14 spectrophotometer.

The electron spin resonance spectra of the powdered complexes were obtained at temperatures from -160° to 25° by use of a Varian E-4 EPR spectrometer equipped with a Varian E-257 variable temperature controller. Powdered samples were diluted by precipitating the zinc complex in the presence of copper(II), cobalt(II) or chromium(III) ions.

DISCUSSION OF RESULTS

From the analytical data, it appears that each cobalt(II), nickel(II), chromium(III), copper(II), and zinc(II) ions can only accommodate a maximum of two tetrazolate anions when the complexes are precipitated from aqueous solution. It is rather surprising that chromium(III) does not form a 3:1 complex. Apparently, the hydroxide and the tetrazolate anions compete in aqueous solution for the coordination sites on chromium(III). The 3:1 complex can possibly be prepared and precipitated from nonaqueous solutions by using tetralkyl-ammonium salts in place of the sodium salt.

Copper(II) also forms hydroxo complexes. Daugherty (21) could only prepare bis(5-phenyltetrazolato) copper(II) from methanol solutions. Only impure bis(5-p-methoxyphenyltetrazolato) copper(II) could be obtained from methanol solutions (21).

As previously observed (22), nickel(11) forms complexes with a tetrazolate to nickel(II) ratio between one and two. Perhaps the complexes are 2:1 complexes with tetrazolate vacancies in the crystal structure.

The solubilities of these complexes are listed in Tables

I to V. All of the complexes are insoluble in acetone, 1,4
dioxane, methylenechloride, benzene and acetonitrile. Only

bis(5-p-chlorobenzyltetrazolato) copper(II) trihydrate is

soluble in nitromethane. Some of the complexes are even

insoluble in dimethylsulfoxide, methanol, N,N-dimethylformamide

and pyridine. Of these solvents, pyridine, dimethylsulfoxide, and N,N-dimethylformamide seem to be most suitable to dissolve the solids for measuring solution spectra.

Infrared Spectra

Comparisons of the infrared spectra of the tetrazoles and their respective sodium salts and complexes are shown in Tables VI to XV. Band assignments were based on the results of a normal coordinate analysis on sodium tetrazolate monohydrate (32) displayed in Table XVI. Table XVII shows the assignment of bands in sodium tetrazolate monohydrate (32).

Complexes containing water of hydration display bands in the 3350 to 3500cm⁻¹ spectral region. Many of the sodium salts also contained an O-H stretch in their infrared spectra even though the salts had been dried at 110° for several hours.

The spectra of the tetrazoles and their respective sodium salts and complexes are quite similar with the exception of bands in the 2700-2850cm⁻¹ spectral region. Bands in this region have been previously assigned as N-H stretches. (19) This assignment was further confirmed by Holm (31) who compared the spectra of 1-H-tetrazole and 1-D-tetrazole. No bands were found in the 2700-2850cm⁻¹ spectral region for 1-D tetrazole. Due to the absence of the N-H stretch in the spectra of the complexes and the sodium salts, the tetrazoles appear to coordinate as the anion.

As a result of a normal coordinate analysis by Garber, et al., it appears that none of the infrared bands can be assigned to C-N and N-N stretching modes in contrast with previous assignments (23,31,53).

Despite the similarities in the spectra of the sodium salts and their respective complexes, the spectra of the sodium salts often contain additional bands. Jonassen (23) has postulated that fewer bands are found in the infrared spectra of the complexes than in the infrared spectra of their respective sodium salts because of the loss of resonance character in the complexes. Although all of the fundamental bands appear in both the sodium salts and their respective complexes, coordination of tetrazoles with metal ions often reduces the intensities of overtone and combination bands. Occasionally, more bands appear in the spectra of the complexes than in the spectra of the sodium salts or the tetrazoles. In these cases, coordination may cause a splitting of bands in the 4000 to 650cm⁻¹ spectral region. This splitting of tetrazole bands also accounts for extra bands found in the far infrared spectra of PMT complexes in the metal-ligand deformation region $(178-236 \text{ cm}^{-1})$ and the metal-nitrogen stretching region $(250-450 \text{ cm}^{-1})$ (55).

The infrared spectra provide little information about the presence of perchlorate since the tetrazoles or sodium tetrazolates themselves have bands in the 620-630, 932, and 1090 cm⁻¹ spectral regions which have been assigned as ionic perchlorate bands (54).

The far infrared spectra have been very useful in demonstrating metal-ligand interaction in tetrazolate (11) and PMT (55) complexes with copper(II). In most cases, the infrared bands of the tetrazoles in the 4000 to 650 cm⁻¹ spectral region are unshifted on complexation (55). However, D'Itri (55) found that bands in the 180 to 360 cm⁻¹ region are shifted to higher frequency on complexation. Furthermore, the frequency of a given band in the infrared spectrum of PMT was increased in frequency with a decrease in the ionic radius of the metal ion. Similar frequency shifts were observed in the present study as shown in Tables VI, VIII, X, XII, and XIV.

Sharp, et al. (56), Jungbauer and Curran (57), McWinnie (58), Goldstein, et al. (59), and Clark and Williams (60) have tentatively assigned bands in the 250 to 450 cm⁻¹ region as the metal-nitrogen asymmetric stretches for transition metal complexes of substituted anilines, aniline, 2,2' bipyridylamine, heterocyclic bases, and pyridine respectively.

D'Itri and Popov (55) and Garber, et al. (32) also observed bands in the 250-320 cm⁻¹ spectral region which they assigned to metal-nitrogen stretching frequencies.

In 1966, Frank and Rogers (61) compared themetal-nitrogen stretching frequencies for various copper(II) complexes of substituted-pyridines and listed these ligands in probably order of increasing donor strength. The ligand giving the largest metal-nitrogen stretching frequency was considered the strongest ligand.

A comparison of the far infrared spectra of the copper(II) complexes of the various 5- substituted tetrazoles and their respective sodium salts indicated that only a few of the bands could be tentatively assigned to metal-nitrogen stretching frequencies due to the presence of broad unresolvable bands.

Clark and Williams (60) also found that the far infrared spectra of the polymeric octahedral complexes MCl₂·2 pyridine

(M = Mn, Fe, Co, and Ni) consisted of broad badly resolved bands in the 200 to 260 cm⁻¹ spectral region. The far infrared spectra of the complexes are displayed in Figures 1-5.

Table I. Solubility of the Cohalt(II) Couplexes in Various Solvents at $22^{\rm o}$

2-C ₆ H ₅ CN ₄	CN ₄	5-0-C1C ₆ H ₄ CN ₄	5-p-C1C ₆ H ₄ CN ₄	5-p-CH30C6H4CN4	5-0-C1C ₆ H ₄ CN ₄ 5-p-C1C ₆ H ₄ CN ₄ 5-p-CH ₃ OC ₆ H ₄ CN ₄ 5-p-C1C ₆ H ₄ CH ₂ CN ₄
Acetone	.	ţ	∓ 1	Ħ	÷
Nitromethane	7 -1	•4	ij	••	'n
Dimethylsulfoxide	w	တ	Ø	w	sl.s
1,4-Dioxane	•=	·rl	44	Ţ	**
N, N-Dimethylformamide	œ	w	w	ω	sl.s
Methanol	•=	Ŋ	w	Ħ	í
Pyridine	ន • ជ	w	œ	w	w
Methylenechloride	•	Ŧ	+	÷i.	٠ri
Benzene	•	÷	Ħ	ŗ	·н
Acetonitrile	٠d	् न	Ħ	Ŧ	ii

i - insoluble
s - soluble
m.s - moderately soluble
sl.s - slightly soluble

Solubility of the Nickel (II) Complexes in Various Solvents at 22° Table II.

⁹ J-9	, H ₅ CN ₄ 5-α-C1	C6 H4 CN4 5-n-	.C1C ₆ H ₄ CN ₄	5-r-CH3 0C6 H4 CX4	5-C6 H5 CN4 5-0-C1C6 H4 CN4 5-1-C1C6 H4 CN4 5-1-CH3 OC6 H4 CN4 5-1-C1C6 H4 CH2 CN4
Acetone	÷		•	ţ	i
Nitromethane	Ţ	•#	• -1	, r.	•••
Dimethylsulfoxide	œ	v.	٠ •	у Е	ა €
1,4-Dioxane	₩.	·i	*r=i	***	Ŧ
N,N-Dimethylformamide	æ	w	w	ທ • E	ж •
Methanol	₩.	•	***	Ŧ	+
Pyridine	ĸ	w	ĸ	ν. Ε	⊗ • Ε
Methylenechloride ·	Ţ	÷	₩.	Ŧ	* -
Benzene	ţ	ŗ	₩.	***	~ -
Acetonitrile	į	j	Ŧ	**	•

i = fnsoluble
s = soluble
si.s = slichtlw scluble
m.s = rederately soluble

Table III. Solubility of the Conper (II) Complexes in Various Solvents at 22°

5-C ₆ H	5-CH3CN4 5-0-CICH4CN4 5-p-CICH4CN4 5-p-CH3OCH4CM4 5-p-CICH CH2CN4	N4 5-p-C1C H CN4	2-г-с ^{н3} ос ^в н ⁴ сж	5-r-C1C H CH2CN4
Acetone	1 1	¥	Ţ	**1
Nitromethane	Į.	4	Ħ	s1.s
Dimethylsulfoxide	i s	₩	7	s1.s
1,4-Dioxane	ਜ ਜ	₩	4 4	+ 1
N,N-Dimethylformamide	8	₩	₩.	æ. €
Methanol	i	#	4 -1	+ 4
Pyridine	f s	11	₩	ø
Methylenechloride	Į.	ਂ ਜ	v d	~ 1
Benzene	ㅠ F	ਜ਼	ī	71
Acetonitrile	FF FF	ਸ਼ ਜ	₩	₩1

1 - insoluble
s - soluble
sl.s - slightly soluble
m.s - moderately soluble

Solubility of the Chromium (III) Complexes in Various Solvents at 22° Table IV.

Acetone		+ 1	41 .	Ŧ	₩
Nitromethane	44	₩.	누	¥	Ħ
Dimethylsulfoxide	ທ	æ.	Ø	⊗• E	œ
1,4-Dioxane	Ŧ	₩	+	÷i.	¥
N,N-Dimethylformamide	de s	8 • E	ဟ	ຫ • ພ	-60
fethanol	w	s1.s	나	Ŧ	¥
Pyridine	ຫ	80 • E	ග	Ø	Ø
dethylenechlori de	+ 1	₩.	Ŧ	1	+ +
3 en zen e	~ i	₩	Ŧ.	1	~
Acetonitrile	+	+	‡	Ŧ	. ب

i - insoluble
s - soluble
sl.s - slightly soluble
m.s - moderately soluble

Table V. Solubility of the Zinc (II) Complexes in Various Solvents at 22°

Acetone	+	•-	୴	+	**1
Nitromethane	+	₩.	1	ᅲ	v ri
Dimethylsulfoxide	₩	₩	Ø	w	ဟ
1,4-Dioxane	vri	₩	7	Ŧ	**
N,N-Dimethylformamide	+	₩.	vs.	•••	•
Methanol	Ŧ	⊶	ຜ		•
Pyridine	+	w.	w	¢.	, w
Methylenechloride	·	~	7	spel) 1
Benzene	•	₩	*	****	· +-
Acetonitrile	 -	₩.	Ţ	भन	-

S

insolublesolubleSlightly solublemoderately soluble 1 1 1 S1.s m.s

and Various Complexes of 5-Phenyltetrazole in Nuiol and Hexachlorobutadiene Mulls from 4000 to 167cm⁻¹ Infrared Spectra of 5-Phenyltetrazole, Sodium 5-Phenyltetrazolate Table VI.

нт	NaT	CoT ₂ ·H ₂ 0	NiT _{1.8} .H ₂ 0 CuT ₂ .H ₂ 0	CuT2.H20	2n(T) ₂	CrT ₂ (OH)·4H ₂ O
·	3690(s)					
3560(m)	3570(s)					
	3500(s)			3480(s)		
	3370(s)[b]	3400(s)[b]	3400(s)[b] 3400(s)[b]			3400(s)[b]
3210(m)						
3140(m)	3160(s)[b]	3120(m)	3130(m)	3120(m)	3125(m)	3125(m)
3050(m)	3050(s)	3060(s)	3060(s)	3060(w)	3060(m)	3030(m)
2980(m)	3000(s)[b]	1990(s)	3020(s)	3030(s)	3020(m)	3010(s)
2760(s)						
2660(s)[b]						

a Intensities in narenthesis (s = strong, m = medium, w = weak, vw = very weak, sh = shoulder). Breadth of peaks in brackets [b = broad]

Table VI. - Continued

HT	NaT	CoT2.1120	N1T1.8.H20	CuT ₂ ·H ₂ 0	Zn(T) ₂	CrT ₂ (0H)·4H ₂ 0
2590(s)						
2530(s)[b]						
2460(s)[b]						
	2290(v)					
2000(m)						
1965(m)	1950(w)[b]	1950(w)[b] 1950(w)[b]	1950(w)[b]	1960(w)[b]	1960(w)[b] 1965(w)[h]	1970(w)[b]
1923(m)						
1850(m)[b]	1860(w)	1.850(w)	1830(w)	1870(5)	1860(v)	1840(w)
1780(w)						
1760(w)[b]						
1730(w)	1680(m)	1700(m)			1710(w)[b]	1700(w)
1610(s)	1610(s)[b]	1600(s)	1610(m)	1620(m)	1610(m)	1620(v)[b]
1570(s)	1560(m)	1550(s)	1560(w)		1540(m)	1560(w)[b]

continued

Table VI, - Continued

нт	NaT	CoT2.H20	NiT1.8.H20	CuT2.H20	Zn(T) ₂	CrT2(0H).4H20
1500(m)	1525(vw)	1520(w)	1520(w)	1530(m)	1520(w)	1520(w)
1470(s)	1460(s)	1460(s)	1470(s)			1470(s)
1430(w)	1450(s)	1450(s)	1450(s)	1460(s)	1460(s)	1450(s)
1400(s)	1380(m)	1390(s)		1390(s)	1380(m)	
	1360(m)	1340(w)	1360(m)	1360(m)	1340(w)	1360(m)
1290(m)	1290(m)	1280(m)	1280(m)	1280(m)	1280(s)	1280(m)
1260(m)	1260(w)	1245(m)	1245(m)	1260(w)	1240(m)	1230(w)
	1200(m)	1200(m)	1195(m)	1220(m)	1190(w)	121 (vw)
	1170(s)	1150(m)	1170(m)	1180(m)	1185(w)	1170(w)
	1130(m)	1150(m)	1155(m)		1165(w)	1160(w)
	1125(m)	1130(m)	1120(m)	1120(w)		1120(w)
1103(w)	1105(w)	1110(w)	1100(w)	1100(w)	1100(m)	1100(w)
1087(s)	1090 (ww)	1080(s)	1080(s)	1081(m)	1080(s)	1080(m)

Continued

850(w)[b]

850(w)[b]

850(w)[b]

780(m)

780(m)

790(m)

730(s)

730(s)

720(s)

(8)089

(s)069

(s)089

(s)Ub9

910(w)

910(w)

920(w)

960(w)[b]

980(w)[b]

960(w)[b]

1010(m)

1015(m)

1010(w)

1028(w)

1040(w)

1036(w)

1070(w)

1035(w) 1028(w) 1010(m) 1010(m) 980(w)[b] 975(w)[l]

1010(m)

1015(m)

1025(m)

1036(m)

975(w)[b]	920(w)
980(w)[b]	920(w)

990(w)[P]

(s) 766

910(w)

924(w)

860(m)

850(m)

790(m)

190(m)

725(s)

725(s)

700(s)

700(s)

685(s)

673(s)

(m)099

650(w)

Continued

τ
4
•
=
-
۶
_
-
+
_
-
•
5
C
1
•
٥
۰
(
_
1
7
c
٠.

CrT ₂ (OH)·4H ₂ 0	
$Zn(T)_2$	
CuT2.H20	
NiT _{1.8} · H ₂ 0	
$\text{CoT}_2^{\bullet}\text{H}_2^0$	
NaT	
HT	

1060(m)

1070(m)

1070(m)

1057(m)

Table VI. - Continued

HT	NaT	CoT2.H20	NiT _{1.8} .120	CuT2.H20	2nT2	CrT ₂ (OH)·4H ₂ O
		619(sh)	619(v)	√619(sh)	√590(sh)	
	540(sh)	540(m)		537(s)	525(m)	534(m)[b]
(s)067	503(s)	511(m)	511(v)	502(m)		
[9](8)677	459(s)	455 (m)		473(m)	453(m)	456(w)
407(sh)	420(sh)	420(w)		426(m)		418(w)
345(w)[b] 355(m)	355(m)	376(s)	386(w)		(400(14)	383(w)
					353(s)	
		328(m)[b]	341(w)	324(w)[b]	330(s)	323(w)
307(w)	308(v)		301(s)			299(w)
		284(s)[b]	270(w)[b]	286(w)	277(s)	284(w)
	250(sh)	250(sh)	several			251(w)
			270 to 167cm ⁻¹	23 P(m)		244(w)
		224(s)[b]		216(m)	216(s)	220(w)
	207(sh)			207 (m)	207(s)	199(w)
180(m)	170(m)[b]	180(m)[b]				190(v)

•
3
Ĭ
3
, -
2
1
2
2
•
1
2
i
1
i
1
1
~

Table VII. Infrared Spectra of 5-Phenyltetrazole and Sodium 5-Phenyltetrazolate with Band Assignments

		Genuine	
liT 	NaT	Vibrational Mode	Assignment
	3690(s)		
3560(m)	3570(s)		$[\ ^{\vee}1 + \ ^{\vee}11)$
	3500(s)		
	3370(s)[b]	ν ₁₃	0-H stretch
3210 (m)			
3140(m)	3160(s)[b]) ^v 1	ring C-H
3050(m)	3050(s)		$[^{\vee}2 + 1600]$
2980 (m)	3000(s)[b]		
2760(s)		^V 14	[N-H stretch]
2660 (s) [b]			
2 5 90 (s)			[2 3]
2530(s)[b]			$[^{\vee}2 + ^{\vee}51]$
2460(s)[b]			$[^{\vee}2 + ^{\vee}8]$
	2290 (w)		$[^{\vee}3 + ^{\vee}81]$
2000(m)			[2 10]
1965 (m)	1950(w)[b]	1	$[^{\circ}7 + ^{\circ}10]$
1923 (m)			$[^{\vee}8 + ^{\vee}10]$
1850 (m)[b]	1860 (v)		[4 + 91
1780 (w)			
1760(w)[b]			$[^{\circ}5 + ^{\circ}9]$

a Units are in cm⁻¹

b Brackets indicate possible assignments Continued

Table VII. - Continued

нт	NaT	Genuine Vibrational Mode	Assignment
1730(w)[b]			
	1680 (m)		0-H bend
1610	1610(m)		
1570(s)	1560(m)		[v9 + v10]
1500(m)	1525 (vw)		$[v_7 + v_{11}]$
1470(s)	1460(s)	ν2.	ring deformation
1430(w)	1450(s)	٧6	C-H in plane bend
1400(s)	1380(m)		$[v_{10} + v_{12}]$
	1360(m)		$[v_{10} + v_{11}]$
1290(m)	1290(m)	ν3	rine vibration
1260(m)	1260 (w)		ν ₉ + ν ₁₂
	1200(m)		v9 + v11
	1170(s)	V4	rine breathine
	1130(m)		$[v_{12} + 650]$
	1125(m)		[V12 + 615]
1103(w)	1105(w)		[v11 + 650]
1087(s)	1090(vw)		[^V 11 + 615]
1057(m)	1070 (m)	ν5	ring deformation
1036(m)	1025 (m)	٧7	ring deformation
1015(m)	1010(m)	Vg	ring deformation
994(s)	980(w)[b]		$[v_{11} + v_{12}]$

Table VII. - Continued

нт	NaT	Genuine Vibrational Mode	Assignment
924(w)	910(w)	v ₁₀	C-H out of plane bend
850(m)	860(m)		$[^{\text{V}}12 + 350]$
796(m)	780(m)		
725(s)	725(s)	v ₉	ring deformation
700 (s)	700(s)		[2(355)]
685(s)	685(s)	•	$[{}^{\vee}4 - {}^{\vee}11]$
670(s)	675(s)		
660(m)	665(s)		
	540(sh)		
490(s)	50 5(s)	ν ₁₂	out-of-plane ring bend
449(w)[b]	459(s)	ν ₁₁	out-of-plane ring bend
407(sh)	420(sh)		$[\ ^{\vee}2 - ^{\vee}7]$
345(w)[b]	355(m)		$[{}^{v_5} - {}^{v_9}]$
307(w)	308(w)		[^V 7 - ^V 9]
	250(sh)		$[\ \ ^{\vee}9 - \ ^{\vee}11]$
	207(sh)		[^v 10 - ^v 9]
108(s)	170(s)[b]		

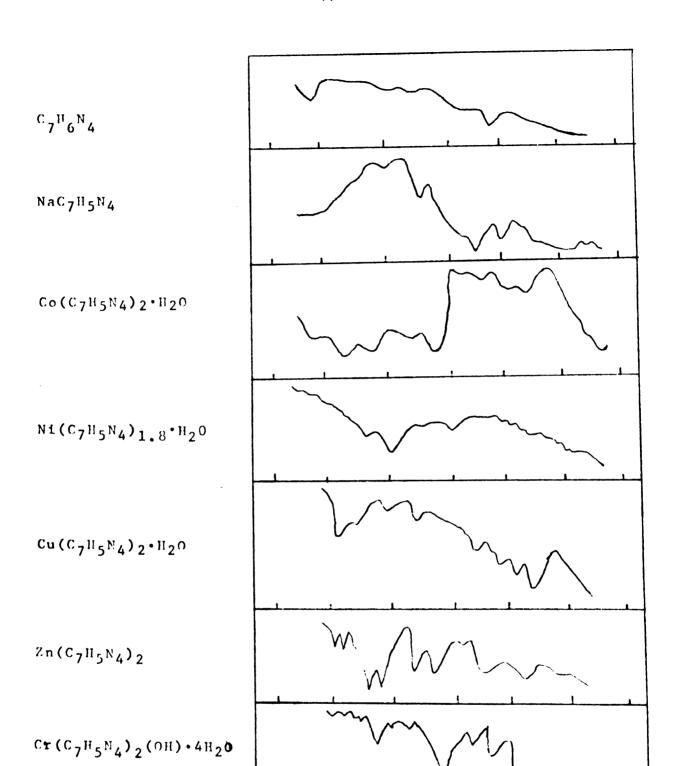


Figure 1 Far Infrared Spectra of 5-Phenyltetrasole, Sodium 5-Phenyltetrazolate and Various Complexes of Sodium 5-Phenyltetrazolate

 cm^{-1}

Infrared Spectra of 5-p-Methoxyphenvitetrazole, Sodium 5-p-Methoxyphenyltetrazole and Various Complexes of 5-p-Methoxyphenyltetrazole in Nufol and Hexachlorobutadiene Mulis from 4000 cm⁻¹ to 167 cm⁻¹ Table VIII.

нт	NaT	CoT2.H20	NiT _{1,8} "H ₂ 0 Cu(T)(OH)	Cu(T)(OH)	ZnT2	(rT ₂ (OH)'6H ₂ 0
3550(m)[b]	3570(s)	3500(sh)	3600(sh)	3570(m)		3600(s)
	3400(s)[b]	3400(m)[b]	3400(s)[p]			3400(s)[b]
3200(sh)	3200(sh)	3200(sh)	3200(sh)			3200(sh)
	3160(s)[b]					3160(s)
3100(sh)	3080(sh)	3080(s)[b] 3100(s)[b]	3100(s)[b]		3090(s)	3080(s)[b]
	3040(sh)			3050(m)		
	3000(m)	3000(8)	3000(4)		3000(s)	3000(w)
2780(s)[b]						2780(s)[h]
						2740(s)[b]
2650(s)[b]						2640(s)[b]

a - sac legend Table VI.

Table VIII. - Continued

нт	NaT	CoT2.H20	NiT _{1.8} * H ₂ 0	CuT(0H)	ZnT ₂	CrT ₂ (OH)·6H ₂ O
2600(s)[h]					2550(5)	2550(s)
2500(s)[b]						2480(s)
	2280(w)					
2080(w)				2040(w)[b]	2040(w)[b]	
1950(w)[b]		1970(v)[b]				
1910(w)[b]	1920(w)	1900(w)[b]		1930(w)		
1878(w)	1880(w)					
1800(w)[b]		1800(v)[b]				
1770(w)						
1730(w)	:					
1710(w)						
1700(v)	1690(m)					
1620(s)	1620(m)	1615(m)	1620(n)	1620(m)	1620(s)	1620(s)

Continuea

Continued

HT NaT CoT ₂ ·H ₂ O NIT _{1,8} ·H 1590(s) 1585(s) 1580(w) 1580(m) 1520(s) 1535(m) 1540(s) 1540(s) 1480(m) 1460(s) 1450(s) 1440(s) 1440(s) 1420(s) 1380(m) 1370(s) 1380(s) 1380(m)[1360(s)sh 1360(s)[CuT(OH) 1585(w)	ZnT2	Cr1 ₂ (OH)·6H ₂ 0
1585(s) 1580(w) 1535(m) 1540(s) 1450(s) 1455(s) 1440(s) 1440(s) 1370(s) 1380(s)		1585(w)		
1535(m) 1540(s) 1510(m) 1450(s) 1455(s) 1440(s) 1440(s) 1370(s) 1380(s)			1580(m)	1580(s)
1510(m) 1450(s) 1455(s) 1440(s) 1440(s) 1370(s) 1380(s)		1545(w)	1540(m)	1540(m)
1450(s) 1455(s) 1440(s) 1440(s) 1370(s) 1380(s)		1510(m)[b]	1510(m)	1500(s)
1450(s) 1455(s) 1440(s) 1440(s) 1370(s) 1380(s) h 1360(s)			1475(s)	
1440(s) 1440(s) 1370(s) 1380(s) h 1360(s)		1460(s)	1465(s)	1455(s)
1370(s) 1380(s) 8h 1360(s)		1440(s)	1445(s)	1440(s)
1370(s) 1380(s) sh 1360(s)		1405(w)	1425(sh)	1410(s)
1360(s)	380(s) 1380(m)[b]	1380(m)	1395(s)	1370(m)
	360(s) 1360(m)[b]	1360(m)[b]	1360(s)	
1320(g) 1310(s)		1320(m)	1320(s)	
1300(m) 1310(s) 1300(s)		1300(s)	1310(s)	1300(s)
1300(s) 1290(s) 1285(s) 1290(s)		1280(s)	1290(s)	1290(s)

Table VIII. - Continued

Table VIII. - Continued

нт	NaT	CoT2.H20	NiT _{1.8.H2} 0	CuT(0H)	ZnT ₂	CrT ₂ (OH)·6H ₂ 0
1270(s)	1250(s)	1250(s)	1250(s)	1250(s)	1250(s)	1260(s)
		1230(s)				1230(s)
1190(v)	1205(m)		1210(s)	1205(m)	1200(m)	1205(w)
	1175(8)			1180(m)	1180(s)	1180(s)
1170(s)	1170(sh)	1170(s)	1170(s)	1160(m)		1160(s)
1150(m)	1140(m)	1140(s)	1140(s)	1140(w)	1140(s)	1140(s)
1140(s)		1130(m)	1130(m)	1130(vv)	1130(m)	1130(s)
1130(m)	1120(m)	1110(m)	1110(s)		1110(m)	1110(s)
1090(m)	1100(m)	1105(m)	1100(m)	1100(m)	1100(m)	1080(s)
1070(m)	1080(vv)	1060(m)	1060(m)	1060(m)	1070(m)	1070(s)
1050(m)	1030(m)	1030(m)	1030(m)	1030(m)	1040(m)	1030(m)
1020(m)	1025(8)	1020(s)	1020(s)	1015(m)	1015(s)	1015(s)

Continued

Table VIII - Continued

нт	NaT	CoT ₂ *H ₂ 0	NiT _{1,8'H2} 0 CuT(OH)	CuT(011)	ZnT ₂	сгт ₂ (он).6н ₂ 0
1000(m)	1000(s)	1000(m)	1000(s)	1000(m)	1000(m)	1000(m)
			(8)086	(8)086	990(w)[b]	(s)066
950(m)			940(s)	950(s)[b]	960(w)[b]	040(m)
880(v)	890 (ww)		890(m)	890(vv)[b]	890(m)	(8)068
860(s)			850(s)	850(s)	850(s)	850(s)
820(m)	830(s)	835(m)	830(s)	825(m)	830(s)	830(s)
810(m)	790(%)	790(v)	(s)06 <i>L</i>	790(m)	780(m)	790(m)
750(s)	760(s)	750(m)	760(s)	760(m)	760(s)	760(s)
						750(s)
720(w)	720(w)	720(m)	720(s)	720(m)	725(m)	720(s)
(m)∩01					715(m)	700(m)
					705(m)	(m)069
(m)099	(m)099	650(m)	650(m)	650(m)	650(w)	670(s)

нТ	NaT	CoT2.H20	N1T1.8.1120	Cu(T)(OH)	ZnT2	CrT ₂ (OH).6H ₂ O
631(w)	638(w)					631(s)
(s)809.	611(s)	619(s)	621(s)	619(s)	625(s)	621(s)
				550(W)		
522(s)	520(s)	534(m)	534(m)	528(s)	540(s)	534(m)[5]
(m)667	497(s)	(內)667	501(sh)		501(s)	
447(s)	447(s)	455(v)[b]	495(v)	476(s)	466(s)	457(54)
		436(w)[b]		438(w)		
387(m)	419(sh)			390(m)	407 (w)	390(4)
312(m)	319(m)	345(v)	352(m)[b]	350(sh)		345(w)
			307(m)	329(41)	331(s)	312(w)
			292(v)			
			284(w)	286(w)[b]	286(s)[b]	286 (w)
249(s)	261(m)[b]	266(v)[b]	268(4)		276(sh)	268(w)
			260(w)	260(w)	256(s)[b]	
			238(v)[b]		243(s)[b]	

Table VIII. - Continued

Continued

Table VIII. - Continued

HT	NaT	CoT2.1120	NtT1.8.1120	Cu(T)(OF)	2nT ₂	CrT ₂ (OP). ^{6H2} 0
	213(m)		213(v)[b]		·	215(vw)
200(w)	205(m)					
	191(s)			195(s)	195(w)	
169(s)				184(s)	180(w)	127(vv)
	÷					

Table IX. Infrared Spectra of 5-p-Methoxyphenvltetrazole and Sodium 5-p-Methoxyphenyltetrazolate

ΙΤ	NaT	Cenuine Vibrational Mode	Assienment
3500(m)[b]	3570(s)		[^v 1 + ^v 111
	3400(s)[b]	v_{13}	0-H stretch
200(sh)	3200(sh)		1620 + 1585
	3160(s)[b]	٧1	ring C-H stretch
100(sh)	3080(sh)		$[^{\vee}2 + 1600]$
	3040(sh)		
	3000(m)		[2(1 ^v 2)]
780(s)[b]		^V 14	[N-H stretch]
650 (s) [h]			
600(s)[b]			[2("3)]
500(s)[b]			$[\ ^{\vee}2 + ^{\vee}5]$
	2280(w)		$[8^{\vee} + \epsilon^{\vee}]$
080(w)			[2(^V 7)]
950(w)[b]			$[^{v_5} + ^{v_{10}}]$
910(w)[b]	1920(w)		$[v_8 + v_{10}]$
870(w)	1880(v)		$[\ \ ^{\vee}4 + \ ^{\vee}9]$
800(w)[b]			[2 10]
170(w)			$[\ ^{\vee}5 + ^{\vee}9]$
730(w)			[^7 + ^9]
710(w)			[$^{\vee}8$ + $^{\vee}9$]

a Units are in cm^{-1}

b Brackets indicate possible assignments Continued

Table TX. - Continued

нт	NaT	Genuine Vibrational Mode	Assienment
1700(w)	1690(m)		[1 - 2]
1620(s)	1620(m)		
1590(s)	1585(s)		$[^{\vee}9 + ^{\vee}10]$
1520(s)	1535(m)		[^v 5 + ^v 11]
1480(m)			[^v 7 + ^v 11]
1460(s)	1450(s)	^v 2	ring deformation
1450(s)	1440(s)	^v 6	C-H in-plane bend
1420(s)			[2(700)]
L380(m)	1370(s)		$[^{v}10 + ^{v}12]$
1360(s)sh			[V10 + V11]
1320(m)	1310(s)		
1300(s)	1300(m)	ν ₃	ring vibration
	1290(s)		
1270(s)	1250(s)		[^v 9 + ^v 12]
l190(w)	1205 (m)		$[^{\vee}9 + ^{\vee}11]$
	1175(s)		
170(s)	1170(sh)	v ₄	ring breathing
1150(m)	1140(m)		[12 + 650]
140(s)			[^V 12 + 615]
1130(m)	1120(m)		$[^{v}11 + 650]$
1090(m)	1100(m)		$[\ ^{\vee}11 + 615]$

Table IX. - Continued

нт	NaT	Genuine Vibrational Mode	Assienment
1070(m)	1080(vw)	ν ₅	ring deformation
1050(m)	1030 (m)	V 7	ring deformation
1020(m)	1025(s)	VB	ring deformation
1000 (m)	1000(s)		(1454-454) or 2(500)
950(m)			
880(w)	890 (vv)	V 1 0	C-11 out-of-plane ber
860(s)			$[^{v}12 + 350)$
820(m)	830(s)		
810(m)	790(w)		
750(s)	760(s)		
720 (w)	720(11)	\mathbf{v}_{α}	ring deformation
700(m)			
(60 (v)	660 (w)		
631(w)	638(w)		
608(s)	611(s)		[^v 5 - ^v 11]
522(s)	520(s)	V ₁₂	out-of-plane ring bend
499 (v)	497(s)		
447(s)	447(s)	v ₁₁	out-of-plane ring bend
	409(sh)		[^v 2 - ^v 7]
387(m)	387(sh)		$[\ ^{\vee}3 - ^{\vee}10]$
312(m)	319(m)		[^V 7 - ^V 9]

Table IX. - Continued

IT	NaT	Cenuine Vibrational Mode	Assignment
249(s)	261(m)[b]		[^v 9 - ^v 11]
	213(m)		
200(w)	205 (m)		[^v 10 - ^v 9]
169(s)	191(s)		

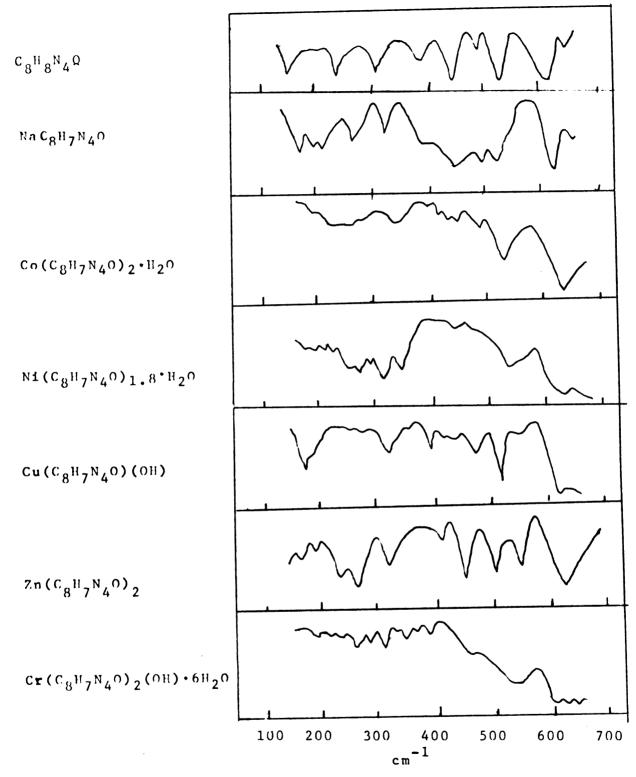


Figure 2 Far Infrared Spectra of 5-p-Methoxyphenyltetrazole, Sodium 5-p-Methoxyphenyltetrazolate, and Various Complexes of 5-p-Methoxyphenyltetrazole

Infrared Spectra of 5-p-Chlorophenvitetrazole, Sodium 5-p-Chlorophenvitetrazolate and Various Complexes of 5-p-Chlorophenvitetrazole in Nuiol and Hexachlorobutadiene Mulls from 4000 to 167cm⁻¹ Table X

нТ	NaT	CoT2.H20	NiT _{1.8} .H ₂ 0	CuT2.H20	$2nT_2 \cdot \frac{3}{2}H_20$	CrT ₂ (0H)·4H ₂ 0
	3570(s)			3550(s)		
	3420(s)					
	3340(m)[b]	3360(s)[b]	3350(m)[b]	3330(s)[b]	3350(s)[b]	3350(m)[b]
3090(m)	3150(s)[b]	3150(s)[b]	3150(s)[b]	3100(m)	3100(s)	3100(s)
3060(m)	3060(s)			3070(m)		3080(s)
2800(m)						
1750(m)[b]						
2720(m)[b]						
2630(m)[b]						
2540(m)[b]						
2270(m)[b]	1170(w)[b]					
1915(v)[b]	1930(w)[b]					

a - see legend Table VI

Table X - continued

1920(m) 1900(w) 1600(s) 1550(s) 1555(m) 1525(w) 1495(s) 1490(w)[b] 1435(s) 1435(s) 1435(s)	1610(m) 1565(w) 1515(w) [b] 1480(w)	1620(s)			
	1 1 1 1	1620(s)			
		1620(s)			
			1600(s)	1610(s)	1600(s)
	-	1570(s)	1560(m)	1550(s)	1560(m)
	7	1520(w)	1510(w)	1500(w)	1510(w)
		1480(w)	1490(w)	1480(v)	1470(w)
	1440(s)	1450(s)	1460(s)	1450(s)	1460(s)
	1415(s)	1400(s)	1425(s)	1420(s)	1420(s)
1405(s)					
1370(s) 1350(m)	1350(m)[b]	1370(m)	1350(m)	1370(m)	1360(m)
1300(w) 1310(m)	1300(v)[b]	1300(s)[b]			
1275(w) 1275(m)	1270(4)	1280(s)	1280(m)	1290(m)	1280(m)
1260(w)					
1250(s) 1205(m)		1210(m)	1215(m)		

Table X - continued

нт	NaT	CoT2.H20	$^{\mathrm{N1T}_{1.8}}^{\mathrm{H}_{2}}$	CuT2.1120	ZnT2.2120	CrT ₂ (OH)·4H ₂ O
	1180(v)					
1160(s)	1150(w)	1160(m)[b]	1180(m)	1175(s)	1170(s)	1160(m)
1140(m)						
1120(m)	1125(s)	1120(m)	1135(m)	1150(s)	1130(m)	11.50(w)
1090(s)	1100(s)	1090(s)	1100(s)	1100(s)	1100(s)	1090(s)
1085(s)						
1065(s)						
1050(s)	1050(m)		1070(m)	1050(m)	1070(m)	1050(w)
1020(s)	1020(m)			1030(m)		
1015(s)						
1000(s)	1000(s)	1010(s)	1030(s)	1020(s)	1020(m)	1010(s)
(s)086	980(m)	(m)086	(8)086		080 (m)	980(m)
096 (m)	(s)096	940(w)[b]	950(m)	(s)096	(s)096	940(m)[b]

Table X - Continued

HT	NaT	CoT ₂ ·H ₂ 0	N1T _{1.8} H ₂	NiT _{1.8} * H ₂ 0 . CuT ₂ * H ₂ 0	2nT ₂ · ³ 11 ₂ 0	CrT ₂ (OH)·4H ₂ O
875(s)[b]	(A) 006			(M)006	(4)006	880(v)[h]
850(s)	850(s)	850(m)	870(s)	860(m)	850(s)	850(s)
840(s)	840(s)	830(m)	850(s)	830(s)	840(s)	830(s)
790(4)	760(s)	790(w)	800(m)	800(v)		790(w)
740(s)	750(s)	760(m)	775(s)	750(s)	760(s)	770(m)
						750(m)
						740(s)
730(s)	720(s)	720(m)	725(s)	725(s)	720(m)	720(s)
680(s)	650(m)	650(w)	660(m)	650(m)	640(m)	650(m)

Continued

Table X. - Continued

IIT	NaT	CoT2.E20	N1T1.8.H20	CuT2 • N2 0	$2 n T_2 \cdot \frac{3}{2} H_2 $	CrT ₂ (9P).4H ₂ ²
615(sh)		625(sh)	625(m)	623(m)[b]		(4 s) 009
				532(s)		
505(s)	507(s)	517(s)	517(s)	(m)609	513(s)	507(s)
(s)65ħ	467(s)	476(m)	475(n)	474(s)	474(m)	(m) 297
366(w)	368(m)	379(w)		376(m)	387(m)	376(v)
					370(m)	
321(w)		327(m)[b]	334(8)[b]	337 (m)	325(m)	330(m)
296(w)[b]	294(m)	293(m)	286(m)[b]	290(s)	293(m)	291(m)
258(sh)	256(m)[b]	275(m)		275(s)	275(m)	280(s)
			265(m)[b]			267(4)
		244(m)		241(s)	243(m)[b]] 246(m)
215(w)	221(s)[b]					225(m)
186(4)	196(s)			194(s)[b]	195(s)[h]] 200(m)
170(s)	180(s)			184(s)[h]	180(s)[b]	

Table XI. Infrared Spectra of 5-p-Chlorophenyltetrazole and Sodium 5-p-Chlorophenyltetrazolate with Band Assignments

нт	NaT	Genuine Vibrational Mode	Assionment
	3570(s)		[^v 1 + ^v 11]
	3420(s)	^v 13	0-11 stretch
	3340 (m)[h]		
3090(m)	3150(s)[b]	^ν 1	rine C-N stretch
3060(m)	3060(s)		$[^{9}2 + 1600]$
2800 (m)			[N-P stretch]
2750 (m) [h]			$[^{\vee}2 + ^{\vee}3]$
2720 (m) [h]			$[^{\vee}3 + {^{\vee}6}]$
2630(m)[b]			[2 + 4]
2540(m)[h]			$[^{\vee}2 + ^{\vee}5]$
2270(m)[h]	2270(元)[1]		[V3 = V6]
1915 (11) [1]	1930(w)[b]		[V7 + V10]
	1920(m)		[V8 + V10]
	1900(w)		$[^{\vee}4 + ^{\vee}9]$
1600(s)	1610(s)		$[^{\vee}9 + ^{\vee}10]$
1550(s)	1565(m)		
1525(w)	1520(w)		[^V 7 + ^V 12]
1495(s)	1490(w)[b]		[VR + V12]

a Units are in cm^{-1}

b Brackets indicate possible assignments Continued

Table XI. - Continued

HT	NaT	Genuine Vibrational Node	Assignment
1480(s)	1460(m)	^V 2	ring deformation
1435(s)	1420(s)	٧,	C-H in-plane bend
1405(s)			$[^{v}10 + ^{v}12]$
1370(s)	1350 (m)		$[^{v}10 + ^{v}11]$
1300(w)	1310 (m)	^v 3	ring vibration
1275 (w)	1275 (m)		
1260 (w)			
1250(s)	1255(m)		$[{}^{\vee}9 + {}^{\vee}12]$
	1180 (w)		$[^{\vee}9 + ^{\vee}111$
1160(s)	1150(w)	٧4	ring vibration
1140 (m)			$[^{\circ}12 + 650]$
1120 (m)	1125(s)		$[^{v}12 + 615]$
1090(s)	1100(s)		$[^{v}11 + 650]$
1085(s)			$[^{v}11 + 615]$
1065(s)			$[^{\vee}9 + ^{\vee}366]$
1050(s)	1050(m)	^ν 5	ring deformation
1020(s)	1020 (m)	٧7	ring deformation
1015(s)			[2 12]
1000(s)	1000(s)	٧8	ring deformation
980(s)	980 (m)		$[^{v}11 + ^{v}12]$
960 (m)	900 (m)		[12 - 12]
875(s)[b]	900(w)	^v 10	C-H out-of-plane

Table XI. - Continued

НТ	NaT	Genuine Vibrational Mode	Assignment
850(s)	850(s)		$[^{\circ}12 + 368]$
840(s)	840(s)		[912 + 321]
790(w)	760 (s)		[''2 - ''9]
740(s)	750(s)		[6 - 791
730(s) 680(s)	720(s) 650(m)	ν ₉	ring deformation [V4 - V11]
615(sh)			[5 - 711]
505(s)	507(s)	v ₁₂	(out of plane ring bends)
459(s)	467 (s)	V11	(out of plane ring bend)
366(w)	368(m)		[^v 5 - ^v 9]
321(w)			[^v 7 - ^v 9]
296(w)[h]	294(m)		["8 - "9]
258(sh)	256(m)[h]		[^v 9 - ^v 11]
215(w)	221(s)[h]		[9 - 12]
186(w)	186(s)		[^v 10 - ^v 9]
170(s)	180(s)		[680 - ^V 12]
•			

NaC₇H₄N₄C1

Co(C7H4N4C1)2·H20

N1(C7H4N4C1)1.8*H20

Cu(C₇H₄N₄C1)₂·H₂O

 $z_{n}(c_{7}H_{4}N_{4}c_{1})_{2} \cdot \frac{3}{2}H_{2}0$

Cr(C7114N4C1)2(OH) • 4H2O

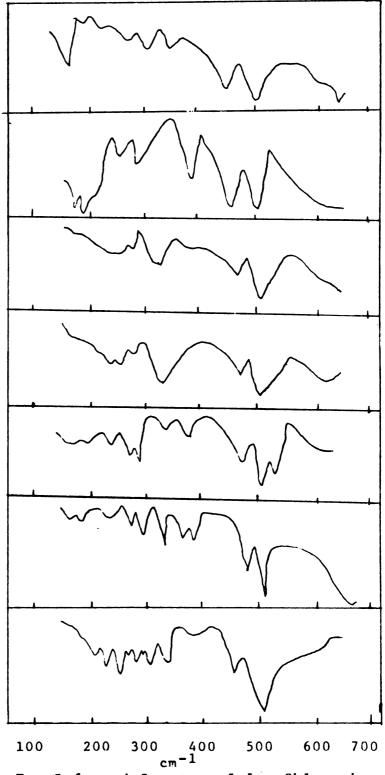


Figure 3 Far Infrared Spectra of 5-p-Chlorophenyltetrazole, Sodium 5-p-chlorophenyltetrazolate and various complexes of
5-p-chlorophenyltetrazole

Infrared Spectra of 5-n-Chlorobenzyltetrazole, Sodium 5-n-Chlorobenzyltetrazolate, and Various Complexes of 5-n-Chlorobenzyltetrazole in Nutol and Hexachlorobutadiene Yulls from 4000 to 167cm⁻¹ Table XII

3660(sh) 3600(sh) 3600(sh) 3600(sh) 3540(sh 3340(m) 3350(m)[h] 3350(m)[h] 3400(s)[h] 3120(w) 3100(s)[h] 3100(m)[h] 3100(sh) 3200(sh) 3080(w) 2700(s) 2540(s)[h] 25500(s)	HT	NaT	CoT2.H20	N1T _{1.8} .H ₂ 0	CuT2.3H20	ZnT ₂	CrT20H·4H20
3540(sh 3340(m) 3350(m)[h] 3350(m)[h] 3400(s)[h] 3300(s)[h] 3100(m)[h] 3100(sh) 3100(s)[h] 3100(m)[h] 3100(sh)		3660(sh)	3600(sh)	3650(sh)	3600(sh)		3600(sh)
3340(m) 3350(m)[b] 3400(s)[b] 3300(s)[b] 3100(s)[b] 3100(m)[b] 3100(sh) 310b(s)[b] 3100(m)[b] 3100(ch)		3540(sh					
3300(s)[b] 3100(s)[b] 3100(m)[b] 3100(sh) 3040(m)		3340 (m)	3350(m)[b]	3350(m)[b]	3400(s)[b]		3300(s)[b]
3100(s)[b] 3100(m)[b] 3100(sh) 3040(m)		3300(s)[b]					
3100(s)[b] 3100(m)[b] 3100(sh) 3040(m)					3200(sh)		3200(sh)
3040(m)	3120(v)	3100(s)[b]	3100(m)[b]	3100(sh)		3110(m)	3100(sh)
3040(m)	3080(v)					3090(m)	
3040(m)						3060(m)	
2700(s) 2600(s) 2540(s)[b] 2500(s)					3040(m)	3040(m)	
2600(s) 2540(s)[b] 2500(s)	2700(s)						
2540(s)[b] 2500(s)	2600(s)						
2500(s)	2540(s)[b]						
	2500(s)						

a - see legend Table XI

нт	NaT	CoT2.H20	N1T1.8.H20	CuT2.3H20	ZnT2	CrT20H.4H20
2480(8)						
2440(s)						
2060(m)[b]	2140(w)					
	i				1940(w)	
					1930(w)	
1910(s)	1920(w)	1920(w)	1920(w)[b]	1920(w)[b]	1920(w)	1920(w)[b]
	1890(w)	1880(w)			1900(w)	
1820(s)[b]	1800(w)				1800(w)	
	1770(w)	1780(w)			1780(w)	
	1640(s)				1750(w)	
	1630(s)	1630(w)[b]		1630(w)[b]	1640(v)[b]	1640(m)[b]
1580(m)	1590(m)	1590(m)	1610(m)[b]		1600(m)	1600(m)
1575(m)	1570(m)				1580(m)	1550(m)
1530(w)						

Continued

Table XII - Continued

HT	NaT	CoT2.H20	N1T1.8.H20	CuT2.3H20	ZnT2	CrT ₂ (OH).4H ₂ 0
1495(s)	1495(s)	1490(s)	1495(s)	1500(s)	1490(s)	1490(s)
	1470(s)	1470(m)[b]	1480(s)	1470(v)	1480(s)	1470(m)[b]
				1470(9)		
1440(s)	1430(s)	1425(s)	1430(s)	1440(v)[b]	1445(s)	1430(m)[b]
1410(s)	1420(s)	1410(s)	1410(s)	1410(s)	1420(s)	1410(m)
1405(s)	1400(s)	1390(m)		1390(sh)	1400(s)	1390(m)
					1370(sh)	
1355(m)	1320 (v)	1320(v)[b]		1330(w)[b]	1335(v)	
1330(w)						
1310(m)	1310(w)	1310(m)	1310(w)[b]		1310(m)	1320(m)[b]
1290(m)	1280(円)	1290(m)	1290(w)	1290(m)	1295(m)	1290(v)[b]
1266(m)					1285(s)	
1245(m)	1240(v)	1240(m)[b]	1245(w)[b]	1240(m)	1250(s)	1245(v)[b]
1205(s)	1210(s)	1200(m)[b]	1200(m)	1200 (w)	1200(s)	1200(w)

Continued

Table XII - Continued

HT	NaT	CoT2.H20	NiT _{1.8} .H ₂ 0	CuT2.3H20	ZnT ₂	CrT ₂ (OH).4H ₂ 0
				11.85(m)	1185(s)	
1100(w)	1170(s)				1170(m)	1170(m)[b]
	1150(m)	1150(m)		1160(m)[b]	1150(s)	1150(s)
	1135(s)	1140(s)	1140(m)	1140(s)	1140(s)	
	1130(s)				1115(sh)	
1110(s)	1125(s)				1010(s)	1110(sh)
1085(s)	1090(s)	1090(s)	1090(s)	1090(s)	1085(8)	1090(s)
1050(s)	1070(s)	1040(w)	1050(w)		1065(s)	1050(m)[b]
1015(s)	1020(m)				1020(s)	
(s)066	1015(s)	1015(s)	1010(s)	1010(s)	1015(s)	1015(s)
975(m)	(A)086		970(m)	980(m)	970(4)[4]	980(m)[b]
(m)096						
940(s)	0 5 O (m)	950(4)[9]	940(m)	940(m)[p]	940(m)[p]	640(m)[b]
	935(w)					

Continued

Table XII - Continued

нт	NaT	CoT ₂ ·H ₂ 0	N1T _{1.8} .H ₂ 0	CuT2.31!20	ZnT ₂	CrT ₂ (OH) • 4H ₂ 0
915(s)	905(m)	900(m)[b]	915(m)		915(s)	915(m)[b]
			(A)068	890(4)[9]	890(v)[b]	880(w)[b]
850(m)	850(s)	845(m)[b]	850(m)	850(m)	850(m)	840(m)
835(s)				840(w)	830(s)	
820(s)		820(m)[b]			815(s)	815(m)[b]
805(s)	810(s)	805(sh)		805(s)	800(s)	
	795(s)	790(s)	790(s)	(8)062	790(s)	785(s)
770(s)	780(s)		780(w)	765(sh)	780(s)	780(m)[sh]
720(m)	740 (m)(sh)	720(s)		725(m)	715(s)	720(s)
(m)069	710(s)	705(m)(sh)	715(s)	705(4)	705(s)	(m)069
680(m)	(s)069	(m) 569	(m)069		(m)569	(m)069
650(m)	(m)079	650(w)	650(w)	650(w)[b]	650(m)	650(w)

Continued

Table XII. - Continued

HT	X T es	CoT2.1120	X1T1.8.H20	CuT2.3H20	ZrTz	CrT20U・4H20
618(sh)						·
521(vw)	521(s)[b]		555(m)[b]			
486(s)	(8)267	(4)(s)(4)	(8)567	495(m)	501(w)	492(sh)
		486(s)[h]		480(s)	484(s)	
437(s)	424(s)	447(s)	(H) 277	447(m)	435(m)	443(5)
					399(s)	
347(w)	367(m)[b]	376(v)[b]		380(w)	372(m)	370(w)
		347(m)		350(4)	350(W)	350(w)
	319(m)	325(v)	325(w)	325(s)	322(W)	327(s)
307(v)	307(w)			302(m)	310(円)	301(w)
285(w)	282(w)		292(w)[b]			
		270(s)[k]	279(v)[b]		277(s)	278(w)
233(w)	242(s)			240(v)	231(m)	232(s)[b]
	217(s)[b]		213(v)	223(w)	211(w)	203(w)
196(m)						
	174(s)[b]	176(sh)	177 (w)	187(4)[h]	177(m)	
157(w)			167(v)			

Table XIII. Infrared Spectra of 5-p-Chlorobenzvltetrazolate and Sodium 5-p-Chlorobenzvltetrazolate

нT	NaT	Genuine Vibrational Mode	Assignment
	3660(sh)		
	3540(sh)		[V1 + V11]h
	3340(m)	^v 13	0-H stretch
	3300(s)[b]		
3120(w)	3100(s)[b]	ν ₁	ring C-H stretch
3080(u)			$[^{\vee}2 + 1600]$
2700(s)		^v 14	[N-H stretch]
2600(s)			$[^{\vee}2 + ^{\vee}4]$
2540(s)[b]			$[^{\vee}2 + ^{\vee}5]$
2500(s)			
2480(s)			$[^{\vee}3 + ^{\vee}4]$
2440(s)			
2160(m)[b]	2140(w)		[2 ^V 5]
1910(s)	1920 (w)		["7 + "] []
	1890(w)		[4 + 9]
1820(s)[b]	1800(w)		[2 10]
	1770(w)		[\(^5 + \(^9\)]
	1640(s)		0-H bend

a Units are in cm^{-1}

b Brackets indicate possible assignments

Table XIII. - Continued

нт	NaT	Genuine Vibrational Mode	Assignment
	1630(s)		[^v 4 + ^v 11]
1580(m)	1590(m)		[^v 9 + ^v 10]
1575(m)	1570(m)		[850 + ^v 9]
1530(w)			$[^{v}5 + ^{v}11]$
1495 (s)	1495(s)		[^v 7 + ^v 11]
	1470(s)		[^v 8 + ^v 11]
1440(s)	1430(s)	ν ₂	ring deformation
1410(s)	1420(s)	ν ₆	C-H in plane bend
1405(s)	1400(s)		[2 ^v 9]
1355	1320(w)		[^v 10 + ^v 11]
1330(w)			
1310(11)	1310(w)		
1290(m)	1280(m)	v_3	ring deformation
1260(m)			
1245 (m)	1240(v)		[^v 9 + ^v 12]
1205(s)	1210(s)		[^v 9 + ^v 11]
1180(w)	1170(s)	٧4	ring breathing
	1150(m)		[^v 12 + 650]
	1135(s)		[^v 12 + 615]
	1130(s)		
1110(s)	1125(s)		$[^{v}11 + 650]$

Table XIII - Continued

нт	NaT	Genuine Vibrational Mode	Assionment
1085(s)	1090(я)		[^v 11 + 615]
1050(s)	1070(s)	v_{5}	ring deformation
1015(s)	1020(m)	ν ₇	ring deformation
990(s)	1015(s)	ν ₈	ring deformation
975(m)	980(w)	*	$[^{v}11 + {}^{v}12]$
960(m)			
940(s)	950(m)		[^v 2 - ^v 12]
	935(w)		
915(s)	965(m)	^v 10	C-H out of plane bend
850(s)	850(s)		
835(s)			
820(s)			
805(s)	810(s)		
	795(s)		
770(s)	780(s)		[^v 2 - ^v 9]
720(m)	740(sh)		[^v 6 - ^v 9]
690	710(s)	^V 9	ring deformation
680(m)	690(s)		$[^{\vee}4 + ^{\vee}11]$
650(m)	640(m)		
618(sh)			[^v 5 - ^v 11]
	521(s)[b]	^V 12	out-of-plane ring ben

Table XIII. - Continued

нт	NaT	Genuine Vibrational Mode	Assignment
486(s)	497(s)		
437(s)	424(s)	٧11	out-of-plane ring bend
	367(w)[b]		[^V 5 - ^V 9]
	319(m)		[^v 7 - ^v 9]
307(m)	307(w)		[^v 3 - ^v 9]
285(m)	282(m)		
233(w)	242(s)		[^v 9 - ^v 11]
	217(s)[b]		
196			
	174(s)[b]		$[^{v}10 - ^{v}9]$
157			

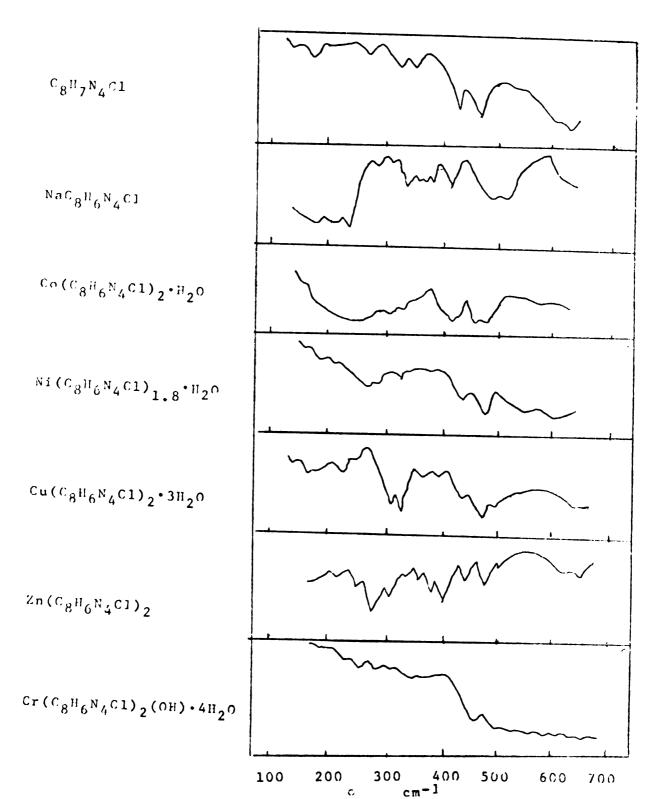


Figure 4 Far Infrared Spectra of 5-p-Chlorobenzyltetrazole, Sodium 5-p-Chlorobenzyltetrazolate and Several Complexes of 5-p-Chlorobenzyltetrazole

5-p-Chlorophenyltetrazolate and Various Complexes of <math display="inline">5-p-Chlorophenvltetrazole in Nuiol and Hexachlorobutadiene Mulls from <math display="inline">4000 to $167\,cm^{-1}$ Infrared Spectra of 5-o-Chlorophenyltetrazole, Sodium Table XIV

нт	NaT	CoT2.H20	N1T1.8.H20	CuT ₂ • H ₂ 0	ZnT2	CrT20H·4H20
	3550(s)[b]	3550(s)	3550(s)[b]	3500(s)[b]	3550(w)[b]	3550(s)[b]
3450(w)	3450(s)[b]	3350(s)[b]	3315(s)[b]	3400(s)[b]		3300(s)[b]
	3250(m)[b]		3100(s)[b]			3150(s)[b]
3190(m)						
21]0(m)						
3050(s)	3050(m)	3060(m)	3060(m)	3060(w)	3050(s)	3050(s)[b]
2990(s)					3000(w)	
2820(s)						
2800(s)						
2700(s)[b]						
2600(s)[b]						
2400(s)[b]						
2390(m)						

a - see legend Table VI

Table XIV - continued

HT	NaT	CoT2.H20	N1T _{1.8} .H ₂ 0 CuT ₂ .H ₂ 0	CuT2.H20	ZnT2	CrT ₂ 011.4H20
2050(m)						
2000(m)						
1950(m)					1950(m)	
1920(w)[b]	1920(w)[b]	1920(v)[b]	19]0(w)[b]	1910(v)[b]	1910(m)	1920(w)[b]
1850(m)[b]					1820(m)	
1800(m)[b]	1800(w)				1800(m)	
1750(m)						
1700(m)					1700(m)	1700(m)
1650(m)	1650(m)	1640(m)				1640(m)
						1625(m)
1590(s)	1590(m)[b]	1600(m)	1590(m)	1590(m)	1600(m)	1600(m)
1560(s)	1560(m)	1560(m)	1565(m)	1560(m)	1565(m)	1560(m)
1550(s)						
1540(s)						

Continued

Table XIV - continued

HT NaT 1490(s) 1500(m) 1455(s) 1450(s) 1435(s) 1400(s) 1420(s)	CoT ₂ ·H ₂ 0 1520(w)	NiT _{1.8} .H ₂ 0	CuT2.H20	ZnT2	CrT20H•4H20
	1520(w)	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.			
	•	1525(m)	1510(w)	1510(m)	1525(m)
	1450(s)	1460(s)	1440(s)	1460(s)	1460(s)
				1440(s)	
	1420(s)	1420(s)	1410(s)	1400(s)	1425(s)
1370(s) 1360(s)					
1360(s) 1350(s)	1350(m)	1360(m)	1360(m)	1350(s)	1350(s)
1290(m) 1310(m)[b]	1300(w)[b]	1300 (vw)	1305(m)[b]	1280(m)	1300(m)[b]
1280(w)					
1270(m)				1260(m)	
1245(s) 1220(m)				1250(s)	
1210(m)		1210(v)	1200(w)	1220(w)	1220(m)
1170(s) 1170(n)	1170(m)[b]	1170(m)[b]	1170(m)[b]	1180(m)	1170(m)[h]
1160(s) 1160(s)	1160(m)[b]		1150(m)[b]	1160(m)	
1150(s) 1150(m)				1150(m)	

Continued

Table XIV - continued

ПТ	NaT	CoT2.H20	N1T1.8.H20	CuT2.H20	$2nT_2$	CrT ₂ 0H·4H ₂ 0
1120(s)	1135(s)	1135(m)	1130(m)	1130(m)	1140(m)	1125(m)
	1120(v)					
1100(m)	1100(s)			1095(m)	1110(s)	
1095(m)	1090(w)	1090(m)	1080(m)	1085(m)	1090(s)	
1070(s)	1070(s)	1055(m)	1065(m)	1070(m)	1065(m)	1070(m)
1060(s)						
1040(s)	1040(s)	1030(s)	1040(m)	1035(m)	1050(s)	1040(m)
1030(s)						
1010(s)	1010(s)	1010(m)	1020(m)	1020(m)	1025(s)	1025(m)
(s)066						
(s)086	970(m)	975(m)	980(w)	(8)086	080 (m)	(8)086
950(s)	950(m)	040(m)	950(w)[b]	040(m)	0 2 O (m)	945(m)
940(s)						
	910(vw)[h]	910(w)[b]	910(vw)[b]	910(w)	(m)006	(M)006

Table XIV - continued

нт	NaT	CoT2.H20	N1T _{1.8} .H ₂ 0 CuT ₂ .H ₂ 0	CuT2.H20	ZnI2	CrT ₂ 0H•4H ₂ 0
880(s)	890(w)	885(vw)	880(vv)	890(v)	(M) 068	
	850(m)	850(m)	850(m)	850(s)	850(m)	850(s)
	785(m)	790(v)	800(w)	800(m)	800(w)	820(w)
780(s)	780(s)	780(m)[b]	780(m)[b]	780(m)	780(m)	770(m)
750(s)	750(s)	745(s)	750(s)	750(s)	750(s)	750(s)
740(s)						
730(s)		730(s)	730(m)	730(s)	740(s)	730(s)
710(s)	720(s)	720(s)	720(m)	720(s)	730(s)	720(s)
700(m)						
650(s)	650(s)	(m)059	650(m)	650(s)	(8)059	(8)0(8)

Continued

Table XIV. - Continued

E	E	G E		E .	E	6 H
ні	Nai	COT2*112U	N111.8 H2U	Cu12*112 ^U	7 n 1 2	Cr120!!•4H20
(8)(8)	(s)859	(u)059	(m)059	(E)U(E)	650(s)	(s)059
				570 (vv)	580(sh)	
		532(w)[b]	542(v)[b]	542(v)	550(4)	531(v)
521(m)	494(s)	(8)967	490(m)[8]	490(v)[b]		
475(v)	478(s)				472 (m)	
440(M)	453(s)	457(s)	459(s)	457(s)	453(m)	455(s)
430(w)	435(s)	438(s)	442(s)	442(s)	432(m)	
		354(s)	364(s)	370(s)	368(s)	383(w)
332(s)	333(s)[h]		330(sh)		334(m)	332(s)
			311(s)[b]			302(9)
259(m)	270(s)[b]	297(s)[b]	283(w)[h]	298(s)[b]	275(s)	278(w)[b]
252(m)	vw Band	250(vw)	254(v)[b]		254(s)	246(v)[b]
223(w)		231(vv)		225(4)	227(sh)	230(w)[b]
	212(1)	219(vv)		210(w)	213(v)	

Continued

Table XIV. - Continued

нт	NaT	CcT2.H20	N1T1.8.1.20	CuT2•1120	ZnT ₂	CrT20H·4H20
206(w)	208 (w)	210(vv)	203(v)[b]	202(w)	203(8)	203(w)[b]
	193(w)[b]					
169(s)	177(s)	175(s)		184(m)	180(m)	

Table XV. Infrared Spectra of 5-o-Chlorophenyltetrazole Sodium 5-o-Chlorophenyltetrazolate with Assignments

нт	NaT	Genuine Vibrational Mode	Assignment
	3550(s){b]		[^V 1 + ^V 11] ^b
3450(w)			
	3450(s)[b]	^{\(\)} 13	0-H stretch
	3250(m)[b]		
3190(m)			
3120(m)		ν ₁	ring C-H stretch
3050(s)	3050(m)		[1600 + ^V 2]
2990(s)			[2(1500)]
1820(s)			
2800(s)		^v 14	[N-H stretch]
2700(s)[b]			$[^{\vee}3 + ^{\vee}6]$
2600(s)[b]			[2
2400(s)[b]			
2390(m)			
2050(m)			[^v 7 + ^v 8]
2000(m)			[2 ^V 10]
1950(m)			$[^{v_7} + ^{v_{10}}]$

a Units are in cm⁻¹
b Brackets indicate possible assignments Continued

Table XV. - Continued

HT	NaT	Genuine Vibrational Mod e		Assignment
1920(w)[b]	1920(w)[b]			[\ 8 + \ \ 10]
1850(m)[b]				[74 + 79]
1800(m)[b]	1800(w)			[2 ^V 10]
1750(m)				[^v 5 + ^v 9]
1700(m)				[48 + 49]
1650(m)	1650(m)			[4 + 11]
1590(s)	1590(m)[b]			["9 + "10]
1560(s)	1560(m)			
1550(s)				[850 + V9]
1540(s)				[^v 5 + ^v 11]
1490(s)	1500(m)			[^v 7 + ^v 11]
1455(s)	1450(s)	⁷ 2		ring deformation
	1435(s)	\ '6	C – H	in-plane bend
1400(s)	1420(s)			[2(700)]
1370(s)	1360(s)			[10 + 11]
1360(s)	1350(s)	,		
1290(m)	1310(m)[b]	∨3		ring vibration
1280(w)				
1270(m)				["9 + "12]

Table XV. - Continued

нт	NaT	Genuine Vibrational Mode	Assignment
12 45(s)	1220(m)		[^v 9 + ^v 11]
	1210(m)		
1170(s)	1170(m)	∨ ₄	ring breathing
1160(s)	1160(s)		(702 + 454)
1150(s)	1150(m)		[^v 12 + 650]
1120(s)	1135(s)		[^v 12 + 615]
	1120(w)		
1100(m)	1100(s)		[^v 11 + 650]
1075(m)	1090(w)		[^v 11 + 615]
1070(s)	1070(s)	^V 5	ring deformation
1060(s)			
1040(s)	1040(s)	^V 7	ring deformation
1030(s)			
1010(s)	1010(s)	ν ₈	ring deformation
990(s)			
980(s)	970(m)		$[^{v}11 + ^{v}12]$
950(s)	950(m)		[^v 2 - ^v 12]
940(s)			
	910(vw)[t)]	

Table XV. - Continued

HT	NaT	Genuine Vibrational Mode	Assignment
(a)088	890(w)	ν 10	C-H out of plane band
	850(m)		
	785(m)		
780(s)	780(s)		['2 - '9]
750(s)	750(s)		[6 - 6]
740(s)			
730(s)			
710(s)	720(s)	u_g	ring deformation
700(m)			
650(s)	650(s)		[4 - 11]
521(m)	494(s)	``1 2	out-of-plane ring ben
475(w)	478(s)		
440(w)	453(s)	1 1	out-of-plane ring ben
435(w)	435(s)		[4 - 4]
332(s)	333(s)[b]		['7 - '9]
259(m)	270(s)[b]		['9 - '11]
252(m)			
223(w)			[9 - 12]
•	212(w)		

Table XV. - Continued

нт	NaT	Genuine Vibrational Mode	Assignment
206(w)	208(w)		[10 - 79]
•	193(w)[b]		·
169(s)	177(s)		[680 - 12]

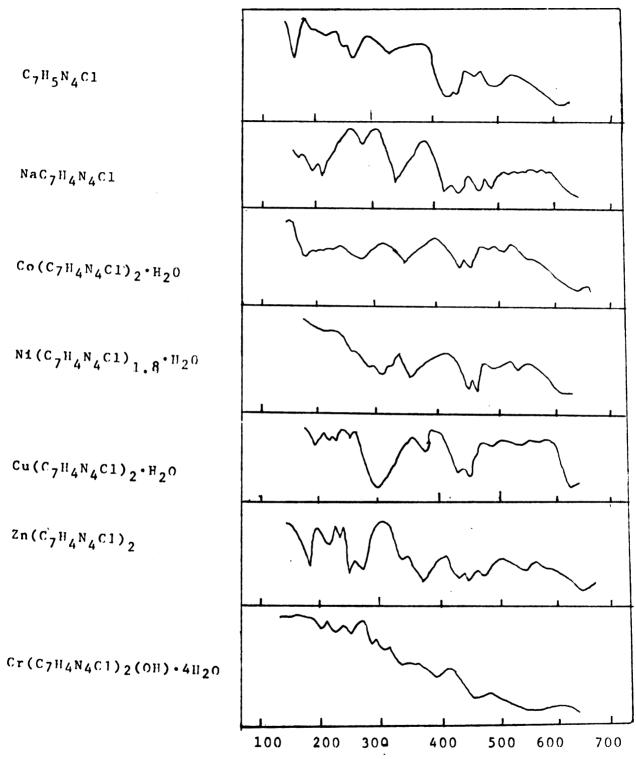


Figure 5 Far Infrared Spectra of 5-o-Chlorophenyltetrazole, Sodium 5-o Chlorophenyltetrazolate and Various Complexes of 5-o-Chlorophenyltetrazole

Table XVI. Results of the Normal Coordinate Analysis 32 Calculation for Sodium Tetrazolate.

Species	Vibrational Modes	Observed Frequency	Calculated Frequency
^1	v_1	3120	3125
	v_2	1455	1461
	ν ₃	1290	1243
	v ₄	1161	1138
	ν ₅	1065	962
^B 1	٧6	1445	1453
	ν ₇	1023	1063
	v ₈	1015	1013
	ν ₉	702	730
_{Б 2}	· ν ₁₀	910	910
2	v ₁₁	454	456
^ ₂	V ₁₂		537

 $^{^{}a}$ Units are in cm $^{-1}$

Table XVII. Infrared Spectrum for Sodium Tetrazolate Monohydrate 32 with Assignments a .

Vibrational	Observed -1 Frequency, cm	Assignment
	3300	O-N stretch
v ₁	3120	C-H stretch
	2930	[2 + 61
	2370	["2 + "10]
	1785	⁵ + ⁹
	1685	^v 8 + ^v 9
	1640	O-11 bend
^v 2	1455	sym. ring deformation
^ν 6	1445	C-H in-plane bend
ν ₃	1290	sym. ring deformation
	1210	$^{\vee}9 + ^{\vee}12^{(a)}$
v ₄	1161	sym. ring breathing
	1132	ν ₀ + ν ₁₁
ν ₅	1065	sym. ring deformation
^٧ 7	1023	asym. ring deformatio
ν ₃	1015	asym. ring deformation
^v 10	910	C-H out-of-plane bene
ν ₉	702	asym. ring deformation
	660	1649-v ₈
^v 11	454	out-of-plane ring be
		asym. with respect to
		C ₂ axis

a is taken as the calculated value. $^{\nu}$ 12

Electronic Absorption Spectra

The band maxima for the complexes are displayed in Tables XVIII to XXV. In most cases, additional bands were found in the near infrared region ($4000-10000~\rm{cm}^{-1}$). These bands are possibly overtone or combination bands of infrared bands found in the $650-4000~\rm{cm}^{-1}$ region.

The data in Table XVIII indicated that substituted 5-phenyltetrazoles and 5-benzyltetrazoles are similar in ligand strength to 5-trifluoromethyltetrazole (25), tetrazole (32), and other strong nitrogen donors (64,65).

Unlike hexaquocopper(II) and copper(ii) perchlorate hexahydrate which may have a slightly distorted octahedral structure, the appearance of the $^2\mathrm{B}_{1\mathrm{g}}^{-2}\mathrm{A}_{1\mathrm{g}}$ band (64,65) seems to suggest Jahn Teller distortion.

Jonassen et al. (25) have suggested the utility of the ratio of the energy of the $^3\Lambda_{2g}^{} \rightarrow ^3T_{2g}^{}$ (F) transition in the nickel complex to that of the $^2B_{1g}^{} \rightarrow ^2\Lambda_{1g}^{}$ transition in the corresponding copper(II) complex. Jonassen et al. (25) reported that their energy ratio of 1.3 is intermediate between that for complexes containing six ligands ($^{\sim}1.4$) and that for complexes displaying weak tetragonal distortion ($^{\sim}1.1$). This ratio is also smaller than that for complexes displaying strong tetragonal distortion ($^{\sim}1.6$). The value for the energy ratio of approximately 1.1 in this study indicates that the copper(II) complexes only experience

weak tetragonal distortion. This value of 1.1 is very similar to that obtained for diaquo bis(dipyridyl)copper(II), and tris (dipyridyl)copper(II) (64).

In Table XVIII, the band positions in the complexes for the $^2\mathrm{B}_{1\mathrm{g}}$ $^2\mathrm{B}_{1\mathrm{g}}$ transition are listed in order of increasing energy. It is expected that the maximum error in these bands is 100 cm $^{-1}$ at the slowest scan rate on the Cary Model 14 spectrophotometer. Therefore it seems reasonable to suggest the following order of ligand strengths:

$$5-p-C1C_6H_4CH_2CN_4 > 5-p-CH_3OC_6H_4CN_4 =$$

 $5-C_6H_5CN_4 > 5-p-C1C_6H_4CN_4 > 5-o-C1C_6H_4CN_4$

Although the copper(II) complexes with 5-p-methoxyphenyl-tetrazole is a hydroxo complex there is apparently little difference between the spectra of hydroxo(5-substituted tetrazolato) copper(II) and that of bis-(5-substituted tetrazolato)copper(II). For example, the spectrum of bis(5-phenyltetrazolato)copper(II) monohydrate and hydroxo(5-phenyltetrazolato)copper(II) are quite similar as shown in Table XVIII.

It should be stressed that the ${}^2B_{1g} + {}^2E_g$ was not observed in this work nor in that by Garber et al. (32).

An examination of Table XIX reveals that 5-o-chlorophenyltetrazole is a stronger ligand than dimethylsulfoxide and dimethylformamide, but it is slightly weaker than pyridine as evidenced by a comparison of the band positions in the complex with those in the copper perchlorate hexahydrate in the same solvent. Because of experimental difficulties in obtaining spectra that are free of solvent peaks in the near infrared region $(4000-10000~{\rm cm}^{-1})$, one cannot be certain wether the complexes are tetragonal in solution. The reflectance spectra, however, do suggest tetragonal symmetry.

The data in Table XX seem to indicate that the solid cobalt complexes are octahedral because of similarities in the spectra of the complexes with those of high spin 6-coordinate cobalt(II) complexes and $\mathrm{Co(C10_4)_2 \cdot 6H_2 O}$. The band position of the shoulder at approximately 19000 cm⁻¹ was very difficult to determine in this study.

The band positions in the solution spectra listed in

Table XXI and associated molar absorptivities indicate octahedral symmetry in solution. Based on the band positions in solution, it appears that dimethylformamide, dimethylsulfoxide, and pyridine are slightly stronger ligands than the tetrazoles.

In the case of the nickel(II) complexes, it appears that these complexes are octahedral as shown in Tables XXII and XXIII by a comparison of the band positions and molar absorptivities of these complexes with those of known octahedral complexes. A comparison of the $^3A_{2g} \rightarrow ^3T_{1g}$ (F) band positions for all of the nickel(II) complexes indicates that the 5-p-chlorobenzyltetrazole is the strongest ligand in the series and that 5-o-chlorophenyltetrazole is again one of the weakest ligands. A ratio of 1.8

for the band positions of the ${}^3A_{2g} \rightarrow {}^3T_{1g}$ (F) transition to the band position for the ${}^3A_{2g} \rightarrow {}^3T_{2g}$ (F) transition indicates octahedral symmetry as well (64).

The chromium(III) complexes also appear to be octahedral as shown in Tables XXV and XXVI by comparing the band positions and molar absorptivities in the spectra of the complexes with those of known octahedral complexes. From Table XXIV, it again appears that 5-p-chlorobenzyltetrazole is the strongest ligand in the series due to the relative magnitudes of the band positions of the $^4\Lambda_{2g}$ $^+$ $^4T_{2g}$ (F) band. Chromium(III) also appears to have octahedral symmetry in solution as shown in Table XXV.

Reflectance and Nujol Mull Spectra of Copper(II) Perchlorate Hexahydrate and the Copper(II) Complexes of Various 5-Substituted Tetrazoles. Table XVIII.

Compound	2725 + 2FR	$2_{B_{1R}} + 2_{A_{1R}}$	2Blo + 2B20	2B10 + 2F0	Charge
Cu(H ₂ 0) ₆ +2	12,60063				15 - 611913
Cu(C104)2.6120(Solid)	12500°				
Cu(5-F3CCM4)2.1120(Solid)25		0006	14700	17900	
Cu(CN4H)2·H20(Solid)32			14900		37500
Cu(5-o-C1C ₆ H ₄ CN ₄) ₂ ·H ₂ n(Sn11d)		11100(sh)	[16130]		27800
Cu(5-p-C1C ₆ H4CN4) ₂ ·H ₂ O(Solid)		10400	[17020]		27800
Cu(5-C ₆ H ₅ CN ₄)(OH)(Solid)		10400	[17350]		28600
Cu(5-C6H5CN4)2·H20(Sclid)		10400(sh)	[17300]		28600
Cu(5-p-CH30C6H4)N4)(OH)(Solid)		10400(sh)	[17470]		28600
Cu(5-p-C1C ₆ H ₄ CH ₂ CM ₄) ₂ ·3H ₂ 0(Solid)		10400	[17780]		28600

absorptivity of the absorption band. (-) indicates that the molar absorptivity dimethylsulfoxide, DMF represents $N_\bullet N_\bullet$ dimethylformamide, and $G_5 H_5 N$ represents $^{
m a}$ Band nositions are expressed in wave numbers, cm $^{-1}$. DMSO represents pyridine. (number)-the number represents the molar

Continued

cannot be calculated since the chemical system does not obey the Becr-Lambert Law. [number] indicates that the band position in brackets was found by both the nujol muil method and the reflectance method. The number in brackets is the band rosition which was determined very accurately (125A) on the Cary Model 14 spectrophotometer.

 $^{\mathrm{b}}$ Additional bands were found at 4460, 5160, 5920, 6390cm $^{-1}$

 $^{ extsf{c}}$ An additional band was found at 6890cm $^{ extsf{-}1}$

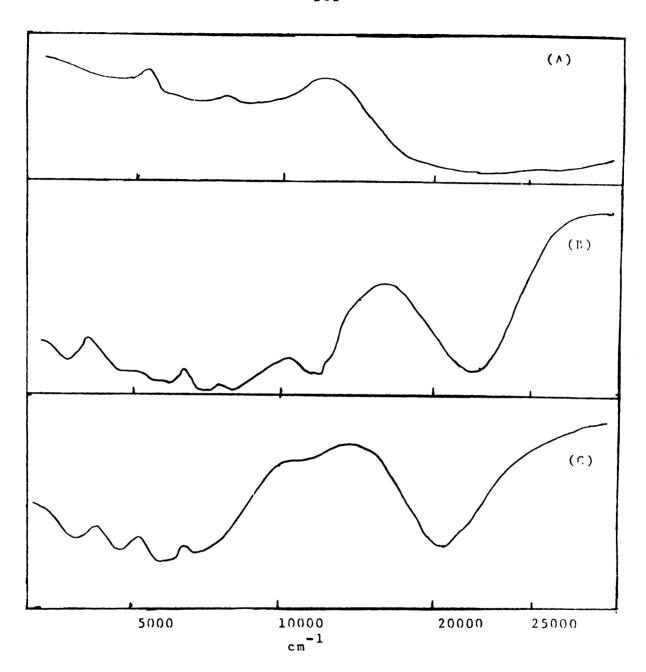


Figure 6. Reflectance Spectra of (A) Copper(II)

Perchlorate Hexahydrate (B) Bis(5-pChlorophenyltetrazolato) Copper(II)

Monohydrate and (C) Bis(5-o-Chlorophenyltetrazolato) Copper(II) Monohydrate

A Comparison of the Reflectance, Nujol Mull, and Solution Spectra of Copper(II) Perchlorate Hexahydrateb and the Copper(II) Complexes of Various 5-substituted tetrazoles Table NIX.

Compound	2 T ₂ g + 2 Eg	2 B ₁ g + 2 A ₁ g	2 _{B1g} $^{+}$ 2 _{B2g}	$^{2}_{\text{B1g}} \rightarrow ^{2}_{\text{Eg}}$	Charge transfer
Cu(C104)2.6H20(So11d) ^C	12500				
Cu(C104)2.61120(1120)	12900				
Cu(C104)2.6H20(DMS0)	12500(64)				33000
Cu(C104)2.6H2^(DMF)			13500(33)		33000
Cu(C104)2.6H2O(C ₅ H ₅ N)			16200(20)		31000
Cu(5-o-C1C ₆ H ₄ CN ₄) ₂ ·H ₂ 0(Sol1d) ^c		1100(sh)	[16130]		27800
Cu(5-o-C1C ₆ H4C%4)2•H20(D%SO)			13500(66)		33000
Cu(5-o-C1C ₆ P4C%4)2·H2n(DMF)			15200(80)		33000
Cu(5-o-C1C ₆ H ₄ CN ₄) ₂ ·H ₂ O(C ₅ F ₅ N)			15700(140)		32300
Cu(5-r-C1C6H4CH2CK4)2.H2n(Solid)C		10400	[17780]		28600
Cu(5-p-C1C6H4CH2CN4)2·P20(C5H5N)			15400(33)		33000
	**************************************	***************************************			

Continued

see footnote a Tab

ದ

Table XVIII

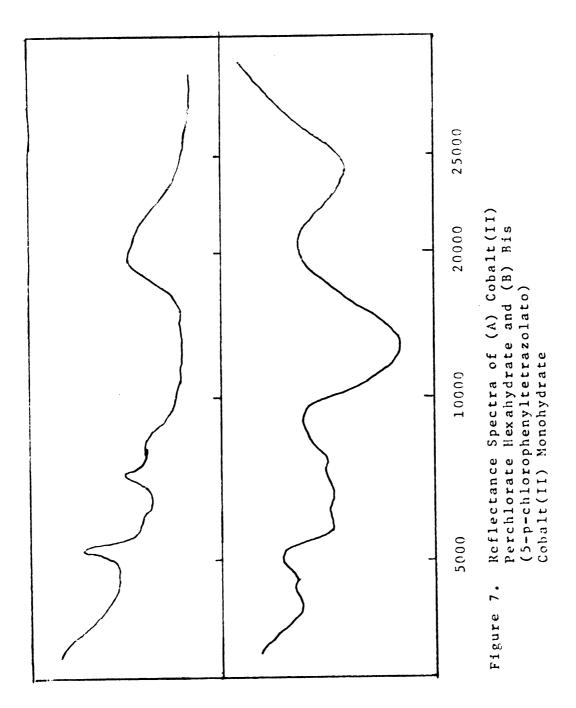
No solution spectra are reported for $Cu(5-C_{6^{\mathrm{H}}5}CN_4)$ (OH), $Cu(5-C_{6^{\mathrm{H}}5}CN_4)_2^{\bullet H_2}$ O, $Cu(5-n-C1C_6H_4CN_4)_2\cdot H_20$, and $Cu(5-n-CH_30C_6H_4CN_4)$ OH due to their insolubility in ten common solvents. Ą

Additional bands were found at 5150, 5800, and $6980 \, \mathrm{cm}^{-1}$

ပ

Reflectance and Nujol Mull Spectra^a of Cobalt(II) Perchlorate Hexahydrate and the Cobalt(II) Complexes of Various 5-Substituted Tetrazoles. Table XX.

Compound	4 _{T18} + 4 _{T2g} (F) 4 _{T1g} + 2 _{Fg}	4 T _{1g} $^+$ ² F _g	4T18	$\left \begin{array}{c} \left(F \right) \\ + \end{array} \right ^{4} A_{2g} \left(F \right) \left ^{4} T_{1g} \right ^{4} T_{1g} \left(P \right)$
Co(C104)2.6H20(Solid)	8330		19801	21505
$\operatorname{Co}(L)_{6}^{+2}$ (high spin)	~8−9000	~11000d	~16-18000	~20-21000
Co(F3CCN4)2.6H2O(Solid)	10400			21300
Co(5-p-C1C ₆ H ₄ CN ₄) ₂ ·H ₂ O(Sol1d)	8970		19000(sh)	20400
Co(5-C ₆ H ₅ CN ₄) ₂ ·H ₂ O(Solid)	0606			21050
Co(5-p-CH ₃ OC ₆ H ₄ CN ₄) ₂ ·H ₂ O(Solid)	9480	11030c	19000(sh)	21100
Co(\$-o-C1C6H4CN4)2.H20(Solid)	9520		19000(sh)	20600
Co(5-p-C1C6H4CH2CN4)2.H20(Solid)	10000	11450°	19000(sh)	22160


a See footnote a Table XVIII

م,

d Not often observed.

Additional bands were found at 4550, 5150, 5970 and ℓ 900cm $^{-1}$.

c This band is only found by the nuiol mull method.

Nutol Yull and Solution Spectra of A Comparison of the Reflectance Robalt(II) perchloratebexabudrate Table XXI.

Compound	4 _{T1g} + 4 _{T2g} (F)	4T1g + 2Eg	4 _{T1g} + 4 _{A2g} (F)	4 _{Tlg} + 4 _{Ilg} (p)
Cole ⁺² (high spin)	∿8-9000	~100000		
Co(C104)2.61120(Sol1d)	8330(sh)		19800	21505
Co(C104)2.6H2O(C5H5N)			20700(11)	
Co(C104)2.6H20(DMF)			19300(32)	21500
Co(C104)2.6H20(DMSO)			18900(20)	21500
Co(5-CF3CN4)2.6H20(Solid) ²⁴	10400			21300
Co(PMT) ₆ (ClO ₄) ₂ (Sol1d) ³⁸	8500			20400
Co(5-o-C1C6H4CN4)2.H20(Solid)	9523		19000(sh)	20600
Co(5-o-C1C ₆ H ₄ CN ₄) ₂ ·H ₂ O(C ₅ H ₅ N)			19000(sh)	21700(11)
$Co(5-o-C1C_6H_4CN_4)_2\cdot H_2O(DMF)$			19100(sh)	20500(27)
Co(5-o-C1C6H4CN4)2.H20(DMSO)				19600(23)

Continued

!
1

Table XXI. - Continued

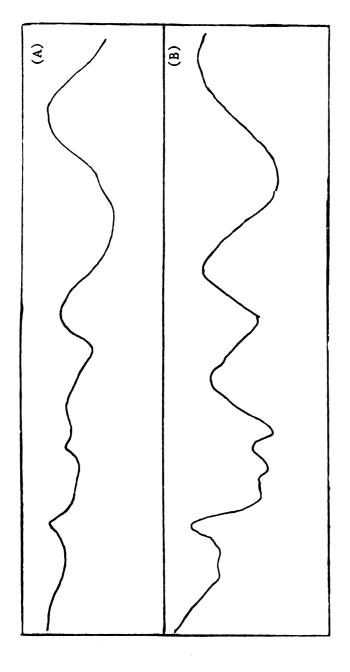
Continued

Table XXI. - Continued

See footnote a Table XVIII

a

- Bands are also found at 4550, 5150, 5970 and $6900cm^{-1}$ م
- c Bands only found by the nufol mull method
- d Not often observed
- A charge transfer band was found from 32000 to 35000cm $^{-1}$ for each complex a


Reflectance and Nufol Mull Spectra a of Mickel(II) Perchlorate Hexahydrate and the Nickel(II) Complexes b of Various 5-Substituted Tetrazoles. Table XXII.

Compound	$^{3}A_{2g} + ^{3}T_{2g}(F)$ $ ^{3}A_{2g} +$	$3\Lambda_{2g} + 1$ FR	$3_{A_{2r}} + 3_{T_{1g}}(F)$	3 A _{2R} + 3 T _{1g} (P)
N1(C104)2.6H20(Solid)	8500	13890	15150(sh)	25000
N1(PMT) ₆ C10 ₄ (Sol1d) ³⁸	0926		16000	
N1(F ₃ C-CN ₄) ₂ ·4H ₂ 0(Solid) ²⁵	11400	(13200€	18500	28500
N1(5-C ₆ H ₅ CN ₄) _{1.8} ·H ₂ 0	10400		(17800) ^b	28500
N1(5-0-C1C ₆ H ₄ CN ₄) _{1,8} .H ₂ 0	10400		[17800]	28500
N1(5-r-C1C6H4CN4)1.8'H20	10400		[18400]	28500
N1(5-p-CH30C6H4CN4)1.8.H20	10400		[18400]	28500
N1(5-p-C1C6H4CH2CN4)1.8.H20	10400		[18700]	25600

a See footnote a Table XVIII

Additional bands were found at 4650, 5140, 5970, 6900 cm $^{-1}$ ع

Although this shoulder is assigned to the $^3\mathrm{A}_{2\alpha}$ + $^1\mathrm{F}_{\beta}$, the assignment was challenged because of the intensity of the peak. U

Reflectance Spectra of (A) Nickel(II)
Perchlorate Hexahydrate and (B) Nickel(II)
Complex of 5-o-Chlorophenyltetrazole Figure 3.

ب ن ن ن A Comparison of the Peflectance^{a, d,} Hutol Mull and Solution Snectra Nickel(II) Perchlorate Hexabydrate and the Mickel(II) Complexes ^{bo} Various 5-Substituted Tetrazoles. Table XXIII.

Compound	3 _{A2g} +3 _{T2g} (F)	3A28+1Eg	3 _{A2g} +3 _{T1g} (F)	3A2g-3T1g(P)
N1(C10,),.6H,0(Solid)	[8333]	[3890]	[15150(sh)]	[25640]
N4(C10 ₄) ₂ ·6H ₂ O(DMSO)		13400(5)		24500(20)
N1(C104)2.6H20(DMF)		13700(7)	14900(8)	25300(26
N1(C104)2.6H20(C5H5N)			16700(5)	27000(~9)
N1(5-p-C1C ₆ H ₄ CN ₄) _{1,8} ·H ₂ O(Soltd)	10400		[18400]]8500
N1(5-p-C1C6H4CN4)1,8.H20(DMS0)			16700(6)	27000(12)
N1(5-p-C1C6H4CN4) _{1.8} ·H20(DMF)			17500(11)	
N1(5-p-C1C ₆ H ₄ CN ₄) _{1,8'H2} n(C ₅ H ₅ N)			17700(6)	
N1(5-p-C1C ₆ H ₄ CH ₂ CN ₄) _{1,8} ·H ₂ n(Solid)	10400		[18700]	25600
$N1(5-p-C1C_6H_4CH_2CN_4)_1$ 8. $H_20(DMSO)$			13200(-)	
N1(5-p-C1C6H4CH2CN4)1,8.H20(DMF)			18200(6)	27800(12)
N1(5-p-C1C ₆ H ₄ CH ₂ CN ₄) _{1,8} +H ₂ O(C ₅ H ₅ N)			18200(7)	

Continued

Table XXIII. - Continued

Compound	³ A _{2r} + ³ T _{2g} (F)	3A2g+1Fr	3A29+3T19(F) 3.20+3T19(F) Charge	3, 20+3T1q(F)	Charce Transfer
N1(5-r-CH ₃ OC ₆ H ₄ CN ₄) _{1.8} ·H ₂ O(Sol1d) N1(5-p-CH ₃ OC ₆ H ₄ CN ₄) _{1.8} ·H ₂ O(DMF)	10400		[18400]	28500 27500(15)	
$Ni(5-p-CH_3OC_6H_4CN_4)_1.8.H_2O(C_5H_5N)$			17900(8)		32700
N1(5-o-C1-C6H4CN4)1,8'H20(Solid)	10400		[17800]	28500	
N1(5-0-C1-C6H4CN4) _{1.8} ·H20(DMF)			17300(23)	27900(30)	
$^{\rm N1(5-o-C1-C_6H_4CN_4)_{1.8}^{\rm H_2}^{\rm O(C_5H_5^{\rm H})}}$			17900(12)		32300
N1(5-C6H5CN4) _{1,8} ·H2n(Solid)	10400		[17800]	28500	
N1(5-C6H5CN4) _{1,8} ·H20(DMF)			17300(3)	27800(8)	
$N1(5-C_6H_5CN_4)_{1.8}\cdot H_2O(C_5H_5N)$			18200(-)	24500(-) (SHOULDER)	
					,

a See footnote a Table XVIII

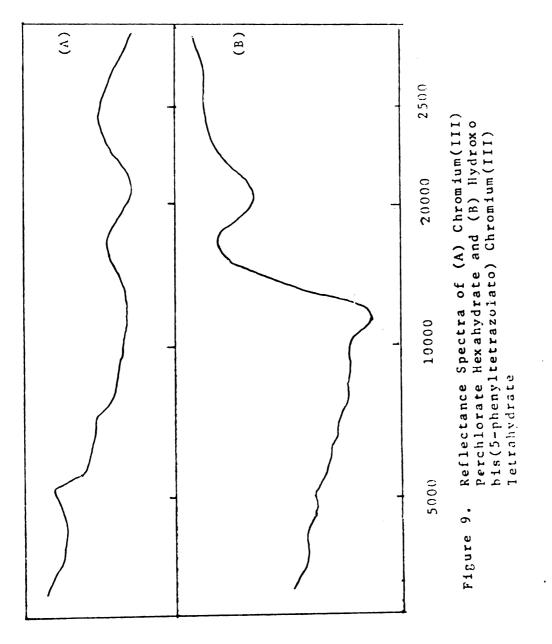
c Λ band at 13700cm⁻¹ (sh) was also observed

Additional bands were also found at 4650, 5140, 5970, 6900cm $^{-1}$ Ъ

Feflectance and Putol Mull Spectra of Chromium (FFF) Perchlorate Hexabydrate and the Chromium (III) Complexes of Various 5-Substituted Tetrazoles Table XXIV.

Compound	$4A_{2\mu} + 4T_{2\nu}(F)$	4A20 + 4T1g(F)	4A2g + 4T10(n)
Cr(ClO4)3.6H20(Soltd)	174006	24400	
$\operatorname{Cr}(\mathrm{H}_2\mathrm{O})_6^{\pm 2}$ (c)	17400	24700	37000
$Cr(NH_3)_6^{+3}$ (d)	21500	28500	
Cr(en) ₃ +3 (d)	21300	28500	
Cr(5-r-CH30C6H4CM4)2(OH).6120(Solid)	[17400]		
·cr(5-p-c1c ₆ 14c34)2011·41120(solid)	[17700]	24700	
Cr(5-C ₆ H ₄ CN ₄) ₂ OH·4H ₂ O(Solid)	[17900]	24400	
Cr(5-o-C1C ₆ H4CN4)20H·4H20(Solid)	[13200]	25000	
Cr(5-p-C1C6H4CH2CK4)20H·4H20 (Solid)	[18200]	24500	

see footnote a Table XVIII


ပ

and 10200 cm⁻¹ Additional bands were found at 4550, 5130, 5900, 6900 ൧

reference 62

d reference 63

e. An additional band was found at $8330\,\mathrm{cm}^{-1}$

o f Spectra of Complexes^b A Comparison of the Reflectance, a Nujol Mull, and Solution Chromium (III) perchlorate Bexahydrate and the Chromium (III) Various 5-Substituted Tetrazoles Table VX".

	(3) 4, 7,	4 + 4 + (F)	4A2 + 4T. (7)
Component	"2" "2","	, , , , , , , , , , , , , , , , , , , ,	ı
Cr(ClO ₄) ₃ ·6 ^H 2 ^O (Solid)	17400	24400	
cr(c104)3.61;20(D4s0)	16600(30)	23800(36)	33000(30)
cr(C104)3.6H20(DHF)	17400(26)	24500(39)	34500(-)
Cr(Cl04)3.6H20(C5H5N)	18800(16)	25000(13)	32300(41)
Cr (5-p-C1C6H4CX4)20H·4H20(Solid)	[17700]	24700	
Cr(5-p-C1C6H4CN4)20H·4H20(DMSO)	17900(27)	24200(30)	33800(-)
Cr(5-n-C1C ₆ 114CN4)20H·4H20(DMF)	18200(61)	25000(88)	34000(-)
Cr(5-p-C1C ₆ H ₄ CN ₄) ₂ OH·4H ₂ O(C ₅ H ₅ K)	18200(28)	25000(32)	32400(870)
Cr(5-0-C1C6H4CN4)20H·4H20(Solid)	[18200]	25000	
Cr(5-o-C1C6H4CN4)20H·4H20(C5H5N)	18600(45)	25400(58)	32800(-)
Cr(5-v-CH30C6P4CN4), CH.6H20(Solid)	[17400]		
$cr(5-p-cH_3^{0}c_6^{0}H_4^{0}CN_4)_2^{0}OH \cdot 6H_2^{0}(C_5^{1})$	18200(42)		32800(610)

a see footnote a Table XVIII

¹⁰²⁰⁰ cm⁻¹ additional bands were found at 5120, 6900, 8330 and ۵.

Table XXV. - Continued

Compound	⁴ A _{2g} → ⁴ T _{2g} (F)	4A2p + 4T1g(P)	4 _{A₂, + 4_{T_{1e}(P)}}
Cr(5-p-C1C ₆ H ₄ CH ₂ CN ₄) ₂ OH·4H ₂ O(Solid)	[18200]	24500	
Cr(5-p-ClC6H4CH2CN4)2011.4H20(C5H5N)	18200(3)	24800(40)	32800(165)
Cr(5-C6H5CN4)20H·4H2C(Solid)	[17900]	24400	
Cr(5-C ₆ H ₅ CN ₄) ₂ OH·4H ₂ O(C ₅ H ₅ %)	18200(41)	25000(54)	32800(127)

Magnetic Moments

The magnetic moments of the various complexes are listed in Table XXVI.

According to Barefield and Busch (69), high spin 6-coordinate, 5-coordinate and 4-coordinate cobalt(II) complexes have magnetic moment values of 4.7-5.2, 4.2-4.6, and 4.2-4.8 respectively. Thus, only the pseudo-octahedral 6-coordinate complexes can usually be identified by use of magnetic moment data. The cobalt(II) complexes of 5-p-chlorophenyltetrazole, 5-o-chlorophenyltetrazole, and 5-p-chlorobenzyltetrazole appear to be octahedral or pseudo-octahedral complexes. On the other hand, the cobalt(II) complexes of 5-phenyltetrazole and 5-p-methoxyphenyltetrazole may be either 5-coordinate or 4-coordinate and their magnetic moments are very close to the spin only value. Magnetic moments of these cobalt(II) complexes are very temperature dependent.

Most of the cobalt(II) complexes have large values for 0, the Weiss constant. Figgis and Lewis (51) state that large values of 0 indicate that the excited states lie far enough from the ground state that they may be "thermally occupied" at the temperature in question. In addition, Cotton and Wilkinson (70) state that large values of 0 can possibly be explained in terms of strong "interionic or

intermolecular interactions".

According to Barefield and Busch (69), high spin 6-coordinate, 5-coordinate, and 4-coordinate nickel(II) complexes have magnetic moments of 3.0-3.3, 3.0-3.45, and 3.45-4.0 respectively.

The nickel(II) complexes of 5-phenyltetrazole, 5-o-chlorophenyltetrazole and 5-p-chlorophenyltetrazole may be 6-coordinate.

However, the nickel(II) complexes of 5-p-methoxyphenyltetrazole and 5-p-chlorobenzyltetrazole may be 4-coordinate.

The magnetic moments of the nickel(II) complexes are very temperature dependent and the Weiss constanst are quite large for these complexes.

The magnetic moments at 295° of 1.35 B.M. and 1.06 B.M. for the copper(II) complexes of 5-phenyltetrazole and 5-p-methoxyphenyltetrazole are unusually low and may be due to copper-copper interactions. Kato et al. (71) have classified copper-to-copper magnetic interactions as either direct interactions or super-exchange interactions. Direct interactions involve metal-metal bonding similar to that found in copper(II) acetate monohydrate. Super exchange interactions are more common when a ligand acts as a bridge between the metal ions of 1.96 and 1.75. The magnetic moments of copper(II) complexes of 5-o-chlorophenyltetrazole and 5-p-chlorophenyltetrazole are within the expected range of 1.7-2.2 for

complexes are very temperature dependent and the Weiss constants are very large.

The magnetic moments of the chromium(III) complexes agree with the expected value (51) of 3.87-5.29. The chromium(III) complex of 5-p-methoxyphenyltetrazole has a magnetic moment of 3.06 at 295°. This observed moment is lower than expected and may be due to direct metal-metal bonding or super exchange interaction by analogy with the copper(II) complexes.

Table XXVI. Magnetic Moments a of the Cobalt(II) Nichel(II), Chromium(III), and Copper(II) Complexes of Various 5-Substituted Tetrazoles

Compound	295°K	195 ° E	77 ° K	0 (°K)
Co(5-p-C1C6H4CN4)2·H2O	5.36	4.98	3,94	105
Co(5-C ₆ H ₅ CN ₄) ₂ ·H ₂ O	4.09	3.91	3.01	115
Co(5-p-CH30C6H4CN4)2.H20	3.89	3.83	3.43	25
Co(5-o-C1C6H4CN4)2·H2O	4.99	4.57	3.89	130
Co(5-p-C1C6H4CH2CN4)2·H2O	4.82	4.45	3.69	100
NI(5-C6H5CN4)1.8*H20	3.07	2,90	2.43	8 0
Ni(5-0-C1C6H4CN4)1.8 · H20	3.12	3.12	2.44	8 5
Ni(5-p-C1C6H4CN4)1.8*H20	3.35	3.12	2.54	100
N1(5-p-CH30C6H4CN4)1.8*H20	3.83	3.49	2.65	225
Ni(5-p-C1C6H4CH2CN4)1.8.H20	3.60	3,57	2.52	
Cu(5-0-C1C6H4CN4)2.H20	1.96	1.89	1.42	100
Cu(5-p-C1C6H4CN4)2·H20	1.75	1.56	.78	
Cu(5-C ₆ H ₅ CN ₄)(OH)	1.34	1.01	.79	300
Cu(5-p-CH30C6H4CN4)(OH)	1.06	1.39	.75	
Cu(5-p-C1C6H4CH2CN4)2·3H2O		1.05	.73	200

Continued

Table XXVI. - Continued

Compound	295°K	195 ° K	77°¥	0 (°K)
Cr(5-p-CH3OC6H4CN4)2OH·6H2O	3.06	3.15	3.64	0
Cr(5-p-C1C6H4CN4)2OH·4H2O	5.33	4.82	3.60	201
Cr(5-C6H5CN4)20H·4H20	4.68	4.17	3.18	216
Cr (5-0-C1C6H4CN4)20H·4H20	3.91	3.77	3.12	7.5
Cr(5-p-C1C6H4CH2CN4)20H·4H20	5.22	4.99	4.60	180

in units of Bohr Magnetons

\

Electron Spin Resonance Spectra

The esr parameters for the copper(II) complexes are displayed in Table XXVII. The g_{avg} values of 2.12 to 2.15 for these complexes compare very favorably with the g_{avg} values of copper(II) complexes with other nitrogen donors (66). Likewise, the g_{\parallel} and g_{\parallel} values are similar to the g_{\parallel} and g_{\parallel} values found for the copper(II) complexes of pyridine, 4-cyanopyridine, and pentamethylenetatrazole (66).

Unfortunately in the absence of any accurate estimation of Λ_{\perp} , the extent of tetragonal distortion is difficult to estimate. However, the value of $[g_{\parallel} - g_{\perp}]$, which is a measure of splitting within the eg level is almost directly proportional to the extent of diviation from octahedral symmetry (67).

It is proposed that no signal is seen with the undiluted copper(II) complexes of 5-p-chlorophenyltetrazole and 5-phenyltetrazole due to spin-spin broadening. Similarly, the broad unresolvable band found for the copper(II) complex of 5-p-methoxyphenyltetrazole is possibly due to spin-spin broadening.

The temperature dependence of the 95:1 (Zn:Cu) sample is rather unusual and is not readily explainable.

The esr spectra of most of the cobalt(II) complexes are

very complex. It was impossible to calculate g values for these complexes with the exception of bis(5-o-chlorophenyl-tetrazolato)cobalt(II) monohydrate. This complex shows rather unusual behavior. Apparently the g value changes with temperature. The g values of 2.55, 2.82, 2.87, and 3.01 at -40° C, -100° C, -130° C, and -160° C. This increase in g values with a decrease in temperature may be due to structural changes which accompany changes in temperature.

The esr spectra of the chromium(III) complexes are displayed in Table XXVIII. The g_{avg} value of 1.98 is similar to that of other octahedral chromium(III) complexes (68).

The esr spectra of the nickel complexes consisted of unresolved bands.

Continued

Fsr parameters for the Copper(II) Complexes of Various 5-Substituted Tetrazoles Table XXVII.

Tetrazolate	Zn Cu		A11	ئے ^{ہے}	Tena	Pavg	c.
5-0-C1C6H4CN4	1000:1	2.25	175	2.06		2,12	
5-0-C1C6H4CN4	333: 1	2.25	180	2.06	-160°to	2.12	
5-0-C1C6H4CN4	60: 1	2.25	180	2.06	30。	2.12	
5-0-C1C6H4CN4	Neat					2.124	~100
5-p-C1C ₆ H ₄ CN ₄	1000:1	2.24	130	(2,09,2,03)		2,12	
5-p-C1C6H4CN4	500: 1	2.24	125	(2.08,2.03)		2.12	
5-p-C1C6H4CN4	95: 1	2.24	130	(2,08,2,03)		2.12	
5-p-C1C6H4CN4	Neat	No signal	a1				
5-p-C1C6H4CH2CN4 1000:1	1000:1	2.28	150	(2,11)		2,15	
5-p-C1C6H4CH2CN4 500:	500: 1	2.28	មា មា	(2.11)			
5-r-C1C6114C112CN4	95: 1					2,15	~73

estimated by taking one third of the line width æ

b (values) the numbers represent gxx and gvy

when two values are given for al. the value listed for all is actually gzz ပ

2.15 30° 2.20 -40° to -100° 2.23 -120° -130° Temn 2.15 2.21 2.15 2,09 broad unresolvable band 270 70 No signal 2,33 2.29 2,33 10001 95:1 1000:1 Zn: Cu 95:1 Neat 95:1 95:1 95:1 Neat 5-p-C1C6114C112CN4 5-p-C1C6114CH2CN4 5-p-C1C6H4CH2CN4 5-p-C1C6H4CH2CN4 5-p-CH30C6H4CN4 5-r-CH30C6H4CN4 Tetrazolate 5-C3H5CN4 5-C6H5CN4 5-C6H5CN4

Table XX!II. - Continued

Esr Parameters for the Chromium(III) Complexes of Several 5-Substituted Tetrazoles a Table XXVIII.

Tetrazolate	Zn; Cr	ec	٧c	- B	¥		Τ _v	- 1
5-0-C1C6H4CN4	1000:1			2.260 ^d	180 ^d	2.060 ^d		2.010 ^d
5-0-C1C6H4CN4	0:1	0:1 1.970 320	320	•				
5-p-c1C6H4CN4 ^b	0:1	0:1 1.980 400	400					
5-p-C1C6H4CH2CN4 ^b		0:1 1.970 350	350					
5-p-CH30C6H4CN4 ^b	0:1	0:1 1.970 420	420					
2-c [°] H ² cn ⁴ p	0:1	0:1 1.970 400	400					

Hyperfine splittings are given in gauss $(10^{-4} cm^{-1})$ æ

The spectra obtained at 1000:1 dilution did not permit calculation of g values. م,

d These are due to conner(II) imparities

c A is the line width

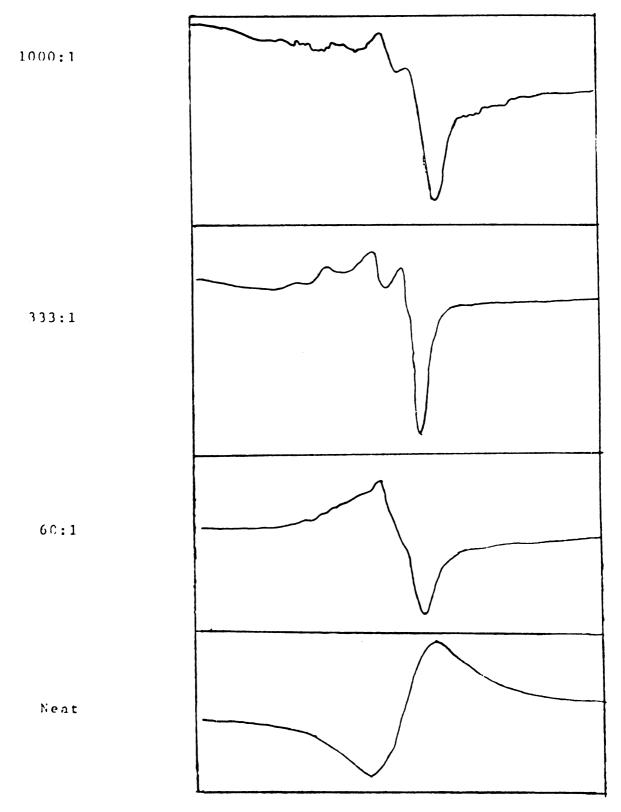


Figure 10. ESP Spectra of Bis(5-o-Chlorophenyltetrazolato)
Copper(II) Monohydrate at Various Zn:Cu Patios

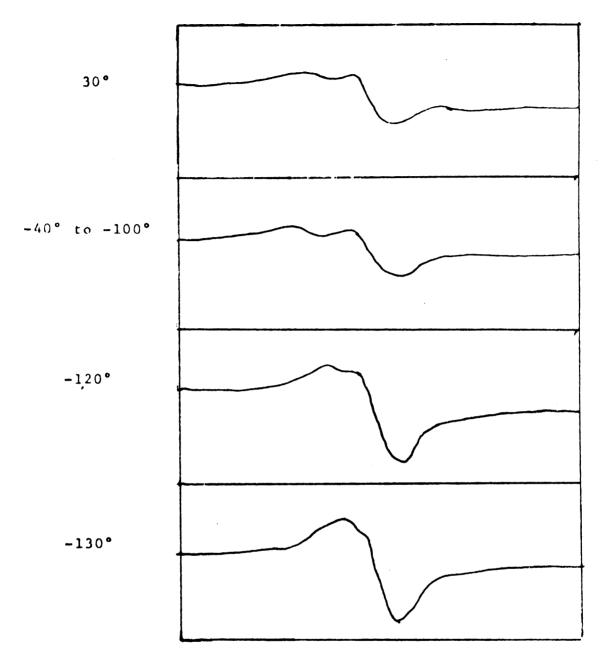


Figure 11. ESR Spectra at Various Temperatures of Bis(5-p-Chlorobenzyltetrazolato)
Copper(II) Trihydrate Diluted by a Factor of 95:1 (Zn:Cu)

Cu(5-0-C1C6114CN4)2.1120

Cu(5-p-C1C6H4CN4)2*H20 ·

 ${\tt Cu(5-p-C1C_6H_4CH_2CN_4)_2\cdot 3H_20}$

 $Cu(5-C_6H_5CM_4)(OH)$

Cu(5-p-CH3OC6H4CN4)(OH)

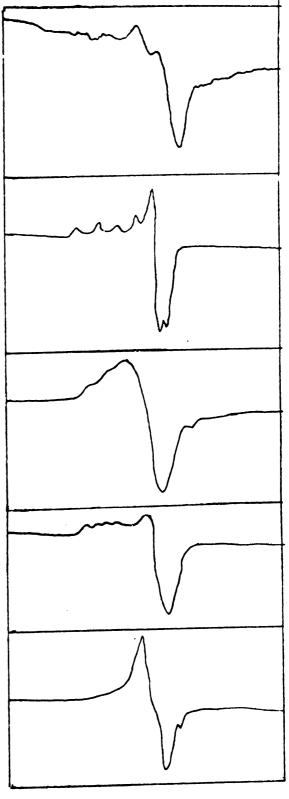
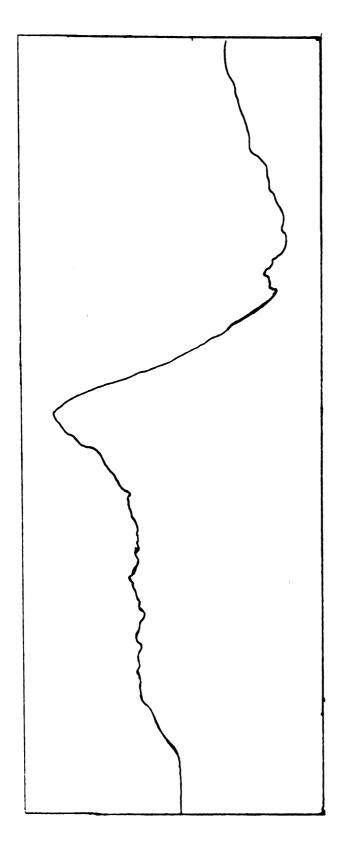



Figure 12. A Comparison of the ESR Spectra at -160° of the Conner(II) Complexes Diluted by 1000:1 (Zn:Cu)

ESR Spectrum of Bis(5-o-Chlorophenyltetrazolato)Cobalt(II) Yonohydrate at -40° Figure 13.

BIBLIOGRAPHY

- 1. Benson, F.R., Chem. Rev., 41, 1 (1947).
- 2. Benson, F.R., "Heterocyclic Compounds", 39, Interscience Publishers, New York, 1967.
- 3. Popov, A.I., Coord. Chem. Rev., 4, 463 (1969).
- 4. Olivera-Mandala, E., Gazz. Chim. Ital., 44, 175(1914).
- 5. Herbst, R., Mihina, S., J. Org. Chem., 15, 1082(1950).
- 6. Herbst, R., Wilson, K.R., J. Org. Chem., 22, 142(1957).
- 7. Caruso, J.A., Sears, P.G., Popov, A.T., J. Phys. Chem., 71, 1756(1967).
- 8. Charton, M., J. Chem. Soc. B, 1969, 1240.
- 9. Stolle, R., Ehrmann, K., Reider, D., Willie, H., Winter, H., and Henke-Starke, F., J. Prakt. Chem. 134, 282(1932).
- 10. Gilbert, G.L., Ph.D. Thesis, Michigan State University, East Lansing, Michigan (1963), p. 44.
- 11. Garber, L.L., Ph.D. Thesis, Michigan State University, East Lansing, Michigan (1967).
- 12. Erlich, R.H., Popov, A.T., J. Phys. Chem., 74, 338(1970).
- 13. Fraser, R.R., Hague, K.E., Can. J. Clem., 46, 2855(1968).
- 14. Barlin, G.B., Batterham, J.J., J. Chem. Soc. B, 1967, 516.
- 15. Weigert, F.J., Roberts, J.D., J. Δm. Chem. Soc., <u>90</u>, 3543(1968).
- 16. Guile, L., Lucken, F.A.C., Mol. Phys., 14, 73(1968).
- 17. Bladin, J., Ber., 25, 1413(1842).
- 18. Garbrecht, U.L., and Herbst, R.M., J. Org. Chem., <u>18</u>, 1003(1953).
- 19. Brubaker, C.H., J. Am. Chem. Soc., 82, 82(1960).

- 20. Popov, A.T. and Holm, R.D., J. Am. Chem. Soc., 81, 3250(1950).
- 21. Daugherty, N.A., Brubaker, C.H., J. Am. Chem. Soc., 83, 3779(1961).
- 22. Brubaker, C.H., Daughertv, M., J. Inorg. Mucl. Chem., 22, 193(1960).
- 23. Harris, A.D., Herber, R.H., Jonassen, H.B., and Werthein, G.K., J. Am. Chem. Soc., 85, 2927(1963).
- 24. Jonassen, H.B., Harris, A.D., Archer, R.D., Inorg. Chem., 4, 147(1965).
- 25. Jonassen, H.B., Terry, J.O., and Harris, Λ.D., J. Inorg. Nucl. Chem., 25, 1239(1963).
- 26. Jonassen, H.B., and Smith, R., private communication.
- 27. Beck, W., and Fehlhammer, W.P., Angew. Chem., 79, 146(1967).
- 28. Beck, W., Fehlhammer, W.P., Bock, H., Bauder, M., Chem. Ber., 102, 3637(1969).
- 29. Olivera-Mandala, E., and Alagna, B., <u>Gazz. Chim. Ital.</u>, <u>40</u>, II, 441(1910).
- 30. Gilbert, G.L., Brubaker, C.H., Inorg. Chem., 2, 1216(1963).
- 31. Holm, R.D., Donnelly, P.L., J. Tnore. Nucl. Chem., <u>28</u>, 1887(1966).
- 32. Garber, L.L., Sims, L.B., and Brubaker, C.H., J. Am. Chem. Soc., 90, 2518(1968).
- 33. Washburn, S.S., Petersen, J., J. Organometall. Chem., 21, 427(1970).
- 34. Zqikker, J.J.L., Pharm. Weekblad, 71, 170(1934).
- 35. Rheinboldt, II. and Stelliner, H., Bol. fac. filosof. iven., Univer. Sao Paulo, Ouimica, <u>1</u>, 27(1942) C.A., <u>40</u>, 1502(1943).
- 36. Dister, A., J. Pharm. Belg., 3, 190(1948).
- 37. D'Itri, F.M., and Popov, A.I., Inorg. Chem., 6, 597(1967).
- 38. D'Itri, F.M., and Popov, A.I., ibid, 5, 1670(1966).

- 39. Kuska, H.A., D'Itri, F.M., and Popov, A.I., <u>ibid</u>, <u>5</u>, 1275(1966).
- 40. Bowers, D.M. and Popov, A.I., ibid, 7, 1594(1968).
- 41. Popov, A.I., Bisi, C.C., and Craft, M., J. Am. Chem. Soc., 80, 6513(1958).
- 42. Baenzicer, N.C., Nelson, Λ. Dwayne, Tulinsky, Α., Bloor, J.H., Popov, Α.Ι., J. Am. Chem. Soc., 89, 6463(1967).
- 43. Baenziger, N.C., and Schultz, R., unpublished results.
- 44. Finnegan, W.R., Henry, R., J. Am. Chem. Soc., 80, 3908(1958).
- 45. Daupherty, N.A., Ph.D. Thesis, Michigan State University, East Lansing, Michigan, (1961).
- 46. Van Es, T., J. Chem. Soc., 1965(1564).
- 47. Schwarzenback, G., Complexometric Tetrations Interscience Publishers, Inc., New York, (1957), pp. 78-83.
- 48. Vander Vennen, E., Ph.D. Thesis, Michigan State University, 1954.
- 49. Figgis, B.N. and Lewis, J., "Modern Coordination Chemistry", Interscience Publishers, Inc., New York, 1960, p. 412.
- 50. Figois, B.N. and Nyholm, J. Chem. Soc., 1958, 4190.
- 51. Figeis, B.N. and Lewis, J., "Modern Coordination Chemistry", Interscience Publishers, Inc., New York, 1960, p. 403.
- 52. Cotton, F.Λ. and Goodgame, M., J. Am. Chem. Soc., <u>83</u>, 1777(1961).
- 53. Lefebre, R.J.W., and Werner, R.L., Aust. J. Chem., $\underline{10}$, 26(1957).
- 54. Miller, F.A., Carlson, G.L., Bentley, F.F. and Jones, W.H. Spectrochimica Acta, 16, 135(1960).
- 55. D'Itri, F.M., M.S. Thesis, Michigan State University, East Lansing, Michigan, 1966.

- 56. Ahuja, I.S., Brown, D.H., Mettall, R.H., and Sharp, D.W.A., J. Inorg. Nucl. Chem., <u>27</u>, 1625(1965).
- 57. Junghauer, M.A., and Curran, C., Spectrochimica Acta, 21, 641(1965).
- 58. McWinnie, W.R., J. Inorg. Nucl. Chem., 27, 1619(1965).
- 59. Goldstein, M., Moonev, E.F., Anderson, A., Gebbie, H.A., Spectrochimica Acta, 21, 105(1965).
- 60. Clark, R.J.H., and Williams, C.S., Chemistry and Industry, 1317(1964).
- 61. Frank, C.W. and Rogers, L.B., Inorg. Chem., 5, 615(1966).
- 62. Figgis, B.N. and Lewis, J., "Modern Coordination Chemistry", Interscience Publisher, Inc., New York, 1960, p. 287.
- 63. Ballhausen, C.J., "Ligand Field Theory", McGraw Hill Book Company, Inc., New York, 1962.
- 64. March, W. and Fernelius, W.C., J. Chem. Ed., 38, 192(1961).
- 65. Jorgenson, C.K., "Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press, Oxford, 1962, p. 123-125.
- 66. Kuska, H.A., D'Itri, F.M. and Popov, Λ.Ι., Inore. Chem., 5, 1272(1966).
- 67. Oston, J.W., "Electron Paramagnetic Resonance", Iliffe Russ, London, 1968.
- 68. Kuska, H. and Rogers, M.T., Radical Tons, Interscience Publishers, New York, 1968.
- 69. Barefield, E. Kent and Busch, D.H., Ouart. Rev., <u>4</u>, 457 (1968).
- 70. Cotton, F.A., Wilkinson, G., "Advanced Inorganic Chemistry", Interscience Publishers, New York, 1966.
- 71. Kato, M., Jonassen, H.B. and Fanning, J.C., Chem. Rev., 1964, 99.

