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ABSTRACT

PLATOON DISPERSION DYNAMICS

0N

ARTERIAL STREETS WITH ENTERING VEHICLES

By

Kin K. Lai

 

The literature related to platoon dispersion was reviewed. A

preliminary study of vehicular time headway within a platoon on arterial

streets was conducted, and a stochastic model for the headway was de-

veloped, which was found to be a gamma distribution.

The results of the field study indicated no significant dif-

ference between the dispersion of platoons under light and medium flow

mainstream traffic.

The dispersion of a platoon leaving from a signal and approach-

ing a signal with or without entering vehicles was modeled as poly—

nomial regressions with a degree of two. The model of dispersion of

 a passing platoon with entering vehicles was analyzed and related to

the model of a dispersion platoon leaving an intersection with a signal.  
Analytical models of the measures of effectiveness (that is,

average merging delay, average delay before merging, and capacity) for

entering vehicles under the influence of platoon dispersion were



Kin K. Lai

developed. The best location of the entrance point, the distance

for recovering the shape of the headway distribution after the

entrance of sidestreet vehicles, and the optimal division of the in-

lput sources were determined by use of the models.

Simulation models were developed, and the validity of the anal-

ytical models were examined by using the simulation results.

  





PLATOON DISPERSION DYNAMICS

ON

ARTERIAL STREETS WITH ENTERING VEHICLES

By

Kin K. Lai

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

-Department of Civil and Sanitary Engineering

1977

 

 



6107mm ‘2

 

To My MOther and Father

ii

 



ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to his

major professor, Dr. William Taylor, for his valued guidance, assis-

tance, and encouragement during the period of research and graduate

study. As their friendship and his respect for Dr. Taylor have been

satisfactorily developed, he sincerely cherishes as part of his

accomplishment in this school.

He also wishes to thank Dr. John Kreer, Dr. Francis McKelvey,

and Dr. Connie Shapiro, who, too, served on his guidance committee,

for their helpful suggestions and interest in the research project.

Finally, the author especially wishes to express his deepest

and heartfelt thanks to his wife, Alice, for her continual encourage-

ment and understanding throughout the years of his graduate study.

iii

 
 

 



TABLE OF CONTENTS

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . iv

List of Figures. . . . . . . . . . . . . . . . . . . . . vii

List of Appendices . . . . . . . . . . . . . . . . . . . xi

CHAPTER ONE

INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

1.1 Background 1

1.2 Definition of the problem 2

1.3 The basic approach 2

CHAPTER TWO

REVIEW OF LITERATURE . . . . . . . . . . . . . . . . 6

CHAPTER THREE

THE DISTRIBUTION OF VEHICULAR HEADWAYS WITHIN

PIATOONS O O O O O O O O O O O O O O O O O O O O O I 15

3.1 Introduction 15

3.2 The proposed distribution 15

3.3 Comparison with observed data 24

3.4 Goodness of fit test 26

3.5 Significance of results 28

CHAPTER FOUR

FIELD STUDIES PROCEDURES . . . . . . . . . . . . . . 30

4.1 Introduction 30

4.2 Determination of the input variables of the

model ' 30

4.3 Selection of study sites 33

iv



Page

4.4 Sample size requirement 35

4.5 Field data collection 37

4.6 Results of field studies 37

CHAPTER FIVE

MATHEMATICAL MODELING OF PLATOON DISPERSION . . . . 39

5.1 Introduction 39

5.2 Data analysis 39

5.3 Development of the mathematical models 43

5.4 Analysis of the mean headway for the passing

platoon with entering vehicles 50

CHAPTER SIX

SOME ANALYTIC CONSIDERATIONS OF QUEUEING . . . . . 56

6.1 Introduction 56

6.2 Queueing consideration at the merging position 58

6.3 Queueing consideration before merging 67

6.4 Capacity and the best location of the minor

stream 70

6.5 The required distance for recovering the shape

of the headway distribution 75

6.6 Splitting flow to reduce delay of the entering

vehicles 76

CHAPTER SEVEN

SIMULATION ANALYSIS OF THE PROBLEM . . . . . . . . . 82

7.1 Introduction 82

7.2 Development of the phase one model 83

7.3 Development of the phase two model 89



7.4 Development of the phase three model

7.5 Evaluation of the results

CHAPTER EIGHT

SUMMARY AND CONCLUSIONS . . . . . . . . .

8.1' Summary of accomplishments

8.2 Applicability of models

APPENDICES

REFERENCES

' Vi

92

97

102

102

106

107

139

 





Figure

1.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

5.1

5.3

5.4

5.5

LIST OF FIGURES

Procedural flow chart

The negative exponential probability density

function

The shifted exponential probability density

function

The composite exponential cumulative distri-

bution function

The normal probability density function

The lognormal probability density function

The gamma probability density function

The weibull probability density function

Mean headway at different locations in the

preliminary study

Standard deviation of headway at different

locations in the preliminary study

Mean headway at different locations of

platoon leaving from a signal

Mean headway at different locations of moving

platoon with entering vehicles

Mean headway at different locations of platoon

approach a signal

Mean headway at different locations of platoon

leaving from a signal with the combination of

light and medium flow

Mean headway at different locations of platoon

approach a signal with the combination of

light and medium flow.

vii

Page

l7

l8

19

20

21

23

24

26

26

40

40

41

45

46

 



Figure

6.1

7.1

7.2

7.3

7.4

7.5

Translation of INTC

Physical characteristics of phase one model

Flow diagram for phase one model

Physical characteristics of phase two model

Flow diagram of phase two model

Flow diagram of phase three model

viii

Page

77

84

86

89

92

95



Table

3.1

3.2

4.1

4.2

4.3

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

7.1

7.2

LIST OF TABLES

Degree of freedom for different distributions

Results of the goodness of fit test

Characteristics of the study sites

Standard deviation of headway at different

locations in preliminary study

Sample size requirement at different locations

Results of the multiple comparisons of means

for case 1

Results of the multiple comparisons of means

for case 2

2Equation results for m

Equation results for m 3

Percentage of the passing time at

different locations

Calculate u; for different T

Calculate otz for different T

Average merging delay E(Z)

Variance of merging delay Var (Z)

Calculate the expected queue size N

Calculate E(W)=N/A

Calculate capacity for different T

Calculate 6(3for different 9 and A

Calculate 6(1/3,l/3,l/3) for different

Simulation results of phase one model

Analytical results of phase one model

ix

Page

28

29

34

36

36

44

45

51

51

58

65

65

66

67

71

72

74

80

81

85

87





Table

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Greenshield's starting delay

Simulation results

Simulation results

Simulation results

Analytical results

Analytical results

Analytical results

of phase two model

of capacity

of phase three model

of phase two model

of capacity

of phase three model

U-statistic for the comparison of the

analytical and the simulation results

Page

90

94

95

97

99

100

101

101a



Appendix

Appendix I

Table I-l.

Table I-2.

Table I-3.

Table 1-4 0

Appendix II
 

Table

Table

Fig

Table

Table

Table

Table

Table

Table

11.1 o

II-2.

II-l.

II-3.

II-4.

II-5.

II-6 a

11-7 0

II-8.

LIST OF APPENDICES

The frequency of the headway sample

within platoon leaving from a signal.

The frequency of the headway sample

within platoons with entering vehicles.

The frequency of the headway sample

within platoons approaching a signal.

Mean and standard deviation of headway

within platoon for all cases.

on

Incomplete gamma function F=flff(t)dt.

co

Polynomial equations of ftf(x) = a0 +

2 3 4

alt + a2t + a3t + aat

oo

Plotting of f£f(x)dx

Formulation of fo(t) = f: f(x)dx /f:tf(t)dt

Integrals of the forward recurrence time

function F.

T.

Calculate K t) = f tf(t)dt

O

_ 'I
Calculate M O(t) - fotfO (t)dt

Calculate Ntt) = fgt2 f(t)dt

Calculate No (t) = I: tzfo (t)dt

xi

Page

107

108

109

110

111

112

113

114

115

116

117

118

119





Appendix III

(A) Proof ofut:1

(B) Proof of E0 6-11.

(C) Proof of EQ 6-15.

Appendix IV

(A) Simulation program for Phase One model

(B) Simulation program for Phase Two model

(C) Simulation program for Phase Three model

xii

120

123

125

127

132

 
 



CHAPTER ONE

INTRODUCTION

Background:
 

When the smooth flow of traffic is interrupted by some kind of

traffic control device, such as signals, the downstream flow of traf-

fic will usually take the form of a "platoon." As each platoon moves

down the street it disperses, and its time length increases as the

time-headways between successive vehicles increase. As a result, the

whole platoon length increases when the platoon moves down from the

signal. If there are entering sources downstream of the signal,

the entering vehicles have two possibilities for entering traffic:

while the platoon is passing the entrance point or after it has passed.

In the first case, the entrance point.wou1d be expected to be a con-

siderable distance from the signal so that there would be a large

gap within the platoon and entering vehicles. In the second case, the

entrance would be expected to be closer to the signal, platoon length

would be shorter, and it would pass through earlier. Information a-

bout the behavior of vehicular platoons and how it affects entering

vehicles is important to reduce delay time for entering vehicles.

The purpose of this dissertation is to investigate the dynamics

of platoon dispersion. Specifically, to find a model for the disper-

sion of platoons and to use that model to investigate the effect on

entering vehicles.

 



Definition of the problem:
 

The four objectives of this dissertation are as follows:

(1) Develop a stochastic model for describing the dispersion

of platoons approaching or leaving a signalized intersection, with

or without entering vehicles.

(2) Determine the delay time of entering vehicles before and

upon merging.

(3) Investigate the relationship between platoon dispersion

and the capacity to accommodate vehicles entering downstream from

the issuing intersection.

(4) Determine an optimal system strategy for a traffic stream

with variable vehicle entry points.

The basic approach:
 

Before discussing the approach of this dissertation, some def-

initions must be reviewed. Headway is the time between succesive

vehicles; theoretically it may range from zero seconds to infinity.

In this dissertation, vehicular time headway was selected as the

parameter for the platoon dispersion investigation. This parameter

was chosen because it describes the interaction between vehicles in

the car-following process, and it also describes the interaction in

the merging process. Platoons include those vehicles queued at the

intersection and those which join the queue after the light turns

green, but within two seconds after the last queued vehicles arrival

at the stop line. Since the behavior of the entering vehicles is

mainly affected by the headways of the mainstream vehicles, vehicular

headways will be used as a basis for the investigation of platoon

 

 



dispersion.

The research effort is divided into six principal phases.

Phase 1 consists of a review of the literature describing platoon be-

havior. This review illustrates the differences between approach

used here and those used in previous studies and also suggests av-

enues of future research.

Phase 2 is the development of a stochastic model of vehicle

time headways within a platoon released from a signalized intersec-

tion. Using the results of Nemeth and Vecellio's report (23), the

principal variables affecting platoon movement through linear sig-

nal systems are identified as signal spacing, signal offset, and

platoon size. In order to study the variation of headway as the

vehicles move down the signalized intersection, the next signal's

coordination with the prior one is also considered. The next step

is to study the relationship between headway and the distance from

the signal, given various platoon sizes.

In Phase 3, data are collected under various conditions, that

is, for different distances from the signal, different platoon sizes,

and the presence or absence of entering vehicles.

In Phase 4, the data are analyzed and a regression model is de-

veloped to describe the relationShip between the parameters of the

headway model and the distance from the signal and platoon size.

Phase 5 studies platoon dispersion in connection with vehicles

entering downstream from the signal. The effects of vehicles merging

into the mainstream from any side street will be analyzed. The delay

time of entering vehicles on the merging position and before merging

 
 



is determined, as are the optimal locations of the merging points.

The relationships derived from Phase 4 are tested for the platoon af-

ter some vehicles merge into it. The distance required for the head-

way distribution to recover its original shape will be determined,

and the possibility of splitting the entering flow into two or more

entry points will also be investigated.

A computer simulation model is developed in Phase 6 to vali-

date the analytical models. The analytical and simulation solutions

of the same situation are compared. A flow chart illustrating the

analytical procedures of the dissertation is shown in Figure 1-1.



 

Figure 1—1. Procedural Flow Chart
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CHAPTER TWO

REVIEW OF THE LITERATURE

Numerous studies have been conducted on the behavior of traffic

leaving a signalized intersection. Experimental work on the dis—

persion of traffic platoons has been reported by Lewis (19) (1958)

and Graham and Chenu (10) (1962). .Pacey (26) (1956) and Robertson

(27) (1969) have proposed theoretical models describing this process,

and Nemeth and Vecellio (23) (1973) have developed a simulation model

for the dispersion of platoons. Grace and Potts (9) (1964) and

Herman, Potts, and Rothery (15) (1964) have attempted to combine the

theoretical and experimental aspects of platoon behavior. A review

of these studies follows.

One of the early experimental studies was conducted by Lewis

(19) in 1958. Platoon movement of traffic from an isolated signalized

intersection was examined. The test site was a four-lane highway in

Richmond, California. Observations of space-time data were made at

five different locations downstream from a signalized intersection at

distances up to 0.65 miles. Arrival time frequency distributions of

the platoon at each of these five points were obtained. Analysis of

this frequency distribution showed that three characteristics of pla-

toon movement were linearly related to the distance downstream from

the traffic signal. Those characteristics were (1) the maximum or-

dinates of the equivalent normal distribution of the arrival times of

6





the N£h_vehicle, (2) the mean arrival time of the N£h_vehic1e, and

(3) the time for the Pth_percentile of vehicles in a platoon to pass

a point. Lewis concluded that a progression diagram for distances

up to the study limits could be plotted for all vehicles, which would

allow greater success in timing the downstream signals than would

occur using random selection.

Another experimental study was performed by Graham and Chenu

(10) in 1962. Vehicles arrival time data also were collected at five

locations downstream from a signalized intersection, at a distance

of 1/35 mile, l/4 mile, 1/2 mile, 3/4 mile, and one mile. The arrival

time of each vehicle at each location was recorded. A graphic illus—

tration of the dispersion of the platoon at various distances from

the signal was provided by histograms plotting the frequency distri-

bution of vehicle arrivals within each 5 percent increment of time —

length of the platoon. The author concluded that at distances as

great as one mile downstream from the signal, the vehicles still were

"bunched," since 77 percent of the vehicles remained in the platoon

at that location.

Pacey, (26) in an unpublished 1956 report, proposed a kinematic

model to describe the dispersion of traffic platoons. He assumed

that vehicle speeds in a platoon are normally distributed, so that

the spread of the platoon can be accounted for and measured by the

dispersion of vehicle speeds. Another assumption was that the speed

of any individual vehicle remains constant as it moves down the road,

that is, no interaction is assumed between vehicles. Based on these

assumptions, Pacey formulated a distribution of travel time applicable





to traffic departing from a saturated signalized intersection. The

derived travel time distribution was shown to be a function of the

normality of vehicle speeds, the mean and variance of the speed dis-

tribution, and the distance over which travel times are distributed.

The travel time distribution is as follows:

8(T) = { —(l/t —-§/a)2/252} (2.1)

where T = travel time (in seconds);

speed (in feet/sec.);4

II

<

H mean of the speed distribution;

8 = o/a ;

Q

ll standard deviation of the speed distribution; and

a = distance over which the travel times are distributed

(in feet).

Pacey's model was compared with observations made at two sites

on dual carriageways of the times after the green signal at which

vehicles passed two points, one near the signals and one 600 yards

beyond them. Especially for moderate traffic volumes, Pacey's model

proved a good fit to the actual data.

A detailed theoretical study of Pacey's model was made by Grace

and Potts (19) in 1964. They analyzed in detail the dispersion of a

platoon as it moves down a street and emphasized the importance of

allowing for this phenomenon to obtain efficient coordination of two

traffic lights. A traffic density function was derived by the use

of Pacey's model:

_1 .. _ _2 _
K(X,T) — {m g { m(x) Z‘ZV—f } exp ( z ) dz.. (2 2)

(17—



This is a well-known form of the solution of the one-dimensional

diffusion equation, 2

%§= “2(3) (2.3)

where g(x) = k(x,o) is a known function;

k(x,t) = the traffic density, equal to the number of

vehicles per unit road length at a given point

x and at time t;

X = the distance down a highway;

m = average vehicle speed;

x/m = offset time (in seconds);

x = x/m - t preset time equal to the time added to

the beginning of the green phase of the second

signal to allow for the spreading of a platoon

leaving a prior signal;

T = % t2; and

<1= diffusion constant.

If vehicle speeds are normally distributed with mean u and

variance 02, then the diffusion constant is defined as u/O.

Grace and Potts applied their theoretical model to the design of

progressive signal systems. For certain assumed initial conditions

regarding the traffic density function, the diffusion equation was

used to provide analytical solutions to the coordination of two suc-

cessive signalized intersections, allowing for the dispersion of the

platoon.

In 1964, Herman, Potts, and Rothery (15) conducted an experiment

designed to test the kinematic model of traffic platoon behavior, in
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particular, to test the detailed theoretical results obtained by

Grace and Potts. Speed and arrival time of vehicles leaving an iso-

lated intersection were measured at two locations, 757 feet and

2142 feet downstream from the signal. The results confirmed that the

kinematic model accurately described the dispersion of platoons in

medium volume traffic without interference. This was especially true

for the lead vehicle in the platoon, while the behavior of the last

vehicle varied from one platoon to another.

In 1969, Robertson (27) of Road Research Laboratory, England,

deveIOped a method to determine optimum fixed time traffic signal

settings for a network of signalized intersections. In his "TRANSYT"

model, a method was developed for predicting the dispersal of an

average platoOn of traffic. Observations were made at four locations

in west London, where traffic leaving a signal travelled at least

1,000 feet before reaching another signal or major junction. Each

location had four observation sites, one just beyond the traffic sig-

nal and the others at approximately 300, 600, and 1,000 feet down-

stream. The time of passage of every vehicle was recorded at each

point. By further analysis of these observations, a recurrence re-

lationship was established to predict flow at each site downstream

from a traffic signal given the input flow, previously predicted flow,

and a smoothing factor. The recurrence equation is as follows:

q’(i + t) = F.q(l) + (l-F). q’(i+t—l), (2.4)

where q(i) = the flow in the igh time interval of the initial

platoon (in veh/hr.);
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q’(j) = the flow in the j£h_time interval of the predicted

platoon (in veh/hr.);

t = 0.8 times the average journey time over the distance

for which the platoon dispersal is being calculated;

and

F = a smoothing factor.

The smoothing factor, F, required for the best fit between the

actual and calculated platoon shapes was found to be related to the

journey time by the expression

F = 1 (2.5)

l + 0.5F

The author points out that it would be reasonable to expect that

the smoothing factor required should also be a function of "site

factors" such as road width, gradient, parking, and so forth, but these

aspects have not yet been investigated.

The dispersion of a platoon of vehicles released from a signal-

ized intersection has also been studied by Nemeth and Vecellio (1973),

who developed a simulation model. Their purpose was to incorporate

those variables affecting platoon movement into a model and to simu-

late the behavior of a group of vehicles as it passes through a series

of signalized intersections.

Nine parameters were selected for inclusion in the variation

analysis of platoon behavior:

(1) traffic density;

(2) .traffic volume;

(3) mean velocity;
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(4) standard deviation of velocity;

(5) coefficient of variation of velocity;

(6) mean spacing;

(7) standard deviation of spacing;

(8) coefficient of variation of spacing; and

(9) mean time headway.

The time and distance variation of the nine parameters for the

observed platoons were plotted. From this variation analysis, dis—

tance patterns were interpreted by the authors in relation to the

spacing between signalized intersections, and time patterns were

interpreted with respect to the values of the signal offsets. The

authors concluded that these two variable, signal spacing and signal

offset, affect platoon behavior.

Two other variables were also investigated to determine their

influence on platoon behavior: platoon size and lane of travel. The

F - test was used to test the mean velocity difference in different

lanes, and velocity - time patterns for platoons of various sizes were

plotted. The authors concluded that lane of travel has no significant

effect on platoon behavior, but platoon size does.

Thus, the principal variables affecting platoon movement through

linear signal systems were identified by Nemeth and Vecellio as sig-

nal spacing, signal offset, and platoon size. In their simulation

model, the processing of traffic between intersections was achieved

by relating traffic dispersion to site - related travel time parameters.

The variables mentioned above were incorporated into a travel time

distribution function. Using the data obtained at the study sites,
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regression equations were derived for the travel time distribution

parameters.

All the platoon studies reviewed thus far deal with platoons

released from an isolated signalized intersection and traveling

with no interference. In the experimental studies, such as that by

Lewis and Chenu, no attempt was made to develop a model to describe

the dispersion process.

The kinematic model developed by Pacey, investigated by Grace

and Potts and validated through experiments carried out by Herman

and others, is useful for more general applications. By collecting

speed distribution data at actual locations, a value of the diffusion

constant czcan be computed and applied to the prediction of the

spreading of platoons. Speed data obtained at different traffic

volumes gave different a for low, medium, and high traffic flow.

Since the kinematic model assumes that all vehicles travel at con-

stant speeds normally distributed about a mean speed, many passing

maneuvers and lane changes obviously have to take place in the pla-

toon. As the volume increases, these maneuvers become more and more

restricted, causing actual platoon behavior to deviate from the theory.

Besides, the assumption of constant Speed is not realistic near traf—

fic signals. Herman stated that the best fit of actual data for the

model is the front of the platoon at medium traffic volume.

The purpose of Nemeth's and Vecellio's simulation model was to

generate mean delay and queue statistics at signalized intersections

rather than attempt to predict the precise behavior of traffic be-

'tween intersections.
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The model developed by Robertson was a deterministic one,

which only predicts average platoon behavior. Thus, flexibility was

restricted.

From the above literature, it was found that several factors in-

fluence platoon dispersion, among them, distance from the signal,

signal offset, and platoon size. As the platoon moves down from the

signal, it will disperse, in other words, the gaps between vehicles

will increase as the position of vehicles from the signal increases.

The approach taken in this dissertation differs in three aspects

from the previous studies of platoon behavior. First, a stochastic

model is developed to describe the dispersion of a platoon departing

from and approaching a signalized intersection. Second, the case

of allowing vehicles to enter the platoon downstream of the signal

will be investigated. Third, the effect of platoon dispersion on

the entering vehicles will be analyzed.



CHAPTER THREE

THE DISTRIBUTION OF VEHICULAR HEADWAYS WITHIN PLATOONS

This chapter seeks to develop an accurate and reliable model

for describing the distribution of vehicular headways within pla-

toons released from a signalized intersection. The distribution of

headways can be found by observing the times of arrival of successive

vehicles in a given lane at a point along the lane. The headway of

the i£h_vehicle is defined as:

Hi = ti_1 -ti , (3.1)

where ti-l is the arrival time of the vehicle ahead, and ti is the

arrival time of the 1gp vehicle. If many vehicles are observed, the

distribution of Hi can be obtained, and one can investigate whether

this variable can be described by some theoretical distribution

function.

Vehicle headways are usually measured in seconds and theoreti-

cally may range from zero to infinity. A zero headway means a col-

lision on the roadway, and an infinite headway represents an empty

roadway. Thus, the theoretical distribution of headways must be con—

tinuous and positive. There are several distributions with these

characteristics, and these will be discussed and compared below.

Thepproposed distribution:
 

It was first suggested by Adams (1) that the vehicles in light

traffic passing a point at equal time intervals follow a Poisson dis-

tribution. If this is the case, the distribution of headways can be

15
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shown to be described by the negative exponential distribution. The

Poisson distribution gives the probability, or proportion of a number

of equal time intervals, during which any number of vehicles, n, will

arrive at a point:

- t n

e ‘1 (qt) ,
i

n’ n=0a132939.o.

= 0 otherwise,

P(x=n)  

(3.2)

where qt is the mean number of vehicles arriving during the time

intervals of t seconds.

We are interested only in the probability of a headway greater

than t seconds. This would mean that no arrivals occured in t seconds:

P( H > t) = P (x=0). (3.3)

Here, H is the headway. Thus,

[IP (Hit ) 1— P(x=0)

This is the cumulative distribution function of the vehicular

headway. Therefore, the probability density function of headway is:

f(t) = aggpm _<_ t)

_ :1. _ -qt
— dt(1 e )

= qe-qt o_<_t<co

= 0 - otherwise. (3.5)

If H is exponentially distributed, then E(h) = 1/q, and Var(H) =

l/qz. This distribution has the interesting characteristic that the

mean and the standard deviation are both the same. The density func-

tion is shown graphically in Figure 3-1.

The negative exponential variates have a property, that is, no

memory. If H is the headway and is negatively exponentially distributed,
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_ it can be shown that

P(H>t+ulH>u)=P(H>t). t.u>0- (3.6)

This equality shows the property of no memory. It implies

that a knowledge of any headway gives no information at all about the

length of the next headway. It is completely random.

Figure 3—1. The Negative Exponential Probabilipy Density Function.

f(t)

q4

  ¢D I. 2 3 4 III 6* 7 8 I? '

In Figure 3-1, it may be noticed that as the headways approach

zero, the probability becomes larger. Applying this to our situation

would assign higher probabilities to very low headways, which is not

satisfactory. In the real situation, we know that the probability of

a zero headway is, of necessity, zero.

To take account of the fact that the negative exponential dis—

tribution exhibits too high a probability in the zone near zero head-

way, Newell (25) suggested that the headway distribution might con—

form to the negative exponential distribution if shifted to the right

a distance of T to allow for the existence of a certain fixed minimum
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headway. Used by many researchers, the shifted negative exponential

distribution is of the form

— t...

Hw=qe“ 9 t>.

= 0’ otherwise. (3-7)

A diagram of the distribution is shown in Figure 3-2.

Figure 3-2. The Shifted Exponential Probability Density Function.

f(t)

   

 

+T+ 1 2 3 4 5 6 7 8 9 10

Another approach is to consider a composite distribution(ll)

of headways in which some vehicles are free-flowing and others are

restrained in platoons behind another vehicles. If the proportion

which is free-flowing is (1—p), then the composite cumulative dis-

tribution function is the following:

P(H>t)=(1-p)e-t/fil + ‘(tra)/(fi2“a)

(3.8)

where bl = mean headway of free-flowing vehicles;

h2 = mean headway of constrained vehicles; and

a. = minimum headway of constrained vehicles.

The diagram for the cumulative distribution (with p= 0.5) is

shown in Figure 3-3. This composite distribution has also been used
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Figure 3-3. The Composite Exponential Cumulative Distribution Function.
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in recent studies of traffic flow on two-lane urban streets (17).

A distribution which is most commonly used in phenomenal anal-

ysis is the normal distribution. It has several characteristics

which recommends it to traffic engineers: (1) It is symmetrical,

(2) it assigns a finite probability to every finite deviation, and

(3) the mode and median are equal to mean. The probability density

function is given by

 

8XP{-(t-u)2/202}, (3.9)
0 2U —m:t:m

f(t)=

The distribution is completely specified by the location parameter

11 and the scale parameter 0'. A typical example of a normal prob-

ability density function is given in Figure 3-4.
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Figure 3—4. The Normal Probability DenSity Function.

f(t)
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A distribution of particular interest which has been found to

fit headway data quite well is the Log-normal distribution. Consider

now the family of p.d.f's:‘

2

f(t) = ——l———-exp{— ilE%El—d t>0

tO/EU 20 _ (3.10)

= 0, otherwise.

The corresponding cumulative distribution function is

 

t 2

F(t) = 319332—1 g;-Io exp{ - 2 ,

O/E; 20 (3.11)

which, on writing {1n(Pv)}//O = u,

becomes

1n t + 1n P

G( o )’ (3.12)

 

where

(3.13)
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is the Standardized normal probability integral. The results show

that the random variable ln X is normally distributed, hence the

name log-normal distribution given to EQ (3.11). The mean of the

distribution is 1"1 exp (a«:2), and the variance is P-zeXP(02)

(exp( 02)-l). For small values of 02 the distribution is nearly

normal. For large values of 02, the distribution has large positive

skewness. A typical example of log-normal probability density func-

tion is shown in Figure 3-5.

f(t) Figure 3-5. The Logenormal Probability Density Function.

0.8

 

0.6

0.4

0.2

   T,
1 2 3 4

Tolle (26) proposed a more generalized version of a log-normal

distribution by shifting the frequency curve by T. The addition of

a new parameter requires no new theory since in this case T'will be

predetermined, and the probability density function is

t>T>O
 

2

f(t) = 1 exp {lE£$£%£l—9

20

(poo/2? (3.14)

-= 0, otherwise.
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A distribution which has‘the correct general form of the nega—

tive exponential distribution but does not have the disadvantage of

a sharp cutoff is the Erlang distribution:

1 ta-lexp(-t/b) t>0f(t) ---—-- _

(a-1)-zba (3.15)

= 0, otherwise.

where a is a positive integer. For a = 1, this is a negative ex-

ponential distribution. As a is increased, the density distribution

becomes more peaked, indicating more regularity. As a approaches

infinity, f(t) becomes constant. That is, vehicles arrive at equal.

time intervals apart. Thus, a can be used as a measure of congestion.

A slightly more general distribution is obtained if a is per-

mitted to be a non-integer to form the well-known Pearson type III

distribution, or the gamma distribution. Its probability density func—

tion is

1 a

f(t) t ”lexp(-t/b) tzo

r(a)ba
(3.16)

= 0, otherwise,

where P (a) is called the gamma function and is defined by the formu-

a-l -Z

ela P(a) = £0 2 dz.

When 0<=a‘<1, the probability density function has an infinite ordi—

nate at the origin: when a>1, the p.d.f. is zero at the origin and

has a single maximum at b0 (a-l). A typical example of a gamma prob-

ability density function is shown in Figure 3-6. If a random vari-

able, X, is described by a gamma distribution, then the mean is ab,

and the variance is abz.
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The final distribution to be discussed is the Weibull distri-

bution. This generates a family of cures as its parameters are

given different values. When a random variable, X, has a Weibull

distribution, its probability density function is:

Figure 3-6. The Gamma Probabilipy Density Function.

f(t)

=%,b-l

 
 

 

a=2,b=1

ctcm1 c

f(t)= exp {-t/b } tzo

b (3.17)

= 0, otherwise.

The distribution depends on the two parameters b and c. The

expected value and variance of the Weibull distribution are given by

E(H)= b'l/C

-2/c

1

To; +1),

VAR(H)= b {F(2/c + l) - (III/C + 1) )2} (3-18)

A typical example of the probability density function of a Weibull

distribution is shown in Figure 3-7.

The weibull variate H with shape parameter c=l is the exponen-

tial variate. It means that this distribution includes the case of

random and nonrandom headway phenomena.
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Figure 3—7. The weibull Probability Density Function.

f(t)

c=1,b=l

 
 

Comparison with observed data:

All the functions discussed previously have the characteristics

of being the distribution of vehicular headways within platoons.

This section describes the preliminary study of headway that was con-

ducted by this author. In the study, field data were collected and

compared with different theoretical distributions.

The results were to provide the variance and approximate chang-

ing pattern of headway along the road downstream from the signal,

which information could be used to design the field study of a head-

way dispersion model. This information was necessary to determine the

sample size with acceptable accuracy and the best location for the

field study of the platoon dispersion model.

Seven of the eight distributions described above were compared

with observed data:

(1) negative exponential distribution;

(2) shifted negative exponential distribution;

(3) normal distribution;
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(4) shifted log-normal distribution;

(5) gamma distribution;

(6) Erlang distribution; and

(7) Weibull distribution.

The composite negative exponential distribution was not chosen because

in the case of platoon dispersion, the percentage of free-flow vehicles

is almost zero.

Headway data were collected in the center lane of a three—lane

arterial in East Lansing, Michigan. The total length of the block is

1,200 yards. These data were collected at four sites; 150, 300, 700,

and 1,000 yeards downstream from a signalized intersection. Obser—

vations were made in the morning from 8:00 a.m. to 11:00 a.m., and

consisted of about 100 platoons with a total of 400 vehicles.

The site was selected because of the long distance between sig-

nals and because there were no interruptions from side streets. These

factors are important in the formulation of a theoretical model of

how a platoon is dispersed. The headway data were collected only from

those "within platoon" in the center lane of the road. Here, "within

platoon" includes all vehicles upstream of the traffic signal waiting

for the signal to turn green and those vehicles which join the queue

(within two seconds) prior to the last vehicle reaching the stop line.

Turning vehicles and those merging from other lanes are excluded.

One hundred data sets were collected at each of the four sites, and

goodness of fit tests were performed.

The diffusion that took place throughout the section downstream

from the intersection is shown in Figure 3-8, and the variance of the

headways at different locations is shown in Figure 3—9.
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Figure 3—8. Mean Headway at Different Locations in the Preliminary

Study.
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Figure 3-9. Standard Deviation of Headway at Different Locations

in the Preliminary Study.
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Goodness of fit test:

The degree of agreement between a theoretical probability distri—

bution and the distribution of a set of sample observations constitutes

a "goodness of fit" test. The assumption that our observations can be

adequately described by a given theoretical probability distribution is
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referred to as the null hypothesis. This test enables us to test

this hypothesis for any probability distribution. "Goodness of fit"

testing is accomplished by comparing the distribution of the ob—

served data with the theoretical probability distribution specified

in the null hypotheses.

The most common goodness of fit tests in engineering statis-

tics are the Chi-square tests (5), and the Kolmogorov-Smirnov test

(18). The former is very powerful for large samples on the order

of n z 100. The latter is very powerful when each observation is

treated as an individual cell, if grouping is unnecessary, and small-

er samples can be effectively analyzed.

Since the sample size here was large, the Chi-square tests was

applied, based on the test statistic

g (01 - Ei)2

i=1 E1 (3.19)

Q:

where n number of cells;

observed data points in cell i; andOi

Ei expected data points in cell 1.

When the null hypothesis is true, that is, E1 is the expected

value of 01 , one would feel intuitively that experimental values of

Q should not be too large. If the null hypothesis is true, the test

statistic is a random variable asymptotically following a-xz distribu—

tion with (n-p-l) degrees of freedom, where p is the number of un—

known parameters. Using the table for)(2 distribution, with (n—p-l)

degrees of freedom, find c so that

P (Q :c) =d . (3.20)
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where¢x is the desired significance level of the test. The null hy-

pothesis is rejected when the observed value of Q is at least as great

as c.

In our Chi-square test, there are different degrees of freedom

for different distributions, as shown in Table 3-1.

Table 3-1. Degree of Freedom for Different Distributions.

 

 

Distribution Degree of Freedom

Exponential n - 2

Shifted Expontial n - 2

Normal n - 3

Shifted Log-normal n — 3

Erlang I n - 3

Gamma n - 3

Weibull n - 3    
Significance of results:
 

The result of testing the hypothesis of fitting headways with the

above proposed distributed by use of the Chi-square test is shown in

Table 3—2. 7

Comparing the results of this testing, it can be seen that the

gamma distribution is the best fit distribution for the observed pla—

toon headways. It should be used as the basis for developing the

platoon dispersion model. Due to Greenshield's constant starting de-

lay, gamma distributed headway is true only starting close to the
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signal, not at the signal

Table 3-2. Results of the Goodness of Fit Test.

 

Distribution Location 1 Location 2 Location 3 Location 4

 

Exponential 165.8802 92.8429 117.6418 104.6973

Shifted Ex-

ponential 74.7796 52.3978 68.7166 47.0664

Normal 24.5386 5.6036 7.0281 10.9322

Shifted Log-

normal 16.8066 15.1989 9.4884 10.3852

Erlang 12.0684 7.8025 7.2645 9.2501

Gamma 6.0743 3.6088 3.8878 3.5941

Wéibull 13.7735 3.5490 4.5246 9.9915       





CHAPTER FOUR

FIELD STUDIES PROCEDURES

Introduction:
 

The field studies of platoon dispersion are described and dis—

cussed in this chapter. The dispersion characteristics of platoons

leaving a signalized intersection are separated into several sub-

models for investigation. Specifically, three situations were inves-

tigated: (l) The behavior of a platoon leaving a signalized inter-

section; (2) the behavior of a moving platoon with entering vehicles

from side streets downstream from the signal. (We assumed the loca-

tion of the entrance at a distance where the average headway was in

steady state.); and (3) the behavior of a platoon approaching a traf—

fic signal.

To evaluate the dispersion behavior of a platoon down an arte—

rial street, the changing pattern of the interaction between vehicles

in the platoon was investigated, and headway between vehicles in the

platoon was recorded.

Determination of the input variables of the models:
 

From the literature review, it was determined that several

variables affect the behavior of platoon movement on arterial streets.

Among them are the distance downstream from the traffic signal, sig—

nal offset, and platoon size. These three variables were investigated

30
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and their influence on platoon behavior determined by the research

staff of the Transportation Research Center, The Ohio State Univer-

sity (23) (1973).

Lewis (19) (1958) found that distance downstream from a traffic

signal was linearly related with the.arrival time of vehicles at a

point. Since the time between successive arrivals is defined as head-

way, we can conclude from his study that distance downstream from

the signal and headway have the same relation.

In Nemeth and Vecellio's experiments, they determined that im-

proper signal offsets were one of the important factors causing traf—

fic disturbances. This results in vehicle slowdowns or stoppages in

platoons approaching a traffic signal. They also found that the

initial acceleration characteristics of the smaller platoons (4 to 6

vehicles) are substantially different from those of the larger pla-

toons (10 to 13 vehicles). Thus, it was reasonable to assume that

headway would behave differently if the platoons varied in size.

In the preliminary study of headway reported in chapter 3, it

was noted that the average headway of vehicles in a platoon increases

in the initial state, reaches a steady state, and then decreases in

the final 300 yards preceding the next signal. The influence of sig-

nal offset on average headways was also noted in our preliminary

study. When the platoons were approaching the next signal, the aver-

age headway decreased due to vehicles slowing down when they observed

a red signal. We would imagine that if the signal offset was well

coordinated with the prior signal, then every vehicle might pass

smoothly.
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Bleyl (2) (1972) reported that 300 yards prior to a signal,

the average speed profiles for all signal patterns are the same.

He classifies the signal display into six categories:

(1) a green signal indication from the moment the lead

vehicle reaches a point approximately 300 yards in advance of the

signal, at which point a red signal indication is given;

(2) a red signal indication until the signal is reached;

(3) a red signal indication from the moment the lead vehicle

reaches a point approximately 300 yards in advance of the signal, at

which point a green signal is given;

(4) a green signal indication during the entire approach;

(5) a flashing yellow signal;

(6) no signal at all.

Bleyl found that the average Speed profiles of the vehicles approach-

ing the signal have no influence on the last four signal displays.

From steady state car-following theory, it is reasonable to assume

the average headway is independent of the signal timing until the

lead vehicle in the platoon reacts to the signal displays of the first

two categories.

Therefore, we concluded the following: (1) In the study of pla-

toon dispersion leaving a signalized intersection (with or without en-

tering vehicles), two independent variables to be considered are dis-

tance from the signal and platoon size; and (2) in the study of pla-

toon approaching the next signal, only the reaction of the platoon's

lead vehicle to the signal display of the first two categories noted

above is to be considered.



33

Selection of study sites:
 

Having concluded that three factors (distance from the signal,

platoon size, and signal offset) have a significant influence on pla-

toon dispersion, it was decided that sites selected for data collec-

tion should eliminate other variables that might influence the dis-

persion. This meant that factors such as curb parking, grade, uncon-

trolled access from side streets, and Opposing left turning traffic

should be avoided.

Additional site requirements were that the volume vary so that

the data would include different levels of platoon size. Also, the

downstream signal spacing should be large enough for the study pla-

toons to reach steady state flOw.

Since the objective also was to study the dispersion of the

platoon leaving the signalized intersection with the possibility of

a downstream entrance, two sites were chosen. One was a section of

an arterial street with a cross—street downstream from the signalized

intersection, and the other was an arterial with no nearby cross—

street. Both sites are on two-way signalized urban arterials lo-

cated in Lansing, Michigan, the first on North Grand River Avenue be-

tween Logan Street and Airport Road, the second on Michigan Avenue

between US-127 and Harrison Road. Platoon behavior was studied from

the platoon formation point at the intersection of North Grand River

and Airport Road and the intersection of Michigan and US-127. Some

characteristics of the two sites are presented in Table 4-1.

In the last chapter, the results of the preliminary study of

headways at various locations indicated the average headway of vehicles
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Table 4-1. Characteristics of the Study Sites
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Distance of the

lst entrance from

the signal (yds.) O 880

   

Characteristics ‘Michigan Avenue Site N.Grand River Avenue Site'

Total length (yds.) 1,200 2,024

Lane 3 2

'Max. speed (MPH) 35 45

Entrance point 0 2

 

increases up to a distance of around 350 yeards. Thus, four locations

for data collection were established for Case One, 100, 200, 350, and

500 yards from the signal. It was believed that from these locations

the behavior of the average headway cOuld be traced through the tran-

sient state to the steady state.

Case Two involved the platoon approaching the next signal.

Bleyl's paper assumed that 300 yards prior to the next signal, the

average headway is in a steady state. Thus, three locations were se-

lected for data collection, 100, 200, and 300 yards prior to the next

signal.

Finally, Case Three concerned entering vehicles. It was assumed

that the distance required to reach steady state after merging would

be shorter than for platoons starting from the signal. Thus, the lo-

cation for data collection were zero, 100, 200, and 300 yards from

the entrance point.
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Sample size requirement

In any experiment, estimating the statistical measures of a

given phenomenon through a sampling technique requires determination

of a sufficient and economical sample size. The sample for this

study had to be large enough to produce results with acceptable ac-

curacy, but cost and time were also considerations. Therefore, the

minimum number of observations required for the estimation of pla-

toons' average headway dispersion behavior was determined.

The headway of the vehicles within a platoon has been shown

to be gamma distributed. If the number of data points from this

distribution is sufficiently large, then the average will have a

normal distribution according to the Central Limit Theorem.

If H is the average of the observations from the sample, then

P(|h-E(h)|: d)=a , (4-1)

where d is the chosen margin of error, and a is a small probability.

If we let d be 0.3 seconds and a be 0.05 seconds, we have the follow-

ing equation to solve for n:

1.96 _ER__

("3

0.3, (4-2)

where 00 is the sample standard deviation. From Eq (4.2), we obtain

2

(1.96)2 00
n = ______________

(0.3)2 (4_3)

Using the preliminary study of headways discussed in Chapter 3,

the sanmle standard deviation of headways at various locations downstream



L
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from the signal are shown in Table 4-2.

Table 4-2. Standard Deviation of Headway at Different Locations.

 

Distance 150 300 700 1000

 

00 0.98 1.22 1.63 1.64

    

The sample size required for the four locations of Case 1 are approx-

imately as shown in Table 4-3.

 

 

 

Table 4-3. Sample Size Requirement at Different Locations.

Distance 100 200 350 500

n 40 70 120 120

   
 

The sample standard deviation in the steady state was the maximum and

is approximately equal to 1.64. Using this sample standard deviation

to calculate the required sample size for the second and third cases

would give average headways for each locations within f 0.3 seconds

from the true mean with a probability of at least 0.95.

Data on the value of sample standard deviations for the head-

ways of the vehicles approaching a signal or with entering vehicles

were not available at this stage of the study. Therefore, the sample

size for the second and the third cases was derived by using the same

ple standard deviation of the steady state.
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Field data collection:
 

Field data were collected between 7:00 a.m. and 8:00 a.m.

and 3:30 p.m. and 5:30 p.m. at the two sites on a number of days

during fall and winter of 1976. These hours were selected because

they are morning and evening peak traffic periods. On all occa-

sions weather conditions were favorable, with good visibility and

dry-pavement.

Measuring headways of an entire platoon by stopwatch was im-

possible because of the speed with which it passed, especially large

platoons. A photographic method was found to be more useful. A

movie camera recorded the platoons as they passed each observation

point along the street, and the headways between were vehicles re-

Corded. The camera used was an ARRIFLEX l6S/B camera equipped with

a power operation unit. Film capacity was 100 feet, which yields

approximately 5,120 exposures per roll. Eastman Plus - X negative

black and white 16 mm film was used. The camera had variable speed

control, and a speed of 8 frames per second was used during the data

collection. A total of ten lOO-foot rolls were used. The camera was

mounted on a tripod at the selected locations to maintain a con—

stant reference point.

Results of field studies:
 

Nemeth's and Vecellio's (22) (1971) field study tested the

effect of platoon size on vehicle headways. Five categories were es-

tablished: 9-10 vehicles, 12 vehicles, 16-17 vehicles, 20 vehicles,

and over 20 vehicles. It was found that the effect of these platoon

sizes on mean headway was not significant.





38

Therefore, for this study platoon size was grouped into three

categories: under 5 vehicles; 6-9 vehicles, and over 9 vehicles. In

general, platoons of under 5 vehicles are referred to as light flow,

those with 6-9 vehicles as medium flow, and those with over 9 vehicles

as heavy flow.

For the second case, moving platoons with entering vehicles

from side streets downstream from the signal, data were only avail-

able under conditions of heavy flow on main and side streets.

The result of the field studies are tabulated in Appendix I.



CHAPTER FIVE

MATHEMATICAL MODELING OF PLATOON DISPERSION

Introduction:

From the results of the field study, statistical relationships

were obtained for headway patterns downstream from the signal. The

first part of this chapter describes tests performed to determine the

effect of traffic volume on headway dispersion; the second part for-

mulates mathematical models for platoon dispersion.

Data Analysis:
 

This section analyzes the data collected for platoons of dif-

ferent volume levels for different cases. The technique of multiple

comparison of means (24) was used to determine whether or not the

level of platoon volume had a statistically significant effect on the

headway at different locations from the signal.

The effect of level of platoon volume on platoon dispersion for

the three cases previously described is shown in Figures 5-1, 5—2,

and 5-3. Figure 5-1 was plotted by calculating the average headway

for platoons under three different levels of platoon volume at a number

of downstream locations from the signal. Figure 5-2 plots the aver-

age headway for the moving platoon at a number of locations from the

entrance with vehicles entering downstream. Figure 5-3 gives the

average headway for platoons under different levels of platoon volume

39
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Figure 5-1. Mean Headway at Different Locations of Platoon Leaving
 

from a Signal.
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Figure 5-2. Mean Headwayiat Different Locations of MbvingpPlatoon
 

with Entering Vehicles.
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Figure 5-3. Mean Headway at Different Locations of Platoon Approach
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at a number of locations approaching the next signal.

Multiple comparison of means requires the assumptions that the

sample is from a normally distributed population having a mean Mi

under different treatment (for example, three levels of platoon vol-

ume) with different variance. In mathematical notations, this can

be stated as

. 2

Xij N (M19 01 )3

where j=l. . . . .J is the number of treatments. The null hypothesis

is

H : Mi = Mj, (5—1)
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where i,j=1, . . . .J, and i > j.

In the previous section it was shown that the sample was not

drawn from a normal distribution. But with fairly large sample sizes,

where the Central Limit Theorem is applied, the mean is normally

distributed.

In this study, data were collected under different treatments

(platoon volume levels) at several locations from the signals. Thus,

using a vector instead of a single variable, the new null hypothesis

is defined as
. 1 ,

   

Mi1 Mjl 1

Ho . M12 M32

M13 = M. , (54)
33

LMikJ LMjk .1 
where i,j=l. . . .J, and i > j;

J= total number of treatments; and

K= total number Of locations.

Eq (5-2) could be written as E; =‘EB ,

and the test statistic may be written as

ij -+

C =Zd-S(_ _

dk Xi—xj), (5'3)

where Zd standardized normal statistic under level of

significance a ;

_p

S(§i _ i3) = a Kecomponents vector, and its m£h_component

 

is equal to /_— 2 33nd

Simz Ejm

U1 n2
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Sim = the sample standard deviation of headway at

location m under i£h_treatment.

+ -)- i5

Then the vector I Mi -Mj I is compared with (.gk for all i and j,

i >j. We reject Ho if

+ +4 ij

1M1 — Mjl :C (5-4)

(3k

and do not reject it otherwise. With the level of significance 0

of each component of the vector, the level of significance for the

whole vector is Ok.

I The results of the tests of the effect of platoon volume on

headway at different locations are shown in Table 5-1, for the pla-

toon leaving the signalized intersection, and Table 5-2, for the

platoon approaching the next signal.

In both cases, the effect of light flow and medium flow on

headway was of no significant difference. Therefore, these two cate-

gories were combined and labeled nonheavy flow. The results in mean

headway after combining them are shown in Figures 5-4 and 5-5. The

mean and standard deviation of headways for all cases are found in

Table 1-4 in Appendix I.

Develgpment of the mathematical models:

The data analyzed in the previous section indicated that the

relationships between distance and average headway spacing are non-

linear. In other words, if we wanted to formulate this relationship

in a mathematical form, it would not fit the form

F(x) = Bo+Bl x +E. (5-5)
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Table 5—1. Results of the Multiple Comparisons of Means for Case 1.

m = l m = 2 m = 3 m = 4

| M3 - M1 | 0.2043 0.3386 0.5687 0.5464

C31 0.4653 0.3290 0.2986 0.3365

dk

| M3 - M2| 0.1188 0.2459 0.4853 0.4697

C32 0.5076 0.3802 0.3425 0.2944

ak

| M2 - M1 | 0.0855 0.0927 0.0834 0.0767

21 0.4843 0.3728 0.3597 0.3480

«R

 

 
m: mth location from the signal;

1: light flow;

2: medium flow;

3: heavy flow;

0.01.
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Table 5-2. Results of the Multiple Comparisons of Means for Case 3.

m = m = 2 m = 3

I M3 - M1 I 0.4210 0.4300 0.5478

31 0.2546 0.2761 0.2688

Cu.

| M3 - M2 l 0.2393 0.3586 0.4790

32 0.2730 0.2823 0.2742

Cuk

| M2 - Ml I 0.1717 0.0714 0.0688

21

Cmk 0.2628 0.2936 0.2752

Figure 5-4. Mean headway at different locations of platoon leaving

from a signal with the combination of light and medium

flow.
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Figure 5-5. Mean Headway at Different Locations of Platoon Approach.
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A nonlinear relationship can sometimes be approximated by an

algebraic polynomial, which is intrinsically linear. Mathematically

speaking, a polynomial in the base function{¢)i(x) } in any function

of the form

P(x) = no + on ¢l(x) + a2 (1)2 (x) + . . +0LIn ¢m(x), (5‘6)

where the <fl.are constants. When the base functions are l,x,x2,x3.

. . . . x“, then a polynomial

2 n (5-7)

P(x)=ao+a x+ogx+.. .+ ax
1

is called an algebraic polynomial in one variable, and the polynomial

is said to be of degrees n.

According to the Weierstrass Theorem (13), if f(x) is a func—

tion continuous on[ a,b] , and e > 0 is a given, when there exists
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some integer n and an algebraic polynomial p(x) of degree n, then

I f(x) — P(x) I < e for all x e [nab].

Basically, the theorem says that it is reasonable to seek an al-

gebraic polynomial approximation to any continuous function in a

finite interval.

Thus, the problem now turns on the determination of the par-

ameters of the polynomials.

The simplest method used to formulate the functional relation-

ship of two variables is the polynomial interpolation method, in

 

which the interpolating function passes through the given points

exactly. But this method has two disadvantages: (1) It is

accurate only for the points within the study interval, that is, not

for extrapolation; and (2) it is accurate only for deterministic

functions.

In our models, the average headway is a random variable which

is normally distributed by the Central Limit Theorem. Furthermore,

our data are "approximate", obtained experimentally. Therefore, in

formulating the functional relationship, what is required is a method

which allows the approximating function to differ from certain data

points more than it does from others, since all data points are

known only in what might be called a statistical sense. Least

squares is such a method.

A quite general statement of the least squares theorem is as

follows: The functional value f(pj) (j=l,2. . . .n) is given at a

point pj. A family of approximating functions,

Qm(Pj, 309 319 32: - -9 am), (5‘8)
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is chosen, where a0, a .am are parameters. In the method1, 32, O O

of least squares, a0, a1, a . . .am are determined such that
2’

{f (pj) - Qm (Pj’ a0, a1, . . . . a ) } (5-9)

is a minimum. For the determined values of a0, a1, a2, . . .am,

1, . . . .am, the function Qm (Pj, £0, 31, . . .am) is the

least squares approximation for the given data and the given approx—

A

say do, a

imating functions. -1

Since the approximating function is taken as an algebric poly-

nomial,

_ 2 m

Qm (x,ao, a1, a2, . . . .am) - a0 + alx + azx +. . .+amx .(5-10)

In order to minimize

n

E { f (xj) - a - a xj — a xzj - . . .a X.m}2, (5-11)

. o 1 2 m j

J=1

the "normal" equation become:

n a + a n n n m n

12 x +a22 x + amE x. = 2 f (xj);

j=l j=l J _ j=l J 3:1

n n 2 n 3 n m+1 n

aOX x + alz x + a 2 xj + . + amZ x. a, Z x.f(xj);

j=1 J j=1 3:1 j=l J j=1 J

and o . o s o o o o
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and must be solved.

A program for solving this set of equations is contained in a

computer package available in the Computer Center, Michigan State

University.

Five curves from Figures 5-2, 5-4, and 5-5 were formulated

within the range of collected data, and M (degree of the equation)

was assumed to be 2 and 3. From the figures, it was found that after

the defined distance, steady state was reached. For convenience,

specific notations were given to each of these five curves. They

were 2

NHLi = i§h_location of the curve of mean headway for non-

heavy flow of Case 1;

Hhi = 13h location of the curve of mean headway for heavy

flow of Case 1;

INTi = i£h_location of the curve of mean headway of Case 2;

NHAPi = i£h_location of the curve of mean headway for non—

heavy flow of Case 3;

HAPi = igh location of the curve of mean headway for heavy

flow of Case 3.

If i is replaced by c, this represents the whole curve.

After the equations were formulated, validity of the approximated
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equations were examined and determined the degree of the poly-

nomials. The coefficient of determination ( 7) which measures the

proportion of total variation explained by the equation was used

for this test. The coefficient of determination can be written as:

n " __
z ( f(xi) - f(xi) )2

R = i=1 ' , (5-13)
 

(f (xi) - :6 (xi) >2

i=1

where f(xi) = the value of f(xi) estimated by the regression e-

 

quation; and.f—(xi) = the average of f(xi).

The results of the least squares approximation of the models

and their coefficient of determination are shown in Table 5-3 for

M=2 and Table 5-4 for Me3. From the results, it was found that M=2

gave the desired accurate approximation. From the two tables, it

was found that the 3rd term of the degree three model did not give

any additional accuracy to the model. Therefore, Ms2 should be se—

lected as the degree of the polynomials least squares approximation

for the models.

Analysis of the mean headway for the passing platoon with entering

vehicles:

Headway data for the passing platoon with entering vehicles

were only available for heavy flow of the mainstream. In this section,

the relationship between the mean headway for the passing platoon

leaving a signaliZed intersection are analyzed. The results will be

used as the basis for estimating the mean headway for the passing

platoon with entering vehicles under non heavy flow.
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Table 5-3. Equation Results for m=2: f(x) = a0 + a1 y +a2y where

y = be +le.

b b R2

NHLc 2.6981 0.1910 -0.0630 0.1000 -3 0.986

HLc 2.3148 0.1015 -0.0264 0.1000 —3 0.995

INTc 2.3639 0.0733 -0.0145 0.0133 -2 0.997

INHAPC 2.8125 0.1199 -0.0275 0.0200 -4 0.996

NAPC 2.4015 0.0720 —0.0337 0.0200 -4 0.994

Table 5—4. Equation results for m=3: f(x)= a o +a1y + azy2 + a3y3

where y = bo + blx.

30 al 32 33 b0 bl R

HLc 2.3148 0.1015 -0.2640 -0.0160 0.0100 -3 0.995

INTC 2.3639 0.0733 -0.0145 40.0054 0.0133 —2 0.997

NHAPc 2.8125 0.1199 -0.0275 -0.0031 0.0200 -4 0.995

HAPC 2.4015 0.0720 —0.0337 -0.0025 0.0200 -4 0.995
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From Figure 5—4, it can be observed that the curve INTC is

similar to a portion of curve HLC . In other words, if INTc

were shifted a constant distance, the two curves might be identical.

The purpose of this section is to test this hypothesis.

The two curves can be written as

2

 

= + + —
HLc (x) BO le B2y 100_: x: 500; (5 14)

_ 2

INT (x) = a +cx x (I x - 0 < x < 300. ‘(5-15)

C O I 2 - -

Therefore, we want to test the null hypothesis

Ho : INTc (X) = HLC (x + 0), (5-16)

or

2

Ho . ab — 80 + 0 81+' 6 82

(5-17)

= B + B

0‘1 l 262

0‘2_82

To simplify the analysis, this nonlinear hypothesis is changed

to a linear one. A value of 9 = 150 yards is assumed, since the first

data set of INTC is approximately the midpoint of HLl and HL2.

To test the equality of this reduced model and the full model,

an F-test (21) must be performed. The full model is defined as the

original one, that is, EQ (5—14) and EQ (5—15). The reduced model

might be written as:

2

HLC (x) = B + 81 x + 82x . 100 5 X 5 500; (5-18)

0
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2

2

INT (x) = (B +1508 + 150 B ) + (B +3008 )x +8 x ’ (5-19)
C O 1 2 1 2 2

0 §_x :_300.

We expect to findBO,3 and £2 to minimize

1

2

Q = %1( - HL (xi) )2+ I2 ( - INT ( ‘) )
yli C Y2; C X1 ’ (5-20)

i=1 i=1

where yii = the mean headway of HLcat i£h_location;

y21 = the mean headway of INTcat i£h_location;

n1 = the total number of data points in HLC; and

n2 = the total number of data points in INTC.

The test statistic then leads to

 

F = {SSE(R) - SSE(F) } /m1 -m2 (5-21)

9 .

SSE(F) /m2

where SSE(R) = error sum fo squares of the reduced model;

SSE(F) error sum of squares of the full model;

ml = nl + n2 - pl;

m2 n1 + n2 - p2;

p1 = total number of parameters in the reduced model; and

p2 = total number of parameters in the full model.

The test statistic then is compared with an F-distributed statistic

F a ( (m1 - m2), m2) under the level of significance a. The null

hypothesis will be rejected if

F 3 Fa,( ( ml - m2). m2) . (5-22)

Solving forpo, 81 and ’52 to minimize Q, partial derivatives with

respect topo’ )81’ and '52 are taken to obtain the normal equations.

The resulting normal equations become:
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B {n + n } +B-{gl x +150n +22 x } +8 {211x2 +22 x2 +30022 x +1502n2}
o l 2 1 i=1 i=‘1 2 1'1 21 2 i=1 11 i=1 21 1‘1 21

n1
{2 y +2 y .}
1__1 11 i——1 21

n2 2 n2 n2

80 {21 xli + 150n2+2 x21} +81{21 x11 +1502n2+3002 x21+2 x:i} +

01=1 i-1211=1 i=1 i=12

n

Bz{21x3 + 1503n +6750022 x + 45022 x2 +22 x3 } =

 

i=1“1 2 i=1 21 1=1 21 i=1 21

n1 n2 n2

{21 ylix11 + 150 L yZi + 1L YZiXZi} (5—23)

i=—1 i=—1 1—1

n n n2

3 {21 x2 , 22 (x21+150) 2} +31{21x3 + 15022 (x21+150) 2+
o 11 + . li

i=1 i=1 i=1 i=1

n n1x4 2 n2 n2
x .(x +150) 2} +82 {2 + (150) 2(x21+150) 2+3002 x

. 21 21 1121

1=l i=1x i=1 i=1

2 n2 2 _ n1 2 n 2
(x2i+ 150) +2 x 2i(x21+ 150) } — {E_ ylix 1 .— y21(x21+150) }.

1—1 1—1 1—1

Solving Eq (5-23) for 80,81, and 82, we obtain

80 = 1.84708

81 = 0.00272 (5-24)

32 =-0.00021.

Substituting 80 ,81,and 82 into Eq(5-20), SSE(R) is obtained. The

test statistic, F, is equal to 3.78. Under cx= 0.05, Fa.(3°2)=9'55°

Thus, the null hypothesis was not rejected.

The accepted hypothesis states that the INTc curve is identical

with the portion of HLC starting from the location where the mean
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headway is equal to the mean headway at the entrance point after

the entering vehicles enter. This is reasonable because it implies

that if both headway distributions have the same shape, they will

have the same dispersion pattern. Therefore, for the case of non-

heavy flow (where data were not available), the curve for platoon

dispersion leaving the signal under non heavy flow is assumed to be

valid for the case of entering vehicles.

 



 

CHAPTER SIX

SOME ANALYTIC CONSIDERATIONS OF QUEUEING

Introduction:

A number of theoretical papers (20) (28) have dealt with the

queueing problem at unsignalized intersections where the minor street

traffic is waiting for a sufficient gap to enter the main stream.

Most papers have assumed that the arrival of both mainstream and

minorstream traffic takes the Rflssondistribution. However, in

chapter 3 it was shown that the headway within a platoon is gamma

distributed. We will also assume that the mainstream traffic is

composed of a series of platoons with no vehicles between platoons.

We will call the time between platoons "idle" time and the time when

the platoon is passing a given point the "passing" time. Because

of the dispersion of the platoon, idle time will decrease as the dis-

tance from the prior signal increases. Thus, in our queueing con—

sideration, we have to seperately consider these two conditions.

Another assumption is that the critical time gap is a step

function. That is, the minor stream vehicles will accept the gap

if it is greater than the critical time gap and reject it if the

gap is less than the critical one. This assumption is suggested by

the study by Blumenfeld (14), which showed that this assumption leads

to no serious discrepancies in problems of engineering interests.

56
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Multiple entry is permitted if the gap is sufficiently large, that

is, if there is a critical time gap plus some move-up time for the

second vehicles, and so on.

The notations used throughout this chapter are defined below.

f(t) = main stream headway distribution;

A = arrival rate of minor stream (veh/sec);

a,b = parameters of the mainstream headway distribution within

a platoon (gamma distribution constants);

s = cycle length;

wi = the headway of the i£h_vehicle within a platoon;

v = moving up time (in seconds);

n = average number of headway within a platoon;

d = distance of the minor street from the nearest upstream

signal (in yards); and

t = critical gap time (in seconds).

Using these notations, we know that if the distance from the

nearest upstream signal to the minor street and the average platoon

size are given, chapter 4 can be used to calculate the parameters

of the mainstream headway distribution within the platoon. Thus, in

each cycle, platoon passing time will be equal to g wi, and the

idle time will he s- ; wi. We further assume :hit 5 is always

greater than g'wi; otheiwise, the platoon will merge. If we let

p = g ‘wi/s, thin 100xp percent of the time at locations i will be

i=1

passing time, and 100x(l-p) percent will be "idle" time. We also

assume that the CYC13 length equals 60 seconds, which is the actual

cycle length of the signal at which field data were obtained. The
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percentage of passing time and idle time for different locations

from the signal is shown in Table 6-1.

Table 6-1. Percentage of thefpassing time at different locations.

 

 

 

n 100 yds. 200 yds. 350 yds. 500 yds.

Nonheavy flow 6 0.2251 0.2567 0.2990 0.3002

Heavy flow 11 0.3482 0.3791 0.4088 0.4135

 

        

Queueing considerations at the merging position:

This section discusses the delay to a single vehicle waiting

at a stop sign for a sufficiently large gap in the oncoming traffic.

We first must define the terms "125?, which is different from gap.

A lag is the interval of time between the arrival of a minor stream

vehicle and the arrival of a major stream vehicle at the point where

the streams cross. Assume that a vehicle arrives on the minor street

at time t=0, and the driver waits for a gap greater than T seconds.

There are two possibilities: The driver accepts the lag, or he re-

jects the lag and subsequently accepts a gap.

If we know the probability density function of the lag (fo(t))

and the probability density function of the gap (f(t)), then we will

accept a lag with probability

f: f0 (t) dt (6‘1)
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and accept a gap with probability

I: f (t) dt.

(6-2)

Using the terminology of Renewal Theory, fo(t) is known as

the forward recurrence time, which is shown by Cox (6 ) (1962) as

” (6-3)

£0 (t) = if f(x)“
 

p

where u is the mean of the distribution f(t). Therefore, fo(t)

is a function of t, and the parameters of the headway distribution

f(t).

Let Eq (6-1) be denoted by F0 and Eq (6-2) by F. We then

further define a conditional probability, H(t), as follows:

H(t) = Prob { A gap is accepted in the time interval (t,t dt)

given that no gap was accepted in the interval (0, t)}

With these definitions we can write the probability density

of the merging delay as

D(t) = 6(t) FO + H(t) F, (6—4)

where (t) is a Dirac delta function, which accounts for the cases

of zero delay, that is the acceptance of the lag. The first term

of Eq (6-4) indicates that if a lag is accepted with a probability

of F0, the waiting time is zero. The second term of Eq (6-4) indi-

cates that if a gap is accepted with a probability of F, then the

waiting time is t.

By definition of a delta function,

I: a (t) dt = 1, (6‘5)
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and

f: H (t) dt = 1, (6-6)

where H(t), f(t), F0, and F are all positive functions. Thus, it

is easily shown that D(t) is a probability density function, since

I: D(t) dt = 1, (6-7)

and

D(t) 3_ 0 for all t.

Let the Laplace Transform of f(x) be f*(s), by

f *(s)=f: e Atf(t) dt.

Taking the Laplace Transform with respect to D(t), the moment

of the merging delay willbe obtained. The proof is given in

Appendix III. From Eq (6-4), we have

D*(S) = FH*(S), (6-8)

In considering H(t) of Eq (6-4), the mainstream vehicle that

arrives in time (t, t dt) must either have been the first vehicle to

appear with density fo (t), and the lag was rejected, or a vehicle

passed at (t-x), and its gap was rejected. From this, we can write

the equation satisfied by H(t) as

H (t) = fo(t) {l —«x(t)}+ f: H(x)f(t-x) (1- m(t—x) )dx, (6-9)

where

ll

0a(t)

a(t)

if 0 §_t g T, and

II

I
—
‘

if t Z,T.

Let (6-10)

Go(t) = f 0(t) { l - a (t)} ,
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and

c (t) = f (t) { .1 - (1(t) } .

Eq (6-9) then can be written as

H(t) = Go(t> +f: H(t) G (t-x)dt. (6‘11)

Eq (6-11) becomes

H*(S) = 60*(3) + H*(S) 3* (3), (6-12)

H*(S) = 90*(3) ,

1 -G*(S)

(6_13)

The moment of the merging delay can be found from Eq (6-4) to be

 

dn

u“ = <—1)n < —5;n9 D* (s) <6-14>

t

|s=o

The proof Of Eq (6-14) and the first and second moment are pre-

sented in Appendix III. The result is shown in Eq (6-15) and Eq (6-17)

which is different from the result developed by Weiss and Maradudin

(27) using the same model.

_ l—_ m I - (6‘15)

u t — F f0 t { F Go(t) + (1 FO)G(t) }dt.

If we let

Mo(t) = f0 t Go(t) dt, and

M(t) = I: t G(t) dt,

Eq (6-15) becomes

ut1= Mo(t) + 1”F0 M(t), <6-16>
F
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and

2 _ w 2 2
”t j§%_ { fot (F Go(t) + (1-Fo) F G(t) dt + (6-17)

2 f:t G(t) dt f:t (FGo(t)dt + (l-Fo) G(t))dt}.

Let

_ m 2
No(t) — fot Go(t) dt, and

N(t) = f: t2 G(t) dt;

Eq (6-17) then becomes

u 2 = No(t) + 1-Fo N(t) + 2 uth(t). (6-18)

1: F F

The variance of the merging delay is

O 2 2 1 2 v (6‘19)

In our headway model, F(t) has been shown to be gamma distri-

buted; thus

W , t _>_ 0 (6-20)

where a and b are the parameters of distribution and are defined as

real numbers.
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In order to solve Eq (6-16) and Eq (6-18), F o (t), F(t),

Mb(t), M(t), N G(t), and N(t) should be calculated first. By

definition, F is the incomplete gamma function. Under different

values of T, the value of F can be calculated by computer approx-

imation for the different cases as defined in the last chapter.

The result is presented in Table II-l of Appendix II.

In calculating F 0a which is defined as the integral of f o,

f o is defined as

f o(t) = I: f(xl)dx , (6-21)

u

which is an indefinite integral of the headway distribution divided

by its mean.

There are several articles (18) which relate this indefinite

integral to the cumulative Poisson distribution as

b 1:0

but this is only true when "a" is an integer.

Since "a" in gamma distribution is defined as a real number,

a curve fitting an algorithm of fc, for eight different cases is

presented. The integral of f(x) is approximated by computer, using

nine different values of t ranging from 0 to 5. These nine points

will plot all the curves of the resulting integral varying from one

to O.
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By using the Lagrange polynomial interpolation technique (13),

the preposed polynomial will pass through five alternative selected

points. The value at the selected points and at the midpoints

between them where one would expect the error to be the largest

are then examined, substituting those values into the polynomial

equations and comparing the results with the original data. The

proposed polynomial is shown in Table II-2 of Appendix II. The

curves plotted by the polynomial equations are presented in Figure

II-l of Appendix II.

 

The selected points and their midpoints are then substituted

into the polynomial equations, and one finds that the upper bound of

the deviation of the equation from the integral is 0.05. Thus, the

polynomial equations can be accepted as a good fit to the indefinite

integral I: f(t)dt.

fo is then equal to the proposed polynomial equation divided

by the mean of the headway distribution; this result is shown in

Table II-3, Appendix II.

Fc, is defined as the integral of f0; by using computer approx-

imation the result is shown in Table II-4 of Appendix II.

Again using the computer approximation, M(t), Mb(t), N(t), and

N(,(t) under different T for different cases is calculated, as shown

in Table II-S through II-8 in Appendix II.

With this information,“ i and otzare calculated under different

T for different locations. These results are shown in Tables 6-2 and

6-3.
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1

 

 

 

      
 

 

 

 

Table 6-2. Calculate,g; for Different T.

T =.2 T = 3 T = 4 T = 5

NHL1 1.6307 9.6638 58.0139 404.4929

NHLZ 1.1548 6.3097 36.0276 242.1522

NHL3 0.8327 3.6102 15.9985 79.9109

NHL4 0.8141 3.5847 15.8166 78.0859

HLl 1.9675 11.4557 65.9667 421.5800

HL2 1.5794 10.4827 57.8873 853.5397

HL3 1.2981 7.3444 44.9245 318.1406

HL4 '1.2343 6.8330 39.2631 264.8093

2

Table 6-3. Calculate gA for Different T.

'1:—

T=2 T=3 T=4 T=5

NHLl 3.3679 90.2583 3423.4429 164033.5986

NHL2 1.7437 43.2742 1331.2554 58892.3497

NHL3 0.9688 14.8524 273.7818 6473.0088

NHL4 0.9130 14.5814 267.9273 6210.7805

HLl 4.8569 139.6327 4417.0574 178135.4064

HLZ 3.0980 115.0225 3560.0805 125251.8651

HL3 2.1631 60.1113 2062.0342 101547.4212

HL4 1.9678 50.4400 1577.5383 70388.9500    
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These results represent the merging delay for the minor stream

vehicles while the mainstream platoon is passing, which occurs p

percent of the time. The remaining (l-p) percent of the time there

will be no merging delay. Thus, the overall expected merging delay

will be

E (Z) = P 0

(6-23)

and the variance will be

2

Var (Z) = P0 t + p(l-p)( ut1)2
(6‘24)

 

The proof of Eq (6—24) is given in Appendix III, and the results are

shown in Tables 6-4 and 6-5.

Table 6-4. Average Merging Delay E(Z).
 

 

 

     

T = 2 T = 3 T = 4 T = 5

NHLl 0.3670 2.1753 13.0589 91.0513

NHL2 0.2964 1.6197 9.2482 62.1604

NHL3 0.2489 1.0794 4.7835 23.8933

NHL4 0.2444 1.0761 4.7481 23.4413

HLl 0.6850 3.9888 22.9696 146.7941

HLZ 0.5987 3.9739 21.9450 134.0269

HL3 0.5306 3.0024 19.3651 130.0558

HL4 0.5103 2.8254 16.2353 109.4986
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Table 6-5. Variance of Mergigg Delay Var (Z).
 

 

 

T = 2 T = 3 T = 4 T = 5

NHLl 1.2218 36.6041 1357.5797 65458.3323

NHL2 0.7020 18.7045 589.3893 26305.7369

NHL3 0.4349 7.1726 135.5082 3273.8831

NHL4 0.4131. 7.0758 132.9663 3144.9319

H11 2.5694 78.3968 2525.3985 102353.6166

HL2 1.7613 69.4613 2368.4217 76879.0861

HL3 1.2913 37.6053 1330.5592 65965.7520

HL4 1.1828 32.1745 1025.9936 46103.8799     
  

Queueing Considerations before Merging;

Using the previous results, the average delay for a vehicle

before merging and the average queue length of the minor stream can

be developed.

In this section, Kendall's approach (16) for a queueing system

with random inputs from the side and arbitrary service times is

used to develop formulas for the average delay before merging and the

average queue length.

Let x (ti) denote the number in the system at time ti, where

ti is the time Of completion of waiting of the ith vehicle. Let

X (ti) be denoted by Xi. we can them.write for all m>0

xm+1 = Xm+ Am+1 - 6 , (6-25)
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where 6 is introduced as a random variable such that

=() x =Ov ,

6 m (6-26)

=1 ' xm>0

In Eq (6-25) A(m+l),is the number of vehicles which arrived

during the waiting time of the (m+l)st vehicles arrival, say,

Z m+1: independent random variable, A m+1 can in general be denoted

by A, and Z m+1 by Z. Then conditionally A is a Poisson variable

of mean Z, given that Z is the duration time. Also assuming that

the steady state solution exists, we can take the expected value of

Eq (6-25) and obtain

E(Xm+1)= E(Xn) + E(A) -E (6). (6-27)

Noting that E(anl)= E(Xflp = Nd in steady state, Eq (6-27) then

becomes

Nd = Nd + E(A) - E (6), (6-28)

or E(5) = E(A). (6-29)

The expected number of vehicles arriving during the merge wait-

ing time of a vehicle is equal to the product of the arrival rate and

the average merging waiting time, that is,

E(A) = AE(Z). (6-30)

Thus, we have .

E(G) = AHZ) . (6-31)

Squaring both sides of Eq (6—25) and taking the expected value as

before yields

E(X2m+l) = E(xm)2 + E(AZ) +86 2) + 2E(XmA)

- 2E(6xm.) — 2E6A). (6-32)
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Note thatd 2 = a ,xme = xm, , E(x;+1> = E<xm2>.

and A is independent of X. ands . Thus, we have

E(AZ) + 8(8) —2E (xm) +2E (xm) E(A) -2 8(8) E(A) = 0, (6-33)

or

E(Az) + 18(2) -212(8(2))2 - 2Nd + 2188 8(2) = 0, (6-34)

or

2

Nd = AE(Z) +>ECA ) ‘ AECZ). . (6-35)

2(1 -2 e(Z) )

 

Now it is necessary to calculate E(Az), the second moment of

the number of arrivals during the merge waiting time of any vehicle,

and 2 2

E(A ) = VAR(A) + (E(A) )

2 (6-36)

=vmm>+xmu>f.

where Var (A) = E(Var(AlZ)) + Var (E(AlZ) ). (6-37)

The proof of Eq (6-37) is given in Appendix II. As mentioned earlier,

AIZ is a Poisson variate and with mean 12 ; thus, Var (AIZ) :12

and E(AIZ) = AZ . Substituting into Eq (6-37), we obtain

VAR (A) = E( 2') +VAR (22)

=1 E( z)+z )2 VAR (z ) . (6—38)

By using Eq (6—38) in Eq (6-35), we finally obtain

12 8(2)2 + 22 VAR (2)
Nd = 1 E(Z) + .

2( 1— A E(Z) ) (6’39)
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It has been shown that, (16) although Nd is the expected steady

state system queue size at the time of a departure, it is equivalent

to the expected steady system queue size at an arbitrary point in

time. We denote this by N. Thus,

N = 18(2) + 12 Var (2) +1 2 (8(2) )2

2( 1- 1 E(Z) ) ° (6-40)

 

Eq (6-40) is often referred to as the Pollaczak—Khintchine formula.

From it the expected waiting time in the system E(W) (which includes

 

the merging delay) can be obtained through the well-known Little's

formula:

or

E(W) = y_.

1 (6-42)

If E(V) is the average waiting time for a vehicle before merging,

then.

E(V) = E - E(Z). (6‘43)

A

The result of N and E(W) under different T and different A

for different cases is shown in Tables 6—6 and 6—7.

Qapacity and the Best Location of the Minor Stream

In calculating the capacity of the minor stream, it is assumed

that a queue always exists on the minor street. For the installa-

tion of an entrance downstream from the signal, such as the entrance

to a parking lot or shopping center, capacity at the entrance point

would be expected tobe the maximum. As before, the critical gap

is T, and the‘move up time is v (which is the time required by the
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second vehicle to move up to the first position after the first

vehicle has left). Hence, with probability

T (6-44)
I f(t) dt

0 .

a gap is less than the critical gap. In general, for a gap of size

(T + (j-1)v, T +jv) with probability

'T + jv
f . f(t) dt,

T +(J‘1)V (6-45)

j vehicles will enter the intersection. Thus, the capacity while

the platoon is passing is

C1 = q 2_ j J T+ JV f(t)dt (veh/sec).

j
T + (j+1)v

(6‘46)

If the move up time is v then the capacity during "idle" time

is % veh/sec. Thus, the overall capacity becomes

C = clp +1/v (l-p). (6-47)

Since C1 and p both vary with distance from the nearest signal, a

table can be constructed showing the capacity at different distances

from the signal for different average platoon sizes.

Assuming the move-up time to be two seconds, the result of C

is tabulated in Table 6-8. For a specific value of critical gap T,

the overall capacity is almost equivalent for different locations from

the signal. Also, the capacity during the passing time is an in-

creasing function and approaches steady state from 350 yards. The

capacity during the idle time is a decreasing function and approaches

I
I
"
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steady state from 350 yards.

Table 6-8. Calculated Capacity for Different T.

 

 

T = 2 T = 3 T = 4 T = 5

NHLl 0.4444 0.4053 0.3850 0.3879

NHL2 0.4437 0.3996 0.3780 0.3726

NHL3 0.4352 0.3957 0.3520 0.3540

NHL4 0.4362 0.3957 0.3655 0.3535

HLl 0.4067 0.3498 0.3307 0.3266

HL2 0.4098 0.3390 0.3168 0.3113

HL3 0.4076 0.3351 0.3039 0.2967

HL4 0.4087 0.3362 0.3029 0.2947       
 

During the calculation of C, it can be seen that almost 80

percent of the capacity was from idle time. One of our assumptions

is that no mainstream vehicles are allowed between platoons. If that

assumption is relaxed and mainstream vehicles are allowed passing

during the idle time, we would expect the capacity during idle time

to be an increasing function, the same as the capacity for passing

time. In that case overall capacity would reach a maximum at 350

yards. That is the best location for the entrance when the main-

stream vehicles are allowed passing between platoons.
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The Required Distance for Recovering the Shape of the Headway

Distribution:
 

After the minor stream vehicles enter the main stream, the

shape and the parameters of the headway distribution change. In this

section, we will investigate the distance required by the new pla-

toon (with the entering vehicles) to recover the original headway

distribution after dispersion.

For the input vehicles, we consider only those vehicles

waiting to enter the main traffic when a platoon is passing. If

d and n are given, the passing time for the whole platoon is

n _

2 Wi =11 w ,

i=1 (6-48)

_ n

where w is the mean headway within the platoon. Thus,12 Wi

i=1

vehicles will arrive to enter the mainstream during the passing

time.

n

If the capacity C1£Wi (see the last section; here we only

- i=1 n n

consider the passing time) is greater than 12 Wi,then A X Wi

i=1 i=1

vehicles will enter the mainstream during the platoon passing time.

n n n

If A 2 W1 is less than C 2 W1, then C 2 W1 vehicles will enter

i=1 11=1 11=1

the mainstream, and ( A —C1).B];Ni vehicles will wait until the

1:.

platoon has passed.

In the case where Aisyi vehicles enter the mainstream, platoon

n .

size becomes ((n+l) + l 2 W1 )Using the model developed in the last

i=1

section of chapter 5, the required distance can be determined.

In the case where demand exceeds the capacity during the pass-

n

ing time, only C12 Wican enter the traffic while the platoon is

h=l1



n,

2 Wi).
1i=1

Similarly, from chapter 5, we obtain the required distance.

passing. The new platoon size then is ( (n + 1) + C

An example will clarify how the models developed in chapter

5 can be used in this section. Supposel=l/10, the critical time

gap is two seconds, and the entering point is 350 yards from the

signal. Then

n

A 2 W1 = An w = 2.69 = 2 vehicles,

C1 2 Wi = Can w= 7.4 = 7 vehicles,

where the platoon is assumed to be in heavy flow. That means all

two vehicles would be allowed to enter the mainstream while the pla—

toon is passing. Platoon size after the minor street vehicles enter

I].

then becomes ( (n + 1) +1 2 Wi ), which is equal to 14 vehicles.

i=1 n

Therefore, with the same passing time 2 Wi , the platoon now

i=1

consists of 14 vehicles. The average headway of the new platoon

n

then became g lWi/ (number of vehicles - l), or 2.08 seconds.

1:

Referring to Figure 6—1, the mean headway would change from A

to B after the minor street vehicles entered. We could also say the

platoon is in the situation of being located at d1, since at d1 the

mean headway would be the same as B. According to the platoon dis-

persion behavior, the platoon would need (350 - dl) yards to recover

its mean headway of A.

Spliting Flow to Reduce Delay of the Entering Vehicles:

In this section we will consider the problem of spliting the

queue into two or more queues to reduce the delay of a queue of
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vehicles waiting to enter the mainstream traffic. The analysis uses

the results of section three of this chapter, that is, the average

waiting time in the system E(W). If we split the queue into two

streams, then we assume that the distance between the two entry points

is sufficiently large so that the headway distribution returns to

steady state after the first queue entry. While the technique de-

veloped in the section is applicable to any number of successive

entry points, our discussion is limited to the possibility of splitting

the queue into three entry streams.

Assuming 9 to be the rate of splitting, where 0: if 1, that is,

if the rate of the minor street random arrival is A, than we split

the arrival into two Poisson streams, with arrival rate Afifor the

first entry and (l - 0) A for the second entry (if two streams are

to be made). We then determine the optimal splitting, Gopt.

For the case of two entry points, let us denote the distance

of the first entry point from the signal as d1 and the second as d2.

If the average platoon size is n, then at d1 the average waiting time

in the system E(wldl) is a function of d1, 01, and n:

E(wldl) = f(dl, n, (=1 ). (6—49)

The average waiting time in the system at d2 is

E(wle) = g(d2-dl, n+h(6 1), (1-0 )1 ). (6-50)

Eq (6-50) depends on (d2-d1), not d2 alone, because there are vehicles

entering upstream of d2. The calculation of the parameters of the pla-

toon reaches point d2 is different from the calculation of Eq (6-49).

The term h(€)1) depends on the capacity at d1; if arrivals at dl

exceed capacity C, then C vehicles will enter the traffic; otherwise
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0 A will enter.

Eq.(6-49) and (6—50) are used to calculate the total mean

waiting time in the system as a function of the parameters:

1(9) = 0° E(wldl) + (1-0)E(wld2). (6-51)

Blumenfeld and Weiss suggested a parameter 6,(l3) which can measure

the improvement effected by queue splitting, that is,

6 --—-——--° (6-52)

-T (1)

The smaller the value of 663, the greater the improvement effected

by queue splitting.

Using the data from field studies, and assuming 9 to be equal

to 15, 1/3, 2/3, 14., and 3/4.5'%, 51/3, 52/3, 512, and 534 are calculated

by using Eq (6-52). The critical gap T is assumed to be 3 seconds.

The result is shown in Table 6-9. There it is found that equal split-

ting, 0 = k, is the optimum splitting for two entry points.

Similar calculations are performed for splitting minor traffic

into three streams. Assuming that equal splitting was better than the

other splittings in three entry points.

Let d1, d2, and d3 be the distances of three entry points. We

have

1(0) = 0 E (wldl) + 92 E(wldz) + 93E (wld3), (6-53)

where 01 + 92 + 93 = l, and 01, 92, and 03 are the splitting of

the three entry points, respectively. The critical gap is assumed

to be 3 seconds, and6(l/3 1/3 l/3)is calculated. The results are

shown in Table 6-10.' It is found that5(l/3 1/3 l/3)is better than

6%.
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The determination of splitting of the entry point not only

depends upon the delay time,but also is a tradeoff between the

costs and benefits from the splitting.

clude that splitting into three is better than splitting into two,

only that the delay time is decreased.

Therefore, we cannot con-

 

 

 

Table 6-10. Calculate 6 (l/3,l/3,l/3) for Different A.

NHLl NHL2 NHL3 NHL4 HL1 HL2 HL3 HL4

A=1/3 0.2124 0.5427 1.4109 1.4249 * '* * 0.1547

1=1/5 0.4628 0.8811 1.6740 1.6688 0.1163+ 0.1262 0.3257 0.3894

1=1/10 0.6958 1.0515 1.7998 1.8095 0.3642 0.3843 0.5785 0.6337

         
 

* Approaching zero due to infinity delay occurred in TCl).

 





CHAPTER SEVEN

SIMULATION ANALYSIS OF THE PROBLEM

Introduction:
 

The analytic results of the behavior of vehicles entering into

stream with a dispersing platoon were developed in chapter 6. To

validate the model, an experiment was performed. Verification of

the entire range of the model would require extensive data at var-

ious volume levels, for the mainstream and entering traffic. It

would be almost impossible to obtain sufficient data through field

studies. Therefore, a computer simulation which could duplicate the

real world situation was written.

A simulation model consists of two basic phases: input data

generation and bookkeeping data generation. The Monte Carlo tech—

nique was used here to generate random events from some specified

probability distribution. The models employed an event-oriented

bookkeeping technique, updating the system status when events occur,

recording relevant items, and calculating measures of the parameters

of interest.

The analysis conducted for this study was divided into three

stages. In the first stage a model was developed of a single un-

signalized intersection at which vehicles were arriving from two

directions, and right-of—way was given to the mainstream. The second
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stage expanded the model to include a signalized intersection with

a single sidestreet downstream. With this model, the simulation of

platoons leaving the intersection every signal cycle and arriving

at the sidestreet was conducted. The final stage was the extension

of the second stage to include multiple entrances downstream from

the signalized intersection.

The simulation models were designed such that the final results

of the parameters of interest could be compared with the prior result

to determine that steady state was reached. The programs were written

in Fortran, and they were run on the CDC 6500 at Michigan State

University.

Development of the Phase One Model:

The intersection used in the phase one simulation model was

T-shaped, and the sidestreet was assumed to be a one-way street.

Since it was established by Nemeth and Vecellio (1972) that the

number of lanes exhibits no significant effect on platoon behavior,

one lane of travel was assumed in the simulation model. To see the

effect of entering vehicles on platoon dispersion, only right turns

were permitted on the sidestreet. The physical characteristics of

the phase one model are shown in Figure 7—1. Major street vehicles

were given the right-of—way over entering vehicles whenever con—

flicts in entering occured. Entering vehicles decelerated to a stop

either at the intersection or in queue behind other stopped vehicles.

It was assumed that an entering driver waiting to enter considers

each time gap t in the mainstream traffic until he finds an acceptable
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Figure 7-1. Physical Characteristics of Phase One Mbdel Intersection.

 

 

 

@
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gap T, which he believes to be of sufficient length to permit his

safe entry. Blumenfeld and Weiss (4) have shown that this assumption

of a fixed critical gap is fairly realistic for estimating delays and

capacities.

Two input sources are involved in the present model: sidestreet

arrivals and mainstreet arrivals. A common assumption made by many

researchers (25) (14) is that arrivals from the sidestreet are random.

In chapter 6 it was shown that the mainstreet headway conforms to a

gamma distribution. Thus, for the simulation model, the interarrival

time of the mainstreet vehicles was gamma distributed and that of side-

street vehicles was random. The move—up time of the second vehicle

in the sidestreet when the first vehicle entered traffic was assumed

to be two seconds. Three parameters for the entering vehicles were

recorded and measured in the simulation runs: average merging delay,

average queue length and average total delay.

Briefly, the simulation was processed as follows. First, a side-

street vehicle was generated, and its arrival time was recorded.

Mainstreet vehicles were generated until it was found that the arrival
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time of the sidestreet vehicle lay between the arrival time of two

successive mainstreet vehicles. The critical gap was then compared

to the available lag. If the lag was rejected, successive main-

street headway was generated and compared to the critical gap until

an acceptable gap was found. 'The time spent in the merging position

was recorded, and another sidestreet vehicle was generated and

checked to determine whether its arrival time preceded the leaving

time of the prior vehicle. If not, no delay was recorded as occurring

before moving into the merging position; if so, this delay was re-

corded. The process was repeated and new traffic was generated un-

til the steady state solution was obtained. The logic flow diagram

for the process is shown in Figure 7-2.

The program was run under different conditions for comparison

with the analytic solution from chapter 6.

The results of the simulation program are shown in Table 7-1.

Table 7-1. Simulation Results of Phase One Model.

 

Average Merging Delay Average Delay Before Merging

 

Q = 350 vph Q = 800 vph Q = 350 vph Q = 800 vph

 

T = 2 0.7011 1.9362 0.2211 0.4225

T = 3 4.2420 7.2350 8.1240 738.3500

T = 4 16.2400 42.2631 1024.5000 2104.0000

       
Note: Q = mainstream volume.
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Figure 7—2. Flow Diagram for Phase One Model.
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The results from Table 7-1 were run under a mainstreet volume

350 vph and 800 vph. On the average, this meant approximately 6 and

13 vehicles in the respective platoons. Minor street vehicles were

assumed to arrive at the rate of 5 sec/veh., the entrance point was

assumed to be 500 yards from the prior signal, and critical time gaps

were assumed to be 2, 3, and 4 seconds. The simulation program is

listed in Appendix IV.

The comparable analytic solutions were those formulas in

chapter 6 with p = 1, that is, under 100 percent passing time. The

mainstreet vehicles were passing the intersections at the same volume

levels and critical gaps used in Table 7-1, and the results are shown

Table 7-2. Analytical Results of Phase One Model.

 

 

 

Average Merging Delay Average Delay Before Merging

Q = 350vph Q = 800vph Q = 350vph Q = 800vph

T = 2 0.8141 1.2343 0.1882 0.4635

T = 3 3.5847 6.8330 9.6910 m

T = 4 15.8166 39.2631 w w       
By the assumption of the analytical model, if the service rate

is greater than the arrival rate, the average delay before merging

will approach infinity. Therefore, three infinity delays appear in

Table 7-2.

To compare the results of the two models (analytical and simu-

1ation), a standardized statistical test was introduced to indicate
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the reliability of the model forecasts. The U-statistic (16)

measures the statistical correlation between two sets of data; it

measures the agreement between the forecast (analytical) and ob-

served éimulation) item frequencies. The accuracy of the forecast

is judged by the magnitude of the U - value. If the discrepancy

between the observed and predicted mean values of the level of activity

in a cell is small, there still could be poor agreement between

measured and predicted results in individual cells, and the U -

statistic can measure.their significance.

The U-statistic is calculated as

 

1 1/

{8‘2 (31-632 2}
= =1

U ‘1 n 2 1 n % ’ (7-1)__ 1
(n. “sin/2H”I @502}

i=1 n i=1

where Si = the projected value of the ith cell;

Ci = the observed value for the ith cell; and

n = the number of cells in the distribution.

In general, a value of U less than 0.1 is considered good, a value be-

tween 0.1 and 0.3 average, and a value of greater than 0.3 poor.

For the phase one model, the U-statistic was calculated for the

average merging delay and the average delay before merging. It was

found that the U—statistic for the average merging delay was 0.0518.

The U-statistic for the average delay before merging was calculated

using only finite values because of the possible infinity delay when

the service rate is greater than the arrival. The U-statistic for

the average delay before merging was 0.0878. Therefore, the reliability
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of the analytical model for both delay parameters can be considered

good. Thus, the phase one model can be used as the basis for develop-

ment of the phase two and phase three models.

DeveloPment of the Phase Two Model:

The phase two model was developed to simulate a signalized

intersection with a single downstream entrance. The physical char-

acteristics of the model are shown in Figure 7-3.

Figure 7-3. Physical Characteristics of Phase Two Model.

  

 
 

1
0
;
:

    

The model was constructed to simulate the following conditions

for the signalized intersection; (1) cycle length of 60 seconds, and

(2) effective green time of 40 seconds.

A constant travel time (t) was assumed for the leading vehicle

of the platoon traveling from the signalized intersection to the

entrance, where t = d /s (d is the distance of the entrance point

from the signalized intersection, and s is the average speed of the

vehicles, assumed here to be 30 mph.

The interarrival time for the vehicles at the signalized inter-

section and the entrance was assumed to be gamma distributed. At
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the intersection, the starting delay was also considered. This

was defined as the amount of time lost as successive vehicles in

the queue moved across the intersection. The values determined

by Greenshield, shown in Table 7-3, were used(12)v

Table 7-3. Greenshield's StartinggDelay;
 

 

Vehicle Starting delay,

in seconds

 

l 3.8

2 3.1

3 2.7

4 2.4

5 2.2

6 2.1

 
  

The merging operation of the entering vehicles of this model

were considered to be the same as for the model developed for phase

one, with the added condition that vehicles could enter the traffic

freely between platoons. Thus, the average delay statistics from

this model should be less than the average delay statistics from

the phase one model.

The size of each platoon was recorded, with only those vehicles

joining the queue within two seconds after the last stopped vehicle
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left the intersection included in the definition. This information

was used as input data for the dispersion model derived in chapter 5

and indicated the value of the headway parameters. The number of

vehicles leaving the signal each cycle included those waiting in the

queue during the red time plus those arriving during the green

time. If the queue was so long that only a portion of it was per-

mitted to leave the signal during the green time, then only those

leaving vehicles were counted. Thus, the number of vehicle leaving

the intersection in the simulation program for each signal cycle

might be different from the "platoon size" defined previously. This

platoon size was an input for the model.

When the signal turned green, vehicles were discharged from the

intersection, and the first vehicle's arrival time at the entrance

was calculated. Starting with this vehicle's arrival, headways with

the parameters derived from the dispersion model in chapter 6 were

generated. The entering process of the sidestreet vehicles followed

the model developed for phase one. The passing vehicles in the main-

stream were counted until all vehicles passed, at which time vehicles

could enter freely between platoons. Average delay and queue statis-

tics of the entering vehicles were recorded. The flow diagram of

the phase two model is shown in Figure 7—4.

The program was run with different values for the critical gaps

(2, 3, and 4 seconds), different levels of volume for.the mainstreet

(350 vph and 800 vph) and sidestreet (5 sec/veh. and 10 sec/veh.),

and different locations of the entrance point (200 and 500 yards from

the signal). The simulation program is listed in Appendix IV. The
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Figure 7-4. Flow Diagram of Phase Two Model.
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results of the simulation program are shown in Table 7-4.

Assuming the input source from the minor street to be a large

value, the capacity at the entrance point would be equal to the

total number of vehicles entering the mainstream traffic. The re-

sult is shown in Table 7-5.

Development of the Phase Three Model:

The extension of the single entrance model to one having more

than one entrance was accomplished by defining a set of characteristics

for each entrance added to the model. The physical characteristics

of the model are shown in Figure 7-5. Two entrances downstream from

the signalized intersection were assumed, with the merging traffic

divided between two points. The assumptions for the second entrance

were the same as in the analytic model in chapter 6, that is, the

distance between the first and second entrance was assumed to be

sufficient for the headway distribution to return to a steady state.

Different levels of entrance flow and mainstream volume and different

critical acceptance gaps were used as input to the simulation model

under different entering flows. The flow diagram for the phase three

model is shown in Figure 7—6.

The program was run with different values for entering splitting

(1/2, 2/3, and 3/4). Different levels of mainstreet volume (350 vph

and 800 vph), and equal critical gap for the two entrances (3 sec-

onds). The results of the simulation model are shown in Table 7—6.

The comparison with the analytical results will be shown in the next

section. Thesimulation program for the phase three model is listed

in Appendix IV.
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Table 7-4. Simulation Results of Phase Two Model.

, Average Average Delay

Merging Before

'Delay, Merging

Q 350 0.3124 0.1036

11=1/5

d=200 yds. Q, 800 0.6204 0.3045

1=1/10 Q 350 0.3396 ' 0.0824

Q 800 0.6572 0.1356

’ 1:1/5 Q 350 0.3824 0.0924

d=500 yds. Q 800 0.6210 0.2013

.4=1/10 Q 350 0.3004 0.0625

Q, 800 0.5931 0.1103

A =l/5 350 1.8240 8.2436

d=200 yds. Q 800 4.5362 45.5210

Q 350 1.6680 1.7523

A =1/10

Q_ 800 4.3210 8.0312

Q 350 1.4362 1.5024

.4 =1/5

d=500 yds. Q 800 3.1124 11.2437

A=l/10 Q 350 1.5341 0.6614

Q 800 3.0163 2.9326

Q 350 10.3651 845.6428

1 =1/5

d=200 yds. Q 800 24.1450 2410.2500

Q 350 10.8765 532.7321

.1=1/10

Q 800 23.6450 1172.6410

. 1=1/5 Q 350 5.0210 357.3756

d=500 yds. Q 800 19.3620 987.8800

Q 350 5.2524 22.8014

1 =1/10

Q 800 20.2371 637.7875
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Table 7—5. Simulation Results of Capacity.

Capacity (veh/hr.)

Q = 350 1432

d = 200

Q = 800 1420

T =

Q = 350 1483

d = 500

Q = 800 1415

Q = 350 1284

d = 200

Q = 800 1110

T =

Q = 350 1324

d = 500

Q = 800 1138

Q = 350 1321

d = 200

Q = 800 1054

T =

Q = 350 1217

d = 500

Q = 800 980

Figure 7-5. Physical Characteristics of Phase Three Mbdel.
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Flow Diagram of Phase Three Model.
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Table 7-6. Simulation Results of the Phase Three Model.
 

 

 

 

 

 

 

     
 

1:283:12? ..

(1/2,1/2) 4.2139

'1 = 1/5 (2/3,1/3) 3.1056

(3/4,1/4) 2.8314

Q = 350

(1/2,1/2) 2.7652

1 = 1/10 (2/3,1/3) 2.8042

(3/4,1/4) 2.2981

(1/2,1/2) 6.1021

1 = 1/5 (2/3,1/3) 8.1034

(3/4,1/4) 7.7830

Q = 800

(1/2,1/2) 4.2310

1 = 1/10 (2/3,1/3) 4.8248

(3/4,1/4) 5.3214

Evaluation of the Results:
 

For both the

and capacity were

phase 2 and phase 3 models, the delay parameters

calculated using the analytical model developed in

chapter 6; the results are shown in Tables 7-7, 7-8, and 7-9. After

comparing the simulation results, the U-statistics was obtained and

is shown in Table 7-10.
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It was found that the predicted results from the analytical

models agreed with the observed values from the simulation models.

It was also found that the delay parameters from the analytical

model were dominated by the results from the simulation models. This

was because the assumption of platoon size differed between two

phase models. In the analytical model, platoon size was composed

of those vehicles waiting in the queue and joining the queue within

two seconds after the last vehicle left the intersection. In the

simulation model, platoon size was based on the total number of

arrivals during a cycle. Therefore, more vehicles would pass through

the downstream entrance point,and more delay and less capacity

would occur. Since the U-statistic showed the differences between

the analytical and simulation models were not significant, the fea-

sibility of the platoon size assumption in the analytical model is

implied.



99

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 7-7. Analytical Results of Phase Two Mbdel.

Average Average Delay

Merging Before

. Delay Merging

_ Q'= 350 0.2964 0.0836

1=1/5

d=200 yds. Q = 800 0.5987 0.2403

Q = 350 0.2964 0.0406

A=l/10

Q = 800 0.5987 0.1127

Q = 350 0.2444 0.0496

1=1/5

d=500 yds. Q = 800 0.5103 0.1607

Q = 350 0.2444 0.0242

1=1/10

= 800 0.5103 0.0757

Q = 350 1.6197 7.8707

A=1/5

d=200 yds. = 800 3.9739 41.5226

Q = 350 1.6197 1.2723

A=l/10

Q = 800 3.9739 7.0736

Q = 350 1.0761 1.0489

1=1/5

d=500 yds. Q = 800 2.8254 9.2336

Q = 350 1.0761 0.4613

1=1/10

- e 800 2.8254 2.7986

0 = 350 9.2482 m

1=1/5

d=200 yds. Q = 800 21.9450 w

Q = 350 9.2482 448.8688

1=1/10

Q = 800 21.9450 w

Q = 350 4.7481 308.5483

1=1/5

d=500 yds. Q = 800 16.2352 w

Q = 350 4.7481 14.8039

i=1/10

Q = 800 16.2353 w      
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Table 7-8. Analytical Results of Capacity.

Capacity (veh/hr.)

Q = 350 1597.32

d = 200

Q = 800 1475.28

Q = 350 1570.32

d = 500

Q = 800 1471.32

Q = 350 1438.56

d = 200 -

Q = 800 1220.40

Q = 350 1424.52

d = 500

Q = 800 1210.32

Q = 350 1360.80

d = 200

Q = 800 1140.48

Q = 350 1315.80

d = 500 _

Q = 800 1090.44   
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Table 7-9. Analytical Results of Phase Three Model.

Splitting Average Delay in the

System

(1/2,1/2) 3.5807

A = 1/5 (2/3,1/3) 2.7095

(3/4,1/4) 2.3035

Q = 350

(1/2,1/2) 2.6430

A= l/lO (2/3,1/3) 2.1020

(3/4,1/4) 1.8907

(1/2,l/2) 5.6240

A= 1/5 (2/3,1/3) 6.6995

(3/4,1/4) 7.0038

Q = 800

(1/2,1/2) 3.9940

A= 1/10 (2/3,1/3) 4.3190

(3/4,1/4) 4.3931   
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Table 7-10. U—statistic for the Comparison of the Analytical and

the Simulation Results.
 

 

 

 

Model Parameter U-statistic

Phase 2 Average merging delay 0.06948

Average delay before

merging 0.81900

Capacity 0.03720

Phase 3 Average delay in the

system 0.07360    
 



 



CHAPTER EIGHT

SUMMARY AND CONCLUSIONS

Summary of Accomplishments:
 

In this investigation of platoon disperSion dynamics on ar-

terial streets with entering vehicles, vehicular time headway was

selected as the parameter for the platoon dispersion model. This

parameter was chosen because it describes the interaction between

vehicles in the car-following process and the interaction in the

merging process.

As stated in chapter 1, this dissertation followed a certain

procedure. (1) A preliminary study of vehicular time headway with-

in platoons was made. (2) A stochastic model of vehicular time

headways within platoons was developed. (3) Field studies were made

of platoon behavior. (4) Platoon dispersion models were developed.

(5) Analytical studies were made of platoon dispersion with entering

vehicles. (6) Simulation studies of platoon dispersion with entering

vehicles were conducted. (7) The analytical and simulation results

were compared. Vehicular time headway was modeled by the use of a

fitted statistical distribution. Seven distributions which may char

acterize vehicular headways within platoons were used to test the

goodness of fit. Those seven were the (1) negative exponential,

(2) shifted negative exponential, (3) normal, (4) shifted lognormal,

102
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(5) gamma, (6) Erlang, and (7) Weibull distributions. Using data

from a preliminary study, a Chi-square goodness of fit test was

performed, and it was found that the gamma distribution was the best

fit.

Based on the statistical headway model and the results of the

preliminary study, a field study was performed to investigate the

dispersion of platoons leaving a signalized intersection and approa-

ching a traffic signal with or without entering vehicles downstream.

Two sites were selected for the field study, one onra section of an

 

arterial street with a cross-street downstream from the signalized

intersection and the other an arterial with no nearby cross-street.

Locations for collecting data and sample size were determined by the

results from the preliminary study.

Nemeth and Vecellio (1971) revealed that a platoon size of over

9 vehicles has no significant effect on mean headway. Therefore,

platoon size was grouped into three categories in this field study:

under 5 vehicles; 6-9 vehicles; over 9 vehicles, referred to as light,

medium, and heavy flow, respectively.

Bleyl found that platoon dispersion is independent of a well-

coordinated signal. Therefore, the present study did not consider

the well-coordination of the prior signal as a factor in the dis—

person of a platoon approaching a signal.

Because of the immediate successive appearance of the headway

within a platoon, a movie camera (ARRIFLEX 16S/B) was used to record

the platoons as they passed each data point, and the headway between

vehicles was recorded.
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For the case of moving platoons with entering vehicles down-

stream, data were only available under heavy flow conditions on

main and side streets.

The mean headway at different locations under different platoon

sizes was plotted (shown in Figures 5-1, 5-2, and 5-3).

Data analysis used a multiple comparison of means to examine the

statistically significant effect of different levels of platoon

volume on headway at different locations. It was found that light

and medium flow did not have a significant effect on headway. Thus,

these two categories were combined into a renamed non heavy flow

category.

Data from the field study showed that the relationship between

distance and mean headway was non linear. For the platoon leaving

from a signal, the curve approached steady state after 350 yards.

For the platoon approaching a signal, steady state was reached

300 yards from the next signal.

The polynomial least squares method was used to fit the curves,

and the regression equations were fitted using 2 and 3 degrees. The

validity of the equations were examined, and the degree was deter-

mined by the use of a coefficient of determination. The results were

shown in Tables 5—4 and 5-5.

Headway data for the passing mainstream platoon with entering

vehicles was only available under heavy flow. The relationship be-

tween the mean headway for a passing platoon with entering vehicles

and the mean headway of a platoon leaving from a signal under heavy

f10W’WaS analyzed. The results were used to estimate the mean
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headway for a passing platoon with entering vehicles under non heavy

flow.

An F-test was performed to test the hypothesis that the curves

for a passing platoon with entering vehicles under heavy flow with

a constant translationwouldbe identical to the curve for the platoon

leaving from a signal. The hypothesis was not rejected, and it was

concluded that the curve for platoon dispersion leaving the signal

under non heavy flow could be assumed valid for the case of entering

vehicles.

To investigate the effect of platoon dispersion from a signal

on entering vehicles, an analytical study was performed. Three

measures of effectiveness (average merging delay, average delay be-

fore merging, and capacity at entrance point) for the entering

vehicles were formulated under the influence of platoon dispersion.

Using the results, the following determination~ was made: (1) the

best location of the minor stream; (2) the required distance for re-

covering the shape of the headway distribution after sidestreet

vehicles entered; and (3) the optimal splitting of sidestreet flow.

The best entrance location was found to be 350 yards from the

signal if mainstream vehicles were allowed passing between platoons.

An algorithm for calculating the required distance for recovering

the shape of the headway distribution was determined. It was also

found that equal splitting was better than non equal splitting for

two entrance flows, and that splitting into three streams would offer

some improvement over splitting into two.
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To validate the analytical results of the behavior of the en-

tering vehicles with dispersing platoons, computer simulation models

were developed to replicate the real world situation. Using the

U-statistic for comparison of the analytical and simulation results,

it was found that their difference was not significant

Applicability of Medals:
 

From the theoretical point of View, the models developed here

will be helpful in understanding the complex behavior of traffic.

As a result of the investigation of the platoon dispersion

characteristics of traffic leaving from a signalized intersection,

approaching a signal, and passing sidestreets with entering vehicles,

the models presented here can be used to coordinate successive

traffic signals.

The models also can be used in future research in platoon dis-

persion, perhaps in the areas of entering vehicles permitted to make

a left turn, multiple-lane maninstreets which permit lane changing,

and the interaction of the opposite platoon dispersions on a two-way

street .
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Table I-l. The frequency of the headway sample within platoon
 

leaving from a signal.
 

 

 

 

 

Headways

(in sec.) Light Flow Medium Flow Heavy Flow

d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4

<1 0 0 0 0 2 1 1'0

1.0-1.5 7 10 15 7

1.5-2.0 13 12 14 28 13 14 27 15 9 19 32 25

2.0-2.5 11 23 27 20 3 18 18 20 9 19 24 33

2.5-3.0 6 9 16 18 6 11 11 29 5 12 15 26'

3.0-3.5 4 17 23 13 5 8 20 H4 4 4 13 19

3.5-4.0 2 4 ll 14 3 4 12 18 0 3 10 6

4.0-4.5 0 1 13 11 0 3 8 11 1 3 5 l

4.5-5.0 l 0 8 8 1 2 7 4 1 0 2 0

5.0-5.5 0 1 0 2 0 2 4 2 0 0 2 2

5.5-6.0 0 0 2 2 0 0 2 2 0 0 1 0

> 6.0 0 0 0 2 0 0 2 0 0 0 0 l             
 

d1 : 100 yds. from the prior signal;

d2 : 200 yds. from the prior signal;

d3 : 300 yds. from the prior signal;

d4 : 500 yds. from the prior signal.
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Table I-2. The frequency of the headway sample within platoons with

entering vehicles.
 

 

 

 

Headways

(in sec.) d1 d2 d3 d4

<1 0

1.0-1.5 16

1.5-2.0 29 26 27 21

2.0—2.5 39 46 44 45

2.5-3.0 25 24 32 31

3.0-3.5 7 13 8 9

3.5-4.0 2 3 5 7

4.0-4.5 2 2 l l

4.5-5.0 0 0 2 l

5.0-5.5 0 0 0 2

5.5-6.0 0 0 0 0

>6 0 0 0 0     
 

d1 * neXt to the entrance point.

d2 = 100 from the entrance point.

d3 = 200 from the entrance point

d4 = 300 from the entrance point
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Table I—3. The frequency of the headway sample within platoons

approaching a signal.

Headways

(in sec.) Light Flow Medium Flow Heavy Flow

d1 d2 d3 d1 d2 d3 d1 d2 d3

< 1 0 0 O l 0 0 2 l 0

1.0-1.5 7 5 2 15 8 4 19 10 8

1.5-2.0 18 13 13 33 13 10 35 19 23

2.0—2.5 34 18 21 26 20 25 26 33 27

2.5-3.0 30 32 28 16 28 30 18 23 28

3.0—3.5 18 25 33 12 26 27 12 18 20

3.5-4.0 9 16 15 11 16 12 4 l4 8

4.0—4.5 2 4 4 3 2 3 3 l 4

4.5—5.0 l 4 3 2 4 5 0 0 1

5.0-5.5 l 2 l 0 l 2 l l l

5.5-6.0 0 1 0 0 2 l 0 0 O

>6 0 0 1 0 0 0 0 0 0

dl : 100 yds. from the next signal.

d2 : 200 yds. from the next signal.

d3 : 300 yds. from the next signal.
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Table 1-4. Mean and standard deviation of headway within platoon

'for all cases.
 

(A) Platoon leaving the signal

 

 

 

      
 

 

 

      
 

 

 

 

150 yds. 200 yds. 350 yds. 500 yds.

P .

'Non heavy

flow 2.2512 2.5670 2.9803 3.0024

0.855 0.8734 - 0.9878 0.9540

Heavy

Flow 2.08975 2.2748 2.4533 2.4814

0.869 0.7921 0.8535 0.8633

(B) Platoon with entering vehicles.

0 yds. 100 yds. 200 yds. 300 yds.

Heavy 2.1877 2.3523 2.4268 2.4886

flow 0.8256 0.7923 0.8756 0.9324

(C) Platoon approaching the signal.

lOOyyds. 2004yds. 300 yds.

Non heavy 2.5361 2.8857 3.0156

flow 0.8245 0.8973 0.8524

Heavy 2.2110 2.4914 2.5022

flow 0.8151 0.8122 0.8234

.J_     
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Table II-l. Incomplete Gamma Function F = 1;, f(t) dt.

111

 

 

     

T = 2 T =,3 T = 4 T = 5

NHLl 0.5703 0.1793 1 0.0364 0.0055

NHL2 0.7216 0.2799 0.0646 0.0104

NHL3 0.8479 0.4522 0.1508 0.0354

NHL4 0.8617 0.4586 0.1564 0.0367

HLl 0.4859 0.1445 0.0299 0.0049

8L2 0.5965 0.1718 0.0368 0.0064

HL3 0.6733 0.2379 0.0504 0.0076

'HLa 0.6936 0.2585 0.0583 0.0093
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Table II-Z. Polynomial Equations of A: f(x)dx = ao+ a1t+ a2t2+a3t3+a4t4

a0 a1 . a2 a3 a4

NHLl 1.0 0.2749 -0.3936 0.0825 —0.0041

NHL2 1.0 0.0629 -0.0211 -0.0667 0.0134

NHL3 1.0 -0.0762 0.1821 -0.1280 0.0185

NHL4 1.0 -0.1036 0.2259 -0.1454 0.0205

HLl 1.0 0.3402 -0.5611 0.1586 -0.0137

HL2 1.0 0.2474 -0.3192 0.0455 0.0009

HL3 1.0 0.1334 -0.1352 -0.0238 0.0086

HL4 1.0 0.1056 -0.0914 -0.0395 0.0103        



1.0.

0.8

0.6

0.4-

0.2~

 

Figure II—l.
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Plotting of I: f(x)dx.
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00

 

 

 

 

ft f(x)dx ‘ 2 3 4

Table II-3. Formulation of fo(t) = m = ao+a1t + a2t +a3t +a4t

f0 t f(t)dt

a0 31 8.2 33 a4

NHLl 0.4442 . 0.1221 —0.l728 0.0366 -0.0018

NHL2 0.3895 0.0240 -0.0082 -0.0259 0.0052

NHL3 0.3344 -0.0254 0.0609 -0.0428 0.0061

NHL4 0.3330 -0.0345 0.0752 -0.0484 0.0068

HLl 0.4785 0.1628 -0.2685 0.0759 -0.0065

HL2 0.4396 0.1087 -0.1403 0.0200 0.0004

HL3 0.4076 0.0543 -0.0551 -0.0097 0.0035

HL4 0.4029 0.0425 —0.0368 -0.0159 0.0041        
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Table II-4. Integrals of the Forward Recurrence Time Function E1

T = 2 T = 3 T i 4 T = 5

NHL1 0.2041 0.0432 0.0092 0.0012

NHL2 0.2638 0.0670 0.0145 0.0020

NHL3 0.3377 0.1192 0.0423 0.0059

NHL4 0.3427 0.1192 0.0348 0.0052

HL1 0.1830 0.0413 0.0082 0.0011

HL2 0.1988 0.0342 0.0070 0.0007

HL3 0.2366 0.0521 0.0117 0.0015

HL4 0.2557 0.0631 0.0135 0.0018       
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Table II—S. Calculate M(t) = I: tf(t)dt

 

 

 

     

T = 2 T =.3 T = 4 T = 5

NHL1 0.6457 1.6016 . 2.0861 2.2206

NHL2 0.4450 1.5394 2.2728 2.5093

NHL3 0.2512 1.2477 2.2850 2.7927

NHL4 0.2310 1.2480 2.3220 2.8258

HLl 0.7343 1.5649 1.9530 2.0622

812 0.6249 1.6627 2.1461 2.5264

HL3 0.5143 1.5825 2.2247 2.4116

8L4 0.4844 1.5594 2.2407 2.4546
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Table II-6. Calculate Mb(t) = f: t f o(t)dt

T = 2 T = 3 T = 4 T = 5

NHLl 0.7297 1.1172 1.2309 1.2320

NHL2 0.7009 1.1785 1.3552 1.3560

NHL3 0.6365 1.1800 1.4860 1.4880

NHL4 0.6379 1.1878 1.4868 1.4890

HLl 0.7329 1.0733 1.1848 1.1870

HL2 0.7401 1.1357 1.2229 1.2240

HL3 0.7150 1.1621 1.3002 1.3010

HL 0.7145 1.1813 1.3480 1.3490    
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Table II-7. Calculate N(t) = I: t2f(t)dt

T = 2 = 3 = 4 T = 5

NHLl 1.0197 .3879 .0410 5.6300

NHL2 0.7356 .4817 .9962 7.0336

NHL3 0.4259 .9666 .5606 8.8032

NHL4 0.3949 .9927 .7119 8.9348

HLl 1.1198 .1673 .4910 4.9696

HL 2 1.0078 .5775 . 2211 5. 7020

HL.3 0.8402 .5202 .6994 6.5178

HL 4 0.7940 .4844 .8184 6.7560    
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2

 

 

 

 

Table II-8. Calculate No(t) = I: t fo(t)dt

= 2 T = 3 = 4 T = 5

NHLl .9116 1.8570 .2393 2.2400

NHL2 .9025 2.0766 .6752 2.6760

NHL3 .8361 2.1853 .2337 3.2350

NHL4 .8381 2.1735 .9933 2.9960

HLl .8985 1.7271 .1046 2.1060

HL2 .9298 1.8930 .1815 2.1820

HL3 .9124 2.0078 .4715 2.4730

HL4 .9152 2.0613 .6257 2.6300      
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n

(A) Proof ofut

D(t) is the probability density function of the merging delay.

and 0*(3) = 7: 0 "St D(t)dt.

- n dI‘ * = m ‘1 = II
Thus ( 1) dsnD (s)lS=o lot: D(t)dt Ht

Since F0 and F are constants, from EQ 6—3

0* (s) = F0 + H* (t) F

 

 

 

  

 

by EQ 6-6

0* (s) = F0 + G0* (3) F

1—G* (s)

1 _ d d
ut — (-1)a§__D* (S)|S=O - E—EE G: (S)

1-G*(s) 8:0

9 66* (s) ._., <1—c* <s>)_d_ 60* (s) - cjcs) d (i-c*<s>)
ds -—-———-——- ds ds

l-G*(s) Is=o ,2

(l - G* (3))

— I: 8 00(6) dt f:G(.t)dt f: t G(t)dt

= 00 - 0° . 2 (EQ-l)

1 — IO G(t)dt (1- (O 0 (t)dt)

Since I: G (t)dt :11: f (t) dt = 1 - F

and I: Go (t)dt = f2 f o(t)dt = 1 - E).

_ ‘fTTf (t)dt l—F

(EQ-l)- 0 ° ’ Oth;f(t)dt

F F 0

1 _ _ - _ _
pt - F ( Mo(t) 1 F0 (M (t)) )

F

MO (t) + 1 - F0 M(t)

 

F
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2 d d2 0 *(s)
And U = D* (s)ls=o = F———2 0 .

t 852 ' d5 l-G*(s) |s=o

2 * ”' * * =d * * d *
<1 Go (S) - d { d D (8)} _ d (l-G (9))3; Go (6)-Go (S)__(l-G (8))

ds2 _ ds ds ds ds
l-G*(s) Is-o

u-cuafi

= { (1—G*<s>)2._i_,[ < 1 -G*<s>2d_Go*<s)-G*O<s)_f(1-G*<s>1]-(<1-g*<s)E_90*<s)
ds ds ds ds

- 00*(3) _‘_1_ (148(5)): (l-G*(s))2/ [1-0*(s)] 4 (80 -2)

ds ds

Since_(_1_(l-G*(s))2 = 2 (l-G*(s)lf__G*(s)

ds ds

and let A = G*(s) , B = Go* (3)

(EQ-2) = (l-A)2 [ (l-A)_d_B - B_d__ (141)] +2[ (l-A)__d_ B-B 9.040]d

dS ds ds ds ds

.(l—A) LVEl-A] 4

ds

(l—A) [(l-A) 8 - 1'35. +18 21 + BA] + [(1-A)1'3 +BA] . 271/

um?

(l-A)2 8 + B(l—A)A + 2(1rA) AB + 2B(A)2 / (1—A)3

Since l-A = F

813:0 = TOT (:2 fo(t)dt = No(t)

243:0 = I: t2 f (t)dt = N(t))

Als=o = I: t f (t)dt = M(t)

»Bls=0 = {it fo(t)dt = M0(t)

A|s=o =JTO f(t)dt = 1.- F

8|S=o = fzfo(t)dt= 1 - F0
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F'( F2 N0(t) + (l-Fo) F N(t) -2mt)Mo(t)- 2(1—Fo)Mo(t)2}

F3

No(t) + L;i__N(t) +_‘:)'_ M(t) { Mo(t) + l_-_:2_M(t) }

F

No(t) + 1:313. M(t) +:F_Z_ M(t) utl .

F
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(B) Proof of EQ 6-11

Let the mean and the variance of the first kind, say group A,

of the population (which has P percent) be M1 ando 12, let the mean

and the variance of the rest be M2 ando 2. For the overall population,

let the mean of M3 and variance be 032.

Obviously, we will have

and 0 2= 1 n (Xi 4 M )2 (EQ - l)
3 ———-z 3

N i=1

where N is the population size, also we let Nl

be the size of group A, and N2 be the size of the rest

Then EQ -1 will write,

1 Z 2

 

_ z 2
-'fi‘ { 158(Xi ‘ M3) + iea (Xi ' M3) }

_ 1 >3 2 z 2

- N" {18A (Xi ' Ml+ M1 ‘M3) +ieA (Xi 'M1+M2 'M3) }

= 119- { N1 12A (X1 -M1)2 + N1(M1 “143)2 } + 1 _{NZ ’3 (Xi‘Mz)2
Nl N N2 isA

ll

2 2

.51.. o .31. (M1 “M3) .E2_ 0 2 N2_(M2 -M3)

N 1 + N + N 2 +N

Noting that, in our case

2 2
3 = P 012 + 8 (M1 -PM1)2 + (l-P) (P M1)
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2 2
= P 0 + P (1 - P) M.l

1

Q. E. D.

(C) Proof of EQ 6-15.

Since for any random variable Z, X and any constant a, we

have

E (.z-a)2 = 8 <2 - 8(2))2 + (R (z) - a)2

Using the relation

8 (z) = E (E(ZIX) )

Then

VAR <z|x> = E< (2 - E(Z) ).2IX)

= M (2 -E (zlx)2 Ix) + (E (zlx) - E(Z) )2

By taking expectation of both sides, we obtain,

VAR (2) - E (VAR (zlx) ) + VAR (zlx).
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91

92

93

95

R
)

14

15
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125

SIMULATION PROGRAM FOR PHASE ORE NUDéL,

PROGRAM MERCEitCUTLUT=05) ‘

DIMENSION ARRHP(1003).XLEAV(100 )

I=J:0

T=3.

TNAIT=ABTT=TWATP=9

ARRHI=O

TLMIT=3600.

TMOVE=2.

N:0

YK:9,9046

YA:3.3

EXPzfi.

IF(YK.CE.1)GO Th 91

YK=1 ~

GO TD 93

JK:YK

YKC:JK

Y0=YK~YKC

R=RAHF(1)

IF(R.LT.Y0)HO Th 92

YK=YKC

GO TO 93

YKzYKC+1

KleK

TR=1.U

DO 96 11:1.K1

R=PANF(1)

TR=TR*R

Y=~ALOG(TR)/YA

ABTTsABTTfY

IF(ABTT.GE.TLHI*)00 T0 999

IF<J.GT.0)80 To 15

X=-EXP*ALOG(RANI(1))

ARRMI=ARRMI+X

I=I+1

J=J+1'

ARRMP<I>=ARRMI+IMOVE

IF(I.E0.1)GO T0 14 .

IF!ARRMP(I).GE.XLEAV(I'l))00 TL 14

WAITB=XLEAV(I-17'AHRMP(I)+1HFVE

THATB=TWATB¢WAITB

M=M+1

ARRMP<I>=XLEAV(I-l)+TMCVf

CHECK=ARRMP(I) ‘

IF(CHECK.GT.ABTT)GU T0 1

GAPzABTT-CHECK

IF<GAP.GE.T)GO 10 13

CHECK=ABTT

GO TO 1

J=J~1

XLEAV(I)=CHECK

NAIT=XLEAV(I)-ARHMP(I)

TWAIT=TKAIT+HAIT

00 T0 2

 





999 XI=I

Xkafl 126

AVHM=THAIT/XI

AVHS=TWATB/XM

PRINT 99,AVNN,A¥WS.I '

99 FURMAT(* AVE HERGIVG DFLAY3'.7L_.4.* AVE DELAY BEFORE NERGI

CNG=*,F10.4,* TOTAL UIEQR MOL:w,15)

ENI)

 





0
0
0
0
0
0
0
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SIMULATION PROGRAM FOR PHASE Th0 MODEL

PROGRAM MERGE2(0UTPUT=05)

DIMENSION XHEADQSD);XAT(1ft‘),XLT(l a?)

XHEAU(1)=3.8

XHEAD(2)=6,9

XHEAD(3)=9.6

XHEAD(4)=12.U

XHEAD(5)=1412

DO lSO 1136953

XHEAD(II)?XHEAUCII-1)+2.1

150 CONTINUE

SP=14.5

EXP=10.

THOVE=2.

DIST=509.

T=3.

FLOH=1000;

XLIMT=3600.

“=0

XLVLT=0

NJA:U

NIAS:U

IPASS=0

TIH58=C.

TIMNS:0 1

Jng

NNOCY=O

ABT=OI

ABTT=0.

JJzo

GT=40.

RT=20'

IAS=O

JA=0

XLT(1)=

WAITS=0

WAIT=0

ABAT=-EXP*ALOG(FANF(1))

IPS=0

IM=0

JPS=O

XLVLT=0.

LDIWG=0

KDING=0

IHR=0

ING=O

MSIGl‘O

CT=GT+RT

NHG=0

NHR=0- -

FARRT=DIST/SP

152 JJ=JJ+1

IF(CT'XHEAD(JJ))1;151:151

151 N=N+1

0
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202

203

204

206

91

92

93

95

41

42

43

45

106

GU T0 152

IF(FLOw.EO.SUO.i)GU 10 21. 128

IF(FLOH.EQ.6U9.‘)GU Tof2J2

IF(FL0H.EQ.BUO.7>GU T0 2-3

IF(FL0w.EQ.1033.;)n0 TH 1:4

YK=10.0

YA=3.33

GO TO 206

YK=160.0

YA=13033

GO TO 206

YK=4300

YA=6.66

GO TO 206

YK=2205

YA=5.00

GO TO 206

YK:14.40

YA=4.00

IF(YK.GE.1,) mu T0 91

YKzl,

GO TO 93

JKzYK

YKC=JK

Y0=YK-YKC

R=RANF(1)

IF(H.LT.Y0> GU TD 92

YK=YKC

GO TO 93

YK=YKC+1

K1=YK

TR=1.0

DO 95 11:1:Kl

R=RANF(1)

TR=TR*R

Y=—ALOG(TR)/YA

ABTzABT+Y

IFCABT,UT.XLIHT) cu T0 999

IAUTzACT

ICT=CT

NOCYzlABT/ICT

XNOCY=HOCY

TT=CT*(ABT/CT~ALHCY)

IF!TT.LE.RT) GO TO 4 ‘

IF((NWG.EQ.0).AHD.(HwR.Eu.y))GC T3 41

GO TO 42

FAET=A8T+FARRT

IF(NOCY-NNOCY) ?;7;6

IF((MNG.EQ.0).ARD.(HwR.FU.F))GC T3 43

GO TO 45

FAET:ABT+(RT-TT}+3.8+FAFHT

IF(HOCY*NNOCY)5;5:6

1NR=INR+1

NWR:NWR*1

M8101=0

GO TO 1

NNOCY=NOCY

GO TO 8 _

IF(LanG.EQ,KDIwG) am T0 in)

MSIG1=1

ING=IHG+1
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115

116

110

11

15

49

40

47

141

142

17

171

172

173'

174

176

277

GO T0 1 129

IF((TT-RT>.GE.YJ GU 70 115

YC:Y

GO TO 116

YC=TT~RT

IIMzNNG+NWR

IFfYC.LE.(XHEAD(IIH)+TH0VE))C0 T0 113

LDIHG=KDING

KDIHG=IHG

GO TO 106

uwn=mwe+1

GO TO 106

ABT=ABT“Y

IF(IM.E0.0) GO TU 9

JPS=JPS*IM

INTT:IHR+ING

JPS=IWTT-IPS

IF(JPS.GT§M)GO 70 1T

[Hza

GO TO 11

JPS=N

IMzN-JPS

IPS=IPS+JP3

IPA38=JPS

ABTT:FAET

IFcABTT.LE.XLVLT) GO TO 15

GO TO 49 '

ABTT=XLVLT

IFLABTT-ABAT)17:17.43

IF(IAS.EU.0)GU To 27

IF((ABTT-XABAT).GE.T) no Tn c7

1F(ABTT.GE.XABAT) nu Tn 147

GO TO 17

HAIT=1

XABTT=ABTT

XABAT=ABTT

GO TO 17

JL=JL+1

IF(WAIT.EO.1) UV T“

XLT<JL)=XABAT

GO TO 142

XLT(JL)=XABTT

IAS:IAS‘1

uAIT=0

GO TO 40

IF<DIST.EQ.1UO.')GU T0 171

IF(DIST.E0.200.")GU TO 172

IF(DIST.EQ.350.')GU TO 173

IF(DIST.GE.500. )GU T0 174

IFCJPS.GE.10)GU T0 176

GO TO 277

IF(JPS.GE;10)GU TO 175

GO TO 179

IF(JPS.GEg10)GB TO 185

GO TO 281

IF(JPS.GE;10>GG TO 282

GO TO 283

YYK=5.7829

YYA=1/005613

GO TO 117

YYK=609326

r
4

A

'
.
.
‘

 





179

178

281

117

81

82

83

19

27

145

46

YYA=1/0.3247

GO TO 117

YYK=806382

YYA=1/D.2971
130

GO TO 117

YYK=80247S

YYA31/002758

GO TO 117

YYK=9.1641

YYA:1/0.3263

GO TO 117

YYK=80259

YYA=1/0.297

GO TO 117

YYK:9,9046

YYA=1/0v3031

GO To 117

YYK=8.2617

YYA=1/0,3OCS

IF(YYK,GE.1.)GU T0 81

YYK=10

GO TO 83

IKzYYK

YYKC=IK

YY0=YYK‘YYKC

R=RANF(1)

IF(R.LT.YYu) um T0 8?

YYKzYYKC

GO TO 83

YYK=YYKC+1

KK=YYK

TR=1.0

DO 85 12:1.HK

PzRANF<1>

TR=TR*R

YY=~ALOG<TP)/YYn

FAET=ABTT1YY

JPS=JPS'1

ABTTzABTTrYY

IF(JPS.EO.Q)GU ”H 19

GO TO 49

XLVLT=ABTT

NWP:0

”MG-'30

Go TO 700

HzPANF(l)

X=-EXP*ALOG<R)

ABAT:ABAT?X

IAS:IAS +1

[ENTzlENTtl

JA=JA*1

IF(JL.E0.0) GO TO 46

IF(ABAT.LT.XLT(JL))GQ Tn 145

GO TO 46

WAIT53XLT‘JL)-ABAT*HAITS

XABAT=XLT(JL)+THOVE

XAT(JA)=XABAT

GO TO 40

XABAT=ABAT

XAT<JA)=ABAT

GO TO 40

 





999 Do 30 JT1=1.JL

TIHM=XLT(JT1)-XAT(JT1) 131

TIHHS=TIMMS+ TIHH

30 CONTINUE

XJL=JL

AVFHM=TIMMS/XJL

TIMSS=TIMMS+NAITS

AVEIHS=TIMSS/XJL

PRINT 32a IPS

PRINT 33.'AVFNM

PRINT 54. AVEIHS

PRINT 35. JL

PRINT 39aFLON.EXP,T,DIST

39 FORMAT(* ~MAIN FLJH=*,F1.,4.*HIJOR FLON=~,F1 .4.* T=*,F4.2.t

C DISTANCE:*,F1’,4) . .

32 FORMAT(~ VOL VEH PER HR = .1114)

33 FORMAT(* AVE WAITING TIHF IN.THE WCRJING PLACE : t.F15.4)

34 F0RHAT(* AVE WAITING TIME IN THH.3YSTEM = .,F1;.4)

35 FORMAT(* VOL In Mlman STREAM = .11; )

END

 





Q
Q
O
O
O
O
O

150

132

SIMULATION PROGRAM roe PHASE TFPFE MODEL.

PROGRAM MERGE3IDUTFUT=n5)

DIMENSION XHEAD!50),YAT(ITE'5.XLT(1IJO),3XLT(1.

xHEADI1)=3.8

XHEAD‘2)=6.9

XHEAD<3)=?.6

XHEAD(4)=12.0

XHEAD(5)=14.2

DO 150 1136,50

XHEAU<II>=XHEAD(11-15+2o1

CONTINUE

SP=14,5 ’

XDIST=800.

NJA=0

QLVLT=0

IENT=0

QXLT(1)=n

NJL=0

QARTT=0

QTIH8=0

QHAIT=O

EXPP=10.

EXP:1OI

TMOVE=2.

0137:503.

T=3.

FLOW:1000¢

xLIMT=3600.

N=0

XLVLT=0

NJA=0

HIAS=0

IPASS=0

TIMSs=0.

TIMMS=00

JL=0

NNOCY=0

ABT=00

ABTT=00

JJ=0

GT=4OO

RT=200

IAS=O

XFART=XDISTISP

QABAT3-EXPP*ALOG(RANF(1))

A8AT:-EXP?AL00(HANF(1))

IPS=0

IM=0

JPS:0

XLVLT=0.

LDIwc=o

.).CXAT(100§)

 





KDIHG=C

INR=0

IHG=O

HSII§1=U 133

CT=GT+RT

NNG=0

NHR=0

FARRT=DIST/SP

JJ=JJ+1 _

152 [F(CT-XHEAD(JJ)I1:151:151

151 N=N+1 52

GO TO 1

1 IF(FLOW.EQ.SGO.’)GO TO 213

IFIFLOW-EQ.600.’)GO TO 2-2

IF(FLON.E0.800.‘)G0 T0 2I3

IFIrLow.EQ.1ooc-0)Go To 2:4

YK=1000

YA=3.33

GD 70 206

210 YK=160.0

YA=13.33

GO TO 206

202 YK=4000

YA=6,66

GO TO 206

203 YK=2205

YA=5.00

GO TO 200

204 YK=14040

YA=4.00

206 IF(YK.GE.1.) GO TO 91

YK=1.

GO TO 93

91 JKzYK

YKC=JK

YQ=YK-YKC

R=RAMF(1)

IF(P.LT.YQ) GO TO 92

YK=YKC

GO TO 93

92 YKzYKC+1

93 K1=YK

TR=1.0

DO 95 11:1.K1

R=RANF(1)

95 TR=TQ*R

Y=-ALOG(TR)/YA

’ = 8T+Y

2 1EIAST.GT.XLIMTI GU T0 999

IABTaABT

ICT=CT

NOCY=IABTIICT

XNOCY=NOCY

TT=CT*(ABT/CT-XN$8Y;

‘ . 5.8T) GO “

1;:ILWE.EQ.D).AND.(NMR.EO.U)\GC T3 41

GO TO 42

41 FAET=A8T+FARRT - 7 6

0CY“NNOCY) 7: a w 4

4% 1;:?NNG.EQ.0).AWO.(NMR.EH.U))GU TJ 43

GO TO 45

 





3 FAET=ABT+(HT-TT)+3.8+FAPFT

45

11

15

49

40

147

47

141

142

17

171

IF(NOCY-NOOCY)5,5.6

INR=IWR*1 134

NHP=NNR+1.

MSIGl=0

GO TO 1

NNOCY=NOCY

GO TO 8

IFtLDIwG.Eo.KDIwG) GO TO 135

MSIGl=1 '

ING=ING+1

GO T0 1

IF((TT-RT).GE.Y) GO TO 115

YC=Y

GO TO 116

YC=TT~RT

IIN=NNG+NNR ,

IF<YC.LE.(XHFAO(II“)+TROVE))OU T7 11C

LDIHG=KOING

KDIwG=IHG

GO TO 106

HHG=HNG+1

00 To 106

ABT:ABT‘Y

IFfIM.EQ.0) GO TO 9

JPS=JPS+IM

INTT=IHR+IHG

Jps=1wTT~IPS

IFIJPS.GT4M)GO To 1?

IM=0

GO TO 11

JPS=H

IM=N-JPS

IPS:IPS+JPS

IPASS=JPS

ABTT=FAFT

IFIABTT.LE.XLVLT) mu TL 35

GO TO 49

ABTTzXLVLT

IF(ARTT-ABAT)17,17.4O

IF<IAS.E040)GU To 27

IF((ABTT-XABAT).GF.TI GO TO a7

IFCAQTT.GE.XABAT) 00 T“ 147

GO TO 17

WAIT=1

XABTT:ABTT

XABAT=ABTT

GO TO 17

JL=JL+1

IFINAIT.EO.1) On TO 141

XLT<JL>=XABAT

GO TO 142

XLTIJL)=XAHTT

IAS=IAS“1

HAIT=0

GO TO 40

IFIDIST.ED.1DO.')GU TO 171

IF(DIST.EQ.200.')GU TO 172

IF(DIST.ED.350.5)GO T0 173

IF<DIST.GE.500.")GO TO 174

[F(JPS.GE.10)GU TO 176
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.

 



172

173

174

176

277

179

178

281

180

283

282

117

82

83

85

19

27

GO TO 277

IF(JPS.GE.10)GO T0 178

GO TO 179 135

IF(JPS.GE§1C)GO T0 18.

so T0 281

IFCJPS.GE.10)G0 T0 282

GO TO 283

YYK=5.7829

YYA=1/0.3613

GO TO 117

YYK=609326

YYA=1/0.3247

GO TO 117

YYK=806382

YYA31/092971

Go TO 117

YYK=802475

YYA31/092758

GO TO 117

YYK=9.1641

YYA=1/O-3263

GO TO 117

YYK=8.259

YYA31/00297

GO TO 117

YYK=909046

YYA31/033051

GO TO 117

YYK:832617

YYA=1/003003

IF<YYK.GE.1.)GO T0 51

YYK=1I

GO TO 86

IK=YYK

YYKC:IK

YYO=YYK~YYKC

R=RANF(1) A

IFIR.LT.YYO) GO TO 82

YYK=YYKC

GO TO 83

YYK=YYKC+1

KK=YYK

TR:1.0

DO 85 12:1.KK

R=HANF(1)

TR:TR*R

YY=-ALOG(TH)/YYA

FAET=ABTT£YY

JPS=JPS-l ‘

ABTT=A8TTtYY

IFIJPS.E0;0)GO TO 19

GO TO 49

XLVLT=ARTT

NWR=0

NHG=0

GO TO 700

R=RANF(1) -

X:-EXP¢ALOG(R)

ABAT=ABAT$X

IAS=IAS +1

IENTzlENTsl

 



145

46

700

315

349

340

447

347

341

442

317

478

417

481

482

483

485

JA=JA+1

IF(JLIEQ00) GO TO 46 136

IFIABAT.LT.XLT(JL))GO TC 145

GO TO 46

NAITS=XLT¢JL)-ABAT+HAITS

XABAT=XLT£JL)+TMOVE

XAT(JA)=XABAT

GO TO 40

XABAT=ABAT

XAT(JA)=ABAT

GO TO 40

IENT:0

IPASS=IPASS*IENT

QABTT=XFART

IF<QABTT.LE.OLVLT)GO TO 315

GO TO 349

QABTT=OLVLT

IF(OABTT-QABAT)317a317a34Z

IF(NIAS.EQ.O)GO TO 327

IF((OABTT:OOXAHI.GE.T)GO TO 7-47

IF(QABTT.GE.GOXAR)GO TO 447

GO TO 317

0NAIT=1.

QOAAT=OABTT

QOXAB=0ABTT

GO TO 317

MJL=HJL+1

IFIQwAIT.Eu.1.)CO T0 341

0XLT(MJL)*OOXAH

GO TO 442

0XLT(“JL)?OOAAT

MIAs=MIASzl

OHAIT=0

GO TO 340

IFIIPASS.GE.10)GO T0 478

YHK=802617

GO TO 417

YHK:9.9346

YOA=1/0.3031

IF<YHK.06;1> GO TO 491

YHK:1.

GO TO 483

IHK=YHK

YHKC=IHK

YHO=YHK‘YHKC

R=RANF(1)

IF(R.LT.YHO)GO T0 482

YHKzYHKC

GO TO 483

YHK=YHKC+1

HKzYHK

TR=1.0

DO 485 13¥1.MK

R=RANF(1)

TR=TR*R

YYO=vALOGCTR)/YOA

XFAET=OABTT+YYO

IPASS=IPASS-1

QABTT=OABTT+YYO

IF(IPAS$.EC.0)GU T0 319

 





GO To 349

319 QLVLT=UA8TT

Go To 2 137

327 XO=-EXPPtALOG(RANF(1))

0A8AT=0ABAT+XQ

MIAS=MIAStl

NJA=NJA*1

IF(MJL.EQ;G>GO T0 344

IF(OABAT.LT.QXL7(MJL))GO TO 445

GO TO 340

445 NAITS=0XLT(MJL)~0AHAT+NAITS

QOXAB=QXLT(MJL>+TMOVF

OXAT<NJA>$OQXAB

'80 To 340

346 OXATcNJA);nABAT

QOXAR=OABAT

GO To 340

999 D0 30 JTl=1.JL

TIMM=XLT(JT1)-XAT(JT1)

TIMHs=TIMMs+ TIMH

3a CONTINuE

DO 333 MJTl=laHJL

QTIMM=OXLT(HJT1)-OXAT(HJT1)

QTIMS=OTIMS+0TIMM

330 CONTINUE

MSM=JL+HJL

XMSNzMSM

SUMm=T1MMS+QT1ma

TIMSS=TIMH5+wAITs

AVENM=SUMM/XMSH

AVEINS=TIMss/XMSM

PRINT 32. IPS

PRINT 33. AVEwr

PRINT 34. AVEIHS

PRINT 35. OL

PRINT 35. HJL

PRINT 39,FLOH,EXP.T,UIST

39 FORMAT(* MAEN FLUH=*»F1*.4.vMIJOR FL3N=*aF1 .4.* T=*:F3.2}?

C DISTANCE=*.F1 .4)

32 FORMAT(* VOL VFP wan up = .;13:)

33 FORMAT(~ AVE wAITInG T1“? In THE WCRSING PLACE : .,p4,,4;

34 FORMAT(* AVE WAITING TIME IN TFE SYSTEM = 4,?1‘.4)

35 EORMAT(* an 1H mxuow STLEAH = «;I;.)

ND
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