THE NEED OF A PHOSPHORUS SUPPLEMENT WITH ALFALFA HAY AS THE PRINCIPAL SOURCE OF PROTEIN IN THE RATION OF DAIRY CATTLE MHESS POR THR DEGRMR OR M. S. Leland W. Lamb 1931

Treding + We dug elitp Cautbr

Davry hivelariby

THE NEED OF A PHOSPHORUS SUPPLENENT AITH
 alfalfa hay as the principal sounce of
 PROTEIN IN THE RATION OF DAIRY CATTLE

HHER IEED OF A PHOSPHOZUS SUPPLETENT :IITH

 aIfalya ilay as qie privicipal souice ofPROTEIN IN THE RATION OF DAIRY CATMIE

Thesis

Respeotfully submitted to the Graduate Sahool of Michigan State College of Agriculture and Applied Scienoe in partial fulfillment of the requirements for the degree of Master of Soience

The author of this thesis wishes to express his sinoere appreciation to Mr. C. F. Huffman, Research Associate in Dairying, for his help in planning and conduoting this experiment. His unfailing interest in the work and his timely suggestions have aided materially in doing the work, and in compiling this manuscript.

The author wishes to express his gratitude to Mr. E. I. Anthony, Professor of Dairy Husbandry, whose cooperation has made the writing of this thesis possible.

Appreciation is also expressed to Dr. C. S. Robinson, Experiment Station Chemist, and his associates for their cooperation and work in making the chemical determinations necessary in this work.

The writer also appreciates the work of Dr. E. T. Hallman, Professor of Animal Pathology, and his associates, who made the tests for B. Abortas infeotion.

TABLA OF CONTEITHS

A. IntroductionaB. General Discussion and seview of Literature 1
I. Source of Phosphorus in a Dairy Ration 1
a. Alfalfa Hey as a Source of Phos- phorus 3
(1) Factors Affeoting the Phos- phorus Content in Alfalfa Hay 6
(a) Phosphoric Acid Content of the Soil 6
(b) Rainfall 9
(c) The Cutting 11
(d) Maturity of the Plant at Time of Cutting 12
(e) Quality of the Hay 13
(1) Damaged by Kain 13
(2) Leafiness of the Hay 14
II Amount of Phosphorus Required for
Normal Growth16
III Amount of Phosphorus Required for Milk Produotion 20
IV Calcium-Phosphorus ỉatio for Normal Growth 25
V Phosphorus Deficiency in the Ration 29
a. Types of Phosphorus Deficiency 30
(1) Phosphorus Content Below Minimum 30
b. Evidenoes of Phosphorus Deficiency 31
(1) Depraved Appetite 31
c. Effects of Phosphorus Deficiency 35
(1) Calcium and Phosphorus Content of the Blood 36
(2) Reproduction on Phosphorus Deficient iations 39
(3) Osteoporosis 40
(4) Osteomalacia 41
(5) Styfziekte 42
(6) Lamziekte 43
(7) 2ickets 45
VI. Summary of the Review of Iiterature 49
C. Experimental Work 52
I. Object or the Experiment 52
II. Original Plan of the Experiment 53
a. Choice of Animals 53
b. Choice of Rations 53
c. Care and Feoding Metiods 53
d. Collection of Experimental Data 54
(1) Weighing 55
(2) Feeds 55
(a) Chemical Analysis 55
(b) Nutrients Required and Nutrients Consumed 55
(3) Feeding 55
(a) Plane of Nutrition 55
Page
(b) Mineral Supplement 55
(o) Salt 55
(d) Water 56
(4) Measurement of Growth 56
(a) Height at Withers 56
(5) Health Observations 56
(a) General Appearance 56
(b) Appetite 56
(6) Heat Periods 56
(7) Metabolism of Feeds 57
(8) Blood Analyses 57
(9) Photographs 57
(10) Autopsy of Dead Animals 57
III. Method of Procedure 58
a. Choice of Animals 58
b. Choice of Rations 59
c. Previous History of the Animals 59
d. Care and Feeding Methods 59

- Colleotion of Experimental Data 61
(1) Weighing 61
(2) Feeds 61
(a) Chemical Analyses 61
(b) Nutrients Required and Nutrients Consumed 61
(3) Feeding 61
(a) Plane of Nutrition 61
(b) Mineral Supplement 62
(c) Salt 62
(d) Blood Meal 62
(4) Measurement of Growth 62
(5) Health Observations 62
(a) General Appearance 62
(b) Appetite 63
(6) Reproduction 63
(a) Age at First Oestrum 63
(b) Heat Periods 63
(o) Number of Services for Conception 63
(d) Gestation Periods 63
(7) Metabolism of Feods 63
(8) Blood Analyses 64
(9) Milk Production 64
(10) Butterfat Production 64
(a) Monthly Tests 64
(11) Photographs 64
(12) Autopsy of Dead Animals 64
IV. Experimental $D_{a t a}$ 65
a. $D-2$ 67
b. $D-3$ 68
c. . $D-4$ 69
d. $D=5$ 70
- $\mathrm{D}-6$ 71
f. $D-7$ 72
g. D-8 74
h. D-9 75

1. $D-10$ 76

j. D-11 77
k. D-12 78
2. D-13 79
m. D-14 79
n. D-15 80
V. Discussion of Experimental Results 82
I. Period I. From 90 days of age to First Calving 82
a. Growth of the Animals 82
(1) Phosphorus Intake 84
(2) Phosphorus Requirement for Growth 84
(3) Calcium Phosphorus datio 86
b. Health of the Animals 87
c. Reproduction 90
II. Period II. First Lactation Period 91
a. Milk Production 91
(1) Phosphorus Intake 92
(2) Phosphorus Requirement for Milk Production 93
(3) Calcium Phosphorus Katio 94
b. Health of the Animals 96
c. Reproduction 98
D. Summary 100
E. Bibliography 103
F. Appendix 119a
a. Graphs 120
b. Tables 135
c. Plates 165
"More Home Grown Dairy Feeds to Cut the Cost of Milk Production", is a slogan which might be accepted by all dairymen on farms in regions where alfalfa hay oan be oconomically grown.

Because of its palatability and high protein content alfalfa hay is the most desirable roughage for dairy oattle. For this reason it is assuming a position of increasing importance in the rations of dainy oattle。

Several investigators have reported that rations consisting of alfalfa hay and the cereal grains furnish sufficient protein and total digestible nutrients for the production of from 35 to 40 pounds of milk a day. These reports have emphasized the importance of alfalfa hay as a source of protein. They have show that for economioal milk production less of the protein-rich concentrates such as cottonseed meal, linseed oil meal, corn gluten meal, and wheat bran need be fed with alfalfa hay to properly balance the ration.

Although alfalfa hay is the highest of the roughages in protein content, it like all roughages, is inherently low in phosphorus. The commonly used protein-rich concentrates, howerver, are rich in phos-
phorus. Corn silage, and the cereal grains, however, are comparatively low in this element. With the lessened amounts of the protein-rich concentrates needed to balance rations consisting of alfalfa, corn silage and cereal grains, there follows a decrease in the amount of phosphorus supplied by rations composed of these home grown feeds.

In view of the low phosphorus oontent of rations composed of alfalfa hay, corn silage and cereal grains, a question has arisen as to the ability of such rations to meet the phosphorus requirements of growing dairy heifers and lactating dairy cows which demand this - lement in large amountse This question seems an especially pertinent one for Michigan dairymen since analyses of samples of Michigan-grow alfalfa hay have revealed it to be comparatively low in phosphorus.

GENERAL DISCUSSION AIVD REVIEW OF IITERATUAE

The dairy cow requires comparatively large amounts of the mineral olements, calcium and phosphoras for body maintenance and milk production. It gields the greatest returns when a ration is fed which is composed, as far as possible, of home grown feeds.

The standard method of feeding dairy cows during the winter months is to give a dry roughage such as hay; a suoculent roughage, the most common of which is corn silage: and a grain mixture.

With alfalfa hay as the dry roughage less of the protein rich concentrates need be fed to provide a balanced ration. These ooncentrates are high in phosphorus. The question has arisen, therefore, as to the ability of alfalfa hay to provide for the mineral requirements of growing dairy heifers and lactating dairy cows when home grown rations are used. This is especially true in regions where alfalfa is low in phosphorus.

Sources of Phosphorus in a Dairy Ration

All roughages are, as a class of foeds, comparatively low in the element phosphorus. Grainseontain mach larger quantities of phosphoras than roughages. Protein supplements are, however, rich sources of phosphorus in a dairy ration.

The phoaphosus content of some of the more common foeds as given by drasby (la) are as followe:

Hay:

Alfalfa - 0.258 pereent Clover - 0.185	rengels - 0.269 percent Boet puly - 0.069
Timothy - 0.185	
Soy Bear - 0.257 *	
coreal Grains	Protein Concontrates
Corn - 0.303	Wheat bran - 1.235 percent
0ats - 0.484	Ifingeed 011 meal 0.786
Wheat - 0.485	cottomseed meal - 1.479
Homry and Morrison (2) gave the phosphorus con-	
tent of common barley and	masilage as 0.371 percent
nd 0.007 percent, respec	

Palmer (87) inte phosphoras peor, modium phosphorus and phosphorus riok as followe:

Fhesphorua Poor	Hedium Phosphoras	Phesphorus Rich
Pearl Hominy	111 Cereal Oraing	Wheat Aran
Polished dice	Alfalfa Hay	Wheat Middlinga
Poot Pulp	Corn Stover	Red Dog Fleux
red Olover Hay	Corn Silage	Legume Seeds
Timothy Hay	Smeot Olover Hay	Cottonseed Yeal
Coreal Strame	Viotoh Hay	Linseod 011 Moal

It is admitted that the content of any element In any feed will vary from time to time. For this reason the aoove figures are not absolute. They do, however, present the accepted idea as to the value of the different feeds as sources of phosphorus in a dairy ration.

Alfalfa Hay as a Bource of Phosphorus

Fron the foregoing tables it is seen that although all roughages are low in phosphorus alfalfa is the highest in this respect.

Figures from different investigators showed a wide variation in the amount of phosphorus contained in alfalfa hay obtained from different localities.

Huffman (3) reported an average phosphorus analysis for nineteen samples of Michigan-grown alfalfa hay as 0.178 percent. These samples were taken over a five year period.

Henderson (4) working with dairy heifers in an attempt to determine the effect of low phosphorus rations on growth, used alfalfa hay purahased in Michigan. It contained an average of 0.159 percent phosphoruse

Ames and Boltz (5) in a study of the nitrogen and mineral constituents of plants as afected by fertilisers reported a large number of samples of alfalfa hay to have an average of 0.254 percent phosphorus. These same investigators gave 0.2901 percent as the phosphorus content of alfalfa hay when comparing it to other farm crops.

-
-
-
-
-

Huffman (3) found a variation in phosphorus of from 0.120 percent to 0.250 percent.

Moll (74) studied alfalfa hay as the sole feed for dairy atook. He found that dairy heifers from one Jear to eighteen months of age, and carried through one and in some cases two lactations, made satisfactory growth, and reproduced satisfactorily. He also found that heifers fed alfalfa hay supplemented by a grain mixture were slightly heavier at freshening time, and produced more milk and more butterfat than those which did not receite grain. The increased milk and butterfat by grain feeding, however, barely paid for the grain. These results speak well for alfalfa hay as a feed for dairy cattlo.

Fraser (75) is a groat exponent of alfalfa as a feed for dairy cattle. He gave the phosphoras content of the hay as 0.20 percent. He reported satisfaotory and economical production on alfalfa hay alone as a feed for dairy cows.

Meigs (76), after comparing alfalfa hay to timothy hay stated that alfalfa hay combined with a comparatively simple mixture of concentrates made a complete or nearly complete ration for dairy cows. In his grain mixture, however, he used corn meal, wheat bran, linseed oil meal and oottonseed meal.

Forbes and co-worker (77) reported the following analyses for alfalia hay used in their experiments conducted while studying "the mineral metabolism of the
\square

Milch cow": Peroent phosphorus 0.169; 0.166; and 0.180. Jones and Bullis (78) made a chemical study of legumes and other forage crops of western Oregon. They found that on an air dry basis alfalfa hay from the Talley section contained 0.221 percent phosphorus and hay from Sopthern Oregon oontained 0. 224 percent phosphorus.

Forbes and co-workers (79) reported alfalfa hay as containing 0.221 percent phosphorus.

Bokles, Beoker and Palmer (83), studying mineral deficiencies in the ration of dairy cattle found that less trouble was experienced when legume hay was fed in the place of commonly used prairie hay, but the use of home grown alfalfa hay by no means insured freedom from the trouble. They found one herd of cattle showing especially severe symptoms of phosphorus deficiency, including broken bones, which receited alfalfa hay regularly.

Theiler and oo-workers (49) in studying depraved appetite in range cattle stated that "supplementary foods such as mąise and lucerne do not reduce osteophagia (bone chewing) anless relatively rich in phosphoras and fed in uneconomical amounte".

A review of the literature has not revealed a figure lower than the 0.120 percent reported by Huffman (3). His high figure, 0.250 percent, however, comes far from being the maximum percentage reported. Ames and Bolta (5) gave 0.3415 percent phosphorus as the amount contained in one of their series of samples.

It is therefore evident that the amount of phosphorus in alfalfa hay may vary within a wide range. Thus, from a phosphorus standpoint at least, some alfalfa hay may be two or three times as valuable as some other hay made from the same plant.

Factors Affecting the Percentage of Phosphorus in Alfalfa Hay

Phosphoric acid content of the soil. Ames and Bolts (5) in showing the effeot of phosphate fertilisers on the amount of phosphorus in hay grown on such fertilized soils, stated that hay from plots which reoeived no fertilised contained an average of 0.2276 percent phosphorus. Their data for hay sown on plots which had recei red phosphate fertilizer showed an average phosphorus peroentage of 0.2601. In their work the amount of lime used with the phosphate affected the phosphorus content of the hay. From plots which received lime at the rate of 2500 pounds per acre the phosphorus content averaged 0.2578 percent. Those plots which received lime at the rate of 5000 pounds per acre gielded an alfalfa with 0.2518 percent phosphorus. These figures included plots which received no phosphate as woll as those which reoeived a liberal application of phosphate. The effect of lime on the phosphorus content of the alfalfa when used with and without phosphate fertilizer is as follows:
\square

Iime | $(2500$ |
| :--- | :--- | :--- |
| $(5000$ |\quad No Phosphate 0.2133

Burke and co-workers (6) studied the effect of fertilizing alfalfa plots with phosphate. In their work the addition of 200 poands of treble superphosphate per acre increased the yield thre percent and increased the phosphoras content of the orop 10.41 percent in the first outting. The increase for the second outting was, yield 3.1 pereent and hosphoras content 6.39 percent. They stated that their results showed clearly that phosphate fertilizer could increase the phosphorus content of alfalfa, clover, and timothy.

Price (7) fertilised alfalfa fields with limestone and acid phosphate with the resalt that the fields as well as the calcium and phosphorus contents of the hay were inoreased. His data is rather striking.
Treatment First Cutting \quad Yield per A. Ca • \% P. Yield per A. $\% \mathrm{Ca}$. \%P.

Ho treatment $\quad 728$ pounds 0.560 .054500 pounds 1.520 .259
2 tons limestone

2 tons Iimestone
and 250 pounda acid phosphate per acre

1149 "
2.630 .205933 n
1.630 .310

Mather (8) analysed alfalfa hay from plots which had been fertilized with phosphate fertilizers to determine
\therefore. . . J
\pm
the partioular fraotion of the phosphorus which was inoreased. His conclusions were that the increase in phosphorus in alfalfa hay following the application of fertilisers was practically all confined to the inorganio fraction.

Burke and co-workers (6) reported one oase in Cascade County, Montana where the applioation of phosphate fertiliser increased the yield of alfalfa hay l2.5 peroent and the phosphorus content of the hay 21.09 peroent. His work with plots showed an increase of 41.9 peroent phosphorus in alfalfa, 30.6 percent in olover and 24 peroent In timothy. All plots jielded muah greater growth than the unfertilized plots.

Ames and Bolts (5) stated that the phosphorus supply of the soil as increased by the addition of acid phosphate was reflected by the phosphorus content of the crop which followed the same order as theyields obtained. Arohibald and Nelson (80) found that fertilizing the soil with 55 pounds nitrogen, 55 pounds $\mathrm{P}_{2} \mathrm{O}_{5}$ and 67 potnde of $\mathrm{K}_{2} 0$ per are resulted in raising the phosphorus content of the dry matter 10 percent over the anfertilized check plot while the average total production of phosphorus In six plots was 42 percent more per acre.

Theiler and cu-workers (49) reported the available phosphoric acia content of the soil in the area of severe phosphoras deficiency as 0.0005 peroent. They stated after experimenting with fertilisers that acute bone chewing
practicially disappeared when animals were turned on to plots fertilized with high grade superphosphate.

Crawford (53) observed that the district which showed the highest calcium and phosphorus soil contents produced the best animals.

Theiler, Green and duToit (38) stated that their experiments using plots for studying range vegetation indicated that the phosphorus deficiency of the seil and lack of rainfall were the two main factors limiting the oarrying capacity of the ranges.

Mainfall

Fallon (9) stated as a result of studies on irrigated alfalfa fields that in Nevada irrigation inoreased the phosphorus content of alfalfa hay. Hay from fields which had not been irrigated for five years contained 0.175 percent phosphorus on a dry matter basis, while hay from similar fields which had been irrigated frequently contained 0.220 percent phosphorus.

Widtsoe and stewart(10) studied the effect of different amounts of irrigation water on the chemical composition of orops. They stated that in general the more water applied resulted in orops with higher ash content. Their results were as follows:

Percent Ash in Alfalfa Then Different Amounts of Water Are VISOL

Water in Inches First Crop Second Crop Third Crop

10.00			8.16
20.00	7.48	8.62	8.55
25.00	8.62	8.58	8.15
30.00	8.37	8.56	$-\infty$

-
-
-
-
-

Water in Inches First Crop Decond Crop Third Crop 35.00
50.00
12.28
9.16
8.79
8.53

Theiler and coworkers (49) reported a definite connection between the rainfall and symptoms of phosphorus deficiency. During May and June when these symptoms were at their height the grass was old and dry and showed but 0.017 percent to 0.034 percent phosphorus in the dry matter. During Ootober and November after the rains had come the joung grass showed from 0.24 percent to 0.274 percent phosphorus in the dry matter. Subsequent. to these rains the bone chewing among the cattle ceased.

Comparing the composition of forage in areas in which phosphorus deficiency was prevalent, with unaffected areas, Scott (41) stated that soll analyses showed a high calcium content and an apparently adequate phosphorus content. He was at a loss to explain the fact that the forage orops grown on these soils were deficient in phosphorus. He inferred that the soil phosphorus was for some reason notreadily available. He also stated that the amount of precipitation during the years of his investigation had no effect on the mineral content of the grasses.

Welch (43) stated that in very dry years soils containing plenty of minerals may produce forage deficient in mineral oontent as there is not enough moisture to dissolve the soil constituents so that the plants could take them up.
\square

Feldig, HoDole, and Magnason (21) atudied the offects of saliar, caloinn, and phosphoras on the gield and composition of alfalfa on six types of Idaho soils. They found that the addition of phosphoras in the form of treble saperphosphate inoreased the gield on all but twe soils. The arid soils gave greater response to applications of phosphate than did the humid abils. The equivalent of 200 pounds of treble superphesphate per acre was used. In some cases, particularly Moscom loam, the increase in yiell was 71.8 percent.

Mokles, Beoker and Palmer (85) found that in 1928 With 17.49 inches of rainfall the alfalfa hay contained 0.199 pereent phosphoras, while in 1924 with 21.98 inohes preoipitation the phosphorus was 0.221 pereent.

It was the observation of all the investigators atudying phosphorus defioioney that the symptome were usually much more pronounced in dry jears.

The Oattins

Hency and Yorrison (11) gave the percentage of phosphoris in the different outtings of alfalfa hay as followis first 0.256; second 0.236; third 0.282; fourth 0.214 pereent.

The average percont of ash for the three outtings reported by widteoe and stewart (10) were an follows first 9.19 percent; second 8.73 pereent; thiri 8.40 percent. In disoussing ash percentages it is assumed that within certain limita there is a correlation betweon the amount of total ash and the phosphoras in amples of alfalfa hay.

The Califormia Station (12) reported the following figures of ash in the different outtings: first 10.48 percent; second 7.99 percent; third 10.20; and fourth 9.57 peroent.

Ames and Bolts (5) stated that the yields obtained from the first outtings were alway larger than the seoond outtings and that the percentages of nitrogen, caloium and phosphoras and ptasisiun followed the gield. The average phosphorus contont for first outting samples was 0.2798 percent, while 0.2301 percent was the average for second outting samples.

Maturity of the plant at Time of Cutting

Swanson and Latshaw (18) found that alfalfa out at the bud stage gielded hay with the highest ash and orude proteln content. Widtsoe (14) analysed gamples of the alfalfa plant at intervale of a week throughout the growing season and found it to be highest in the bud stage. They also found that the peroentage of ash dropped quickly as the plant reached the atage of medium bloca. Dinsmore (15) reported findings similar to those of Swanson and Latahew (13) and Fidtece (14).

Henry and Morrison's (16) tables showed that the agh content of alfalfa deoreased from 10.0 pereent to 7.0 peroent from the early bloom atage to the seed stage.

OrP (17) stated that young plants in the leafy stage were much rioher than old plants in mineral oontent. Hence there was a seasonal variation, especially in the percontage of oaloiun and phosphorus. These mineral elements increased in the early part of the summer antil
the plants were at the atage of maximum leaf and mont eetive growth. They then deereased as the plants approached maturity.

Anos and Boltz (5) found that alfalfa out in bloon contained the largest amounts of the more valuable plant foods and nutritive constituents in the leaves.

Quality of the Hay

Quality of any kind of hay is influenced by many factorg. To the average dairyman the most important of these lactors are those mich affeot palatability; namely, color, leafiness and the absence of what is called "woodiness". The percentage of total digestible nutrients, digeatible crude protein, and the mineral content are, however, probably of 自ere importance in determining the quality and feeding value of the hay.

The total digestible nutriente and the mineral content of hay are affected by the maturity of the plant when out according to Haffman (8), Ory (17), and many others who have stadied this problem.

The quality of hay is affected by the caring process as shown by many investigators.

Damaged by Rain. Huffman (5), quoting findings of the Colorade Experiment St tion stated that whereas hay which wan cured without being damaged by rain showed an ash content of 12.18 peroent and a orude protein content of 18.71 percont, similar hay damaged by rain mel found to contain 12.71 pereent ash and bat 11.01 percent orude protein.

Paturel (19) analyaed lamaged clover, alfalfa and common hay which showd a loss of from 15 to 35 percent in dry matter. Feeding tests also showod a proportionate loss in nutritive value for these roughages.

Feafiness of the Hay. The influence of the peroontage of leaves on the quality of alfalfa hay is a point often unappreciated. Swanson and Latshaw (18) showed that stems and leaves differ in the content of ash and that leaves contain over two and one-half times as mach orude protein as the stems.

Fonder (20), working on the influence of soil type on the magnesium and ealcium contents of the alfalfa plant stated that the ratio of stems to leaves mas about equal on the different soil typen which he studied. The average of his ratio for six soil types was, leaves 60.81 peroent to ntems 59.19 percent by weight.

That the percentage of leaves sared in curing alfalfa hay may have a profound influence upon its mineral content mas shown by the following figures as given by Heniry and Korrison (16). Ash in alfalfa hay, 8.6 parcent, in alfalfa leaves, 13.6 percent and in alfalfa steme 4.9. pereent.

Ames and Bolts (5) atated that considerable eare ahould be taken in harvesting the crop, aince under most favorable conditions the loss of leaves may amount to about 15 percont of the orop. Their figures on the mhoaphorus content of the different parts of alfalfa plant were as follows: seed, 0.5170 percent, stems, 0.2790 per-
cont, and leaves 0.3780 percent.
These same authors (5) stated that rain removed a considerable portion of the mineral and food elements which are not securely combined in the alfalfa plant. Results obtained by them in treating dried alfalfa with water showed that 50 percent of the nitrogen and 75 percent of the phosphorus were dissolved.

Hart and co-workers (81) found that the rate at which calcium was assimilated from hay depended very largely on the manner in which the hay was treated after being cut. They secured positive calciam and phosphoras balances in liberally lactating cows fed alfalfa hay cared under caps. The positive balances were increased when fresh green alfalfa replaced the dry hay. These workers suggested a relationship between calcium balances in laotating cows when fed alfalfa hay and the quality of the hay. By "quality" they referred to "the relative degree of destruction by ouring process of the anknown factors affeoting caloium assimilation".

Hart and assooiates (85) studied the inflaence of method of curing upon the anti-rachitic properties of hay by ouring some hay in the dark and exposing other hay to ultra violet light during the curing prooess. They fed these hays to goats. These investigators found that the goats were in negative calcium balance when fed the hay oured in the dark, but that the balances were ohanged to positive when they were fed the hay which had been exposed to altra violet light. Hart and assooiates (85)
\square
suggested a relationship between curing hay in the sun and the value of the mineral elements in the hay.

Amonnt of Phosphorus Reguired for Normal Growth

The literature on the amount of phosphorus rea quired for normal growth in dairy calves is very meager. The effects of feeding different amounts of calciom and of phosphorus to different classes of animals, however, have been the subject of countless investigations.

Armsby (Ib) stated that growth involves the storage of matter in body, minerals being no exoeption. These materials are not only combined into new tissue bat also may be stored in reserve for future use. While discussing total retention of phosphorus and calciun daring growth, he stated that the daily srerage retention was 0.071 grams calcium and 0.037 grams phosphoras per 1000 kilograng lite weight the firgt yeare

Sochlet (96) stated that with calves the agh in milk was 53 percent digestible, calcium 97 percent and phosphoras 72.5 percent digestible. Meumann (97) working with somewhat older calves seoured the following results: caloinn was 45.3 percent and phosphorus 45.2 percent digestible. These figures were obtained with skim milk diets.

Iohmann (98) and Weiske (99) both worked with older calven on mized rationse Their results showed a percentage availability of the phosphoras and calciun fally as great as Neumann (97) obtained with skim milk.

Armsby (1d) concladed that the cause of the lower assimilation of phosphorus and oalcium reported by Neumann (97) was the lowered demand for these elements in the body rather than any lowered availability of the elements themselves.

Fingerling (100) has shown that a variety of organic phosphorus compounds may be quite completely assimilated from concentrated feeding stuffs. While from roughages he (101) observed an availability of approximately 50 percent.

Kellner (102) concluded that the feed should contain from two to three times the amount of mineral matter that would be atored. He came to this conclusion as a result of experiments which showed the phosphorus in the feed to be from one-half to one-third available.

MoCollum and Simmonds (63b), working with low calcium rickets stated that the rations used contained "about an optimal amount of phosphorus (0.41 percent)".

Osborne and Yendel (22) have shown that the lack of sufficient phosphoras in the ration is promptly aharaoterized by a cessation or a restriotion of growth. They atated that a shortage of an essential inorganic clement oould be suitably remedied under ordinary conditions by the use of its salts.

YoCollum and co-workers (23) in reporting on a study of the production of rickets in rats atated that the absolute amount of phosphorus was not so important as the ratio of calcium to phosphoras in the ration.

Henderson and Weakley (24) worked with dairy heifers in an attempt to show the effect of different amounts of phosphorus in the ration on the growth and development of the animals. They found 0.131 percent phosphorus in the ration the second year lowered the inorganio phosphorus of the blood below normal.

They also found that a ration below 0.20 peroent phosphorus gave rise to bone low in ash and therefore low in calcium and phosphorus.

MoCollam (25) as a result of his studies considers an optimal $P_{2} O_{5}$ content of the dry matter in a ration to be 0.95 percent. Converted to phosphorus this figure becomes 0.4148 percent.

That there is danger of a deficiency of phosphorus in the rations of oattle is shown by the researches of many investigators. The review of their findings will be made in the sections provided for discussing the diseases produced by a phosphorus deficiency.

Palmer (37) in a discussion of minerals for fram animals stated, "It is somewhat difficult to fix a limit for the phosphorus content of foods below which the food can be said to be deficient. Nevertheless, there seems to pe good evidence that if the dry matter of the food contains less than 0.20 percent of the element, phosphorus, it may de classes as a phosphorus deficient food, and if.more than 0.50 percent phosphorus it may be olassed as phosphorus rich".

Theiler, Green and duToit (64) in studying the mineral requirements in oattle found that a ration sapplying 2.23 grams of phosphorus and 4.99 grams of caloium per day was deficient. Animals from 12 to 18 months of age withstood this level of mineral intake for from three to six months. They then showed symptoms of mineral defioiency disease.

Theiler and co-workers (49) in discussing osteophagia, or bone chowing, in cattle grazed on South African veld stated that "in any given diet it is the peroentage of phosphorus in relation to the total feeding Value which is of importance in deteming osteophagia. The better the pasture the higher must be the percentage oif phosphorus in dry matter, and conversely the poorer the pasture the lower need be its percentage of phosphorus, since the cattle, by eating more of the poorer quality vegetation thereby raise their absolute daily phosphoras intake. For this reason cattle need not necessarily develop marked osteophagia on a veld containing as little as 0.07 percent phosphorus, in the dry matter, although where it falls below 0.043 percent osteophagia would be expected even when the nutritive value of the grass is so low that the grasing consumption approaches the limit of the digestive capacity of the cattlen.

These same authors (49) found that with onttie grazing on the veld a daily consumption of about 11.79 grams of phosphorus was regarded as somewhere about the
point at whioh osteophagia could develop or disappear in grasing eattle of 1000 pounds live weight.

They stated that for old ozen the intake of 11.70 grams of phosphorus per 1000 pounds was probably more than onough to prevent osteophagia while for young oattle or milk cows this intake was certainly too low.

Amount of Phosphorus Required for Itilk Production

The mineral metabolian of lactating dairy cows has been the subject of numerous investigations. Research workers, realizing the importance of ininerals in the ration of the daing eow have attempted, not so much to detemine the exact phosphorus requirements for milk production, as to ascertain the value of certain foeds for maintaining lactating ∞ we in phosphoras -quilibrium.

Cases of cows on negative oalcium and negative phosphorus balances have been reported by Meigs and associates (65), Hart and associates (81), Reod and Huffinan (72), Forbes and co-woricerm (108) and a great many others. These investigatorm are agreod that anch negative mineral balances cannot continue indefinitely. There is a certain point begond which this depletion of mineral stores oannot proceed. Thus, socoeding to these authors, when a cow reaches this point in her mineral metabolism she must diminish her milk flow so as not to further deplete her own sapply.
-
e
-

Mineral requirements for maintenance have been studied by several investigators. Armsby (Ic) stated, "that a supply of the so-called mineral or ash ingredients, as well as of protein and the energy yielding materials, is necessary for the maintenance and growth of animals, has been fully recognized since the time of Liebig". Forster (104) in 1873 and Lanin (105) in 1881 demonstrated that animals could live longer without any food at all than when fed ash-free diets.

Reasons given by Armsby (lo) for the necessity of ash were, "their use in the skeleton and soft tissues; specific uses of such elements as iron, fluorin, and iodin; maintenanoe in the body fluids and tissues of (a) normal osmotic pressure, (b) relative concentrations of various irons, and (c) as a specific case of the latter, the preservation of neutrality".

Diakow's (106) and Cochrane's (107) experiments where each worked with a single ateer are of interest. Diakow found that 52.2 grams calcium and 20.4 grams phosphorus in the feed per 1000 pounds live weight sufficied. to aapport some gains by the body. Cochrane reported that a minimua of 66.67 grams calcium per 1000 poundsresulted in a gain while 17.6 grams was sufficient for maintenance. Henneberg's (108) results showed that smaller amounts of caloinm and phosphorus would suffice. He reported that 40.8 grams calcium and 9.53 grams phosphorus were adequate for maintenance of a 1000 pound animal.

Kellner (102) computed the approximate requirements for calcium and phosphorus from the outgo in the milk. He accepted Henneberg's (108) estimate of 71.4 grams oalcium and 21.8 grams phosphorus per 1000 kilograms live weight for maintenanoe and added to these three times the amount found in the milk, on the somewhat questionable assumption that only one-third to one-half the feed ash was available. Thus a 1000 pound oow giving twenty pounds of milk would require 61 grams of calcium and 25 grams of phosphorus for maintenance and milk production.

Theiler (49) believed that for old oxen an intake of 11.79 grams phosphorus per 1000 pounds was probably more than enough for maintenance.

Keigs and co-workers (65), in stadying the oalcium and phosphorus metabolism of dairy 00 ws reported in the first of two experiments that they found the calcium. assimilation of oows was apt to be greatly interfered with by any influence which tended to throw them ovon slightly off feed. From their two experiments they concluded that oows usually assimilated about 20 percent of the intake of the oalcium from well cured hay.

Workers at the Vermont Agricultural Experiment Station (66) studied the maintenance requirements of dairy oows. Reporting on faotors affeoting these maintenance requirements they stated that heavily milking cows, losing both calcium and phosphorus on a ration of timothy hay,

oorn silage and a grain mixture showed deoided storage of both minerals when steamed bohe meal and ground limestone were added. They found that dry cows on a winter maintenance ration also assimilated calcium and phosphorus when these minerals were fed. They also found that exeroise or lack of exercise might prove a vital factor in the determination of mineral balances. In their trials the retention of calcium and phosphorus was reduced when the cows were not exercised.

Rose (67) worked with a single cow, varying the amounts of organic phosphorus in the ration. He fed stram, polished rice, wheat glaten and wheat bran (washed or not). In this experiment, as in previous work there was in all cases more inorganic phosphorus eliminated than had been given in the ration. This showed that the ond product of phosphorus metabolism is inorganic phosphate, which in herbivava is excreted chiefly by way of the intestinal canal as salts of the alkali earths. He quoted Berg as saying that this is chiefly tri-basio calcium phosphate. He concluded that for maintenance of phos horus equilibrium in this species of anieml the requirement would seem to be the amount of phosphorus -liminated in the milk plus 26 milligrams per kilogram of body weight; an exoess over this amount resulting in phosphorus retention, and smaller amounts resulting in loss of phosphorus from the organism.

Reed and Huffman (72) found that a ration consisting of timothy hay, corn silage and grain, with no
mineral supplement other than common salt furnished safficient calcium and phosphoras for normal growth, good reprodaction and liberal milk production. Their Cows which received a mineral supplement of bone flour were, however, reported to be in the best health of any of the animals in their experimente These investigators reported that cows getting bone flour increased in milk production and produced larger calves as they became older.

Meigs and Woodward (70) believed from their studies that standard rations without mineral supplements did not supply sufficient calciom and phosphorus to maintain high milk yield jear after year. In their experiments cows after having been fed in exoess of the most liberal feeding standard responsed to phosphate feeding by increased milk production.

In discussing the mineral feed problem in Wisconsin, Hart, Steenbock and Korrison (73) atated that the use of wheat bran and certain other protein concentrates rich in phosphorus would generally solve the phosphorus feeding needs of growing and high producing livestock.

Porbes (103), Meigs and Woodward (70), and Hart and co-workers (81), reported negative calcium and phosphoras balance as nearly universal in milking cows receiving recognized standard rations without mineral supplementse

Haffman, dobinson and Finter (109), on the other hand found that their cows were much more frequently in
positive calcium and phosphorus balance than was reported by Forbes (103), Meigs and Woodward (70), Hart and oo-workers (81). This apparent lack of agreement as to the mineral needs of heavily milking cows may be explained by the fact that Huffman and associates secured much better atilization of calcium and phosphorus than was reported by the other investigators.

Various authorities suggested different amounts of mineral supplements to use under varying conditions. While these recomendations are really nothing more than opinions they reflect the beliefs of these workers. Maynard (68) suggested equal parts of bone meal and finely ground limestone when a mineral supplement was needed. He recommended from 2 to 5 ounces of this mixture per head a day.

Sotola and co-workers (69) recommended four parts bone meal to one of salt for dairy cows. They recommended from 2 to 5 percent of this mixture in the grain.

Huffman and Reed (71) recommended free acoess by cows getting a ration consisting of legumes and oereal grains whiaf may be deficient in phosphorus, to a mixture of equal parts steamed bone meal and salt.

Caloium-Fhosphorus Zatio for Normal Growth

The oalcian phosphoras ratio in the diet has

 been the subjeot of many investigations.MoCollum and co-workers (26) showed the effect of varying the rations between calcium and phosphoras in the diet on the histological picture of the bones. Small deviations from the optimal composition of the food, in certain cases, produced profound ahanges in themanner of organization of the finer structures of the living tissues.

MoCollum, Simmonds, shipleg and Park (23) observed that the ratio between the calcium and phosphoras in the diet, may within certain limits, be of greater significance to the welfare of an animal than the absolate amounts of these substances contained in the diet.

Haag and Palmer (27), after studying the offeots of variations in the proportions of caloium, magnesium and phosphorus contained in the diets of rats, concluded that the general trend of their results left no doubt that a more or less balanced condition of calcium, magnesium and phosphorus salts of the ration was essential to nomal growth and functioning.

Bethke and co-workers (28), working with ohfokens found that the optial, or near optimal, calcium phosphorus ratio lay between $3: 1$ and $4: 1$ and that requirements of ohickensfor the antirachitic factor were the lowest Whon this calcium-phosphorus ratio was maintained. They obserred as did Yocollum (26) that within certain limits of concentration, the ratio of calcium to phosphoras was of greater significance in caloification and growth than the absolaje amounts of the elements in the ration. Bethke
and co-workere presented data which showed that phosphorus may be as much of a limiting factor as calcium In growth and bone formation.

Turner and Hartman (29) made a study of an sdequate ration for high producing oows and the effect of exercise upon calciom, phosphorus and nitrogen balances. Two cows giving from 27 to 29 killograms of milk daily we fed an excellent dairy ration with a oaloiom-phosphoras ratio which Varied from 1.09 to 1.19. Both cows remained in negative calciam and negative phosphorus balanoes during seven weeks on metabolism test.

Tarne, Harding and Hartman (30), working with two cows found a better assimilation of calcium from alfalfa hay than from clover. Their metabolisa data suggested a better assimilation of calcion and phosphorus when tha value of the calcium-phosphoras ratio was 1. 25 than whon it was 2.5.

Shohl and Bennett (31) worked with ricketsprodacing rations and studied their effects on dogs fed a high calciom-low phosphorus diete The calciumophosphorus ratio was 0.66. This diet produced rickets in less than 10 weeks. The fastest growing dogs developed the most severe rachitic lesionse They quoted Boas as saying that the normal ratio between calciam and phosphoras retention in the rat is 1.58. They also stated that data from many published articles on the normal ratio for calciam phosphoras retention in the infant is the same. It was their opinion that higher ratios represented
oxoess oalcium retention while lower ratios represented exeess phosphorus retention. Shohl's rachitio dogs showed a calcium-phosphoras retention ratio of from 9.0 to 2.4 and 9.8 to 00 . The ratio between the two elements in his mildiy rachitic dogs was from 2.7 to 1.9 and for his normal dogs from 1.7 to 1.4. Sherman and Quinn (32) demonstrated the interdependence of calcium and phosphorus in the diet of white rats by limiting the calcium intake. Hith deficient caloium intake the percentage of phosphorus in the body of the rats was the same regardless of whether cod liver oil was, or was not, supplied. They concluded that in this work oalcium was the limiting factor, for as soon as it was increased in the food the storage of both minerals increased.

Shelling and oo-workers (33) made studies apon oaloification in vitro by using rachitic and non-rachitic human bodies. They found the ratio between oalcian and phosphorus to be very near that in Tri-calcium phosphate or 1.93. They also found that when calcification did occur the type of calcium-phosphorus compound laid down appeared to be independent of the inorganic phosphorus concentration of the blood serum. In their work, the ratic of calcium phosphate to calcium carbonate was higher, however, the greater the inorganic phosphorus concentration of the serum.

Moigs, and co-workers (34) using four lactating cows, two in each of two experiments, concluded that
phosphorus assimilation may be interfered with by an exoess of calcium in the ration and that two parts or more by weight of calcium to one of phosphorus constituted an excess.

McCollum and Simmonds (63a) found that for rats the most favorable relationship between calcium and phosphoras was "a considerable excess of calcium over phosphorus in percent of the diet".

Soott (41) found that the proportion of caloiam to phosphorus in the food supply was a faotor in regulating the amount of phosphorus retained by the growing animal. He drew attention to the fact that on a tri-oaloium-phosphate basis the legumes have a large excess of calcium over that required for chemical combination with phosphorus. He also found that wild grasses from areas from districts free from phosphoras deficiency showed an excess of phosphoras over calcium, but that corresponding samples from districts in which phosphorus deficienoy occurred showed an excess of calcium. He made these calculations to show that there is more posa bility of the phosphorus than of the calciar content of forage from affeoted areas falling short of a combining proportion.

Phosphorus Defioiency in the iation

Several workers have reported cases of phosphorus deficiency in the diets of nearly all classes of animals. There are apparently two types of phosphorus deficiency,
one being insuficicient phosphorus in the diet, and the other heing an unbalanced condition existing between the calcium and the phosphorus in the ration.

Types of Phosphorus Deficiency

Phosphorus Content Below Minimum. Just what is the minimam content of phosphoras in the ration which will give satisfactory results with dairy oattle is still somewhat of an enigma.

Reports have come from all over the world of oertain "diseases" which have been attributed to a deficiency of phosphorus in the rations of oattle in those sections. These so-called "diseases" have been cured by Various methods, all of whiah included the use of some phosphorus-carrying substance. Theiler and associates (49) fed bone meal, Eckles, Becker and Palmer (83) used mono sodium phosphate.

Calcium - Phosphorus Ratio Upsot. Cases of phosphorus deficiency caused by a lack of balance between the calcium and the phosphorus in the ration of cattle were not observed.

Concerning the mineral elements in animal natrition, Orr (35) states that "excess or deficiency of one mineral element may interfere not only with the absorption, but also with the atilization of another. So the ratios of the different mherals to each other and to the organic constituents are almost as important as their absolute amounts".

Evidenoes of Phosphorus Deficiency

Depraved Appetite. A depraved appetite is defined as a oraving or liking for substances not ordinarily classed es foodse Cattle exhibit this symptom under varying conditions. Taylor (36) observed that depraved appetite developed in calves fed on concentrates alone.

Since his grain mixture contained what would ordinarily be considered an abundant supply of phosphorus this condition obviously could not have been caused by a deficiency of phos;horus. In cases of animals developing depraved appetite while being fed concentrates alone he found that oravings could be cured by feeding roughageo In some cases the roughage used was timothy hay - in others alfalfa. He ascribed the cure of the depraved appetite to some "anknown factor" oarried by the hay. He also stated that this factor was probably not a mineral since a mineral mizture similar to the mineral combination found In hay failed to relieve the depraved appetite.

Cattle with depraved appetite chew stioks of wood, bones, old pieces of leather, sacks or anything available according to Paner (37).

Environments causing depraved appetite to develop In cattle under conditions other than those of the laboratory are, according to Theiler, Green and duroit (38), a low phosphorus content of the soil which results in a low per-
centage of phosphorus in the herbage growing on that soil. Suah forage fails to meet the needs of the animal with the result that it starts to chew bones, wood, eto.

Reed and Huffman (39) attributed depraved appetite to a deficiency of phosphorus in the ration. Tuff (40) observed that it was only in certain areas that cattle exhibited depraved appetite. Upon analysing the soils in these areas he found them to contain but 0.002 percent phosphorus, whereas in the unaffected areas the soil contained 1.21 percent phosphoruse The, hay taken from the affected areas contained 0.065 percent phosphorus contrasted to 0.19 percent phosphorus in the hay from the unaffected areas. Scott (41), studying phosphorus deficiency in forage feeds of range catile in Montana found that in areas of depraved appetite in cattle the phosphorus content of the forage was lower than in similar forage from unaffected areas. He found that wet, marshy meadows were responsible in a great many cases for mineral nutrition disorders. In unaffected areas alfalfa hay contained 0.18 percent phosphorus while in affected areas it contained 0.109 percent phosphorus.

Sahmidt (42) found that osteophagia (bone ohewing) could be prevented or cured by feeding a mixture of three parts bone meal and two parts salt to range cattle of Texas. Welch (43), studying bone ahewing in cattle found that cattle confined to limited range and especially those
fed "wild hay", and usuallythat grown on low ground, were observed to chew bones. This condition developed in the winter and lasted until well into the summer. He stated that this tendency to chew bones was the first sign of a mineral deficiency and that it was a deficiency of phosphate of lime in soils and grasses.

Hedlund (44) pointed out that depraved appetite tended to develop in cattle fed on hay characterized by low alkalinity, the proportion of alkaline material to the dry matter content of the plant being little larger and sometimes even smaller than the proportion of chlorine and sulfar. A high degree of alkalinity and a low orude fiber content were regarded by this author as determining the quality of hay.

Murray (45), describing depraved appetite in cattle stated, wthey have a capricious and variable appetite as regards their ordinary feed, but ovidence strong desire to lick and eat substances for which healthy cattle have no inclination". He also stated, "this condition frequently preoedes the condition in which the bones of cattle become brittle and fracture easily, known as oesteomalacda".

Orr (46) was inclined to regard depraved appetite, Or "pica", and "osteomalacia" tot as two separate "diseases", but as different manifestations of the same disease. He considered the piaa as merely the outward manifestation of an instictive craving for some substance, the deficiency of which was the cause of the lesions in the bones and the
accompanying symptoms of malnutrition found in osteomalacia.

Cauis and Bharucha (47) were inclined to think after investigating the subjeot of earth eating and salt licking among men and animals in India, that these habits were due to a deficiency of one or more of the following elements, calcium, phosphorus or iron. They stated that salt licking was not due to a lack of sodian ohloride.

According to Hart and co-workers (48), the symptoms of animals used inistudying phosphoras deficiency were, extreme emaciation, stiffness inthe hind quarters, and at times, in the front quarters, swollen joints, harshness of coats, dull ejes, unthrifty condition and depraved appetites.

Marcq (50) stated that osteophagia (chewing of bones) was proof of lack of phosphorus in the food.

Theiler and co-workers (49), after a thorough investigation of conditions of phosphoras deficiency existing in South Africa stated that the immediate cause of bovine osteophagia was shown to be a deficiency of phosphoras in the veld vegetation of soils very low in phosphorus contente They also stated that the main inportance of osteophagia lies in the fact that it is the precusor of the dreaded lamziekte. Discussing the subject of osteophagia they made the following observation "although it has never been observed to pass over independently into a disease with an incidence of mortality of its own, it is probably of importance in relationship to the
rate of growth of zoung stock and to the milk yield of cows".

These same authors (49) produced osteophagia experimentally by feeding cattle upon a phosphorus defioient ration, and again removed it by the simple addition of phosphorio acid to the diet. Continuing the ir discussion they stated, "the relationship between the minimum phosphorus requirements for prevention of osteophagia and the irreducible minimum physiological requirements for life and health has not been worked out. But the fact that oattle can show osteophagia for ten months of every year of their lives, and still remain in good health and reproduoe their kind sugeests that osteophagia is manifested before the point at which continuous draining of the phosphorus from the tissues begins".

Effects of Phosphorus Deficiency

The effects of a phosphorus deficiency in the ration may be divided into two classes, the vialble effects and the invisible effects. One of the first of the visible effects, depraved appetite, has already been discussed.

That pica, on depraved appetite, is the first outward manifestation of a phosphorus deficienoy was atated by Orr (46), Theiler and co-workers (49) and Marcq (50).

Among the unnoticed effects of phosphoras deficiency may be the poorer atilization of their feed by animals on a phosphorus deficient ration. Fakles and Gollickson (84) used cows taken from a region where a phosphorus deficiency in the forage was known to exist. These cows were continued on the same ration and fed hay purchased from the deficient region. This ration consisted of good quality prairie hay and oats. On the basal ration the animals remained in an unthrifty condition and in most cases barely maintained their weight. Under these conditions six to fifteen pounds of digestible natrients was required per pound of gain. ithen phosphorus in the form of Ca3 $\left(\mathrm{PO}_{4}\right)_{2}$ or $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ was added the animals showed improvement in condition within a welk. Within three weeks the lameness, creaking of joints and abnormal appetites disappeared. Under these conditions it required from one to three pounds of digestible natrients to produce a pound of gain. They reported no improvement in their animals when fed Cacos in the ration. As a result of their experiment they concluded that with phosphorus on this level cows required at least 20 percent more digestible natrients than when a phosphoras sapplement was fed.

Caloiam and Phosphorus Content of the Blood. According to Robinson and Huffman (86) the amount of inorganic phosphorus contained in 100 c.c. of normal beef blood is 5.98 milligrams. The amount of calcium in 100 c.c. was given by them as 11.00 mg . These figures are the average
of over 100 samples.
Since the blood is the medium by which the food elements are carried to the body tissues, any abnormality In the blood should affeot the tissues accordingly. Various factors which might affect the composition of the blood have been the subjeot of much study. In this study the conoentration of calcium and of inorganic phosphorus have been of main interest.

Meigs, Blatherwiok and Cary (87) stated that normal blood plasma contained no phosphorus compounds at all except phosphatides and inorganic phosphates, which certainly comprised more than 97 percent of all the phosphorus that existed in the plasma. They stated that the concentrations of these fraotions were highly variable, that both could be made to vary by changing the amount of phosphorus supplied by the rations though the inorganic phosphorus showed the most marked variation. Both calcium and phosphorus underwent variations as the animal grew older and during the later stages of pregnancy.

Malan, Green and duToit (88) found that tho outstanding aharacteristic of the blood of cattle grazing on phosphorus deficient pasture was the low content of inorganic phosphorus with a corresponding reduotion of the total phosphorus. In their work normal content of inorganic phosphorus was secured when a "small ration" of bone meal was added. Heifers supplied with bone meal showed a normal phosphorus of 5 mg per $100 \mathrm{c} \cdot \mathrm{c}$. of blood. while control animals showed only 2.3 mg . per 100 0.0. They stated that in general low inorganio phosphoras con-
tent of the blood was assooiated with poor condition. Palmer, Cunningham and Eckles (89) Observed that the inorganic blood phosphate in individual oattle aight vary markedly from day to day even when the blood was drawn under apparently identical conditions. They also found that exeroise caused marked changes in the blood phosphorus. There was at first a rise followed by a marked fall which persisted for several hours.

Hartard and Reay (90) also studied the influence of exercise on the inorganic phosphate of the blood. They worked with the adult men whose exeroise consisted of ranning for varying lengths of time. Their results for haman blood corroborated the findings of Palmer and assoolates (89).

Bethke and associates (90) found that in the absence of normal growth there was shown a general tendency for reduced calcium content of the blood and ash content of the bones. The phosphorus content of the blocd was found more constant, bat apparently as the calcium inoreased there was a tendency for the phosphorus to be depressed.

These results are in contrast to thone of Palmer and associates (89), and to those of Meigs, Bletherwick and Cary (87) who found that the concentration of calcion was quite constant in the blood plasma of the cow.

In an experiment to determine the effects of phosphorus deficient rations on the blood composition in oattle, Palmer and Eokles (92) worked with animals reared in a phosphorus deficient region and under experimental observation for at least 75 days before the first analysis. The calcium content of the ration was not high, but apparently adequate. The ration of a dry cow contained 0.08 percent phosphorus and 0.36 percent calcium. Cows giving 12 pounds of milk received a retion containing 0.13 percent phosphorus and 0.30 percent calcium. Dry cows getting a phosphorus supplement received a ration containing 0.28 percent phosphorus and 0.35 peroent calcium. Their animals showed low inorganic phosphorus but normal celcium throughout. The product of calcium times phosphorus, or the calcium phosphorus area, for the low phosphorus animals was rarely above 30 and sometimes below 20. This was in contrast to the area for the group receiving $\mathrm{NaH}_{2} \mathrm{Po}_{4}$ which was from 50 to 75. Reproduotion on Phosphorus Doficient Zations. Orr (17a) stated that in areas where there was a general poverty of minerals the rate of growth of the young animals was slow, the milk gield of cows was low, and the fertility of the females was also low.

Iindsey and Archibald (93), in studying the value of calcium phosplate as a supplement to theration of datry oows, divided their whole herd into two groups as much allke as possible. They fed one group steamed bone meal as a supplement to a low calciom - low phosphoras ration.
\square - • •
\square

They found no difference in the amount of breeding troubles In the two groups. They reported, however, that the group receiving no bone meal dropped a higher percentage of weak or delioate calves.

Eokles, Becker and Palmer (83) found that cows in the areas of phosphorus deficiency in Minnesota showed a decided retardation of oestral period. some not showing oestrom until a Jear after freshening. They gave this as the cause of poor calf crops in phosphorus deficient areas. They found that in some cases after dry aeasons the calf orop was often not more than fifty percent.

Theiler and associates (94), after studying the breeding of cows on phosphorus deficient pasture for two years, found that in one lot not receiving any phosphorus sapplement to the veld only 51 percent of the cows calved normally, as compared to 80 percent in the lot receiving bone meal. Calves from cows receiving bone meal and themselves fed bone meal were far superior at one year of age to those from ontrol cows and themselves not receiving bone meal after weaning.

Osteoporosis. Osteoporosis is defined by Dorland (51) as abnormal porousness or rarification of bone by the onlargement of its canals or the formation of abnormal spaces.

Dre Bitting (52) called a disease of horses locally known as "big head", "osteoporosis". It affected both native and imported horses in Florida. It was evidenced by a swelling of the jaw bones. Other bones in the body
-
-
were often misshapen. The shoulders and legs were often swollen and stiff. The bones were enlarged and cancellated. Their surfaces covered by hard brittle emanences or proliferations. The entire bone became porous, the marrow of an albuminous consistency, cartilages reduced or worn away. The roughening of the bony surface seemed to give the bones strength.

Crawford (53) blamed mineral deficiencies in the pasture of Ceglon for stunted growth, poor milkproduction, sterility and poor development of tooth and horn in oattle, for osteoporosis in horses, and for the inability of imported animals to develop on pasture without supplementary feeding.

MoCollum and co-workers (23) stated that when both calcium and phosphorus were low but in the correct proportion to each other osteoporosis, and not rickets developed.

Osteomalacia. Another disturbance following a period of mineral deficiency is osteomalacia according to Orr (17b). He gave the results of 22 investigations in discussing hay which caused "brittle bone" or "osteomalacia". The average phosphorus content of these hays was 0.09 percent. He averaged the results of eleven investigators working with hay fed to cattle which showed no symptoms of mineral deficiency. The average was 0.229 percent. These figures were on a dry matter basis. He stated that after comparing the figures for calcium and phosphorus that they showed a more definite correlation between low phosphorus ration and osteomalacia than between low calcium ration and osteomalacia.

Dorland (5la) defined osteomalacia as a softening of the bones. A disease marked by increasing softening of the bones so that they became flexible and brittle. It is attended by rheumatic pains. The patient becomes weak and finally dies from exhaustion. It occurs chiefly in adults.

This eoftening of the bones is accomplished by a resorption of their mineral content whenever the food supply is inadequate in minerals according to Armsby (lf), who regards the skeletion of the animal as a storehouse in which, during periods of super abondance of calcium and phosphoras, these elements are stored up for use during periods of inadequate supply of these elements.

Carry (54) reported a "defioiency disease" oocuring among oattle grazing on the coastal plains in Somern Alabama. Then grass became old and dry cattle exhibited depraved appetite, chewed old bones, and some ere said to eat slugs or grasshoppers. Milking cows came down first. They got very weak and lay down most of the time. Their bones became soft and flexible. Pressure on the nerves produced paralysis. In rare cases the bones of the limbs and pelvis were fractured. They recovered quickly when rains came and the grass began to grow or if turned into good fields of velvet beans or peas.

Styfalekte. The term styficicte was found frequently in the literature. It is, according to Theiler, Green and daToit (64) a South African term whiah, when translated, means stiff sickness. It showed itself in retardation of growth and abnormal skeletal development, the most obvious
-
features of which were the thickening of the epiphyses of the $10 g$ bones, most pronouncod at the metacarpus and first phalangeal joints of the fore limbs. The head and horns were sometimes disproportionately loņ and the skeleton was light. The disease resembled that referred to in European Veterinary literature as osteomalacia.

These workers (64) produced two cases of typical styfaiakte by diets high in calcium but low in phosphorus. Ther found that they could oure the naturally occurring disease by supplementing the grazing areas in which it was prevalent with phosphoius compounds only. The authors concluded as a result of these investigations that it was definitely established that the styfziekte of South Afrioa was a straight aphosphorosis.

They stated further (64) that they had produced aphosphorasis, or clinically recognizable phosphorus defioiency experimentally and had shown it to be identieal with the natucally occurring South African disease "styfziekte".

Famsiekto. According to Dorland (51c) Lamziekto is a disease affecting cattle, characterized by lameness, humping of the back, and paralysis of the muscles of deglatition.

Theller and co-ivorkers (49) stated that lamziekte is the name originally given by the South African pioneering farmers to a fatal disease of cattle, characterized by symptoms of paralysis and paresis, principally of the locomotor system, but in many cases also of the muscles of mastication and deglutition. Translated, lamziekte
means lame sickness. Hence there is an intimate conneotion between the symptoms of the disease and its name. Theiler and co-workers (49) gave the etiology of the disease as follows. (1) Phosphorus deficiency of the soil. (2) Consequent phosphorus deficiency of the herbage growin thereon. (3) Pica and more especially osteophagis in cattle. (4) Eating carcass debris. (5) This debris infested with a toxicogenic soprophite (parabotulinus bovis) which formed a toxin. (6) Toxin caused lamziekte. He stated that all six links in the chain must be present to produce lamziekte. Low phosphorus herbage could be prevented by phosphate manuring the soils deficient in that olement. Osteophagia could be cured by feeding bone meal or other phosphorus rich substances. Still lamziekte could be prevented by removing carcass debris from the veld. Theiler (49) made it plain that this disease is specifically caused by the saprophyte, parabotulinus bovis. Maroq (50) stated that lamziekte can only be contracted by osteophagy; that osteophagy is certainly caused by lack of phosphorus in the food; that it is more marked on old grass and less accentuated on new grass richer in phosphorus.
S.chmidt (55) investigated a disease occurring among the range oattle grazing on the costal plains of Texas. The animals, apparently in good state of nutrition, would suddenly show a complete breakdown of the organs of locomotion. The disease was prevalent from May to September and attacked animals over 18 months of age. The animals lost control of the loin muscles, went down and were unable to
rise. They seldom recovered if once down. He ascribed (tentatively) the cause to toxins produced by bacterial aotion in carcass material on the prairie and the consumption of such putrid material by cattle. Sir Arnold Theiler visited this region and stated that he considered this disease as identical with lamziekte.

Rickets. Dorland (5lc) defined rickets as a constitutional disease of childhood in which the bones become soft and flexible from retarded ossification, due to deficiency of the earthly salts. The disease is marked by bending and distortion of the bones under muscular action, by the formation of nodular enlargements on the ends and sides of tine bones, by delayed closure of the frontenals, pain in the muscles, sweating of the head and degeneration of the liver and spleen. There are often nervous affections, feverishness and convulsions.

The foregoing simptoms of rickets are manifested by rachitic infants. In calves rickets give somewhat the same outward manifestation of the disease. There is a swelling of the joints, bending of the bones, softening of the skeleton in general according to Huffman and coworkers (56) who produced a rachitic condition in a bull on a low calcium ration.

According to Huffman rickets may be produced in calves when fed on concentrates alone. He found that the calves appeared to be in an excellent state of nutrition. The legs bent forward and outward. There was swelling at the foints. The eyes protruded. The head appeared too large for the rest of the body. The animals were irritable.

If allowed to remain on the rickets-producing ration the animals finally lost the ability to get up from the lying position.

Bergeim (58) stated that rickets could be produced experimentally by a low calcium, high phos phorus ration or by a low phosphorus, high calcium ration, this condition involving a loss of caloium or phosphorus or both from the body by way of the intestinal tract.

The relation of vitamin D to the prevention and cure of riciets was proven by McCollum and co-workers (59) when they used oxidized cod liver oil in their studies with rats. The oxidized oils would not prevent nor cure xerophthalmia but would aid in the deposition of calcium salts thereby preventing and curing rickets. They stated that this evidence demonstrated the existance of a fourth Vitamin whose specific property nas far as de oantellis to regulate the metaboltm of the bones".

To go into an exhaustive review of the literature on rickets is impossible in this thesis. There is, however, a relationship between rickets and mineral nutrition. Hess and Gutman (60) demonstrated the rickets curing properties of sunlight with infants by placing babies showing symptoms of rickets in direct sunlight for from thirty minutes to several hours. They found that the normal phosphorus content of infants blood was approximately four mg. per 100 c.c. By placing infants in direct sunlight as desoribed they were able to raise the phosphorus of the blood in five infants from an average of 3.12 mg . per 100 ac. to 4.12 mg . per 100 c.c. in three months. This showed, according to
the authors, that the sunlight not only brought about a cure of the rachitic lesions but also occasioned chemical ohanges in the blood similar to those brought about by cod liver oil.

McCollum and co-workers (23) in 1921 produced rickets with diets low in phosphorus and vitamin A. These investigators showed that when a deficiency of phosphorus was insufficiently supplied with vitamin A rickets developed only when oalcium was present in a ratio considerably higher than the optimal ratio for ossification.

Hart, McCollum and Fulle r (62) in 1909 produced rickets in a lot of hogs on a low phosphorus ration (1.12 8 in 2.2 pounds feed). These hogs developed stiffness in the hind legs and partial loss of their control. They became stupefied in actions and finally could not get to the feed trough. They appeared to be in good flesh in spite of their inability to carry their weight. The bones from one slaughtered animal were soft and spongy and appeared combed almost to the outer surface. The authors called it a case of extreme osteoporosis. They stated that the skeleton lost its oalcium and phosphoras probably as Ca3 $\left(\mathrm{PO}_{4}\right)_{2}$ while the masioles and soft parts retained their normal percentage of phosphoras.

Mccollum and Simmonds (63a) drewattention to the relationship between rickets and the proper balance of calcium and phosphorus in the ration when they stated "the experimental studies on rickets and related conditions have brought to light the great importance of having a proper quantitative relationship between the calcium and
\square
the phosphorus in the diet since such a relationship greatly safeguards the developing skeleton".

Hart, Steenbock and Morrison (82) found that the mere supply of calcium or phosphorus in the rition was not enough to prevent rickets, and stated that bone formation required not only an ample supply of each of these minerals but also a vitamin which assists in assimilating calcium and phosphorus. They stated further that without this vitamin only a limited use was made of the salcium and phosphorus in the ration.

Huffman (57) found no beneficial effect of sunlight on calves which recoived roughage in their ration. He did find, however, that when calves were fed on a rachitic ration rickets developed when the calves were deprived of sunlight. A check group of calves on the same ration but turned into sunshine showed no signs of rickets. This suggested to Huffman (57) a relationship between roughage (in this case timothy hay) and vitamin D.
-

Summary of the Review of Iiterature

The importance of the mineral elements in the nutrition of animals has been appreoiated since the time of Liebig. It was only within the past fifty years, however, that the mineral requirements of the dairy cow was made the object of extensive study.

An appreciation of the importance of phosphorus in the mineral nutrition of dairy cows resulted from the studies of calcium. Early investigators considered caloium the limiting factor in milk production.

411 roughages are, as a class of feeds, comparatively low in phosphorus. Thecereal graing,however, contain much more of the element. The protein concentrates, such as bran, cottonseed meal, and linseed oil meal are the feeds richest in phosphorus.

Alfalfa hay ranks first among the roughages in phosphorus content. Different investigators showed that It may vary within a wide range in this respect. Faotors influencing such variations were shown to be; the phosphoric aoid content of the soil, the rainfall, the stage of matarity of the plant at time of cutting, the cutting and the quality of the hay as determined by such factors as leafiness, brightness, rain damage, and irradiation. during the curing process.

The phosphoras requirements of growing dairy heifers and lactating cows have not been definitely determined by modern methods of investigation. The
quantitative relationship between the calcium and the phosphorus was studied and found to be optimal near, or greater than, the ratio found in bone which is 1.93.

For cattle, a deficiency of phosphorus in the ration depends, to a certain extent, upon the characteristios of the ration itself. The absolute, irreducible amount of phosphorus that the dairy cow requires has not been determined.

Phosphorus deficiency has been observed by research workers in practically every country in the world. The first noticeable symptom of such a deficiency is a craving on the part of the animal for bones, wood, old rags, and in fact, anything available. These symptoms were exhibited by dairy cows grazing on the best of sweet clover pasture, and while being fed alfalfa hay.

The diseases,or conditions, which result from a continued deficiency of phosphorus, are progressively; depraved appetite, and more specifically osteophagia, osteoporosis and osteomalacia if the animal is unable to gain aocess to caroass debris or other putrifying, toxininfested mateiial. If animals with osteophagia have acoess to carcass debris they will eat it. Theiler has demonstrated such deoris to be infested with a toxin resulting from the presence within such debirs of a saprophyte, parabotulinus bovis which causes the dreaded lamziekte.

Another disease associated with the mineral metabolism of young animals is rickets. This disease was demonstrated to be of little importance to oattle be-
oause of the nature of their feed. Hay apparently oarries enough vitamin D to insure proper calcification.

A review of the literature reveals the fact that little is known regaraing the phosphorus requirements of dairy cattle. In view of the low phosphorus content of Xichigan alfalfa hay more knowledge of the phosphorus needs of daing cattle is desirable in order that no mistake may be made in utilizing Michigan's alfalfa crop.

EXPERIMEITMAL WO.KK

Object of the Experiment

Reports of depraved appetite in certain sections of Michigan among cattle receiving alfalfa hay and a grain mixture containingno phosphorus supplements have been quite numerous. These reports point to a phosphoras deficiency in these sections.

Data on the mineral composition of several samples of Michigan alfalfa hay show it to be lower in phosphorus than hay reported from other states.

In view of the low phosphorus content of alfalfa hay grown in certain parts of Michigan, and of the prevalence of depraved appetite among oattle consuming this roughage, it was deemed advisable to conduct an experiment to ascertain the effect of adding phosphorus supplement to alfalfa hay as the main source of protein in a dairy ration.

An attempt will be made to secure alfalfa hay as low ds possible in phosphoras. The object will be to detemine the effect of such a ration upon the growth, health, and breeding ability of dairy ieifers, and the effeot upon the health, development and milk production of these animals after freshening.

Original Plan of the Experiment

Choico of Animals

For this experiment ten high grade Holstein heifer oalves will be used. They will beffom similar ancestry, and will be put on the experiment at ninety days of age. They will be divided into two lots of five animals each. An effort will be made to equalize the lots as to size of animals, and as to their apiarent inheritance for milk production.

Choice of iations

The rations to be used will consist as largely as practicable of alfalfa hay. An effort will be made to secure hay of good quality so that it will be consumed readily. It will be ground to insure accuracy in weighing as well as to aid in preventing waste. Corn silage will be fed as the remainder of the rourhage since it is a common feed and relatively low in phosphorus. Corn will be the only concentrate in the ration. It willbe used largely to supply the reçuired energy. Lot I will receive enough steamed bone meal to bring the phosphorus content of the ration up to hicCollum's Optimum. Lot II will redeive no mineral supplement other than common salt.

Care and Feoding Methods

The heifers will be cared for by the herdsman in charge of the experimental herd. Milk feeding will be discontinued as soon as possible after the animels are
\square
.
-
put on the experiment in order to keep at a minimum the Intake of phosphorus. Silage will be fed early in the morning. The corn will be given later in the morning and the hay will be fed in the evening.

The animals will be housed in individual stalls in tiice Experimental Dairy Barn. Bedding will consist of wood shavings. Each animal will be fed separately. The feed will be weighed on soales accurate to a tenth of a pound. A feed record will be kept in a book provided for that purpose. The animals will be turned into a dry lot for exercise. In summer they will remain in this lot the entire time except for feeding when they will be put into their stalls.

Collection of Experimental Data

Veighing
The animals willue weighed at the end of each ten day period. At the end of each thirty day period they will be weighed three days in succession. The average of these three weights will be taken as the true weight of the animal in each case. These weights will all be taken early in the moraing before the animals are fed. The weights so secured will, in all cases, be compared to the Eckles Normal to determine the valae of the ration for growth. These weights plus ten pounds, in each case, will be used as tie basis for computing the rations for the animals. The ten pounds will be added each time to make sure that the animals are receiving sufficient feed to meet their requirements throughout the
entire ten day period

Feeds

Chemioal Analysis. Each feed will be analysed for calcium, phosphorus and nitrogen. An attempt will be made to secure alfalfa hay as low in phosphorus as possible.

Nutrients Required and Nutrients Consumed. The nutrients required by the animals will be ascertained at each weighing period and the feeds will be calculated accordingly. A record will be kept of the nutrients consumed and this figure will be compared to the requirements. Feoding

Plane of Nutrition. The Armsby Feeding Standard will be used in the experiment. The rations will be adjusted at the close of each ten day period if the growth of the animals warrants it. Die to the variation in the phosphorus content of the alfalfa hay the average of the Michigan Experiment Station analyses will be used in computing the amount of bone meal to supplement the ration. The average protein content and net energy values as given by Henry and Morrison will be used in the ration.

Mineral Supplement. The mineral supplement will be Odorless Steamed Bone Meal. It will be fed in amounts sufficient to bring the phosphorus content of theration up to McCollum's Optimum. It will be weighed on gram. balances.

Salt. Salt will be supplied to both lots. It will be placed in boxes so that it can be licked at will.

A reoord of the amount of salt fed will be kept.
Water. During cold weather water will be
offered to the animals once per day in pails. During the time the outdoor water tank is used they will get their water from this tank.

Measurement of Growth

At the first of each month the following measurements will be taken; height at withers and at rump; depth of ohest; width of chest, barrel, hooks, and thurls; length of rump; length from point of shoulders to hook bones; circumference of chest and of barrel.

Withers. The height of withers will be used to compare the skeletal grooth of the two groups. It will also be used to compare the growth of each animal with the Eckles Normal.

Health Observations

General Appearance. Note will be taken from time to time of any peculiarities in the general appearance of the animals in the two groups.

Appotite. Any failure to eat their feed as well as any abnormalities of appetite will be recorded.

The herdsman in charge will make note of any abnormalities that may develop.

Heat Periods

An accurate record of the heat periods shown by all animals will be kept.

Metabolism of Feeds

The oalcium, phosphorus and nitrogen balances of all the animals will be ascertained by seven day tests. These determinations will be conducted after the animals have become one year of age.

Blood Analyses

To determine the effect of the two rations upon the calcium and phosphorus of the blood, samples will be taken each month. These samples will be drawn from the jugular vein. They will be analysed by the staff of the Chemistry Section of the Agricultural Experiment station.

After the heifers reach eightmonths of age they will be bled once each month for blood tests for B. Abortus infection. These tests will be made bythe Department of Animal Pathology.

Photographs

Plotures will be taken of the animals against a neatral back gound at the time they are placed on the experiment and at fifteen months of age.

Autopsy of Dead Animals

Any animals which may die on the experiment will be autopsied by the Department of Animal Pathology.

Method of Procedure

It was originally planned to write this thesis at the end of one year's time. That would have made it possible to include only the data on the animals up until the time the older nine were fifteen months of age. Due to a change in plan, the writer was unable to write this thesis at the intended time. It has been possi ble, therefore, to include the data on the animals up to March 1, 1931. This necessitated the inclusion in the thesis of data not orginally provided for. Hence it was thought best to give an outline of the method of procedure.

Choice of Animals

The animals used in the experiment were high grade Holstein heifers taken from the experimental dairy herd of this station. They were daughters of the cows used on the Long Time Mineral Feeding Experiment then in progress. They were apparently normal in every respeot at the time they were placed on experiment. They were all sired by the senior Holstein herd sire, Michigan College Matual Johan 421266, then in service in the College dairy herd.

The first animal placed on the experiment developed a severe lameness, the cause of which could not be definitely diagnosed. It was considered that this lameness was a result of an injury to her left hind leg apparently received at birth. For this reason it was
dropped from the experiment.
A year after the work was started five more heifers were added, making seven animals in each group. Choioe of Rations

The feeds used were as planned. The alfalfa hay varied in phosphorus content more than was desired due to the difficulty of securing sufficient quantities, of the quality of hay desired, to last for any considerable length of time. In all cases the hay used was analysed before purchase and revealed a phosphorus content below the average of the samples analysed at this station In connection with the Long Time Mineral Feeding work.

Previous History of the Animals

These heifers were fed on whole milk for fortyfive days. At forty-five days of age they were changed to skim milk. They received equal parts of whole corn andwhole oats as soon as they would eat it. Ground alfalfa hay was given from the time they first started to eat it. They were continued on this ration of skim milk, corn and oats, and alfalfa hay until they were placed on the experiment at ninety days of age. In addition each animal reoeived ten c.c. of cod liver oil each day to ninety days of age.

Care and Feeding Methods

The heifers were cared for as planned. On August 1, 1929, however, they were moved into what had previously

been the main dairy barn. At this time the nine older heifers were put in stanchions. The five younger ones were put in individual box stalls and kept in these stalls until they were about eleven months of age. At this time they were changed to the stanchion stalls, but tied with chains. On September 18, 1930 the entire experimental herd was moved to the new experimental barn. Here all the heifers were put in stanchions.

Milk was decreased at the end of ten days on the experiment, and discontinued after twenty days. Thus, from the age of 110 days the animals in Lot I received, antil calving time, nothing but alfalfa hay, corn silage, corn, bone meal and salt. Lot II received the same ration without the bone meal. The bone silage was introduced into the ration at the time the milk was discontinued.

After the first freshening blood meal was added to the ration to supply the necessary protein without appreciably increasing the phosphorus intake.

It was found that the bone meal was eaten more readily when stirred into the hay at time of feeding. It was fed in this manner throughout the experiment.

As the animals reached ten months of age ground oorn was gradually substituted for the whole corn. Some difiticulty was experienced in getting the heifers to eat the corn meal - approximately one week being required to complete the ohange.
.
\square

-

Water was offered as planned, except that when the animals were placed in the stanchions they could drink water at will, as the stalls were provided with drinking oups. Water meters were installed on the drinking cups and the water consumption was recorded in gallons.

Collootion of Experimental Data

Weighing
Weights were taken each ten days as planned until the animals became fifteen monthz of age. After this time they were weighed for three consecutive mornings at the end of each thirty day period. In all cases the weighing was done in the morning before feeding.

The weights were compared to the Eckles Normal.

Feeds

Chemical Analyses. The feeds were analysed for calcium, phosphorus, and nitrogen as planned.

Nutrients Required and Nutrients Consumed. An accurate record was kept of the amounts of feeds consumed. The nutrients consumed were compared to the requirements according to the Standard used.

Feoding

Plane of Natrition. The Armsby Feeding Standard Was used in computing the rations until the animals freshened. After this time the lower limits of the Morcison Feeding Standard were used. In some cases it
was necessary to supply some excess protein in order to provide sufficient net energy during the growing period. The rations were not always changed, as planned, at the end of each ten, or thirty day period oecause of the fallure of some of the animals to gain sufilicient weight to require it.

Mineral Supplement. Bone Keal was used as the phosphorus supplement as planned.

Salt. Salt was provided as planned while the animals were in the box stalls. After they were changed to the stanchions salt was mixed with the corn, one pound of salt per hundred pounds of corn.

Blood Meal. After the heifers freshened it was deemed advisable to furnish a protein supplement to balance the ration. This was done by adding blood meal as this feed would supply the necessery protein without apprectably increasing the phosphorus intake. It was added to the corn and mixed with it at the time of each feeding.

Measurement of Growth

Growth measurements were made as planned. Only the height at withers, however, was used in this thesis as a measurement of growth.

Comparisons of the height at withers to the Eckles Normal were made as planned.

Health Observations

General Appearance. Notes were made from time to time of the general appearance of the animals. These
observations are given for each animal in the section provided for that purpose.

Appetite. The observations concerning the appetite of the animals were made as planned. These notes will be found for each animal in the individual sections.

Reproduction

Age at first Oestrum. The age of each animal at the first observed heat period was recorded.

Heat Periods. The heat periods were observed and note made of each. It is felt that some of these periods must have escaped observation since in some cases they were so irregular.

Number of Dervices for Conception. Record was made of the number of services required for conception. In some cases the animals were bred after having conceived. These services were not taken into consideration.

Gestation Periods. The length of the gestation period for each animal was computed.

Metabolism of Feods

Seven day calcium, phosphorus and nitrogen metabolism tests were determined on the animals at various times. Animals D 2 to 12 were placed on metabolism prior to first freshening. All the heifers except Dl4 were placed on metabolism during high milk pr duction. Metadolism tests were also made on $D 2, D 8$, and $D 9$ during medium production.

Blood Analyses

It was decided that onee each month was not often enough to take blood samples so samples were drawn each two weeks. Calcium, and phosphorus deteminations were made on these samples, as planned.

Blood samples for BeAbortus infection determinations were taken each month after the animals beoame eight months of age, as planned.

Milk Production

The milk production was recorded in pounds for each animal starting the fourth day after calving.

Butter Fat Production

Monthly Tests. Monthly determinations of the butterfat content of each animal's milk were made by the Baboock Method from two day composite samples.

The percentage of butterfat in the milk for each month was applied to that month's milkproduction to detemine the butterfat production for that month.

Photographs

Photographs were taken as planned. In addition pictures were made of each animal at two years of age, and at freshening time for those that have freshened.

Autopsy of Dead Animals

None of the animals died.

Experimental Data

The similarity of inheritance for milk production of the animals used in this experiment is shown in Table I. zhey were all daughterm of one sire, and out of cows of similar breoding.

The analyses of foeds used in the rations are shom in Table II.

Tables II to XVI inolugive, show the average weight of each animal for $\therefore \cdot$ each thirty day periol previous to calving, the feed consumed, the natrients ree quirel and natrients received, salt consumption, meter consumption, peroentage of phoaphorua in the dry matter of the ration, and the average daily intake of phosphoras.

The monthly milk and butterfat production, foed consamel, matrienta received, natrients required, percentage of phosphorus in the ration, and average daily intake of phosphoras are given in tables XVII to XXVI. inclasite.

Table Io. XXVII ahowe the reproduction data, Including age at firist oestrum, number of gertices for firat conception, gestation periol, age at firmt calving, wight, soz and health of calf and the recovery of the 007.

The notabolise of caloive, phosphorus and nitrogen before firgt ealving appear in rable XVIII.

The motabolise of caloiom, phesphorus and nitrogen during high milk production appear in rable ExIX. This table includes data on D 11, D 12, D 18, and D 15 mioh
\square
wes secured siter the taking of othor data for this thesis was discontinued. This date is included in order to give amo acourate comparison between the two lots of animals. D 14 had not freshened at this time For that reason this animal does not appear in this table.

It was planned to seoure motabolism data on all the animals during medion milk production. Due to unavoideble hindrances this was not poseible for all the animals. For that reason Table XXI inclades data on but three animals.

Foight at withers compared to Eckles' Homal and body weight compared to Fckles' Hormal appear in Graphs I to VII, inclusive.

Graph Io. VIII show body woights during the firmt lactation period for animals $D 2$ to D 10, inclusite. which had been in milk for any considerable longth of timo.

Craphs IX to XVI, inclusive, show the blool caloin and inorganic bleod phosphorus from the time the animals were placed on experiment until the data was compiled.

Hoalth observationg, appetites of the animals and detailed reproduction data are shown for each animal in the seatiens provided for each animal for that purpose.

Toats for Be abortus infoction are not shown becanse of the fact that all the animals remained negatite throughout the experiment.
-
-
-
-

This heifer, born January 20, 1928 weighed 98 pounds at birth. It was a vigorous, thrifty oalf when pat on the experiment at ninety days of age. It weighed 195 pounds and was placed in Lot I.

Iotes and Observations. On June 24, it was obserred ahewing wood in its stall. This was not observel again until Hovember 28 and December 9, and again on Maroh 7. 1929. At no time did it ohow as ravenously as did the animals in the low phosphoras group.

It continued to be nearly normal throughout the course of the experiment.

Reproduction Record

		Oestrous cyole
180 at first heat periol 318 days		
" - second " ${ }^{\text {n }}$	589 *	21 day*
	867	28 "
$\dot{\sim}$ i fourtimin ${ }^{\prime \prime}$	488 -	121 **
Serrices for first conception - 1.		
costation period - 288 days.		
Ease of Parturation - calved normally.		
Health of Calf - strong - weight 93 pounds.		
Rocovery of cow - matisfactory - oleaned normally		
Daye until first heat period after freshening - 77.		
Serrices for second conception - 1.		
*Intervening heat periods encaped notice.		

D-8
This heifer was born on January 26,1928 and placed on experiment at ninety days of age. It woighed 84 pounds at birth and 165 pounds when started on the experiment in Lot II.

Motes and Observations. Throughout the experiment this heifer was a poor feeder, From the time mill was taker from the ration it never att the alloted amount of foed. It exhibited a slight depraved appetite by ohewing wood and hair and by chowing bone placed in its stall. It also was observed to eat dirt. The observation was made on June 15, 1928 that the low phosphorus group did not eat as well as the others. As shown by photographe it was a small underfod looking individual throughout the experiment. This is solely because of 1 its poor appetite which decame particularly pronounced ahortly after ealving.

Reproduction Record

Oestrous CJOL
Age at firat hoat period
 Services for conception - 2. Gestation period - 270 days.

Ease of partaration - calved normally.
Health of calf - atrong - weight 69 pounds.
Rocorery of cow - aatisfactory - oleanod normally.
Deje until firet heat period after freshening

29 days

Days until second heat period after freshoning

48 days
19 days
Daye until third heat period after Ireshaing
$71{ }^{1}$
$85 *$
Days until fourth heat periol after freshening

Days until fifth heat period after Ireahonin
$187 * *$
56 *
Days until sizth heat periel Efter Ereshoning 207 . 20 " Services for second conception - E.

- One or two heat periode apparently annotioed.

$$
D=1
$$

D-4 was born January 31,1928. It wighed 82 pounds at bixth and 186 porinds men placed on experiment at ninety days of age in Iot I..

Ioten and Observations. It was obsested chewinc wood in its stall on several cocasions. This did not seer to persist continually. D-A's appetite mas good all the time and there was nothing in its record to indicate any abnormalities ereopt for the fact that it required three services for firmt conception. This irregalarity, however, may properif be blamed on the service ball because considerable difficulty was experienced mile using this bull. When a different ball was put inte sexvioe 1ittle more diffioulty was oxperienced in getting the cows with calf. Boproduction Rooord

Oestrous 0yole
Age at firat heat periol 426 days

18e at fourth heat periol

- . fifth .
" n sixth ${ }^{n}$ n

490 day:	Brod	25 day:
519 n	"	29 "
581	"	62

Services for conception - 8.
Cestation periol - 268 days.
Ease of partaration - calved normally.
Health of calf - strong - weighed 64 pounds.
Recorery of cow - atiafaetory - eleaned normally.
Days antil first heat periol after freshening 88 Bred

Services for second conception - 1 .

* Two heat periods apparently unnoticod.
D-5

This heifor was born January 31,1928. In spite of the fact that it weighed out 70 pounds at birth it was considered best to pat her in Lot II to balance the lots as to sise. At ninety days of age it weighed 148 pounds.

Fotes and Obsertations. As shown by the photograph this animal continued to be rough, thin looking individual until firet freshening. It exhibited a alightly depraved appotite by ohowing wood and by ahowing hair off the othor animals occasionally. This animal like D-8 was a rather poor eater. deter freshening, however, it consumed sufficient nutrients to meet the requirements as computed by the lower limits of the Morrison Feeding Standard. D-5 was the best milk producer of Lot II and this may have acounted for its better appetite.
-

$$
-
$$

- \therefore : -

Reproduction Reoord

		0estrons Cyole
Age at first heat period	324 days	
n second n n	383 *	9 days
n third n	850^{*}	85
n \quad fourth ${ }^{\text {n }}$	378 -	18 "
n n ilfth n	555 - Bred	160 "
\dot{n} in alxth ${ }^{\text {n }}$	680 "	147*
Services for first conception - 2 . Gestation period - 262 days.		
Ease of parturation - posterior presentation - Calf had to be pulled.		
Health of calf - strong - weight 85 pounds.		
Recotery of cow - satisfactory - oleaned normally.		
Days until first heat poriod after freshening		
Days until second heat period after freshening $95 \times$ Bred 28		
Dage until third heat periol after freshening 115 n n 20		
Days until fourth heat period after freshening		
Sesriees for accond conception - 8.		
* Soveral heat periods apparently unnotioed.		

$$
D-6
$$

D-6 man born Pebruary 4.1928, wight 04 pounds. From an apparent inheritance for milk production atandpoint it was considered beat to put it in Lot I. When atarted on the experiment at ninoty days of age it weighod 154 poulde.

Motes and Observations. This animal was obserted ohowing wood in its stall a few times. It was never off feed
and continued to grow at a rate close to normal. It developed a hump on the back which could not be associated in any way with natrition. It mast have been caused by some unnoticed injury.

Reproduction Recorl
Oestrous cyole
Age at firgt heat period
" " eecond " $\quad 555$ " Bred 229 days*
$\dot{n} \quad n$ third $"$
\dot{n} i fourth ${ }^{n}$ i
sorvices for conception - 3.
gostation period - 277 dajs.
Base of parturation - calved normally.
Health of calf - strong-weight 73 pounds.
Recorery of cow - satisfactory - oleaned normally.
Dayn until firat heat periol after freshening

Days antil second heat period after freshening 52 " 21 days Days until third heat period after freshoing

Serpices for second conception - 1.
*Intervening heat periode apparently unnoticed.

$$
D-\eta
$$

This heifor woighed 05 pounds men born February 10,
1928. It was placed in Lot II at ninety days of age. At that time it weighed 162 pounds.

Hotes and Observations. This animal was the first one notioed ohewing wood. It showed atrong ovidence of depraved appetite throughout the experiment by ohewing wood,

-
eating dirt, and by ohowing hair. It's appotite was fair up until just before freshening. it this time the animal went off feed and considerable difficulty was experienced daring laotation in getting it to eat. This animal wont dxy at the ond of 281 days lactation.

Reproduction $\mathbf{d e c o r}$.

00strous Cyole
428 daya

$\begin{array}{ll} 468 \dot{\text { in }} & \text { Bred } \\ 499 \dot{\text { in }} & n \\ 525 \dot{\vdots} & n \end{array}$	

Services for conception - 3.
Gestation period - 274 days.
Hase of parturation - caltid normally.
Hoalth of calf - etrong - weight 24 pounds.
Recovery of oow - aatisfactory - oleaned promally.
Days until first heat period after freshening

10 day:
Days until second heat period efter freshening 30 n 20 days

Days until third heat period after freshoning 98 n 68 * *

Daye until fourth heat period after freshening

129 "
31 "
Services fequired for second oonception - 2.

* Apparently two heat periods were missed.

D-8
D-8 weighed 100 pounds at birth, February 11, 1928. At ninety days of age it weighed 196 pounds when started on the experiment. Placed in Jot I.

Hotes and Observations. This heifer was not as good a feeder as some of the other heifers in Lot I. It chewed wood to a slight extent. Body weight kept as close to normal as any of the heifers. When eleven months of age this animal was observed to have a slight convulsion which nover occurred again. It went off feed twice during the first lactation period, bat came back on feed very soon in each case.

Reproduction Record

0estrous CJOL
Age at first heat period

374 days
892 " 18 days
411 in 19 ㄲ
$431^{\text {n }} \quad 20$.
451 ì 20 i
470 i Bred 19 ウ
508 * $\quad 88$.

Services for first conception - 2.
Gestation period 278 days.
Rase of parturation - calved normally.
Health of calf - strong - weight 78 pounds.
Recovery of cow - satisfactory o cleaned normally.
-
-

- -

Dayn until firat hoat period after ireshening

28 days
Daye until meond heat period after freshening $40 \mathrm{~N} \quad 18$ days

Days antil third hoat period efter freshening

82 ${ }^{(1)}$ Brod 42 *
Services for second conception - 1 .

* One heat period apparently escaped notioe.

D-9

D-9 was born Jebruary 18, 1928, wight 84 pounds at birth. It was placed on experiment in Lot II at ninety days af age, weighing 189 pounds.

Motes and Observations. Throughout the ontire experiment this animal was a very poor feeder. Depraved appetite was shown about two months after being placed on experiment. This depraved appetite continued and the animal chowed hones, sticks and ate dirt and was observed ohewing hair fr long periods at a time dfter freshening it was frequentiy offteed and would ant about half the food requirements during the first part of the laotation. Boproduction Bocom

Age at firmt heat period - \quad second ω
" ω third $\quad \omega$
\cdots. \quad fousth ${ }^{(1)}$
Services for conception - 8.
Gestation period - 275 days.
Days uatil ilist heat period after freshening

Oestreus cyele
453 days

,
-
-

I
-

Days antil second heat period after freshoning

44 day:
20 daya
Days until third heat period after freshening
*apparently two heat periods were missed.

D-10
D-10 was bom May 17, 1928. Weight 82 pounds. Placed on experiment in Lot I at ninety days of age weighing 190 pounds.

Hotes and Observations. Δt different t imes it mas noticed ahowing wood to a limited extent. This animal did not always consume sufficient nutrients to meet the requirements. It was very nearly normal in weight throughout the growing period. A little difficulty was experienced, howerer, in getting this animal to eat all of its required feed for a fow weoks after freshening. It started eating woll about six wooks after oalving and has had a good appetite since.

Reproduction Record

Age at first heat period

885 days
411 "

Services for conception - 4.
cestation periol - 268 days.
Ease of parturation - ealvad normally.

Health of calf - strong - 69 pounds.
Recovery of $00 w$ - atisfactory - oleaned normally.
Days until first heat period efter freshening

Daye until ecoond hest period after freshening

Days until third heat period efter freshening 138 " Bred 46 days*

Services for second conception - 1 .

* Intertening heat periods escaped notice.
D-11

This animal, born January 23, 1929, wight. 92 pounds, was placed in Lot II. It weighed 192 pounds at ninety days of age men placed on the experiment.

Letes and observations: 41 mase a very nervous and exoitable individual this animal wasfrequently obsertel not eating the foed readily. It exhibited a dopravel appetite by eating dirt, ohowing hair, bones and wood. It remained undersised throughont the experiment.

Reproduction Recorl

		0estrous cyole
Age at firat heat period	402 days	
* second "	486 *	24 daje
	451 n	25.
- fourth ${ }^{\prime \prime}$	479 (Brod	28

Service for conception - 1
Cestation periol 276 days.
Ease of parturation - required some help.
Hoalth of calf - calf born dead - weight 85 pounds.

- -

$$
-
$$

Recovery of cow - Eatisfactory - cleaned nomally.

D-12
This heifer, born January 20, 1929 was placed in Lot I to offect it's full sister, D-5, in Lot II. It woighel 95 pounds at birth and 200 pounds when placed on the experiment at ninety days of age.

Hotes and Observations. It was observed a fow times chewing wood in it's stall. It continued to grow at a mearly normal rate, nover oxhibiting any depraved appetite after reaching the age of eleven months. Its appetite was good throughout the experiment.

Reproduction Recorl

Serrices for conception - 1.
Gestation period - 276 days.
Ease of partaration - posterior presentation.
calf had to be palled.
Fealth of calf - atrong - weight 96 pounds.
lecovery of cow - atiafactory - oleaned normally.
-
\square
-
. - .
!
-
:
-
-
-
\square
-

- \square

D-13
D-13 was bom January 26, 1929, weight 89 pounds. It weighed 185 pounds when placed on the experiment in Lot II at ninety days of age.

Hotes and Observations. Like the other animals
In Lot II this heifer exhibited aymptoms of depraved appotite soon after being placed on the experimental ration. It ate dirt, ohowed wood vadly, and ohewed hair. Its appetite mes not of the best.

Reproduction Record
0estrous
Age at firat heat period 481 day Bred
Serviees for oonception - 1.
Cestation period - 280 days.
Rase of parturation - oalved normally.
Hoalth of oalf - strong - weight 85 pounds.
Recovery of cow - satisfactory - oleaned nomally.
D-14

Thls heifor, a full sister to D-5, was placed in Iot I to offect D-3. It was borm Pebruary 10,1929, weight 100 pounds, and weighed 205 pounds when placed on the experiment at ninety days of age.

Motes and Observations. It was observed ohewing wood a few times. This was the only manifestation of a dopraved appetite. It always was a good feeder and ate the ration readily.

Reproduction Becord

Age at second heat periad 520 days Brod 69 days*
 Services for conception - 2. Gestation period - had not freshened at time this data was compiled.

* IIssed the intervening heat periods.

D-15
D-15. Feighing 112 pounds at birth on Fobruary 17, 1929, this heifer completed Iot II. It was an exceptional ly large, growthy call, and was considered a gool test for the retion fod Iot II. It wighed 223 pounds at ninety days of age won placed on the experiment.

Fotes and Observationse ds ahow by Graph Fo. 7, ite body weight continued to inerease at a normal rate longer than any of the other animals in Lot II. It later refused part of the feed and would not consume its requiremente until nearly two years of age. It exhibited perchap the most pronounced symptoms of deprated appetite of the group. It ate dirt, chewed wood and bones. It dhowed hair from the other animals ravenously. As shown by the pictures it assumed the rough, andernourished appearace of the other heifers in the lot.

Reproduction Beoord
0estroas CyOle

- -

Gostation period - 279 days.
Base of parturation - calved normally.
Health of call - strong - weight 94 poundse.
Reootery of cow - eatisfactory - cleaned normally.

DISCUSIION OF EXPERIMEINAL REJULTS

Period I. From 90 Days of Age to First Calving

In this investigation two lots of high grade Holstein heifers were placed on the experimental rations at ninety days of age. The basal ration fed the animals in Lot II, to first calving, consisted of alfalfa hay, corn and corn silage. The alfalfa hay used was low in phosphorus as shown by Table II. Lot I received the basal ration plus enough Steamed Bone Meal to bring the phosphorus content of the ration up to approximately 0.41 percent of the dry matter.

Growth of the Animals
The animas are compared to the Eckles Normal as to height at withers in Graphs I to VII, inclusive, which show that practically all of them were below the Eckles Normal during the first jear, but reached this level shortly thereafter. As a group, the animals in Lot II gained at a very similar rate to the animals in Lot I. During the growing period there was little difference between the two groups in skeletal growth.

When comparing the two groups in respeot to body weight a decided difference is shown by Graphs I to VII, inclusive, in favor of Lot I. This difference may be attributable to the greater feed consumption of the
animals in Lot I. Less than $t w o$ months after the animals were placed on the experimental rations all the animals in the group reoeiving the basal ration started refusing part of their feed. They continued to do this throughout the growing period. The animals which received the bone meal consumed their feed very readily, and as a result their total feed intake was considerably above that of the animals in Lot II. Tables III to XVI, inclusive, show the feed consumption during the growing period. These tables show that the crude digestible protein and net energy intake of the animals in Lot I conformed more closely to the Armsby Standard than did the orude digestible protein and net energy intake of the group on the basal ration.

Tables III to XVI, inclusive, show a greater water consumption by the animals receiving bone meal than by those on the basal ration. It was not determined whether or not this was due to the addition of the bone meal, but the indications are that this is the case because during the periods when the animals in each of the two groups were getting the same quantities of hay, silage, and corn, the water consumption was greater for the animals receiving bone meal. A seasonal variation in water consumption is shown by Tables III to XVI, inolusive. The amount of water consumed increased in general as the weather became warmer. No attempt was made to correlate water consumption to atmospherio temperature.

Phosphorus Intake. As shown by Tables III to XVI, inclasive, the phosphorus intake of the animals In Lot II was below ten grams per day during the first Jear while that of the animals in Lot I was approximately twioe as great. The percentage of phosphorus in the dry matter of the ration was approximately 0.20 for the animals in Lot II as compared to approximately 0.38 for the animals in Lot I.

During the second jear the intake of phosphorus gradually increased in both lots due to the greater feed consumption. The percentages of phosphorus in the dry matter continued to be very uniform up until about one month before calving when the phosphorus was increased. This was caused by the addition of more corn to the ration to get the animals into a higher condition of flesh at calving time.

Phosphorus Requirement for Growth. The optimum phosphorus content of the dry matter of a ration is given by McCollum as 0.4148 . The rations of the animals in Lot I were adjusted to this figure by using 0.18 percent as the phosphorus content of alfalfa hay. This figure was given by Reed and Huffman as the average of 19 samples of Michigan grown alfalfa hay. The tables giving the feed consumption for the animals in Lot I show the phosphorus content of the dry matter in their rations to be slightly below this figure in most cases because the alfalfa hay used was consistently below the figure used for alfalfa hay in computing the phosphorus
furnished by the rations.
The tables giving the feed consumption for the animals in Lot II show the percentage of phosphorus in the dry matter of their rations to be very close to the figure (0.20 percent phospiorus) which Palmer believes to be the danger line below which figure a ration may be said to be phosphorus deficient.

Table No. XXVIII, giving the results of metabolism tests made on eleven of the fourteen animals before calving shows an average phosphorus utilization by the animals in Lot I of 30 percent. This figure may be compared to 41.6 peroent phosphorus utilization by the animals in Lot II which received the low phosphorus ration. These figures are in line with Kellner's recomendation that an animal should receive in its ration from two to three times the amount of phosphorus stored by the body, because of his bellef that an animal could atilize but one-third to onehalf the amount of the element furnished by its ration. From analyses of the bones of animals Kellner computed the average daily retention of calcium and phosphorus. He found that on this basis an animal stored 8.3 grams of phosphorus per dey. Applying the utilization percentages secured in this investigation to Kellner's figure it is found that an animal should receive from 20.24 grams to 27.67 grams of phosphorus per day. Lot I received almost this amount.

In as much as Lot I reoeived very close to the percentage of phosphorus which McCollum delleves to be optimum, and in as much as the phospinorus utilization by these animals is shown to be lower tian was secured by Reed and Huffman, probably the animals recelved very nearly an optimum amount of phosphorus.

Calcium-Phosphorus Ratio. Table XVIII shows that during the metabolism tests made on the animals before calving the calcium phosphorus ratio was quite wide. The Iiterature on the calcium phosphorus ratio for cattle is not definite. The interdependence of the two elements was demonstrated by Sherman and Quinn. Analyses of bones have shown that the calcium and phosphorus are combined as tri-caloium-phosphate. Besides the calcium combined with phosphorus in this manner there is the oalcium combined with carbon and oxygen as oalcium carbonate. The ratio of oalcium to phosphorus in tri-oalcium-phosphate is l.93. Knowing that the ration must provide the calcium for combination into tri-calcium-phosphate as well as calcium carbonate it is not unreasonable to assume that an optimum calcium phosphorus ratio would be considerable in excess of 1.93. In this investigation the animals in Lot I reo ceired a calcium-phosphorus ratio of 3.34 and those in Lot II received a ratio of 4.77. The nariower ratio in I0t I is because of the influence of the bone meal added to the ration. The difference in the atilization of phosphorus by the two groups may not be significant, but In this investigation the greater utilization was secured with the wider ratio. This, however, may be a coincidence,
-
-
and merely due to the limited absolute intake of phosphorus by the animals in Lot II. MoCollum and Simmonds stated that for rats a ration should provide oslcium considerably in excess of phosphorus. It is logical to assume that an optimal proportion of the two elements would be as near as possible to the proportion in which they are used in combination by the dody. Therefore, the combining proportion of the two clements for tri-calcim-phosphate in ossification should be about l.93. Adding to this the amount of calcium needed for forming calcium carbonate the ratio of calcium to phosphorus in these two compounds is 2.14. since these two compounds comprise 95 percent of the inorganic content of bone a combining proportion of the two elements calcium and phosphorus should be close to two parts of calcium and one part phosphorus. Obviously other factors enter into the metabolism of the two elements and affect them so that it is rather difficult to say how close the calciumphosphorus ratios used in this investigation were to optimal. It is worthy of note that theratio of calcium to phosphorus in the alfalfa hay used in this investigation varied from 7:1 to more than 11:1.

Health of the Animals
The lack of appetite among all the animals in Lot II was one of the outstanding features of this investigation. As has been proviously atated this condition was observed less than two months after the animals were plaoed on the experiment. It was a condition that persisted, as is show
by the reductions of food intake which appeared from time to time. A lack of appetite by animals on low phosphorus rations was not mentioned in the lite ature reviewed. Reports of the refusal of dairy cows on farms to eat alfalfa hay of apparent good quality have been quite frequent. There is a possibility that a lack of phosphorus may be a contributing factor in such instances.

In addition to the poor appetite for their feed, the animals in Lot II showed depraved appetite by chewing the ir stalls, eating dirt, and by chewing the hair from each other. Such symptoms are, according to Theiler, Marcq, Eckles and Beaker, Reed and Huffman, Schmidt, Welch, and many others, evidence of insufficiant phosphorus in the ration. Theiler, Palmer, and Welch epecifically stated that bone chewing by cattle is proof of a phosphorus deficiency. The animals used in this experiment were given fresh bones to chew, but under the oonditions of the experiment they did not chew these bones to any appreciable extent.

There was little difference in the general appearance of the animals of the two groups at fifteen months and at two years of age as shown by the photographs. There was a tendency, however, for the low phosphorus animals (Lot II) to grow longer, rougher coats of hair in the winter than were shown by those receiving optimal phosphorus in their ration.

At no time were there symptoms of stiffness, oreaking of bones, and stilted gaits as reported by Eckles, Becker and Palmer in investigating phosphorus deficiency among. dairy cattle in Northern Minnesota, or Hart and co-workers, investigating the same problem in Door County, Wisconsin. This fact sugeests the possibility that under the conditions of this experiment the phosphorus deficiency did not become as severe as reported by the aforementioned workers.

The coats of hair on the animals in Lot II were duller than on the animals in Iot I. The eyes were somewhat sunken and rather dull in appearance.

Graphs IX to XV, inclusive, show the blood calcium and inorganic blood phosphorus of the animals from the time they were placed on the experiment until the data was assembled. The effects on blood of the low-phosphorus ration supplied to Lot II are in accord with the results of Henderson and Weakley. Eckles and Palmer, and Malan, Green and duToit, all of whom reported low inorganic blood phosphorus in animals on rations low in phosphorus.

Graphs IX to XV show that there was a drop in inorganic blood phosphorus of the low-phosphozus group soon after being placed on the basal ration. There was a tendency for the inorganic phosphorus graphs to come together at from fifteen to eighteen months of age. In both groups the inorganic blood phosphorus dropped prior to calving. These graphs show a tendency of the blood calcium to rise men the inorganic blood phosphorus drops.

Reproduction

The data secured in this investigation on age at first oestrum and on the oestrual cycles of the animals are not very complete. Probably in many oases the oestrual periods were not observed due to the fact that the animalswere stabled nearly all the time during the period that they would normally start to show oestrual periods. Table No. XXVII, giving the reproduction data for the two groups shows that the low phosphorus group. (Lot II) averaged 35 days older at first observed oestrual period than the animals in Lot I. This difference is probably insignifioant in the light of the conditions of the experiment. This is in contrast to the reports of Fckles, Beoker and Palmer, Welch, Hart and associates, and Theiler and co-workers, all of whom have stated that low phosphorus rations produce delayed oestrum in oattle. Perhaps the phosphorus content of the ration used with Lot II in this investigation was not low enough to produce the effects reported by theabove mentioned investigators.

Table XXVII, giving the gestation periods of the cows, size, health, and weight of the calves, show no difference between the t wo groups in these respects. One hundred percent reproduction was secured. In some cases several services were required for conception. It is felt that this difficulty was caused by the service bull, beoause, on changing bulls, little further difficulty wes experienced in this respeot.
\square
-
\square
?
-
-
\square

Period II. First Lactation Period Milk Production

The records of mill production given in Table XXVI show a significant difference in favor of Lot I for those animals which were in milk for a complete period. Two animals, $D-2$ and $D-8$ in Lot I and three animals, $D-3, D-7$ and $D-9$ completed an entire lactation period. The period for $D-7$ is for 281 days instead of 305 days. This is because lactation ceased at the end of this period. There was but one animal, D-5, in Lot II which gave indication of production comparable to the animals in Lot I. Animals D-11, D-12, D-13 and D-15 had jast calved at the time of assembling this data and D-14 had not yet calved.

The difference in milk production between the two groups is probably attributable to the fact that with one exception the low phosphorus group would not eat the amounts of feed required by the standard used, whereas the group receiving the phosphorus supplement consumed their feed quite readily. This explanation is strengthened by the fact that D-5 the only animal in Lot II to consume her requirements of feed is the only animal in that group to produce at a rate comparable with the animsls in Lot I. The lack of appotite among three of the four animals which have been in lactation in Lot II continued as long as they were giving milk. As a result the animals appeared gaunt and emaciated. They assumed somevhat of the appearance of the animals described by Eckles, Becker,
and Palmer in reporting on phosphorus deficiency conditions in Northern Minnesota, and by Hart and associates in describing cattie found in Door County, Iisconsin. The animals did not show the stiffness, creaking of joints and Inability to rise as descrived by Eckles and co-workers, and Hart and associates, but their coats of hair were dull, their eyes were sunken, and they seemed listless and dull. The animals in Lot I, on the other hand, appeared normal throughout the laotation period. Very little difficulty was experienced in getting these animals to eat their alloted rations.

A lack of appetite by animals on low phosphorus rations was not reported by any of the invustigators whose work was reviewed. Theiler and co-workers, Eckles and associates, Hart and associates, Forbes, and Meigs and co-workers, all emphasized the fact that cows on phosphorus deficient rations did not produce as well as cows fed the same rations supplemented with phosphorus. None of these investigators, however, made any mention of a lack of appetite in lactating dairy cows fed phosphorus deficient rations.

Phosphorus Intake. The feeds used in this investigation during milk production were the same as were used previous to the time the animals calved, with the exception that, after calving, blood meal was added to the rations in order to provide the necessary protein. This feed was used because it is low in phosphorus in comperison to its protein content. By using it the protein of the ration was kept to the Lower Limits of the Morrison Feeding

Standard without appreciably increasing the phosphorus. Tables XVII to XXV, inclusive, show that the animals in Lot I received approximately 0.41 percent phosphorus in the $d y$ matter of their ration as compared to from 0.23 to 0.26 percent for Lot II. The animals in Lot II would have received approximately 0.23 peroent phosphorus had they eaten their rations as computed according to the standard used. This fact is illustrated by Table XX which shows the milk production and feed consumption for $D-5$, the only animal in the low phosphorus group which ate enough feed to meet its requirements.

The intake of phosphorus by the animals in Lot I averaged 42.34 grans daily compared to 20.09 grams for the low phosphorus group. Among the animals of the low phosphorus group D-5 stands out as having averaged 25.42 grams of phosphorus intake daily. The amounts of phosphorus received at times when $D-5, D-5$, and $D-9$ were practically in phosphorus equilibrium compared very favorably with the results secured by Rose. In his wo rk a cow in phosphorus equilibrium received the amount of phosphorus in her milk plus 26 milligrams of phosphorus per kilogram of body weight.

Phosphorus Kequirement for Milk Production. Kellner
in compating the phosphorus requirement for milk production accepted Henneberg's estimate of 21.8 grams of phosphorus per 1000 kilograms of body weight and added to this figure three times the amount of phosphorus eliminated in the milk, on the assumption that from one-
third to one-half of the feed ash consumed was available. Thus a 1000 pound cow giving 20 pounds of milk would require 25 grams of phosphorus per day.

In tinis investigation the animals varied in weight from 650 pounds to 1100 pounds. The average daily milk production varied from 20.4 pounds produced by D-3 to 32.7 pounds produced by D-2 during complete 305-day lactation periods. It is evident that the ration of D-3 which contained an average of 16.46 grams of phosphorus per day, did not provide enough to meet its requirements. This cow was barely in phosphorus equilibrium when producing 17.6 pounds of milk. At that time it weighed 655 po unds. D-2, however, which produced an average of 32.7 pounds of milk a day during the entire lactation period received an average of 32.7 grams of phosphorus per day. This animal was in positive phosphorus balance while producing 35.3 pounds of milkper day during metabolism test. At this time its body weight was 948 pounds. As show by Table XXIX the results obtained from D-2 on metabolism test are indicative of the animals in Lot I. The results obtained from D-3 are not as represantative of the performance of the animals in Lot II because the metabolism test was made on this animal later in lactation, at which time milk production had decreased materially. Neither D-7 nor D-9 are considered as nearly representative of the group as D-3.

The negative phosphorus balances secured on the low phosphorus group are in accord with the results of Forbes and associates, Hart and co-workers, and Meigs and Woodward who found negative phosphorus balances almost universal in cows receiving standard rations without mineral supplements.

The phosphorus atilization shown by Table XXIX is © nsiderably higher in Lot II than in Lot I. Apparently Lot I received considerable excess phosphorus. The atilization secured in both groups was higher than Kellner's estimate. The higher utilization of phosphorus by the animals in Lot II is in contrast to the work of Eckles and Gullickson who found that animals on low phosphorus rations did not make as good use of their feed as animals on adequate rations.

The results secured indicate that the basal ration was inadequate in phosphorus content for satisfactory milk production. The lower atilisation of phosphorus by the animals in Lot I combined with the positive phosphorus balanoes indioate that these animals received enough, if not a slight excess, of phosphorus.

Caloium-Phosphorus Ratio. There was no evidence in the literature reviewed to indicate that the optimal calcium-phosphorus ratio for milk production should be materially different from the ratio for growth. In this investigation the average calcium-phosphorus ratio was 2.912 for the animals in Lot I and 3.060 for the animals in Lot II during laotation. This difference is insignifi-
\square
\square
-
-
-
\square
-
-
-
-
-
cant. The results received with D-5, D-11, D-13, and D-15 in Lot II, however, show that the average oalcium-phosphorus ratio would have been much higher (3.51) had all the animals in the group consumed their feed, as these four animals were doing at the time of metabolism test. The adalition of the bone meal to the rations of Lot I narrowed the calcium-phosphorus ratio for this group. The results from these metabolism tests do not agree with the results obtained by Turner, Harding and Hartman who secured better assimilation from rations showing a calciumphosphorus ratio of 1.25 than they did from rations with a ratio of 2.50.

Health of Animals

The differences in general appearance observed in the two groups of animals previous to calving were. accentuated by milk production. The animals in Lot I continued in normal condition. The animals in Lot II, to the contrary, were frequently off feed. Allof them except D-5 refused to eat more than one-half as much hay, and onehalf to two-thirds as much silage as the animals in Lot I. Their coats were rough, eyes sunken, and they were somewhat dull and listless.

The depraved appetites observed previous to calving became much worse after calving. The animals would search the exercise lot for material on which to chew. They chewed the fences, chewed hair off each other, and were frequently observed eating dirt. On one occassion D-5 got out of the stancinion during the night and chewed a rabber hose into two pieces. Ano the r time this same
animal chewed an extension cord almost beyond reconition. These results agree with tiose of Eciles, Becker, and Palmer, and Theiler and associates.

As shown by Graph VIII the animals in Lot I maintained their body weights to a much better advantage than did the animals in Lot II. The low phosphorus group ∞ ntinued to lose weight much longer than the animals in Lot I. Graph VIII also shows that at any given time after calving the animals in Lot I were heavier than those in Lot II. $D-7$ is an exception in the low phosphorus group, but she was fed far in excess of her requirements during the latter part of her lactation period, in an effort to induce greater milk production as indicated by Table XXII。

The blood pictures of animals $D-2$ and $D-10$ inclusive, which are shown by Grapsh XIX to XV, inclusive, show a deoided drop in inorganic blood phosphorus in the group receiving the low phosphorus ration immediately after calving. The blood phosphorus of these animals remained at a lower level than that of the animals in Lot I. There Was one exception to this, the oase of $D-7$ which received nutrients far in excess of her requirements for the last three months of her lacjation period These low phosphorus percentages are in accord with the results of Henderson and Weakley. In fact, they are more piconounced than the results secured by these investigators. These
also agree with those secured by Palmer and Eckles and Malan, Green, and duToit who worked with cattle fed on phosphorus deficient rations.

Reproduction. At the time of assembling this data none of the animals had calved the second time. After reviewing tio findings of Ecries, secker and Primer, and Hart and associates, Theiler and co-ivorkers, and Welch, it was antioipated that delayed oestrum and difficulty in conoeption would occur. The data on these subjects as given below shows no significant differences between the two groups as to time between calving and the first oestrual period thereafter, regularity of oestrual periods and number of se $\boldsymbol{\sigma}$ ices for second conception.

Reproduction Data for Second Conception

Animal	Iot	Days from Calving to First Oestrual Period	Regularity of Oestrual Periods	Services for each Conception
D-2	I	77	Irregalar	1
D-3	II	29	n	3
D-4	I	83	n	1
D-5	II	73	n	3
D-6	I	31	"	1
D-7	II	10	"	1
D-8	1	22	n	1
D-9	II	24	n	1
D-10	1	25	\cdots	1
Average	for	$\begin{array}{ll}\text { I } & 48 \\ \text { I } & 34\end{array}$	Irregular	1

Apparently the phosphorus content of the ration fed Lot II was not low enough to produce the delayed oestrum and poor breeding ability of the cattle studied by Eckles, Becker and Palmer, Hart and associates, Theiler and co-workers, and Welah.

SURIARY
Period I. From 90 Days of Age to First Calving. 1. The basal ration fed Lot II, consisting of alfalfa hay low in phosphorus, corn silage and corn, supplemented with common salt, was adequate for normal skeletal growth in dairy heifers. This ration contained about 0.20 percent phosphorus on the dry basis.
2. The basal ration, low in phosphorus, did not support normal growth in body weight. The heifers receiving the basal ration supplemented with enough bone meal to bring the phosphorus content of the dry matter up to 0.41 peroent made greater gains in body weight than those receiving the basal ration.
3. The basal ration was responsible for the development of poor appetites in the animals receiving it. This resulted in a feed intake below that of the group receiving the phosphorus supplement.
4. The low phosphorus content of the basal ration produced rough, staring coats, dull eyes and a general unthrifty appearance in the animals in Lot II.
5. Approximately 0.20 percent of phosphorus in the dry matter, as provided by the basal ration, was not sidficient to prevent the development of depraved appetite.
6. The phosphorus intake of the animals on the basal ration was not sufficient to maintain their inorganic blood phosphorus at a normal level.
7. There vas no significant difference between the two groups of animals in the age at first oestrum, number of services for conception, gestation period, size and health of calves produced, or the recovery of the cows after calving.

Period II. First Lactation Period

1. The basal ration plus enough blood meal to meet the requirements of the lower limits of the Morrison Feeding standard did not support liberal milk production.
2. The thin, emaciated condition of the animals in Lot II and their failure to maintain their body weights were a result of the low phosphorus content of the basal ration.
3. The poor apjetites shown before calving by the animals receiving the basal ration were more pronounced after lactation began and persisted during the lactation period.
4. The depraved appetites which developed before lactation began, became more acute during lactation.
5. After calving, the inorganic blood phosphorus of the group receiving the basal ration dropped very markedly and remained at a low level as long as

-

laotation continued, indicating inadequate phosphorus in this ration.
6. The low phosphorus content of the basal ration had no significant effect upon the fecundity of the animals receiving it. These results indicate that tine basal ration was adequate in phosphorus for normal reproduction.

1. Armsby, H. $\mathrm{P}_{\text {。 }}$

1917
The Natrition of Farm Animals
(a) pp 723-724, (b) p 414, (c) p 332,
(a)p419, (e)p713, (土) p 338

The Macmillan Company, N. Y.
2. Henry, W. A., and Morrison, F. B.

1923 Feeds and Feeding (18th Edition) p728.
5. Haffman, C. P.

1929 Feeding Value of llfalfa Hay is Variable. Moh. Agre Expte Sta. Quarterly Balletin XII No. II pp 37-39.
4. Henderson, H. O., and Weakley, C. F. Jr.

1950 The Effect of Feeding Different Amounts of Calciom and Phosphorus Upon the Growth and Development of Dairy Heifers West Va. Agr. Expt. Sta. Bul. 231.
5. Ames, J. We, and Boltz, Geo. E.

1918 Iitrogen and Mineral Constituents of the Alfalfa Plant

Ohio Agr. Expt• Sta. Bal. 847.
6. Barke, E., Johnson, A. H., Scott, S. G., Herrington, B. I., and Greone, Jesse.

1927 Fhosphorus and Caloinn Deficionoies in Forage Montana Station Report 1927 pp 88-90.

- ...
- • •

\square
\square
- • •
- -

7. Price O. B.

1928
Fertilizers Affect Quality of Alfalfa Hay
Mich. Agre Axpt. Sts. Quar. Bul No. 4 pp 158-159.
8. Mather, T. H.

1989 The Effect of Fertilizers Upon the Forms of
Phosphorus and the Amounts of Phosphorus,
Nitrogen and Silioa in Hays.
Solentific Agrioulture Vol. I No. I pp 85-63.
9. Fallon

1914 Effects of Irrigation on Mineral Constituents of Grasses. Nevada.

Cited by Forbes, E. Be, and Keith, M. Helen
Phosphorus Metabolism
Ohio Agr. Expt. Sta. Tech. Bulletin Ho. 5,p 94.
10. Widtsoe, J. A., and Stewart, R.

1912 Chemical Composition of Crops as Affeoted by
Different Quantities of Irrigation Nater.
Utah Agre Expt. Sta. Bul. 120, pp 205-240.
11. Henry, W. A., and Morrison, F. B.

1988 Feeds and Feoding (18th Filition) pp 735-736. The Henry and Morrison Company.
12. Oalifornia Agr. Expt. Sta. Report

1928 Composition of Iive stook Feeds
Calif. Agr. Expt. Sta. Annaal Report, ppl60-165.
18. Swanson, O. O., and Latshaw. W. I.
i916 Chemical Composition of Alfalfa as Affected by
Stage of Maturity, Mechanical Losses, and
Oondition of Drying.
Jour. Indus. and Eng. Chem. VIII, pp 726-729

\square
\square
-
-
-
-
-
\square -
-
-
14. Widtsoc, J. A.

1897 The Chemioal Iife History of Alfalfa
Utah Agr. Expt. Sta. BuI. 48, pp 38-39.
15. Dinsmore, S. C.

1907
The Composition of the Alfalfa Plant at
Different Stages of Growth
Nevada Agre Expt. Sta. Annual Rpt, p 39.
16. Henry, W. A., and Morrison, F. B.

1983 Feods and Feeding (18th Edition) pp 755 The Henry and Morrison Company.
17. Orr, J. B.

1929 Kinerals in Pastures
p 141, (17a) p 139, (17b) p 63-64.
H. K. Jewis and Company, Itd. Iondon
19. Faturel, G.

1912 On the Composition of Hay Damaged by Rain Jour. Agr. Prato, n. serp, 23, Ho. 17 pp 524-527 Cited by Hxpt. Sta. Record, Vol. 27. D 170.
80. Fonder, J. F.

1929 The Effect of Soil Type upon the Calcin and Magnesim Content and other Physiological Charaoters of Several Important Legumes. Soil Science Vol. XXVII, Ho. 3, p 225.

21 Feidig, R. E., McDole, G. Re, and Magnuson, H. P. 1928 The Effeot of Sulfar, Caloiun and Phosphoras on the Field and Composition of Alfalfa on Six Types of Idaho Soils. Soil Soience, Vol. XVI, Ho. 2. pp 127-136.
28. Osborne, T. B., and Mendel, L. B.

1918 The Inorganic Elements in Nutrition. Jour. Biol. Chem. XXXIV, p 131-139.
23. KoCollum, E. V., Simmonds, \mathbb{H}_{\bullet}, Shipley, P. G., and Park, E.A. 1921 Studies on Experimental Rickets VIII. The

Production of Rickets by Diets Low in
Phosphorus and Pat-Soluble A.
Jour. Biol. Che., XIVII, pp 507-527.
24. Same as reference No. 4.
25. KoCollum, E. V.,

1928 The Optimum Fhosphoras Content in the Rations of Animals.

Personal Commanication.
26. KoCollum, B. $\mathrm{V}_{\text {. }}$ and Simmonds, Nina

1922
The Bffeots of Varying the Ratios Between Calcium and Phosphorus in the Diet on the Histological Picture of the Bones.

The Newer Knowledge of Nutrition (3rd Edition)
p 410.
The Kaomillan Company, How Yoik.
27. Haag, J. R., and Palmer, L. S.

1928 The Effect of Varlations in the Proportions of Calcium, Magnesiom and Phosphorus Contained in the Diet.

Jour. Biol. Chem. LxXVI, p 367.
\square
28. Bothke, R. M., Konnard, D. C., Kirk, C. H., and Zinzalian, Ge 1929 Calcium-Phosphorus satie in the Nutrition of the Growing Chick.

Poultry Soi., 8, No. 5, pp 257-265.
29. Turnor, W. A., and Hartman, A. M.

1929 The dequate Ration for High Producing Cow and the Effect of Exeroise on Caloiom, Phose phoras and Nitrogen Balanoes. Jour. Nut. Vo1. 1, Ho. 5, P 445.
30. Tarner, W. A., Harding, F. S., and Hartman, A. T. 1927 Relatite Assimilation by Dainy Cows of Clover and Alfalfa Hays and of Rations of Different Caloiv and Phosphoras Content. Jour. Ag. Rese, Vol. 35, p 625.
51. Shohl, dlired T., and Bennett, Helen, B. 1928

Rickets in Dogs.
Tour. Biol. Chem. IXXVI, DP 633-640.
58. Shorman, H. C., and Quinn, B. J.

1926 The Ehosphoras Content of the Body in
Relation to Age, Growth, and Food.
Jour. Biol. Chem. IXVII. pp 667-677.
85. Sholling, Davia Ho, Kramer, Bonje, and Orent, Blas Re 1928 Stadies Upon Calcifioation in Vitio. Jour. Biol. Chem. IXXVII, PD 157-170.

8A. Teign, J. B., Turner, W. A., and Harding, T. Ston. 2986

Caloin and Phosphorus Metabolise in Dairy Cown.

Jour. A8. Res. Vol. 88, FO. 9, pp 883-860.
35. OP1, J. B.

1925
The Kineral Flements in Animal Nutrition. Jour. Soc. Chem. Indus., Vol. 44, No. 40, pp 964-970.
36. Taylor, G. \mathcal{F}.

1925 A Study of Depraved Appetite in Dairy cattle. Thesis for Degree of M.S.

Michigan State College, East Jansing, Mich.
37. Palmer, I. S.

192 Inerals for Farm Animals.
Minn. Agre Expt. Sta. Spec. Bul. No. 94.
38. Theiler, A., Greon, H.H., and DaHoit, P. J.

1924
Phosphoras in the Iive Stock Industry
Jonr. Dept. Agr. Union of South Africa,
IO. 5, pp 460-504.
89. Reed, O. E., and Haffman, C. F.

1928 Dairy Oattle Fead Phosphorus in the Ration. Michigan Agr. Expt. Sta. Quar. Jal., Vol. X, 10. 4. PD 151-156.
40. Tuff. Per

1988
Osteomalacia and Its Ocourrence in oattle
in Iorway.
Proc. Horla's Dairy Congress, 1928, Tol.
II. pp 1494.
4. Scott, Samuel, G.

1929
Phosphorns Defioienoy in Torage Feods of
Range Cattle.
Jour. Ag. Res., Tol. 38, He. 2, p 125.

48. Schmidt, H.

1926 Feeding Bone Keal to Range Cattle on the Costal Plains of Texas.

Texas Agr. Expt. Sta. BuI. No. 344.
48. Wolch, H.

1924
Bone Chewing in cattle
Montana Agr. Rept. Sta. Bul. No. 122.
44. Hodlund, T.

1985
"Hay as the Canse of Depraved Appetite", (Trans. Titio)

STensica Mosskulturfor Tidskr. 39, Ho. 2, pp 98-157.

Cited by Rept. Sta. Becord, Vol. 53, pp 632658.
45. Marray, A. J.

1916 Discases of Cattle
U.S.D.A. Rovised Bdition, p 28.
46. Orr, J. B.

1929 Iinerals in Pastures
H. K. Ievis and Company, Itd. Iondon,
pp 56-62.
47. Cains, Fathor J. F., S. Jo, FoIoSe, and Bharucha, K.H., B.A., B. Sc..

1929
Farth Hating and Salt Ifoking in Indie Joure of Bombay Nat. Hist. Soo.,Vol., 33, P .
48. Hart, B.Be, Beach, BoA., Delwiche, H.J., and Bally, J.G. 1927 Phosphorus Deficienoy and a Dairy Cattle Disease.

Wisc. Agre Fxpte Sta. Bul. No. 389.
\square
49. Theiler, A., Viljoen, P. Re, Green, H. H., daYoit, PoJ., Meier, Hans, and Robinson, E. M.

1927 Lamziekte (Parabotulism) in Cattio in South Africa.

1lth and l2th Reports of the Director of Veterinary Rducation and Reseach, Part II. The Gov't. Printing and Stationery Office, Pretoria.
50. Maraq, J.

1985
Hatritive Value of Phosphoris in Cattle. International Review Science and Practice of Agriculture, Vol. 3, pp 58-64.
51. Dorland, W. A., Homman, .

1920
The American Illustrated Medical
Diotionary
(a) p721, (b) p 545, (o) p 880
W. H. Saunders Company, Phila, and London.
62. Bitting, A. W.

1894
Big Head
Florida Agr. Rxpt. Sta., Bul. 26.
53. Crawford, H.

1987 Fropical Agriculture (cejlon), Vol. 68, Ho. 5, pp 278-281

Cited by Biol. Abstracta (1928) Vol. 2, Nos. 9-11, pp 1553.
-
-
-
-
\square - \square
\square -
.-
54. Carry, C. A.

1919 Deficiency Diseases
American Vet. Med. Assoc. Jour., 56, Series 9, P609.
55. Schmidt, H.

1924 Field and Laboratory Hotes on Fatal Disease of Cattle Occurring on the Costal Plains of Texas (Iain Disease) Texas Agr. Expt. Sta. Bul. No. 319.
56. Haffman, C. F., Jobinson, C.S., Winter, O.B., and Larson, R.E.

1930
The Effoct of Iow Calcine, High Magnesion
Diets on Growth and Metabolism of Calres.
Jour. of Natrition, Vol. II, Fo. 5, p 471-483
57. Hafiman, C.F.

1931
Unpublishea Data. Work in Progress at Miohigan Agril. Expt. Sta.. Fast Lansing.
58. Bergein, 01af.

1926
Intestinal Chemistry.III The Absorption of Calcin and Phosphoras in the Small and Iarge Intestines.

Jour. Biel. Chem. IXX, DD 29-47.
59. MoCollun, E.V., Simmonds, No, Beaker, J.E., and Shipley, P.G. 1928 An Experimental Demonstration on the Bristance of Fitanin which Promoton Caloium Deposition. Jour. Biel. Chome IIII, $P 293$.
-

- \square -
-
- • •
-

,
\square
-
\square
60. Hess, A. F., and Gutman, P.

1921 The Oare of Infantile aickets by Sunlight as Demonstrated by a Chemioal Alteration of the Blood.

Soc. Expt. Biol. and Med. Proce, Vol. 19. Ho. I, pp 31-34.
62. Hart, E. Be, McCollum, 玉.V., and Fuller, J. Ge

1909 The Role of Inorganie Phosphoras in the Notrition of Animals.

Wisconsin Agr. Expt. Sta. Bul. I.
65. MoCollum, H.V., and Simmonds, I.

1925 The Nower Knowledge of Intrition, Third Edition The Mamillan Company, How Yort
(63a) p 522, (65b) p 395.
64. Theiler, A., Green, H.H., and duToit, P. J.

1927 Miniman Tineral Requirements in Cottie. Jour. Ag. Sx., Vol. 17, 291.
65. Same reference as Ho. 34.
66. Vermont Agr. Experiment Station

1926 Maintenance Requiments of Dairy Cowe Vt. Agr. Expt. Sta. 39th Ann. Bepte: D 11.
67. Rose, A. Re

1918
A Study of the Metabolism and Physiological
Befeots of Certain Phosphoras Compounds with Miloh Cows II.

Hew Fork Agr. Expt. Sta. Fech. Bul. No. 20.
68. Maynard, I. A. 1925

The Mineral Natrition of Farm Animals. Cornell Extenstion Bul. No. 130. 69. Sotola, J.,Smith, R. Te, Bllington, F.V., and Cassel. I. W. 1924 Inneral Feods for Farm Animals. Wash. Agr. Expt. Sta. Popular Bulletin No.l27.
70. Ieiga, E. Be, and Noodward, F.E.

1921 The Influence of Calciun and Phosphotas in the Feed on the Kilk Field of Dairy Cows. U. S. D. A. BuI. Ho. 945.
71. Haffman, C. F., and Reed, O. E.

1930 Results of a Iong Tine Mineral Feeding
Experiment with Dairy Cattle.
Mioh. Agr. Expt. Sta. Cir. Bal. Io. 129.
72. Reed, O. E., and Haffman, C. F.

1950 The Resalts of Long Time Mineral Peeding Bxperiment with Dairy Cattle. IIch. Agre Expt. Sta. Teoh. Bal. No. 105.
78. Hart, E. Be, Steenbock, H., and Morrison, Fe B.

1927 The Kineral Feed Problem In Wisconsis Wisc. Agr. Expt. Sta. Bol. No. 390.
74. Toll. F. T.

1918 Mlfalfa as the Sole Feed For Daing Stock Jour. Dairy Sciं, Vol. 1, Io. 6, pp 447-461.
75. Fraser, Wilber, J.

1930
Dairy Farming, p 126.
John Wiley and Sons, How York.
\square
76. Moigs, E . B . 1925 The Relation Betweon the Quantity and ATailability of Caloive in the Bation and the Milk Iield of Dairy Cows. Proc. Worla's Dairy Congress. 1923.

Vel II, pp 1046-1053.
77. Forbes, E.Be, Beegie, FoMo, Iorgan, I. F., and Rhue, S.N. 1917 The Kineral Ketabolism in the IIloh Cow. Oh1e Agr. Expt. Sta. Bul. No. 308.
78. Jones, J. S., and Ballis, D. E.

1928 A Chemical Study of Iegumes and Other Forage Crops of Western Oregon. Oregan Agr. Expt. Sta. Bal. 197. pp 3-24.
79. Forbes, R. B., Beegle, F.Me, and Mensching, J. F. 1915

Mineral and Organic Analysis of Foois. Ohio Agr. Ifxpt. Sta. Bal. 255, pp 285-231.
80. Arahibald, J. Ge, and Ielson, P. Ro

1929 The Kineral Composition of Grass from Flots Fertilisel and Grased Intensively. Jour. Am. Soc. Agronomy, Vol. 21,pp 686-699.
81. Hart, E.B., Steonboak, H., Hoppert, C.A., and HamphreJ, G.C. 1928 The Comparatito Bfficiency of Dry and Grean Alfalfa in Maintaining Calcina and Phosphorus. Equilibrium in Kilking Cows. Jour. Biol. Chem. IIII, DD 21-30.
82. Hart, E. B., Steenbock, H., and Morrison, F. B. 1983 Hinerals for Livestock

Wisc. Agr. Expt. Sta. Bul. No. 350.
83. Eckles, C. H., Becker, Z. Be, and Palmer, L. S., 1926

A Mineral Deficiency in the Kations of Cattle.

Minn. Agr. Expt. Sta. Bul. No. 229.
84. Bckles, C. H., and Gullickson, T. W.

1927 The Relation of Phosphorus Deficiency
te the Utilization of Feeds.
Proc. Am. Soc. An. Prod., pp 16-21.
85. Hant, E. B., Steenbook, H., Retzien, S.W., Halpin, J.G., and Johnson, O.I.

1928 Hay Caring and Anti-Zachitic Properties Wisc. Agr. Expt. Sta. Bul. No. 396, pp42-43.
86. zobinson, C.S., and Huffman, C. F.

1926 Studies on the Chemical Composition of
Beef Blood. I The Concentrations of Certain
Constituents in Normal Beef Plasma.
Jour. Biol. Chem. LXVII, pp 245-255.
87. Meigs, B. B., Blatherwick, H. Re, and Cory, C. A.

1919 Contributions to the Physiology of
Phosphorus and Calcium Metabolism as
Related to Iilk Secretion.
Jour. Biol. Chem. XXXVII, p 52.

88. Malan, A. I., Greon, HoH., and daToit, P. J.

1928 Studies on Mineral Metabolism V.
Composition of Bovine Blood on
Phosphoras Deficient Pasture.
Jour. Ag. Science, Vol. XVIII, pp 376-383.
89. Palmer, L. S., Canningham, N.S., and Eckles, C.H.

1930
Hormal Variations in the Inorganic Phosphorus of the Blood of Dairy Cattle. Jour. Dairy Science, Vol. 13, To.3,pp 174-195.
90. Harvard, R. $\mathrm{H} \cdot$, and Reay, G. A.

1926 The Influence of Exercise on the Inorganic
Phosphates of the Blood and Urine. Jour. Physiology, Vol. 61. pp 35-48.
91. Bethke, R.N., Steenbock, H., and Nelson, Mariana, T. 1923 Calcium and Phosphorus Relations to Growth and Composition of Blood and Bone with Varying Vitamin Intake. Jour. Biol. Chem. LVIII, p 71.
92. Palmer, L.S., and Eckles, C.H.

1927 Effect of Phosphorus Deficient Rations on
Blood Composition in Cattle.
Proc. Soc. for Exp. Biol. and Chem.
xXIV, pp 3-7-309.
93. Indsey, J. B., and Archibald, J. G.

1925 The Value of Calcium Phosphate as a
Supplement to the Ration of Dairy Cows.
Jour. Ag. Res. XXXI, No. 8, pp 771-791.
94. Theiler, A., Green, H. H., and duToit, P. J.

1928 Studies in Mineral Metabolism III. Breeding of Oattle on Phosphoras Deficient Pasture. Jour. Ag. Science. Vol. XVIII, pp 369-371.
95. Bokles, O. H.

1920
The Homal Growth of Dairy Cattle.
Ho, Agr. Expt. Sta. Bes. Bul. Ho. 36.
96. Soxhlet

1917
1 er der. Versuah - Station Wien, pp. 101-155
Citod by Armsby, H.P., The Natrition of Farm Animals, D 419.

The Kaamillan Company, Hew York.
97. Heumann

1898
Jour. Landw. 41, 343
Cited by Armsby, H.P., 1917, The Natrition
of Farm Animals. 419.
The Maomillan Company, Hew York.
98. Lehmann

1859 Landm. Vers. Stat. I. p 68.
Cited by Armsby, H.P. 1917, the Natrition
of Fam Animals, p 419.
The Maomillan Company, How York.
99. Weiske

1875
Jour. Landm. 21. 139.
Cited by Amsby, HoP. 1917, The Hutrition
of Farm Animals, p 419.
The Kamillan Company, Hew York.
100. Fingerling

1915 and 1915 Landw. Vers. Stat. 79-80, p 847; 86, p.75. Cited by Armsby, H.P., 1917, The Natrition of $\mathrm{F}_{\mathrm{arm}}$ animals, p 419. The Maomillan Company, New York.
101. Fingerling 1911

Biechem. 2tschr. 37, p 266.
Cited by Armsby, H.P., 1917, The Natrition of Farm Animals, p 420. The Kaonillan Company, Hew York.
102. Kellner, 0 .

Ernahrung landw. Natztiere, 6th edition, p 595. Cited by Armsby, H.P., 1917, The Intrition of Farm Animals, p 520. The Maomillan Company, Hew York.
105. Forbes, F.Be.Beegle, F.M., Fritz,C.M., Morgan, L.E., and Rhue, S.N.

1916 The Mineral Metabolise of the Miloh Cow. Second Paper

Ohio Agr. Expt. Sta. Bul. No. 295.
104. Forster

1878
2tachr, Biol., 9, p 297. Cited by
Armsby, H.P., 1917, the 耳atrition of
Fame Animals, p 382.
The Kamillan Company, Hew York.
105. Lanin

1881
Etschr. Physiol. Chem., 5 p 31.
Cited by Armsby, H. Po, 1917, The Natrition of Farm Animals, p 332. The Mamillan Company, Hew York.
106. Diakow

1918
Landw. Jahrb. 44, p 833.
Cited by Amsby. H. Po, 1917, The Nutrition of Fam Animals, p 345. The Mamillan Company, Hew York.
107. Cochrane

Penn. Inst. of Animal Natrition, Unpublished results, cited by Armsby, H. P., 1917, The Hatrition of Fam Animals, p 345.

The Mamillan Company, Hew York.
108. Henneberg.

1860
Beitrage, etc., Heft. $I, p 118$.
Cited by Armsby, H.P., 1917, The
Futrition of Farm Animals, p 520.
The Mamillan Company, Hew York.
109. Huffman, C. F., dobins on, C.S., and Winter, O.B. 1930 of Heavily Milking Cowe.

Jour. Dairy Soi., VOl. XIII, HO. 6, pp 488-448.
-
-
\square

- • •
. - -
- \square
-

-•• \square
-

- .
- • \square
-

APPEIIDIX

Graph IV. Showing Body Weight and Height at withers, Birth to iwo Years of Age

araph Vill. Showing body Weights During First Laotation.

-
$+$

| |
| :--- | :--- |

I © OM EMTO

Arimal	2m	8150	$\begin{aligned} & \text { Mily } 2100 \\ & \text { cuction } \\ & \text { of gom } \\ & \hline \end{aligned}$	```Matterfat Froduotien O2 Dem IDS.```	Patterfas Pruduotion of Dan's Dan Tbse	Dan's Slre	Milf Proo dactiom os Din's Don Ibs.
28	263	Wolno collem ratual Sinan	7842.7	283	146	Talemasoo Cosinan Capar Pontiac	8000
$\overline{78}$	1258	0	$53250 \cdot$	260	148	$\begin{aligned} & \text { palarazoo Heacoryell } \\ & \text { Celantha } \end{aligned}$	5764
D4	Pht	\cdots	8166.5	216		$\begin{aligned} & \text { Felmazoo Fayao } \\ & \text { Montian } \end{aligned}$	
DE	2355	ω	$21 \pi 800$	88	188	In \qquad	12889
$\overline{D 6}$	2353		8463.0	295	270	$\cdots \cdots$	miled 9.8
37	2358	\cdots	657900	283	14	$\begin{aligned} & \text { Fianazoe Coshom } \\ & \text { Ale:ar Pontle9 } \end{aligned}$	9539
18	220	\cdots	78650	203	191	$\begin{aligned} & \text { Mal mazeo Sogis } \\ & \text { rapicspur } \end{aligned}$	10621
B 9	4258	\cdots	6946.4	276	188	$\begin{aligned} & \text { chasamzoo Hengervald } \\ & \text { Solantha } \end{aligned}$	12769
810	2×3	\cdots	69640	23	168	plamaroo coancar caegar Puntine	7028
312	128	ω	81860	289		Talanasol Go ehtm Gaesar Pontial	
D 12	238	\cdots	1151800	38	188	\qquad	12889
D15	186	\cdots	7806.6	280	280	$\begin{aligned} & \text { Calmasod Goshem } \\ & \text { Caecar Pontiae } \end{aligned}$	8761
516	H25	\cdots	8585.0*	160	149	$\begin{aligned} & \text { cmlamazoe Hencerteld } \\ & \text { Colantha } \end{aligned}$	6764
$\overline{5}$	238	\cdots	9837.0'	842	146	phlamazoo Coaher caecar pontice	11246

- Amormal Matritidin. Ficures not indioative of milk produoing eapaoity.
PABLI HO. II

Date	Skim Mit	Alfalfa Hey		Silage		Corm			30d Meeal	Oa	$\begin{gathered} \hline \text { Bone Meal } \\ P \quad \text { I } \end{gathered}$
				$\begin{array}{ll} \mathbf{P} & \mathbf{N} \\ \% & \% \\ \hline \end{array}$	\%a	6	$\%$	\%	\%	$\%$	$\%$ \%
$5 / 8 / 28$. 122.098 .518	$2.05 \quad .147 \quad 2.31$. 118 0.037			2.41 1.46		29.3712 .62			
9/25/28		$1.28 \quad .120 \quad 2.02$									
11/10/28		2.01 el 198 3.24									
11/27/28		$1.31-1352.16$									
5/20/29		1.45 . 282	. 211	.061 2374							
6/27/29		2.90 . 160									
10/11/29		1.68 . 1.113									
11/23/29		$1.58 \quad .257 \quad 2.18$					1.38				
12/12/29			. 098	. 0698	. .135	. 2642	1.28			27.9	$13.6 \quad 1.53$
1/6/30			. 096	$.063 .428$. 0.069	. 397	1.49			28.10	14.14 1.46
$\frac{1 / 20 / 30}{7 / 20 / 30}$		1.69 . 1462.35	. 2.259	$.007 .363$. 036	. 254	1.41	. 508	. 30023.05	29.25	$12.78 \quad 2.69$
$\frac{7 / 10 / 30}{7 / 24 / 30}$		1.69 .146 1.66 2.365 1.158 2.31	. 259	. 0.049 .3848	. 035	. 270	1.38	. 796	. 4.5013 .05		
$\frac{7 / 24 / 30}{8 / 13 / 30}$		$\begin{array}{lll}1.66 & .158 \\ 1.16 & .190 & 2.35\end{array}$. 272	. 0.040 .355	. 030	. 245	1.40	. 505	. 32812.97	29.33	13.262 .69
$\frac{8 / 13 / 30}{11 / 10 / 30}$		1.16 .190 1.29 .148	. 1114	. 0.042 .85	. 0404	. 239	1.38	. 499	. 35512.78	28.21	12.621 .97
$\frac{11 / 10 / 30}{11 / 27 / 30}$		$\begin{array}{lll}1.29 & .148 \\ 1.19 & .149 & 1.83\end{array}$. 131	. $036 . .330$. 209	. 332	1.43	. 512	. 32812.78	28.50	12.64 1.97 $12.75 \quad 1.52$
$\frac{11 / 27 / 30}{8 / 27 / 31}$		1.19 .149 1.47 .144	. 099	.022 . 266	. 037	. 227	1.47	. 238	. 21412.86	27.38	12.761 .52
8/27/31		1.47 . 1442010	. 099	.022 266							
Averaso	. 122.098 .512	1.55 . 1582.25	. 148	.047 .351	-069	-271	1.41	. 501	. 32912.92	28.51	13.051 .98

AmIN Do8

む
0.47
0.81
0.88
0.37
0.38
0.85
0.40
0.85
0.87
0.57
0.58
0.88
0.58
0.58
0.88
0.86
0.88
0.88
0.58
0.40
0.45
0.45
0.58
*

-

- .

,
.$r r r r r r r$
r
$r \cdot r$ \square
rr.r r.rrrrrrrer r.

180 805 Perica 18	Ares 204 Voist The	Foel consumel					Motriment Reanive		$\begin{aligned} & \text { Daily } \\ & \text { Wates } \\ & \text { Consumed } \\ & \text { Collon! } \end{aligned}$	$\begin{aligned} & \text { Pros. In } \\ & \text { Dey } \\ & \text { matter } \end{aligned}$	$\begin{aligned} & \hline \text { Aroe } \\ & \text { Daily } \\ & \text { Dhos } \\ & \text { Intake } \\ & \text { Preme } \end{aligned}$
		A18. EJ	Corn 811.	Cos			250 to	Iot. E.			
		Fhe	Pbe	Fibe	Pre.	genem	Ihe	theres			
99	179	88.0	16	680	0.Fir	5.65	0.45	2088	**	-0.00	5069
180	104	79.0	68	75.0	0.50	8.78	0.45	8.88		0.28	6.80
160	284	90.0	78	75.0	0.65	8.87	$0 \cdot 50$	5.58		-028	5.60
160	280	120.0	08	76	0.68	4.08	0.65	4004		-0.21	6.58
210	209	185.0	180	75	0.72	4018	0.69	4020		0.21	6.95
20	827	150.0	109	75	0.75	4048	0.69	488		0.19	6.57
270	80	150.0	204	78	0.79	4.78	$0 \cdot 88$	4078		0.19	7.26
800	401	150.0	24.	75	0.00	5.16	0.74	4085		0.80	7.90
89	415	150.0	290	76	$0 \cdot 81$	5050	0.76	5. 18		0.19	8084
20	476	180.0	880	75	-082	5.77	0.78			0.19	0.58
89	805	100.0	89	78	0.85	6.01	0.78	8. 51		0.19	0.69
48	587	100.0	48	63	0.34	6.20	0.80	5076		0.19	9,08
40	438	150.0	480	69	0.85	6.50	0.82	5.86		0.19	2.16
40	600	150.0	415	69	0.05	6.80	0.81	5.67		0.19	0.89
610	610	150.0	450	68	0.85	6.08	0.82	5.85		0.19	9.16
60	68	150.0	40	69	0.85	7.04	0.88	8.85		0.19	9.16
67	668	150.0	40	69	0.85	7.80	0.88	5. 26		0.19	9.16
600	708	260.0	451	70	0.88	7.68	0.88	5.89		0.19	9.20
620	746	180.0	430	90	0.85	7.86	0.87	6.61	8.16	0.80	10.84
660	779	150.0	40	80	0.08	8.07	0.87	6061	208	0.20	20,24
680	809	150.0	480	90	0.85	8.25	$0 \cdot 87$	Cobl	2.85	$0 \cdot 20$	10.24
720	84	1000	400	8	0.85	- 045	0.87	6.61	S.08	0.28	10,24
$750 * *$	828	10700	4.4	72	-0.5	8.7	0.8	10.40	8.80	0.22	15.89

\square

$$
\begin{aligned}
& \text { AIMYAS D-5 } \\
& \text { TABLE NO. VI. SHOWIMG FKED, VATER ATD PHOSPHORUS CONSUMPTIOH } \\
& \text { FROM 90 DAYS OF AGE TO FIRST CALVIWG. }
\end{aligned}
$$

$$
\cdots \cdot * \cdot * \cdot
$$

 HROM 90 MITS OF ACE TO HRET CALVITKE.

AIITN D-10

AIITHE D-21
TABEE MO. III.

Aminti D-15
TABES ITI. Iast Poriod 11 days Matrionts Required by the Armeby Foeding Standard 1929

ANINTS D-14

* Last Periol 25 Day

- . . -

for	$\begin{aligned} & 2 \sqrt{100} \\ & \text { Body } \end{aligned}$	Foed	Congurad		Matrionts	Pequired*	Batrionts	Received	$\begin{aligned} & \text { Daily } \\ & \text { Water } \end{aligned}$	Phos.	$\begin{aligned} & \text { Arae } \\ & \text { Daily } \end{aligned}$
Period	Weight	A15. F^{51}	60ris sil.	605	Prot.	Het ${ }^{5}$	Frot.	$\underline{56}$	Consumed	in Dry	Phos.
Days	Fbe.	Ele.	Eble	Ibse	Lbes.	Thersis	Hbso	Therms	Gallons	Matter	$\begin{aligned} & \text { Intake } \\ & \text { Grams } \end{aligned}$
90		68	4	76	0.65	5984	0.54	S.75	**	0.32	6.85
180	265	111	87	75	0.69	4.05	0.56	5.84		0.22	6.55
150	291	114	90	75	0.72	4.20	0.57	5.89		0.22	6.42
180	585	142	90	75	0.75	4.59	0.67	4.20		0.21	7.08
20	848	150	90	75	0.77	4.62	0.69	4.29		0.21	7.27
240	574	147	152	75	0.78	4.86	0.71	4.59		0.21	7.65
270	401	141	167	75	0.80	5.11	0.69	4.60		0.21	7.68
500	426	150	120	75	0.81	5.35	0.70	4.45	2.36	0.21	7.49
580	458	142	150	75	0.82	5.55	0.70	4.52	2.16	0.21	7.59
860	475	107	288	75	0.88	5.74	0.68	4.82	2.53	0.21	7.66
590	497	114	536	75	0.85	5.94	0.66	5.19	2.55	0.21	8.21
420	58	118	420	69	0.84	6.28	0.71	5.51	2.68	0.20	8.66
450	856	109	420	69	0.85	6.44	0.68	5.41	2.89	0.21	8.45
480	578	90	442	69	0.85	6.62	0.61	5.51	5.81	0.21	8.16
510	697	128	455	71	0.85	6.86	0.78	5.80	5.19	0.20	9.15
840	64	159	497	90	0.85	7.15	0.90	6.97	5.19	0.20	11.05
570	687	149	474	90	0.85	7.50	0.87	6.74	4.38	0.21	10.65
600	738	150	480	90	0.85	7.85	0.88	6.78	5.78	0.21	10.71
650	791	150	480	90	0.85	8.14	0.88	6.78	2.96	0.21	10.71
660	858	150	480	90	0.85	8.45	0.88	6.78	2.74	0.21	10.71
690	888	150	480	112	0.85	8.69	0.94	7.40	2.78	0.21	11.61
780***	921	95	804	95	0.85	6.92	1.01	6.49	4.62	0.28	18.17

Matriente Requifed by the drmsby Feeding Standard
Tinter Congungtion not Measured prior to December, 1929 Lant Period 19 day:
 **
pounds stin 道Ik
AIITMS D-8

. . PSRIOD.

PBRIOD.															
	ATO	1411	Butter	Feat Coneman					Lutriente Hecuired Mitricats Recoivel Dails					Thos. Aree	
Eare	Bod	830-	fat				B100d	Sone	200t.	W-2.5.	2ret.	203050	Vater		
2n	Wt.	duced	320 duced	A18.tas	Cora 811	Cosy	Men 1	Men					Cos-	in Dry	Phos.
	Ithe	Tibe	Ines	Prea	Prese	Ihase	The	Cre	Fbece	Ibse	Ible	The	Qn		Crame
28	911	878	27.8	208	876	107	**	2945	2048	17.04	1.83	11.08	***	0.42	85.80
8	07	1203	83.1	84	518	218		3840	208	17.27	1.07	12.44	8.7	0.38	87.68
81	910	1868	86	850	600	831	24.5	4618	2. 56	17.78	2.64	16.55	20.1	0.41	4.05
88	281	1188	EA.4	800	600	826	80.0	4680	2.51	17.4	2.67	16.64	11.8	0.41	46.48
1781	917	1058	29.6	810	620	88	18. 5	4745	20.26	16.05	2.86	15.07	12.1	0.41	45.19
81	94	1087	81.9	810	620	EM	28.0	4718	2028	16.01	2048	16.88	110t	0.41	46.28
80	205	888	28.7	28	600	886	27.8	4588	2000	15090	2085	16,00	10.8	0.42	4.97
81	1000	086	26.6	806	68	848	15.5	4302	2.04	16.26	208	16.86	10.7	0.41	45.47
8	1080	775	2408	800	600	817	18.0	4476	1.95	14.71	2.80	15.09	76	0.41	44.65
81	1070	670	28.5	82	680	88	15.8	4819	1.77	1408	2082	15.66	7.6	0.41	44.67
7	1201	185	$4{ }^{6} 7$	7	140	78	8.3	2045	206	18.09	2021	15.09	68	0.10	44.83
$\operatorname{tal} 803$		9976	808.5												

- Jaterients Dequirca in the Lowar Iimits of the Igricicon Peading Stendard - Blood Mcal lot Tol Juior to Mer. 1950
** Water Consumptien lot Mcacurel Duoping Firat Ionth
Antins Dis

$\begin{aligned} & \text { Dave } \\ & \text { In } \\ & \text { Pare } \\ & \text { iod } \end{aligned}$		Arec Body Wt. Pbse	$\begin{aligned} & \text { yilt } \\ & \text { proo } \\ & \text { duced } \\ & \text { Inse } \end{aligned}$	Buttarm fat P200 duced ribe	Foce Consmel				Intriants haguired		Intrient ${ }^{\text {a }}$ Reooive		$\begin{aligned} & \text { Dilly } \\ & \text { Vaters } \\ & \text { cons } \\ & \text { cromed } \\ & \text { cale } \end{aligned}$		Are. Dally Phos. Intake Oreans
		Al1. Tay Ibse			$\begin{aligned} & \text { cosm } \\ & \text { sil. } \\ & \text { Ibee } \end{aligned}$	Cosin Ibse	B100d real Ibse	Prote Ibs.	$D_{0} D_{0} I_{0}$ Ibse	Prote	$\begin{aligned} & \text { To D. } 10 \\ & \text { Ibse } \\ & \hline \end{aligned}$				
mas	19	788	88	15.8	158	518	119	**	1088	15.80	2.45	10.76	**	0.28	17.18
$4{ }^{4}$	50	718	987	25.8	888	816	285		2000	15.89	1.85	12.10	10.8	0.28	20.20
Yay	81	732	998	29.8	247	8en	336	12.0	2.01	14.05	1.89	13.88	9.7	0.24	22005
Jase	8	725	756	27.1	131	229	524	14.5	1.76	12.56	1.55	12.28	$8 \cdot 8$	0.26	28.78
Jaly	81	681	804	1700	117	210	308	6.0	1050	10.41	1.28	10.84	7.8	0.26	16.68
lues	81	674	800	16.0	185	178	284	11.0	2028	9.45	2.21	0.70	6.8	0.25	13.79
Sopt	80	668	810	12.2	118	288	199	18.7	1.05	8.46	1024	8.68	6.7	0.24	13.68
cot	81	ca8	485	12.8	128	295	288	18.6	1.14	9.08	1.35	9.52	6.5	0.25	14.7\%
500	8	718	488	11.8	118	228	281	16.7	1.15	9.26	1.54	9.80	5.7	0.25	14.71
3ee	81	783	418	1206	110	298	285	15.0	1.15	9.88	2000	2.31	408	0.25	14.45
Jma	11	75	207	46	4	110	88	508	2020	9.65	2083	9.77	5.6	0.25	15.05
20tal	305		6288	18409											

$\div \cdot \quad . \quad . \quad \bullet \quad$.

1
-••!..........

$$
1+r r+r \cdot r
$$

ATIMT Doc

$\begin{aligned} & \text { yave } \\ & \text { in } \\ & \text { par } \\ & \text { lod } \end{aligned}$		$\begin{aligned} & \text { yills } \\ & \text { \$500 } \\ & \text { dreed } \\ & \text { Hise } \end{aligned}$	Butter fat Iros ducelPBen	Feeds Conspmed					Ptricats Beguiral		Matrients Icoodvel Daily			$\begin{aligned} & \text { S } \\ & \text { yon. } \\ & \text { in Dry } \\ & \text { rintter } \end{aligned}$	$\begin{aligned} & \text { Dives } \\ & \text { Daily } \\ & \text { Phos } \\ & \text { Intake } \\ & \text { frem } \\ & \hline \end{aligned}$
				Ale.	Cosin	Cora	B100d	B0no	Preto	2.D.IT0	210 to	2.D.I.	Vater		
				Hev	811.		Hen	Heal					Con-		
				Ible	Ible	Fbe	Ibse	4	Ibse	Sbe	Ibe	Sbe	$\begin{aligned} & \text { macel } \\ & \text { call } \end{aligned}$		
Jun 80.	878	2051	840	283	600	877	10.0	8960	2084	15.81	1.87	18.98	11.8	0.41	26.84
Jal 81	84	1081	84.6	298	620	854	5.5	4600	2.28	15.64	2009	16.50	12.0	0.41	46.21
mas 81	180	1014	86.5	296	680	870	10. 8	4881	2011	14.90	2084	16.08	18.5	0.41	46.14
8 eptso	834	895	81.3	800	600	880	10.0	4286	1.98	14.27	2058	16.18	10.8	0.41	45.68
0et 81	040	888	28.8	820	680	828	14.9	4619	1.88	18.00	2026	15.54	10.4	0.41	44.20
For 80	876	661	21.3	800	600	284	14.4	4178	1.64	22.E3	2.09	18.28	2.4	0.40	29.48
Dee 81	284	686	22.6	810	620	285	15.6	4154	1.68	12.69	2.09	13.23	6.5	0.40	88.99
Jan 81	801	617	28.9	810	680	283	16.5	4270	1.51	12.25	2.09	18.29	10.1	0.40	89.51
Fet 28	248	480	18.6	280	$E 30$	210	14.0	5864	1048	11.97	2.09	18.27	6.0	0.40	89.45
$20 t a 1$		7889	250.6												

AnIMT D-5

$\begin{aligned} & \text { Says } \\ & \text { in } \\ & \text { ioces } \\ & \text { iol } \end{aligned}$	$\begin{aligned} & \text { Areb } \\ & \text { Dode } \\ & \text { Wte } \\ & \text { ribe } \end{aligned}$	$\begin{aligned} & \text { made } \\ & \text { dued } \\ & \text { Thee } \end{aligned}$	Dattere sat 350- nace Fhe	Peede conernea				Isteleate Recuiral		Yatriemte Peoentel Dally			$\begin{aligned} & \text { X } \\ & \text { Jhos. } \\ & \text { In Dry } \\ & \text { yatter } \end{aligned}$	$\begin{aligned} & \text { Aree } \\ & \text { Daily } \\ & \text { phos. } \\ & \text { Intake } \\ & \text { Oyeng } \end{aligned}$
				118.	C082	Cose	8100d	2roto	\%.D.1.	300t.	\$.D.1.	Water		
				Ens	811.		Yeal					Con-		
				Ibse	Lios.	Ibse	Lbse.	Ibee	Shee	Ibee	Ibse	curced		
8 copt 80	080	185	2\%.7	240	476	288	18.9	2081	27.61	1.96	13.78	7.5	0.24	21-4t
00t 81	021	1890	85.3	810	617	34	15.6	2.68	17.80	2089	16.34	1106	0.28	25.80
50\% 80	88	2245	83.6	800	600	85	23.5	2.65	27.28	2.59	16.66	11.1	0.85	26.60
Dee 81	861	1246	86.5	500	619	34	81.0	2.65	17.85	2.62	16.67	10.5	0.85	25.99
5 ma	068	1274	27.0	520	620	844	81.0	2.85	17.89	2068	16.69	1200	0.28	26.68
Job 28	488	1028	27.7	280	560	811	20.0	2084	26.8\%	2068	16.69	9.5	0.28	26.60
20tas 2	1 de.	783	mege											

$\stackrel{\bullet}{\bullet}$
AIITHE D-8

$\begin{aligned} & \text { Days } \\ & \text { in } \\ & \text { Perm } \\ & \text { ioce } \end{aligned}$	450 304 Et. Ibse	$\begin{aligned} & \text { M1415 } \\ & 2500 \\ & \text { chood } \\ & \text { Ibse } \end{aligned}$	Sutte fat 250m drecel Ibse	Feodr Consvinel					Prtricate Pequired		Matriente Reoeive Daily			Jhol. in Dey rintter	$\begin{aligned} & \text { ATee } \\ & \text { Deilj } \\ & \text { Phos. } \\ & \text { Intere } \\ & \text { Cysen! } \end{aligned}$
				118.	Corm	Corm	B100\&	8030	2roto	E.D.E. 0	250 to	2.D. ${ }^{\text {P/ }}$	Water		
				Eay	811.		Mcel	Eoal					Con-		
				Sbes	Ibse	Tbse	Ibse	Ibse	Ible	Ibse	Cbse	Ibse	Gele		
Juy 7	948	218	6.5	70	190	55	1.8	886	2.12	16.46	1078	10.67	10.1	0.41	84.19
Aas. 81	210	1040	58.8	278	870	299	11.0	8968	2.21	15.08	2,00	14.85	0.6	0.40	39048
pt 80	910	1064	51.6	298	600	85	25.5	4565	2.29	16.28	2.54	16.51	8.7	0.40	46.17
+ 81	989	1060	82.8	510	620	SH4	51.0	4748	2.26	26.15	2.67	16.69	22.5	0.41	46.65
50	945	890	54.7	299	699	317	16.5	448	2.06	15.10	2.38	15.90	14.1	0.41	44.74
81	956	881	26.t	508	620	888	15.5	4619	2.00	14.88	E)28	15.84	8.8	0.41	44.62
181	989	797	25.8	287	619	288	15.8	4618	1.89	14.24	2.16	14078	6.5	0.42	42.93
28	980	744	23.8	280	660	294	14.0	4278	1.94	14.61	2.80	18.08	10.8	0.41	44. 51
t. 219		6684	218.4												

- Eratrients Lequiral by the Iower Lynits of the Morrieon Feoding Standari.
ArIMA D-\%

$\begin{aligned} & \text { Days } \\ & \text { in } \\ & \text { Per } \\ & \text { iod } \end{aligned}$	Ares Body Wt. Ibs.	Y411 2500 duced Ibse	Butter rat P80- droed Ibse	Feads Consumed				Petrients Roquired* Intrients Roceive				Are.Dally Enos.WaterConDrysumed yatter		Ave0 Daily Phos. Intake Crame
				$\begin{aligned} & \overline{\mathrm{Al20}} \\ & \mathrm{Bay} \end{aligned}$	$\begin{aligned} & \text { Corm } \\ & \text { g11. } \end{aligned}$	COXR	$\begin{aligned} & \text { B1002 } \\ & \text { Meal } \end{aligned}$	Prot.		P2 st.	$D_{0} D_{0} H_{0}$			
				Ibse	Lbse	Ibse	Ibs.	Lbse	Ibse	Ibse	Ibse			
Aps 9	865	245	8.5	99	126	41	**	1.88	13.80	1.88	10.08	10.0	0.30	16.85
Mv 81	868	1065	34.1	268	866	850	13.0	2.28	15.70	2.08	14.71	10.0	0.27	25,90
Jan 80	885	869	26.1	250	240	300	15.0	1.84	14.07	1.94	13.18	9.8	0.24	21.01
dal 81	791	802	26.5	186	248	502	18.5	1.77	12.98	1.62	11.91	10.9	0.26	19.68
AxC 31	792	781	26.6	186	248	826	11.0	1.78	12.76	1.61	12.49	11.8	0.25	19.56
Sept30	808	654	22.2	180	240	515	15.0	1.59	12.00	1.71	12.49	10.3	0.25	19.77
Oot 31	831	617	22.2	186	248	326	25.5	1.62	11.78	1.71	12.49	12.1	0.25	19.77
Hov 30	884	545	19.6	180	240	815	15.0	1.45	21.48	1.72	12.40	10.2	0.25	19.77
Dee 81	898	786	10.6	186	248	326	16.5	1.06	9.40	1.71	12.40	7.8	0.25	19.77
Jan 27	986	48	1.6	162	216	278	12.5	0.77	8.22	2.68	12.28	504	0.25	19.26

$\because: \vdots . .!$
NIINAS B-8

MIIT: D-9

- Ilatriente Required by the Iower Limite of the Morsimen Peoding standasi * Blood loal not Fed Prior to May, 1950

Amins Doso

gunt 10. EXI
showne mix Aid burferill promorion.

Iot I Sacal Intion Ilue Itcarel Dome Mcal					Lot II Sacel Iation				
Antm 1	Pre	$\begin{aligned} & \text { Jownds } \\ & \text { yatr } \end{aligned}$	Perremt Patterget	zounds Patterfat	Anima	Dan	$\begin{aligned} & \text { Pounde } \\ & \text { pals } \end{aligned}$	Percent Butterfat	$\begin{aligned} & \text { Nounds } \\ & \text { Puttergat } \end{aligned}$
D 2	805	9978		808.8	D 3	505	6258	2087	28408
D 4	278	788	8.48	280.5	D 5	181*	7830	2078	205. 0
D 6	218*	6604	8.10	21304	D 7	282	5905	8585	197.9
D ${ }^{\text {' }}$	208	0161	8.06	209.2	D 9	208	6715	8.16	21109
D 10	200*	7858	2088	200.4					

-
-
-

\vdots
-
-

-
-
\square
ThBIE NO. XiVII

TASLE NO. XXVVIII

Animel	Calcium liatedoolism*			Phosphorus lietacolism N trogen lietavolism						
	$\begin{aligned} & \mathrm{CaI} \\ & \mathrm{Bal} \end{aligned}$	Cal. ilated	Bercent Assimi- lated	$\begin{aligned} & \text { Phos. } \\ & \text { Bal. } \end{aligned}$	Phos. issimilsted	$\begin{aligned} & \text { Percent } \\ & \text { Assimi- } \\ & \text { lated } \end{aligned}$	$\begin{aligned} & \text { Itrosen } \\ & \text { Belance } \end{aligned}$	$\begin{aligned} & \text { Nitrogen } \\ & \text { Assimi- } \\ & \text { lated } \end{aligned}$	Percent Assimi- lated	$\begin{aligned} & \text { Cal/Phos. } \\ & \text { Ratio } \end{aligned}$
D 2	24.14	24.14	25.71	8.77	8.77	31.83	27.66	74.60	62.48	3.407
D 4	20.99	20.99	31.55	6.91	6.91	34.60	23.80	60.44	65.14	3.328
D 6	8.84	8.84	13.51	7.13	7.13	31.90	20.88	68.42	67.19	2.927
D 8	21.73	21.73	23.16	8.88	8.88	32.23	30.50	81.00	67.84	3.405
D 10	6.37	6.37	9.87	6.51	6.51	29.13	18.14	64.66	63.50	2.887
D 12	15.53	10.53	18.30	4.25	4.25	20.53	2.64	58.20	59.17	4.097
Ave.	16.27	16.27	20.35	7.08	7.08	30.04	20.60	67.89	64.25	3.342
D 3	15.37	15.37	34.82	5.81	5.81	50.74	29.93	62.97	65.40	3.854
D 5	19.71	19.71	24.38	4.00	4.00	32.65	8.23	73.73	62.72	6.466
D 7	13.39	13.39	30.30	4.33	4.33	37.80	24.49	60.99	64.30	3.859
D 9	14.59	14.59	33.24	4.93	4.93	43.06	26.33	58.43	61.60	3.833
D 11	15.88	15.88	25.15	4.73	4.73	43.76	8.48	58.60	60.77	5.840
Ave.	15.79	15.79	19.73	4.76	4.76	41.60	19.49	62.92	63.16	4.770

table no. Moix

HIGH PRNDTCTICN.

Animal	DailyMilkProduction	Calcium Ketabolism*			Phosphorus Metabolism*			Nitrogen lietabolism			Days From Freshening	$\begin{aligned} & \text { Ca/Phos. } \\ & \text { netio } \end{aligned}$
		Ca. Bal.	Ca. Assimilated	Percent Assimilated	$\begin{aligned} & \text { Phos. } \\ & \text { Bal. } \end{aligned}$	Phos. Assimilated	Percent Assimilated	Mitrosen Balance	$\begin{aligned} & \text { Phos. } \\ & \text { Assim- } \\ & \text { ilated } \\ & \hline \end{aligned}$	Percent Assimi- 1sted		
D 2	16022.4 4.	10.56	25.78	19.94	4.96	17.94	38.89				159	2.803
D 4	16324.9 ถ゙・	3.69	19.20	13.54	4.36	18.40	40.36	17.34	132.58	53.05	42	3.109
D 6	12482.58	7.73	21.33	18.05	3.08	13.94	33.66	65.31	121.30	56.77	111	2.853
D 8	16045.0 g .	9.45	24.85	18.44	3.47	16.95	40.62	13.78	139.93	59.79	99	3.230
D 10	18465.0 E .	2.50	22.25	20.35	0.14	14.91	35.46	33.15	148.21	62.40	92	2.600
D 12	13743.0 \%	-7.31	6.71	6.50	1.81	14.59	40.69	19.69	117.38	59.70	36	2.878
Ave.	15513.8	4.44	20.02	16.14	2.96	16.12	38.28	30.45	131.88	58.34	89.8	2.912
D 3	8020.0 5.	- 2.53	5.73	17.21	0.38	7.20	52.86				155	2.444
D 6	19467.0 g	-10.52	8.56	11.09	- 3.09	12.48	51.83	25.04	147.32	60.45	73	3.204
D 7	11430.38	- 5.35	5.62	11.57	1.04	10.41	54.62				116	2.548
D 9	12462.48	1.13	13.59	31.56	- 0.37	10.72	59.49	5.02	94.66	60.73	95	2.390
D 11	16280.0 g	-1 5.14	1.95	2.98	-11.85	2.64	14.58	12.34	120.90	62.16	38	3.610
D 13	18724.0 g	-20.11	- 1.76	-2.69	- 7.56	8.54	47.13	4.13	121.92	62.68	29	3.614
D 15	14167.5 g	-13.58	1.86	2.84	- 5.22	7.96	43.93	13.02	124.27	63.89	29	3.613
Ave.	14364.5 g	-9.06	5.46	11.23	-3.81	8.56	46.35	10.91	121.81	61.98	76.4	3.060

*Asimilated Kefers to the Feed Galcive and Phosphorous Jtilized for Storage and Milk Production
TADLE MO. XXX

PLATE I

D-3. 90 Days of Age.
Basal Ration-Alfalfa Hay, Corn Silage, Corn
PLATE II

D-2. 90 Daya of Age.
Basal Ration Plus Steamed Bone Meal.

PIATE III

D-5. 90 Days of Age.
Basal Ration-Alfalfa Hay, Corn Silage, Corn.
PLA票 IV

PLATE V

D-\%. 90 Days of Age
Basal Ration-Alfalfa Hay,Corn Silage,Corn.

PLATE VI

D-9. 90 Days of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn.

PLATI VIII

PLATE IX

D-11. 90 Days of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn.

PLATE X

D-10. 90 Days of Age
Basal Ration Plus Steamed Bone Meal

PLATE XI

D-13.
90 Days of Age
Basal Ration-Alfalfa Hay,Corn Silage, Com.

D-12
90 Days of Age.
Basal Ration Plas Steamed Bone Meal

D-15. 90 Days of Age

Basal Ration-Alfalfa Hay,Corn Silage, Corn.

PLIATE XIV

D-14. 90 Days of Age
Basal Bation Plus Steamed Bone Meal.

PLATE XV

D-5. 15 Months of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn

PLATTE XVIII

Basal Ration Plus Steamed Bone Meal.

PLATE XIX

D-7. 15 Months of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn
PLATE XX

D-6. 15 Months of Age
Basal Ration Plus Steamed Bone Meal.

PLATE XXI

D-9. 15 Months of Age
Basal Ration-Alfalfa Hay, Corn Silage, Com

PLATE XXII

D-8. 15 Months of Age
Basal Ration Plus Steamed Bone Meal

PLATE XXIII

D-11. 15 Months of Age
Basal Ration-Alfalfa Hay, Com Silage, Com

PLATE XXIV

D-10. 15 Months of Age
Basal Kation Plus Steamed Bone Meal

PLATE XXV

D-13. 15 Months of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn
PLATE XXVI

D-12. 15 Months of Age
Basal Ration Plus Stiamed Bone Meal.

PLATE XXVII

D-15. 15 Months of Age
Basal Ration-Alfalfa Hay,Corn Silage, Corn

XXVIII

D-14. 15 Months of Age
Basal ${ }^{2}$ ation Plus Steamed Bone Meal

PLATE XXIX

D-3. Two Years of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn

PLATIEXXX

D-2. Two Years of Age
Basal Ration Plus Steamed Bone Meal

D-5. Two Years of Age Basal Ration-Alfalfa Hay, Corn Silage, Com

PLATE XXXII

$\mathrm{D}-4$. Two Years of Age Basal Ration Plus Steamed Bone Meal

D-7. Two Years of Age
Basal Ration-Alfalfa Hay, Corn Silage, Com

PLATE XXXIV

D-6. Two Years of Age
Basal Ration Plus Steamed Bone Meal

D-9. Two Years of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn

PLATE XXXVI

D-11. Two Years of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn

PLATE XXXVIII

D-10. Two Years of Age
Basal Ration Plus Steamed Bone Meal

PLATE XXXIX

D-13. Two Years of Age
Basal Ration-Alfalfa Hay, Corn Silage, Corn

PLATE XI.

D-12. Two Years of Age
Basal Ration Plus Steamed Bone Meal.

PLATE XLI:

D-15. Two Years of Age
Basal Lation-Alfalfa Hay, Corn Silage, Corn

PLATE XLII

D-14. Two Years of Age
Basal Kation Plus Steamed Bone Meal

PLATE KLIII

D-3 and First Calf
Basal Ration-Alfalfa Hay, Corn Silage, Corn

PLATE XLTV

Basal Bation Plus Steamed Bone Meal.

PLATE XIV

D-5.and First Calf
Basal Ration-Alfalfa Hay, Corn Silage, Corn
PLATE XIVI:

> D-4 and First Calf

Basal Lation Plus Steamed Bone Meal

PLATE XIVII:

D-7 and First Calf
Basal Ration-Alfalfa Hay,Corn Silage, Corn

PLATE XIIX

D-9 and First Calf
Basal Ration-Alfalfa Hay,Corn Silage, Corn

PLATE L.

D-8 and First Calf
Basal Jation Plus Steamed Bone Meal

D-11 at First Calving. Calf Born Dead. Basal Ration-Alfalfa Hay, Corn Silage, Corn.

PLATE LII

D-10 and first calf
Basal Ration Plus Steamed Bone Meal.

D-13 and First Calf
Basal Ration-Alfalfa Hay, Corn Silage, Corn

PLate IIV

D-12 and First Calf
Basal Ration Plus Steamed Bone Meal

PLATE LV

ROOM USE ONLY
Jul7 48
(1)

