uh. , I fin {Iran}? 33.131313. 3 1M1," ”if 11‘1“; $.3ng 11111; . ‘13:“ -3a 1 PA‘ .3255" ‘3 _ ‘ . 1.1 .1. ‘ £13. '?' 'fi " ' 1 ' ' 1:5 " “2'51“ fizfifil‘a?” 2“ u. I" . .2 4% _ ~ ' .3 .. V» 1.3' is» in», #3“. A l a ‘1: 1‘ 1 ' s ' 1 . 1 1 1 ’ ‘ » . ‘ - w u 33.1253 8““ :31}. ' 1 ' . '-I ' 'l > ' ' ' A u- 3 Fifi"? " . I; ~ ~ '1 I 3:33:31" I; g}: 2 331313111 1 5 133% 1131i . fig)‘ 11:11 91 . 1N "3":"3111L_3 .-. 1.: mug- -.U... 2.4.1.- 311 1.13 1. 31313 .' ‘l L 1:: f I" 3. ‘1 fimfwfi‘ _! «1.3953363 §~£ 'r 12:“‘13— . A . a». —:_; “’5? :. $5.433}: 1‘ t $53511 . ‘fi 4‘; it}. 31:11": 33431. (2:1 $111111: 1511.1 $53135 3'32» 94.1% $31.32, 1M1 $14311? 9." $55.15 5" " «if 1113;:- .1321? "13.93 . sir»: ' @153 gig ~ ”ii—1;; 15%.1 . .42“; .1. 5"141' '1‘3‘31‘ ... ”VJ 5'3 11:3" 0,; 11111 : 1“ f"; " 33333111141 3" 33333,” 1‘ ""33“" H 'r3 1 sdzfiw ‘ :93:- u . 1" '3'213133 33313123 - '3 . 13 “re .11"; 111‘ 15 3313,4111; i=3”. u _. ..-.~ , :1 1 ‘3 ' In!" 5". "Wm-1 33"; :1 553 $5 :51?“ 3'"? Air-‘21“ Fé 11111, 12 3'1'"'o(3 13 1 ”£1 ram“; is?" " Ag?“ 4., 33355133 3‘ 13"; ' 122-.“ Y 3.1 " n..'§}’3;.. V“ 1 .W akAu uni-11.1 .-A f‘ A 111‘ 1131131“ 351:1"1‘131313'33 .3~; 1.3,. ifhg‘; ‘ . ‘i‘l-iESlS M— LIBRARY Michigan State 1 University "w This is to certify that the dissertation entitled AN ANALYSIS OF THE V2 FUNDAMENTAL INFRARED ABSORPTION BANDS OF H28 AND HZSe presented by William Charles Lane has been accepted towards fulfillment of the requirements for Pfi ) degreein Fflyg/(S. -WWV Major professor Date ////?,/ 997% MSU is an Affirmative Action/Equal Opportunity Institution 0-12771 MSU LIBRARIES m \o RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINE§_will be charged if book is returned after the date stamped below. AN ANALYSIS OF THE V2 FUNDAMENTAL INFRARED ABSORPTION BANDS OF H28 AND HZSe BY William Charles Lane A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics and Astronomy 1984 3551 I We ABSTRACT AN ANALYSIS OF THE V2 FUNDAMENTAL INFRARED ABSORPTION BANDS OF H28 AND H28e BY William Charles Lane The v fundamental infrared absorption bands of H S and HZSe were 2 2 run on the 50 cm Fourier transform infrared spectrometer system at the University of Denver with a resolution limit of 0.04 cm.1 for v of H S 2 2 and 0.025 cm“1 for v2 of HZSe. The two sets of spectra were analyzed at the Molecular Spectroscopy Laboratory at Michigan State University. We initially analyzed the H2323 v2 spectrum using Typke’s Hamiltonian, limited to terms through order P6. We determined ground state constants for H2328 by fitting our infrared ground state combination differences (GSCD’s) and the available microwave transitions of Helminger, Cook, and DeLucia. Keeping the ground state constants fixed to the values obtained in our ground state fit, we determined (010) upper state constants for H2328 by a fit of the v2 spectral lines. We then used an isotopic mass adjustment analysis to simultaneously fit 33 34 S and H S v lines together with the the small number of observed H2 2 2 many H2328 v2 lines. Following the report of improved ground state constants for H28 by Flaud, Camy-Peyret, and Johns, we reanalyzed the v2 band of H28 with Watson’s A—reduced Hamiltonian, including terms through order P8. Using their H 323, H 33S, and H 343 ground state constants we determined (010) 2 2 2 upper state constants for each of the three isotopic species of H28 by separately fitting the H2328, H2338 and H2345 v2 spectral lines. We similarly analyzed the v2 spectra of the five most abundant isotopic species of H28e as individual spectra, using Watson’s Arreduced Hamiltonian. To analyze the small number of assigned H27ASe v2 lines, we used the method of isotopic mass adjustment to analyze the ground states and the (010) upper states of the six stable isotopic species of HZSe. TO MY PARENTS FRANKLIN CHARLES LANE AND MARY LANE POWELL ii ACKNOWLEDGMENTS I wish to acknowledge my debt to Professor T. H. Edwards for his time and effort as the director of my research. Professor Paul M. Parker has also contributed greatly to my knowledge of molecular spectroscopy by his excellent course and many helpful discussions. My fellow graduate student, Dale E. Bardin, also provided an invaluable learning resource in our work on the Michigan State University infrared spectrometer, for which I am grateful. Dr. James R. Gillis has also been instrumental in my research, initially, as a senior graduate student "showing me the ropes," and later, as a colleague and collaborator on my own research. It was through his influence as a research associate at the University of Denver that the infrared spectra which forms the basis of my dissertation was obtained. I would also like to acknowledge Dr. Francis S. Bonomo, Dr. Frank J. Murcray and Professor Aaron Goldman of the University of Denver for their contributions to my research. I would like to thank the Department of Physics and Astronomy of Michigan State University, in particular Professor J. S. Kovacs, for support in the form of teaching assistantships during the early years of my graduate study. During the remainder of my graduate career my support was provided by research assistantships with Professor Peter Signell in the area of instructional design. I am extremely grateful iii for this support and the resultant experience with scientific text processors, through which the production of this dissertation was greatly simplified. - Scientific Gas Products, Inc. generously donated the high-purity H28 used for the spectrum analyzed in this research. Finally I would like to lovingly express my gratitude to my parents, Franklin C. Lane and Mary Lane Powell, for their love and support throughout my life and my graduate career. It was their example that provided me with the motivation to persevere in the attainment of my educational goals. I will forever be in their debt. iv TABLE OF CONTENTS Page LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . vii INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER I. VIBRATION-ROTATION HAMILTONIANS FOR ASYMMETRIC TOP MOLECULES Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 The General Form of the Hamiltonian . . . . . . . . . . . . . . 4 The Perturbation Expansion . . . . . . . . . . . . . . . . . . . 5 The Vibrational Contact Transformation . . . . . . . . . . . . . 6 Reduction of the Rotational Hamiltonian . . . . . . . . . . . . 7 The Rotational Contact Transformation . . . . . . . . . . . . . 8 Choice of Reductions . . . . . . . . . . . . . . . . . . . . . . 9 Choice of Rotational Representations . . . . . . . . . . . . . ll Watson’s Determinable Coefficients . . . . . . . . . . . . . . 14 CHAPTER II. ANALYSIS OF V2 OF H28 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . l8 CHAPTER III. ANALYSIS OF v2 OF H25e Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 25 Experimental Details . . . . . . . . . . . . . . . . . . . . . 25 Analysis of Individual Isot0pomers . . . . . . . . . . . . . . 27 Simultaneous Analysis of All Isot0pomers . . . . . . . . . . . 37 SWY AND CONCLUSIONS 0 O O O O O O O O O I O O O I O O O O O O C O 45 RE FERE NCE S O O O O O O O O O O 0 O O O O O O O O O O O O 0 O 0 I 0 0 4 7 APPENDICES A. Reprint: Analysis of v2 of H28 . . . . . . . . . . . . . . . 50 B. Assigned Transitions of v2 of H28 . . . . . . . . . . . . . 66 C. Weighted Averaged GSCD’s of H2323 . . . . . . . . . . . . . 76 D. Assigned Transitions of v2 of HZSe . . . . . . . . . . . . . 85 E. Weighted Averaged GSCD’s of H28e . . . . . . . . . . . . . 118 F. Subroutine CONVERT . . . . . . . . . . . . . . . . . . . . 146 vi Table 10 ll 12 13 14 15 16 17 LIST OF TABLES Rotational Representations Comparison of H 328 Ground State Constants 2 Ground State Fit of H2328 of H Individual Upper State Fits of v2 2 S Isot0pomers Upper State Constants for v2 of H28 Isot0pomers Determinable Coefficients of H2328 of H Se Experimental Conditions for v2 2 Se Data Sets Range of Rotational Quantum Numbers for H2 H276Se Molecular Constants H277Se Molecular Constants H 788c 2 Constants Molecular 80 H2 Se 82 H2 Se Mblecular Constants MOlecular Constants Individual Ground State Fits of H 2Se Isot0pomers Ground State Constants for Individual Isot0pomers of H28e v2 Constants for Individual Isot0pomers of HZSe of H Se Individual Upper State Fits of v2 2 vii 18 19 20 21 22 Simultaneous Ground State Fit of All H Se Isot0pomers 2 Simultaneous Upper State Fit of v2 of All HZSe Isot0pomers Molecular and Isotopic Mass Adjustment Constants for v2 of H25e Ground State Determinable Coefficients of HZSe (010) Upper State Determinable Coefficients of H28e Aviii INTRODUCTION The molecules hydrogen sulfide, H28, and hydrogen selenide, HZSe, are two examples of the bent triatomic molecules of the same symmetry group (C2v)’ as the water vapor molecule, H20. H28 in particular is an important constituent of planetary atmospheres. On earth H28 is a pollutant, produced both naturally and by the burning of sulfur-containing fossil fuels, and is a contributing factor in the formation of acid rain. On the larger planets of our solar system, notably Jupiter, H S is a major atmospheric component (I). A more 2 complete knowledge of its infrared absorption spectrum will contribute to the understanding of the chemistry of planetary atmospheres. The analysis in this dissertation completes a study of the three fundamental vibration-rotation infrared bands of these two molecules at Michigan State University. Over the years, the Molecular Spectroscopy Laboratory at Michigan State University has develOped methods of analysis and computer programs suitable for analyzing high-resolution infrared spectra. Before this particular research was begun, the conclusions that had been drawn about the best methods of analysis for spectra of asymmetric top molecules were based on data gathered from the MSU grating infrared spectrometer. However, with the availability of higher resolution spectra from other laboratories, we have modified some of our conclusions and methods of analysis. This work was done in cooperation with the Upper Atmosphere Iiesearch Group at the University of Denver. We provided the samples, 1 they ran the spectra on the Denver University Fourier Transform Interferometer, which operates in regions inaccessible to our spectrometer, and the analysis was carried out here at MSU. In this dissertation the vibration-rotation infrared spectrum of the vi fundamental band of H2 fundamental band of H S in the 8.5 wn region and the v2 2Se in the 9.7 um region are analyzed. The H28 analysis includes the first reported v species H2338 and H2348, and the H reporting of H274 2 spectra for the molecular 2Se analysis includes the first Se spectra anywhere. Chapter I provides a brief overview of the general theory involved in the development of a vibration-rotation Hamiltonian suitable for analyzing asymmetric top molecules. Chapters II and III give the details of our analysis of the v2 bands of H28 and HZSe, respectively. A reprint of our 1982 paper on v2 of H25, tables of data for H28 and H Se, and a new subroutine for our fitting programs are contained in the 2 Appendices. CHAPTER I VIBRATION‘ROTATION HAMILTONIANS FOR ASYMMETRIC TOP MOLECULES Overview This chapter traces the development of a Hamiltonian suitable for calculating the vibration-rotation energies Of asymmetric t0p molecules. The analysis of spectroscOpic data is regularly performed with an "effective Hamiltonian," i.e. one which effectively fits the spectral lines but is not explicitly expressed in terms of fundamental molecular parameters, such as the equilibrium values of the principal moments of inertia and the force constants of the molecular potential energy. The "effective constants" associated with such a Hamiltonian may be used successfully to predict the positions and intensities of the spectral lines of the specific vibration-rotation band from which they were determined, but are not directly related to the structure of the molecule. Furthermore, the specific values of the constants depend on which of several available effective Hamiltonians is used and on how a Cartesian coordinate system is chosen to be aligned with the "body-fixed" rotational axes of the molecule. It is nevertheless possible to transform these effective constants in a way which allows spectroscopists to compare the results of different fits of the spectrum using different Hamiltonians. The transformed constants are called the "determinable coefficients" of the molecule. The General Form of the Hamiltonian Darling and Dennison (a) constructed the first general Hermitian expression for the vibration-rotation Hamiltonian. This Hamiltonian is given by _ PB) u1/4 + v , (H) where a and 8 may be x, y or z, and the summation over k is a summation over the normal modes of the molecule. V is the vibrational potential energy which may be expanded as a Taylor series in the normal coordinate displacements from equilibrium. The operators Pa are the components of the angular momentum along body-fixed axes. These operators obey the commutation relations [Pa,PB] = -1 sum PY , (1-2) where EGBY is the Levi-Civita tensor. The operators pk are the components of the linear momenta conjugate to the normal coordinate displacements, given by = -ih— . (1-3) The operators pa are the components of the "internal angular momentum." A familiar example of internal angular momentum is the linear combination of the two components of the degenerate bending mode of vibration of C02. In general, the components of the internal angular momentum are defined as pa = Ell}; qk pk. , (1-4) where the constants Gig, are the "Coriolis coupling coefficients." For H25 and HZSe, only the asymmetric-stretch vibrational mode, v3, has any internal angular momentum associated with it. The parameters “a are 8 the cofactors of the determinant u of the inertia tensor. The inertia tensor is composed of the instantaneous moments and products of inertia, which are functions of the normal coordinates: 0.0. an I = I + Xak qk + EE'Akk’qk qk, an ad k and (I-S) 8 as I = Zaa q + 22 A ,q q . , a8 k k k kk’ kk k k where 1:“ are the equilibrium moments of inertia. Because the moments of inertia are functions of the normal coordinates, they will have different values for each vibrational state. The Perturbation Expansion Unfortunately, Schroedinger’s equation cannot be solved exactly for the Darling-Dennison Hamiltonian, so a general perturbation approach must be used. The Darling-Dennison Hamiltonian may be expanded in a standard perturbation expression: 2 H=H0+AH1+AH2+..., (1-6) where the zeroth order term, H0, corresponds to the Hamiltonian for a "rigid" harmonic oscillator: l 1 ‘ 1/2' 2 2 Hoa—Z—EI—+§ hkk [[Pk/h) +qk] ) (I 7) where Ia are the equilibrium moments of inertia (Tia above) and Afi/Z are the frequencies of the normal modes of vibration. This approach was taken by Wilson and Howard (2), who showed that the Hamiltonian can be made diagonal with respect to the vibrational quantum numbers to any order A by a sufficient number of "contact transformations." The result is a Hamiltonian of the form H= fiv+%220aspp a P8 +4lEXXETaBY6PaPBPyP5+ . . . , (I-8) a8 a8‘15 where hv is a collection of purely vibrational terms whose expectation values for a given vibrational state are constant, in the absence of any perturbing resonances. Only even powers of angular momentum operators appear in this expansion. Watson (4) has shown that this is a consequence of the requirement that the Hamiltonian be Hermitian and invariant under time reversal. The vibrational contact transformation introduces a dependence on the vibrational state into the coefficients of the angular momentum terms in Eq.(I-8), so these coefficients are now referred to as "effective" constants, i.e. they are constants only for a given vibrational state. The Pa terms of quartic and higher order are called the "centrifugal distortion" terms of the Hamiltonian. These terms are the result of changes in the average geometry of the molecule as its angular momentum increases and as the molecule vibrates. The Vibrational Contact Transformation 18 Two successive contact transformations of the form e are necessary to diagonalize the vibrational matrix elements of the Darling—Dennison Hamiltonian through order A", which includes angular momentum terms through sixth power in Eq.(I-8). These transformations have been carried out in excruciating detail in a series of papers by Goldsmith, Amat and Nielsen (2,6) and Amat and Nielsen (1,§,9). Using this as a groundwork, Chung and Parker (19,11,12) carried out an extensive theoretical derivation of the rotational and centrifugal distortion constants in an effort to express them as functions of more fundamental parameters, such as the equilibrium moments of inertia and the equilibrium bond angle. They also made effective use of symmetry considerations to reduce the number of centrifugal distortion terms in Eq.(I-8). Reduction of the Rotational Hamiltonian There are six terms quadratic in Pa in Eq.(I-8), but by using the principal axes of inertia, only three constants need be determined. Since each index in Eq.(I-8) has three possible labels, and owing to the noncommutative nature of the angular momentum operators, in general there are 81 quartic terms and 729 sextic terms. Chung and Parker (11) showed that for orthorhombic molecules, a class which includes the symmetry group C to which both H S and H 2v 2 2Se belong, there are 15 independent quartic terms and 105 independent sextic terms. Kneizys, Freedman and Clough (lg) used the commutation relations of Eq.(I—Z) to manipulate the rotational Hamiltonian to the following Cartesian form: H = 11(2) + H“) + 11(6) +. . . (1'9) where H(2)-XP2+YP2+ZP2, y Z H(")=T +T P4+T P +T (P2P2+P2P2) xx x yy y 22 2 xy x y +T (P2P2+P2P2)+T (P2P2+P2P2), xz x z z x yz y z z (6)_ 6 6 6 H — ¢xxx x qJyyy y ¢zzsz +¢ [P4P2+P2P")+¢ (P4P2+P P") xxy x y x yyx y x y ' :== ‘ ' was 4, 8 4 2 2 4 4 2 2 4 + ¢XXZ(PX PZ + PZ PX ) + q>ZZX[PZ PX + PX PZ J 4 2 4 4 2 2 4 + ¢yyz(Py Pz + P P ) + ¢zzy[Pz Py + Py Pz J +¢ (P2P2P2+P2P2P2) x y z z y x The notation used above for the coefficients of the Cartesian Hamiltonian differs slightly from that used by Kneizys et al. in that in this version the Cartesian nature of the coefficients is explicitly shown. Thus there are 3 quadratic terms, 6 quartic terms and 10 sextic terms. Similarly, Rao (14) has shown that there are 15 octic terms in the Cartesian Hamiltonian. The use of the commutation relations to manipulate the angular momentum operators results in higher order centrifugal distortion constants contributing to lower order terms in the rotational Hamiltonian. Kneizys et al. also expressed this Hamiltonian in terms of the spherical operators P", P: and (P: - Pf) instead of Pi, P: and P: to take advantage of the diagonal nature of P2 and P: in the symmetric top basis. The Rotational Contact Transformation Even with this tremendous decrease in the number of centrifugal distortion terms, it is not possible to determine experimentally all the centrifugal distortion constants for any given order by fitting observed spectra. Watson (4) has suggested that this is because the eigenvalues of the rotational Hamiltonian depend on certain linear combinations of the Hamiltonian constants and that only these linear combinations may be experimentally determined. He proposed that the rotational Hamiltonian be subjected to a set of successive unitary transformations of the form exp[iSn), where Sn is a Hermitian matrix given by P PX) , (I-13> where n, p, q and r are integers, and n= p+~q+—r. By applying appropriate symmetry restrictions, Watson found that only odd values of n, p, q and r are possible. The transformed Hamiltonian, denoted by H, is related to the untransformed Hamiltonian, H, by H = . . e_isse_is3e_islHelsleisaeiSS (I-14) The coefficients qur may be chosen to eliminate specific terms in the transformed or "reduced" Hamiltonian. The matrix Sl transforms the body-fixed rotational axes to the principal axes of inertia. Furthermore, there is only one non-zero coefficient for S3 (5 three 111)’ for S5 (5 s and s ) and six for S7 (3 113' 131 311 115' 5151’ 5511’ 5133’ S331 and $313). Carrying out the transformation to lowest order will allow the elimination of one quartic term in the transformed Hamiltonian by a judicious choice of the s parameter. Similarly, by transforming 111 the Hamiltonian to successively higher orders, the three S parameters 5 allow the elimination of three of the sextic terms and the six S7 parameters reduce the octic terms from 15 to 9. Unfortunately, the reduction is not unique because the transformation parameters are arbitrary. Choice of Reductions Several different reductions of the rotational Hamiltonian have been used to fit experimental data. Using a spherical form of the rotational Hamiltonian similar to the one constructed by Kneizys et al., Watson chose a reduction that contained terms that had only diagonal and second off-diagonal matrix elements in the symmetric top basis set. a...‘.‘ 10 This reduction is called the Watson "A-reduced" Hamiltonian. A particular formulation of this Hamiltonian by Yallabandi and Parker (15) is given by H(A) = H(2) + H(") + H(6) + H(8) + . , (I-lS) where Ha) = )(’P2 + it’P2 + Z’P2 , x y z (4) = _ 4 _ 2 2 _ 4 _ 2 2 H AJP AJKP Pz AKPZ 26JP ny 2 2 2 2 6K[Pz ny + ny z] , (6)= 6 4 2 2 4 6 4 2 H HJP +HJKP Pz +HKJP Pz +1"sz +2hJP ny 2 2. 2 2 2 4. 2 2 4 + hJKP [Pz ny + nyPz ] + hK[Pz ny + nyPz] ’ (8) _ 8 6 2 4 4 2 6 8 H LJP +LJJKP Pz +LJKP PZ +LKKJP Pz +LKPz 6 2 4 2. 2 2 2 + 22JP PK 4- 2“? [P2 ny + nyPz] 2 4. 2 2 4 6 2 2 6 + 2MP [Pz ny + nyPz ] + £K[P ny nyPz ], and P 2 a (P2 —-E’2) KY X Y The designation "A-reduced" refers to the fact that it was specifically designed for asymmetric top molecules far from either the oblate or prolate symmetry limits. Watson proposed another reduction that would be useful for molecules near the oblate or prolate symmetry limits, the "S-reduced" Hamiltonian. Typke (16) introduced a related form of this reduction in response to the problems experienced by Carpenter (12) when he attempted to use the A-reduced Hamiltonian to calculate energy levels for several oblate molecules. This Hamiltonian has the form H = Ha) + 11(4) + H(6) + H(8) + . . . (I-l6) where 11(2) = B’PZ + 131’2 + B’Pz, x x y y z z (4)=_,4_, 22_, H D P DJKP Pz D J K a“) = H3?6 + "3184?: + HPJPZPZ" + “12926 + “gifts? - Pf) +%H8P20 +Hi0(Px2 - Pyzl3. and 0 = P"+P;‘-3(Px2Py2+Py2Px2). (I-17) Typke did not carry out the transformation to order S7, so the actual form of the octic terms for this reduction is not known. If we assume that they would be appropriate octic combinations of the operators present in the lower order terms and if we use Watson’s S-reduced Hamiltonian as a guide, a possible expression for the Typke Hamiltonian octic terms is (8)_,8,62,44,26,8 _ H - LJP +LJJKP Pz +LJKP Pz +1.],ij Pz +1erz (I 18) 2J3 6 2 2 4 2 2 2 +£P(Px—Py]+27PO+28P[PX Py +190. 6 Watson’s A-reduced Hamiltonian has generally been the most widely used reduction, although, as previously stated, for certain cases it does not work well in fitting observed spectra. Choice of Rotational Representations There are six possible ways of associating the body-fixed rotational axes a, b, and c of the molecule with a set of Cartesian axes. These associations are called the "rotational representations" 12 (see Table 1)- Table 1. Rotational Representations Body-Fixed Axes Cartesian Axes z x y z x x z y c y y x z 2 Representation Ir I" IIr 11% IIIr III" Historically, "oblate" asymmetric tops such as H23 and HZSe have been analyzed with a rotational Hamiltonian in the IIIr representation and "prolate" asymmetric tops have been analyzed with a Hamiltonian in the Ir rotational representation. These choices have a certain theoretical justification and tend to reduce the size of the off-diagonal matrix elements of the rotational Hamiltonian, an important consideration for the numerical diagonalization of the Hamiltonian before the availability of large, high-Speed, digital computers. These choices for rotational representation cause no difficulty with Typke’s Hamiltonian. However, it was soon observed that the spectra of asymmetric top molecules even moderately close to the oblate symmetric-top limit were hard to fit using Watson’s A-reduced Hamiltonian in the IIIr rotational representation. Van Eijck (18) explained this as a result of the large size of the 3111 parameter in the A-reduction for the IIIr representation. For this reduction, the $111 parameter is [I + T - zrr ) s = 1 xx W XV (1-19) 111 4 (X - Y) ' In the IIIr representation, X==A, Y==B and Z==C, where A, B and C are the coefficients of the quadratic terms in the rotational Hamiltonian, and are inversely proportional to the moments of inertia about the rotational axes a, b and c. As a molecule approaches the oblate symmetry limit, A and B become closer in value and the magnitude of 5111 increases dramatically. This parameter is one factor which determines how much of the lower order terms of the rotational Hamiltonian is transformed into the higher order terms by the rotational contact transformation. For example, the quartic constants of the transformed Cartesian Hamiltonian, denoted by tildes, are related to the constants of the untransformed Hamiltonian, by the following set of equations derived by Watson (12): Txx = Txx , Tyy = ryy , Tzz = Tzz , (1—20) Txy = rxy + 2(Y - x)s111 , xz = sz + 2(X - Z)slll ’ ~ yz = Tyz + 2(z - ins111 . Thus for the last two transformed quartic terms to have the same order of magnitude effect as the untransformed quartic terms for the same angular momentum state, should be approximately the ratio of a S111 typical quartic constant to a typical quadratic constant. A similar argument is applicable to the sextic and octic coefficients. In general, the s—parameters should obey the order of magnitude relation derived by Watson (4), given by 3 ~ K2(p+-q+-r-1)’ (I-21) qu where K is a small parameter on the order of the ratio of the nuclear displacements from equilibrium in a molecule for a low vibrational state 14 to the equilibrium bond length. Strow (29) has calculated the value of the 3111 parameter for two reductions and two representations in his analysis of the ground vibrational state and the v upper state of H S. 2 2 He discovered that the value of 3111 for the A-reduction in the IIIr representation is 12 times larger in the ground state and 25 times larger in the (010) upper state than for the Arreduction in the Ir representation, or the S-reduction in either representation. Since HZSe is closer to the oblate symmetric-top limit than H S, the effect should 2 be even more pronounced for HZSe. Thus if the Arreduced Hamiltonian is used to calculate rotational energies for an oblate molecule such as H28 or HZSe, the rotational representations IIIr or III" should not be used. Since our fitting programs are designed to use only Ir and IIIr r representations, we now use the I rotational representation with the A-reduced Hamiltonian. Watson’s Determinable Coefficients Watson (18) pointed out that because the s-parameters in the rotational contact transformation are arbitrarily chosen, the eigenvalues of the Hamiltonian cannot depend on them. Thus he constructed a set of linear combinations of the reduced Hamiltonian coefficients that does not contain any of the s-parameters. Such a set of "determinable coefficients" should be independent of the reduction and of the rotational representation used. Using the Cartesian Hamiltonian, the transformed rotational constants are related to the untransformed rotational constants by Y = X + 4(Z - Y) (I-22) S111 ’ 15 #4 II Y + 4(X - Z)s111 , N ll Z + 4(Y - X)s111 , where contributions of the order of quartic centrifugal distortion constants have been included in the transformed rotational constants. Thus using Eq.(I-ZO), determinable rotational coefficients A, B and C may be defined as A = X - 27F yz=X-2Tyz (1-23) B=Y-2T =Y-2T X2 X2 C=Z-2T =Z-2T xy xy r where the III rotational representation has been assumed. Watson noted and all higher order centrifugal that Txx’ T , ¢ , ¢ yy’ Tzz yyy’ ¢zzz’ distortion constants that are ”diagonal" in the Cartesian subscripts are independent of the contact transformation if certain small contributions to the transformed constants are ignored, and are thus determinable. Additionally, he chose as the remaining quartic terms T1 = Txy + TXZ +-Tyz , (1-24) T=ZT +YT +XT , 2 xy xz yz and as the remaining sextic terms (,1 = 3 226%,, + ¢xyz , (1-25) 08 ¢2 = (X - Z)q)xxy + (X - Y)(i)xxz - 2(Txx - Txy)(Txx - sz) ’ ¢3 = (Y - xmyyz + (Y - zwyyx - 2(Tyy - TszTyy - Tyx) , ¢4 = (Z - YM’zzx + (Z - X)(pzzy - 2[Tzz - sz)(Tzz - sz) Rao (14) has constructed a set of octic determinable coefficients but we 16 have not yet incorporated them into our fitting programs. To calculate the determinable coefficients, a subroutine in our fitting programs first determines the Cartesian coefficients from the constants of the reduced Hamiltonian used to fit the observed spectra, using the relations tabulated by Murphy (21) (see Appendix F). If the "wrong" rotational representation was used (e.g. II. for an "oblate" molecule), the Cartesian coefficients are suitably relabeled to account for the permutation of the rotational axes. The determinable coefficients are then calculated with the aid of Eqs.(I-23), (I-24) and (I-25). Trial calculations using the ground state and (010) upper state of H28 and HZSe (with the rotational Hamiltonians truncated to sextic terms because Typke’s Hamiltonian did not contain octic terms), have shown that our quadratic and quartic determinable coefficients were essentially invariant to reduction and representation, but the sextic coefficients were not. This may be because without octic terms present in the Hamiltonian, the sextic terms are trying to fit transitions between higher angular momentum states than they are intended to fit, and are thus poorly determined. Another possible explanation is that the small contributions to the transformed centrifugal distortion constants that Watson ignored in his formulation of the determinable coefficients are not negligible. CHAPTER II ANALYSIS OF v2 OF H23 Introduction When we first began to analyze the v fundamental band of H28, we 2 were confronted with two major difficulties: (1) We found that fits of our spectral data did not converge to a stable (2) set of Hamiltonian constants using Watson’s Arreduced Hamiltonian in the IIIr rotational representation. At that time, we had tried Watson’s Arreduced Hamiltonian only in the IIIr representation. Thus we initially chose to use Typke’s Hamiltonian, for which only terms through order P6 are available. This restriction limited our ability to accurately fit and predict transitions with high values of J and Ka. Because we did not have enough ground state transitions (infrared and microwave) for the molecular species H2338 and H2348, we could not determine separate ground state rotational constants and centrifugal distortion constants for these isotOpic species, or "isotOpomers." Therefore, at that stage we initially limited our analysis of the H2333 and H2343 ground states to a simultaneous fit of infrared ground state combination differences (GSCD’s) and microwave transitions for all three isotOpomers, using linear isotOpic mass adjustment constants for A, B, and C. Similarly our initial analysis of the (010) upper states of H2338 and H2345 consisted of a simultaneous fit of v2 lines for all three isotopomers using isotopic mass adjustment constants for v0, A, B, 17 l8 and C. We published our analysis of the v2 band of H28 with the limitations listed above (22). Appendix A contains a reprint of this paper, which is an essential part of our analysis of v2 of H25. Interested parties should read this paper as carefully as the remaining material in this chapter. Recently Flaud, Camy-Peyret, and Johns more precisely determined the ground state constants of each of the three isotopomers from their analysis of the far-infrared and microwave pure rotational spectra of H28 (23). Using their ground state constants through P8 terms, we have reanalyzed our v data and obtained the first individual (010) upper 2 state constants (also through P8 terms) for H2338 and H2345. Since our 1982 publication, we have followed the examples of Carpenter (11) and Strow (12) and have used the Ir rotational representation of Watson’s A-Reduced Hamiltonian, as did Flaud et al. This modification of our analysis allowed us to use P8 terms in the calculation of rotational energy levels, which particularly improved the fit of the high J, high Ka lines in our data set. Results For comparison with the results of Flaud et al., we determined a set of Watson A-reduced ground state constants for H2328 by fitting our H2328 GSCD’s combined with the microwave transitions of Helminger, Cook and DeLucia (24). Both sets of constants are listed in Table 2, and the standard deviations of our fit of the infrared and microwave data are shown in Table 3. 19 Table 2. Comparison of H2323 Ground State Constants GSCD Fit Flaud et alb Constant (cm—1) (95IZSCIa) Constant (cm-l) (Errorc) A 10.3601655 0.000021 10.36015940‘ 0.0000021 B 9.0181419 0.000021 9.01813582 0.0000020 C 4.7307891 0.000010 4.73078321 0.0000010 AJ ( x103) 0.652972 0.00086 0.6525985 0.000040 u _ _ "JR 2'28046 0.0020 2.280268 0.00010 H "K 3.70358 0.0028 3.703266 0.00011 SJ " 0.295618 0.00035 0.2955171 0.000019 n _ _ 5K 0.13274 0.0011 0.1326188 0.000053 HJ ( x106) 0.2791 0.019 0.270983 0.00043 ll _ _ HJK 1.5568 0.059 1.53293 0.0015 ll HKJ 1.3149 0.098 1.25921 0.0044 HK " 1.351 0.12 1.38116 0.0040 ll hJ 0.13853 0.0086 0.135413 0.00021 n _ _ hJK 0.4819 0.033 0.485095 0.00092 ll hK 1.2026 0.060 1.22900 0.0029 9 . LJ ( x10 ) -0.183 0.14 -0.l3951 0.0014 LJJK " 1.388 0.40 1.18438 0.0059 LJK " _2079 2.8 ‘303196 00038 LKKJ " 2'60 1.4 5.4801 0.088 n __ _ LK 2.20 1.5 . 4.4781 0.064 n _ .. zJ 0.0919 0.067 0.070440 0.00072 I! 2JK 0'564 0.29 0.40513 0.0038 n _ _ zKJ 1.178 0.95 0.3024 0.020 "K " (Constrained to 0) —1.7579 0.041 a95%simultaneous confidence intervals, here about 6 times the standard error of each constant. bOnly terms through order P8 are listed for comparison. c . . Quoted errors are "one standard deViation." 20 Table 3. Ground State Fit of H2323 Ground State Standard Number Average Data. Deviation of Data Weight Infrared GSCD’s 0 .0019 cm"1 414 3 . 194 Microwave Data 0 . 10 MHz 39 100 000 'The agreement between our constants and the constants of Flaud et al. is very good for A, B, and C and for the quartic centrifugal distortion constants, but is only fair for the sextic and octic centrifugal distortion constants. This is probably because our ground state data had a maximum J value of 15 and a maximum Ka value of 8, and we used only up through octic terms in the Hamiltonian, whereas Flaud et al. analyzed pure rotational lines with J as high as 22 and Ka as high as 15, and in addition they included several 10th power terms in the Hamiltonian. The limited range of J and Ka values and the precision of our data does not warrant the inclusion of P10 terms. This assumption is supported by the fact that their ground state constants through P8 terms predict our observed GSCD’s with a standard deviation of 0.0019cmr", which is the limit of the precision of our data. For consistency among the three isot0pomers and also for greater accuracy, we have used their ground state constants (through P8 terms) for our new 32 2 S, as well as for the other two fit of the (010) upper state of H isotopomers. Keeping the ground state constants fixed to the values determined by Flaud et al., we determined a set of (010) upper state constants for each isotopomer by individually fitting the three sets of v2 lines. 21 With the improved ground state and (010) state energies available from the new sets of constants, we discarded two of our previous line assignments for H2338 and seven for H2348. We were also able to assign one additional H2348 line. Our set of v2 line assignments for H2338 and H 343 has a smaller range of J and Ka values than the H2323 v2 lines, 2 33 34 owing to the low intensities of the lines of H2 S and H2 abundances 4.2 7. and 0.7 7; respectively), hence we could not determine as many centrifugal distortion constants for v2 of H2333 and H2348 as‘we 32 S. Following a procedure similar to the one 8 (relative determined for v2 of H2 used by Flaud et al., we fixed the upper state HKJ and the octic constants for H2333 and H2348 to the corresponding values for H2328. Furthermore, for the analysis of v2 of H2333 we fixed the upper state 6 and all sextic constants except HKJ to the weighted average of the 2328 and H2345. The standard deviations of our (010) upper state fits, reported in Table 4, are from 607.1 to 34% corresponding constants for H smaller than the standard deviation of the fits of each isotopomer in our previous simultaneous analysis. Table 4. Individual Upper State Fits of v2 of H28 Isot0pomers Standard Number Average Number of Isotopomer Deviation (cmfl) of Lines Weight Parameters 32 0.0010 386 2.802 25 33 0.0012 15 0.923 8 34 0.0016 69 1.241 15 22 Table 5. Upper State Constants for v2 of H28 Isot0pomers Constant (cm-1) H 323 H233S H2348 v0 1182.57420 i 0.0015 1182.0161 i 0.018 1181.49820 i 0.0068 A 10.7220O6 t 0.00024 10.70371 t 0.0014 10.685631 i 0.00096 B 9.224432 t 0.00027 9.22262 i 0.0035 9.22388 t 0.0013 C 4.6688S6 i 0.00013 "'66564 i 0.0016 4.661636 t 0.00062 AJ (x103) 0.75644 3: 0.0050 0.7468 x 0.034 0.76454 t 0.0018 AJK " -2.7401 i 0.018 -2.730 t 0.10 -2.7317 1 0.0097 AK " 4.5580 i 0.014 4.574 t 0.11 4.5788 i 0.0099 GJ " 0.34754 t 0.0028 0.3376 i 0.020 0.3497 i 0.017 5K " -0.01870 i 0.0054 -0.0194 -O.0332 i 0.024 H] (x 106) 0.3877 .4: 0.066 0.4115 0.4124 2 0.013 HJK " -1.936 t 0.23 -1.94 -2.01 i 1.1 HKJ " 0.993 t 0.11 HK " 2.612 t 0.20 2.623 2.822 r 0.84 hJ " 0.1934 t 0.034 0.194 0.199 t 0.17 hJK " -0.616O t 0.064 -0.620 -0.658 t 0.20 hK " 2.129 t 0.12 2.124 2.065 i 0.41 LJ ( x109) -O.291 i 0.27 LJJK " 1.927 t 0.93 LJK " *5.979 t 3.0 LKKJ " 11.56 i 3.3 LK " -9.038 t 0.88 "J " -O.146 i 0.14 £JK " 0.523 f 0.26 "KJ " -0.852 t 0.73 "K " “3.526 i 0.94 23 Our (010) upper state constants for the_three isotOpomers are listed in Table 5. A blank entry means that we fixed the constant to the corresponding value for H2328. Those H2338 constants without a listed uncertainty were fixed to the weighted average of the corresponding constants for H2328 and H2348. Quoted errors are 95% simultaneous confidence intervals, approximately 6 standard errors of each constant for H2323 and approximately 5 standard errors of each constant for H2338 and H2348. Our (010) constants are in good agreement with those of Strow (12) for H2328. However, we determined values for the upper state octic constants, and the standard errors of our lower order terms are somewhat smaller than his. We have calculated Watson’s determinable coefficients (4) for H2328, from the ground state constants of Flaud et a1. and from our (010) upper state constants. These determinable coefficients are listed in Table 6. A complete set of our final line assignments for all v 2 lines of H25 are contained in Appendix B, and Appendix C contains our weighted averaged GSCD’s for H 328, combined from the infrared bands 2 (010), (020), (100), (001), (110), (011), (210), and (111). 32 Table 6. Determinable Coefficients of H S 2 Constant* Ground State* (010) Upper State 10.3614646 10.723519 Y 9.0168316 9°222548 4.7301339 4.668286 rxx (x103) —2.o7560 4.5744 Tyy " -1.24363 ' -1.4516 Tzz " -0.061564 -0.06146 T1 " 0.32247 0.47048 T2 " 0.64046 1.9101 9 ( XIO6) 1.3 2.0 78 57 ¢yyy " 0.5418 0.7744 "zzz " 0.000157 0.000943 01 " -3.422 —4.755 62 --12.78 -18.82 03 -5.043 -6.381 64 " -O.0596 -0.2370 *All constants have units of cmfl, except for T2, 62, 03, and 64, which have units of cmf . 2 * These determinable coefficients are calculated from the ground state constants of Flaud et al. The number of significant digits reported for these constants is an estimate on our part. CHAPTER III ANALYSIS OF 92 OF H28e Introduction The v2 fundamental band of H28e was first studied at low resolution by Cameron, Sears, and Nielsen (25) in 1939, and at moderate resolution by Palik (26) in 1959. Helminger and DeImcia (21) investigated the microwave spectrum of H Se and assigned 109 ground state transitions for 2 the five most abundant H28e isotopomers. Using these transitions and the available infrared ground state combination differences formed by Hill and Edwards (28), who made a preliminary analysis of the 2v2, v1 and v3 bands of H2Se, Helminger and De Lucia calculated ground state constants for the five most abundant isotopomers. In 1981, Gillis and Edwards (22) finished the analysis of these three bands at a resolution limit of‘0.04cmm1 with a standard deviation of 0.0084011-1 for the simultaneous fit of the Coriolis interacting bands 01 and v3, and 0.0038 cm"1 for the fit of 2v2. In this work the 92 band has been run at a resolution limit of 0.025cmr1, and we have assigned about 1600 spectral lines, including some for H27"Se. As a result we have revised the existing ground state constants and obtained (010) upper state constants through octic terms in angular momentum operators. Experimental Details Our sample of H Se was purchased from the Matheson Company, Inc. 2 The sample was used without further purification, and no impurities were observed in the spectrum. 25 26 Several runs of the spectrum of v2 of HZSe were recorded using the University of Denver.53cm FTIR spectrometer system, as described in our paper on v2 of H28 (see Appendix A). The experimental conditions for each run are summarized in Table 7. All spectra were recorded at room temperature (~220C). Several scans for each run were recorded and co-added to improve the signal-to-noise ratio. Calibration was 2160 line positions reported by Olson, Maki, and Lafferty (39). Although the instrument resolution is performed using the (10°0-0000) 14N nominally 0.020cmrl, the actual observed full widths at half height of weak to moderate intensity well-resolved lines are pressure-broadened to values ranging from 0.025 cm"1 to 0.060 cm-l, depending on the sample pressure. Unfortunately, only short sample cells were available, making relatively high sample pressure necessary for adequate absorption. Table 7. Experimental Conditions for v of H Se 2 2 Run number 1 2 3 4 Region (cm—1) 905 - 1320 885 - 1300 890 - 1310 1147 - 1347 Sample pressure (torr) 29.5 105 175 51 Path length (cm) 22 22 22 45 Linewidth (cm-1) 0.045 0.045 0.060 0.025 Number of scans co-added 6 7 8 6 Calibration method N 0a b b b 2 aThe Spectrum of 29 torr of N O in a 5 cm cell was recorded simultaneously with the HZSe spectrum. See ref.(39) for the N20 line positions. bCalibrated against well-resolved HZSe lines from run 1. 27 Analysis of Individual Isot0pomers The basic procedure that we used to analyze the V2 band of H28 (22) was also used to analyze v2 of H25e (see Appendix A). However, the natural abundances of the selenium isotopes, as listed at the bottom of Table 8, are such that the isotopomers of H Se produce five overlapping 2 resulting in many blended lines. Our spectra of "comparable intensity,‘ approach to this problem was first to assign as many lines as possible for the most abundant isotopomer, H28OSe. Using the intensity signature characteristic of HZSe isotopic multiplets, we easily assigned many lines of the other isotopomers. After assigning and fitting a sufficient number of lines for each of five isotopomers, we predicted a spectrum of the most intense type B transitions for each isotopomer, and the analysis of each spectrum proceeded iteratively as usual. Table 8. Range of Rotational Quantum Numbers for H Se Data Sets 2 , 74 76 77 78 80 82 GSCD 3 H2 Se H2 Se H2 Se H2 Se H2 Se H2 Se 7 14 14 17 18 12 max K 2 7 8 9 12 7 a,max: 7 14 14 17 18 12 c,max 74 76 77 78 80 82 v2 lines H2 Se H2 Se H2 Se H2 Se H2 Se H2 Se J 15 17 17 18 19 16 max K 11 13 13 14 14 13 a,max K 17 15 15 17 19 15 c,max # lines AKa==3 1 16 11 32 40 13 # lines AKC=3 0 0 0 0 3 0 Natural , Abundances (A) l 9 8 2" 50 9 Table 9. H 76 2 28 Se Molecular Constants Watson’s A-Reduced Hamiltonian, Ir Representation Ground State - * Constant (cm 1) (95 Z SCI ) (010) State _ * Constant (cm 1) (95 Z SCI ) 0.000031 0.000033 0.000018 0.0022 0.0055 0.0042 0.0012 0.0022 0.025 0.12 0.13 0.072 0.012 0.084 0.14 1.4 1.5 1.6 0.71 1.1 V0 - A 8.1804309 '3 7.7268850 0 3.9040002 A ( x103) 0.527 J 24 JK " -1.84868 AK " 2.64091 6] " 0.24293 6K " -0.18296 H ( XI06) 0.21 J 48 HJK " -1.376 HKJ " 1‘622 HK " 0.2456 hJ " 0.1117 hJK " --o.4056 hK . 0'781 L ( x109) -o.11 * J 40 LJJK . 1'64 LJK . '4'40 LKKJ . 4'71 LK " “2'367 i] " -0.0598* 2“ " 0468* sz . 70°95 "K " (Constrained to 0) 1034.514 8.429920 7.9071 79 3.857970 0.61677 3.18 60 0'28684 0.3367 1.537 0.8 62 0.1677 1.2105 -0.2718 1.898 -4.16 r 4.460 --2.65 - * 0.132 r 0.501 _ * 0.759 _ ¢ 0.852 40 0.0046 0.00072 0.00068 0.00028 0.0077 0.032 0.029 0.0042 0.0056 0.049 0.26 0.63 0.29 0.025 0.067 0.070 0.084 0.66 1.2 1.4 * 957. simultaneous confidence intervals, here about 6 times the standard error of each constant. 80 *These constants were fixed to the corresponding values for H2 Se. Table 10. H 77 2 29 Se Molecular Constants Watson’s Ar-Reduced Hamiltonian, Ir Representation Ground State - * Constant (cm 1) (95 7. SCI ) (010) State - * Constant (cm 1) (95 7'. SCI ) CC AJK AK §J aK HJ (x10) HJK HKJ “x 8.1776923 7.72689 22 3.9033745 0.52836 2.63778 0.243081 -0.183401 0.2251 -1.3508 1.6745 0.1485 0.1156 -O.49 89 0.935 -0.11 t 40 0.861 -301 63 4.362 _ # 0.0598 0.4 * 68 0.000021 0.000024 0.000019 0.0023 0.0056 0.0016 0.00047 0.00062 0.025 0.063 0.053 0.077 0.010 0.050 0.12 0.51 0.32 0.60 0.67 ’0.87 (Constrained to 0) 1034.42550 8.427091 7.9069 88 3.857199 0.61163 -2.l805 3.1590 0.28498 -0.1217 0.2892 -1.421 1.341 0.732 0.1424 -O.438 102 49 -0.2 i 55 2.392 -9. 71 14.7 -7.65 -0.1019 i 0.501 -l.63 _ $ 0.852 0.0071 0.00082 0.00088 0.00039 0.0093 0.038 0.035 0.0059 0.014 0.056 0.34 0.68 0.40 0.044 0.13 0.25 0.96 5.6 11 6.1 0.074 1.8 9SiZsimultaneous confidence intervals, here about 7 times the standard error of each constant. 80 *These constants were fixed to the corresponding values for H Se. 2 Table 11. H 78 2 30 Se Molecular Constants Watson’s A-Reduced Hamiltonian, IR Representation Ground State - * Constant (cm 1) (95 7. SCI ) (010) State - * Constant (cm 1) (95 Z SCI ) CC 0313:. AJ ( x 103) 8.1750087 7.7268788 3.9027655 0.52820 -1.84943 2.63827 0.2424 00 -0.18271 0.2102 1.1 68 0.518 0.10399 0.762 -0.12 17 1.308 "4‘37 6.82 ”"’14 _ # 0.0598 0.4 * 68 0.000029 0.000028 0.000020 0.0020 0.0055 0.0044 0.00080 0.0026 0.021 0.051 0.22 0.24 0.0093 0.055 0.12 0.045 0.70 1.4 1.3 1.5 0.68 (Constrained to 0) 1034.335 8.424285 7.906952 3.856678 90 0.61439 -2.2089 3.1855 0.28576 -0.12969 0.3190 -1.701 1.413 0.965 0.161 2 -0.5592 1.2 63 -3.99 -0.1334 0.572 - # 0.759 0.0023 0.00037 0.00030 0.00016 0.0037 0.016 0.016 0.0020 0.0053 0.023 0.12 0.23 0.23 0.013 0.052 0.10 0.71 2.0 1.6 0.015 0.13 0.68 * 951% simultaneous confidence intervals, here about 7 times the standard error of each constant. 80 *These constants were fixed to the corresponding values for H2 Se. Table 12. H 31 80 2 Se Molecular Constants Watson’s A-Reduced Hamiltonian, Ir Representation Ground State - * Constant (cm 1) (95 7S SCI ) (010) State _ * Constant (cm 1) (95 7. SCI ) 0C 8.1698555 7.72686 72 3.9015791 0.52782 -l.84981 2.63712 0.2423 -0.1834 99 54 0.2114 -1.2826 1.3782 0°3848 0.1062 -0.40 74 0.7634 -0.11 1.2 '2'54 1'71 -0.732 -0.0598 0.468 40 49 0.000021 0.000023 0.000014 0.0013 0.0012 0.0028 0.00062 0.00078 0.018 0.021 0.063 0.027 0.010 0.040 0.057 0.097 0.67 1.7 1.2 0.25 0.051 0.39 0.45 (Constrained to 0) 1034.165 8.41901 7.9068 3.8554 20 9 87 72 0.61417 -2.2070 3.1814 0.28592 -0.12853 0.3188 1.471 00894 0.1613 -0.52 53 1.2295 -0.255 1.785 “3'76 4.46O '2'87 --0.132 0.501 0.0019 0.00032 0.00034 0.00012 0.0056 0.022‘ 0.017 0.0030 0.0049 0.061 0.26 0.14 0.11 0.032 0.052 0.064 0.20 0.77 2.6 0.66 1.3 0.10 0.13 0.29 0.44 * 951% simultaneous confidence intervals, here about 7 times the standard error of each constant. Table 13. H 82 2 32 Se Molecular Constants Watson’s A-Reduced Hamiltonian, IR Representation" Ground State . - * Constant (cm 1) (95 Z SCI ) (010) State _ * Constant (cm 1) (95 7. SCI ) 0C h'K .. LK “m 8.1649478 7.7268602 3.9004542 0°52846 -1.85651 2.64079 0.241667 -0.180891 0.2398 -1.6076 1.8307 0.1999 0.0911 -0.35 0.85 24 94 3.1 77 1.71 - $ 0.732 _ # 0.0598 0.4 * 68 -2.568 0.000030 0.000033 0.000028 0.0040 0.0024 0.0017 0.00051 0.00097 0.057 0.059 0.062 0.044 0.011 0.048 0.064 0.22 0.45 0.66 0.84 (Constrained to 0) 1034.00520 8.413849 7.9069 20 3.854417 0.61989 -2.2301 3.1941 0.287 80 -0.12540 0.42 -2.1 1.8 0.9 31 98 14 17 0.195 -0.48 1.37 54 94 -0.785 4. 18 -5 '12 * 4.460 ‘3°40 -0.3267 r 0.501 --2.31 - $ 0.852 0.0046 0.00069 0.00056 0.00030 0.0062 0.028 0.032 0.0023 0.0067 0.050 0.36 0.62 0.53 0.12 0.082 0.081 0.25 1.3 2.2 2.2 0.093 1.3 * 95iZ simultaneous confidence intervals, here about 7 times the standard error of each constant. 80 *These constants were fixed to the corresponding values for H Se. 2 33 Because the relative intensity of lines within an isotopic multiplet depends on the natural abundance of the selenium isotopes, the 8 2 abundance). As a result, we were able to assign spectral lines and form number and selection of spectral lines was greatest for H 0Se (~4fl)% GSCD’s with the widest range of rotational quantum numbers for this isotopomer. This was also the only isotopomer for which we observed any of the weak AKC==3 lines. The range of quantum numbers exhibited by the six sets of GSCD’s and v2 spectral lines and the natural abundances of the six isotopomers were given in Table 8. The molecular constants and the 9SZIsimu1taneous confidence intervals for the separate ground state and upper state fits of the five most abundant isotopomers were listed in Tables 9 through 13. We obtained ground state constants for each isotOpomer by fitting ‘ infrared GSCD’s together with the microwave transitions observed by Helminger and De Lucia (27). The results of the individual ground state fits are summarized in Table 14, and the five sets of ground state constants are listed in Table 15 for comparison. Table 14. Individual Ground State Fits of H Se Isot0pomers 2 Std Dev of IR No. of Std Dev of No. of MW Isot0pomer GSCD Fit (cmfl) GSCD’s Av Wt MW Fit (MHz) Transitions 76 0.0035 160 0.531 0.35 21 77 0.0037 143 0.228 0.31 21 78 0.0028 355 1.386 _ 0.080 21 80 0.0021 510 1.756 0.089 25 82 0.0035 153 0.548 0.098 21 Weighted 0.0025 1321 1.203 0.22 , 109 Average Table 15. H 2 Se Ground State Constants for Individual Isot0pomers Watson’s A-Reduced Hamiltonian, Ir Representation Constantf H276Se H277Se H278Se H2808e H2828e A 8.18043O 8.1776923 8.17500 8.16985 8.1649478 B 7.72688 7.7268922 7.72687 7.72686 7.7268602 0 3.904000 3.90337 3.90276 3.90157 3.9004542 A3 ( x103) 0.52724 0.52836 0.52820 0.52782 0.52846 AJK " -l.84868 -1.84602 -1.84943 -1.84981 -1.85651 AK " 2.64091 2.63778 2.63827 '2.63712 2.64079 oJ 0.24293 0.2430 0.242400 0.2423 0.241667 6K " -0.18296 -0.1834 -0.18271 -0.1834 -0.180891 HJ ( x106) 0.2148 0.2251 0.2102 0.2114 0.2398 HJK " -1.376 -1.3508 -1.2028 —1.2826 -1.6076 HKJ 1.622 1.6745 1.168 1.3782 1.8307 HK " 0.2456 0.1485 0.518 0.3848 0.1999 hJ " 0.1117 0.1156 0.10399 0.1062 0.0911 hJK " -o.40S6 -0.4989 -0.3880 -o.4074 --0.3524 hK " 0.781 0.935 0.762 0.7634 0.8594 LJ ( x109) -0.1217 -0.1140 -0.380 LJJK " 1.64 0.861 1.308 1.249 3.177 LJK " -4.40 --3.163 -4.37 -2.54 -4.204 LKKJ 4'71 4'362 6'82 1'71 LK -2.367 -2.473 -4.14 -0.732 gJ " -o.0598 23K " 0.468 hat " —0.95 -1.328 -1.074 -0.740 -2.568 "K * * * constrained to 0 for all ground state fits * * * * #All constants are in units of cm-l. A blank entry means that the 80 constant was fixed to the corresponding value for H2 35 The infrared GSCD’S, listed in Appendix E, are weighted averages of all GSCD’s formed from the (010) spectral lines of this analysis and the (020), (100), and (001) spectral lines from the analysis of Gillis and Edwards (22). The relative fit of each isotopomer’s GSCD’s is consistent with our previous comparison of the data sets and the number and average weights of the GSCD’s. The weighted average of the microwave fit is 0.221mHz, which is comparable to the experimental accuracy of the microwave techniques used by Helminger and DeImcia. We gave the microwave transitions a uniform weight of 100(MM), compared to an average weight of 1.203 for the infrared GSCD’s. This weighting scheme is consistent with the relative accuracies of the microwave frequencies and the v spectral line positions, and is approximately the 2 square of the ratio of the standard deviations of the infrared and microwave fits. The centrifugal distortion constants are free of any regular mass dependencies. Therefore, when an octic centrifugal distortion constant proved not to be statistically significant, we fixed its value to the corresponding value for H28OSe. Only "K was not significant for all five isotOpomers, so we fixed its value to zero for all ground state fits. We determined the v2 upper state constants for each isotopomer by fitting the v spectral lines for each isotopomer (see Appendix D), 2 keeping the ground state constants (determined from our ground state fits) fixed. The five sets of upper state constants are listed in Table 16 for comparison, and the results of the five individual fits are summarized in Table 17. The weighted average standard deviation of the fits for all five isotopomers is 0.0017'cm-1, which is comparable to the standard deviation of the calibration run, 0.0020cmr1. 36 Table 16. v2 Constants for Individual Isot0pomers of H23e Watson’s A-Reduced Hamiltonian, Ir Representation Constant* H276Se H277Se H278Se H28OSe H2828e YO 1034.5144O 1034.42550 1034.33590 1034.16520 1034.00520 A 8.429920 8.427091 8.424485 8.419019 8.413849 B 7.907179 7.906988 7.906952 7.906887 7.906920 C 3.857970 3.857199 3.856678 3.855472 3.854417 AJ ( x103) 0.61677 0.61163 0.61439 0.61417 0.61989 "JR " -2.2082 -2.1805 -2.2089 -2.2070 -2.2301 "R 3.1860 3.1590 3.1855 3.1814 3.1941 GJ " 0'28684 0.28498 0.28576 0.28592 0.28780 6K " -0.12860 -0.1217 -0.12969 -O.12853 -0.1254O HJ ( x106) 0.3367 0.2892 0.3190 0.3188 0.4231 HJK " -1.724 -1.421 -1.701 -1.700 -2.198 HKJ " 1.537 1.341 1.413 1.471 1'814 HK " 0.862 0.732 0.965 0.894 0.917 hJ " 0.1677 0.1424 0.1612 0.1613 0.195 hJK " —0.5131 -0.438 -0.5592 -0.5253 -0.4854 hK " 1.2105 1.249 1.263 1.2295 1.3794 LJ (x109) —0.2718 -0.255 -0.785 LJJK " 1.898 2.392 1.785 4.18 LJK " -4.16 -9.71 -4.035 -3.76 -5.12 LKKJ " 14.7 5.77 4.460 LK " -2°65 -7°65 --3.99 --2.87 -3.40 2J " -0.1019 —0.1334 -0.132 -0.3267 "JR " 0.572 0.501 "KJ -1°63 -0.759 -2.31 "K -1.119 -0.852 A blank entry means that the 80 2 Se. *All constants are in units of cmfl. constant was fixed to the corresponding value for H 37 Table 17. Individual Upper State Fits of v of H Se 2 2 Standard Deviation of Number of IsotOpomer Infrared Lines (cm-1) Weighted Lines Average Weight 76 0.0021 233 1.162 77 0.0021 206 0.714 78 0.0016 386 1.874 80 0.0014 502 2.028 82 0.0019 243 1.149 Weighted 0.0017 1570 1.553 Average Again, the relative magnitudes of the five standard deviations are consistent with the range of quantum numbers exhibited by the five sets 2 and average line weight for each isotOpomer reported in Table 17. In of v lines, as reported in Table 8, and in the number of weighted lines contrast with the ground state case, the octic centrifugal distortion constant 2 was determined to be statistically significant in the upper K states of both H28OSe and H278Se. Simultaneous Analysis of All Isot0pomers The number and variety of spectral lines observed for H2748e were inadequate to permit an independent analysis of this isotopomer, so an alternate simultaneous analysis of all six isotopomers was done using isotopic mass adjustment terms in the energy expressions, as done by Willson et a1 (22), by Moncur et al (22,22), by Gillis and Edwards (22323322), and by Lane et a1 (22) (see Appendix A). We calculated' frequencies using the formula F = v0 + 6mm + gmAMZ + flxi + £1 AM + a“ AM2) (III-1) i a a a. a 38 - £511) + gibAM + a? AMZJOKib> , where the subscripts a and b refer to the upper and ground states, respectively, AM=-80-M, where M is the mass of the selenium isotope in the isotopomer, and x1 and are, respectively, the Hamiltonian parameters and the expectation values of the associated angular momentum operators. The number of isotopomers (six), the number of lines observed (1593), and the reasonably large range of mass differences present make the H 2Se spectrum an excellent test of the validity of this procedure. Table 18. Simultaneous Ground State Fit of All HZSe Isot0pomers Std Dev of IR No. of Std Dev of No. of MW Isotopomer GSCD Fit (cmfl) GSCD’s Av Wt MW Fit (MHz) Transitions 74 0.0083 4 0.040 - None 76 0.0051 160 0.531 11 21 77 0.0048 143 0.228 5.7 21 78 0.0033 356 1.386 4.3 21 80 0.0027 507 1.762 6.5 25 82 0.0042 156 0.548 9.0 21 Weighted 0.0032 1326 1.199 7.6 109 Average Inspection of the ground state rotational constants listed in Table 15 shows a monotonic dependence on the selenium mass for A and C, and no discernible mass dependence for B. This is not surprising since the b rotational axis passes through the selenium atom. As a result, we anticipated no isotOpic mass correction term for B, and indeed, none was ultimately needed. The results of the simultaneous fit of all ground state data using isotopic mass correction terms are summarized in Table 39 18. Because the number of H2748e lines assigned was small, we were only able to form four infrared GSCD’s of non-zero weight for H274Se. 74 Furthermore, no microwave transitions were available for H Se. For 2 these reasons, the relative fit for the H 74Se ground state data was 2 poor compared to the fits observed for the other isotopomers. The weighted average standard deviation of the fit of the infrared GSCD’s for all six isotopomers is larger than the corresponding value for the separate isotopomeric fits, but is of roughly comparable magnitude. 0n the other hand, the standard deviations of the microwave fits are from one to two orders of magnitude larger for the simultaneous fit than the corresponding standard deviations of the separate fits. Possibly more mass adjustment terms are needed to fit the microwave transitions simultaneously. However, for fitting the infrared GSCD’s and microwave transitions together, only a linear mass adjustment term for C and a linear and quadratic term for A were statistically significant. Table 19. Simultaneous Upper State Fit of v2 of All HZSe Isot0pomers Standard Deviation of Number of Isotopomer Infrared Lines (cmfl) Weighted Lines Average Weight 74 0.0049 25 0.048 76 0.0036 233 1.162 77 0.0028 206 0.714 78 0.0022 384 1.884 80 0.0020 502 2.028 82 0.0033 243 1.149 Weighted 0.0025 1593 1.531 Average 40 Table 20. HZSe MOlecular and Isotopic Mass Adjustment Constants Watson’s A-Reduced Hamiltonian, Ir Representation (010) State Constant (cm-1) (95 Z SCI ) Ground State - * Constant (cm 1) (95 °/. SCI ) - - 1034.16480 0.0022 A 8.1699110 0.000076 8.419086 0.00032 B 7.7268551 0.000069 7.906891 0.00030 c 3.9016434 0.000052 3.855543 0.00012 A3 ( x103) 0.52823 0.0039 0.61405 0.0033 63K " -1.8492 0.012 -2.2045 0.013 AK 2.63873 0.0079 3.1809 0.015 53 " 0.24243 0.0016 0.28562 0.0018 6K " -0.18410 0.0043 -0.12844 0.0037 HJ ( x106) 0.2173 0.036 0.3152 0.018 HJK " -1.227 0.15 —1.651 0.18 HKJ " 1.184 0.10 1.399 0.44 HK 0.553 0.68 0.929 0.28 hJ " 0.1090 0.016 0.15915 0.0099 hJK " -0.416 0.12 -0.5411 0.094 hK " 0.797 0.19 1.2692 0.093 L ( x109) -0.2 0.13 J 29 LJJK " 1°241 0.44 1.735 0.95 LJK " -3.92 3.2 LKKJ 4.62 3.7 LK " -2.78 1.7 gj " -0.11867 0.0084 23K 0.555 0.40 0.577 0.48 “K3 " -0.685 0.90 2K " (Constrained to 0) -1.049 0.71 41 Table 20 (cont’d.) Ground State (010) State Constant (cm-1) (95 Z SCIa) Constant (cm-1) (95 Z SCIb) gm ( x102) — - 8.33 0.068 25 am( x103) - - 1.225 0.21 6“ ( x103) 2.47000 0.0038 2.5326 0.019 6“( x105) 3.340 0.14 ' 3.070 0.66 c 4 6 (x10 ) 5.640 0.10 5.5906 0.065 * 952'. simultaneous confidence intervals, here about 6 times the standard errors of each constant. 951% simultaneous confidence intervals, here about 8 times the standard errors of each constant. A blank entry means the constant was fixed to the corresponding value for H2808e. ‘m. n-.. 42 The simultaneous fit of the v2 upper states was apparently more successful in approaching the goodness of fit of the separate fits of the isotOpomers. The results of this fit are summarized in Table 19. The weighted standard deviation is 0.0025cmfl, which is close to the standard deviation of the calibration fit. The upper state constants in Table 16 show a mass dependence similar to the one observed for the ground state Constants, with the obvious addition of the band centers, v The molecular constants and isotopic mass adjustment constants that 0' we obtained from the simultaneous ground state fit and from the simultaneous upper state fit (keeping our constants determined in the simultaneous ground state fit fixed) are listed in Table 20. Determinable Coefficients of HOEE. In addition to the molecular constants corresponding to Watson’s A-reduced Hamiltonian, evaluated in the Ir representation, we are reporting Watson’s determinable coefficients for the ground state and the v2 upper state for the five most abundant isotopomers of HZSe. The ground state determinable coefficients for the five most abundant isotopomers are listed in Table 21 and the v upper state determinable 2 coefficients are listed in Table 22. The variation in the sign and magnitude of the values obtained for the constants szz and 04 in both the ground and upper states suggest that either they are not well determined, or that the small terms ignored by Watson in his formulation of the determinable coefficients are not negligible. Table 21. 43 Ground State Determinable Coefficients of H Se 2 ¢ 76 77 78 80 82 Constant H2 Se H2 Se H2 Se H2 Se H2 Se X 8.1814854 8.1787490 8.1760651 8.1709111 8.1660047 7.7259709 7.7259835 7'7259664 7.7259552 7.7259391 Z 3.9033259 3'9027046 3.9020918 3.9009028 3.8997762 3 Txx ( XIO ) -1.31947 --1.32012 -1.31704 —1.31514 -1.31274 Tyy -1.01310 -l.01452 -1.01300 -1.01262 -1.01179 Tzz -0.04138 -0.04220 -0.04340 -0.04302 -0.04513 T1 0.26696 0.26094 0.26483 0.26634 0.27113 T2 0.53483 0.49731 0.52155 0.53068 0.56625 6 Qxxx( XIO ) 0'7064 0.6973 0.6934 0.6918 0.6628 ¢yyy 0.4382 0.4563 0.4182 0.4238 0.4220 0222 -O.0086 -0.0061 -0.0022 -0.0010 0.0576 01 -2.4500 -1.7315 -2.2180 -2.3494 -3.3899 02 -5.1723 —4.5955 -5.4702 -5.3910 -5.1334 03 -3.6038 -3.8314 -3.2792 —3.4833 -3.8538 44 0.2860 -0.1985 -0.0126 ’0.0779 0.3914 *All constants have units of cm-l, except for T2, 02, 03, and 04, which have units of cm. . 2 44 Table 22. (010) Upper State Determinable Coefficients of H Se 2 ¢ 76 77 78 80 82 Constant H2 Se H2 Se H2 Se H2 Se H2 Se 8.431153 8.428315 8.425514 8.420248 8.415089 7.905888 7.905704 7.905660 7.905593 7.905605 3.857311 3.856568 3.856010 3.854808 3.853752 3 xx ( X10 ) -1.59455 -1.59011 -1.59100 -1.58858 -1.58384 22 -0.O4309 -0.04167 -0.04287 -0.04232 -0.04429 0.35792 0.34565 0.36569 0.36449 0'37046 1.1751 1.13775 1.22099 1.22261 1.26638 1.0123 0.9410 0.9965 0.9839 0.9565 0.6720 0.5739 0.6415 0.6414 0.8140 0.0013 0.0045 -0.0034 -0.0038 0.0323 -2.5256 -1.5097 --3.1971 -3.0207 -3'8386 92 -7.4090 -6.2545 -7.7305 -7.5467 -7.4997 93 -4.2598 -3.7454 -4.5332 -4.3905 -4.4439 94 -0.0269 -0.0511 -0'1145 0°0264 0.3025 *All constants have units of cmfl, except for T2, 02, 03, and 04, which have units of cmfz. SUMMARY AND CONCLUSIONS We have reviewed the deve10pment of an effective Hamiltonian suitable for calculating the vibration-rotation energy levels of an asymmetric top molecule, from the Darling-Dennison Hamiltonian to the reduced Hamiltonians proposed by Watson. Because the contact transformations necessary to properly reduce the Hamiltonian through terms of order P8 have only been carried out rigorously for Watson’s A-reduced Hamiltonian, we used this Hamiltonian for our final calculations. However, we found it necessary to use the Ir rotational representation, formerly reserved for "prolate" asymmetric t0p molecules, to obtain stable fits of spectral data for "oblate" asymmetric top molecules with Watson’s Arreduced Hamiltonian. Several investigators have identified the reason for this anomaly to be the large size of the s 1 parameter in this reduction for oblate asymmetric 11 top molecules in the IIIr rotational representation. Therefore, we report the effective constants obtained by fitting the data to Watson’s A-reduced Hamiltonian in the Ir rotational representation for the v2 bands of H28 and H2Se. In addition, in order to simplify the comparison of our results with the results of other investigators who may use different reduced Hamiltonians or different rotational representations, we have calculated and reported Watson’s determinable coefficients for 32 H2 8 and five of the isotopomers of HZSe. Because Watson’s Arreduced Hamiltonian in the IIIr rotational representation apparently failed to produce a stable fit of spectral data, we used Typke’s Hamiltonian, limited to terms through order P6, 45 46 for our initial analysis of v2 of H28. With our new understanding about the appropriate rotational representation for Watson’s A-reduced Hamiltonian, we have reanalyzed our v2 data for H28 using Watson’s A-reduced Hamiltonian including terms through order P8. Using the ground state constants for all three isotopomers of H S determined by Flaud et upper state constants for H2338 and 2 al.,we have obtained separate v 34S, as well as H2328 ground state and v 2 H upper state constants that 2 2 are in good agreement with the results of other investigators. We have individually analyzed the ground state and v upper state 2 of the five most abundant isotopomers of H Se. We have also performed a 2 simultaneous analysis of all six naturally occurring isotopomers, including H274 molecular constants. Using this procedure, we have fit about 1600 H28e Se, using isotopic mass adjustments on some of the spectral lines from all six stable isotopomers using only 56 constants in place of the 240 constants that are required to fit five isotopomers individually. REFERENCES REFERENCES 1. B. Bezard, A. Marten, J.-P. Baluteau, D. Gautier, J.—M. Flaud, and C. Camy-Peyret, Icarus, _§_5_, 259-271 (1983). 2. B.T. Darling and D.M. Dennison, Phys. Rev. E1, 128-139 (1940). 3. E. B.Wilson and J. B. Howard, J. Chem. Phys. 4, 260-268 (1936). 4. J.K.G.Watson, J. Chem. Phys. 4_6_, 1935-1949 (1967). 5. M. Goldsmith, G. Amat and H. H. Nielsen, J. Chem. Phys. 24, 1178-1182 (1956). 6. G. Amat, M. Goldsmith and H. H. Nielsen, J. Chem. Phys. 21, 838-844 (1957). 7. G. Amat and H. H. Nielsen, J. Chem. Phys. _27_, 845-850 (1957). 8. G. Amat and H.H. Nielsen, J. Chem. Phys. 29, 665-672 (1958). 9. G. Amat and H.H. Nielsen, J. Chem. Phys. 26, 1859-1865 (1962). 10. K. T. Chung and P. M. Parker, J. Chem. Phys. 28, 8-17 (1963). 11. K. T. Chung and P. M. Parker, J. Chem. Phys. _4_3_, 3865-3868 (1965). 12. K. T. Chung and P. M. Parker, J. Chem. Phys. _4_3_, 3869-3874 (1965). 13. F. X. Kneizys, J. N. Freedman and S. A. Clough, J. Chem. Phys. _4_4, 2552-2556 (1966). 14. Ch. V. S. R. Rao, J. Mol. Spectrosc. 102, 79-88 (1983). 15. K. K. Yallabandi and P. M. Parker, J. Chem. Phys. _4_9_, 410-419 (1968). 16. V. Typke, J.Mol. Spectrosc. 62, 170-179 (1976). 47 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 48 J. H. Carpenter, J. Mol. Spectrosc. i6, 348-357 (1973). B. P. van Eijck, J. Mol. Spectrosc. _5__3_, 246-249 (1974) . J. K. G. Watson, J. Chem. Phys. _4_8, 4517-4524 (1968). L. L. Strow, J. Mol. Spectrosc. _9_7_, 9-28 (1983) . W. F. Murphy, J. Mol. Spectrosc. _8_g, 561-565 (1981) . Wm. C. Lane, T. H. Edwards, J. R. Gillis, F. S. Bonomo and F. J. Murcray, J. Mol. Spectrosc. _9_5_, 365-380 (1982) . J.-M. Flaud, C. Camy-Peyret and J.W.C.Johns, Can. J. Phys., _6_1, 1462- 1473 (1983). P. Helminger, R. L. Cook and F. C. De Lucia, J. Chem. Phys. 26, 4581-4584 (1972) . D. M. Cameron, W. C. Sears and H. H. Nielsen, J. Chem. Phys. 1, 994-1002 (1939). E.D.Palik, J. Mol. Spectrosc. 2, 259-295 (1959). P. Helminger and F. C. De Lucia, J. Mol. Spectrosc. _5_8_, 375-383 (1975). R.A. Hill and T.H. Edwards, J. Chem. Phys. 42, 1391-1396 (1965). J. R. Gillis and T. H. Edwards, J. Mol. Spectrosc. _85_, 74-84 (1981). W. B. Olson, A. G. Maki and W. J. Lafferty, J. Chem. Phys. Ref. Data _1_0_, 1065-1084 (1981). P. D.Willson, N. K. Moncur and T. H. Edwards, J. Mol. Spectrosc. 22, 196-208 (1974). N. K. Moncur, P. D. Willson and T. H. Edwards, J. Mol. Spectrosc. 2.: 181-195 (1974). 49 33. N. K. Moncur, P. D. Willson and T. H. Edwards, J. Mol. Spectrosc. 2, 380-391 (1974). 34. J. R.Gillis and T.H. Edwards, J. Mol. Spectrosc. _8_1_, 373-389 (1980). 35. J. R.Gillis and T.H.Edwards, J. Mol. Spectrosc. _8_5_, 55-73 (1981). APPENDICES APPENDIX A JOURNAL OF MOLECULAR SPECTROSCOPY 95, 365-380 (1982) Analysis of 172 of H23 WM. C. LANE AND T. H. EDWARDS Department of Physics. Michigan Slate University. East Lansing. Michigan 48824 AND JAMES R. GlLLIS, FRANCIS S. BONOMO, AND FRANK J. MURCRAY Department of Physics. University of Denver, Denver. Colorado 80208 The infrared absorption spectrum of it; of H25 in the region from 1000 to 1500 cm" was obtained with a resolution limit of <0.05 cm" on the University of Denver 50-cm FTIR spectrometer system. We have assigned 387 lines due to H2328, 75 lines due to HZJ‘S. and 15 7 lines due to H2”S, and have analyzed them using Typke‘s reduction of Watson‘s Hamiltonian. Slightly revised ground-state constants for the 32 isotOpe were obtained from a simultaneous fit of the microwave transitions observed by Helminger. Cook. and De Lucia. combined with weighted averaged ground-state combination differences formed from the infrared bands (010). (020), (100), (001 ), (l 10), (01 1), (210), and (l 1 1). The standard deviation for the fit was 0.0018 cm" for the infrared data and 0.000032 cm‘l for the microwave lines. Upper-state constants for the 32 isotope were obtained from a least-squares fit of the spectral lines of Hg, keeping the ground-state constants fixed to the values determined by the combination difference fit. The standard deviation of the (010) line fit was 0.0017 cm’I for the 32 isotope. Ground-state and upperostate isotopic mass adjustment constants were determined in a simultaneous fit of lines of H2”S and 1123‘s, keeping the ground-state and upper-state constants for the 32 isotope fixed. 1. lNTRODUCTlON Low-resolution studies of the v2 bending fundamental band of H28 date back at least as far as 1905 when Coblenz (1) located several HZS infrared absorption bands with a low dispersion prism spectrometer. Among these bands was one centered at 8.46 microns, or 1182 cm", a value remarkably close to the currently accepted value of the v; band center. Later investigators such as Rollefson (2), Mischke (3), Mecke (4), Bailey et al. (5), and Sprague and Nielsen (6) reported different values for the band center, ranging from 1180 to 1250 cm". In 1951, Allen and Cross (7) reanalyzed the data of the previous investigators and concluded that the band center of 1:2 was near 1 183 cm“. Reasonable estimates of A, B, and C were also produced. In 1956, Allen and Plyler (8) obtained a new spectrum at a resolution limit of 0.3 cm". They identified about 55 transitions for J 5 6, fit the spectrum with an average deviation of 0.08 cm", and produced better values for A, B, and C. ‘ Recently Gillis and Edwards (9) analyzed the other two fundamentals v, and 173, as well as 2172, at a resolution limit of 0.05 cm" and with a standard deviation of 0.0052 cm“1 for the simultaneous fit of u, and v3, and 0.0040 cm’l for the fit of 21:2. 365 I 0022-2852/82/100365-16502.00/0 Copyright © 1982 by Academic Press. inc. All rights of reproduction in any form reserved. 51 366 LANE ET AL. TABLE 1 Experimental Conditions Run 1 2 3 4 5 Region (cm-1) 1010-1350 1010-1350 950-1350 1150-1500 1150-1500 Sample Pressure (torr) 88 88 210 41 161 Path Length (cm) 22 22 22 45 45 Linewidth (cm'l) 0.06 0.06 0.10 0.04 0.08 Number of scans co-added S 7 8 3 4 Calibration N 0* i- 1' r + 2 *Spectrum of 28 torr N 0 in a S cm cell was recorded simultaneously with H25 spectrum. See ref. (10) for N20 ine positions. +Calibrated against well resolved H25 lines from run 1. In this work we have run the u; band under higher resolution, assigned 477 tran- sitions, including. some for H2348 and H2338, revised the existing vibration—rotation constants, and obtained values for the upper-state constants through sextic terms in angular momentum. II. EXPERIMENTAL DETAILS A sample of electronic grade H28 (99.99% purity, less than 50 ppm C02) donated by Scientific Gas Products, Incorporated, was used without further purification. Several runs of the spectrum of v2 of H28 were recorded using the University of Denver SO-cm FTIR spectrometer system. All spectra were recorded at room tem- perature (~22°C). Several scans for each run were recorded and coadded to improve the signal-to-noise ratio. Experimental conditions are given in Table 1. Although the instrument resolution is nominally 0.02 cm“, the actual observed full widths at half-height of weak to moderate intensity well-resolved lines are pressure broadened from 0.04 to 0.10 cm" depending on sample pressure. Only short sample cells were available, making necessary relatively high pressure for adequate absorption. In run 1 the spectra of HZS and N20 were recorded simultaneously. The precisely measured (10°0-00°0) '4N2'6O line positions of Olson et al. (10) were used for calibration. The calibration fit of run 1 indicated that the line positions of well- resolved lines are accurate to :0.002 cm“. Calibrations of the remaining spectra were performed using well-resolved HZS lines from run 1 as secondary calibration standards. It was observed that strongly absorbing, heavily pressure-broadened lines in the high-pressure spectra are shifted systematically about 0.007 cm‘| toward lower frequency relative to the line positions of run 1 or 2. As line intensity and linewi‘dth decrease, the shift in line position decreases smoothly to zero. This effect is caused by small errors in the phase correction of the interferograms before transformation. These phase errors cause the lineshapes in the transformed spectra to be slightly asymmetric, and line centers are shifted more for broad lines than for narrow lines. In order to minimize line position errors, the line positions used for fitting the 52 172 OF H28 TABLEII Ground-State Constants of H2325 367 Constant (cm‘l) *951 set (cm‘l) Di Dix 0k 65 ”6 ”5 “ix ”1'0 “k “5 “6 H10 10.361617 9.016158 4.7312563 x10.3 H .10301 -3 .9684 x10 H 2 x10-3 0 .92780 -3 .20865x10 O -3 -0.277934x10 -6 .4495x10 -l.5705x10 O 6 x10-6 H .8669 -0.74S3x10 6 x10.6 O .3345 -6 .8941x10 6 .2428x10 00 0.00011 0.00010 0.000050 .0025x10'3 .0038x10'3 .0026x1o‘3 .0015x10'3 OOOOO .oooszxio‘3 .025x10'6 .072x10'6 .095x10'6 6 .045x10'6 .050x10‘5 0 0 0 0.045x10- 0 0 0 6 .020x10- Standard deviation of 414 weighted averaged infrared GSCD's = 0.0018 cm'l. Standard deviation of 39 microwave transitions* = 0.000032 cm'1 (0.96 MHz). 1'95! SCI (simultaneous confidence intervals), here the associated rotational constants. 'See reference (19). 6 standard errors of spectra were taken from the lowest-pressure run which gave adequate absorption to observe the line. Because the spectrometer system has about a l-m optical path open to the at- mosphere, some atmospheric water lines appear in the high-frequency end of the spectrum. The spacings between these lines are wide enough so that very few H28 lines are obscured. IU.THEORY We analyzed the spectra using Typke’s reduction of Watson’s Hamiltonian (11) for the rotational part of the vibration-rotation Hamiltonian, viz., H = A'Pi + B’Pi + C'PE - D’JP4 - D’JKPZPE - D'KP‘; - 26’JP2(Pi - P?) + mm + H’JP" + H’JKP‘PE + H'KJPZP: + H'KPE + 11313409: - Pg) + (1/2)H1<.P20 + H'.o(P§ — P303. (1) 53 368 LANE ET AL. TABLEIH Upper-State Constants for u; of H2328 *Line Fit . usco Fit Constants (cm'l) +95% SCI (cm'l) Constants (cm’l) 1‘95: SCI (cm'l) A' 10.723545 0.00020 10.723909 0.00033 3' 9.221868 0.00022 9.221714 0.00028 c' 4.669494 0.00010 4.669558 0.00017 05 1.34963x10'3 0.00221110'3 1.35255x10‘3 0.0047x10'3 05K -2.ss989x10'3 0.0053x10’3 -2.56375x10’3 0.0086x10‘3 ”k 1.27254xio'3 0.0035210‘3' 1.27439x10'3 0.0048x10'3 65 0.27802xio’3 0.0020x10'3 0.28265x10‘3 0.0044x10'3 R6 -0.327134x10'3 0.00072x10‘3 -0.32817x10‘3 0.0015x10‘3 H5 0.6419x10‘6 0.012x10'6 0.6637x10'6 0.034x10‘6 85K -2.3862x10'6 0.0mm"6 -2.4350x10'5 0.089x10‘6 de 2.9812x10'6 0.061x10'6 3.03,,x10‘6 0.095x10'6 ‘Hk -1.2367x10'6 0.027x10'5 -1.2584x10‘6 0.038x10'6 Hg 0.4529x10'6 0.022xio'6 0.5249x10'6 0.084;:10'6 Hé 1.1438x10'6 0.024x10‘6 1.2029x10'6 0.0921(10'6 Hi0 0.3102x10‘6 0.014x10‘6 0.3373x10‘6 0.030x10'6 6° 1182.5753o 0.0018 Standard deviation of 387 112325 lines - 0.0017 cm'l. Standard deviation of 328 H2325 v2 upper state combination differences a 0.0019 cm'l. 4|’95! SCI (simultaneous confidence intervals). here ; 6 standard errors of the associated constant. *Recammended set of constants. where 0 = P1+ P; - 3(PiPfi + PiPi). Because H2S is an oblate asymmetric rotor molecule, rotatiOnal Hamiltonians were evaluated in the III ’ representation (a = x, b = y, c = z) with the molecule in the xy plane. The analysis was performed treating the 172 band as unperturbed. The number and selection of transitions observed for H23‘S and H233S was in- adequate to permit good separate analyses for those isotopic species; hence the H233S and H23‘S isotOpic species were fit simultaneously using isotopic mass adjustment terms in the energy expressions, as done by Willson et al. (12), by Moncur et al. (13, 14), and by Gillis and Edwards (9, 15, 16).; Frequencies were calculated via the 54 ,2 OF H28 369 TABLE IV Isotopic Constants from v: of H25 Constant (cm'l) +95: scx (cm-1) A -3 -3 ‘6 18.331x10 0.68x10 8 . —3 -3 Cb 0.132x10 0.33x10 0 -3 -3 tb 3.813x10 0.18x10 A -3 -3 a, 18.629x10 0.52x10 8 -3 -3 5a 0.397x10 0.31x10 c ‘-3 -3 5a 3.752x10 0.16x10 5” 0 580 o 0081 I 39 I m 5 0.02189 0.0039 Standard Deviation slumber of Average Isotope of Fit (cm‘ ) ileighted Lines Weight 02325 0.0017 387 2.882 ”2335 0.0035 15 0.923 "234s 0.0027 75 1.579 All . 0.0018 477 2.615 f95% SCI (simultaneous confidence intervals), here ; 4 standard errors of the associated constant. formula: F = yo + PAM + £"""(AM )2 + Z ()6! + Ea‘AM )(X‘). - 2. 0c." + Eb’AMX/i’ifiv (2) where a and b refer to the upper and ground states, respectively, AM = 32 - M, where M is the mass of the sulfur isotope involved in the particular transition and x‘ and (X ‘) are, respectively, the Hamiltonian parameters and the expectation values of the associated momentum operators in the Hamiltonian space of the 32 isotope. IV. ANALYSIS The analysis of 172 of HZS was straightforward and presented few difficulties for the following reasons: (1) The spectrum was well enough resolved that most observed lines were 55 370 LANE ET AL. TABLE V Assigned Transitions of u; of H28 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO J K- K+ J K- K* (CH-1) (CM-1) 7 3 4 8 6 3 1003.456 0.003 0.05 32 13 6 8 14 5 9 1025.427 ~0.016 0.05 32 13 0 13 14 l 14 1039.307 0.009 1.25 32 7 7 0 8 8 1 1040.125 0.009 0.05 32 7 6 1 8 7 2 1043.280 0.002 0.25 32 12 1 12 13 0 13 1049.843 0.004 0.25 32 6 5 2 7 6 1 1054.392 0.005 0.05 32 6 6 1 7 7 0 1055.193 0.007 0.05 32 11 0 11 12 1 12 1060.284 0.000 1.25 32 10 2 9 11 1 10 1067.382 -0.011 0.00 32 10 1 10 11 0 11 1070.631 0.000 1.25 32 9 2 7 10 3 8 1072.205 0.004 0.05 32 11 0 11 11 1 10 1076.184 -0.002 0.05 32 9 1 8 10 2 9 1076.930 0.006 1.25 32 9 0 9 10 1 10 1080.878 0.001 1.25 32 8 2 7 9 1 8 1086.360 0.001 5.00 32 10 1 10 10 2 9 1086.804 -0.003 0.05 32 7 2 5 8 3 6 1089.556 0.002 0.05 32 8 1 8 9 0 9 1091.021 0.001 5.00 32 7 1 6 8 2 7 1095.698 0.004 1.25 32 9 0 9 9 1 8 1097.332 “0.004 0.05 32 6 3 4 7 2 5 1098.271 ‘0.005 0.25 32 7 0 7 8 1 8 1101.059 0.001 5.00 32 6 2 5 7 1 6 1104.930 '0.002 1.25 32 5 2 3 6 3 4 1105.720 0.002 0.25 32 8 1 8 8 2 7 1107.759‘ '0.013 0.00 32 6 1 6 7 0 7 1110.988 -0.001 5.00 32 5 1 4 6 2 5 1114.010 -0.002 1.25 32 12 4 9 12 5 8 1117.482 -0.007 0.25 32 3 2 1 4 3 2 1118.589 0.006 0.05 32 5 0 5 6 1 6 1120.811 0.002 5.00 32 4 1 3 5 2 4 1122.853 0.001 0.00 32 4 2 3 5 1 4 1123.231 -0.004 1.25 32 4 1 4 5 0 5 1130.519 '0.003 5.00 32 3 1 2 4 2 3 1131.019 '0.001 1.25 32 3 2 2 4 l 3 1132.845 0.001 0.05 32 2 1 1 3 2 2 1138.443 '0.001 0.05 32 3 0 3 4 1 4 1140.084 0.000 0.00 32 2 2 1 3 1 2 1144.264 -0.001 1.25 32 1 1 0 2 2 1 1147.354 -0.002 1.25 32 2 0 2 3 1 3 1149.403 0.002 1.25 32 2 1 2 3 0 3 1149.768 ‘0.002 5.00 32 1 0 1 2 l 2 1158.167 -0.001 5.00 32 3 0 3 3 1 2 1159.209 0.004 0.05 32 4 2 3 4 3 2 1159.484 '0.001 0.25 32 1 1 1 2 0 2 1159.947 -0.002 1.25 32 6 4 3 6 5 2 1162.426 0.006 0.05 32 7 3 4 7 4 3 1162.681 0.003 0.05 32 4 1 3 4 2 2 1162.782 0.001 0.05 32 6 5 2 6 6 1 1164.464 0.000 0.05 32 individual transitions. In addition there were few molecular contaminants. We ob- served only a few atmospheric water vapor lines in the high-frequency end of the spectrum. (2) All the strong lines were attributable to H232S because of the high natural abundance of 32$ (95%), compared to 33S (0.8%) and 34S (4.2%). (3) No perturbations with other bands were expected or observed. (4) The ground-state constants were already well known. (5) The known values for the ground-state constants and the 2172 upper-state constants permitted good initial estimates of the v2 upper-state constants by aver- aging corresponding ground-state constants and 2172 upper-state constants, e.g., 56 V2 0F H23 371 TABLE V—Continued UPPER LOWER OBSERVED OBS-CALC WEIGHT 150 J K“ K‘ J K“ K* (CM-l) (CH-1) 4 3 2 4 4 1 1165.170 '0.001 1.25 32 2 1 2 2 2 1 1166.032 0.000 1.25 32 5 2 3 5 3 2 1167.128 0.002 1.25 32 0 0 0 1 1 1 1167.481 '0.004 0.25 32 5 4 1 5 5 0 1170.509 0.000 0.25 32 6 3 3 6 4 2 1171.486 0.006 0.00 32 3 1 2 3 2 1 1172.070 ‘0.001 1.25 32 4 2 2 4 3 1 1174.012 0.001 0.25 32 7 4 3 7 5 2 1175.056 0.001 0.05 32 5 3 2 S 4 1 1175.084 -0.002 0.25 32 3 2 1 3 3 0 1175.157 -0.001 5.00 32 2 1 1 2 2 0 1176.466 '0.001 1.25 32 1 0 1 l 1 0 1177.089 -0.001 5.00 32 9 6 3 9 7 2 1178.082 ‘0.002 0.05 32 1 1 0 1 0 1 1188.771 -0.001 5.00 32 2 2 0 2 1 1 1191.543 0.000 1.25 32 3 3 0 3 2 1 1196.171 0.001 5.00 32 2 1 1 2 0 2 1196.819 -0.001 1.25 32 3 2 1 3 1 2 1197.494 0.000 5.00 32 1 1 1 0 0 0 1197.964 '0.001 5.00 32 4 3 1 4 2 2 1199.527 0.000 5.00 32 2 2 1 2 l 2 1201.024 0.001 5.00 32 4 4 0 4 3 1 1202.822 0.001 5.00 32 S 4 1 5 3 2 1203.448 0.001 5.00 32 3 3 1 3 2 2 1205.040 0.001 5.00 32 2 0 2 1 1 1 1205.776 0.000 5.00 32 2 1 2 1 0 1 1207.447 ‘0.001 5.00 32 3 1 2 3 0 3 1208.014 0.000 5.00 32 4 2 2 4 1 3 1208.518 -0.001 5.00 32 5 3 2 5 2 3 1209.080 0.000 5.00 32 3 2 2 3 1 3 1209.522 0.002 5.00 32 6 5 l 6 4 2 1209.597 0.000 5.00 32 4 4 1 4 3 2 1210.360 0.002 5.00 32 6 4 2 6 3 3 1210.426 0.000 1.25 32 5 5 0 5 4 1 1211.188 0.001 5.00 32 4 3 2 4 2 3 1212.414 0.000 5.00 32 7 5 2 7 4 3 1213.385 0.000 5.00 32 3 0 3 2 1 2 1215.963 -0.001 5.00 32 3 1 3 2 0 2 1216.294 -0.001 5.00 32 5 4 2 5 3 3 1216.436 0.003 5.00 32 5 5 1 5 4 2 1216.858 0.001 5.00 32 7 6 1 7 5 2 1217.986 0.000 5.00 32 8 6 2 8 5 3 1218.601 0.000 1.25 32 4 1 3 4 0 4 1218.944 -0.001 5.00 32 4 2 3 4 l 4 1219.275 0.000 5.00 32 2 2 1 1 1 0 1219.946 0.001 5.00 32 6 6 0 6 5 1 1220.590 0.002 0.25 32 5 2 3 5 l 4 1220.647 0.000 5.00 32 6 5 2 6 4 3 1221.675 0.001 5.00 32 5 3 3 5 2 4 1221.861 0.000 5.00 32 A '(010) g (1 /2)[A '(000) + A '(020)]. (3) Inserting the estimated constants into our program INTCALI, we predicted a spectrum which matched the observed spectrum well enough to enable us to assign transitions and weights to many lines. A-lso available for assigning transitions was our program LINESRT, which searches the spectrum for lines separated by fre- quency intervals equal to ground-state combination differences (GSCDS). The ground-state quantum numbers of the line pairs are determined by the matching GSCD, and the upper-state assignments are specified by quantum numbers consis- tent with the selection rules and constraints on J, K_, K+ for the band type being analyzed. This procedure requires a good set of GSCDS and improved as our set of combined GSCDS was refined. 57 372 LANE ET AL. TABLE V—Continued UPPER LOWER OBSERVED OBS-CALC WEIGHT 150 J K- K+ J K- K* (CM-1) (CM-1) 6 3 3 6 2 4 1221.992 -0.001 5.00 32 7 4 3 7 3 4 1222.931 0.000 5.00 32 8 5 3 8 4 4 1223.949 '0.001 1.25 32 3 1 2 2 2 1 1224.278 0.001 1.25 32 6 6 1 6 5 2 1224.331 -0.001 1.25 32 6 4 3 6 3 4 1225.159 0.001 5.00 32 4 0 4 3 1 3 1225.394 0.000 0.25 32 4 1 4 3 0 3 1225.442 0.001 1.25 32 9 6 3 9 5 4 1225.981 0.003 5.00 32 9 7 2 9 6 3 1226.395 -0.001 5.00 32 2 2 0 1 1 1 1227.593 0.000 5.00 32 7 6 2 7 5 3 1228.131 -0.003 5.00 32 5 1 4 5 0 5 1229.272 0.001 5.00 32 5 2 4 5 1 5 1229.336 0.006 1.25 32 3- 2 2 2 1 1 1229.845 0.000 5.00 32 7 7 0 7 6 1 1230.330 -0.001 5.00 32 6 2 4 6 1 5 1231.862 '0.001 5.00 32 6 3 4 6 2 5 1232.143 0.001 5.00 32 7 7 l 7 6 2 1232.523 -0.001 1.25 32 7 3 4 7 2 5 1234.434 '0.001 5.00 32 5 0 5 4 1 4 1234.578 0.001 0.25 32 7 4 4 7 3 5 1235.375 0.001 5.00 32 8 7 2 8 6 3 1235.704 -0.001 5.00 32 8 4 4 8 3 5 1236.651 0.000 1.25 32 4 1 3 3 2 2 1236.724 0.000 5.00 32 4 4 0 4 1 3 1237.324 '0.005 0.05 32 9 5 4 9 4 5 1238.236 0.000 5.00 32 4 2 3 3 1 2 1238.396 0.000 5.00 32 8 5 4 8 4 5 1239.130 0.001 5.00 32 9 8 1 9 7 2 1239.173 -0.002 0.25 32 6 2 5 6 1 6 1239.335 “0.003 0.25 32 8 8 0 8 7 1 1239.995 -0.001 0.25 32 9 7 3 9 6 4 1241.029 -0.005 1.25 32 8 8 1 8 7 2 1241.165 *0.002 5.00 32 4 2 2 3 3 1 1241.321 0.002 1.25 32 7 2 5 7 1 6 1242.500 0.000 5.00 32 7 3 5 7 2 6 1242.556 '0.001 0.25 32 3 3 l 2 2 0 1243.064 0.001 5.00 32 6 1 6 5 0 5 1243.614 -0.001 5.00 32 9 8 2 9 7 3 1244.187 0.003 0.05 32 5 5 0 5 2 3 1245.181 0.000 0.25 32 8 3 S 8 2 6 1245.844 0.000 5.00 32 8 4 5 8 3 6 1246.075 '0.001 5.00 32 5 1 4 4 2 3 1247.196 0.000 5.00 32 5 2 4 4 1 3 1247.535 0.001 5.00 32 3 3 0 2 2 1 1248.378 0.001 5.00 32 10 8 3 10 7 4 1248.608 '0.001 1.25 32 10 7 4 10 6 5 1248.905 0.002 1.25 32 9 4 5 9 3 6 1249.156 -0.001 1.25 32 7 1 6 7 0 7 1249.221 0.002 5.00 32 Keeping the ground-state constants fixed, a least-squares fit of the assigned lines produced revised upper-state constants using our program ISPCFIT, a single band fitting program. These revised upper-state constants were used to predict the spec- trum again, allowing more assignments, a new fit, etc. This cycle was repeated several times and we employed two internal checks on the assignments obtained: (1) Both GSCDS and USCDs (upper-state combination differences) were formed from the assigned lines using our program CDFORM. Repeated formations of the same combination difference via different levels were grouped together for the purpose of averaging. This procedure helped to detect bad assignments by as- sociating together lines involving the same upper-state energy levels or the same 58 V2 OF H23 373 TABLE V—Continued UPPER LOWER OBSERVED OBS-CALC WEIGHT 150 J K- K+ J x— K+ (CM-11 (CM-1) 9 9 0 9 8 1 1249.434 -0.002 0.25 32 9 5 S 9 4 6 1249.898 -o.001 1.25 32 10 5 5 10 4 6 1252.128 0.004 0.05 32 7 0 7 6 1 6 1252.520 -0.001 5.00 32 8 3 6 8 2 7 1252.872 -0 002 5.00 32 10 9 2 10 8 3 1253.320 0.004 0.25 32 4 3 2 3 2 1 1253.465 0.001 5.00 32 10 6 5 10 5 6 1254.094 0.002 5.00 32 3 2 1 2 1 2 1254.253 0.000 5.00 32 9 3 6 9 2 7 1256.730 0.000 1.25 32 5 3 2 4 4 1 1256.763 0.001 0.05 32 5 2 3 4 3 2 1256.897 0.000 5.00 32 6 1 S 5 2 4 1257.009 0.001 1.25 32 6 2 5 5 1 4 1257.066 0.000 5.00 32 8 2 7 8 1 8 1258.967 0.001 5.00 32 10 4 6 10 3 7 1260.706 -0.001 1.25 32 10 5 6 10 4 7 1260.907 0.002 5.00 32 - 8- 1 8 7 o 7 1261.296 -o.001 5.00 32 5 3 3 4 2 2 1261.791 0.001 5.00 32 9 2 7 9 1 8 1263.042 0.000 5.00 32 3 3 1 2 0 2 1263.414 -0.001 1.25 32 11 5 6 11 4 7 1264.615 0.001 1.25 32 11 6 6 11 5 7 1265.231 0.004 0.05 32 7 1 6 6 2 5 1266.589 0.003 5.00 32 4 4 1 3 3 0 1266.934 0.001 5.00 32 10 4 7 10 3 8 1267.347 —0.003 5.00 32 9 1 8 9 0 9 1268.576 0.001 5.00 32 6 2 4 5 3 3 1269.065 0.000 5.00 32 9 0 9 8 1 8 1269.943 0.000 5.00 32 4 4 o 3 3 1 1270.130 0.001 5.00 32 6 3 4 5 2 3 1270.402- 0.001 5.00 32 6 4 2 5 5 1 1270.834 -o.003 0.05 32 11 4 7 11 3 8 1271.777 0.001 1.25 32 11 5 7 11 4 8 1271.830 0.003 0.25 32 10 3 8 10 2 9 1273.059 0.000 5.00 32 4 3 1 3 2 2 1273.470 0.000 5.00 32 6 3 3 5 4 2 1275.803 -0.002 5.00 32 8 2 7 7 1 6 1276.022 0.000 5.00 32 12 6 7 12 5 8 1276.435 0.006 1.25 32 11 3 8 11 2 9 1277.740 0.000 5.00 32 10 2 9 10 1 10 1278.051 0.002 5.00 32 5 4 2 4 3 1 1278.178 0.000 5.00 32 10 1 10 9 0 9 1278.457 -0.001 5.00 32 7 2 5 6 3 4 1279.705 0.000 5.00 32 7 3 5 6 2 4 1279.993 0.001 5.00 32 12 5 8 12 4 9 1282.567 -o.002 1.25 32 11 2 9 11 1 10 1282.921 -0.002 5.00 32 7 5 2 6 6 1 1284.048 0.004 0.05 32 7 5 2 7 2 5 1285.131 -0.011 0.25 32 4 2 2 3 1 3 1285,193 -0.001 1.25 32 ground-state energy levels, thus allowing anomalies to be easily recognized. The GSCDS formed from the (010) band were also compared with the corresponding weighted averaged GSCDS already available from the (020), (100), and (001) line assignments of Gillis and Edwards (9), the ( l 10) and (01 1) line assignments of Snyder and Edwards (17), and the (210) and (1 1 1) line assignments of Edwards, Moncur, and Snyder (18). Such comparisons, using our program CDCOMPARE, also aided in identifying any bad GSCDS formed from incorrectly assigned lines. (2) Our program USEN grouped together lines involving transitions to the same upper-state energy level. Using the ground-state constants from previous anal- yses to determine ground-state energy levels, upper-state energy levels were calcu- lated by adding the appropriate observed transition frequency to each ground-state 59 374 LANE ET AL. TABLE V—Cominued UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO J K- K+ J K- K‘ (CM'l) (CM-1) 9 1 8 8 2 7 1285.327 0.000 5.00 32 6 4 3 5 3 2 1286.566 0.000 5.00 32 11 0 11 10 1 10 1286.840 -0.002 5.00 32 11 1 10 11 O 11 1287.390 0.002 5.00 32 12 4 9 12 3 10 1287.961 '0.002 1.25 32 4 4 1 3 1 2 1289.271 0.002 5.00 32 4 3 2 3 0 3 1289.408 0.000 5.00 32 8 2 6 7 3 5 1289.835 -0.001 1.25 32 8 3 6 7 2 5 1289.892 0.000 5.00 32 7 3 4 6 4 3 1290.545 '0.001 5.00 32 5 5 1 4 4 0 1291.162 0.001 5.00 32 12 3 10 12 2 11 1292.636 -0.001 5.00 32 5 5 0 4 4 1 1292.864 0.001 5.00 32 7 4 3 6 5 2 1292.922 '0.004 .0.05 32 5 4 l 4 3 2 1293.219 0.000 5.00 32 7 4 4 6 3 3 1294.381 0.000 5.00 32 10 2 9 9 1 8 1294.509 0.001 5.00 32 12 1 12 11 0 11 1295.091 '0.002 5.00 32 12 2 11 12 1 12 1296.599 0.004 5.00 32 13 3 10 13 2 11 1298.014 0.001 1.25 32 9 2 7 8 3 6 1299.760 0.002 5.00 32 8 3 5 7 4 4 1302.463 "0.001 5.00 32 13 0 13 12 1 12 1303.210 ‘0.002 5.00 32 8 4 5 7 3 4 1303.494 0.000 5.00 32 11 1 10 10 2 1303.565 0.001 5.00 32 6 5 2 5 4 1 1303.702 0.000 5.00 32 5 3 2 4 2 3 1304.005 0.000 5.00 32 13 1 12 13 0 13 1305.676 0.005 1.25 32 14 4 11 14 3 12 1307.902 0.005 0.25 32 8 5 3 7 6 2 1308.172 0.001 1.25 32 10 3 8 9 2 7 1309.542 -0.001 5.00 32 8 4 4 7 5 3 1310.979 0.000 5.00 32 14 1 14 13 0 13 1311.196 '0.001 5.00 32 14 3 12 14 2 13 1311.627 '0.001 1.25 32 12 2 11 11 1 10 1312.498 0.001 5.00 32 7 5 3 6 4 2 1312.590 0.000 5.00 32 5 4 2 4 l 3 1312.686 0.001 5.00 32 9 3 6 8 4 5 1313.261 -0.001 5.00 32 9 4 6 8 3 5 1313.501 -0.001 5.00 32 6 5 1 5 4 2 1313.921 0.000 5.00 32 14 2 13 14 1 14 1314.623 0.005 0.25 32 6 6 1 5 5 0 1315.538 -0.001 5.00 32 6 6 0 5 5 1 1316.370 “0.001 5.00 32 5 2 3 4 1 4 1316.687 0.000 5.00 32 5 5 1 4 2 2 1317.626 '0.002 5.00 32 5 3 3 4 0 4 1317.954 0.001 1.25 32 15 0 15 14 1 14 1319.049 0.000 1.25 32 11 2 9 10 3 8 1319.197 -0.001 5.00 32 8 5 4 7 4 3 1319.777 0.001 5.00 32 15 2 13 15 1 14 1320.912 0.003 0.05 32 energy level. Upper states were then checked for inconsistencies, which would 1n- dicate a poorly measured or misassigned line. After bad assignments had been eliminated and the lines were properly weighted to reflect the precision of the frequency measurements relative to the previous in- frared band measurements (9, 15, 16), new GSCDS and USCDs were formed from the (010) observed frequencies. These GSCDS were combined with the previous set of combined GSCDS to produce our final set of weighted averaged GSCDS including data from the infrared bands (010), (020), (100), (001), (l 10), (01 l), (210), and (1 l 1). Slightly revised ground-state constants were Obtained by using our program ICDFIT to fit the combined GSCDS simultaneously with the 39 H232S microwave 60 V2 OF H28 375 TABLE V—Continued UPPER LOWER OBSERVED OBS'CALC WEIGHT ISO J K- K+ J K- K+ (CM-1) (CM-1) 13 1 12 12 2 11 1321.308 0.001 5.00 32 9 6 3 8 7 2 1321.893 0.002 0.25 32 6 4 2 5 3 3 1322.549 0.000 5.00 32 10 3 7 9 4 6 1323.661 -0.001 0.25 32 10 4 7 9 3 6 1323.713 ‘0.002 5.00 32 9 4 5 8 5 4 1324.920 -0.002 5.00 32 16 1 16 15 0 15 1326.767 0.000 1.25 32 9 5 5 8 4 4 1327.864 0.000 5.00 32 12 3 10 11 2 9 1328.728 ‘0.003 5.00 32 7 6 2 6 5 1 1329.616 0.001 5.00 32 14 2 13 13 1 12 1329.997 0.003 5.00 32 11 3 8 10 4 7 1333.872 0.000 5.00 32 17 0 17 16 1 16 1334.355 0.005 0.25 32 7 6 1 6 5 2 1335.857 0.000 5.00 32 6 3 3 5 2 4 1336.649 0.003 0.25 32 10 4 6 9 5 5 1336.691 ‘0.007 0.05 32 10 5 6 9 4 5' 1337.511 0.000 5.00 32 6 S 2 5 2 3 1337.698 0.001 5.00 32 13 2 11 12 3 10 1338.139 '0.003 5.00 32 15 1 14 14 2 13 1338.555 '0.006 0.05 32 8 6 3 7 5 2 1339.579 0.000 5.00 32 7 7 1 6 6 0 1340.020 -0.002 5.00 32 6 4 3 5 1 4 1340.088 0.001 5.00 32 7 7 0 6 6 1 1340.406 '0.002 5.00 32 7 5 2 6 4 3 1341.254 0.001 5.00 32 12 4 9 11 3 8 1343.943 -0.003 5.00 32 10 5 5 9 6 4 1346.485 ~0.004 0.05 32 9 6 4 8 5 3 1346.636 0.002 5.00 32 16 2 15 15 1 14 1347.014 0.006 0.05 32 6 2 4 5 1 5 1347.115 0.002 0.25 32 6 3 4 5 0 5 1347.403 -. 0.002 0.25 32 11 4 7 10 5 6 1347.637 '0.001 5.00 32 11 5 7 10 4 6 1347.846 0.001 1.25 32 6 6 1 5 3 2 1348.479 0.001 5.00 32 10. 6 5 9 5 4 1353.505 0.003 5.00 32 13 4 10 12 3 9 1353.885 -0.002 0.25 32 8 7 2 7 6 1 1355.509 70.002 5.00 32 7 4 3 6 3 4 1355.664 -0.001 5.00 32 15 2 13 14 3 12 1356.603 '0.004 0.25 32 12 4 8 11 5 7 1358.250 0.001 0.05 32 12 5 8 11 4 7 1358.299 "0.001 1.25 32 8 7 1 7 6 2 1358.974 -0.001 5.00 32 11 5 6 10 6 5 1359.841 0.001 5.00 32 11 7 4 10 8 3 1360.357 0.000 0.05 32 8 6 2 7 5 3 1360.641 0.001 5 00 32 11 6 6 10 5 5 1362.158 0.005 1 25 32 7 5 3 6 2 4 1363.104 0.001 1.25 32 14 4 11 13 3 10 1363.701 '0.003 1.25 32 8 8 1 7 7 0 1364.600 '0.001 5.00 32 8 8 0 7 7 1 1364.775 0.000 5.00 32 lines of Helminger, Cook, and De Lucia (19). The microwave transitions were given a uniform weight of 1000 compared to an average weight of 5.136 for the infrared data. The results of the ground-state fit are reported in Table 11. Keeping our revised ground-state constants fixed, a fit of 387 H2323 lines was made. The upper-state constants determined in this fit are reported in Table III. A set of upper-state constants (with the exception of yo) was also determined from our (010) USCDs using ICDFIT, for comparison with the results of the line fit. Such a USCD fit does not depend on the ground-state constants and of course uses only (010) data. The results of this fit are included in Table III. The two sets of constants are in good agreement. Only the values for A’ and 5’, determined in the line fit fall outside the 95% simultaneous confidence interval of 61 376 LANE ET AL. TABLE V—Conrimted UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO J K- K+ J K- K+ (CM-1) (CM-1) 7 6 2 6 3 3 1364.986 *0.002 1.25 32 16 3 14 15 2 13 1365.647 '0.017 0.05 32 11 6 5 10 7 4 1366.384 '0.004 1.25 32 9 7 3 8 6 2 1367.106 ~0.001 5.00 32 6 6 0 5 3 3 1368.077 '0.006 0.05 32 7 3 4 6 2 5 1368.309 '0.001 5.00 32 13 4 9 12 5 8 1368.681 0.002 0.25 32 7 4 4 6 1 5 1369.300 -0.002 5.00 32 12 5 7 11 6 6 1371.543 0.002 0.25 32 12 6 7 11 5 6 1372.220 0.005 1.25 32 15 3 12 14 4 11 1373.393 -0.006 0.25 32 8 5 3 7 4 4 1373.845 -0.001 0.25 32 17 2 15 16 3 l4 1374.591 -0.016 0.05 32 10 7 4 9 6 3 1374.722 0.002 5.00 32 7 2 5 6 1 6 1376.908 0.002 1.25 32 7 3 5 6 0 6 1376.964 -0.001 0.25 32 14 5 10 13 4 9 1378.973 0.005 1.25 32 11 7 5 10 6 4 1380.707 0.005 0.25 32 9 7 2 8 6 3 1381.221 0.000 0.25 32 12 6 6 11 7 5 1382.175 *0.004 0.05 32 13 5 8 12 6 7 1382.590 0.004 1.25 32 9 8 1 8 7 2 1382.981 -0.001 5.00 32 8 6 3 7 3 4 1387.459 0.003 0.05 32 12 7 6 11 6 5 1387.847 0.010 0.25 32 8 4 4 7 3 5 1388.826 0.000 1.25 32 15 4 11 14 5 10 1389.127 0.009 0.05 32 9 9 1 8 8 0 1389.248 0.003 1.25 32 9 9 0 8 8 1 1389.326 0.003 5.00 32 8 5 4 7 2 5 1391.535 0.001 5.00 32 9 6 3 8 5 4 1391.632 0.001 5.00 32 17 3 14 16 4 l3 1392.449 0.019 0.01 32 10 8 3 9 7 2 1394.650 '0.002 1.25 32 8 7 2 7 4 3 1394.928 -0.001 5.00 32 13 6 7 12 7 6 1395.119 0.003 0.05 32 7 7 0 6 4 3 1397.620 0.003 0.05 32 7 6 1 6 3 4 1398.595 -0.001 0.05 32 8 3 5 7 2 6 1398.779 -0.001 1.25 32 8 4 S 7 1 6 1399.023 0.001 1.25 32 10 8 2 9 7 3 1403.254 '0.001 5.00 32 11 8 4 10 7 3 1403.603 0.004 1.25 32 8 3 6 7 0 7 1406.397 -0.003 1.25 32 10 9 2 9 8 1 1406.673 0.001 5.00 32 10 9 1 9 8 2 1407.549 0.000 5.00 32 9 5 4 8 4 5 1408.215 0.000 5.00 32 12 8 5 11 7 4 1409.432 0.008 0.25 32 10 7 3 9 6 4 1409.646 0.001 1.25 32 9 7 3 8 4 4 1413.737 0.001 1.25 32 10 10 1 9 9 0 1413.912 0.008 0.00 32 10 10 0 9 9 1 1413.943 0.005 0.00 32 9 6 4 8 3 5 1414.346 0.001 1.25 32 the corresponding constant from the USCD fit. Each set of constants exhibits the usual correlations between terms involving similar angular momentum operators. No unusually high correlations were observed, and both sets of constants had com- parable correlation matrices. We prefer the upper-state constants determined by the line fit because of the narrower simultaneous confidence intervals on the constants and the slightly superior fit they yield. An alternative choice would be to use weighted averages Of each constant. Since there were not enough H233S and H2348 lines to form sufficient GSCDS to fit the ground-state isotopic constants independently, the H2338 and H2348 lines were 62 V2 0F H23 377 TABLE V—Conlinued UPPER LOWER OBSERVED OBS-CALC WEIGHT 150 J K- K+ J K- K+ (CM-1} (CM-1) 9 4 5 8 3 6 1420.348 0.000 5.00 32 9 5 5 8 2 6 1421.141 0.001 5.00 32 11 9 3 10 8 2 1421.783 -0.001 5.00 32 8 7 1 7 4 4 1424.646 '0.005 0.05 32 10 6 4 9 5 5 1426.299 0.000 1.25 32 11 9 2 10 8 3 1426.599 '0.002 5.00 32 9 8 2 8 5 3 1427.473 '0.001 0.05 32 11 8 3 10 7 4 1428.581 ’0.005 1.25 32 9 3 6 8 2 7 1428.648 -0.001 1.25 32 9 4 6 8 1 7 1428.705 0.000 0.25 32 11 10 2 10 9 1 1432.001 0.004 1.25 32 11 10 1 10 9 2 1432.419 0.005 5.00 32 12 9 4 11 8 3 1432.685 0.004 1.25 32 9 2 7 8 1 8 1435.649 0.000 5.00 32 10 7 4 9 4 5 1438.145 0.001 5.00 32 10 5 5 9 4 6 1441.224 '0.002 1.25 32 10 8 3 9 5 4 1442.545 ‘0.001 1.25 32 11 7 4 10 6 5 1443.367 0.001 0.00 32 10 6 5 9 3 6 1443.390 0.001 0.25 32 12 10 3 11 9 2 1448.347 -0.003 1.25 32 12 9 3 11 8 4 1449.015 '0.011 0.05 32 10 4 6 9 3 7 1450.748 *0.002 1.25 32 12 10 2 11 9 3 1450.871 *0.005 1.25 32 10 5 6 9 2 7 1450.959 0.000 5.00 32 9 8 1 8 5 4 1452.721 ‘0.001 0.25 32 12 11 2 11 10 1 1457.208 0.006 0.05 32 12 11 1 11 10 2 1457.406 0.009 0.05 32 10 4 7 9 1 8 1458.191 0.001 0.05 32 9 7 2 8 4 5 1459.799 0.001 0.05 32 11 6 5 10 5 6 1460.911 ‘0.004 5.00 32 10 9 2 9 6 3 1462.142 '0.001 0.05 32 10 3 8 9 0 9 1464.711 0.000. 0.05 32 11 7 5 10 4 6 1465.973 0.002 0.25 32 11 5 6 10 4 7 1472.474 -0.001 1.25 32 11 6 6 10 3 7 1473.136 0.002 0.05 32 11 ‘4 7 10 3 8 1480.571 0.001 1.25 32 12 8 5 11 5 6 1489.252 0.001 0.25 32 12 9 4 11 6 5 1491.152 -0.002 0.05 32 12 6 6 11 5 7 1493.484 0.000 0.05 32 11 2 9 10 1 10 1493.574 -0.005 0.25 32 12 7 6 11 4 7 1495.282 0.004 0.25 32 11 11 0 10 10 1 1438.539 0.005 1.25 32 12 12 1 11 11 0 1463.029 -0.006 1.25 32 13 10 3 12 9 4 1471.103 -0.026* '0.25 32 13 11 2 12 10 3 1475.670 ~0.016 0.25 32 13 12 1 12 11 2 1482.379 0.000 0.25 32 14 11 3 13 10 4 1494.640 0.032' -0.05 32 7 5 2 7 4 3 1212.791 0.007 0.05 33 3 1 3 2 0 2 1215.705 0.000 0.05 33 4 1 4 3 0 3 1224.850 0.003 0.25 33 fit simultaneously using ISPCFIT. For these isotopes, only isotopic constants were varied, using linear mass adjustment terms for A’, B’, and C’ in the ground and upper states, and both linear and quadratic mass adjustment terms for the band center v0, as shown in Eq. (2). During this fit the ground-state and upper-state constants for H2328 were not varied. The results of this fit are reported in Table IV. A separate fit of the H2348 lines was also attempted. However, while the constants obtained were in reasonable agreement with the results Of the simultaneous isotopic fit, several were not statistically significant. We attribute this to the relatively low number Of assigned lines and the large number of constants to be determined. Therefore we report only the results of the simultaneous fit of H2338 and H2348. 63 378 LANE ET AL. TABLE V—Continued UPPER LOWER OBSERVED 585-CAEC WEIGHT 156 J K- K* J K- K+ (CM-1) (CM-1) 5 0 5 4 1 4 1233.987 0.011 0.05 33 4 2 3 3 1 2 1237.772 0.000 5.00 33 5 1 4 4 2 3 1246.599 0.009 0.05 33 7 0 7 6 1 6 1251.908 0.002 0.05 33 6 2 5 5 1 4 1256.454 0.009 0.25 33 4 4 1 3 3 0 1266.226 '0.001 0.05 33 9 0 9 8 l 8 1269.318 0.003 0.05 33 6 3 4 5 2 3 1269.750 0.005 1.25 33 5 5 0 4 4 1 1292.151 '0.001 5.00 33 6 6 1 5 5 0 1314.752 '0.007 1.25 33 6 5 2 5 4 1 1302.911 '0.008 0.25 33 9 8 1 8 7 2 1382.173 0.006 0.25 33 5 0 5 6 1 6 1119.834 “0.003 0.05 34 4 1 4 5 0 5 1129.530 '0.004 0.25 34 2 1 2 3 0 3 1148.733 '0.009 0.05 34 l 1 0 l 0 1 1187.667 '0.001 1.25 34 3 3 0 3 2 1 1194.917 0.001 0.25 34 3 2 1 3 1 2 1196.418 0.000 1.25 34 2 2 1 2 1 2 1199.856 -0.004 1.25 34 5 4 1 5 3 2 1202.205 0.002 5.00 34 2 1 2 1 0 1 1206.310 -0.004 0.05 34 3 1 2 3 0 3 1206.942 0.005 1.25 34 3 0 3 2 1 2 1214.843 -0.001 1.25 34 5 4 2 5 3 3 1215.201 0.005 0.05 34 4 1 3 4 0 4 1217.826 ‘0.003 0.25 34 4 2 3 4 1 4 1218.139 0.000 1.25 34 2 2 1 1 l 0 1218.752 0.000 5.00 34 5 2 3 5 1 4 1219.565 '0.005 1.25 34 3 2 2 2 1 1 1228.640 0.005 0.05 34 6 3 4 6 2 5 1230.994 -0.002 0.25 34 5 0 5 4 1 4 1233.419 0.000 5.00 34 7 4 4 7 3 5 1234.228 0.004 0.05 34 4 2 3 3 l 2 1237.190 '0.001 5.00 34 8 5 4 8 4 5 1237.961 0.000 0.05 34 6 2 S 6 1 6 1238.173 -0.001 0.05 34 3 3 1 2 2 0 1241.783 0.003 0.05 34 6 l 6 5 0 5 1242.446 0.003 0.05 34 5 2 4 4 1 3 1246.341 0.000 0.25 34 7 1 6 7 O 7 1248.047 0.009 1.25 34 7 0 7 6 1 6 1251.339 0.004 5.00 34 8 3 6 8 2 7 1251.692 -0.004 5.00 34 4 3 2 3 2 1 1252.157 0.000 0.25 34 6 1 5 S 2 4 1255.815 0.000' 0.25 34 6 2 5 5 1 4 1255.869 0.001 1.25 34 8 2 7 8 1 8 1257.774 0.007 0.05 34 8 1 8 7 0 7 1260.097 0.000 5.00 34 5 3 3 4 2 2 1260.485 0.003 0.05 34 7 1 6 6 2 5 1265.376 0.000 1.25 34 4 4 1 3 3 0 1265.564 0.000 5.00 34 6 2 4 5 3 3 1267.885 -0.002 0.25 34 Table V lists the observed frequencies, assignments, and deviations grouped by isotope. V. CONCLUSION Our analysis of the spectrum of u; of H2325 has led to a set of well-determined molecular constants, and very good agreement between observed and calculated frequencies. We have also assigned some lines due to H233S and H2345, but the number and quality of these lines is insufficient for an analysis of quality comparable to that for H2328. 64 ,2 OF 11.5 379 TABLE V—Continued UPPER LOWER OBSERVED OBS—CALC WEIGHT ISO J K- K+ J K- K+ (CM-1) (CM-1) 9 0 9 8 1 8 1268.730 0.000 1.25 34 4 4 0 3 3 1 1268.844 0.004 5.00 34 6 3 4 5 2 3 1269.131 -0.002 0.25 34 4 3 1 3 2 2 1272.346 0.007 0.05 34 8 2 7 7 1 6 1274.795 -0.001 5.00 34 10 2 9 10 1 10 1276.823 0.008 0.25 34 10 1 10 9 0 9 1277.229 -0.002 5.00 34 9 1 8 8 2 7 1284.085 -0.001 0.25 34 6 4 3 5 3 2 1285.131 0.003 0.25 34 11 0 11 10 1 10 1285.596 -0.005 0.25 34 11 1 10 11 0 11 1286.147 0.009 0.25 34 8 3 6 7 2 5 1288.632 -0.005 0.25 34 5 5 1 4 4 0 1289.715 -0.001 1.25 34 5 5 0 4 4 1 1291.483 -0.001 5.00 34 5 4 1 4 3 2 1292.056 0.001 5.00 34 12 1 12 11 0 11 1293.844 0.004 1.25 34 9 2 7 8 3 6 1298.490 -0.001 5.00 34 6 5 2 5 4 1 1302.179 ~0.001 0.05 34 11 1 10 10 2 9 1302.292 -0.001 0.05 34 9 3 6 8 4 5 1311.975 -0.003 0.05 34 6 6 1 5 5 0 1314.020 -0.003 5.00 34 6 6 0 S 5 1 1314.896 ~0.004 5.00 34 11 2 9 10 3 8 1317.893 -0.005 0.05 34 8 5 4 7 4 3 1318.229 0.005 0.05 34 10 3 7 9 4 6 1322.346 -0.007 0.05 34 10 4 7 9 3 6 1322.393 "0.008 0.05 34 7 6 2 6 5 1 1328.008 0.000 0.25 34 7 6 1 6 5 2 1334.510 ._ 0.000 5.00 34 8 6 3 7 5 2 1337.866 0.005 0.05 34 7 7 1 6 6 0 1338.434 0.000 0.25 34 7 7 0 6 6 1 1338.846 -0.001 5.00 34 7 5 2 6 4 3 1340.189 0.000 0.25 34 8‘ 7 2 7 6 1 1353.846 0.002 0.05 34 7 4 3 6 3 4 1354.578 -0.007 0.05 34 8 8 1 7 7 0 1362.942 0.004 5.00 34 9 7 2 8 6 3 1379.984 0.003 0.25 34 9 8 1 8 7 2 1381.400 0.005 1.25 34 *Not included in the fit. .AC3(bKDVVLE[X3h4EbrT We are grateful to the Scientific Gas Products, Incorporated, 513 Raritan Center, Edison, N. J. 08817, for providing us with the sample of electronic grade H25. Note added in proof L. Larrabee Strow, NASA/Goddard Space Flight Center, Greenbelt. Maryland 20771 has kindly sent us prepn'nts of two manuscripts on v; of H28: “Measurement and Analysis of the 12: Band of H25: Comparison among Several Reduced Forms of the Rotational Hamiltonian,“ and “Line Strength Measurements Using Diode Lasers: The 1’2 Band of H28." RECEIVED: May 24, 1982 REFERENCES W. W. COBLENZ, “Infra-Red Spectra," Washington, 1905. . A. H. ROLLEFSON, Phys. Rev. 34, 604-610 (1929). . W. ISCHKE, Z. Phys. 67, 106-126 (1930). . R. MECKE, Z. Phys. Chem. B 16, 421-437 (1932). -u u.hs:~ 65 380 LANE ET AL. 5. C. R. BAILEY, J. W. THOMPSON, AND J. B. HALE, J. Chem. Phys. 4, 625-631 (1936). 6. A. D. SPRAGUE AND H. H. NIELSEN, J. Chem. Phys. 5, 85-89 (1937). 7. H. C. ALLEN AND P. C. CRoss, J. Chem. Phys. 19, 140 (1951). 8. H. C. ALLEN AND E. K. PLYLER, J. Chem. Phys. 25, 1132-1136 (1956). 9. J. R. G1 ILus AND T. H. EDWARDS, J. Mol. Spectrosc. 85, 55-73 (1981). 10. W. B. 01.80 LSON, A. G. MAKI, AND W. J. LAFFERTY, J. Phys. Chem. Ref Data 10, 1065-1084 (1981). I 1. V. TYPKE, J.M01. Spectrosc. 63, 170-179 (1976). 12. P. D. W1 LLso,N N. K. MONCUR, ANDT. H. EDWARDS. J. Mol. Spectrosc 52, 196-208 ( 1974) 13. N. K. MO NCUR, P. D. WILLSON, ANDT. H. EDWARDS, J. Mol. Spectrosc 52,181— 195 (1974) 14. N. K. MO O,NCUR P. D. W1LLSON,ANDT. H. EDWARDS, J. Mol. Spectrosc 52,380-391 (1974) 15. J. R. GILLIS ANDT. H. EDWARDS, J. MOI. Spectrosc. 81, 373- 389 (1980). 16. J. R. G11Lus ANDT. H. EDWARDs, J Mol. Spectrosc. 85, 74-84 (1981). 17. L. E. SNY NYDER ANDT. H. EDWARDS, J. Mol. Spectrosc. 31, 347- 361 (1969). 18. T. H. EDWARDs, N. K MONCUR, AND L. E. SNYDER, J. Chem Phys. 46, 2139- 2142 (1967) 19. P. HE LEMiNOER, R. L. COOK, AND F. C. DE LUCIA, J. Chem. Phys. 56, 4581-4584 (1972). ASSIGNED TRANSITIONS OF \) APPENDIX B OFHS 2 2 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J Ka Kc (cm ) (cm ) 7 3 4 8 6 3 1003.456 0.004 0.05 32 13 0 13 14 1 14 1039.307 0.003 1.25 32 7 7 0 8 8 1 1040.125 0.006 0.05 32 -7 6 1 8 7 2 1043.280 0.003 0.25 32 12 1 12 13 O 13 1049.843 0.000 0.25 32 6 5 2 7 6 1 1054.392 0.005 0.05 32 6 6 1 7 7 0 1055.193 0.007 0.05 32 11 O 11 12 1 12 1060.284 -0.002 1.25 32 10 2 9 11 1 10 1067.382 -0.014 0.00 32 10 l 10 11 0 11 1070.631 -0.001 1.25 32 9 2 7 10 3 8 1072.205 0.003 0.05 32 11 O 11 11 1 10 1076.184 -0.002 0.05 32 9 1 8 10 2 9 1076.930 0.004 1.25 32 9 O 9 10 1 10 1080.878 0.001 1.25 32 8 2 7 9 1 8 1086.360 -0.001 5.00 32 10 1 10 10 2 9 1086.804 -0.003 0.05 32 7 2 5 8 3 6 1089.556 0.002 0.05 32 8 1 8 9 0 9 1091.021 0.001 5.00 32 7 l 6 8 2 7 1095.698 0.003 1.25 32 9 0 9 9 1 8 1097.332 -0.004 0.05 32 6 3 4 7 2 5 1098.271 0.004 0.25 32 7 0 7 8 1 8 1101.059 0.001 5.00 32 6 2 5 7 l 6 . 1104.930 ~0.002 1.25 32 5 2 3 6 3 4 1105.720 0.002 0.25 32 8 1 8 8 2 7 1107.759 -0.013 0.00 32 6 1 6 7 0 7 1110.988 -0.001 5.00 32 5 1 4 6 2 5 1114.010 -0.003 1.25 32 12 4 9 12 5 8 1117.482 -0.002 0.25 32 3 2 1 4 3 2 1118.589 0.006 0.05 32 5 O 5 6 1 6 1120.811 0.002 5.00 32 4 1 3 5 2 4 1122.853 0.001 0.00 32 4 2 3 5 1 4 1123.231 -0.005 1.25 32 4 l 4 5 0 5 1130.519 -0.003 5.00 32 3 1 2 4 2 3 1131.019 -0.001 1.25 32 3 2 2 4 1 3 1132.845 0.001 0.05 32 2 1 1 3 2 2 1138.443 0.000 0.05 32 3 0 3 4 1 4 1140.084 0.001 0.00 32 2 2 l 3 1 2 1144.264 -0.001 1.25 32 l 1 O 2 2 1 1147.354 -0.002 1.25 32 2 0 2 3 1 3 1149.403 0.003 1.25 32 2 1 2 3 0 3 1149.768 -0.001 5.00 32 1 O 1 2 1 2 1158.167 0.000 5.00 32 66 67 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.c J Ka Kc (cm ) (cm ) 3 0 3 3 l 2 1159.209 0.004 0.05 32 4 2 3 4 3 2 1159.484 -0.002 0.25 32 1 1 1 2 0 2 1159.947 -0.001 1.25 32 6 4 3 6 5 2 1162.426 0.006 0.05 32 7 3 4 7 4 3 1162.681 0.004 0.05 32 4 1 3 4 2 2 1162.782 0.001 0.05 32 6 5 2 6 6 1 1164.464 -0.001 0.05 32 4 3 2 4 4 1 1165.170 -0.002 1.25 32 2 1 2 2 2 1 1166.032 0.000 1.25 32 5 2 3 5 3 2 1167.128 0.003 1.25 32 0 0 0 1 1 1 1167.481 -0.003 0.25 32 5 4 1 5 5 0 1170.509 0.000 0.25 32 6 3 3 6 4 2 1171.486 0.007 0.00 32 3 1 2 3 2 1 1172.070 0.000 1.25 32 4 2 2 4 3 1 1174.012 0.002 0.25 32 7 4 3 7 5 2 1175.056 0.002 0.05 32 5 3 2 5 4 1 1175.084 -0.002 0.25 32 3 2 1 3 3 0 1175.157 -0.001 5.00 32 2 1 1 2 2 0 1176.466 0.000 1.25 32 1 0 1 l 1 0 1177.089 0.000 5.00 32 9 6 3 9 7 2 1178.082 -0.004 0.05 32 1 1 0 1 0 1 1188.771 0.000 5.00 32 2 2 0 2 1 1 1191.543 0.000 1.25 32 3 3 0 3 2 1 1196.171 0.000 5.00 32 2 1 l 2 0 2 1196.819 0.000 1.25 32 3 2 1 3 1 2 1197.494 0.000 5.00 32 l 1 1 0 0 0 1197.964 0.000 5.00 32 4 3 1 4 2 2 1199.527 0.000 5.00 32 2 2 l 2 1 2 1201.024 0.000 5.00 32 4 4 0 4 3 1 1202.822 0.000 5.00 32 5 4 1 5 3 2 1203.448 0.000 5.00 32 3 3 1 3 2 2 1205.040 0.000 5.00 32 2 0 2 1 1 1 1205.776 0.001 5.00 32 2 l 2 1 0 1 1207.447 0.000 5.00 32 3 1 2 3 0 3 1208.014 0.000 5.00 32 4 2 2 4 1 3 1208.518 0.000 5.00 32 5 3 2 5 2 3 1209.080 0.000 5.00 32 3 2 2 3 1 3 1209.522 0.002 5.00 32 6 5 1 6 4 2 1209.597 0.000 5.00 32 4 4 1 4 3 2 1210.360 0.001 5.00 32 6 4 2 6 3 3 1210.426 0.000 1.25 32 5 5 0 5 4 1 1211.188 0.001 5.00 32 4 3 2 4 2 3 1212.414 -0.001 5.00 32 7 5 2 7 4 3 1213.385 0.000 5.00 32 3 0 3 2 1 2 1215.963 0.000 5.00 32 3 1 3 2 0 2 1216.294 0.000 5.00 32 5 4 2 5 3 3 1216.436 0.002 5.00 32 5 5 l 5 4 2 1216.858 0.000 5.00 32 7 6 1 7 5 2 1217.986 0.001 5.00 32 68 LOWER UPPER, OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka KC J K.a KC (cm ) (cm ) 8 6 2 8 5‘ 3 1218.601 0.000 1.25 32 4 1 3 4 0 4 1218.944 -0.001 5.00 32 4 2 3 4 1 4 1219.275 0.000 5.00 32 2 2 1 1 1 0 1219.946 0.000 5.00 32 6 6 0 6 5 1 1220.590 0.003 0.25 32 5 2 3 5 1 4 1220.647 0.000 5.00 32 6 5 2 6 4 3 1221.675 0.001 5.00 32 5 3 3 5 2 4 1221.861 0.000 5.00 32 6 3 3 6 2 4 1221.992 0.000 5.00 32 7 4 3 7 3 4 1222.931 0.000 5.00 32 8 5 3 8 4 4 1223.949 -0.001 1.25 32 3 1 2 2 2 1 1224.278 0.001 1.25 32 6 6 1 6 5 2 1224.331 0.000 1.25 32 6 4 3 6 3 4 1225.159 0.000 5.00 32 4 0 4 3 1 3 1225.394 0.001 0.25 32 4 1 4 3 0 3 1225.442 0.001 1.25 32 9 6 3 9 5 4 1225.981 0.001 5.00 32 9 7 2 9 6 3 1226.395 -0.001 5.00 32 2 2 0 1 1 1 1227.593 0.000 5.00 32 7 6 2 7 5 3 1228.131 -0.002 5.00 32 5 1 4 5 0 5 1229.272 0.000 5.00 32 5 2 4 5 1 5 1229.336 0.005 1.25 32 3 2 2 2 1 1 1229.845 0.000 5.00 32 7 7 0 7 6 1 1230.330 0.001 5.00 32 6 2 4 6 1 5 1231.862 '0.001 5.00 32 6 3 4 6 2 5 1232.143 0.001 5.00 32 7 7 1 7 6 2 1232.523 0.001 1.25 32 7 3 4 7 2 5 1234.434 -0.001 5.00 32 5 0 5 4 1 4 1234.578 0.002 0.25 32 7 4 4 7 3 5 1235.375 0.000 5.00 32 8 7 2 8 6 3 1235.704 0.001 5.00 32 8 4 4 8 3 5 1236.651 0.001 1.25 32 4 1 3 3 2 2 1236.724 0.000 5.00 32 4 4 O 4 1 3 1237.324 -0.006 0.05 32 9 5 4 9 4 5 1238.236 0.000 5.00 32 4 2 3 3 1 2 1238.396 “0.001 5.00 32 8 5 4 8 4 5 1239.130 0.000 5.00 32 9 8 1 9 7 2 1239.173 -0.001 0.25 32 6 2 5 6 1 6 1239.335 -0.004 0.25 32 8 8 0 8 7 1 1239.995 0.001 0.25 32 9 7 3 9 6 4 1241.029 -0.004 1.25 32 8 8 1 8 7 2 1241.165 0.000 5.00 32 4 2 2 3 3 1 1241.321 0.003 1.25 32 7 2 5 7 1 6 1242.500 0.000 5.00 32 7 3 5 7 2 6 1242.556 -0.001 0.25 32 3 3 1 2 2 0 1243.064 0.000 5.00 32 6 1 6 5 0 5 1243.614 -0.001 5.00 32 9 8 2 9 7 3 1244.187 0.004 0.05 32 5 5 0 5 2 3 1245.181 -0.001 0.25 32 69 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka K.C J K.a K.C (cm ) (cm ) 8. 3 5 8 2 6 1245.844 0.000 5.00 32 8 4 5 8 3 6 1246.075 -0.001 5.00 32 5 1 4 4 2 3 1247.196 -0.001 5.00 32 5 2 4 4 l 3 1247.535 0.001 5.00 32 3 3 O 2 2 1 1248.378 0.000 5.00 32 10 8 3 10 7 4 1248.608 0.000 1.25 32 10 7 4 10 6 5 1248.905 0.001 1.25 32 9 4 5 9 3 6 1249.156 0.000 1.25 32 7 1 6 7 O 7 1249.221 0.001 5.00 324 9 9 O 9 8 1 1249.434 0.000 0.25 32 9 5 5 9 4 6 1249.898 -0.002 1.25 32 10 5 5 10 4 6 1252.128 0.005 0.05 32 7 O 7 6 l 6 1252.520 0.000 5.00 32 8 3 6 8 2 7 1252.872 -0.003 5.00 32 10 9 2 . 10 8 3 1253.320 0.004 0.25 32 4 3 2 3 2 1 1253.465 0.000 5.00 32 10 6 5 10 5 6 1254.094 0.000 5.00 32 3 2 1 2 1 2 1254.253 0.001 5.00 32 9 3 6 9 2 7 1256.730 0.000 1.25 32 5 3 2 4 4 1 1256.763 0.001 0.05 32 5 2 3 4 3 2 1256.897 0.000 5.00 32 6 1 5 5 2 4 1257.009 0.000 1.25 32 6 2 5 5 1 4 1257.066 -0.001 5.00 32 8 2 7 8 1 8 1258.967 0.000 5.00 32 10 4 6 10 3 7 1260.706 -0.001 1.25 32 10 5 6 10 4 7 1260.907 0.001 5.00 32 8 1 8 7 O 7 1261.296 -0.001 5.00 32 5 3 3 4 2 2 1261.791 0.001 5.00 32 9 2 7 9 1 8 1263.042 0.001 5.00 32 3 3 1 2 O 2 1263.414 -0.002 1.25 32 11 5 6 11 4 7 1264.615 0.001 1.25 32 11 6 6 11 5 7 1265.231 0.001 0.05 32 7 l 6 6 2 5 1266.589 0.002 5.00 32 4 4 1 3 3 0 1266.934 -0.001 5.00 32 10 4 7 10 3 8 1267.347 -0.002 5.00 32 9 1 8 9 O 9 1268.576 0.000 5.00 32 6 2 4 5 3 3 1269.065 0.000 5.00 32 9 0 9 8 1 8 1269.943 0.001 5.00 32 4 4 O 3 3 1 1270.130 0.000 5.00 32 6 3 4 5 2 3 1270.402 0.001 5.00 32 6 4 2 5 5 1 1270.834 -0.003 0.05 32 11 4 7 11 3 8 .1271.777 0.000 1.25 32 11 5 7 11 4 8 1271.830 0.002 0.25 32 IO 3 8 10 2 9 1273.059 0.000 5.00 32 4 3 1 3 2 2 1273.470 0.000 5.00 32 6 3 3 5 4 2 1275.803 -0.001 5.00 32 8 2 7 7 1 6 1276.022 -0.001 5.00 32 12 6 7 12 5 8 1276.435 0.000 1.25 32 ll 3 8 11 2 9 1277.740 0.000 5.00 32 7O UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J K.a KC (cm ) (cm ) 10 2 9 O 1 10 1278.051 0.001 5.00 32 5 4 2 4 3 1 1278.178 0.000 5.00 32 10 1 10 9 O 9 1278.457 0.000 5.00 32 7 2 5 6 3 4 1279.705 0.000 5.00 32 7 3 5 6 2 4 1279.993 0.001 5.00 32 12 5 8 12 4 9 1282.567 -0.005 1.25 32 11 2 9 11 1 10 1282.921 -0.00l 5.00 32 7 5 2 6 6 1 1284.048 0.004 0.05 32 7 5 2 7 2 5 1285.131 -0.011 0.25 32 4 2 2 3 1 3 1285.193 0.000 1.25 32 9 l 8 8 2 7 1285.327 -0.00l 5.00 32 6 4 3 5 3 2 1286.566 0.000 5.00 32 11 0 11 10 1 10 1286.840 0.000 5.00 32 11 1 10 11 O 11 1287.390 0.000 5.00 32 12 4 9 12 3 10 1287.961 -0.002 1.25 32 4 4 1 3 1 2 1289.271 0.001 5.00 32 4 3 2 3 0 3 1289.408 -0.001 5.00 32 8 2 6 7 3 5 1289.835 -0.00l 1.25 32 8 3 6 7 2 5 1289.892 0.000 5.00 32 7 3 4 6 4 3 1290.545 -0.00l 5.00 32 5 5 1 4 4 0 1291.162 0.000 5.00 32 12 3 10 12 2 11 1292.636 0.000 5.00 32 5 5 O 4 4 1 1292.864 0.000 5.00 32 7 4 3 6 5 2 1292.922 -0.004 0.05 32 5 4 1 4 3 2 1293.219 0.000 5.00 32 7 4 4 6 3 3 1294.381 -0.00l 5.00 32 10 2 9 9 1 8 1294.509 0.000 5.00 32 12 1 12 11 0 11 1295.091 0.000 5.00 32 12 2 11 12 1 12 1296.599 0.001 5.00 32 13 3 10 13 2 11 1298.014 -0.001 1.25 32 9 2 7 8 3 6 1299.760 0.002 5.00 32 8 3 5 7 4 4 1302.463 -0.001 5.00 32 13 O 13 12 1 12 1303.210 0.000 5.00 32 8 4 5 7 3 4 1303.494 0.000 ‘ 5.00 32 11 1 10 10 2 9 1303.565 0.000 5.00 32 6 5 2 5 4 1 1303.702 -0.001 5.00 32 5 3 2 4 2 3 1304.005 0.000 5.00 32 13 1 12 13 O 13 1305.676 0.000 1.25 32 14 4 11 14 3 12 1307.902 0.001 0.25 32 8 5 3 7 6 2 1308.172 0.001 1.25 32 10 3 8 9 2 7 1309.542 -0.00l 5.00 32 8 4 4 7 5 3 1310.979 0.001 5.00 32 14 1 14 13 O 13 1311.196 0.000 5.00 32 14 3 12 14 2 13 1311.627 -0.001 1.25 32 12 2 11 11 1 10 1312.498 0.000 5.00 32 7 5 3 6 4 2 1312.590 0.000 5.00 32 5 4 2 4 1 3 1312.686 0.000 5.00 32 9 3 6 8 4 5 1313.261 0.000 5.00 32 9 4 6 8 3 5 1313.501 0.000 5.00 32 71 UPPER LOWER. OBSERVED OBS-CALC ‘WEIGHT ‘ISO -1 -1 J K.a KC J Ka KC (cm ) (cm ) 6 5 1 5 4 2 1313.921 -0.001 5.00 32 4 2 13 4 1 14 1314.623 -0.00l 'O.25 32 6 6 1 5 5 0 1315.538 0.000 5.00 32 6 6 O 5 5 1 1316.370 -0.00l 5.00 32 5 2 3 4 1 4 1316.687 0.000 5.00 32 5 5 1 4 2 2 1317.626 -0.002 5.00 32 5 3 3 4 0 4 1317.954 0.000 1.25 32 15 O 15 14 1 14 1319.049 0.000 1.25 32 11 2 9 10 3 8 1319.197 0.001 5.00 32 8 5 4 7 4 3 1319.777 0.000 5.00 32 15 2 13 15 1 14 1320.912 0.002 0.05 32 13 1 12 12 2 11 1321.308 0.000 5.00 32 9 6 3 8 7 2 1321.893 0.000 0.25 32 6 4 2 5 3 3 1322.549 0.000 5.00 32 10 3 7 9 4 6 1323.661 0.001 0.25 32 10 4 7 9 3 6 1323.713 -0.001 5.00 32 9 4 5 8 5 4 1324.920 -0.001 5.00 32 16 1 16 5 O 15 1326.767 -0.00l 1.25 32 9 5 5 8 4 4 1327.864 0.000 5.00 32 12 3 10 11 2 9 1328.728 -0.001 5.00 32 7 6 2 6 5 1 1329.616 0.002 5.00 32 14 2 13 13 1 12 1329.997 0.000 5.00 32 11 3 8 10 4 7 1333.872 0.002 5.00 32 17 O 17 16 1 16 1334.355 0.002 0.25 32 7 6 1 6 5 2 1335.857 0.000 5.00 32 6 3 3 5 2 4 1336.649 0.003 0.25 32 10 4 6 9 5 5 1336.691 -0.005 0.05 32 10 5 6 9 4 5 1337.511 0.000 5.00 32 6 5 2 5 2 3 1337.698 0.001 5.00 32 13 2 11 12 3 10 1338.139 0.000 5.00 32 15 1 14 14 2 13 1338.555 -0.009 0.05 32 8 6 3 7 5 2 1339.579 0.000 5.00 32 7 7 1 6 6 0 1340.020 -0.00l 5.00 32 6 4 3 5 1 4 1340.088 0.000 5.00 32 7 7 O 6 6 1 1340.406 -0.001 5.00 32 7 5 2 6 4 3 1341.254 0.000 5.00 32 12 4 9 11 3 8 1343.943 0.000 5.00 32 10 5 5 9 6 4 1346.485 -0.002 0.05 32 9 6 4 8 5 3 1346.636 0.001 5.00 32 16 2 15 15 1 14 1347.014 0.002 0.05 32 6 2 4 5 1 5 1347.115 0.002 0.25 32 6 3 4 5 O 5 1347.403 0.002 0.25 32 11 4 7 10 5 6 1347.637. 0.000 5.00 32 11 5 7 10 4 6 1347.846 0.002 1.25 32 6 6 1 5 3 2 1348.479 0.002 5.00 32 10 6 5 9 5 4 1353.505 0.001 5.00 32 13 4 10 12 3 9 1353.885 0.002 0.25 32 8 7 2 7 6 1 1355.509 0.000 5.00 32 7 4 3 6 3 4 1355.664 0.000 5.00 32 72 UPPER LOWER OBSERVED _ OBS-CALC WEIGHT ISO -1 -1 J K.a K.C J K.a KC (cm ) (cm ) 15 2 13 14 3 12 1356.603 0.002 0.25 32 12 4 8 11 5 7 1358.250 0.002 0.05 32 12 5 8 11 4 7 1358.299 -0.001 1.25 32 8 7 1 7 6 2 1358.974 0.000 5.00 32 11 5 6 10 6 5 1359.841 0.002 5.00 32 11 7 4 10 8 3 1360.357 0.006 0.05 32 8 6 2 7 5 3 1360.641 0.000 5.00 32 11 6 6 10 5 5 1362.158 0.002 1.25 32 7 5 3 6 2 4 1363.104 0.001 1.25 32 14 4 11 13 3 10 1363.701 0.001 1.25 32 8 8 1 7 7 0 1364.600 0.000 5.00 32 8 8 0 7 7 1 1364.775 0.000 5.00 32 7 6 2 6 3 3 1364.986 -0.001 1.25 32 16 3 14 15 2 13 1365.647 -0.008 0.05 32 11 6 5 10 7 4 1366.384 0.000 1.25 32 9 7 3 8 6 2 1367.106 0.000 5.00 32 6 6 O 5 3 3 1368.077 -0.006 0.05 32 7 3 4 6 2 5 1368.309 -0.00l 5.00 32 13 4 9 12 5 8 1368.681 0.002 0.25 32 7 4 4 6 1 5 1369.300 -0.002 5.00 32 12 5 7 11 6 6 1371.543 0.001 0.25 32 12 6 7 11 5 6 1372.220 0.000 1.25 32 15 3 12 14 4 11 1373.393 -0.001 0.25 32 8 5 3 7 4 4 1373.845 -0.002 0.25 32 17 2 15 16 3 14 1374.591 -0.001 0.05 32 10 7 4 9 6 3 1374.722 0.000 5.00 32 7 2 5 6 1 6 1376.908 0.002 1.25 32 7 3 5 6 O 6 1376.964 -0.001 0.25 32 14 5 10 13 4 9 1378.973 0.001 1.25 32 11 7 5 10 6 4 1380.707 -0.001 0.25 32 9 7 2 8 6 3 1381.221 0.000 0.25 32 12 6 6 11 7 5 1382.175 0.000 0.05 32 13 5 8 12 6 7 1382.590 -0.002 1.25 32 9 8 l 8 7 2 1382.981 0.000 5.00 32 8 6 3 7 3 4 1387.459 0.003 0.05 32 12 7 6 11 6 5 1387.847 0.000 0.25 32 8 4 4 7 3 5 1388.826 0.001 1.25 32 15 4 11 14 5 10 1389.127 0.003 0.05 32 9 9 1 8 8 0 1389.248 0.000 1.25 32 9 9 O 8 8 1 1389.326 . 0.001 5.00 32 8 5 4 7 2 5 1391.535 0.001 5.00 32 9 6 3 8 5 4 1391.632 -0.001 5.00 32 10 8 3 9 7 2 1394.650 -0.001 1.25 32 8 7 2 7 4 3 1394.928 0.000 5.00 32 13 6 7 12 7 6 1395.119 0.001 0.05 32 7 7 0 6 4 3 1397.620 0.004 0.05 32 7 6 1 6 3 4 1398.595 0.000 0.05 32 8 3 5 7 2 6 1398.779 -0.00l 1.25 32 8 4 5 7 1 6 1399.023 0.001 1.25 32 73 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka KC J Ka K.C (cm ) (cm ) 10 8 2 9 7 3 1403.254 0.000 5.00 32 11 8 4 10 7 3 1403.603 0.000 1.25 32 8 3 6 7 O 7 1406.397 -0.003 1.25 32 10 9 2 9 8 1 1406.673 0.000 5.00 32 10 9 1 9 8 2 1407.549 0.000 5.00 32 9 5 4 8 4 5 1408.215 0.000 5.00 32 12 8 5 11 7 4 1409.432 -0.004 0.25 32 10 7 3 9 6 4 1409.646 0.001 1.25 32 9 7 3 8 4 4 1413.737 0.002 1.25 32 10 10 1 9 9 0 1413.912 0.002 0.00 32 10 10 O 9 9 1 1413.943 -0.002 0.00 32 9 6 4 8 3 5 1414.346 0.000 1.25 32 9 4 5 8 3 6 1420.348 0.000 5.00 32 9 5 5 8 2 6 1421.141 0.001 5.00 32 11 9 3 10 8 2 1421.783 0.000 5.00 32 8 7 1 7 4 4 1424.646 -0.004 0.05 32 10 6 4 9 5 5 1426.299 0.000 1.25 32 11 9 2 10 8 3 1426.599 0.001 5.00 32 9 8 2 8 5 3 1427.473 0.000 0.05 32 11 8 3 10 7 4 1428.581 0.000 1.25 32 9 3 6 8 2 7 1428.648 0.000 1.25 32 9 4 6 8 1 7 1428.705 0.001 0.25 32 11 10 2 10 9 1 1432.001 -0.00l 1.25 32 11 10 1 10 9 2 1432.419 0.000 5.00 32 12 9 4 11 8 3 1432.685 0.000 1.25 32 9 2 7 8 1 8 1435.649 0.001 5.00 32 10 7 4 9 4 5 1438.145 -0.00l 5.00 32 10 5 5 9 4 6 1441.224 -0.002 1.25 32 10 8 3 9 5 4 1442.545 0.000 1.25 32 11 7 4 10 6 5 1443.367 0.007 0.00 32 10 6 5 9 3 6 1443.390 -0.002 0.25 32 12 10 3 11 9 2 1448.347 -0.001 1.25 32 12 9 3 11 8 4 1449.015 0.004 0.05 32 10 4 6 9 3 7 1450.748 -0.001 1.25 32 12 10 2 11 9 3 1450.871 0.001 1.25 32 10 5 6 9 2 7 1450.959 0.000 5.00 32 9 8 1 8 5 4 1452.721 0.000 0.25 32 12 11 2 11 10 1 1457.208 -0.00l 0.00 32 12 11 1 11 10 2 1457.406 0.001 0.00 32 10 4 7 9 1 8 1458.191 0.003 0.05 32 9 7 2 8 4 5 1459.799 0.000 0.05 32 11 6 5 10 5 6 1460.911 -0.001 5.00 32 10 9 2 9 6 3 1462.142 -0.002 0.05 32 10 3 8 9 O 9 1464.711 0.002 0.05 32 11 7 5 10 4 6 1465.973 -0.003 0.25 32 ll 5 6 10 4 7 1472.474 -0.002 1.25 32 11 6 6 10 3 7 1473.136 -0.002 0.05 32 ll 4 7 10 3 8 1480.571 0.001 1.25 32 12 8 5 11 5 6 1489.252 -0.004 0.25 32 74 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J K.a KC (cm ) (cm ) 12 9 4 11 6 5 1491.152 -0.004 0.05 32 12 6 6 11 5 7 1493.484 0.003 0.05 32 11 2 9 10 1 10 1493.574 -0.002 0.25 32 12 7 6 11 4 7 1495.282 -0.003 0.25 32 11 11 0 10 10 1 1438.539 -0.002 1.25 32 12 12 1 11 11 0 1463.029 0.001 1.25 32 13 10 3 12 9‘ 4 1471.103 0.004 0.25 32 13 11 2 12 10 3 1475.670 -0.003 0.25 32 13 12 1 12 11 2 1482.379 0.000 0.25 32 7 5 2 7 4 3 1212.791 -0.004 0.05 33 3 1 3 2 0 2 1215.705 -0.003 0.05 33 4 1 4 3 O 3 1224.850 -0.003 0.25 33 5 O 5 4 1 4 1233.987 0.003 0.05 33 4 2 3 3 1 2 1237.772 0.000 5.00 33 5 1 4 4 2 3 1246.599 0.006 0.05 33 7 0 7 6 1 6 1251.908 -0.008 0.05 33 6 2 5 5 1 4 1256.454 0.001 0.25 33 4 4 1 3 3 0 1266.226 -0.002 0.05 33 9 0 9 8 1 8 1269.318 0.000 0.05 33 6 3 4 5 2 3 1269.750 0.001 1.25 33 5 5 O 4 4 1 1292.151 0.000 5.00 33 6 5 2 5 4 1 1302.911 -0.006 0.25 33 6 6 l 5 5 0 1314.752 0.000 1.25 33 9 8 1 8 7 2 1382.173 0.001 0.25 33 5 O 5 6 1 6 1119.834 -0.006 0.05 34 4 1 4 5 O 5 1129.530 -0.005 0.05 34 2 1 2 3 O 3 1148.733 -0.007 0.05 34 l 1 O 1 0 1 1187.667 0.001 0.25 34 3 3 O 3 2 1 1194.917 0.000 0.05 34 3 2 1 3 1 2 1196.418 0.001 0.25 34 2 2 1 2 1 2 1199.856 -0.004 0.25 34 5 4 l 5 3 2 1202.205 0.002 1.25 34 2 1 2 1 O 1 1206.310 -0.002 0.05 34 3 1 2 3 O 3 1206.942 0.006 0.05 34 3 O 3 2 1 2 1214.843 0.000 0.25 34 5 4 2 5 3 3 1215.201 0.000 0.05 34 4 1 3 4 O 4 1217.826 -0.003 0.05 34 4 2 3 4 1 4 1218.139 -0.00l 0.25 34 2 2 1 1 1 0 1218.752 0.000 5.00 34 5 2 3 5 l 4 1219.565 -0.004 1.25 34 3 2 2 2 1 1 1228.640 0.006 0.05 34 6 3 4 6 2 5 1230.994 -0.003 0.25 34 5 0 5 4 1 4 1233.419 ~0.001 1.25 34 7 4 4 7 3 5 1234.228 0.000 0.05 34 4 2 3 3 l 2 1237.190 -0.00l 5.00 34 8 5 4 8 4 5 1237.961 -0.008 0.05 34 6 2 5 6 1 6 1238.173 -0.001 0.05 34 3 3 1 2 2 0 1241.783 0.002 0.05 34 6 1 6 5 O 5 1242.446 0.002 0.05 34 75 UPPER LOWER, OBSERVED OBS-CALC ‘WEIGHI' ISO -1 -1 J Ka K.c J Ka KC (cm ) (cm ) 5 2 4 4 1 3 1246.341 0.000 0.25 34 7 1 6 7 0 7 1248.047 0.012 0.05 34 7 O 7 6 1 6 1251.339 0.003 1.25 34 8 3 6 8 2 7 1251.692 -0.002 1.25 34 4 3 2 3 2 1 1252.157 -0.001 . 0.25 34 6 1 5 5 2 4 1255.815 0.000 1.25 34 6 2 5 5 1 4 1255.869 0.001 1.25 34 8 1 8 7 0 7 1260.097 -0.001 ' 5.00 34 5 3 3 4 2 2 1260.485 0.005 0.05 34 7 1 6 6 2 5 1265.376 0.000 5.00 34 4 4 1 3 3 0 1265.564 -0.001 5.00 34 6 2 4 5 3 3 1267.885 0.001 0.25 34 9 0 9 8 1 8 1268.730 0.001 1.25 34 4 4 O 3 3 1 1268.844 0.002 5.00 34 6 3 4 5 2 3 1269.131 0.000 0.25 34 4 3 1 3 2 2 1272.346 0.007 0.05 34 8 2 7 7 1 6 1274.795 0.000 1.25 34 10 1 10 9 O 9 1277.229 -0.001 1.25 34 9 1 8 8 2 7 1284.085 0.001 0.05 34 6 4 3 5 3 2 1285.131 0.009 0.25 34 11 O 11 O 1 0 1285.596 -0.004 0.25 34 8 3 6 7 2 5 1288.632 -0.001 0.05 34 5 5 1 4 4 0 1289.715 0.001 1.25 34 5 5 0 4 4 1 1291.483 -0.001 5.00 34 5 4 1 4 3 2 1292.056 0.000 5.00 34 12 1 12 1 O 1 1293.844 0.003 0.25 34 9 2 7 8 3 6 1298.490 0.003 0.25 34 6 5 2 5 4 1 1302.179 0.005 0.05 34 9 3 6 8 4 5 1311.975 0.005 0.05 34 6 6 1 5 5 0 1314.020 0.001 5.00 34 6 6 O 5 5 1 1314.896 -0.002 5.00 34 10 3 7 9 4 6 1322.346 -0.001 0.05 34 10 4 7 9 3 6 1322.393 -0.00l 0.05 34 7 6 2 6 5 1 1328.008 0.011 0.05 34 7 6 1 6 5 2 1334.510 -0.001 5.00 34 7 7 1 6 6 0 1338.434 0.003 0.25 34 7 7 O 6 6 1 1338.846 0.001 5.00 34 7 5 2 6 4 3 1340.189 0.004 0.25 34 8 7 2 7 6 1 1353.846 0.015 0.05 34 7 4 3 6 3 4 1354.578 0.006 0.05 34 8 7 1 7 6 2 1357.501 -0.005 0.05 34 8 8 1 7 7 0 1362.942 0.000 5.00 34 9 7 2 8 6 3 1379.984 0.000 0.25 34 9 8 1 8 7 2 1381.400 0.000 1.25 34 APPENDIX C WEIGHTED AVERAGED GSCD'S OF H2323 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka KC J K.a K.c (cm ) (cm ) 2 2 O 0 O 0 58.361 -0.008 1.56 32 2 2 O 2 O 2 20.352 -0.001 5.25 32 2 1 1 1 1 1 36.051 0.001 5.16 32 2 2 1 1 0 1 41.415 0.000 9.81 32 2 O 2 0 0 0 38.017 0.001 2.26 32 2 1 2 1 1 0 18.922 0.000 13.24 32 3 3 O 1 1 0 98.019 0.003 4.58 32 3 3 O 2 1 2 79.095 0.001 7.50 32 3 3 O 3 1 2 22.339 0.003 22.13 32 3 2 1 1 O 1 93.621 -0.001 4.90 32 3 3 1 1 1 1 100.248 -0.002 0.85 32 3 2 1 2 2 1 52.206 -0.001 16.25 32 3 3 l 2 1 1 64.200 0.000 3.75 32 3 2 l 3 O 3 35.945 0.001 13.86 32 3 3 1 3 1 3 43.873 -0.002 1.39 32 3 1 2 1 1 0 75.682‘ 0.001 3.98 32 3 2 2 2 2 0 38.025 0.001 11.08 32 3 1 2 2 1 2 56.759 0.000 17.29 32 3 2 2 2 0 2 58.375 -0.001 2.90 32 3 0 3 1 O 1 57.677 -0.001 11.29 32 3 1 3 1 1 1 56.373 -0.002 7.78 32 3 0 3 2 2 1 16.261 -0.002 12.89 32 3 1 3 2 1 1 20.322 -0.003 12.05 32 4 4 O 2 2 0 138.433 0.000 0.40 32 4 4 0 2 O 2 158.778 -0.008 0.19 32 4 4 O 3 2 2 100.413 0.003 1.09 32 4 4 O 4 2 2 26.466 0.000 9.93 32 4 4 O 4 O 4 82.602 -0.028 0.00 32 4 3 1 2 1 1 131.509 0.001 0.44 32 4 4 1 2 2 1 140.495 -0.005 2.84 32 4 3 1 3 3 1 67.307 -0.001 9.87 32 4 4 1 3 2 1 88.294 0.001 5.61 32 4 3 1 3 1 3 111.183 0.000 0.62 32 4 4 1 3 O 3 124.237 0.000 2.78 32 4 3 1 4 1 3 34.508 0.000 7.58 32 4 4 1 4 2 3 47.242 -0.001 6.61 32 4 2 2 2 2 0 111.955 -0.012 0.55 32 4 2 2 2 O 2 132.322 0.002 0.06 32 4 3 2 2 1 2 135.668 -0.002 1.57 32 4 3 2 3 3 0 56.575 0.000 12.56 32 4 2 2 3 2 2 ' 73.943 0.000 10.05 32 4 3 2 3 1 2 78.912 0.001 14.31 32 76 77 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka K.c J K,a KC (cm ) (cm ) 4 2 2 4 0 4 56.162 -0.002 2.40 32 4 3 2 4 1 4 59.790 0.000 6.78 32 4 1 3 2 1 1 97.001 0.001 1.67 32 4 2 3 2 2 1 93.257 0.000 9.70 32 4 1 3 3 3 1 32.802 0.002 4.34 32 4 2 3 3 2 1 41.049 -0.001 16.83 32 4 1 3 3 1 3 76.675 0.000 2.68 32 4 2 3 3 0 3 76.993 -0.001 15.75 32 4 O 4 2 0 2 76.157 0.001 0.04 32 4 1 4 2 1 2 75.875 -0.005 3.17 32 4 0‘ 4 3 2 2 17.780 0.000 5.00 32 4 1 4 3 1 2 19.120 -0.001 8.61 32 5 5 0 3 3 0 179.285 -0.001 5.93 32 5 5 O 3 1 2 201.617 -0.004 0.44 32 5 5 0 4 3 2 122.714 0.004 2.50 32 5 5 O 5 3 2 32.940 0.001 8.31 32 5 4 1 3 2 1 169.967 -0.002 1.18 32 5 5 1 ' 3 3 1 180.764 0.000 0.85 32 5 4 1 3 0 3 205.913 0.000 0.89 32 5 4 1 4 4 1 81.677 0.001 12.05 32 5 5 1 4 3 1 ’113.454 -0.002 1.46 32 5 4 1 4 2 3 128.918 -0.001 7.68 32 5 5 1 4 1 3 147.961 -0.003‘ 0.05 32 5 4 1 5 2 3 33.994 0.000 12.05 32 5 5 1 5 3 3 51.710 -0.002 0.43 32 5 3 2 3 3 0 146.348 0.001 2.25 32 5 3 2 3 1 2 168.688 0.005 2.40 32 5 4 2 3 2 2 174.710 -0.004 0.33 32 5 4 2 4 4 0 74.304 0.000 7.86 32 5 3 2 4 3 2 89.771 -0.001 19.25 32 5 4 2 4 2 2 100.769 -0.001 6.06 32 5 3 2 4 1 4 149.560 -0.001 2.85 32 5 4 2 4 0 4 156.936 0.002 0.04 32 5 3 2 5 1 4 53.521 -0.001 10.68 32 5 4 2 5 2 4 60.846 0.005 1.78 32 5 3 2 6 1 6 35.807 0.013 0.02 32 5 2 3 3 2 1 135.975 0.000 2.90 32 5 3 3 3 3 1 129.051 -0.001 0.25 32 5 2 3 3 O 3 171.919 0.000 1.50 32 5 3 3 3 1 3 172.932 0.005 0.17 32 5 2 3 4 4 1 47.684 0.002 4.78 32 5 3 3 4 3 1 61.743 -0.001 10.06 32 5 2 3 4 2 3 94.926 0.001 16.86 32 5 3 3 4 1 3 96.252 0.000 12.07 32 5 2 3 5 O 5 77.001 0.001 2.45 32 5 3 3 5 1 5 78.050 0.002 0.60 32 5 1 4 3 1 2 115.162 0.001 8.56 32 5 2 4 3 2 2 113.871 -0.001 3.28 32 5 1 4 4 3 2 36.250 0.000 15.45 32 78 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka K.c J K.a K.C (cm ) (cm ) 5 2 4 4 2 2 39.929 0.000 8.20 32 5 1 4 4 1 4 96.040 0.000 9.87 32 5 2 4 4 0 4 96.094 0.001 2.29 32 5 0 5 3 O 3 94.919 0.000 3.65 32 5 0 5 4 2 3 17.924 -0.001 9.25 32 5 1 5 4 1 3 18.199 -0.005 2.04 32 6 6 0 4 4 0 220.048 0.004 0.46 32 6 6 0 5 4 2 145.742 0.002 0.46 32 6 6 0 6 4 2 41.421 0.006 0.02 32 6 5 1 4 3 1 209.224 -0.015 0.12 32 6 6 1 4 4 1 220.917 0.003 0.41 32 6 5 1 4 1 3 243.736 -0.011 0.06 32 6 6 1 4 2 3 268.164 0.007 0.02 32 6 5 1 5 5 1 95.785 0.002 1.14 32 6 6 1 5 4 1 139.239 0.001 3.23 32 6 5 1 5 3 3 147.490 -0.005 1.78 32 6 6 1 5 2 3 173.234 0.002 0.10 32 6 5 1 6 3 3 35.370 -0.003 4.56 32 6 6 1 6 4 3 57.210 0.000 1.57 32 6 6 1 7 2 5 1.083 -0.015 0.08 32 6 4 2 4 4 0 178.629 0.000 2.09 32 6 4 2 4 2 2 205.096 0.001 0.16 32 6 5 2 4 3 2 213.920 0.002 1.95 32 6 5 2 4 1 4 273.708 0.001 0.02 32 6 5 2 5 5 0 91.209 0.002 8.75 32 6 4 2 5 4 2 104.324 ~0.001 9.36 32 6 5 2 5 3 2 124.147 0.001 4.58 32 6 4 2 5 2 4 165.170 0.004 0.17 32 6 5 2 5 1 4 177.669 0.001 0.35 32 6 4 2 6 2 4 50.514 0.001 2.90 32 6 5 2 6 3 4 62.737 -0.001 3.56 32 6 3 3 4 3 1 173.862 -0.005 0.27 32 6 4 3 4 4 1 163.708 0.003 1.74 32 6 3 3 4 1 3 208.373 -0.002 0.06 32 6 4 3 4 2 3 210.949 0.001 4.62 32 6 3 3 5 5 1 60.415 0.004 0.36 32 6 4 3 5 4 1 82.030 0.001 12.24 32 6 3 3 5 3 3 112.122 -0.001 5.30 32 6 4 3 5 2 3 116.024 0.001 16.19 32 6 4 3 5 0 5 193.025 0.002 0.36 32 6 3 3 6 1 5 74.919 -0.002 5.13 32 6 4 3 6 2 5 77.764 0.000 6.28 32 6 2 4 4 2 2 154.583 0.001 0.96 32 6 3 4 4 3 2 151.183 0.004 2.82 32 6 2 4 4 O 4 210.743 -0.003 0.12 32 6 3 4 4 1 4 210.968 -0.001 1.10 32 6 2 4 5 4 2 53.811 -0.001 5.59 32 6 3 4 5 3 2 61.407 0.000 10.43 32 6 2 4 5 2 4 114.657 0.004 0.87 32 79 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO ~ -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 6 3 4 5 1 4 114.928 -0.001 8.32 32 6 2 4 6 0 6 96.971 -0.002 0.48 32 6 3 4 6 1 6 97.203 0.002 2.37 32 6 1 5 4 1 3 133.459 0.005 0.17 32 6 2 5 4 2 3 133.185 0.001 3.37 32 6 1 5 5 3 3 37.203 0.001 5.61 32 6 2 5 5 2 3 38.260 0.001 8.56 32 6 1 5 5 1 5 115.253 0.003 0.60 32 6 2 5 5 0 5 115.259 0.000 4.93 32 6 1 6 4 1 4 113.765 -0.002 3.06 32 6 1 6 5 1 4 17.727 -0.001 1.38 32 7 7 0 5 5 0 260.344 -0.008 0.27 32 7 7 0 5 3 2 293.287 -0.004 0.16 32 7 7 0 6 5 2 169.131 -0.014 0.27 32 7 7 0 7 5 2 51.264 -0.010 0.53 32 7 6 1 5 4 1 249.318 0.002 0.28 32 7 7 1 5 5 1 260.799 -0.003 0.08 32 7 6 1 5 2 3 283.306 -0.004 0.10 32 7 7 1 5 3 3 312.538 0.024 0.00 32 7 6 1 6 6 1 110.077 -0.001 6.34 32 7 6 1 6 4 3 167.292 0.005 2.62 32 7 6 1 7 4 3 39.421 0.003 7.80 32 7 7 1 7 3 5 141.397 0.012 0.05 32 7 5 2 5 5 0 209.083 0.004 4.72 32 7 5 2 5 3 2 242.017 -0.001 0.89 32 7 6 2 5 4 2 253.238 -0.001 0.10 32 7 6 2 6 6 0 107.497 -0.001 2.12 32 7 5 2 6 5 2 117.872 0.000 6.84 32 7 6 2 6 4 2 148.915 0.001 0.67 32 7 5 2 6 3 4 180.613 0.003 4.58 32 7 6 2 6 2 4 199.420 -0.007 0.02 32 7 5 2 7 3 4 47.878 0.001 5.15 32 7 6 2 7 4 4 65.673 -0.003 0.67 32 7 4 3 5 4 1 209.900 0.002 1.68 32 7 5 3 5 5 1 197.272 0.008 0.10 32 7 4 3 5 2 3 243.892 0.000 1.85 32 7 5 3 5 3 3 248.984 0.008 0.34 32 7 4 3 5 0 5 320.899 0.007 0.03 32 7 4 3 6 6 1 70.655 -0.005 0.76 32 7 5 3 6 5 1 101.484 0.003 6.52 32 7 4 3 6 4 3 127.869 0.000 9.07 32 7 5 3 6 3 3 136.854 0.001 3.14 32 7 4 3 6 2 5 205.630 -0.003 0.62 32 7 5 3 6 1 5 211.777 0.003 0.04 32 7 4 3 7 2 5 71.757 -0.001 7.37 32 7 5 3 7 3 5 77.847 0.001 2.00 32 7 3 4 5 3 2 194.139 -0.002 4.62 32 7 4 4 5 4 2 187.552 -0.011 0.33 32 7 3 4 5 1 4 247.657 -0.005 0.71 32 80 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J Ka KC (cm ) (cm ) 7 4 4 S 2 4 248.407 0.003 0.16 32 7 3 4 6 5 2 69.996 0.001 3.68 32 7 4 4 6 4 2 83.239 0.001 1.21 32 7 3 4 6 3 4 132.733 0.000 11.73 32 7 4 4 6 2 4 133.752 0.001 1.75 32 7 3 4 6 1 6 229.930 -0.005 0.10 32 7 4 4 6 0 6 230.738 0.014 0.01 32 7 3 4 7 1 6 95.529 0.001 3.90 32 7 4 4 7 2 6 96.316 4 0.000 2.12 32 7 4 4 8 0 8 79.215 -0.046 0.00 32 7 2 5 5 2 3 172.137 0.003 4.16 32 7 3 5 5 3 3 171.133 0.003 2.07 32 7 2 5 5 0 5 249.135 0.001 0.69 32 7 3 5 5 1 5 249.183 0.005 0.12 32 7 2 5 6 4 3 56.111 0.000 8.31 32 7 3 5 6 3 3 59.007 0.000 6.71 32 7 2 5 6 2 5 133.876 0.001 10.04 32 7 3 5 6 1 5 133.926 -0.002 5.78 32 7 2 5 7 0 7 116.508 0.000 3.73 32 7 3 5 7 1 7 116.512 -0.040 0.00 32 7 1 6 5 3 2 98.593 -0.020 0.02 32 7 1 6 5 1 4 152.133 -0.001 4.87 32 7 1 6 6 3 4 37.206' 0.001 7.75 32 7 2 6 6 2 4 37.437 0.002 0.51 32 7 1 6 6 1 6 134.406 -0.001 4.12 32 7 2 6 6 0 6 134.408 0.000 0.25 32 7 0 7 5 0 5 132.625 -0.001 8.27 32 7 0 7 6 2 5 17.370 0.003 8.41 32 8 8 0 7 6 2 192.589 0.013 0.41 32 8 8 O 8 6 2 61.736 0.010 0.02 32 8 7 1 6 5 1 289.787 -0.012 0.06 32 8 8 1 6 6 1 300.286 -0.004 0.27 32 8 8 1 6 4 3 357.495 -0.004 0.05 32 8 7 1 7 7 1 124.780 0.000 0.58 32 8 8 1 7 6 1 190.206 -0.006 0.24 32 8 6 2 6 4 2 279.762 -0.002 0.06 32 8 7 2 6 5 2 292.579 -0.001 0.89 32 8 6 2 6 2 4 330.291 0.014 0.02 32 8 7 2 6 3 4 355.315 -0.004 0.08 32 8 7 2 7 7 0 123.435 0.000 5.25 32 8 6 2 7 6 2 130.849 -0.001 0.16 32 8 7 2 7 5 2 174.705 -0.003 0.96 32 8 6 2 7 4 4 196.524 -0.002 0.16 32 8 7 2 7 3 4 222.588 0.003 0.25 32 8 6 2 8 4 4 46.631 0.002 2.15 32 8 7 2 8 5 4 69.739 -0.002 1.03 32 8 S 3 6 5 1 243.531 0.010 0.10 32 8 6 3 6 6 1 229.882 -0.002 0.71 32 8 6 3 6 4 3 287.091 —0.002 1.63 32 81 OBSERVED UPPER. LOWER OBS-CALC WEIGHT ISO _1 _1 . J K.a KC J Ka K.C (cm ) (cm ) 8 6 3 6 2 5 364.853 -0.004 0.10 32 8 6 3 7 6 1 119.803 -0.003 6.37 32 8 5 3 7 5 3 142.040 0.000 2.65 32 8 6 3 7 4 3 159.224 0.000 6.63 32 8 5 3 7 3 5 219.885 -0.001 0.03 32 8 6 3 7 2 5 230.981 -0.001 1.07 32 8 5 3 8 3 5 67.710 -0.002 2.03 32 8 6 3 8 4 5 78.574 -0.004 0.82 32 8 4 4 6 4 2 233.130 -0.005 0.17 32 8 5 4 6 5 2 222.844 0.005 0.51 32 8 4 4 6 2 4 283.659 0.011 0.01 32 8 5 4 6 3 4 285.579 0.001 0.46 32 8 4 4 7 6 2 84.223 0.002 1.39 32 8 5 4 7 5 2 104.963 -0.005 0.47 32 8 4 4 7 4 4 149.887 -0.010 2.23 32 8 5 4 7 3 4 152.847 . 0.002 3.04 32 8 4 4 7 2 6 246.210 -0.003 0.03 32 8 5 4 7 1 6 248.373 0.000 0.28 32 8 4 4 8 2 6 93.277 0.001 5.09 32 8 5 4 8 3 6 95.428 0.001 5.83 32 8 3 5 6 3 3 211.177 _ -0.005 0.41 32 8 4 5 6 4 3 208.511 -0.005 1.54 32 8 3 5 6 1 5 286.105 0.003 0.08 32 8 4 5 6 2 5 286.277 -0.003 0.53 32 8 3 5 7 5 3 74.328 0.000 2.12 32 8 4 5 7 4 3 80.646 -0.001 8.18 32 8 3 5 7 3 5 152.174 -0.001 1.35 32 8 4 5 7 2 5 152.403 -0.002 7.34 .32 8 3 5 8 1 7 115.204 0.002 0.48 32 8 4 5 8 2 7 115.387 0.000 2.85 32 8 2 6 6 2 4 190.370 -0.001 0.04 32 8 3 6 6 3 4 190.148 -0.003 1.42 32 8 2 6 6 0 6 287.357 0.013 0.01 32 8 3 6 6 1 6 287.352 0.000 0.27 32 8 2 6 7 4 4 56.619 -0.001 5.15 32 8 3 6 7 3 4 57.418 0.000 6.72 32 8 2 6 7 2 6 152.935 -0.001 2.06 32 8 3 6 7 1 6 152.947 0.001 3.92 32 8 2 6 8 0 8 135.834 -0.048 0.00 32 8 3 6 8 1 8 135.889 -0.001 5.30 32 8 2 7 6 2 5 170.895 0.003 9.89 32 8 2 7 7 2 5 37.019 0.002 7.37 32 8 2 7 7 0 7 153.523 -0.002 6.93 32 8 1 8 6 1 6 151.460 -0.002 6.90 32 8 1 8 7 1 6 17.056 0.000 9.52 32 9 8 1 7 6 1 330.097 -0.006 0.10 32 9 8 1 8 8 1 139.892 0.001 0.48 32 9 8 1 9 6 3 55.469 -0.002 0.15 32 9 7 2 7 3 4 366.395 0.003 0.41 32 82 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J K.a K.c (cm ) (cm ) 9 7 2 8 7 2 143.808 0.001 0.57 32 9 7 2 8 5 4 213.549 0.001 0.34 32 9 7 2 9 5 4 47.895 0.000 1.35 32 9 6 3 7 6 1 274.627 -0.005 0.10 32 9 7 3 7 7 1 261.795 0.003 0.03 32 9 7 3 8 7 1 137.014 0.002 0.06 32 9 6 3 8 6 3 154.826 0.000 0.48 32 9 7 3 8 5 3 183.286 -0.004 0.05 32 9 6 3 8 4 5 233.404 0.001 0.10 32 9 6 3 9 4 5 63.423 -0.001 5.00 32 9 6 4 7 6 2 256.932 0.009 0.05 32 9 6 4 7 4 4 322.600 0.001 0.10 32 9 5 4 8 7 2 95.912 0.000 0.48 32 9 6 4 8 6 2 126.077 0.004 2.10 32 9 5 4 8 5 4 165.651 -0.002 5.00 32 9 6 4 8 4 4 172.707 0.004 1.34 32 9 5 4 9 3 6 89.885 -0.003 0.48 32 9 6 4 9 4 6 94.737 -0.001 0.12 32 9 4 5 7 4 3 250.625 -0.001 3.92 32 9 5 5 7 5 3 245.095 -0.004 0.10 32 9 4 5 7 2 5 322.383 -0.001 0.67 32 9 5 5 7 3 5 322.943 -0.003 0.03 32 9 4 5 8 6 3 91.402 0.000 1.75 32 9 5 5 8 5 3 103.059 0.000 0.06 32 9 4 5 8 4 5 169.979 0.000 5.24 32 9 5 5 8 3 5 170.771 0.000 0.10 32 9 4 5 9 2 7 113.448 0.001 5.12 32 9 5 5 9 3 7 114.057 0.005 0.10 32 9 3 6 7 3 4 228.609 0.000 1.92 32 9 4 6 7 4 4 227.862 0.001 0.23 32 9 3 6 7 l 6 324.137 -0.001 0.41 32 9 4 6 7 2 6 324.176 -0.001 0.04 32 9 3 6 8 5 4 75.763 -0.002 3.12 32 9 4 6 8 4 4 77.967 0.003 2.23 32 9 3 6 8 3 6 171.193 0.001 2.67 32 9 4 6 8 2 6 171.243 0.002 2.07 32 9 3 6 9 1 8 134.471 -0.004 0.24 32 9 2 7 7 2 5 208.943 0.007 0.85 32 9 2 7 7 0 7 325.440 -0.004 0.38 32 9 2 7 8 4 5 56.530 -0.002 4.47 32 9 3 7 8 3 5 56.739 0.021 0.00 32 9 2 7 8 2 7 171.919 ' 0.000 4.46 32 9 3 7 8 1 7 171.920 ~0.001 0.13 32 9 2 7 9 0 9 155.166 -0.001 0.32 32 9 l 8 7 1 6 189.661 -0.002 11.25 32 9 1 8 8 3 6 36.720 0.003 7.94 32 9 1 8 8 1 8 172.607 0.000 12.17 32 9 2 8 8 0 8 172.603 -0.004 0.08 32 9 0 9 7 0 7 170.272 -0.005 9.38 32 83 UPPER LOWER OBSERVED OBS-CALC WEIGHT 130 -1 -1 J K3 K.C J Ka K,c (cm ) (cm ) 9 0 9 8 2 7 16.751 -0.001 6.56 32 10 8 3 9 8 1 153.353 -0.002 0.48 32 10 8 3 9 6 3 208.822 -0.004 0.08 32 10 7 4 9 7 2 146.042 0.001 1.25 32 10 7 4 9 5 4 193.937 0.001 1.25 32 10 6 4 10 4 6 85.266 -0.002 0.25 32 10 7 4 10 5 6 94.527 0.000 2.00 32 10 6 5 9 6 3 125.817 0.001 2.00 32 10 6 5 9 4 5 189.240 -0.001 2.00 32 10 5 5 10 3 7 110.978 -0.002 0.10 32 10 6 5 10 4 7 112.633 -0.002 2.00 32 10 4 6 9 6 4 94.357 -0.007 0.05 32 10 5 6 9 5 4 99.411 0.002 5.08 32 10 4 6 9 4 6 189.096 -0.006 0.10 32 10 5 6 9 3 6 189.297 0.000 0.71 32 10 5 6 0 3 8 132.934 0.002 2.00 32 10 4 7 8 4 5 246.590 0.005 2.40 32 10 4 7 8 2 7 361.967 -0.005 0.01 32 10 3 7 9 5 5 75.985 -0.005 0.10 32 10 4 7 9 4 5 76.605 -0.001 5.62 32 10 3 7 9 3 7 190.044 0.001 1.67 32 10 4 7 9 2 7 190.052 -0.001 5.66 32 10 3 8 8 3 6 227.560 0.003 1.70 32 10 3 8 8 1 8 363.444 -0.003 0.10 32 10 3 8 9 3 6 56.365 0.000 5.46 32 10 3 8 9 1 8 190.838 -0.002 1.53 32 10 3 8 0 1 10 174.378 -0.003 0.57 32 10 2 9 8 2 7 208.404 0.001 6.90 32 10 1 9 9 3 7 36.483 0.001 0.01 32 10 2 9 9 2 7 36.484 0.000 7.74 32 10 2 9 9 0 9 191.649 -0.002 3.48 32 1O 0 10 8 0 8 189.057 -0.008 0.02 32 10 1 10 8 1 8 189.065 0.000 8.75 32 10 0 10 9 2 8 16.466 0.007 0.01 32 10 1 10 9 1 8 16.458 -0.001 6.06 32 11 8 3 11 6 5 58.467 -0.007 0.10 32 11 7 4 11 5 6 79.820 -0.001 0.25 32 11 6 5 11 4 7 107.435 0.001 0.25 32 11 7 5 11 5 7 111.309 0.006 0.05 32 11 4 7 9 4 5 284.467 0.001 0.08 32 11 4 7 10 6 5 95.226 0.001 2.00 32 11 5 7 10 5 5 96.927 0.000 0.10 32 11 4 7 10 4 7 207.859 -0.001 1.32 32 11 5 7 10 3 7 207.905 -0.002 0.05 32 11 3 8 9 3 6 265.152 -0.007 0.03 32 11 3 8 10 5 6 75.860 -0.002 2.00 32 11 4 8 10 4 6 76.016 -0.002 0.41 32 11 3 8 10 3 8 208.794 0.000 1.34 32 11 2 9 9 2 7 246.182 -0.003 0.38 32 84 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.c J Ka K.C (cm ) (cm ) 11 2 9 10 4 7 56.132 0.000 5.40 32 11 2 9 10 2 9 209.696 -0.005 0.69 32 11 2 9 11 0 11 193.526 0.000 0.04 32 11 1 10 9 1 8 227.117 0.003 4.75 32 11 1 10 10 3 8 36.276 0.002 5.91 32 11 1 10 10 1 10 210.656 0.001 1.81 32 11 0 11 9 0 9 207.827 0.001 4.43 32 11 0 11 10 2 9 16.175 0.000 6.02 32 12 5 8 11 5 6 95.785 -0.002 1.25 32 12 5 8 11 3 8 226.461 0.006 0.48 32 12 5 8 12 3 10 170.479 0.006 0.41 32 12 4 9 10 4 7 283.594 0.002 0.21 32 12 4 9 11 4 7 75.732 0.000 1.25 32 12 4 9 11 2 9 227.461 0.001 0.13 32 12 3 10 10 3 8 264.768 -0.008 0.44 32 12 3 10 11 3 8 55.982 0.000 2.09 32 12 3 10 11 1 10 228.491 -0.011 0.31 32 12 2 11 10 2 9 245.793 0.001 2.59 32 12 2 11 11 2 9 36.092 0.001 5.19 32 12 2 11 11 0 11 229.614 -0.003 0.69 32 12 1 12 10 l 10 226.559 0.004 3.87 32 12 1 12 11 1 10 15.899 -0.001 5.28 32 13 3 10 11 3 8 302.022- -0.003 0.10 32 13 3 10 12 3 10 246.049 0.006 0.06 32 13 2 11 11 2 9 283.329 -0.002 0.13 32 13 1 12 11 1 10 264.437 0.002 0.71 32 13 1 12 12 1 12 248.531 -0.004 0.10 32 13 O 13 11 0 11 245.249 -0.001 1.18 32 13 0 13 12 2 11 15.632 -0.001 2.00 32 14 3 12 13 3 10 55.799 -0.004 0.41 32 14 2 13 12 2 11 283.030 -0.007 0.13 32 14 1 14 12 1 12 263.903 -0.005 2.40 32 14 1 14 13 1 12 15.374 0.001 0.48 32 15 1 14 14 3 12 35.691 0.008 0.08 32 15 O 15 13 0 13 282.533 0.008 0.60 32 APPENDIX D ASSIGNED TRANSITIONS OF v2 OF H28e UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.C J K.a KC (cm ) (cm ) 10 1 10 11 0 11 942.592 -0.016 0.01 74 9 0 9 10 1 10 950.999 -0.002 0.00 74 7 1 6 8 2 7 962.885 -0.008 0.01 74 5 2 3 6 3 4 971.716 -0.012 0.05 74 6 1 6 7 0 7 975.696 -0.010 0.05 74 5 1 4 6 2 5 978.052 -0.004 0.25 74 4 1 4 5 0 5 991.760 -0.008 0.01 74 3 0 3 4 l 4 999.662 -0.006 0.05 74 2 1 2 3 0 3 1007.508 -0.010 0.01 74 3 3 0 3 2 1 1042.886 0.000 0.05 74 5 5 0 5 4 1 1049.603 -0.002 0.01 74 5 4 1 5 3 2 1050.586 -0.012 0.00 74 2 1 2 1 0 1 1054.853 -0.001. 0.01 74 3 0 3 2 1 2 1062.365 -0.003 0.05 74 6 1 6 5 0 5 1085.179 -0.001 0.25 74 3 3 0 2 2 1 1088.514 -0.004 0.01 74 4 3 2 3 2 1 1090.766 -0.009 0.01 74 7 0 7 6 1 6 1092.584 0.000 0.01 74 6 2 5 5 1 4 1096.044 0.006 0.01 74 9 0 9 8 1 8 1107.105 0.004 0.05 74 10 2 9 9 1 8 1127.088 -0.004 0.01 74 9 3 6 8 4 5 1142.170 0.009 0.01 74 15 0 15 14 1 14 1148.291 -0.004 0.01 74 10 4 7 9 3 6 1150.696 0.008 0.01 74 9 9 0 8 8 1 1197.966 0.000 0.25 74 8 5 4 7 2 5 1207.214 -0.004 0.01 74 11 11 0 10 10 1 1236.665 0.003 0.01 74 13 0 13 14 1 14 916.809 -0.010 0.25 76 12 3 10 13 2 11 920.947 0.002 0.25 76 12 1 12 13 0 13 925.427 -0.002 0.25 76 11 2 9 12 3 10 928.404 0.002 0.05 76 6 6 1 7 7 0 930.892 0.002 0.25 76 11 0 11 12 1 12 933.972 0.004 1.25 76 10 3 8 11 2 9 935.787 -0.005 0.05 76 9 3 6 10 4 7 938.442 0.000 0.25 76 10 2 9 11 1 10 939.404 0.001 1.25 76 10 1 10 11 0 11 942.436 0.002 1.25 76 9 2 7 10 3 8 943.117 0.003 0.25 76 5 5 1 6 6 0 943.641 0.003 0.05 76 8 4 5 9 3 6 945.188 0.005 0.05 76 5 5 0 6 6 1 946.432 -0.004 0.05 76 9 1 8 10 2 9 947.252 0.003 1.25 76 85 86 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a Kc J Ka K.c (cm ) (cm ) 9 O 9 O 1 10 950.827 0.002 1.25 76 7 3 4 8 4 5 951.777 -0.003 0.05 76 8 2 7 9 1 8 955.021 -0.001 1.25 76 4 4 1 5 5 0 956.795 -0.003 0.05 76 7 2 5 8 3 6 957.533 -0.004 0.25 76 6 4 3 7 3 4 958.595 0.003 0.05 76 8 1 8 9 0 9 959.139 0.000 5.00 76 4 4 0 5 5 1 960.701 -0.010 0.05 76 7 1 6 8 2 7 962.721 0.000 1.25 76 5 3 2 6 4 3 963.718 -0.004 0.05 76 6 3 4 7 2 5 964.636 -0.007 0.05 76 7 0 7 8 1 8 967.372 -0.002 1.25 76 6 2 5 7 1 6 970.340 -0.002 0.05 76 5 2 3 6 3 4 971.553 -0.005 0.25 76 6 1 6 7 0 7 975.528 0.001 1.25 76 5 1 4 6 2 5 977.881 0.001 1.25 76 4 3 2 5 2 3 979.009 0.000 0.25 76 5 0 5 6 1 6 983.597 -0.001 0.25 76 2 2 1 3 3 0 984.450 0.000 0.25 76 4 2 3 5 1 4 985.354 -0.003 0.05 76 3 3 1 4 2 2 987.620 0.000 0.05 76 2 2 O 3 3 1 990.860 0.000 0.25 76 4 l 4 5 0 5 991.585 -0.001 1.25 76 7 1 6 7 2 5 993.062 -0.003 0.25 76 5 0 5 5 1 4 998.181 0.003 1.25 76 3 O 3 4 1 4 999.484 0.000 1.25 76 2 2 l 3 1 2 1000.998 0.001 0.25 76 7 2 5 7 3 4 1004.045 -0.001 0.05 76 1 1 O 2 2 1 1006.515 0.001 0.25 76 2 1 2 3 O 3 1007.330 -0.001 0.25 76 5 1 4 5 2 3 1008.725 -0.002 0.25 76 9 4 5 9 5 4 1011.579 0.001 0.25 76 1 0 1 2 1 2 1014.756 -0.001 0.25 76 1 1 1 2 0 2 1015.321 -0.008 0.25 76 4 2 3 4 3 2 1016.085 0.000 1.25 76 8 5 4 8 6 3 1017.280 0.000 0.05 76 5 3 3 5 4 2 1017.977 0.003 0.05 76 5 2 3 5 3 2 1019.361 0.000 1.25 76 6 4 3 6 5 2 1020.093 0.002 0.25 76 2 1 2 2 2 1 1021.942 -0.003 0.25 76 4 3 2 4 4 1 1023.435 0.001 0.25 76 3 1 2 3 2 1 1024.998 0.000 1.25 76 7 4 3 7 5 2 1026.162 -0.001 0.25 76 4 2 2 4 3 1 1027.065 -0.004 0.25 76 5 3 2 5 4 1 1029.282 0.000 1.25 76 3 2 1 3 3 0 1031.064 0.003 1.25 76 6 4 2 6 5 1 1031.483 0.005 0.25 76 5 4 1 5 5 0 1031.896 -0.004 0.05 76 7 5 2 7 6 1 1033.537 0.002 0.25 76 87 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J K.a K.c (cm ) (cm ) 1 1 O 1 O 1 1039.220 -0.001 1.25 76 2 2 0 2 1 1 1040.568 -0.003 1.25 76 3 3 0 3 2 1 1042.668 -0.002 5.00 76 4 4 0 4 3 1 1045.578 -0.006 1.25 76 2 1 1 2 O 2 1046.934 -0.002 0.05 76 3 2 1 3 1 2 1047.606 -0.003 1.25 76 2 2 1 2 1 2 1048.461 0.002 0.25 76 5 5 0 5 4 1 1049.348 0.001 5.00 76 5 4 1 5 3 2 1050.406 -0.004 0.25 76 4 4 1 4 3 2 1053.171 -0.001 0.25 76 2 1 2 1 0 1 1054.651 -0.001 1.25 76 3 2 2 3 1 3 1056.313 0.006 0.05 76 5 5 .1 5 4 2 1056.453 0.003 0.05 76 4 2 2 4 1 3 1057.284 -0.004 1.25 76 4 3 2 4 2 3 1058.096 0.000 1.25 76 5 3 2 5 2 3 1058.661 -0.004 0.25 76 7 7 O 7 6 1 1059.165 0.002 0.25 76 6 4 2 6 3 3 1060.149 0.000 1.25 76 6 6 1 6 5 2 1060.268 0.001 0.05 76 5 4 2 5 3 3 1060.407 -0.003 0.25 76 3 0' 3 2 1 2 1062.166 -0.001 0.25 76 6 5 2 6 4 3 1063.280 -0.001 1.25 76 2 2 1 1 1 0 1064.076 0.003 5.00 76 9 8 1 9 7 2 1065.689 0.002 0.25 76 5 2 3 5 1 4 1066.502 0.005 0.05 76 5 3 3 5 2 4 1066.627 -0.007 1.25 76 7 6 2 7 5 3 1066.719 -0.008 0.05 76 6 4 3 6 3 4 1068.997 0.001 0.05 76 4 1 4 3 0 3 1069.881 -0.003 1.25 76 3 1 2 2 2 1 1070.644 0.006 0.05 76 7 4 3 7 3 4 1070.841 0.000 1.25 76 3 2 2 2 1 1 1072.283 -0.004 0.25 76 5 1 4 5 0 5 1072.997 0.002 0.25 76 6 3 4 6 2 5 1075.308 0.000 0.05 76 5 0 5 4 1 4 1077.480 0.004 1.25 76 7 3 4 7 2 5 1077.857 -0.013 0.05 76 4 2 3 3 1 2 1079.877 -0.001 1.25 76 6 2 5 6 1 6 1081.246 -0.004 1.25 76 3 3 r 2 2 0 1081.973 0.000 1.25 76 0 8 3 O 7 4 1082.757 0.003 0.25 76 7 2 5 7 1 6 1083.904 0.002 1.25 76 9 6 4 9 5 5 1084.132 -0.005 0.25 76 6 1 6 5 0 5 1084.972 -0.002 5.00 76 4 2 2 3 3 1 1087.008 0.004 0.25 76 5 1 4 4 2 3 1087.817 0.002 0.05 76 3 3 0 2 2 1 1088.310 0.000 1.25 76 7 1 6 7 0 7 1089.394 -0.005 1.25 76 4 3 2 3 2 1 1090.551 0.002 5.00 76 7 0 7 6 1 6 1092.377 0.002 5.00 76 88 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -l J Ka K.C J Ka K.C (cm ) (cm ) 6 2 5 5 1 4 1095.827 -0.002 5.00 76 5 2 3 4 3 2 1097.231 0.006 5.00 76 5 3 3 4 2 2 1098.046 -0.003 0.25 76 8 1 8 7 O 7 1099.680 0.000 5.00 76 9 2 7 9 l 8 1100.770 0.005 0.05 76 7 1 6 6 2 5 1103.731 0.001 5.00 76 10 4 7 10 3 8 1104.331 -0.006 0.25 76 6 3 4 5 2 3 1106.157 0.001 1.25 76 9 O 9 8 1 8 1106.887 0.000 5.00 76 11 4 7 11 3 8 1108.131 0.001 0.05 76 5 4 2 4 3 1 1109.419 0.005 0.05 76 8 2 7 7 1 6 1111.538 -0.001 5.00 76 10 2 9 10 1 10 1113.243 0.008 0.05 76 6 3 3 5 4 2 1114.868 0.002 0.05 76 9 1 8 8 2 7 1119.256 0.003 0.05 76 11 0 11 10 1 10 1121.007 -0.001 5.00 76 4 3 2 3 O 3 1121.572 -0.002 0.05 76 5 5 O 4 4 1 1123.157 0.001 5.00 76 10 2 9 9 1 8 1126.876 0.002 5.00 76 6 5 2 5 4 1 1128.840 -0.001 5.00 76 9 2 7 8 3 6 1130.917 0.001 5.00 76 7 4 3 6 5 2 1132.340 0.000 5.00 76 8 4 5 7 3 4 1133.364 -0.002 0.25 76 11 1 10 10 2 9 1134.399 -0.003 0.05 76 13 0 13 12 1 12 1134.737 0.000 1.25 76 7 5 3 6 4 2 1136.176 0.000 0.05 76 6 6 1 5 5 0 1138.464 0.000 5.00 76 10 3 8 9 2 7 1139.003 -0.001 5.00 76 12 2 11 11 1 10 1141.834 -0.003 1.25 76 9 3 6 8 4 5 1141.942 0.001 1.25 76 8 4 4 7 5 3 1142.931 -0.006 0.25 76 8 5 4 7 4 3 1143.910 0.002 5.00 76 6 5 1 5 4 2 1145.163 0.000 0.25 76 11 2 9 10 3 8 1146.999 0.000 5.00 76 15 0 15 14 1 14 1148.070 0.001 1.25 76 13 1 12 12 2 11 1149.182 0.001 5.00 76 8 5 3 7 6 2 1149.431 0.000 0.05 76 10 4 7 9 3 6 1150.464 -0.001 5.00 76 9 4 5 8 5 4 1152.304 -0.008 1.25 76 9 5 5 8 4 4 1152.517 0.005 0.05 76 16 1 16 15 0 15 1154.582 -0.003 0.25 76 12 3 10 11 2 9 1154.902 0.000 1.25 76 8 6 3 7 5 2 1156.189 0.004 0.05 76 14 2 13 13 1 12 1156.435 0.002 1.25 76 6 6 1 5 3 2 1156.983 0.008 0.05 76 7 7 l 6 6 0 1157.829 0.000 1.25 76 6 5 2 5 2 3 1158.224 0.000 0.25 76 11 3 8 10 4 7 1158.890 0.003 1.25 76 7 7 0 6 6 1 1159.738 -0.001 5.00 76 89 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.c J K.a K.C (cm ) (cm ) 10 4 6 9 5 5 1161.306 0.003 0.05 76 10 5 6 9 4 5 1161.346 0.004 0.25 76 7 6 1 6 5 2 1162.322 -0.004 0.25 76 13 2 11 12 3 10 1162.714 0.000 5.00 76 15 1 14 14 2 13 1163.596 0.002 0.05 76 6 4 3 5 1 4 1163.935 0.000 0.25 76 9 6 3 8 7 2 1165.947 0.005 0.05 76 12 4 9 11 3 8 1167.212 -0.003 5.00 76 8 7 2 7 6 1 1169.087 -0.001 5.00 76 11 4 7 10 5 6 1170.138 0.003 5.00 76 16 2 15 15 1 14 1170.665 0.002 0.25 76 10 6 5 9 5 4 1171.920 0.002 1.25 76 13 3 10 12. 4 9 1175.450 0.002 1.25 76 8 8 1 7 7 0 1177.306 0.001 5.00 76 8 8 O 7 7 1 1178.583 0.000 1.25 76 12 5 8 11 4 7 1178.854 -0.003 0.25 76 8 7 1 7 6 2 1179.850 -0.001 0.25 76 11 5 6 10 6 5 1180.764 -0.003 1.25 76 7 4 3 6 3 4 1181.243 -0.002 1.25 76_ 7 5 3 6 2 4 1182.232 0.000 0.05 76 14 4 11 13 3 10 1183.587 -0.002 0.25 76 10 7 4 9 6 3 1183.621 0.002 0.05 76 16 3 14 15 2 13 1185.609 -0.002 0.25 76 13 4 9 12 5 8 1187.476 0.001 1.25 76 7 3 4 6 2 5 1188.533 -0.002 0.25 76 7 4 4 6 1 5 1188.614 0.006 0.05 76 12 6 7 11 5 6 1189.910 4-0.001 0.25 76 11 6 5 10 7 4 1190.445 -0.001 0.25 76 11 7 5 10 6 4 1191.631 -0.004 0.05 76 17 2 15 16 3 14 1193.062 0.002 0.05 76 7 2 5 6 1 6 1194.815 0.005 0.05 76 9 9 0 8 8 1 1197.689 0.002 0.25 76 9 8 l 8 7 2 1197.823 0.000 5.00 76 10 8 3 9 7 2 1197.910 0.000 1.25 76 8 5 3 7 4 4 1198.795 -0.005 0.05 76 13 5 8 12 6 7 1198.869 0.002 0.25 76 8 8 1 7 5 2 1200.509 0.004 0.25 76 12 7 6 1 6 5 1200.568 0.003 0.25 76 8 6 3 7 3 4 1200.863 0.000 1.25 76 9 7 2 8 6 3 1204.847 -0.001 5.00 76 8 5 4 7 2 5 1206.978 0.004 0.05 76 10 9 2 9 8 1 1210.393 0.000 5.00 76 12 8 5 1 7 4 1211.756 -0.002 0.05 76 8 4 5 7 l 6 1213.221 -0.002 0.25 76 9 6 3 8 5 4 1216.052 0.002 0.05 76 10 10 0 9 9 1 1216.965 —0.002 1.25 76 8 3 6 7 0 7 1219.073 0.003 0.25 76 10 8 2 9 7 3 1221.623 -0.003 0.05 76 9 5 4 8 4 5 1224.970 0.001 1.25 76 90 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.C J K.a KC (cm ) (cm ) 12 9 4 11 8 3 1225.840 0.001 0.25 76 11 10 2 10 9 1 1231.101 0.000 0.05 76 9 4 5 8 3 6 1231.717 0.003 0.25 76 10 7 3 9 6 4 1232.912 -0.001 0.05 76 11 10 1 10 9 2 1235.187 0.000 1.25 76 11 11 1 10 10 0 1235.985 0.002 0.25 76 11 11' O 10 10 1 1236.351 0.000 5.00 76 9 3 6 8 2 7 1237.684 -0.001 0.25 76 10 8 3 9 5 4 1239.418 -0.002 0.25 76 12 10 3 11 9 ‘2 1241.181 -0.004 0.25 76 10 7 4 9 4 5 1244.220 0.001 0.25 76 11 8 3 10 7 4 1249.395 -0.001 0.25 76 10 6 5 9 3 6 1250.378 0.000 0.05 76 12 11 2 11 10 1 1251.720 0.000 1.25 76 12 12 1 11 11 0 1255.531 -0.001 0.25 76 10 5 6 . 9 2 7 1256.388 -0.002 0.25 76 11 7 4 10 6 5 1260.743 0.000 0.05 76 10 4 7 9 1 8 1261.990 0.002 0.05 76 13 13 0 12 12 1 1275.209 0.001 0.25 76 11 5 6 10 4 7 1275.106 -0.001 0.05 76 11 4 7 10 3 8 1280.834 0.000 0.05 76 11 3 8 10 2 9 1286.130 0.005 0.05 76 13 0 13 14 1 14 916.742 -0.002 0.25 77 12 3 10 13 2 11 920.866 0.004 0.05 77 12 1 12 13 0 13 925.355 -0.002 0.05 77 11 2 9 12 3 10 928.314 -0.006 0.05 77 6 6 1 7 7 0 930.816 -0.008 0.05 77 11 1 10 12 2 11 931.413 0.004 0.05 77 9 3 6 10 4 7 938.355 -0.012 0.05 77 10 2 9 11 1 10 939.322 -0.001 0.25 77‘ 10 1 10 11 0 11 942.361 0.001 0.05 77 9 2 7 10 3 8 943.036 0.001 0.05 77 8 4 5 9 3 6 945.100 -0.008 0.05 77 5 5 O 6 6 1 946.380 -0.001 0.05 77 9 1 8 10 2 9 947.166 -0.003 0.05 77 8 3 6 9 2 7 950.287 0.001 0.05 77 9 0 9 10 1 10 950.750 0.001 0.25 77 7 3 4 8 4 5 951.710 0.004 1.25 77 8 2 7 9 1 8 954.944 0.002 0.25 77 4 4 1 5 5 0 956.718 -0.003 0.05 77 7 2 5 8 3 6 957.454 -0.005 0.05 77 8 1 8 9 O 9 959.061 0.001 1.25 77 7 1 6 8 2 7 962.638 -0.003 0.05 77 7 0 7 8 1 8 967.295 0.002 1.25 77 5 2 3 6 3 4 971.475 -0.005 0.05 77 4 3 2 5 2 3 978.924 0.001 0.25 77 3 2 1 4 3 2 983.742 -0.001 0.05 77 2 2 1 3 3 0 984.366 -0.002 0.05 77 2 2 0 3 3 1 990.789 0.003 0.05 77 91 UPPER LOWER OBSERVED OBS-CALC WEIGHT I SO -1 -1 J Ka Kc J K.a K.C (cm ) (cm ) 4 1 4 5 0 5 991.500 -0.002 0.25 77 7 1 6 7 2 5 992.983 0.002 0.05 77 8 3 6 8 4 5 996.563 0.000 0.05 77 5 0 5 5 1 4 998.092 -0.001 0.05 77 3 0 3 4 1 4 999.400 0.000 0.25 77 2 2 1 3 1 2 1000.900 -0.008 0.05 77 1 1 0 2 2 1 1006.421 -0.012 0.00 77 2 1 2 3 0 3 1007.252 0.007 0.25 77 5 1 4 5 2 3 1008.631 -0.009 0.05 77 1 0 1 2 1 2 1014.671 -0.001 0.25 77 1 1 1 2 0 2 1015.241 0.000 0.25 77 4 2 3 4 3 2 1016.002 0.003 0.25 77 8 5 4 8 6 3 1017.199 -0.001 0.05 77 5 3 3 5 4 2 1017.883 -0.007 0.05 77 5 2 3 5 3 2 1019.262 -0.003 0.25 77 6 4 3 6 5 2 1020.004 -0.006 0.05 77 2 1 2 2 2 1 1021.860 -0.002 0.05 77 O 0 0 1 1 1 1022.344 -0.001 0.05 77 4 3 2 4 4 1 1023.355 -0.004 0.05 ‘ 77 3 1 2 3 2 1 1024.901 -0.004 0.05 77 7 4 3 7 5 2 1026.060 -0.001 0.05 77 4 2 2 4 3 1 1026.978 0.003 0.25 77 5 3 2 5 4 1 1029.191 0.001 1.25 77 3 2 1 3 3 0 1030.981 0.000 1.25 77 6 4 2 6 5 1 1031.400 0.007 0.25 77 1 1 0 1 O 1 1039.128 -0.001 0.25 77 2 2 0 2 1 1 1040.468 -0.008 0.05 77 3 3 0 3 2 1 1042.568 -0.001 1.25 77 4 4 0 4 3 1 1045.466 -0.008 0.05 77 3 2 1 3 1 2 1047.517 -0.005 0.25 77 5 5 0 5 4 1 1049.223 -0.001 5.00 77 5 4 1 5 3 2 1050.304 -0.016 0.00 77 4 4 l 4 3 2 1053.063 -0.002 1.25 77 2 1 2 1 O 1 1054.558 0.000 0.25 77 4 2 2 4 1 3 1057.195 -0.004 0.25 77 4 3 2 4 2 3 1057.995 -0.004 0.25 77 7 7 0 7 6 1 1059.012 0.002 0.25 77 6 5 2 6 4 3 1063.175 -0.002 0.25 77 2 2 1 1 1 0 1063.977 0.002 0.25 77 4 2 3 4 1 4 1064.540 -0.020 0.00 77 9 8 l 9 7 2 1065.550 0.001 0.25 77 6 4 3 6 3 4 1068.880 -0.019 0.00 77 4 l 4 3 0 3 1069.785 -0.003 0.25 77 7 4 3 7 3 4 1070.754 0.000 1.25 77 3 2 2 2 1 1 1072.185 -0.001 0.25 77 5 1 4 5 0 5 1072.901 0.003 0.25 77 5 O 5 4 1 4 1077.378 0.001 1.25 77 4 2 3 3 1 2 1079.777 -0.001 0.25 77 6 2 5 6 1 6 1081.152 0.001 0.25 77 92 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO 1 -1 -1 J K.a Kc J Ka K.c (cm ) (cm ) 3 3 1 2 2 0 1081.871 0.003 1.25 77 9 6 4 9 5 5 1084.035 -0.008 0.05 77 6 1 6 5 0 5 1084.874 0.000 1.25 77 8 4 5 8 3 6 1086.752 -0.007 0.05 77 5 1 4 4 2 3 1087.721 0.006 0.05 77 3 3 0 2 2 1 1088.210 -0.002 0.25 77 7 1 6 7 0 7 1089.304 0.005 0.25 77 4 3 2 3 2 1 1090.441 0.001 1.25 77 7 O 7 6 1 6 . 1092.278 0.003 1.25 77 10 6 5 10 5 6 1093.449 -0.007 0.05 77 6 2 5 5 1 4 "1095.727 -0.00l 1.25 77 5 2 3 4 3 2 1097.125 -0.003 0.05 77 8 2 7 8 1 8 1097.347 0.003 0.25 77 5 3 3 4 2 2 1097.950 0.007 0.05 77 8 1 8 7 0 7 1099.580 0.001 5.00 77 4 4 1 3 3 0 1100.308 0.005 0.25 77 9 2 7 9 l 8 1100.657 -0.005 0.25 77 5 3 2 4 4 1 1103.013 -0.003 0.05 77 7 1 6 6 2 5 1103.629 0.001 1.25 77 10 4 7 10 3 8 1104.239 0.006 0.05 77 4 4 0 3 3 1 1105.411 -0.008 0.25 77 6 3 4 5 2 3 1106.048 -0.004 0.25 77 9 0 9 8 1 8 1106.783 -0.003 5.00 77 11 4 7 11 3 8 1108.026 0.002 0.05 77 5 4 2 4 3 1 1109.299 0.004 0.25 77 8 2 7 7 1 6 1111.433 -0.003 1.25 77 10 2 9 10 1 10 1113.129 -0.006 0.05 77 10 1 10 9 0 9 1113.880 -0.016 0.25 77 7 2 5 6 3 4 1114.348 0.001 0.05 77 6 3 3 5 4 2 1114.768 -0.003 0.05 77 9 1 8 8 2 7 1119.151 0.001 0.05 77 11 O 11 10 1 10 1120.910 0.002 5.00 77 8 3 6 7 2 5 1122.634 0.002 0.25 77 5 5 O 4 4 1 1123.049 -0.001 1.25 77 7 3 4 6 4 3 1124.340 0.004 0.05 77 7 4 4 6 3 3 1124.725 . 0.006 0.05 77 12 3 10 12 2 11 1125.119 0.006 0.05 77 10 2 9 9 1 8 1126.772 0.002 1.25 77 12 1 12 11 O 11 1127.821 0.001 1.25 77 6 5 2 5 4 1 1128.712 0.000 5.00 77 9 2 7 8 3 6 1130.811 0.000 5.00 77 7 4 3 6 5 2 1132.253 0.001 1.25 77 8 4 5 7 3 4 1133.257 -0.003 0.25 77 13 0 13 12 1 12 1134.630 -0.001 1.25 77 6 6 1 5 5 0 1138.337 0.001 5.00 77 10 3 8 9 2 7 1138.897 -0.001 5.00 77 6 6 0 5 5 1 1141.125 -0.003 0.05 77 14 1 14 13 0 13 1141.341 0.004 0.05 77 8 4 4 7 5 3 1142.827 -0.008 0.05 77 93 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka KC J K.a KC (cm ) (cm ) 8 5 4 7 4 3 1143.794 0.001 1.25 77 6 5 l 5 4 2 1145.076 0.004 0.05 77 11 2 9 10 3 8 1146.893 0.002 1.25 77 15 0 15 14 1 14 1147.964 0.031 0.00 77 7 6 2 6 5 1 1148.629 0.004 0.05 77 13 1 12 12 2 11 1149.072 -0.003 1.25 77 8 5 3 7 6 2 1149.354 -0.001 0.25 77 10 4 7 9 3 6 1150.360 0.002 5.00 77 9 4 5 8 5 4 1152.203 -0.002 5.00 77 6 4 2 5 3 3 1154.582 0.003 0.25 77 12 3 10 11 2 9 1154.793 0.001 5.00 77 8 6 3 7 5 2 1156.050 0.002 0.25 77 14 2 13 13 1 12 1156.323 -0.002 0.25 77 6 6 1 5 3 2 1156.817 -0.001 0.05 77 7 7 1 6 6 0 1157.697 0.002 1.25 77 6 5 2 5 2 3 1158.106 0.004 0.25 77 11 3 8 10 4 7 1158.774 -0.003 1.25 77 7 7 0 6 6 1 1159.619 -0.001 1.25 77 10 5 6 9 4 5 1161.236 0.003 0.05 77 9 5 4 8 6 3 1161.264 -0.003 0.05 77 7 6 1 6 5 2 1162.234 0.001 0.25. 77 13 2 11 12 3 10 1162.602 0.001 1.25 77 6 3 3 5 2 4 1163.418 -0.001 0.25 77 9 6 3 8 7 2 1165.877 -0.004 0.05 77 12 4 9 11 3 8 1167.102 0.000 5.00 77 8 7 2 7 6 1 1168.938 -0.001 5.00 77 14 3 12 13 2 11 1170.318 -0.002 0.25 77 16 2 15 15 1 14 1170.549 0.005 0.05 77 7 5 2 6 4 3 1171.376 -0.002 0.25 77 10 6 5 9 5 4 1171.799 -0.004 0.25 77 13 3 10 12 4 9 1175.334 0.003 0.25 77 9 7 3 8 6 2 1176.640 0.001 0.25 77 8 8 1 7 7 0 1177.167 0.000 ' 5.00 77 15 2 13 14 3 12 1177.950 0.000 0.05 77 8 8 0 7 7 1 1178.455 -0.002 0.05 77 12 5 8 11 4 7 1178.746 0.001 0.25 77 8 7 1 7 6 2 1179.755 0.001 0.25 77 7 4 3 6 3 4 1181.143 0.001 0.25 77 7 5 3 6 2 4 1182.120 0.004 0.05 77 10 7 4 9 6 3 1183.482 0.002 1.25 77 13 4 9 2 5 8 1187.356 -0.001 1.25 77 7 3 4 6 2 5 1188.422 0.001 0.05 77 9 8 2 8 7 1 1189.522 0.000 0.05 77 12 6 7 11 5 6 1189.802 0.003 0.05 77 11 6 5 10 7 4 1190.336 -0.003 0.25 77 17 2 15 16 3 14 1192.946 0.003 0.05 77 9 9 l 8 8 0 1196.706 0.005 0.05 77 9 9 0 8 8 1 1197.556 0.002 0.05 . 77 9 8 1 8 7 2 1197.721 0.004 0.05 77 94 UPPER LOWER OBSERVED OBS-GALC WEIGHT ISO -1 -1 J K3 KC J K.a KC (cm ) (cm ) 8 5 3 7 4 4 1198.702 0.000 0.05 77 13 5 8 12 6 7 1198.749 -0.003 0.05 77 8 6 3 7 3 4 1200.744 0.003 1.25 77 11 8 4 10 7 3 1204.256 0.007 0.05 77 9 7 2 8‘ 6 3 1204.770 -0.001 1.25 77 8 5 4 7 2 5 1206.854 -0.003 0.25 77 10 9 2 9 8 1 1210.232 0.000 5.00 77 12 8 5 11 7 4 1211.624 0.004 0.05 77 8 4 5 7 1 6 1213.095 -0.009 0.25 77 9 6 3 8 5 4 1215.961 0.001 1.25 77 10 10 1 9 9 0 1216.264 0.000 5.00 77 10 10 O 9 9 1 1216.826 -0.001 1.25 77 9 7 3 8 4 4 1219.765 0.002 0.05 77 10 8 .2 9 7 3 1221.546 -0.002 0.05 .77 9 5 4 8 4 5 1224.855 0.000 1.25 77 9 6 4 8 3 5 1225.384 -0.004 0.05 77 12 9 4 11 8 3 1225.666 0.003 0.25 77 11 10 2 10 9 1 1230.935 -0.003 0.05 77 9 4 5 8 3 6 1231.595 0.002 0.25 77 10 7 3 9 6 4 1232.830 0.000 0.05 77 11 10 1 10 9 2 1235.062 0.001 1.25 77 11 11 O 10 10 1 1236.206 0.001 1.25 77 9 3 6 8 2 7 1237.566 0.004 0.25 77 11 9 2 10 8 3 1238.554 -0.004 0.25 77 10 8 3 9 5 4 1239.277 -0.001 0.25 77 12 10 3 11 9 2 1240.991 -0.012 0.05 77 10 7 4 9 4 5 1244.096 -0.001 0.05 77 11 8 3 10 7 4 1249.322 0.007 0.05 77 10 6 5 9 3 6 1250.254 -0.002 0.25 77 12 11 2 11 10 1 1251.555 0.000 0.25 77 12 12 1 11 11 0 1255.378 0.001 0.25 77 10 5 6 9 2 7 1256.261 -0.003 0.25 77 11 7 4 10 6 5 1260.641 0.012 0.05 77 10 4 7 9 1 8 1261.863 0.003 0.05 77 13 13 0 12 12 1 1275.051 -0.003 0.05 77 ll 5 6 10 4 7 1274.978 0.002 0.05 77 ll 4 7 10 3 8 1280.707 0.006 0.05 77 16 l 16 17 O 17 890.401 -0.014 0.05 78 9 9 0 10 10 1 895.711 0.006 0.05 78 15 0 15 16 1 16 899.233 -0.001 0.25 78 14 4 11 15 3 12 903.573 0.007 0.05 78 8 8 1 9 9 0 906.562 -0.003 0.05 78 14 1 14 15 0 15 907.988 0.001 1.25 78 13 1 12 14 2 13 915.312 0.000 0.25 78 13 0 13 14 1 14 916.670 -0.001 1.25 78 7 7 0 8 8 1 919.736 -0.001 1.25 78 11 4 7 12 5 8 920.409 -0.008 0.05 78 12 3 10 13 2 11 920.796 -0.004 0.25 78 10 6 5 11 5 6 921.637 0.006 0.05 78 95 UPPER LOWER OBSERVED OB S-CALC WEIGHT ISO -1 -1 J K.a K.C J K3 KC (cm ) (cm ) 12 2 11 13 1 12 923.360 0.001 1.25 78 7 6 1 8 7 2 924.727 0.003 0.25 78 12 1 12 13 O 13 925.283 -0.001 5.00 78 9 5 4 10 6 5 927.004 0.005 0.25 78 11 2 9 12 3 10 928.257 0.002 1.25 78 6 6 1 7 7 0 930.756 0.002 1.25 78 10 4 7 11 ‘3 8 931.487 -0.001 0.05 78 6 6 0 7 7 1 932.705 0.007 0.25 78 9 4 5 10 5 6 933.076 0.007 0.25 78 11 0 11 12 1 12 933.824 0.001 5.00 78 7 5 2 8 6 3 935.105 0.001 0.25 78 10 3 8 11 2 9 935.643 -0.002 1.25 78 9 3 6 10 4 7 938.294 -0.001 1.25 78 10 2’ 9 11 1 10 939.257 0.002 1.25 78 10 1 10 11 0 11 942.289 0.001 5.00 78 9 2 7 10 3 8 942.965 0.000 5.00 78 5 5 1 6 6 0 943.489 -0.002 0.25 78 7 4 3 8 5 4 944.796 0.001 0.05 78 8 4 5 9 3 6 945.029 -0.004 1.25 78 5 5 0 6 6 1 946.325 0.003 5.00 78 9 1 8 10 2 9 947.100 0.002 5.00 78 4 3 2 5 4 1 949.438 -0.004 0.25 78 8 3 6 9 2 7 950.212 -0.001 5.00 78 9 0 9 10 1 10 950.677 0.000 5.00 78 7 3 4 8 4 5 951.628 -0.002 0.25 78 8 2 7 9 1 8 954.868 -0.001 1.25 78 4 4 1 5 5 0 956.642 0.000 5.00 78 7 2 5 8 3 6 957.386 0.003 1.25 78 6 3 3 7 4 4 957.983 0.001 0.25 78 6 4 3 7 3 4 958.437 0.003 5.00 78 8 1 8 9 0 9 958.986 -0.001 5.00 78 4 4 O 5 5 1 960.591 0.005 0.25 78 7 1 6 8 2 7 962.565 0.000 5.00 78 5 3 2 6 4 3 963.585 0.001 1.25 78 6 3 4 7 2 5 964.478 -0.008 0.25 78 5 4 2 6 3 3 965.715 -0.001 0.25 78 7 0 7 8 1 8 967.215 -0.003 5.00 78 4 3 1 5 4 2 968.508 ‘-0.001 0.25 78 6 2 5 7 1 6 970.183 -0.001 0.25 78 8 1 8 8 2 7 972.845 0.003 0.05 78 6 1 6 7 0 7 975.369 0.001 1.25 78 3 3 0 4 4 1 975.422 0.003 0.05 78 2 1 2 3 2 1 976.124 -0.007 0.05 78 9 1 8 9 2 7 977.054 -0.011 0.05 78 5 l 4 6 2 5 977.721 0.002 0.25 78 4 3 2 5 2 3 978.839 -0.001 5.00 78 7 0 7 7 l 6 981.306 0.002 0.25 78 10 3 8 10 4 7 981.617 -0.010 0.05 78 5 0 5 6 1 6 983.435 -0.001 5.00 78 96 OBSERVED OBS-CALC ‘WEIGHT 'ISO -1 -1 J K.a Kc J Ka KC (cm ) (cm ) 3 2 1 4 3 2 983.668 -0.001 0.05 78 2 2 1 3 3 0 984.283 -0.001 5.00 78 4 2 3 5 1 4 985.189 -0.004 0.05 78 1 3 8 1 4 7 986.490 -0.004 0.05 78 3 3 1 4 2 2 987.432 0.004 0.25 78 9 2 7 9 3 6 989.074 -0.003 0.05 78 6 1 6 6 2 5 989.692 -0.001 1.25 78 2 2 0 3 3 1 990.709 -0.002 1.25 78 4 1 4 5 0 5 991.420 -0.001 5.00 78 3 1 2 4 2 3 992.381 -0.001 5.00 78 7 1 6 7 2 5 992.885 -0.013 0.25 78 0 4 7 0 5 6 993.470 -0.002 0.05 78 8 3 6 8 4 5 996.479 0.000 0.25 78 5 O 5 5 1 4 998.010 0.001 5.00 - 78 3 0 3 4 1 4 999.318 0.002 1.25 78 6 2 5 6 3 4 1000.719 -0.001 0.05 78 2 2 1 3 1 2 1000.819 0.002 1.25 78 7 2 5 7 3 4 1003.877 0.003 0.25 78 0. 5 6 0 6 5 1004.658 -0.004 0.05 78 1 1 0 2 2 1 1006.353 0.001 1.25 78 2 1 2 3 0 3 1007.161 0.001 0.25 78 5 1 4 5 2 3 1008.552 -0.001 5.00 78 6 3 4 6 4 3 1011.043 0.003 1.25 78 6 2 4 6 3 3 1011.330 0.002 0.05 78 9 4 5 9 5 4 1011.400 0.002 0.05 78 7 4 4 7 5 3 1013.954 0.007 0.05 78 1 0 1 2 1 2 1014.592 0.005 0.25 78 1 1 1 2 0 2 1015.154 0.001 5.00 78 4 2 3 4 3 2 1015.916 0.001 5.00 78 4 1 3 4 2 2 1016.552 0.001 1.25 78 8 5 4 8 6 3 1017.114 0.003 1.25 78 5 3 3 5 4 2 1017.804 -0.003 0.25 78 8 4 4 8 5 3 1018.449 -0.003 0.05 78 5 2 3 5 3 2 1019.172 0.002 5.00 78 6 4 3 6 5 2 1019.930 0.000 5.00 78 2 1 2 2 2 1 1021.779 0.001 5.00 78 6 3 3 6 4 2 1022.346 -0.001 0.25 78 3 2 2 3 3 1 1022.425 0.008 0.05 78 4 3 2 4 4 1 1023.284 -0.001 5.00 78 O 7 4 0 8 3 1023.953 -0.002 0.25 78 5 4 2 5_ 5 1 1024.414 0.009 0.05 78 3 1 2 3 2 1 1024.813 0.002 1.25 78 7 4 3 7 5 2 1025.953 -0.003 1.25 78 4 2 2 4 3 1 1026.879 ~0.001 5.00 78 7 6 2 7 7 1 1027.547 -0.002 0.05 78 5 3 2 5 4 1 1029.098 0.001 5.00 78 8 7 2 8 8 1 1029.674 -0.004 0.25 78 1 O 1 1 1 0 1030.197 0.000 5.00 78 2 l 1 2 2 0 1030.506 0.002 0.25 78 97 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka K.C (cm ) (cm ) 3 2 1 3 3 0 1030.902 0.000 5.00 78 5 4 1 5 5 0 1031.777 -0.001 5.00 78 6 5 l 6 6 0 1032.261 0.006 0.25 78 7 6 1 7 7 0 1032.881 0.001 0.25 78 7 5 2 7 6 1 1033.384 0.005 0.25 78 9 6 3 9 7 2 1033.609 -0.002 0.25 78 9 7 2 9 8 1 1036.857 0.000 0.25 78 1 1 0 1 0 1 1039.039 0.002 5.00 78 2 2 0 2 1 1 1040.382 0.002 5.00 78 3 3 0 3 2 1 1042.468 0.000 5.00 78 4 4 0 4 3 1 1045.363 -0.001 5.00 78 2 1 1 2 0 2 1046.762 0.002 0.25 78 3 2 1 3 1 2 1047.433 -0.002 5.00 78 2 2 1 2 1 2 1048.266 -0.001 1.25 78 4 3 1 4 2 2 1048.541 -0.001 1.25 78 5 5 0 5 4 1 1049.101 -0.001 5.00 78 5 4 1 5 3 2 1050.232 0.000 5.00 78 6 5 1 6 4 2 1052.659 0.004 1.25 78 4 4 1 4 3 2 1052.957 -0.001 5.00 78 6 6 0 6 5 1 1053.632 -0.012 0.25 78 2 0 2 1 1 1 1053.953 -0.003 1.25 78 . 2 1 2 1 0 1 1054.463 -0.001 5.00 78 3 1 2 3 0 3 1055.841 0.001 1.25 78 3 2 2 3 1 3 1056.125 0.006 0.05 78 5 5 1 5 4 2 1056.217 -0.003 0.25 78 4 2 2 4 1 3 1057.108 -0.001 5.00 78 4 3 2 4 2 3 1057.903 -0.002 5.00 78 5 3 2 5 2 3 1058.495 0.000 1.25 78 7 7 0 7 6 1 1058.856 -0.002 5.00 78 8 7 1 8 6 2 1060.184 0.006 0.05 78 5 4 2 5 3 3 1060.215 0.001 0.05 78 3 0 3 2 1 2 1061.982 0.002 0.25 78 3 1 3 2 0 2 1062.034 0.003 0.05 78 6 5 2 6 4 3 1063.076 -0.001 5.00 78 2 2 l 1 1 0 1063.875 -0.001 5.00 78 4 2 3 4 1 4 1064.462 -0.004 0.05 78 9 8 1 9 7 2 1065.413 0.000 1.25 78 5 2 3 5 1 4 1066.308 -0.002 0.05 78 5 3 3 5 2 4 1066.449 0.005 0.05 78 6 4 3 6 3 4 1068.805 0.000 0.05 78 4 l 4 3 O 3 1069.691 —0.002 1.25 78 3 1 2 2 2 1 1070.459 0.000 0.05 78 2 2 0 1 1 1 1071.275 0.005 0.25 78 7 5 3 7 4 4 1071.562 -0.004 0.05 78 3 2 2 2 1 1 1072.086 -0.001 1.25 78 5 1 4 5 O 5 1072.796 -0.008 1.25 78 11 9 2 11 8 3 1074.272 0.001 0.05 78 8 6 3 8 5 4 1074.753 -0.001 1.25 78 6 3 4 6 2 5 1075.109 -0.008 0.05 78 98 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ha KC J Ka KC (cm ) (cm ) 9 6 3 9 5 4 1075.175 0.002 0.05 78 5 0 5 4 1 4 1077.282 0.000 5.00 78 7 3 4 7 2 5 1077.679 -0.001 0.05 78 7 4 4 7 3 5 1077.757 0.007 0.25 78 10 10 1 10 9 2 1078.698 0.006 0.05 78 4 2 3 3 1 2 1079.681 0.000 1.25 78 8 5 4 8 4 5 1080.693 0.000 1.25 78 6 2 5 6 1 6 1081.057 0.000 5.00 78 3 3 1 2 2 0 1081.763 0.001 5.00 78 10 8 3 10 7 4 1082.533 -0.002 1.25 78 7 2 5 7 1 6 1083.711 0.002 1.25 78 6 1 6 5 0 5 1084.777 -0.001 5.00 78 8 4 5 8 3 6 1086.666 0.002 1.25 78 5 1 4 4 2 3 1087.620 0.002 0.25 78 3 3 0 2 2 1 1088.117 0.002 1.25 78 7 1 6 7 0 7 1089.209 0.005 5.00 78 9 4 5 9 3 6 1089.852 0.005 0.05 78 4 3 2 3 2 1 1090.334 0.000 5.00 78 11 8 4 11 7 5 1091.438 0.007 0.25 .78 7 0 7 6 1 6 1092.181 0.003 5.00 78 10 6 5 10 5 6 1093.356 -0.003 0.05 78 3 2 1 2 1 2 1094.886 0.002 0.25 78 6 2 5 5 1 4 1095.629 -0.001 5.00 78 5 2 3 4 3 2 1097.038 0.006 1.25 78 5 3 3 4 2 2 1097.835 —0.005 1.25 78 10 5 6 10 4 7 1098.980 0.003 0.25 78 8 1 8 7 0 7 1099.481 0.000 5.00 78 4 4 1 3 3 0 1100.193 0.002 5.00 f 78 9 2 7 9 1 8 1100.566 -0.001 1.25 78 5 3 2 4 4 1 1102.941 0.001 1.25 78 7 1 6 6 2 5 1103.529 0.000 5.00 78 10 4 7 10 3 8 1104.137 -0.001 1.25 78 9 1 8 9 0 9 1105.194 0.000 0.05 78 4 4 0 3 3 1 1105.318 -0.001 1.25 78 6 3 4 5 2 3 1105.951 0.000 1.25 78 9 0 9 8 1 8 1106.686 0.000 5.00 78 11 4 7 11 3 8 1107.929 0.000 0.25 78 10 3 8 10 2 9 1108.828 0.002 0.25 78 5 4 2 4 3 1 1109.184 0.002 1.25 78 8 2 7 7 1 6 1111.335 -0.001 5.00 78 12 6 7 12 5 8 1111.913 -0.001 0.05 78 11 3 8 11 2 9 1112.683 -0.004 0.25 78 10 2 9 10 1 10 1113.036 -0.002 1.25 78 10 1 10 9 0 9 1113.796 0.001 5.00 78 7 2 5 6 3 4 1114.248 0.003 0.25 78 6 3 3 5 4 2 1114.676 -0.001 5.00 78 6 4 3 5 3 2 1116.573 -0.002 5.00 78 11 2 9 1 1 10 1116.973 «0.002 0.25 78 9 1 8 8 2 7 1119.048 0.000 0.25 78 99 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a Kc J K.a KC (cm ) (cm ) 11 0 11 10 1 10 1120.802 -0.003 5.00 78 4 3 2 3 0 3 1121.366 0.003 0.05 78 8 3 6 7 2 5 1122.533 0.004 1.25 78 5 5 0 4 4 1 1122.945 0.000 5.00 78 7 3 4 6 4 3 1124.231 -0.003 5.00 78 7 4 4 6 3 3 .1124.618 0.004 1.25 78 12 3 10 12 2 11 1125.014 -0.001 0.25 78 13 4 9 13 3 10 1125.420 0.000 0.05 78 10 2 9 9 1 8 1126.668 0.000 5.00 78 12 1 12 11 0 11 1127.717 0.001 5.00 78 5 4 1 4 3 2 1128.096 0.003 1.25 78 6 5 2 5 4 1 1128.589 -0.001 5.00 78 9 2 7 8 3 6 1130.706 -0.001 5.00 78 7 4 3 6 5 2 1132.163 0.000 5.00 78 8 4 5 7 3 4 1133.155 0.000 0.25 78 11 1 10 10 2 9 1134.192 -0.001 1.25 78 13 0 13 12 1 12 1134.528 0.000 1.25 78 7 5 3 6 4 2 1135.934 0.003 1.25 78 13 1 12 13 0 13 1135.979 0.004 0.05 78 5 5 1 4 2 2 1136.251 -0.002 0.05 78 5 3 2 4 2 3 1137.561 0.001 1.25 78 6 6 1 5 5 0 1138.209 -0.001 5.00 78 10 3 8 9 2 7 1138.792 -0.001 5.00 78 5 4 2 4 1 3 1139.410 -0.001 0.25 78 14 1 14 13 0 13 1141.238 -0.003 1.25 78 12 2 11 11 1 10 1141.626 0.000 1.25 ’78 9 3 6 8 4 5 1141.730 0.003 1.25 78 8 4 4 7 5 3 1142.731 0.000 1.25 78 8 5 4 7 4 3 1143.681 0.000 5.00 78 6 5 1 5 4 2 1144.984 0.000 5.00 78 11 2 9 10 3 8 1146.784 -0.001 5.00 78 15 0 15 14 1 14 1147.855 -0.001 5.00 78 7 6 2 6 5 1 1148.494 0.000 5.00 78 13 1 12 12 2 11 1148.968 0.002 5.00 78 8 5 3 7 6 2 1149.275 -0.001 1.25 78 10 4 7 9 3 6 1150.249 -0.001 5.00 78 9 4 5 8 5 4 1152.090 -0.006 1.25 78 16 1 16 15 0 15 1154.373 0.001 5.00 78 12 3 10 11 2 9 1154.684 -0.001 5.00 78 8 6 3 7 5 2 1155.916 0.001 5.00 78 14 2 13 13 1 12 1156.215 0.000 1.25 78 6 6 1 5 3 2 1156.663 -0.001 5.00 78 7 7 1 6 6 0 1157.562 -0.001 1.25 78 6 5 2 5 2 3 1157.988 0.000 5.00 78 11 3 8 10 4 7 1158.669 0.000 5.00 78 7 7 O 6 6 1 1159.503 0.000 5.00 78 17 0 17 16 1 16 1160.789 -0.001 1.25 78 10 4 6 9 5 5 1161.085 0.001 0.05 78 10 5 6 9 4 5 1161.122 0.000 1.25 78 100 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.c J K.a K.C (cm ) (cm ) 9 5 4 8 6 3 1161.164 0.000 1.25 78 7 6 1 6 5 2 1162.145 0.000 5.00 78 13 2 11 12 3 10 1162.494 0.000 5.00 78 9 6 4 8 5 3 1163.227 -0.003 1.25 78 6 3 3 5 2 4 1163.313 -0.001 0.25 78 15 1 14 14 2 13 1163.375 0.003 1.25 78 6 4 3 5 1 4 1163.714 -0.001 1.25 78 9 6 3 8 7 2 1165.818 -0.001 5.00 78 12 4 9 11 3 8 1166.993 0.000 5.00 78 8 7 2 7 6 1 1168.799 0.000 5.00 78 11 4 7 10 5 6 1169.914 0.001 5.00 78 14 3 12 13 2 11 1170.213 0.002 0.25 78 16 2 15 15 1 14 1170.437 -0.001 5.00 78 10 5 5 9 6 4 1171.185 0.004 1.25 78 7 5 2 6 4 3 1171.290 0.000 1.25 78 10 6 5 9 5 4 1171.688 0.000 5.00 78 13 3 10 12 4 9 1175.223 0.000 5.00 78 8 8 1 7 7 0 1177.030 0.000 5.00 78 15 2 13 14 3 12 1177.841 0.002 0.05 78 8 8 0 7 7 1 1178.334 0.001 5.00 78 12 5 8 11 4 7 1178.631 —0.001 1.25 78 8 7 1 7 6 2 1179.663 0.000 1.25 78 11 5 6 10 6 5 1180.542 0.001 5.00 78 11 6 6 10 5 5 1180.654 -0.001 1.25 78 7 4 3 6 3 4 1181.036 -0.002 5.00 78 7 5 3 6 2 4 1182.007 0.002 1.25 78 10 7 4 9 6 3 1183.349 0.002 5.00 78 18 2 17 17 l 16 1184.309 0.005 0.05 ‘78 16 3 14 15 2 13 1185.381 0.003 0.25 78 13 4 9 12 5 8 1187.245 -0.001 1.25 78 8 6 2 7 5 3 1188.002 0.000 1.25 78 7 3 4 6 2 5 1188.310 -0.001 1.25 78 7 4 4 6 1 5 1188.383 0.000 0.25 78 9 8 2 8 7 1 1189.375 0.001 1.25 78 12 6 7 11 5 6 1189.678 -0.004 1.25 78 11 6 5 10 7 4 1190.228 0.002 5.00 78 11 7 5 10 6 4 1191.396 0.005 0.05 78 17 2 15 16 3 14 1192.833 0.004 0.25 78 7 2 5 6 1 6 1194.580 -0.002 0.25 78 14 5 10 13 4 9 1195.761 0.000 0.25 78 9 9 1 8 8 0 1196.562 0.002 5.00 78 8 7 2 7 4 3 1197.093 -0.001 5.00 78 10 8 3 9 7 2 1197.585 0.001 0.05 78 9 8 1 8 7 2 1197.619 -0.001 1.25 78 8 5 3 7 4 4 1198.609 0.005 0.05 78 13 5 8 12 6 7 1198.637 0.002 1.25 78 16 4 13 15 3 12 1199.353 ~0.001 0.25 78 12 6 6 11 7 5 1200.034 0.003 0.05 78 12 7 6 11 6 5 1200.330 0.001 5.00 78 101 - 10 OBSERVED OBS-CALC WEIGHT ISO . -1 ._1 J K.a Kc J Ka KC (cm ) (cm ) 8 6 3 7 3 4 1200.626 0.000 5.00 78 11 8 4 10 7 3 1204.099 -0.001 0.25 78 15 4 1 14 5 0 1204.176 -0.002 0.25 78 9 7 2 8 6 3 1204.693 0.000 5.00 78 8 5 4 7 2 5 1206.746 0.002 5.00 78 17 3 4 16 4 3 1207.214 0.000 0.25 78 14 6 9 13 5 8 1207.500 -0.002 0.25 78 12 7 5 11 8 4 1209.065 0.000 0.25 78 13 6 7 12 7 6 1209.429 0.000 1.25 78 10 9 2 9 8 1 1210.076 -0.001 5.00 78 12 8 5 11 7 4 1211.488 -0.004 1.25 78 16 5 2 15 4 1 1212.497 0.000 0.25 78 8 4 5 7 1 6 1212.987 -0.003 1.25 78 9 1 9 8 2 1216.052 -0.004 0.25 78 10 10 l 9 9 0 1216.120 0.000 5.00 78 10 10 0 9 9 1 1216.690 0.000 5.00 78 9 8 2 8 5 3 1217.856 0.000 0.25 78 8 3 6 7 0 7 1218.836 0.001 1.25 78 11 9 3 10 8 2 1219.073 -0.002 1.25 78 13 7 6 12 8 5 1219.462 0.003 0.25 78 9 7 3 8 4 4 1219.640 0.000 0.25 78 10 8 2 9 7 3 1221.471 0.001 1.25 78 9 5 4 8 4 5 1224.746 -0.001 5.00 78 16 6 1 15 5 0 1224.911 0.000 0.05 78 9 6 4 8 3 5 1225.272 0.000 0.25 78 12 9 4 11 8 3 1225.494 -0.002 1.25 78 15 6 9 14 7 8 1227.719 0.002 0.25 78 14 8 7 '13 7 6 1229.362 -0.007 0.05 78 11 10 2 10 9 1 1230.780 0.001 5.00 78 9 4 5 8 3 6 1231.478 0.001 1.25 78 9 5 5 8 2 6 1231.519 0.000 0.05 78 10 7 3 9 6 4 1232.753 -0.001 0.25 78 17 5 2 16 6 1 1233.453 -0.004 0.05 78 11 10 1 10 9 2 1234.944 0.000 5.00 78 11 11 1 10 10 0 1235.683 0.000 1.25 78 11 11 0 10 10 1 1236.062 -0.001 5.00 78 9 3 6 8 2 7 1237.446 0.001 1.25 78 11 9 2 10 8 3 1238.473 0.001 1.25 78 10 8 3 9 5 4 1239.147 0.002 1.25 78 10 9 2 9 6 3 1239.580 0.002 0.25 78 12 10 3 11 9 2 1240.807 0.000 1.25 78 10 6 4 9 5 5 1242.809 0.001 0.05 78 9 2 7 8 1 8 1242.947 0.000 0.25 78 10 7 4 9 4 5 1243.976 0.000 1.25 78 11 8 3 10 7 4 1249.252 -0.001 1.25 78 10 5 5 9 4 6 1250.019 0.003 0.25 78 10 6 5 9 3 6 1250.136 -0.001 1.25 78 12 11 2 11 10 1 1251.396 0.000 1.25 78 12 11 1 11 10 2 1254.208 0.000 0.25 78 102 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.C J Ka KC (cm ) (cm ) 12 12 1 11 11 0 1255.225 0.001 0.25 78 12 12 O 11 11 1 1255.482 0.001 0.25 78 12 10 2 11 9 3 1255.846 -0.001 0.05 78 10 5 6 9 2 7 1256.142 -0.002 1.25 78 11 9 3 10 6 4 1259.269 -0.003 0.05 78 11 7 4 10 6 5 1260.542 -0.001 1.25 78 10 4 7 9 1 8 1261.739 -0.001 1.25 78 10 3 8 9 0 9 1266.924 0.003 0.25 78 11 6 5 10 5 6 1268.507 0.000 1.25 78 14 11 4 13 10 3 1269.889 -0.002 0.05 78 13 11 2 12 10 3 1273.708 0.004 0.25 78 13 12 1 12 11 2 1273.748 0.000 0.05 78 13 13 1 12 12 0 1274.720 -0.001 0.05 78 11 5 6 10 4 7 1274.858 0.002 0.05 78 13 13 0 12 12 1 1274.896 -0.003 0.05 78 12 8 4 11 7 5 1277.773 0.003 0.05 78 12 10 3 11 7 4 1280.174 -0.003 0.05 78 11 4 7 10 3 8 1280.579 0.000 1.25 78 12 9 4 11 6 5 1282.101 -0.002 0.25 78 11 3 8 10 2 9 1285.868 0.000 0.25 78 12 8 5 11 5 6 1287.548 -0.001 0.25 78 14 13 2 13 12 1 1292.257 -0.002 0.05 78 12 7 6 11 4 7 1293.627 0.001 0.25 78 14 14 1 13 13 0 1294.158 0.006 0.05 78 .12 6 7 11 3 8 1299.424 -0.001 0.25 78 12 5 8 11 2 9 1304.826 0.002 0.05 78 12 4 9 11 1 10 1309.833 0.000 0.05 78 13 6 7 12 5 8 1318.214 0.000 0.05 78 13 5 8 12 4 9 1323.749 0.002 0.05 78 13 4 9 12 3 10 1328.883 0.006 0.05 78 13 3 10 12 2 11 1333.635 0.002 0.05 _ 78 16 1 16 17 0 17 890.288 0.002 0.25 80 9 9 0 10 10 1 895.613 0.000 0.25 80 15 1 14 16 2 15 898.913 0.006 0.05 80 15 0 15 16 1 16 899.109 0.002 1.25 80 8 7 2 9 8 1 902.516 0.003 0.25 80 14 4 11 15 3 12 903.431 0.000 0.05 80 14 3 12 15 2 13 905.575 0.003 0.05 80 8 8 1 9 9 0 906.450 -0.001 0.25 80 14 2 13 15 1 14 907.068 -0.006 0.25 80 8 8 0 9 9 1 907.314 -0.010 0.05 80 14 1 14 15 0 15 907.859 0.000 5.00 80 13 3 10 14 4 11 910.512 0.005 0.05 80 13 2 11 14 3 12 913.151 0.003 0.25 80 13 1 12 14 2 13 915.182 0.001 1.25 80 11 5 6 12 6 7 915.548 -0.003 0.05 80 10 7 4 11 6 5 916.216 0.002 0.05 80 13 O 13 14 1 14 916.537 -0.003 5.00 80 12 4 9 13 3 10 917.525 0.005 0.25 80 103 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 - 1 J K.a KC J Ka KC (cm ) (cm ) 7 7 1 8 8 0 918.319 0.002 1.25 80 7 7 O 8 8 1 919.639 0.000 1.25 80 11 4 7 12 5 8 920.281 -0.001 0.25 80 12 3 10 13 2 11 920.664 0.000 1.25 80 10 6 5 11 5 6 921.496 0.002 0.05 80 12 2 11 13 1 12 923.224 0.000 5.00 80 11 3 8 12 4 9 924.464 -0.004 1.25 80 7 6 1 8 7 2 924.643 0.002 0.05 ' 80 6 5 2 7 6 1 924.988 0.005 0.05 80 12 1 12 13 0 13 925.150 0.001 5.00 80 5 3 2 6 6 1 926.266 0.001 0.05 80 10 5 6 11 4 7 926.661 -0.003 1.25 80 9 5 4 10 6 5 926.869 -0.001 0.05 80 11 2 9 12 3 10 928.118 0.002 5.00 80 6 6 1 7 7 0 930.623 0.001 5.00 80 11 1 10 12 2 11 931.201 -0.002 5.00 80 10 4 7 11 3 8 931.345 -0.002 0.05 80 8 7 2 9 6 3 931.960 0.004 0.25 80 6 6 0 7 7 1 932.600 0.005 1.25 80 9 4 5 10 5 6 932.930 0.001 0.25 80 11 0 11 12 1 12 933.685 0.001 5.00 80 8 6 3 9 5 4 933.895 0.000 0.25 80 7 5 2 8 6 3 935.011 0.000 0.25 80 10 3 8 11 2 9 935.503 0.000 5.00 80 5 4 2 6 5 1 936.855 0.003 0.05 80 4 2 3 5 3 2 937.896 0.003 0.05 80 9 3 6 10 4 7 938.151 -0.001 5.00 80 6 5 1 7 6 2 938.867 0.001 0.05 80 10 2 9 11 1 10 939.113 0.000 5.00 80 10 1 10 11 0 11 942.146 0.000 5.00 80 9 2 7 10 3 8 942.822 0.001 5.00 80 5 5 1 6 6 0 943.348 -0.002 1.25 80 7 4 3 8 5 4 944.666 0.002 1.25 80 8 4 5 9 3 6 944.885 -0.004 1.25 80 7 5 3 8 4 4 945.747 -0.001 0.25 80 5 5 0 6 6 1 946.215 0.002 5.00 80 9 1 8 10 2 9 946.955 0.001 5.00 80 6 4 2 7 5 3 949.213 0.005 0.05 80 4 3 2 5 4 1 949.269 0.002 0.05 80 8 3 6 9 2 7 950.067 0.000 5.00 80 9 0 9 10 1 10 950.532 0.001 5.00 80 7 3 4 8 4 5 951.484 -0.001 5.00 80 7 4 4 8 3 5 951.568 0.005 0.05 80 6 5 2 7 4 3 953.284 0.002 1.25 80 5 4 1 6 5 2 953.472 -0.004 0.05 80 8 2 7 9 1 8 954.722 0.000 5.00 80 4 4 1 5 5 0 956.494 0.001 5.00 80 7 2 5 8 3 6 957.235 0.001 5.00 80 6 3 3 7 4 4 957.837 -0.003 0.25 80 104 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J K.a Kc (cm ) (cm ) L 6 4 3 7 3, 4 958.283 0.001 5.00 80 8 1 8 9 0 9 958.839 0.001 5.00 80 4 4 O 5 5 1 960.469 0.001 1.25 80 7 1 6 8 2 7 962.415 0.000 5.00 80 5 3 2 6 4 3 963.453 0.001 5.00 80 5 5 1 6 4 2 963.655 -0.006 0.25 80 6 3 4 7 2 5 964.328 -0.008 0.25 80 5 4 2 6 3 3 965.547 -0.003 1.25 80 7 0 7 8 1 8 967.065 -0.002 5.00 80 4 3 1 5 4 2 968.379 -0.004 1.25 80 10 2 9 10 3 8 968.916 0.004 0.25 80 6 2 5 7 1 6 970.031 -0.001 0.25 80 5 2 3 6 3 4 971.249 -0.001 5.00 80 5 3 3 6 2 4 971.399 0.000 0.05 1 80 8 1 8 8 2 7 972.692 0.003 0.25 80 4 4 1 5 3 2 974.892 -0.002 1.25 80 6 1 6 7 0 7 975.214 -0.001 1.25 80 3 3 0 4 4 1 975.285 -0.004 0.05 80 2 1 2 3 2 1 .975.966 0.001“ 0.25 80 9 1 8 9 2 7 976.911 0.001 0.25 80 5 1 4 6 2 5 977.564 -0.001 5.00 80 4 2 2 5 3 3 977.766 -0.001 0.05 80 4 3 2 5 2 3 978.678 -0.001 5.00 80 7 0 7 7 1 6 981.150 0.001 1.25 80 10 3 8 10 4 7 981.468 -0.001 0.25 80 5 O 5 6 1 6 983.279 -0.001 5.00 80 3 2 1 4 3 2 983.523 -0.006 0.25 80 2 2 1 3 3 0 984.125 -0.001 5.00 80 8 2 7 8 3 6 984.851 -0.001 0.25 80 4 2 3 5 1 4 985.030 -0.007 0.05 80 11 3 8 11 4 7 986.334 -0.001 0.05 80 3 3 1 4 2 2 987.246 0.001 1.25 80 9 2 7 9 3 6 988.918 0.001 1.25 80 6 1 6 6 2 5 989.537 0.002 5.00 80 2 2 0 3 3 1 990.568 0.000 5.00 80 4 1 4 5 0 5 991.261 -0.001 5.00 80 3 1 2 4 2 3 992.226 “0.001 5.00 80 3 2 2 4 1 3 992.536 0.005 0.25 80 7 1 6 7 2 5 992.736 -0.002 0.25 80 10 4 7 10 5 6 993.308 -0.002 0.25 80 8 3 6 8 4 5 996.320 0.003 1.25 80 5 0 5 5 1 4 997.849 0.000 5.00 80 1 1 1 2 2 0 998.738 0.002 1.25 80 2 1 1 3 2 2 998.884 0.002 1.25 80 3 0 3 4 l 4 999.156 0.000 1.25 80 6 2 5 6 3 4 1000.565 0.007 0.05 80 2 2 1 3 1 2 1000.647 0.001 1.25 80 7 2 5 7 3 4 1003.708 0.000 0.25 80 10 5 6 10 6 5 1004.495 -0.001 0.25 80 105 OBSERVED UPPER LOWER OBS-CALC WEIGHT ISO -1 -1 J K.a KC J Ka KC (cm ) (cm ) O 4 6 O 5 5 1004.564 -0.007 0.05 80 4 1 4 4 2 3 1006.072 0.000 0.25 80 1 1 0 2 2 1 1006.201 0.003 1.25 80 2 O 2 3 1 3 1006.952 0.015 0.05 80 2 1 2 3 O 3 1006.997 0.000 1.25 80 5 2 4 5 3 3 1008.291 0.003 0.05 80 5 1 4 5 2 3 1008.389 0.002 5.00 80 1 5 6 1 6 5 1009.210 0.001 0.05 80 6 3 4 6 4 3 1010.876 0.001 5.00 80 6 2 4 6 3 3 1011.158 0.001 0.05 80 9 4 5 9 5 4 1011.216 ‘-0.005 0.05 80 7 4 4 7 5 3 1013.784 0.001 1.25 80 3 1 3 3 2 2 1014.143 0.001 0.25 80 1 O 1 2 1 2 1014.428 0.003 1.25 80 1 1 1 2 O 2 1014.986 0.001 1.25 80 4 2 3 4 3 2 1015.754 0.001 5.00 .80 4 1 3 4 2 2 1016.379 0.001 5.00 80 8 5 4 8 6: 3 1016.949 0.001 1.25 80 5 3 3 5 4 2 1017.650 0.002 1.25 80 8 4 4 8 5 3 1018.264 0.003 0.25 80 5 2 3 5 3 2 1018.989 0.001 5.00 80 6 4 3 6 5 2 1019.776 0.001 5.00 80 9 6 4 9 7 3 1020.307 -0.001 0.05 80 1 6 5 1 7 4 1020.514 -0.004 0.05 80 2 1 2 2 2 1 1021.621 0.002 5.00 80 0 0 0 1 1 1 1022.097 0.003 0.25 80 6 3 3 6 4 2 1022.154 -0.002 0.05 80 3 2 2 3 3 1 1022.263 -0.003 0.25 80 9 5 4 9 6 3 1022.622 -0.001 0.25 80 2 0 2 2 1 1 1022.898 0.005 1.25 80 4 3 2 4 4 1 1023.144 0.000 5.00 80 0 7 4 0 8 3 1023.801 -0.001 0.25 80 5 4 2 5 5 1 1024.273 -0.002 1.25 80 8 6 3 8 7 2 1024.572 0.009 0.05 80 3 1 2 3 2 1 1024.635 0.001 1.25 80 6 5 2 6 6 1 1025.702 0.007 0.25 80 7 4 3 7 5 2 1025.758 0.001 1.25 80 4 2 2 4 3 1 1026.702 0.001 5.00 80 9 7 3 9 8 2 1027.180 0.002 0.05 80 7 6. 2 7 7 1 1027.448 -0.001 0.25 80 5 3 2 5 4 1 1028.922 0.001 5.00 80 8 7 2 8 8 1 1029.594 0.000 0.25 80 1 O 1 1 1 0 1030.031 0.001 5.00 80 2 1 1 2 2 0 1030.346 0.003 0.25 80 3 2 1 3 3 0 1030.750 -0.001 5.00 80 6 4 2 6 5 1 1031.142 0.005 0.05 80 4 3 1 4 4 0 1031.199 -0.001 0.05 80 5 4 1 5 5 0 1031.661 0.000 5.00 80 6 5 1 6 6 0 1032.164 0.002 1.25 80 106 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J K.a K.c (cm ) (cm ) 7 6 1 7 7 0 1032.812 0.001 0.25 80 7 5 2 7 6 1 1033.228 0.000 1.25 80 8 7 1 8 8 0 1033.795 0.010 0.05 80 8 6 2 8 7 1 1035.111 0.000 1.25 80 9 7 2 9 8 1 1036.753 -0.001 5.00 80 10 7 3 10 8 2 1037.022 0.003 0.25 80 10 9 1 10 10 0 1037.464 0.003 0.05 80 10 8 2 10 9 1 1038.196 0.002 0.25 80 1 1 0 1 O 1 1038.863 0.000 5.00 80 11 9 2 11 10 1 1039.559 -0.003 0.25 80 2 2 0 2 1 1 1040.201 0.002 5.00 80 3 3 0 3 2 1 1042.274 -0.001 5.00 80 4 4 O 4 3 1 1045.153 -0.001 5.00 80 1 1 1 O O 0 1046.437 -0.002 5.00 80 2 1 1 2 0 2 1046.595 0.004 0.05 80 3 2 1 3 1 2 1047.268 -0.002 5.00 80 2 2 1 2 1 2 1048.083 0.000 5.00 80 4 3 1 4 2 2 1048.374 -0.003 1.25 80 5 5 O 5 4 1 1048.868 -0.001 5.00 80 5 4 1 5 3 2 1050.063 0.001 0.25 80 6 5 1 6 4 2 1052.473 0.001 5.00 80 4 4 1 4 3 2 1052.753 -0.001 1.25 80 6 6 0 6 5 1 1053.382 -0.001 1.25 80' 2 0 2 1 1 1 1053.782 -0.001 5.00 80 2 1 2 1 0 1 1054.283 -0.001 5.00 80 3 1 2 3 O 3 1055.669 0.003 1.25 80 7 6 1 7 5 2 1055.735 -0.001 1.25 80 3 2 2 3 1 3 1055.937 -0.003 1.25 80 5 5 1 5 4 2 1056.000 -0.002 0.05 80 4 2 2 4 1 3 1056.938 -0.002 5.00 80 4 3 2 4 2 3 1057.722 -0.001 5.00 80 5 3 2 5 2 3 1058.331 -0.002 5.00 80 7 7 0 7 6 1 1058.565 -0.002 0.25 80 6 6 1 6 5 2 1059.784 0.002 1.25 80 6 4 2 6 3 3 1059.830 -0.005 0.05 80 5 4 2 5 3 3 1060.018 -0.009 0.05 80 7 5 2 7 4 3 1061.525 -0.001 1.25 80 3 0 3 2 1 2 1061.804 0.003 0.25 80 6 5 2 6 4 3 1062.880 -0.002 5.00 80 8 6 2 8 5 3 1063.576 0.002 0.05 80 2 2 1 1 1 0 1063.687 -0.002 5.00 80 4 2 3 4 1 4 1064.277 -0.009 0.05 80 9 8 1 9 7 2 1065.149 0.001 5.00 80 5 2 3 5 1 4 1066.131 -0.001 0.25 80 9 7 2 9 6 3 1066.197 0.000 0.05 80 6 3 3 6 2 4 1068.246 -0.001 1.25 80 6 4 3 6 3 4 1068.614 -0.009 0.05 80 4 1 4 3 0 3 1069.507 -0.004 1.25 80 9 9 0 9 8 1 1070.096 0.005 0.05 80 107 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 3 1 2 2 2 1 1070.290 0.002 1.25 ' 80 7 4 3 7 3 4 1070.495 -0.004 0.05 80 2 2 0 1 1 1 1071.090 0.001 1.25 80 7 5 3 7 4 4 1071.377 —0.004 0.25 80 3 2 2 2 1 1 1071.898 0.002 5.00 80 5 1 4 5 0 5 1072.622 0.001 5.00 80 9 9 1 9 8 2 1073.420 -0.002 0.25 80 11 9 2 11 8 3 1074.048 -0.002 1.25 80 8 6 3 8 5 4 1074.564 -0.001 5.00 80 6 3 4 6 2 5 1074.928 -0.006 0.05 80 9 6 3 9 5 4 1075.030 0.001 0.25 80 5 0 5 4 1 4 1077.095 -0.003 5.00 80 7 4 4 7 3 5 1077.563 -0.004 0.25 80 9 7 3, 9 6 4 1078.206 0.001 1.25 80 4 1 3 3 2 2 1079.235 0.002 1.25 80 4 2 3 3 1 2 1079.493 0.000 1.25 80 8 4 4 8 3 5 1080.318 0.002 1.25 80 8 5 4 8 4 5 1080.506 -0.004 1.25 80 6 2 5 6 1 6 1080.873 0.002 5.00 80 3 3 1 2 2 0 1081.561 0.000 5.00 80 10 8 3 10 7 4 1082.329 -0.002 1.25 80 9 5 4 9 4 5 1083.288 0.003 1.25 80 7 2 5 7 1 6 1083.525 0.002 1.25 80 6 1 6 5 0 5 1084.589 -0.002 5.00 80 8 4 5 8 3 6 1086.475 -0.003 1.25 80 5 1 4 4 2 3 1087.433 0.002 0.25 80 _ 3 3 O 2 2 1 1087.930 0.000 1.25 80 7 1 6 7 0 7 1089.017 0.001 5.00 80 9 4 5 9 3 6 1089.665 0.003 0.05 80 4 3 2 3 2 1 1090.129 -0.001 5.00 80 11 8 4 11 7 5 1091.242 -0.001 0.00 80 7 0 7 6 1 6 1091.990 0.001 5.00 80 10 5 5 10 4 6 1093.061 -0.002 0.25 80 10 6 5 10 5 6 1093.172 -0.002 0.25 80 3 2 1 2 1 2 1094.710 ' 0.002 1.25 80 6 2 5 5 1 4 1095.438 -0.002 1.25 80 11 6 5 11 5 6 1096.603 0.002 0.05 80 5 2 3 4 3 2 1096.848 0.000 5.00 80 5 3 3 4 2 2 1097.643 0.001 5.00 80 10 5 6 10 4 7 1098.786 -0.003 5.00 80 8 1 8 7 0 7 1099.289 0.000 5.00 80 4 4 1 3 3 0 1099.975 0.000 5.00 80 9 2 7 9 1 8 1100.383 0.007 0.05 80 11 5 6 11 4 7 1102.499 0.005 0.25 80 5 3 2 4 4 1 1102.799 0.001 1.25 80 7 1 6 6 2 5 1103.336 0.000 5.00 80 10 4 7 10 3 8 1103.946 -0.001 1.25 80 9 1 8 9 0 9 1105.002 0.002 0.25 80 4 4 0 3 3 1 1105.130 0.003 1.25 80 108 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K3 KC J K.a K.c (cm ) (cm ) 6 2 4 5 3 3 1105.636 0.002 0.25 80 6 3 4 5 2 3 1105.759 0.003 1.25 80 9 O 9 8 1 8 1106.492 -0.001 5.00 80 11 4 7 11 3 8 1107.737 0.000 1.25 80 10 3 8 10. 2 9 1108.634 0.000 1.25 80 5 4 2 4 3 1 1108.962 0.001 1.25 80 13 7 6 13 6 7 1110.351 0.003 0.25 80 8 2 7 7' 1 6 1111.140 -0.001 5.00 80 4 3 1 3 2 2 1111.229 -0.003 0.05 80 12 6 7 12 5 8 1111.719 -0.004 0.25 80 11 3 8 11 2 9 1112.496 0.003 1.25 80 10 2 9 10 1 10 1112.843 0.001 0.25 80 10 1 10 9 O 9 1113.601 0.002 5.00 80 7 2 5 6 3 4 1114.052 0.002 0.25 80 13 6 7 13 5 8 1115.853 0.003 1.25 80 6 4 3 5 3 2 1116.362 0.001 5.00 80 4 4 1 3 1 2 1116.502 0.008 0.05 80 11 2 9 11 1 10 1116.787 0.006 0.25 80 9 1 8 8 2 7 1118.851 0.000 0.05 80 11 O 11 10 1 10 1120.606 -0.002 5.00 80 4 3 2 3 0 3 1121.164 0.002 0.25 80 8 3 6 7 2 5 1122.330 -0.001 5.00 80 5 5 0 4 4 1 1122.743 -0.002 1.25 80 7 3 4 6 4 3 1124.038 0.000 5.00 80 7 4 4 6 3 3 1124.415 0.006 0.25 80 12 3 10 12 2 11 1124.820 0.001 0.25 80 13 4 9 13 3 10 1125.223 0.001 0.05 80 10 2 9 9 1 8 1126.468 0.000 5.00 80 12 1 12 11 O 11 1127.518 0.000 5.00 80 5 4 1 4 3 2 1127.922 0.000 1.25 80 6 5 2 5 4 1 1128.350 -0.001 5.00 80 13 3 10 13 2 11 1129.218 -0.002 0.25 80 9 2 7 8 3 6 1130.505 -0.001 5.00 80 7 4 3 6 5 2 1131.992 -0.001 5.00 80 8 4 5 7 3 4 1132.950 -0.002 0.25 80 11 1 10 10 2 9 1133.992 0.001 1.25 80 13 0 13 12 1 12 1134.326 -0.003 1.25 80 7 5 3 6 4 2 1135.698 0.001 1.25 80 13 1 12 13 0 13 1135.770 -0.004 0.05 80 5 3 2 4 2 3 1137.378 0.001 5.00 80 6 6 1 5 5 0 1137.965 -0.002 5.00 80 10 3 8 9 2 7 1138.588 -0.002 5.00 80 5 4 2 4 1 3 1139.205 0.005 1.25 80 6 6 0 5 5 1 1140.808 0.002 5.00 80 14 1 14 13 O 13 1141.030 -0.011 0.05 80 12 2 11 11 1 10 1141.425 0.003 1.25 80 9 3 6 8 4 5 1141.524 0.001 1.25 80 8 4 4 7 5 3 1142.535 0.000 1.25 80 8 5 4 7 4 3 1143.462 -0.002 5.00 80 109 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J K.a KC (cm ) (cm ) 6 5 1 5 4 2 1144.813 0.000 5.00 80 5 2 3 4 1 4 1145.381 -0.001 1.25 80 11 2 9 10 3 8 1146.579 0.000 5.00 80 15 0 15 14 1 14 1147.653 0.000 5.00 80 15 2 13 15 1 14 1148.292 -0.002 0.05 80 7 6 2 6 5 1 1148.236 0.000 5.00 80 13 1 12 12 2 11 1148.761 0.000 5.00 80 8 5 3 7 6 2 1149.126 0.001 1.25 80 10 4 7 9 3 6 1150.042 -0.001 5.00 80 15 1 14 15 0 15 1150.578 0.002 0.05 80 11 7 5 10 8 2 1150.912 0.001 0.05 80 9 4 5 8 5 4 1151.890 0.000 5.00 80 8 6 3 8 3 6 1153.930 0.004 0.05 80 16 1 16 15 0 15 1154.166 0.000 5.00 80 6 4 2 5 3 3 1154.312 0.001 0.05 80 12 3 10 11 2 9 1154.478 0.001 5.00 80 8 6 3 7 5 2 1155.658 0.000 5.00 80 14 2 13 13 1 12 1156.011 0.003 1.25 80 6 6 1 5 3 2 1156.369 0.001 1.25 80 7 7 1 6 ‘6 0 1157.310 0.000 5.00 80 6 5 2 5 2 3 1157.763 0.000 1.25 80 11 3 8 10 4 7 1158.460 0.001 5.00 80 7 7 0 6 6 1 1159.278 0.000 5.00 80 17 O 17 16 1 16 1160.579 0.000 1.25 80 10 4 6 9 5 5 1160.876 0.002 0.05 80 10 5 6 9 4 5 1160.910 -0.001 1.25 80 9 5 4 8 6 3 1160.972 0.000 1.25 80 7 6 1 6 5 2 1161.972 0.001 5.00 80 13 2 11 12 3 10 1162.283 0.000 1.25 80 9 6 4 8 5 3 1162.990 -0.003 1.25 80 6 3 3 5 2 4 1163.116 0.004 0.05 80 15 1 14 14 2 13 1163.166 0.001 5.00 80 6 4 3 5 1 4 1163.504 -0.001 1.25 80 9 7 2 8 8 1 1163.835 0.000 0.25 80 9 6 3 8 7 2 1165.697 0.000 5.00 80 12 4 9 11 3 8 1166.780 -0.001 5.00 80 18 1 18 17 O 17 1166.894 0.002 0.25 80 8 7 2 7 6 1 1168.522 0.000 5.00 80 11 4 7 10 5 6 1169.702 0.002 5.00 80 14 3 12 13 2 11 1169.998 -0.001 1.25 80 16 2 15 15 1 14 1170.230 -0.001 0.25 80 10 5 5 9 6 4 1170.972 -0.001 5.00 80 7 5 2 6 4 3 1171.126 0.000 1.25 80 10 6 5 9 5 4 1171.465 0.000 5.00 80 19 O 19 18 1 18 1173.104 -0.001 0.25 80 13 3 10 12 4 9 1175.008 0.000 5.00 80 9 7 3 8 6 2 1176.209 0.001 1.25 80 8 8 1 7 7 0 1176.767 -0.001 5.00 80 7 6 2 6 3 3 1176.934 0.000 1.25 80 110 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a KC J K.a K.c (cm ) (cm ) 17 1 16 16 2 15 1177.206 -0.002 0.05 80 15 2 13 14 3 12 1177.624 -0.002 1.25 80 8 8 0 7 7 1 1178.095 0.000 5.00 80 12 5 8 11 4 7 1178.416 0.000 1.25 80 10 6‘ 4 9 7 3 1179.151 0.001 1.25 80 8 7 1 7 6 2 1179.483 0.001 1.25 80 11 5, 6 10 6 5 1180.326 0.000 5.00 80 11 6 6 10 5 5 1180.436 0.001 5.00 80 7 4 3 6 3 4 1180.841 0.001 1.25 80 7 5 3 6 2 4 1181.790 0.001 1.25 80 10 7 4 9 6 3 1183.086 0.002 5.00 80 14 4 11 13 3 10 1183.141 -0.001 1.25 80 18 2 17 17 1 16 1184.095 -0.001 0.25 80 16 3 14 '15 2 13 1185.163 -0.002 1.25 80 13 4 9 12 5 8 1187.027 0.000 5.00 80 8 6 2 7 5 3 1187.849 0.001 1.25 80 7 3 4 6 2 5 1188.096 -0.001 1.25 80 7 4 4 6 1 5 1188.166 -0.001 1.25 80 9 8 2 8 7 1 1189.082 -0.001 5.00 80 12 6 7 11 5 6 1189.461 0.000 5.00 80 11 6 5 10 7 4 1190.018 -0.001 5.00 80 19 1 18 18 2 17 1190.894 -0.002 0.25 80 11 7 5 10 6 4 1191.151 0.000 0.05 80 15 3 12 14 4 11 1191.183 -0.001 0.05 80 17 2 15 16 3 14 1192.613 -0.003 0.05 80 7 2 5 6 1 6 1194.367 0.004 0.25 80 14 5 10 13 4 9 1195.540 0.000 1.25 80 9 9 1 8 8 0 1196.290 0.001 5.00 80 7 7 0 6 4 3 1196.470 0.005 0.05 80 8 7 2 7 4 3 1196.823 0.002 1.25 80 9 9 0 8 8 1 1197.171 -0.001 5.00 80 10 8 3 9 7 2 1197.274 0.000 1.25 80 9 8 1 8 7 2 1197.425 -0.002 1.25 80 13 5 8 12 6 7 1198.416 0.003 1.25 80 16 4 13 15 3 12 1199.134 0.000 1.25 80 8 8 1 7 5 2 1199.693 0.001 5.00 80 12 6 6 11 7 5 1199.813 0.002 1.25 80 18 3 16 17 2 15 1199.982 0.001 0.25 80 12 7 6 11 6 5 1200.097 -0.001 5.00 80 8 6 3 7 3 4 1200.400 0.000 5.00 80 11 8 4 10 7 3 1203.806 0.002 1.25 80 15 4 11 14 5 10 1203.956 0.001 1.25‘ 80 9 7 2 8 6 3 1204.546 0.000 5.00 80 8 4 4 7 3 5 1206.318 -0.001 0.05 80 8 5 4 7 2 5 1206.524 0.000 5.00 80 17 3 14 16 4 13 1206.995 0.001 0.05 80 14 6 9 13 5 8 1207.272 -0.005 1.25 80 12 7 5 11 8 4 1208.863 -0.001 1.25 80 13 6 7 12 7 6 1209.204 0.000 5.00 80 111 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka KC (cm ) (cm ) 13 7 7 12 6 6 1209.275 0.001 0.25 80 10 9 2 9 8 1 1209.775 0.000 5.00 80 12 8 5 11 7 4 1211.229 0.002 5.00 80 16 5 12 15 4 11 ‘ 1212.272 0.000 1.25 80 8 4 5 7 1 6 1212.763 -0.004 5.00 80 12 8 4 11 9 3 1213.747 0.004 0.05 80 18 4 15 17 3 14 1214.769 0.006 0.05 80 9 6 3 8 5 4 1215.699 0.000 5.00 80 10 10 1 9 9 0 1215.842 0.001 5.00 80 10 10 0 9 9 1 1216.421 -0.005 1.25 80 9 8 2 8 5 3 1217.544 -0.001 1.25 80 14 7 8 13 6 7 1218.423 -0.004 0.25 80 8 3 6 7 0 7 1218.609 0.001 1.25 80 11 9 3 10 8 2 1218.742 0.001 1.25 80 13 7 6 12 8 5 1219.237 -0.001 1.25 80 9 7 3 8 4 4 1219.402 0.001 5.00 80 13 8 6 ' 12 7 5 1219.919 -0.001 0.25 80 17 4 13 16 5 12 1220.493 0.002 0.25 80 10 8 2 9 7 3 1221.326 0.000 5.00 80 9 9 ’1 8 6 2 1222.452 0.000 0.25 80 9 5 4 8 4 5 1224.535 0.001 5.00 80 16 6 11 15 5 10 1224.685 0.004 0.25 80 9 6 4 8 3 5 1225.048 0.000 1.25 80 12 9 4 11 8 3 1225.163 -0.001 5.00 80 13 11 2 12 12 1 1225.329 0.004 0.05 80 13 8 5 12 9 4 1227.290 0.005 0.25 80 15 6 9 14 7 8 1227.482 -0.003 1.25 80 14 8 7 13 7 6 1229.127 0.000 0.25 80 13 9 4 12 10 3 1229.710 0.005 0.25 80 11 10 2 10 9 1 1230.472 0.000 5.00 80 9 4 5 8 3 6 1231.253 0.001 1.25 80 9 5 5 8 2 6 1231.292 -0.001 0.05 80 13 9 5 12 8 4 1231.818 0.002 0.25 80 10 7 3 9 6 4 1232.599 -0.002 1.25 80 17 5 12 16 6 11 1233.229 0.004 0.25 80 11 10 1 10 9 2 1234.715 -0.001 5.00 80 11 11 1 10 10 0 1235.397 0.000 5.00 80 11 11 0 10 10 1 1235.788 0.000 5.00 80 16 7 10 15 6 9 1236.439 -0.003 0.25 80 9 3 6 8 2 7 1237.214 0.000 5.00 80 11 9 2 10 8 3 1238.322 -0.001 1.25 80 10 8 3 9 5 4 1238.884 -0.001 5.00 80 10 9 2 9 6 3 1239.218 0.000 1.25 80 14 9 6 13 8 5 1239.961 -0.003 0.25 80 12 10 3 11 9 2 1240.453 0.000 5.00 80 10 6 4 9 5 5 1242.602 -0.001 1.25 80 9 2 7 8 1 8 1242.713 0.000 1.25 80 10 7 4 9 4 5 1243.748 0.002 5.00 80 13 10 4 12 9 3 1247.104 0.001 0.25 80 112 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 11 8 3 10 7 4 1249.120 -0.001 1.25 80 10 5 5 9 4 6 1249.790 0.001 1.25 80 10 6 5 9 3 6 1249.906 0.000 5.00 80 12 11 2 11 10 1 1251.086 0.001 5.00 80 12 11 1 11 10 2 1253.959 -0.002 1.25 80 12 12 1 11 11 0 1254.931 -0.001 5.00 80 12 12 0 11 11 1 1255.199 0.001 0.05 80 12 10 2 11 9 3 1255.682 -0.001 1.25 80 10 5 6 9 2 7 1255.909 -0.001 1.25 80 11 9 3 10 6 4 1258.983 0.002 0.25 80 11 7 4 10 6 5 1260.352 -0.002 1.25 80 1O 4 7 9 1 8 1261.502 0.000 1.25 80 11 8 4 10 5 5 1262.655 0.000 0.05 80 10 3 8 9 0 9 1266.680 0.000 1.25 80 11 6 5 10 5 6 1268.282 0.001 1.25 80 11 7 5 10 4 6 1268.581 -0.001 0.25 80 14 11 4 13 10 3 1269.488 0.002 0.25 80 13 12 2 12 11 1 1271.578 0.001 0.25 80 13 12 1 12 11 2 1273.484 0.000 0.25 80 13 11 2 12 10 3 1273.516 0.000 0.05 80 13 13 1 12 12 0 1274.422 -0.002 0.05 80 13 13 0 12 12 1 1274.611 0.002 1.25 80 12 8 4 11 7 5 1277.600 -0.004 0.25 80 12 10 3 11 7 4 1279.841 -0.004 0.25 80 11 4 7 10 3 8 1280.338 0.001 5.00 80 13 10 3 12 9 4 1281.430 0.000 0.25 80 12 9 4 11 6 5 1281.847 -0.002 1.25 80 14 12 3 13 11 2 1283.835 0.002 0.25 80 11 3 8 10 2 9 1285.624 0.000 1.25 80 12 7 5 11 6 6 1286.617 0.003 0.25 80 12 8 5 11 5 6 1287.310 '0.000 1.25 80 11 2 9 10 1 10 1290.511 0.002 0.05 80 14 13 2 13 12 1 1291.940 -0.001 0.25 80 12 6 6 11 5 7 1293.311 0.003 0.25 80 12 7 6 11 4 7 1293.385 0.001_ 1.25 80 14 14 1 13 13 0 1293.852 -0.003 0.25 80 12 6 7 11 3 8 1299.179 0.001 1.25 80 12 5 8 11 2 9 1304.576 0.002 0.25 80 12 4 9 11 1 10 1309.581 0.000 0.25 80 12 3 10 11 0 11 1314.201 0.001 0.25 80 13 6 7 12 5 8 1317.967 0.006 0.25 80 13 5 8 12 4 9 1323.494 0.004 0.25 80 13 4 9 12 3 10 1328.620 0.001 0.25 80 13 3 10 12 2 11 1333.376 0.001 0.25 80 12 2 11 13 1 12 923.089 -0.016 0.05 82 6 6 1 7 7 0 930.499 0.000 0.25 82 11 1 10 12 2 11 931.071 -0.002 0.25 82 11 0 11 12 1 12 933.556 -0.001 1.25 82 10 3 11 2 9 935.367 0.002 0.25 82 ‘ oo 113 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka KC J Ka K.C (cm ) (cm ) 9 3 6 10 4 7 938.022 0.006 0.25 82 10 2 9 11 1 10 938.978 -0.001 0.25 82 10 1 10 11 0 11 942.013 0.004 1.25 82 9 2 7 10 3 8 942.683 -0.002 0.25 82 7 4 3 8 5 4 944.542 -0.001 0.25 82 5 5 0 6 6 1 946.115 0.005 0.25 82 9 1 8 10 2 9 946.822 0.004 1.25 82 8 3 6 9 2 7 949.932 0.002 0.25 82 9 0 9 10 1 10 ‘ 950.388 -0.003 5.00 82 7 3 4 8 4 5 951.355 0.006 0.05 82 6 5 2 7 4 3 953.112 -0.003 0.05 82 8 2 7 9 1 8 954.583 -0.002 1.25 82 4 4 1 5 5 0 956.357 0.004 0.05 82 7 2 5 8 3 6 957.102 0.005 0.25 82 6 4 3 7 3 4 958.140 0.000 1.25 82 8 1 8 9 0 9 958.701 0.003 5.00 ‘ 82 4 4 O 5 5 1 960.361 0.004 0.05 82 7 1 6 8 2 7 962.278 0.001 5.00 82 5 -3 2 6 4 3 963.326 -0.002 1.25 82 6 3 4 7 2 5 964.183 -0.013 0.05 82 7 O 7 8 1 8 966.926 0.000 5.00 82 4 3 1 5 4 2 968.268 0.002 0.05 82 6 2 5 7 1 6 969.888 -0.003 0.05 82 5 2 3 6 3 4 971.111 0.001 0.25 82 4 4 1 5 3 2 974.697 -0.007 0.05 82 6 1 6 7 0 7 975.073 0.001 0.25 82 5 1 4 6 2 5 977.421 -0.001 1.25 82 4 3 2 5 2 3 978.527 -0.001 0.25 82 7 O 7 7 1 6 981.011 0.005 0.05 82 5 O 5 6 1 6 983.135 -0.001 1.25 82 2 2 1 3 3 0 983.976 -0.002 1.25 82 3 3 1 4 2 2 987.071 -0.002 0.05 82 6 1 6 6 2 5 989.391 0.002 0.25 82 2 2 0 3 3 1 990.433 -0.002 0.25 82 4 1 4 5 O 5 991.115 -0.001 5.00 82 3 1 2 4 2 3 992.085 0.004 1.25 82 8 3 6 8 4 5 996.173 0.007 0.05 82 5 0 5 5 1 4 997.692 -0.008 0.25 82 3 0 3 4 1 4 999.010 0.004 0.25 82 2 2 1 3 1 2 1000.487 0.003 0.05 82 7 3 5 7 4 4 1003.514 0.008 0.05 82 7 2 5 7 3 4 1003.551 -0.002 0.05 82 4 1 4 4 2 3 1005.925 0.004 0.05 82 2 1 2 3 0 3 1006.848 0.003 0.25 82 5 1 4 5 2 3 1008.239 0.007 0.00 82 6 3 4 6 4 3 1010.726 0.005 0.05 82 7 4 4 7 5 3 1013.629 0.001 0.05 82 1 0 1 2 1 2 1014.278 0.005 0.25 82 4 2 3 4 3 2 1015.604 0.003 1.25 82 114 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.C J K.a K.C (cm ) (cm ) 8 5 4 8 6 3 1016.789 -0.007 0.05 82 4 1 3 4 2 2 1016.221 0.005 0.25 82 5 3 3 5 4 2 1017.497 -0.002 0.05 82 5 2 3 5 3 2 1018.819 0.001 1.25 82 6 4 3 6 5 2 1019.629 -0.001 0.25 82 2 1 2 2 2 1 1021.475 0.004 0.25 82 4 3 2 4 4 1 1023.020 0.009 0.05 82 3 1 2 3 2 1 1024.468 0.001 0.25 82 7 4 3 7 5 2 1025.575 0.006 0.05 82 4 2 2 4 3 1 1026.536 0.004 0.25 82 5 3 2 5 4 1 1028.757 0.002 1.25 82 1 0 1 1 1 0 1029.877 0.003 1.25 82 3 2 1 3 3 0 1030.606 -0.003 1.25 82 5 4 1 5 5 0 1031.555 0.003 0.25 82 7 5 2 7 6 1 1033.076 -0.008 0.25 82 8 6 2 8 7 1 1034.995 0.004 0.05 82 1 1 0 1 0 1 1038.699 0.000 1.25 82 2 2 O 2 1 1 1040.022 -0.007 0.25 82 3 3 O 3 2 1 1042.094 0.000 5.00 82 4 4 O 4 3 1 1044.956 0.000 1.25 82 1 1 1 0 0 0 1046.277 0.004 0.25 82 3 2 1 3 1 2 1047.114 -0.001 1.25 82 2 2 1 2 1 2 1047.910 -0.001 1.25 82 5 5 0 5 4 1 1048.643 -0.005 1.25 82 5 4 1 5 3 2 1049.905 0.003 0.05 82 6 5 1 6 4 2 1052.303 0.002 0.25 82 4 4 1 4 3 2 1052.560 -0.001 1.25 82 2 1 2 1 O 1 1054.117 0.001 1.25 82 3 1 2 3 0 3 1055.510 0.008 0.05 82 7 6 1 7 5 2 1055.547 0.001 0.05 82 4 2 2 4 1 3 1056.779 -0.001 0.25 82 4 3 2 4 2 3 1057.551 -0.001 1.25 82 5 3 2 5 2 3 1058.180 0.000 1.25 82 6 6 1 6 5 2 1059.560 0.002 1.25 82 7 5 2 7 4 3 1061.387 0.001 1.25 82 3 O 3 2 1 2 1061.641 0.008 0.05 82 6 5 2 6 4 3 1062.694 -0.004 1.25 82 2 2 1 1 1 0 1063.510 -0.002 1.25 82 5 2 3 5 1 4 1065.963 -0.002 0.25 82 6 3 3 6 2 4 1068.070 -0.013 0.05 82 4 1 4 3 0 3 1069.338 -0.004 1.25 82 2 2 0 1 1 1 1070.928 0.009 0.05 82 7 5 3 7 4 4 1071.205 -0.002 0.05 82 3 2 2 2 1 1 1071.721 0.003 0.25 82 5 1 4 5 0 5 1072.448 -0.003 1.25 82 8 6 3 8 5 4 1074.387 0.001 0.25 82 5 0 5 4 1 4 1076.925 -0.001 5.00 82 4 1 3 3 2 2 1079.058 -0.004 0.25 82 4 2 3 3 1 2 1079.317 -0.001 1.25 82 115 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a K.c J K.a KC (cm ) (cm ) 3 3 1 2 2 0 1081.373 0.001 1.25 82 9 5 4 9 4 5 1083.124 0.003 0.25 82 7 2 5 7 1 6 1083.346 -0.003 0.25 82 6 1 6 5 0 5 1084.417 -0.001 5.00 82 8 4 5 8 3 6 1086.298 -0.005 1.25 82 5 1 4 4 2 3 1087.259 0.003 0.05 82 7 1 6 7 0 7 1088.840 0.000 1.25 82 9 4 5 9 3 6 1089.489 0.002 0.05 82 4 3 2 3 2 1 1089.937 -0.001 0.25 82 7 0 7 6 1 6 .1091.816 0.002 5.00 82 10 6 5 10 5 6 1092.998 0.003 0.05 82 3 2 1 2 1 2 1094.539 -0.003 0.05 82 9 3 6 9 2 7 1095.086 -0.008 0.25 82 6 2 5 5 1 4 1095.265 0.003 1.25 82 5 2 3 4 3 2 1096.675 0.000 1.25 82 5 3 3 4 2 2 1097.445 -0.010 0.05 82 10 5 6 10 4 7 1098.604 -0.003 0.05 82 8 1 8 7 0 7 1099.112 -0.001 5.00 82 4 4 1 3 3 0 1099.770 -0.002 1.25 82 5 3 2 4 4 1 1102.673 0.010 0.05 82 7 1 6 6 2 5 1103.156 -0.001 1.25 82 9 1 8 9 0 9 1104.822 0.006 0.05 82 6 3 4 5 2 3 1105.580 0.007 0.05 82 9 0 9 8 1 8 1106.314 0.000 5.00 82 11 4 7 11 3 8 1107.546 -0.002 0.25 82 10 3 8 10 2 9 1108.454 0.004 0.25 82 5 4 2 4 3 1 1108.755 0.002 0.05 82 8 2 7 7 1 6 1110.958 -0.001 5.00 82. 11 3 8 11 2 9 1112.307 0.001 0.05 82 10 1 0 9 0 9 1113.419 0.001 5.00 82 6 4 3 5 3 2 1116.161 0.002 5.00 82 9 1 8 8 2 7 1118.668 0.001 0.05 82 11 0 1 10 1 0 1120.423 -0.001 5.00 82 8 3 6 7 2 5 1122.144 0.000 5.00 82 7 3 4 6 4 3 1123.853 0.000 5.00 82 10 2 9 9 1 8 1126.283 0.001 5.00 82 12 1 2 11 0 1 1127.331 0.001 5.00 82 9 2 7 8 3 6 1130.316 -0.001 5.00 82 7 4 3 6 5 2 1131.828 -0.003 1.25 82 8 4 5 7 3 4 1132.750 -0.009 0.25 82 11 1 0 10 2 9 1133.802 -0.002 1.25 82 7 5 3 6 4 2 1135.477 0.002 0.25 82 5 3 2 4 2 3 1137.206 0.002 0.25 82 6 6 1 5 5 0 1137.738 0.001 5.00 82 10 3 8 9 2 7 1138.402 0.004 0.25 82 6 6 0 5 5 1 1140.603 -0.002 0.25 82 8 4 4 7 5 3 1142.346 -0.003 0.05 82 8 5 4 7 4 3 1143.255 -0.002 1.25 82 6 5 1 5 4 2 1144.651 0.000 0.25 82 116 UPPER. LOWER. OBSERVED OBS-CALC WEIGHT ISO - -1 -1 J K.a Kc J Ka KC (cm ) (cm ) 11 2 9 10 3 8 1146.384 -0.002 1.25 82 15 0 15 14 1 14 1147.464 0.000 1.25 82 7 6 2 6 5 1 1147.993 0.002 0.25 82 13 1 12 12 2 11 1148.568 0.000 5.00 82 10 4 7 9 3 6 1149.847 0.000 5.00 82 9 4 5 8 5 4 1151.694 -0.001 5.00 82 12 3 10 11 2 9 1154.282 0.000 0.05 82 8 6 3 7 5 2 1155.414 0.001 5.00 82 14 2 13 13 1 12 1155.814 0.001 5.00 82 6 6 l 5 3 2 1156.088 0.001 0.25 82 7 7 1 6 6 0 1157.070 0.000 5.00 82 11 3 8 10 4 7 1158.258 -0.003 0.25 82 7 7 O 6 6 1 1159.066 0.001 5.00 82 10. 4 6 9 5 5 1160.673 -0.001 0.05 82 10 5 6 9 4 5 1160.711 0.001 1.25 82 7 6 1 6 5 2 1161.807 0.000 5.00 82 13 2 11 12 3 10 1162.083 -0.002 0.25 82 9 6 4 8 5 3 1162.766 -0.002 0.05 82 9 6 3 8 7 2 1165.581 -0.002 0.25 82 12 4 9 11 3 8 1166.580 -0.001 1.25 82 8 7 2 7 6 1 1168.259 -0.001 5.00 82 11 4 7 10 5 6 1169.501 0.003 5.00 82 14 3 12 13 2 11 1169.797 -0.001 1.25 82 10 5 5 9 6 4 1170.773 -0.002 0.05 82 10 6 5 9 5 4 1171.257 0.002 0.05 82 13 3 10 12 4 9 1174.804 -0.001 1.25 82 9 7 3 8 6 2 1175.940 0.001 0.25 82 8 8 1 7 .7 0 1176.516 -0.002 5.00 82 7 6 2 6 3 3 1176.703 0.001 0.05 82 15 2 13 14 3 12 1177.420 0.000 1.25 82 8 8 0 7 7 1 1177.868 -0.001 0.05 82 12 5 8 11 4 7 1178.212 0.000 1.25 82 10 6 4 9 7 3 1178.981 0.000 0.05 82 8 7 1 7 6 2 1179.318 0.006 0.25 82 11 5 6 10 6 5 1180.121 -0.001 1.25 82 11 6 6 10 5 5 1180.226 -0.003 0.05 82 7 5 3 6 2 4 1181.577 -0.006 0.25 82 10 7 4 9 6 3 1182.837 -0.001 5.00 82 14 4 11 13 3 10 1182.937 0.003 0.25 82 16 3 14 15 2 13 1184.951 -0.002 0.05 82 13 4 9 12 5 8 1186.822 0.002 1.25 82 8 6 2 7 5 3 1187.704 0.003 0.05 82 9 8 2 8 7 1 1188.799 -0.007 0.05 82 12 6 7 11 5 6 1189.248 -0.007 0.05 82 11 6 5 10 7 4 1189.818 -0.004 0.05 82 7 2 5 6 1 6 1194.161 0.004 0.05 82 9 9 1 8 8 0 1196.033 0.001 5.00 82 9 9 O 8 8 1 1196.934 0.001 1.25 82 10 8 3 9 7 2 1196.981 -0.001 1.25 82 117 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 13 5 8 12 6 7 1198.204 0.002 0.05 82 8 5 3 7 4 4 1198.237 0.000 0.05 82 8 8 1 7 5 2 1199.317 0.001 0.05 82 12 7 6 11 6 5 1199.881 -0.005 1.25 82 8 6 3 7 3 4 1200.188 0.004 1.25 82 11 8 4 10 7 3 1203.525 -0.007 0.05 82 9 7 2 8 6 3 1204.407 0.000 5.00 82 14 6 9 13 5 8 1207.062 0.004 0.05 82 13 6 7 12 7 6 1208.988 -0.001 0.05 82 10 9 2 9 8 1 1209.490 0.000 5.00 82 12 8 5 11 7 4 1210.981 -0.009 0.05 82 8 4 5 7 1 6 1212.554 -0.001 0.25 82 9 6 3 8 5 4 1215.535 0.000 0.05 82 10 10 1 9 9 0 1215.575 -0.001 1.25 82 10 10 0 9 9 1 1216.172 -0.004 0.25 82 13 7 6 12 8 5 1219.031 0.012 0.05 82 9 7 3 8 4 4 1219.173 0.002 0.05 82 13 8 6 12 7 5 1219.693 -0.002 0.05 82 10 8 2 9 7 3 1221.188 0.001 0.05 82 9 5 4 8 4 5 1224.331 0.000 1.25 82 11 10 2 10 9 1 1230.177 -0.004 0.25 82 9 4 5 8 3 6 1231.039 0.003 0.25 82 9 5 5 8 2 6 1231.074 -0.002 0.05 82 10 7 3 9 6 4 1232.451 -0.003 0.05 82 11 10 1 10 9 2 1234.499 0.002 1.25 82 11 11 1 10 10 0 1235.122 -0.003 0.05. 82 11 11 0 10 10 1 1235.527 0.000 5.00 82 9. 3 6 8 2 7 1236.999 0.005 0.25 82 11 9 2 10 8 3 1238.178 0.006 0.25 82 10 8 3 9 5 4 1238.634 -0.001 1.25 82 12 10 3 11 9 2 1240.114 -0.010 0.05 82, 10 6 4 9 5 5 1242.397 -0.009 0.05 82 9 2 7 8 1 8 1242.490 0.001 0.05 82 10 7 4 9 4 5 1243.527 0.003 0.25 82 10 6 5 9 3 6 1249.687 0.001 0.25 82 12 11 2 11 10 1 1250.790 -0.001 0.25 82 12 12 1 11 11 0 1254.651 -0.001 0.25 82 11 7 4 10 6 5 1260.171 0.008 0.05 82 10 4 7 9 1 8 1261.276 0.001 0.25 82 11 6 5 10 5 6 1268.068 0.009 0.05 82 13 13 0 12 12 1 1274.324 -0.001 0.05 82 11 4 7 10 3 8 1280.104 -0.002 0.05 82 12 9 4 11 6 5 1281.602 0.012 0.05 82 APPENDIX E WEIGHTED AVERAGED GSCD’S OF H Se ISOTOPOMERS 2 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 3 2 1 2 2 1 45.628 -0.004 0.02 74 3 0 3 1 0 1 47.345 0.008 0.01 74 4 1 4 2 1 2 62.703 0.003 0.05 74 7 0 7 5 0 5 109.483 '0.009 0.08 74 O 1 10 8 1 8 156.100 0.006 0.00 74 2 2 1 1 0 1 32.707 0.000 0.82 76 2 1. 2 1 1 0 15.615 0.000 0.48 76 3 3 0 1 1 0 79.625 0.002 0.55 76 3 3 O 2 1 2 64.011 0.002 0.25 76 3 3 0 3 1 2 16.543 -0.004 1.57 76 3 2 1 2 2 1 45.642 0.002 2.09 76 3 3 1 2 1 1 49.708 -0.003 0.41 76 3 2 1 3 O 3 31.021 -0.005 0.10 76 3 3 1 3 1 3 33.721 -0.010 0.01 76 3 1 2 1 1 0 63.077 0.001 0.62 76 3 1 2 2 1 2 47.463 0.002 0.26 76 3 0 3 1 O 1 47.324 0.003 0.67 76 3 1 3 1 1 1 46.877 0.007 0.02 76 3 0 3 2 2 1 14.612 -0.002 0.25 76 3 1 3 2 1 1 15.970 -0.010 0.08 76 4 4 0 2 2 0 111.600 0.012 0.02 76 4 4 0 4 2 2 17.233 -0.002 0.10 76 4 4 1 2 2 1 112.753 -0.002 0.19 76 4 3 1 3 3 1 59.943 0.007 0.25 76 4 4 1 3 2 1 67.117 0.002 0.73 76 4 4 1 3 0 3 98.137 -0.004 0.08 76 4 3 1 4 1 3 30.219 0.000 0.41 76 4 4 1 4 2 3 34.661 -0.001 -0.41 76 4 2 2 2 2 0 94.353 -0.001 0.10 76 4 3 2 3 3 0 47.244 -0.001 0.10 76 4 2 2 3 2 2 62.877 0.003 0.02 76 4 3 2 3 1 2 63.792 -0.001 1.25 76 4 1 3 2 1 1 79.433 0.006 0.05 76 4 1 3 3 3 1 29.724 0.007 0.41 76 4 2 3 3 2 1 32.455 0.002 2.07 76 4 2 3 3 0 3 63.476 -0.003 0.10 76 4 1 4 2 1 2 62.682 -0.002 0.41 76 4 1 4 3 1 2 15.225 0.003 0.02 76 5 5 0 4 3 2 96.376 0.002 0.08 76 5 5 0 5 3 2 18.513 0.002 0.23 76 5 4 1 3 2 1 140.922 -0.002 0.02 76 5 4 1 4 4 1 73.809 0.000 5.09 76 118 119 UPPER. LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 5 5 1 4 3 1 84.877 0.004 0.10 76 5 4 1 5 2 3 29.382 -0.001 0.98 76 5 3 2 4 3 2 77.870 0.006 2.00 76 5 4 2 4 2 2 80.069 -0.005 0.08 76 5 3 2 5 1 4 47.141 0.005 0.10 76 5 4 2 5 2 4 48.650 -0.010 0.10 76 5 2 3 3 2 1 111.542 0.002 0.48 76 5 2 3 3 0 3 142.563 -0.003 0.08 76 5 2 3 4 4 1 44.426 0.001 0.25 76 5 3 3 4 3 1 49.012 0.009 0.08 76 5 2 3 4 2 3 79.088 0.001 0.50 76 5 2 3 5 0 5 64.272 0.005 0.25 76 5 1 4 3 1 2 94.523 0.003 0.10 76 5 1 4 4 3 2 30.730 0.002 0.20 76 5 2 4 4 2 2 r 31.419 0.004 0.41‘ 76 5 1 4 4 1 4 79.299 0.001 1.25 76 5 0 5 3 0 3 78.296 -0.003 1.25 76 5 0 5 4 2 3 14.820 0.000 0.08 76 6 6 0 4 4 0 175.655 0.003 0.02 76 6 6 0 5 4 2 112.812 0.000 0.05 76 6 6 1 4 4 1 176.724 0.005 0.12 76 6 6 1 5 4 1 102.916 0.005 0.10 76 6 5 1 6 3 3 28.666 -0.005 0.41 76 6 5 2 5 5 0 78.196 -0.002 0.20 76 6 5 2 5 3 2 96.715 0.007 0.05 76 6 5 2 5 1 4 143.842 -0.002 0.25 76 6 4 2 6 2 4 46.056 0.000 0.05 76 6 5 2 6 3 4 48.903 -0.002 2.09 76 6 3 3 4 3 1 143.521 -0.003 0.05 76 6 4 3 5 4 1 65.560 0.000 2.09 76 6 4 3 5 2 3 94.944 0.001 0.50 76 6 3 4 4 3 2 125.678 0.011 0.48 76 6 3 4 5 3 2 47.808 0.005 0.67 76 6 3 4 5 1 4 94.943 0.004 0.16 76 6 2 5 4 2 3 109.936 0.001 0.10 76 6 2 5 5 2 3 30.845 -0.003 0.53 76 6 2 5 5 0 5 95.116 0.001 0.41 76 6 1 6 4 1 4 93.885 0.008 1.67 76 6 1 6 5 1 4 14.582 0.003 2.42 76 7 7 0 5 5 0 207.572 -0.002 0.48 76 7 7 0 5 3 2 226.091 0.006 0.08 76 7 7 0 6 5 2 129.376 -0.001 0.08 76 7 7 0 7 5 2 23.203 0.003 0.48 76 7 6 1 5 2 3 232.875 0.004 0.02 76 7 6 1 6 6 1 100.573 -0.003 0.48 76 7 6 1 7 4 3 28.313 0.021 -0.02 76 7 5 2 6 5 2 106.178 0.001 0.48 76 7 5 2 6 3 4 155.081 -0.001 0.41 76 7 5 2 7 3 4 44.678 0.001 0.51 76 120 UPPER.‘ LOWER. OBSERVED OBS-CALC WEIGHT 130 -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 7 6 2 7 4 4 49.364 -0.004 0.05 76 7 4 3 7 2 5 63.066 0.000 0.51 76 7 3 4 5 1 4 205.340 -0.004 0.08 76 7 3 4 6 5 2 61.499 0.000 2.09 76 7 3 4 6 3 4 110.403 -0.001 1.38 76 7 3 4 6 1 6 190.770 0.006 0.05 76 7 3 4 7 1 6 79.858 0.002 0.35 76 7 2 5 5 2 3 141.518 0.005 0.16 76 7 3 5 6 3 3 46.889 0.003 0.01 76 7 2 5 6 2 5 110.670 0.005 0.60 76 7 2 5 7 0 7 96.332 -0.001 0.41 76 7 1 6 5 1 4 125.487 0.000 0.10 76 7 1 6 6 1 6 110.909 0.001 0.19 76 7 0 7 5 0 5 109.444 -0.003 2.01 76 7 0 7 6 2 5 14.337 0.005 2.00 76 8 7 2 8 5 4 50.105_ -0.003 0.05 76 8 6 3 7 4 3 126.630 0.003 0.10 76 8 6 3 7 2 5 189.698 0.005 0.05 76 8 5 4 8 3 6 79.413 0.011 0.41 76 8 4 5 6 2 5 236.756 0.002 0.08 76 8 4 5 7 4 3 63.030 0.007 0.50 76 8 4 5 7 2 5 126.095 0.006 0.47 76 8 4 5 7 0 7 222.428 0.005 0.41 76 8 4 5 8 2 7 95.742 —0.003 0.41 76 8 3 6 6 3 4 156.916 0.003 0.05 76 8 3 6 6 1 6 237.282 0.009 0.08 76 8 3 6 7 3 4 46.512 0.003 0.08 76 8 3 6 7 1 6 126.371 0.005 0.42 76 8 2 7 6 2 5 141.010 0.000 2.25 76 8 2 7 7 2 5 30.341 -0.004 0.41 76 8 2 7 7 0 7 126.673 -0.005 1.25 76 8 1 8 6 1 6 125.005 0.003 2.07 76 9 7 2 8 7 2 132.134 -0.002 0.48 76 9 7 2 9 5 4 41.508 -0.002 0.41 76 9 6 3 9 4 5 60.599 -0.001 0.08 76 9 5 4 8 5 4 140.724 -0.009 0.51- 76 9 5 4 8 3 6 220.138 0.003 0.25 76 9 5 4 9 3 6 78.458 -0.003 0.10 76 9 4 5 7 4 3 204.373 0.019 0.02 76 9 4 5 '7 2 5 267.438 0.018‘ 0.02 76 9 4 5 8 4 5 141.341 0.010 0.02 76 9 4 5 9 2 7 95.042 -0.006 0.25 76 9 3 6 7 3 4 188.176 -0.008 0.08 76 9 3 6 7 1 6 268.033 -0.007 0.08 76 9 3 6 8 3 6 141.678 0.003 0.02 76 9 3 6 9 1 8 111.526 0.003 0.10 76 9 2 7 7 0 7 268.708 0.003 0.41 76 9 2 7 8 4 5 46.280 -0.003 1.25 76 9 2 7 8 2 7 142.028 0.001 0.10 76 121 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 9 1 8 7 1 6 156.517 0.000 2.00 76 9 1 8 8 3 6 30.147 -0.004 0.10 76 9 0 9 7 0 7 140.541 0.000 5.00 76 10 7 4 9 7 2 115.153 -0.003 0.41 76 10 7 4 9 5 4 156.661 -0.005 0.25 76 10 6 5 10 4 7 94.342 0.002 0.10 76 10 5 6 10 3 8 110.696 -0.003 0.10 76 10 4 7 8 4 5 203.500 0.002 0.41 76 10 4 7 8 2 7 299.242 -0.001 0.25 76 10 4 7 10 2 9 127.246 0.007 0.17 76 10 3 8 8 3 6 187.800 -0.002 0.48 76 10 3 8 9 3 6 46.133 0.005 0.48 76 10 3 8 9 1 8 157.655 0.004 0.25 76 10 2 9 8 2 7 172.004 -0.001 0.10 76 10 1 10 8 1 8 156.060 -0.002 2.00 76 10 1 10 9 1 8 13.633 -0.006 0.10 76 11 3 8 '9 1 8 330.357 0.002 0.02 76 11 3 8 10 5 6 62.007 0.002 0.10 76 11 3 8 10 3 8 172.703 -0.001 0.05 76 11 2 9 9 2 7 203.216 0.004 . 0.10 76 11 1 10 9 1 8 187.472 0.001 2.00- 76 11 1 10 10 1 10 173.839 0.007 0.10 76 12 3 10 10 3 8 218.595 -0.003 0.10 76 12 1 12 10 1 10 187.035 -0.005 2.01 76 13 2 11 11 2 9 233.955 -0.002 0.41 76 14 1.14 12 1 12 217.928 0.011 0.41 76 2 2 1 1 0 1 32.702 0.006 0.16 77 2 1 2 1 1 0 15.614 0.002 0.05 77 3 3 0 1 1 0 79.611 0.004 0.08 77 3 3 O 3 1 2 16.536 -0.004 0.55 77 3 2 1 2 2 1 45.642 -0.001 0.41 77 3 3 1 2 1 1 49.678 -0.012 0.06 77 3 1 2 1 1 0 63.072 0.005 0.17 77 3 1 2 2 1 2 47.470 0.015 0.02 77 3 0 3 1 0 1 47.308 -0.004 0.32 77 3 O 3 2 2 1 14.608 -0.008 0.08 77 4 4 0 3 2 2 80.070 -0.019 0.02 77 4 3 1 3 3 1 59.945 0.000 0.08 77 4 4 1 3 2 1 67.077 -0.004 0.43 77 4 4 1 3 0 3 98.111 0.003 0.02 77 4 3 1 4 1 3 30.217 -0.007 0.25 77 4 4 1 4 2 3 34.639 -0.001 0.28 77 4 3 2 3 3 0 47.244 0.005 0.60 77 4 3 2 3 1 2 63.776 -0.003 0.38 77 4 1 3 2 1 1 79.411 0.000 0.02 77 4 2 3 3 2 1 32.443 0.002 0.60 77 4 2 3 3 0 3 63.470 0.002 0.08 77 5 5 0 3 3 0 143.590 0.007 0.08 77 . 5 5 O 4 3 2 96.345 0.001 0.10 77 122 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 5 5 0 5 3‘ 2 18.480 -0.002 0.10 77 5 4 1 4 4 1 73.826 0.000 2.15 77 5 4 1 5 2 3 29.391 0.001 0.69 77 5 3 2 4 3 2 77.863 0.001 0.08 77 5 4 2 4 2 2 80.066 0.013 0.06 77 5 4 2 5 2 4 48.650 0.002 0.08 77 5 2 3 3 2 1 111.517 0.000 0.50 77 5 2 3 4 4 1 44.431 -0.004 0.23 77 5 2 3 4 2 3 79.071 -0.005 0.25 77 5 2 3 5 0 5 64.272 0.014 0.08 77 5 1 4 4 3 2 30.725 0.001 0.02 77 5 1 4 4 1 4 79.286 0.001 0.10 77 5 0 5 3 0 3 78.285 -0.001 0.25 77 6 6 1 4 4 1 ’176.669 0.000 0.10 77 6 6 1 5 4 1 102.843 -0.001 0.10 77 6 5 1 5 3 3 123.182 -0.004 0.25 77 6 5 2 5 5 0 78.191 -0.003 1.25 77 6 5 2 5 3 2 96.674 -0.001 0.25 77 6 5 2 6 3 4 48.890 0.000 0.41 77 6 4 3 5 4 1 65.537 0.002 0.49 77 6 4 3 5 2 3 94.931 0.005 0.25 77 6 4 3 6 2 5 64.084 -0.001 0.06 77 6 3 4 4 3 2 125.650 0.002 0.05 77 6 3 4 5 3 2 47.787 0.001 0.08 77 6 2 5 5 2 3 30.840 -0.001 0.05 77 6 1 6 4 1 4 93.866 0.004 0.35 77 6 1 6 5 1 4 14.575 -0.002 0.42 77 7 7' O 5 5 0 207.521 0.009 0.10 77 7 7 O 5 3 2 226.001 0.007 0.05 77 7 6 1 5 4 1 203.455 0.001 0.41 77 7 6 1 5 2 3 232.839 -0.005 0.19 77 7 6 1 6 6 1 100.607 -0.003 0.41 77 7 6 1 7 4 3 28.308 0.016 0.10 77 7 S 2 6 5 2 106.193 0.002 0.10 77 7 5 2 6 3 4 155.083 0.003 0.08 77 7 5 2 7 3 4 44.694 0.001 0.51 77 7 6 2 7 4 4 49.348 0.001 0.08 77 7 4 3 7 2 5 63.060 -0.004 0.43 77 7 3 4 6 5 2 61.499 0.001 1.25 77 7 3 4 6 3 4 110.389 0.002 0.47 77 7 3 4 7 1 6 79.838 -0.006 0.25 77 7 2 5 6 4 3 46.560 -0.002 0.02 77 7 2 5 6 2 5 110.646 -0.001 0.10 77 7 2 5 7 0 7 96.321 0.003 0.08 77 7 1 6 6 1 6 110.900 0.010 0.02 77 7 0 7 5 0 5 109.430 0.002 0.05 77 7 0 7 6 2 5 14.325 -0.004 0.41 77 8 8 1 8 6 3 40.918 -0.001 0.10 77 8 6 2 8 4 4 43.125 0.001 0.08 77 123 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Kg KC (cm ) (cm ) 8 7 2 8 5 4 50.084 0.005 0.10 77 8 6 3 7 4 3 126.595 0.002 0.19 77 8 6 3 7 2 5 189.655 -0.002 0.08 77 8 6 3 8 4 5 63.591 0.002 0.10 77 8 5 4 8 3 6- 79.392 0.004 0.48 77 8 4 5 6 4 3 172.630 0.000 0.10 77 8 4 5 6 2 5_ 236.712 -0.003 0.10 77 8 4 5 7 2 5 126.071 0.003 0.08 77 8 3 6 6 3 4 156.889 0.001 0.10 77 8 3 6 6 3 5 156.894 -0.009 0.05 77 8 3 6 7 3 4 46.505 0.004 0.08 77 8 3 6 7 1 6 126.341 -0.004 0.12 77 8 2 7 6 2 5 140.994 0.007 0.19 77 8 2 7 7 2 5 30.345 0.004 0.05 77 8 2 7 7 0 7 126.666 0.008 0.08 77 8 1 8 6 1 6 124.983 0.002 1.25 77 8 1 8 7 1 6 14.086 -0.006 0.50 77 9 7 2 8 7 2 132.171 0.002 0.08 77 9 6 3 7 4 3 264.927 -0.002 0.26 77 9 6 3 7 2 5 327.990 -0.003 0.02 77 9 6 3 8 6 3 138.331 -0.005 0.02 77 9 6 3 9 4 5 60.614 -0.003 0.12 77 9 5 4 8 3 6 220.106 0.002 0.02 77 9 5 4 9 3 6 78.454 0.001 0.26 77 9 4 5 7 4 3 204.311 -0.001 0.43 77 9 4 5 7 2 5 267.377 0.001 0.01 77 9 4 5 8 6 3 77.716 -0.003 0.08 77 9 5 5 8 3 5 141.349 0.003 0.05 77 9 4 5 8 2 7 237.033 -0.003 0.02 77 9 4 5 9 2 7 95.025 -0.006 0.08 77 9 3 6 7 3 4 188.157 0.005 0.08 77 9 3 6 7 1 6 267.995 -0.001 0.08 77 .9 3 6 8 3 6 141.658 0.007 0.15 77 9 3 6 9 1 8 111.503 0.001 0.10 77 9 2 7 7 2 5 172.347 0.002 0.08 77 9 2 7 8 4 5 46.276 -0.001 0.05 77 9 2 7 8 2 7 142.006 0.001 0.02 77 9 1 8 7 1 6 156.489 -0.005 0.41 77 9 1 8 8 3 6 30.154 0.005 0.48 77 9 1 8 8 1 8 142.405 0.003 0.31 77 9 0 9 7 O 7 140.519 0.000 2.00 77 9 0 9 8 2 7 13.865 0.004 0.10 77 10 6 5 10 4 7 94.325 0.005 0.08 77 10 5 6 8 3 6 298.463 0.012 0.02 77 10 5 6 9 5 4 78.350 0.003 0.08 77 10 5 6 9 3 6 156.805 0.005 0.08 77 10 5 6 10 3 8 110.679 0.004 0.02 77 10 4 7 8 2 7 299.211 0.016 0.08 77 10 4 7 10 2 9 127.217 0.003 0.08 77 124 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 10 3 8 8 3 6 187.775 -0.001 0.10 77 10 3 8 9 3 6 46.121 -0.004 0.10 77 10 3 8 9 1 8 157.622 -0.005 0.12 77 10 2 9 8 2 7 171.985 0.004 0.05 77 10 1 10 8 1 8 156.034 -0.004 0.55 77 10 1 10 9 1 8 13.634 -0.002 0.17 77 11 5 6 9 3 6 328.542 -0.009 0.19 77 11 4 7 10 4 7 172.202 0.003 0.02 77 11 3 8 10 3 8 172.681 - 0.004 0.05 77 11 1 10 9 1 8 187.450 0.003 0.41 77 11 1 10 10 1 10 173.807 -0.004 0.08 77 11 0 11 9 O 9 171.528 -0.009 0.15 77 12 5 8 10 5 6 249.536 -0.004 0.02 77 12 5 8 10 3 8 360.215 0.000 1.25 77 12 3 10 10 3 8 218.579 0.007 0.10 77 12 3 10 10 1 10 362.555 -0.008 0.06 77 12 2 11 11 2 9 29.670 -0.009 0.10 77 12 1 12 10 1 10 187.023 0.010 0.02 77 13 2 11 11 2 9 233.927 -0.003 0.10 77 13 2 11 12 2 11 204.257 0.007 0.05 77 13 0 13 11 0 11 202.466 0.002 0.10 -77 14 1 14 12 1 12 217.888 0.001 0.41 77 2 2 0 0 0 0 47.726 0.007 0.02 78 2 2 0 2 0 2 16.256 0.000 0.36 78 2 1 1 1 1 1 30.893 0.003 0.48 78 2 2 1 1 0 1 32.685 0.000 7.09 78 2 0 2 O 0 0 31.467 0.004 0.06 78 2 1 2 1 1 0 15.609 -0.001 4.00 78 3 3 0 1 1 0 79.592 0.000 6.50 78 3 3 0 2 1 2 63.982 0.000 2.98 78 3 3, 0 3 1 2 16.532 -0.001 8.75 78 3 2 1 1 0 1 78.338 0.005 0.12 78 3 3 1 1 1 1 80.566 0.007 0.41 78 3 2 1 2 2 1 45.649 0.002 2.60 78 3 3 1 2 1 1 49.672 0.002 2.18 78 3 2 1 3 0 3 31.029 0.000 1.54 78 3 3 1 3 1 3 33.700 -0.002 0.05 78 3 1 2 1 1 0 63.058 -0.001 3.32 78 3 2 2 2 2 0 31.464 -0.006 0.15 78 3 1 2 2 1 2 47.448 -0.001 2.09 78 3 2 2 2 0 2 47.719 -0.007 0.08 78 3 0 3 1 0 1 47.303 -0.001 1.00 78 3 1 3 1 1 1 46.859 0.001 0.02 78 3 0 3 2 2 1 14.618 0.000 0.58 78 3 1 3 2 1 1 15.961 -0.007 0.10 78 4 4 0 3 2 2 80.066 -0.003 0.12 78 4 4 0 4 2 2 17.209 0.004 1.50 78 4 4 1 2 2 1 112.695 -0.001 0.15 78 4 3 1 3 3 1 59.955 0.000 2.01 78 125 UPPER OBSERVED OBS-CALC ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 4 4 1 3 2 1 67.050 0.001 7.28 78 4 4 1 3 0 3 98.082 0.004 0.10 78 4 3 1 4 1 3 30.229 0.000 5.43 78 4 4 1 4 2 3 34.618 -0.001 7.75 78 4 2 2 2 2 0 94.331 -0.003 0.48 78 4 3 2 2 1 2 111.216 0.001 0.16 78 4 3 2 3 3 0 47.236 0.003 5.61 78 4 2 2 3 2 2' 62.857 -0.008 0.12 78 4 3 2 3 1 2 63.766 0.000 2.75 78 4 3 2 4 1 4 48.549 -0.002 0.26 78 4 1 3 2 1 1 79.406 0.010 0.01 78 4 2 3 2 2 1 78.078 0.001 0.12 78 4 1 3 3 3 1 29.720 -O.006 0.08 78 4 2 3 3 2 1 32.430 0.001 9.10 78 4 2 3 3 0 3 63.460 0.002 2.20 78 4 1 4 2 1 2 62.664 0.000 0.42 78 4 1 4 3 1 2 15.221 0.007 0.69 78 5 5 0 3 3 0 143.551 0.002 5.66 78 5 5 0 4 3 2 96.316 0.000 7.00 78 5 5 0 5 3 2 18.455 0.001 1.70 78 5 4 1 3 2 1 140.896 0.004 0.48 78 5 5 1 3 3 1 144.728 -0.004 0.82 78 5 4 1 3 0 3 171.928 0.007 0.08 78 5 4 1 4 4 1 73.844 0.001 7.47 78 5 5 1 4 3 1 84.774 -0.003 0.76 78 5 4 1 4 2 3 108.463- 0.000 2.56 78 5 5 1 4 1 3 115.002 -0.004 0.16 78 5 4 1 5 2 3 29.399 0.001 7.72 78 5 5 1 5 3 3 35.807 -O.002 0.28 78 5 3 2 3 3 0 125.095 0.000 0.02 78 5 4 2 3 2 '2 142.889 -0.008 0.02 78 5 4 2 4 4 0 62.825 -O.003 0.41 78 5 3 2 4 3 2 77.864 0.002 4.25 78 5 4 2 4 2 2 80.031 -0.002 1.42 78 5 3 2 5 1 4 47.140 0.000 2.76 78 5 4 2 5 2 4 48.638 0.001 0.55 - 78 5 2 3 3 2 1 111.495 0.001 5.27 78 5 3 3 3 3 1 108.917 -0.006 0.02 78 5 2 3 3 0 3 142.527 0.004 0.10 78 5 2 3 4 4 I 44.445 0.000 6.71 78 5 3 3 4 3 1 48.970 0.002 0.85 78 5 2 3 4 2 3 79.065 0.000 7.18 78 5 3 3 4 1 3 79.195 -0.002 0.08 78 5 2 3 5 0 5 64.247 -0.003 3.68 78 5 1 4 3 1 2 94.492 0.005 0.10 78 5 1 4 4 3 2 30.728 0.007 0.20 78 5 2 4 4 2 2 31.393 -0.003 0.24 78 5 1 4 4 1 4 79.272 -0.001 5.05 78 5 0 5 3 0 3 78.271 —0.002 2.00 78 126 UPPER. LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a Kc J Kch (cm ) (cm ) 5 0 5 4 2 3 14.831 0.017 0.82 78 6 6 0 4 2 2 192.762 0.000 0.08 78 6 6 0 5 4 2 112.725 -0.004 0.73 78 6 6 0 6 4 2 20.398 -0.002 0.41 78 6 6 1 4 4 1 176.620 -0.003 5.21 78 6 5 1 5 5 1 87.381 0.008 0.01 78 6 6 1 5 4 1 102.776 -0.004 5.13 78 6 6 1 5 2 3 132.168 -0.010 0.02 78 6 5 1 6 3 3 28.680 ' -0.005 0.02 78 6 6 1 6 4 3 37.260 -0.006 0.10 78 6 5 2 4 3 2 174.514 0.007 0.08 78 6 5 2 5 5 0 78.193 0.002 1.67 78 6. 4 2 5 4 2 92.326 -0.004 2.48 78 6 5 2 5 3 2 96.644 -0.001 6.58 78 6 4 2 5 2 4 140.967 0.000 0.25 78 6 5 2 7 5 1 4 143.784 -0.001 2.00 78 6 4 2 6 2 4 46.073 -0.001 1.27 78 6 5 2 6 3 4 48.873 -0.003 5.18 78 6 3 3 4- 3 1 143.470 0.004 0.42 78 6 4 3 4 4 1 139.356 -0.001 1.25 78 6 3 3 4 1 3 173.695 0.000 0.25 78 6 4 3 4 2 3 173.976 0.000 1.29 78 6 3 3 5 5 1 58.699 0.010 0.10 78 6 4 3 5 4 1 65.513 0.000 7.24 78 6 3 3 5 3 3 94.502 0.004 0.10 78 6 4 3 5 2 3 94.911 0.000 7.91 78 6 4 3 5 O 5 159.173 0.011 0.41 78 6 3 3 6 1 5 63.765 -0.004 0.41 78 6 4 -3 6 2 5 64.078 0.001 2.18 78 6 3 4 5 3 2 47.771 0.001 0.58 78 6 3 4 5 1 4 94.912 0.002 0.35 78 6 3 4 6 1 6 80.341 0.004 0.60 78 6 2 5 4 2 3 109.899 0.000 0.25 78 6 2 5 5 2 3 30.837 0.003 1.90 78 6 2 5 5 0 5 95.083 -0.002 2.84 78 6 1 6 4 1 4 93.847 0.001 5.00 78 6 1 6 5 1 4 14.573 0.000 0.10 78 7 7 O 5 5 0 207.453 -0.003 2.00 78 7 7 0 5 3 2 225.907 -0.003 2.00 78 7 7 0 6 5 2 129.264 -0.001 0.48 78 7 6 1 5 4 1 203.423 -0.002 0.50 78 7 6 1 6 6 1 100.647 0.002 5.18 78 7 7 1 6 5 1 120.933 -0.013 0.34 78 7 6 1 6 4 3 137.912 0.001 1.02 78 7 6 1 7 4 3 28.294 -0.001 5.16 78 7 5 2 6 5 2 106.210 0.003 2.00 78 7 6 2 6 4 2 113.693 0.000 0.19 78 7 5 2 6 3 4 155.083 0.001 2.00 78 7 6 2 6 2 4 159.771 0.003 0.02 78 127 UPPER LOWER OBSERVED OBS-CALC WEIGHT 180 -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 7 5 2 7 3 4 44.710 0.000 5.00 78 7 6 2 7 4 4 49.334 0.006 0.10 78 7 4 3 5 4 1 175.122 -0.008 0.25 78 7 5 3 5 5 1 169.353 -0.002 0.25 78 7 5 3 5 3 3 205.158 -0.006 0.08 78 7 4 3 6 4 3 109.627 0.011 0.10 78 7 5 3 6 3 3 110.668 0.001 0.17 78 7 4 3 6 2 5 173.698 0.005 0.08 78 7 5 3 6 1 5 174.429 -0.007 0.08 78 7 4 3 7 2 5 63.065 0.002 6.36 78 7 5 3 7 3 5 63.807 0.004 0.16 78 7 3 4 5 3 2 158.136 -0.005 5.30 78 7 4 4 5 4 2 156.693 -0.002 0.48 78 7 3 4 5 1 4 205.277 -0.004 2.00 78 7 4 4 5 2 4 205.330 -0.001 0.25 78 7 3 4 6 5 2 61.493 -0.003 5.08 78 7 4 4 6 4 2 64.366 0.001 0.34 78 7 3 4 6 3 4 110.370 -0.002 0.50 78 7 4 4 6 2 4 110.445 0.006 0.10 78 7 3 4 6 3 5 110.371 -0.015 0.25 78 7 3 4 6 1 6 190.703 -0.005 0.34 78 7 3 4 7 1 6 79.833 -0.002 0.89 78 7 2 5 5 2 3 141.473 0.008 0.60 78 7 2 5 5 0 5 205.714 -0.001 0.13 78 7 2 5 6 4 3 46.564 0.010 0.42 78 7 3 5 6 3 3 '46.861 —0.003 0.47 78 7 2 5 6 2 5 110.640 0.009 0.76 78 7 3 5 6 1 5 110.626 -0.007 0.25 78 7 2 5 7 0 7 96.309 0.003 1.72 78 7 1 6 5 1 4 125.446 0.000 0.48 78 7 1 6 6 3 4 30.538 0.002 0.12 78 7 1 6 6 3 5 30.537 -0.014 0.41 78 7 1 6 6 1 6 110.873 0.000 1.45 78 7 0 7 5 0 5 109.408 -0.002 2.07 78 7 0 7 6 2 5 14.321 -0.004 6.34 78 8 8 1 6 6 1 239.767 0.001 2.25 78 8 8 1 7 6 1 139.121 0.000‘ 2.48 78 8 7 1 7 5 3 152.770 0.009 0.41 78 8 8 1 7 4 3 167.419 0.003 0.48 78 8 7 1 8 5 3 28.481 -0.001 0.41 78 8 6 2 6 4 2 233.180 0.002 1.25 78 8 7 2 6 5 2 237.418 -0.002 0.48 78 8 6 2 6 2 4 279.258 0.006 0.02 78 8 7 2 7 7 0 108.154 -0.002 0.25 78 8 6 2 7 6 2 119.484 -O.OOI 0.27 78 8 6 2 8 4 4 43.153 0.004 1.25 78 8 6 3 6 4 3 236.184 -0.003 0.60 78 8 6 3 6 2 5 300.259 -0.004 0.25 78 8 6 3 7 6 1 98.276 0.001 0.33 78 128 UPPER LOWER OBSERVED OBS-CALC WEIGHT 150 -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 8 5 3 7 5 3 124.285 0.006 0.17 78 8 6 3 7 4 3 126.566 -0.004 2.15 78 8 5 3 7 3 5 188.099 0.017 0.02 78 8 6 3 7 2 5 189.632 -0.001 2.04 78 8 5 3 8 3 5 62.045 0.003 0.42 78 8 6 3 8 4 5 63.581 -0.002 3.34 78 8 4 4 6 4 2 190.027 -0.002 1.25 78 8 5 4 6 5 2 187.367 -0.001 0.10 78 8 4 4. 6 2 4 236.105 0.001 0.02 78 8 5 4 6 3 4 236.241 -0.003 0.20 78 8 5 4 6 1 6 316.581 0.001 0.02 78 8 4 4 7 6 2 76.334 -0.002 0.19 78 8 5 4 7 5 2 81.163 .0.001 2.34 78 8 5 4 7 3 4 125.873 0.001 2.06 78 8 5 4 7 1 6 205.704 -0.003 0.17 78 8 5 4 8 3 6 79.384 0.003 2.15 78 8 4 5 6 4 3 172.601 -0.003 0.55 78 8 4 5 6 2 5 236.682 0.001 0.41 78 8 4 5 7 4 3 62.988 0.000 3.37 78 8 3 5 7 3 5 126.054 0.015 0.08 78 8 4 5 7 2 5 126.053 0.003 2.62 78 8 4 5 7 0 7 222.354 -0.002 0.51 78 8 4 5' 8 2 7 95.717 0.000 1.71 78 8 3 6 6 3 4 156.871 0.009 0.13 78 8 3 6 6 3 5 156.862 -0.015 0.41 78 8 3 6 6 1 6 237.193 -0.006 0.67 78 8 3 6 7 3 4 46.490 -0.001 0.87 78 8 3 6 7 1 6 126.324 -0.002 2.96 78 8 3 6 8 1 8 112.241 0.001 0.50 78 8 2 7 6 2 5 140.964 0.000 5.41 78 8 2 7 7 2 5 30.321 -0.012 0.50 78 8 2 7 7 O 7 126.644 0.005 5.12 78 8 1 8 6 1 6 124.966 '0.006 5.15 78 8 1 8 7 1 6 14.090 0.004 0.57 78 9 9 0 7 7 0 270.468 0.003 0.10 78 9 9 0 9 7 2 30.089 -0.013 0.05 78 9 8 1 8 8 1 127.005 0.015 0.10 78 9 8 1 8 6 3 167.834 -0.002 0.57 78 9 8 1 9 6 3 29.504 0.003 0.48 78 9 7 2 8 7 2 132.206 -0.001 1.72 78 9 7 2 9 5 4 41.562 0.000 0.17 78 9 6 3 7 4 3 264.901 -0.004 0.19 78 9 6 3 7 2 5 327.972 0.005 0.06 78 9 6 3 8 6 3 138.341 0.007 0.06 78 9 6 3 8 4 5 201.912 -0.005 0.19 78 9 6 3 9 4 5 60.627 -0.002 2.14 78 9 5 4 7 5 2 221.854 -0.005 0.41 78 9 5 4 7 3. 4 266.567 -0.003 0.04 78 9 5 4 7 1 6 346.403 -0.002 0.24 78 129 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 9 5 4 8 7 2 90.643 -0.003 0.10 78 9 5 4 8 5 4 140.692 -0.006 0.80 78 9 6 4 8 4 4 141.260 0.020 -0.08 78 9 5 4 8 3 6 220.076 -0.003 0.55 78 9 5 4 9 3 6 78.448 -0.001 2.04 78 9 6 4 9 4 6 78.8341 0.000 0.41 78 9 4 5 7 4 3 204.272 -0.003 0.49 78 9 4 5 7 2 5 267.344 0.006 0.10 78 9 5 5 7 3 5 267.382 0.016 0.41 78 9 4 5 7 0 7 363.646 0.002 0.10 78 9 4 5 8 6 3 77.711 0.006 0.08 78 9 5 5 8 5 3 79.283 -0.001 0.02 78 9 4 5 8 4 5 141.294 0.006 1.10 78 9 5 5 8 3. 5 141.328 0.002 0.10 78 9 4 5 8 2 7 237.020 0.015 0.50 78 9 4 5 9 2 7 95.024 0.002 1.78 78 9 4 5 '9 0 9 223.139 -0.011 0.06 78 9 3 6 7 3 4 188.126 0.005 0.41 78 9 3 6 7 1 6 267.958 0.002 1.25 78 9 3 6 8 5 4 62.238 -0.011 0.10 78 9 3 6 8 3 6 141.636 0.006 1.46 78 9 3 6 8 1 8 253.874 0.004 0.16 78 9 3 6 9 1 8 111.490 0.000 2.15 78 9 2 7 7 2 5 172.321 0.005 2.00 78 9 2 7 7 O 7 268.624 0.002 2.07 78 9 2 7 8 4 5 46.266 0.000 1.03 78 9 2 7 8 2 7 141.985 0.002 0.98 78 9 2 7 9 0 9 128.132 0.004 0.57 78 9 1 8 7 1 6 156.467 0.001 2.00 78 9 1 8 8 3 6 30.140 0.000 2.01 78 9 1 8 8 1 8 142.380 0.000 0.50 78 9 0 9 7 0 7 140.495 0.001 5.02 78 9 0 9 8 2 7 13.859 0.004 0.25 78 10 9 2 9 9 0 137.422 -0.006 0.10 78 10 8 2 10 6 4 40.196 0.000 0.10 78 10 8 3 9 6 3 159.396 0.004 0.48 78 10 8 3 9 4 5 220.023 0.001 0.41 78 10 7 4 9, 7 2 115.052 0.004 0.10 78 10 7 4 9 5 4 156.614 0.004 1.25 78 10 7 4 10 5 6 78.279 -0.002 2.00 78 10 6 5 8 6 3 234.160 -0.005 0.41 78 10 6 5 8 4 5 297.742 -0.005 0.48 78 10 6 5 9 4 5 156.464 0.004 0.10 78 10 6 5 9 2 7 251.484 0.003 0.10 78 10 6 5 10 4 7 94.319 0.004 0.27 78 10 5 6 8 5 4 219.014 -0.013 0.41 78 10 5 6 8 3 6 298.402 -0.006 0.42 78 10 5 6 8 1 8 410.650 0.002 0.26 78 10 5 6 9 5 4 78.328 -0.001 0.17 78 130 UPPER LOWER OBSERVED OBS-CALC WEIGHT 130 -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 10 5 6 9 3 6 156.777 -0.001 0.30 78 10 5 6 9 1 8 268.268 0.000 0.10 78 10 5 6 10 3 8 110.665 -0.001 2.12 78 10 4 7 8 4 5 203.436 0.003 1.25 78 10 4 7 8 2 7 299.152 0.002 1.27 78 10 4 7 9 4 5 62.142 -0.003 0.41 78 10 4 7 9 2 7 157.164 -0.003 0.53 78 10 4 7 9 0 9 285.299 0.004 0.17 78 10 4 7 10 2 9 127.200 0.000 0.66 78 10 3 8 8 3 6 187.741 -0.002 5.09 78 10 3 8 8 1 8 299.983 0.001 0.73 78 10 3 8 9 3 6 46.112 0.000 2.18 78 10 3 8 9 1 8 157.601 -0.001 3.32 78 10 2 9 8 2 7 171.948 -0.002 0.55 78 10 2 9 9 2 7 29.962 -0.005 0.57 78 10 2 9 9 0 9 158.095 0.000 1.61 78 10 1 10 8 1 8 156.009 -0.001 5.02 78 10 1 10 9 1 8 13.632 0.002 2.00 78 11 9 2 11 7 4 39.367 -0.004 0.10 78 11 8 3 10 8 3 164.198 -0.003 0.15 78 11 8 3 11 6 5 56.607 0.001 0.41 78 11 7 4 11 5 6 76.060 0.004 0.41 78 11 7 5 10 7 3 112.661 -0.008 0.25 78 11 6 5 11 6 5 .001 0.001 0.10 78 11 6 5 11 4 7 93.297 0.000 0.55 78 11 5 6 9 5 4 250.051 -0.006 0.10 78 11 5 6 9 3 6 328.501 -0.005 0.17 78 11 5 6 10 5 6 171.719 -0.009 0.05 78 11 5 6 11 3 8 109.746 0.003 0.41 78 11 4 7 9 2 7 329.338 -0.003 0.26 78 11 4 7 10 4 7 172.178 0.003 0.12 78 11 4 7 10 2 9 299.384 0.010 0.16 78 11 4 7 11 2 9 126.194 0.002 0.25 78 11 3 8 9 3 6 218.762 0.000 0.10 78 11 3 8 9 1 8 330.251 -0.001 0.51 78 11 3 8 10 5 6 61.985 0.001 0.53 78 11 3 8 10 3 8 172.650 0.000 0.51 78 11 3 8 11 1 10 142.836 -0.004 0.92 78 11 2 9 9 2 7 203.149 0.000 2.00 78 11 2 9 9 0 9 331.281 0.004 0.41 78 11 2 9 10 4 7 45.984 0.002 0.57 78 11 2 9 10 2 9 173.188 0.006 0.92 78 11 1 10 9 1 8 187.411 -0.002 2.00 78 11 1 10 10 3 8 29.811 0.001 0.49 78 11 1 10 10 1 10 173.779 -0.004 1.39 78 11 0 11 9 0 9 171.507 0.001 5.00 78 12 7 6 12 5 8 '108.785 0.001 0.10 78 12 6 7 12 4 9 125.112 0.001 0.10 78 12 5 8 10 5 6 249.505 0.009 0.10 78 131 UPPER LOWER OBSERVED OB S-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 12 5 8 10 3 8 360.170 0.008 0.10 78 12 5 8 11 5 6 77.765 -0.003 0.10 78 12 5 8 11 3 8 187.516 0.004 0.16 78 12 5 8 12 3 10 141.641 0.010 0.20 78 12 4 9 10 4 7 234.066 0.003 1.25 78 12 4 9 10 2 9 361.259 -0.004 0.10 78 12 4 9 11 2 9 188.083 0.002 0.02 78 12 4 9 12 2 11 158.412 0.002 0.10 78 12 3 10 10 3 8 218.527 -0.003 2.00 78 12 3 10 11 1 10 188.716 -0.004 0.41 78 12 2 11 11 2 9 29.670 -0.001 0.50 78 12 1 12 10 1 10 186.980 -0.001 6.30 78 13 5 8 11 3 8 389.685 -0.001 0.41 78 13 4 9 11 2- 9 390.861 -0.002 1.67 78 13 4 9 13 2 11 156.971 -0.006 0.01 78 13 3 10 11 3 8 249.341 0.004 1.35 78 13 3 10 11 1 10 392.175 -0.002 0.50 78 13 3 10 12 5 8 61.825 -0.001 0.10 78 13 3 10 12 3 10 203.463 0.006 0.05 78 13 2 11 11 2 9 233.888 0.003 0.50 78 13 2 11 12 4 9 45.802 -0.003 0.01 78 13 2 11 12 2 11 204.218 0.003 0.25 78 13 1 12 11 1 10 218.266 -0.001 1.25 78 13 0 13 11 0 11 202.434 0.002 5.00 78 13 0 13 12 2 11 12.989 -0.002 0.10 78 14 5 10 12 5 8 279.803 -0.009 0.20 78 14 5'10 12 3 10 421.449 0.006 0.12 78 14 4 11 12 2 11 423.003 0.011 0.02 78 14 2 13 12 2 11 233.657 0.002 0.53 78 14 2 13 13 0 13 220.667 0.003 0.08 78 14 1 14 12 1 12 217.858 0.001 1.25 78 15 2 13 13 0 13 455.733 0.001 0.02 78 15 0 15 13 0 13 233.250 -0.005 1.25 78 16 1 16 14 1 14 248.622 0.000 0.49' 78 17 O 17 15 0 15 263.972 0.014 0.10 78 - 2 2 0 0 0 0 47.699 -0.004 2.09 80 2 2 0 2 0 2 16.251 0.002 2.79 80 2 1 1 1 1 1 30.887 -0.003 4.93 80 2 2 1 1 0 1 32.663 ~0.002 8.25 80 2 0 2 O O 0 31.451 -0.003 2.04 80 2 1 2 1 1 0 15.604 -0.001 7.33 80 3 3 0 1 1 0 79.562 0.000 5.34 80 3 3 0 2 1 2 63.959 0.002 7.74 80 3 3 0 3 1 2 16.520 0.001 0.13 80 3 3 0 4 1 4 1.320 0.008 0.41 80 3 2 1 1 0 1 78.317 -0.002 0.75 80 3 3 1 l 1 1 80.522 0.002 2.09 80 3 2 1 2 2 1 45.655 0.001 6.31 80 3 3 1 2 1 1 49.633 0.002 6.22 80 132 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 3 2 1 3 0 3 31.034 . 0.002 2.95 80 3 3 1 3 1 3 33.673 -0.001 0.50 80 3 1 2 1 1 0 63.040 -0.003 2.34 80 3 2 2 2 2 0 31.458 -0.003 1.40 80 3 1 2 2 1 2 47.439 0.001 4.75 80 3 2 2 2 0 2 47.712 0.003 0.51 80 3 O 3 1 0 1 47.286 -0.001 2.51 80 3 1 3 1 1 1 46.832 -0.014 0.12 80 3 0 3 2 2 1 14.623 0.001 3.81 80 3 1 3 2 1 1 15.961 0.005 2.21 80 4 4 O 2 2 0 111.496 0.004 0.19 80 4 4 0 3 2 2 80.030 -0.002 0.55 80 4 4 0 4 2 2 17.181 0.004 4.09 80 4 3 1 2 1 1 109.618 0.014 0.02 80 4 4 1 2 2 1 112.643 0.002 1.09 80 4 3 1 3 3 1 59.977 0.003 2.26 80 4 4 1 3 2 1 66.986 0.000 7.84 80 4 3 1 3 1 3 93.656 0.008 0.10 80 4 4 1 3 0 3 98.025 0.007 1.00 80 4 3 1 4 1 3 30.237 -0.002 6.52 80 4 4 1 4 2 3 34.578 -0.001 8.41 80 4 4 1 5 0 5 19.771 0.002 0.10 80 4 2 2 ' 2 2 0 94.315 -0.001 2.18 80 4 3 2 2 1 2 111.184 0.006 0.62 80 4 3 2 3 3 0 47.223 0.002 2.93 80 4 2 2 3 2 2 62.855 0.000 2.87 80 4 3 2 3 1 2 63.740 -0.001 3.20 80 4 3 2 4 1 4 48.534 0.000 2.46 80 4 1 3 2 1 1 79.362 -0.004 0.51 80 4 2 3 2 2 1 78.063 0.002 2.92 80 4 1 3 3 3 1 29.731 -0.004 0.50 80 4 2 3 3 2 1 32.408 0.001 9.52 80 4 1 3 3 1 3 63.401 -0.008 0.49 80 4 2 3 3 0 3 63.442 0.003 3.20 80 4 1 4 2 1 2 62.645 0.000 0.51 80 4 1 4 3 1 2 15.210 ‘ 0.003 0.71 80 5 5 0 3 3 0 143.481 -0.001 5.83 80 5 5 0 3 1 2 160.010 0.009 0.25 80 5 5 0 4 3 2 . 96.261 0.001 4.94 80 5 5 0 4 1 4 144.805 0.011 0.67 80 5 5 O 5 3 2 18.401 0.000 5.59 80 5 5 0 5 1 4 65.545 0.000 0.05 80 5 4 1 3 2 1 140.865 0.002 0.67 80 5 5 1 3 3 1 144.661 0.002 1.92 80 5 4 1 3 0 3 171.901 0.006 0.20 80 5 5 1 3 1 3 178.335 0.001 0.05 80 5 4 1 4 4 1 73.876 -0.001 6.77 80 5 5 1 4 3 1 84.685 -0.001 4.16 80 5 4 1 4 2 3 108.455 -0.001 6.00 80 133 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 5 5 1 4 1 3 114.931 0.007 1.43 80 5 4 1 5 2 3 29.410 -0.002 8.04 80 5 5 1 5 3 3 35.746 -0.005 0.30 80 5 4 1 5 0 5 93.647 0.001 0.10 80 5 3 2 3 3 0 125.083 0.002 2.67 80 5 3 2 3 1 2 141.607 0.007 0.43 80 5 4 2 3 2 2 142.847 -0.002 0.27 80 5 4 2 4 4 0 62.820 0.003 0.80 80 5 3 2 4 3 2 77.860 0.000 8.87 80 5 4 2 4 2 2 79.993 -0.001 4.06 80 5 3 2 4 1 4 126.394 0.001 2.62 '80 5 3 2 5 1 4 47.142 -0.002 3.29 80 5 4 2 5 2 4 48.609 -0.007 0.02 80 5 2 3 3 2 1 111.451 0.000 5.50 80 5 3 3 3 3 1 108.910 0.002 0.02 80 5 2 3 3 0 3 142.486 0.003 0.57 80 5 3 3 3 1 3 142.589 0.007 0.08 80 5 2 3 4 4 1 44.467 0.002 7.93 80 5 3 3 4 3 1 48.932 -0.002 1.75 80 5 2 3 4 2 3 79.045 0.001 1.43 80 5 3 3 4 1 3 79.178 0.005 0.39 80 5 2 3 5 0 5 64.233 -0.001 5.18 80 5 1 4 3 1 2 94.463 0.007 0.10 80 5 1 4 4 3 2 30.717 0.001 1.00 80 5 2 4 4 2 2 31.383 0.005 0.08 80 5 1 4 4 1 4 79.247 -0.002 5.84 80 5 0 5 3 2 1 47.229 0.012 0.05 80 5 0 5 3 0 3 78.247 -0.002 2.31 80 5 0 5 4 2 3 14.811 0.001 1.09 80 6 6 0 4 4 0 175.464 -0.004 1.25 80 6 6 0 4 2 2 192.650 0.005 1.25 80 6 6 0 5 4 2 112.649 -0.002 2.15 80 6 6 0 6 4 2 20.309 -0.001 2.68 80 6 5 1 4 3 1 172.109 0.000 0.92 80 6 6 1 4 4 1 176.532 0.000 3.34 80 6 5 1 4 1 3 202.350 0.002 0.17 80 6 6 1 4 2 3 211.110 -0.002 1.35 80 6 5 1 5 5 1 87.427 0.004 2.53 80 6 6 1 5 4 1 102.654 -0.002 6.99 80 6 5 1 5 3 3 . 123.174 -0.001 0.64 80 6 6 1 5 2 3 132.066 -0.002 1.07 80 6 5 1 6 3 3 28.697 -0.001 2.39 80 6 6 1 6 4 3 37.186 -0.001 2.04 80 6 6 1 6 2 5 101.262 0.017 0.02 80 6 5 2 4 3 2 174.448 0.002 0.57 80 6 5 2 4 1 4 222.995 0.016 0.08 80 6 5 2 5 5 0 78.182 -0.003 2.45 80 6 4 2 5 4 2 92.340 -0.001 5.37 80 6 5 2 5 3 2 96.586 0.000 7.49 80 134 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ra Kc J Ka Kc (cm ) (cm ) 6 4 2 5 2 4 140.962 0.006 0.05 80 6 5 2 5 1 4 143.728 -0.002 2.01 80 6 4 2 6 2 4 46.095 0.004 1.77 80 6 5 2 6 3 4 48.849 0.001 2.87 80 6 3 3 4 3 1 143.414 0.003 1.43 80 6 4 3 4 4 1 139.347 0.001 3.07 80 6 3 3 4 1 3 173.658 0.008 1.27 80 6 4 3 4 2 3 173.924 -0.001 5.50 80 6 3 3 5 5 1 58.727 0.002 1.46 80 6 4 3 5 4 1 65.469 0.000 11.05 80 6 3 3 5 3 3 94.475 -0.002 0.51 80 6 4 3 5 2 3 94.880 -0.001 10.11 80 6 4 3 5 0 5 159.116 0.001 0.92 80 6 3 3 6 1 5 63.751 -0.007 0.42 80 6 4 3 6 2 5 64.057 -0.002 3.20 80 6 3 3 7 1 7 49.442 0.005 0.02 80 6 4 3 7 0 7 49.742 0.004 0.25 80 6 2 4 4 2 2 126.245 0.002 0.17 80 6 3 4 4 3 2 125.599 0.001 5.12 80 6 3 4 4 1 4 174.132 0.001 2.26 80 6 2 4 5 4 2 46.249 0.000 0.10 80 6 3 4 5 3 2 47.740 0.002 5.71 80 6 2 4 5 2 4 94.866 0.001 0.24 80 6 3 4 5 1 4 94.882 0.000 1.10 80 6 3 4 6 1 6 80.313 -0.001 0.51 80 6 2 5 4 2 '3 109.869 0.003 0.48 80 6 2 5 5 2 3 30.825 0.003 5.56 80 6 2 5 5 0 5 95.055 -0.001 10.77 80 6 1 6 4 1 4 93.818 0.000 6.41 80 6 1 6 5 1 4 14.569 0.001 7.18 80 7 7 0 5 5 0 207.342 -0.003 5.12 80 7 7 0 5 3 2 225.746 0.000 2.09 80 7 7 0 6 5 2 129.160 0.000 2.64 80 7 7 0 6 3 4 178.005 -0.003 0.08 80 7 7 O 7 5 2 22.926 0.002 5.91 80 7 6 1 5 4 1 203.362 -0.005 0.51 80 7 7 1 5 5 1 208.208 -0.002 2.06 80 7 6 1 5 2 3 232.775 -0.004 0.10 80 7 7 1 5 3 3 243.951 -0.011 0.02 80 7 6 1 6 6 1 100.712 0.000 1.39 80 7 7 1 6 5 1 120.785 -0.002 1.86 80 7 6 1 6 4 3 137.896 -0.003 2.12 80 7 7 1 6 3 3 149.484 -0.001 0.47 80 7 6 1 7 4 3 28.298 0.000 3.78 80 7 7 1 7 5 3 38.857 -0.001 0.05 80 7 6 1 7 2 5 91.358 -0.001 0.10 80 7 5 2 5 5 0 184.423 0.002 0.08 80 7 5 2 5 3 2 202.826 0.005 0.82 80 7 6 2 5 4 2 205.946 -0.002 0.10 80 135 UPPER. LOWER OBSERVED OBS-CALC WEIGHT 130 -1 -1 J K.a Kc J Ka Kc (cm ) (cm ) 7 5 2 5 1 4 249.968 0.002 0.08 80 7 6 2 6 6 0 93.297 0.001 0.10 80 7 5 2 6 5 2 106.236 0.000 4.40 80 7 6 2 6 4 2 113.610 0.003 0.20 80 7 5 2 6 3 4 155.086 0.003 ‘ 1.82 80 7 5 2 7 3 4 44.742 0.000 5.36 80 7 4 3 5 4 1 175.066 -0.003 2.18 80 7 5 3 S 5 1 169.359 0.007 0.12 80 7 4 3 5 2 3 204.480 -0.001 1.36 80 7 5 3 5 3 3 205.110 0.006 0.20 80 7 4 3 5 0 5 268.719 0.004 0.41 80 7 4 3 6 6 1 72.418 0.005 1.02 80 7 5 3 6 5 1 81.935 .0.006 0.23 80 7 4 3 6 4 3 109.598 -0.002 4.12 80 7 5 3 6 3 3 110.628 0.001 0.55 80 7 4 3 6 2 5 173.659 0.000 1.92 80 7 5 3 6 1 5 174.382 -0.003 1.25 80 7 4 3 7 2 5 63.062 0.002 5.43 80 7 5 3 7 3 5 63.780 -0.004 0.53 80 7 5 3 7 1 7 160.075 0.011 0.08 80 7 4 3 . 8 2 7 32.740 0.002 0.02 80 7 3 4 5 5 0 139.688 0.009 0.02 80 7 3 4 5 3 2 158.079 0.000 5.21 80 7 3 4 5 1 4 205.221 -0.003 2.03 80 7 4 4 5 2 4 205.279 0.007 0.08 80 7 3 4 6 5 2 61.493 -0.001 5.66 80 7 4 4 6 4 .2 64.318 0.002 0.60 80 7 3 4 6 3 4 110.344 0.002 0.94 80 7 4 4 6 2 4 110.411 0.004 0.82 80 7 3 4 6 1 6 190.657 0.002 0.34 80 7 3 4 7 1 6 79.815 0.000 1.15 80 7 3 5 5 5 1 105.570 0.002 0.02 80 7 2 5 5 2 3 141.431 0.010 0.41 80 7 2 5 6 6 1 9.339 -0.014 0.02 80 7 2 5 6 4 3 46.544 0.004 0.55 80 7 3 5 6 3 3 46.852 0.009 0.25 80 7 2 5 6 2 5 110.602 0.004 1.31 80 7 3 5 6 1 5 110.603 0.003 0.41 80 7 2 5 7 0 7 96.279 0.001 2.79 80 7 1 6 5 1 4 125.407 -0.001 0.47 80 7 1 6 6 3 4 30.528 0.002 0.64 80 7 1 6 6 1 6 110.841 0.001 3.79 80 7 0 7 5 0 5 109.375 -0.002 2.43 80 7 0 7 6 2 5 14.320 0.000 7.41 80 8 8 0 6 6 0 238.991 -0.003 2.00 80 8 8 0 7 6 2 145.688 -0.009 0.10 80 8 8 0 8 6 2 26.162 0.000 1.03 80 8 8 1 6 6 1 239.640 0.000 2.54 80 8 8 1 6 4 3 276.825 -0.002 0.19 80 136 UPPER LOWER OBSERVED OB S-CALC WEIGHT ISO . -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 8 8 1 7 6 1 138.928 0.000 1.11 80 ' 8 7 1 7 5 3 152.741 0.004 2.50 80 8 8 1 7 4 3 167.228 0.001 0.48 80 8 7 1 8 5 3 28.462 0.000 2.18 80 8 8 1 8 6 3 40.715' 0.004 0.78 80 8 6 2 6 4 2 233.138 -0.004 1.25 80 8 7 2 6 5 2 237.329. -0.001 0.12 80 8 6 2 6 2 4 279.242 0.009 0.41 80 8 7 2 6 3 4 286.186 0.008 0.25 80 8 7 2 7 7 0 108.169 -0.001 0.08 80 8 6 2 7 6 2 119.524 -0.011 0.10 80 8 7 2 7 5 2 131.090 -0.005 0.47 80 8 7 2 7 3 4 175.829 70.008 0.12 80 8 6 2 8 4 4 43.192 0.000 2.42 80 8 7 2 8 5 4 50.002 0.000 5.30 80 8 7 2 8 3 6 129.358 -0.005 0.05 80 8 6 3 6 6 1 198.918 -0.011 0.05 80 8 5 3 6 3 3 234.916 0.015 0.01 80 8 6 3 6 4 3 236.114 -0.001 0.76 80 8 5 3 6 1 5 298.658 -0.001 0.01 80 8 6 3 6 2 5 300.167 -0.007 0.08 80 8 6 3 7 6 1 98.216 -0.001 1.00 80 8 5 3 7 5 3 124.275 0.001 0.69 80 8 6 3 7 4 3 126.511 -0.004 3.06 80 8 5 3 7 3 5 188.054 -0.004 0.08 80 8 6 3 7 2 5 189.575 -0.001 2.07 80 8 5 3 8 3 5 62.057 0.002 1.75 80 8 6 3 8 4 5 63.561 -0.001 3.25 80 8 4 4 6 4 2 189.951 0.002 0.85 80 8 5 4 6 5 2 187.326 -0.002 2.04 80 8 4 4 6 2 4 236.048 0.007 0.69 80 8 5 4 6 3 4 236.175 -0.001 1.28 80 8 5 4 6 1 6 316.488 -0.002 0.10 80 8 4 4 7 6 2 76.340 -0.003 0.10 80 8 5 4 7 5 2 81.094 0.001 6.37 80 8 4 4 7 4 4 125.630 -0.004 0.25 80 8 5 4 7 3 4 125.836 0.001 5.41 80 8 5 4 7 1 6 205.653 0.003 0.67 80 8 5 4 8 3 6 79.361 0.000 2.78 80 8 4 5 6 6 1 135.364 -0.003 0.02 80 8 3 5 6 3 3 172.847 0.001 0.08 80 8 4 5 6 4 3 172.554 0.000 5.09 80 8 3 5 6 1 5 236.598 -0.006 0.10 80 8 4 5 6 2 5 236.614 0.002 2.32 80 8 3 5 7 5 3 62.217 -0.002 1.35 80 8 4 5 7 4 3 62.957 0.003 2.43 80 8 3 5 7 3 5 125.999 -0.005 0.20 80 8 4 5 7 2 5 126.014 0.000 4.94 80 8 4 5 7 0 7 222.291 —0.001 1.68 80 137 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Kch (cm ) (cm ) 8 4 5 8 2 7 95.691 0.000 2.43 80 8 4 5 9 O 9 81.854 0.013 0.02 '80 8 3 6 6 3 4 156.818 0.003 0.58 80 8 3 6 6 1 6 237.130 0.001 0.60 80 8 3 6 7 5 2 1.728 -0.004 0.10 80 8 3 6 7 3 4 46.475 0.001 1.10 80 8 3 6 7 1 6 126.290 0.001 5.59 80 8 3 6 8 1 8 112.209 0.002 2.93 80 8 2 7 6 6 1 39.660 -0.016 0.01 80 8 2 7 6 4 3 76.844 -0.018 0.02 80 8 2 7 6 2 5 140.921 0.000 5.46 80 8 2 7 7 2 5 30.321 -0.002 0.85 80 8 2 7 7 0 7 126.602 0.002 5.87 80 8 1 8 6 1 6 124.924 0.002 5.52 80 8 1 8 7 1 6 14.085 0.003 2.20 80 9 9 0 7 7 0 270.317 0.000 0.48 80 9 9 0 7 5 2 293.243 0.002 0.48 80 9 8 1 7 6 1 266.005 -0.004 0.53 80 9 9 1 7 7 1 270.781 . 0.010 0.10 80 9 8 1 7 4 3 294.307 0.000 0.41 80 9 8 1 8 8 1 127.074 -0.007 1.13 80 9 8 1 8 6 3 167.792 0.000 5.27 80 9 8 1 9 6 3 ° 29.443 0.000 2.43 80 9 7 2 7 5 2 263.373 -0.001 0.41 80 9 7 2 7 3 4 308.109 -0.007 0.19 80 9 8 2 _8 8 0 122.870 0.003 0.48 80 9 7 2 8 7 2 132.276 -0.003 2.01 80 9 8 2 8 6 2 149.032 0.002 0.60 80 9 7 2 8 5 4 182.276 -0.005 0.10 80 9 8 2 8 4 4 192.222 0.000 0.10 80 9 7 2 9 5 4 41.610 -0.001 2.42 80 9 8 2 9 6 4 51.026 -0.001 0.10 80 9 6 3 7 6 1 236.562 -0.004 0.53 80 9 6 3 7 4 3 264.862 -0.002 0.60 80 9 6 3 7 2 5 327.919 -0.006 0.42 80 9 6 3 8 8 1 97.635 -0.003 0.33 80 9 6 3 8 6 3 138.351 0.002 0.62 80 9 7 3 8 5 3 142.677 -0.008 0.15 80 9 6 3 8 4 5 201.911 0.000 0.91 80 9 7 3 8 3 5 204.729 -0.010 0.17 80 9 6 3 9 4 5 60.662 0.000 6.75 80 9 7 3 9 5 5 63.450 -0.003 1.29 80 9 6 3 9 2 7 155.662 0.001 0.41 80 9 5 4 7 5 2 221.762 0.000 0.73 80 9 5 4 7 3 4 266.504 0.000 0.80 80 9 5 4 7 1 6 346.326 0.006 0.67 80 9 5 4 8 7 2 90.668 0.000 0.60 80 9 6 4 8 6 2 98.003 0.000 1.25 80 9 5 4 8 5 4 140.671 0.001 1.82 80 138 UPPER LOWER OBSERVED OB S-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka KC (cm ) (cm ) 9 6 4 8 4 4 141.196 0.001 2.09 80 9 5 4 8 3 6 220.027 -0.004 1.67 80 9 5 4 9 3 6 78.441 0.000 5.22 80 9 6 4 9 4 6 78.815 -0.001 3.25 80 9 4 5 7 4 3 204.203 0.000 0.34 80 9 4 5 7 2 5 267.259 -0.004 0.48 80 9 5 5 7 3 5 267.294 0.004 0.01 80 9 4 5 7 0 7 363.548 0.007 0.23 80 9 4 5 8 6 3 77.686 -0.001 1.50 80 9 5 5 8 5 3 79.244 0.013 0.05 80 9 4 5 8 4 5 141.248 -0.001 2.84 80 9 5 5 8 3 5 141.292 0.006 0.10 80 9 4 5 8 2 7 236.941 0.001 0.50 80 9 4 5 9 2 7 95.002 0.003 2.18 80 9 4 5 9 0 9 223.094 0.004 0.02 80 9 4 5 10 2 9 65.023 -0.020 -0.02 80 9 3 6 7 3 4 188.065 0.002 0.51 80 9 3 6 7 1 6 267.879 0.001 2.18 80 9 3 6 8 5 4 62.230 0.002 0.26 80 9 3 6 8 3 6 141.589 0.000 4.13 80 9 3 6 8 1 8 253.794 -0.002 2.93 80 9 3 6 9 1 8 111.460 0.000 3.53 80 9 2 7 7 2 5 172.263 -0.001 5.50 80 9 2 7 7 0 7 268.542 0.000 2.26 80 9 2 7 8 4 5 46.253 0.003 2.71 80 9 2 7 8 2 7 141.941 0.000 1.45 80 9 2 7 9 0 9 128.092 0.001 2.54 80 9 1 8 7 1 6 156.418 -0.001 5.02 80 9 1 8 8 3 6 30.131 0.001 1.50 80 9 1 8 8 1 8 142.338~ 0.001 1.85 80 9 0 9 7 2 5 44.165 -0.008 0.02 80 9 0 9 7 0 7 140.450 -0.001 5.12 80 9 0 9 8 2 7 13.852 0.001 0.98 80 10 10 1 8 8 1 301.558 -0.001 0.48 80 10 10 1 9 8 1 174.483 0.005 0.08 80 10 9 1 9 7 3 183.130 -0.001 0.48 80 10 8 2 9 6 4 195.577 -0.005 0.41 80 10 8 2 10 6 4 40.241 0.001 0.51 80 10 8 2 10 4 6 117.669 -0.003 0.41 80 10 8 3 9 6 3 159.285 0.003 0.48 80 10 8 3 9 4 5 219.947 0.003 0.48 80 10 7 3 10 5 5 58.849 -0.002 0.10 80 10 6 4 8 4 4 296.524 -0.013 0.02 80 10 7 4 9 7 2 114.945 0.003 1.25 80 10 6 4 9 6 4 155.358 0.016 0.02 80 10 7 4 9 5 4 156.555 0.001 2.00 80 10 6 4 10 4 6 77.430 -0.002 0.08 80 10 7 4 10 5 6 78.264 0.002 2.01 80 10 6 5 8 6 3 0.001 0.10 80 234.103 139 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J K.a Kc J Ka Kc (cm ) (cm ) 10 6 5 8 4 5 297.667 0.004 0.12 80 10 6 5 8 2 7 393.349 -0.006 1.25 80 10 6 5 9 6 3 95.748 -0.005 0.33 80 10 5 5 9 S 5 156.312 0.009 0.05 80 10 6 5 9 4 5 156.415 0.001 0.62 80 10 6 5 9 2 7 251.411 -0.002 1.25 80 10 6 5 10 4 7 94.292 -0.001 0.75 80 10 6 5 10 2 9 221.448 -0.009 0.19 80 10 5 6 8 5 4 218.960 -0.001 0.48 80 10 5 6 8 3 6 298.321 -0.001 1.17 80 10 5 6 8 1 8 410.525 -0.004 0.85 80 10 4 6 9 6 4 77.911 0.001 0.48 80 10 5 6 9 5 _4 78.292 0.001 0.64 80 10 4 6 9 4 6 156.729 0.003 0.41 80 10 5 6 9 3 6 156.733 0.000 1.96 80 10 5 6 9 1 8 268.189 -0.003 1.32 80 10 5 6 10 3 8 110.635 -0.002 5.84 80 10 4 7 8 4 5 203.373 0.002 2.03 80 10 4 7 8 2 7 299:063 0.001 5.52 80 10 4 7 9 4 5 62.124 0.002 2.04 80 10 4 7 9 2 7 157.122 0.001 2.93 80 10 4 7 9 0 9 285.212 0.001 0.55 80 10 4 7 10 2 9 127.164 -0.001 2.62 80 10 3 8 8 3 6 187.683 -0.003 5.16 80 10 3 8 8 1 8 299.892 0.000 2.65 80 10 3 8 9 3 6 46.097 0.001 4.52 80 10 3 8 9 1 8 157.557 0.001 2.48 80 10 3 8 10 1 10 143.929 -0.001 0.55 80 10 2 9 8 4 5 76.224 0.018 0.02 80 10 2 9 8 2 7 171.898 0.001 0.55 80 10 2 9 9 2 7 29.954 -0.002 2.79 80 10 2 9 9 0 9 158.047 0.000 2.59 80 10 1 10 8 1 8 155.962 0.000 6.27 80 10 1 10 9 1 8 13.626 0.000 0.82 80 11 10 1 10 8 3 198.763 0.003 0.41 80 11 10 1 11 8 3 34.489 0.002 0.41 80 11 9 2 11 7 4 39.388 -0.004 0.48 80 11 8 3 10 8 3 164.273 0.000 1.35 80 11 8 3 11 6 5 56.684 -0.001 2.00 80 11 9 3 11 7 5 63.853 -0.008 0.08 80 11 7 4 10 7 4 169.504 0.004 0.10 80 11 7 4 10 5 6 247.768 0.005 0.10 80 11 7 4 11 5 6 76.081 -0.002 2.04 80 11 8 4 11 6 6 77.754 0.003 0.41 80 11 6 5 9 6 3 266.870 0.000 0.10 80 11 6 5 9 4 5 327.532 0.000 0.10 80 11 6 5 10 8 3 107.583 -0.005 0.16 80 11 7 5 10 7 3 112.564 0.003 0.00 80 11 6 5 10 6 5 -0.001 0.10 80 171.116 140 UPPER LOWER OBSERVED OB S-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 11 7 5 10 5 5 171.413 0.001 0.00 80 11 6 5 11 4 7 93.288 0.002 2.07 80 11 7 5 11 5 7 93.498 0.001 0.41 80 11 5 6 9 5 4 249.969 -0.002 0.10 80 11 5 6 9 3 6 328.411 -0.001 0.10 80 11 5 6 10 7 4 93.415 -0.002 0.10 80 11 5 6 10 5 6 171.679 0.000 0.33 80 11 5 6 10 3 8 282.320 0.004 0.10 80 11 5 6 11 3 8 109.718 0.001 2.00 80 .11 4 7 9 6 3 173.574 -0.010 0.25 80 11 4 7 9 4 5 234.247 0.001 1.60 80 11 4 7 9 2 7 329.246 0.001 2.12 80 11 4 7 9 0 9 457.322 -0.014 0.10 80 11 4 7 10 6 5 77.829 -0.002 1.16 80 11 4 7 10 4 .7 172.125' 0.001 3.37 80 11 4 7 10 2 9 299.282 -0.007 0.17 80 11 4 7 11 2 9 126.161 0.003 0.60 80 11 3 8 9 3 6 218.695 0.000 1.35 80 11 3 8 9 1 8 330.158 0.003 0.60 80 11 3 8 10 5 6 61.965 0.002 2.07 80 11 3 8 10 3 8 172.601 0.002 2.15 80 11 3 8 10 1 10 316.528 -0.001 0.02 80 11 3 8 11 1 10 142.803 0.003 0.92 80 11 2 9 9 2 7 203.085 -0.002 5.09 80 11 2 9 9 0 9 331.177 0.000 2.00 80 11 2 9 10 4 7 45.964 -0.002 2.48 80 11 2 9 10 2 9 173.131 0.000 3.92 80 11 2 9 11 0 11 159.722 -0.002 1.07 80 11 1 10 9 3 6 75.876 -0.019 0.41 80 11 1 10 9 1 8 187.355 0.000 5.43 80 11 1 10 10 3 8 29.799 0.000 1.10 80 11 1 10 10 1 10 173.730 0.001 1.32 80 11 0 11 9 0 9 171.455 0.001 5.43 80 11 0 11 10 2 9 13.408 0.001 0.41 80 12 12 1 12 10 3 48.187 -0.003 0.05 80 12 7 6 . 12 5 8 108.763 0.006 0.48 80 12 6 7 10 6 5 264.777 0.002 0.17 80 12 6 7 10 4 7 359.069 0.001 0.08 80 12 6 7 11 6 5 93.662 0.004 0.05 80 12 6 7 11 4 7 186.951 0.008 0.08 80 12 6 7 12 4 9 125.076 -0.001 0.43 80 12 5 8 10 5 6 249.421 0.003 0.56 80 12 5 8 10 3 8 360.054 -0.001 0.89 80 12 5 8 11 5 6 77.740 0.002 0.55 80 12 5 8 11 3 8 187.455 0.000 1.12 80 12 5 8 11 1 10 330.250 -0.006 0.10 80 12 5 8 12 3 10 141.591 -0.001 1.15 80 12 4 9 10 4 7 233.996 0.005 2.06 80 12 4 9 10 2 9 361.160 0.004 1.35 80 141 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 12 4 9 11 4 7 61.870 0.003 0.10 80 12 4 9 11 2 9 188.032 0.007 1.25 80 12 4 9 12 2 11 158.370 0.003 0.73 80 12 3 10 10 3 8 218.461 -0.002 5.08 80 12 3 10 10 1 10 362.394 0.001 0.20 80 12 3 10 11 3 8 45.864 0.000 0.30 80 12 3 10 11 1 10 188.666 0.002 0.73 80 12 2 11 10 2 9 202.791 0.002 2.12 80 12 2 11 11 2 9 29.658 0.000 0.53 80 12 2 11 11 0 11 189.382 0.000 0.34 80 12 1 12 10 1 10 186.923 0.000 6.25 80 13 6 7 12 8 5 108.886 -0.003 0.41 80 13 5 8 12 7 6 93.351 -0.003 2:00 80 13 5 8 12 5 8 202.114 0.003 0.41 80 13 4 9 --11 4 7 264.579 -0.008 0.10 80 13 4 9 11 2 9 390.747 0.002 1.35 80 13 4 9 13 2 11 156.930 -0.002 0.25 80 13 3 10 11 3 8 249.254 -0.007 0.91 80 13 3 10 11 1 10 392.055 -0.006 0.75 80 13 3 10 12 5 8 61.803 -0.002 0.20 80 13 3 10 12 3 10 203.397 0.000 0.16 80 13 3 10 13 1 12 173.850 -0.013 0.01 80 13 2 11 11 2 9 233.814 0.001 2.12 80 13 2 11 11 0 11 393.536 -0.001 0.66 80 13 2 11 12 4 9 45.790 0.002 0.48 80 13 2 11 12 2 11 204.156 0.001 0.71 80 13 2 11 13 0 13 191.170 0.002 0.08 80 13 1 12 11 1 10 218.201 0.003 2.03 80 13 1 12 12 3 10 29.535 0.002 0.02 80 13 0 13 11 0 11 202.368 -0.001 5.09 80 13 0 13 12 2 11 12.991 0.004 0.10 80 14 5 10 12 5 8 279.728 0.005 0.08 80 14 5 10 12 3 10 421.315 0.001 0.10 80 14 4 11 12 4 9 264.497 -0.004 0.50 80 14 4 11 12 2 11 422.869 0.001 0.48 80 14 4 11 13 2 11 218.706 -0.007 0.08 80 14 3 12 12 3 10 249.131 -0.004 0.50 80 14 3 12 12 1 12 424.607 0.002 0.06 80 14 2 13 12 2 11 233.578 -0.002 2.09 80 14 2 13 13 2 11 29.426 0.001 0.02 80 14 2 13 13 0 13 220.588 -0.005 0.10 80 14 1 14 12 1 12 217.789 0.001 2.10 80 15 3 12 13 3 10 279.710 0.000 0.10 80 15 2 13 13 2 11 264.425 -0.002 0.34 80 15 2 13 13 0 13 455.596 0.001 0.08 80 15 1 14 13 1 12 248.936 0.003 0.76 80 15 1 14 14 3 12 29.332 0.000 0.10 80 15 0 15 13 0 13 233:177 -0.004 0.17 80 15 0 15 14 2 13 12.588 0.000 0.10 80 142 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1‘ J Ka Kc J Ka Kc (cm. ) (cm ) 16 4 13 14 4 11 294.882 -0.004 0.41 80 16 3 14 14 3 12 279.690 0.002 1.25 80 16 2 15 14 2 13 264.257 0.000 0.33 80 16 2 15 15 0 15 251.665 -0.004 0.05 80 16 1 16 ‘14 1 14 248.544 0.000 2.03 80 17 3 14 15 3 12 310.033 0.003 0.08 80 17 0 17 15 0 15 263.878 0.000 0.55 80 18 1 18 16 1 16 279.179 -0.001 0.25 80 2 1 1 1 1 1 30.906 0.016 0.08 82 2 2 1 1 0 1 32.642 -0.003 0.41 82 2 1 2 1 1 0 15.601 0.000 1.75 82 3 3 0 1 1 0 79.534 0.000 1.32 82 3 3 0 2 1 2 63.933 0.000 1.39 82 3 3 0 3 1 2 165508 0.002 1.32 82 3 3 1 1 1 1 80.495 0.012 0.08 82 3 3 1 2 1 1 49.591 -0.003 0.30 82 3 2 1 3 0 3 31.042 0.007 0.08 82 3 1 2 1 1 0 63.028 0.000 0.13 82 3 1 2 2 1 2 47.420 -0.007 0.16 82 3 0 3 1 0 1 47.269 -0.002 0.41 82 3 0 3 2 2 1 14.627 0.001 0.25 82 4 4 1 3 2 1 66.917 -0.010 0.08 82 4 3 1 4 1 3 30.243 -0.005 0.25 82 4 4 1 4 2 3 34.532 -0.009 0.34 82 4 2 2 2 2 0 94.302 0.004 0.10 82 4 3 2 3 3 0 47.210 0.000 1.35 82 4 2 2 3 2 2 62.837 -0.009 0.25 82 4 3 2 3 1 2 63.713 -0.004 1.25 82 4 1 3 3 3 1 29.748 0.005 0.01 82 4 2 3 3 2 1 32.386 0.000 1.06 82 4 2 3 3 0 3 63.419 -0.002 0.21 82 4 1 4 2 1 2 62.631 0.004 0.08 82 5 5 0 3 3 0 143.416 -0.002 0.15 82 5 5 0 4 3 2 96.203 -0.005 0.10 82 5 5 0 5 3 2 18.349 -0.001 0.60 82 5 4 1 4 4 1 73.916 0.008 0.41 82 5 5 1 4 3 1 84.595 -0.004 0.10 82 5 4 1 4 2 3 108.449 0.000 0.42 82 5 4 1 5 2 3 29.423 -0.002 1.25 82 5 3 2 3 3 0 125.073 0.005 0.10 82 5 3 2 4 3 2 77.856 -0.002 1.35 82 5 4 2 4 2 2 79.949 -0.008 0.10 82 5 3 2 5 1 4 47.144 -0.004 0.41 82 5 2 3 3 2 1 111.410 0.000 0.50 82 5 3 3 3 3 1 108.888 -0.005 0.05 82 5 2 3 4 4 1 44.493 0.010 0.50 82 5 2 3 4 2 3 79.025 0.001 0.92 82 5 2 3 5 0 5 64.228 0.009 0.13 82 5 1 4 4 3 2 30.712 -0.002 0.41 82 143 UPPER. LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 5 1 4 4 1 4 79.233 0.006 0.48 82 5 0 5 3 0 3 78.224 -0.002 2.42 82 5 0 5 4 2 3 14.810 0.005 0.21 82 6 6 0 4 4 0 175.384 0.001 0.08 82 6 5 1 4 3 1 172.066 -0.003 0.01 82 6 6 1 5 4 1 102.530 -0.008 0.67 82 6 5 1 6 3 3 28.709 -0.001 0.24 82 6 6 1 6 4 3 37.103 -0.008 0.08 82 6 5 2 5 5 0 78.178 -0.001 2.00 82 6 4 2 5 4 2 92.348 -0.003 0.25 82 6 5 2 5 3 2 96.530 0.001 0.89 82 6 4 2 6 2 4 46.100 -0.008 0.25 82 6 5 2 6 3 4 48.836 0.014 0.01 82 6 3 3 4 3 1 143.355 -0.004 0.02 82 6 4 3 4 4 1 139.347 0.013 0.41 82 6 4 3 4 2 3 173.880 0.005 0.41 82 6 4 3 5 4 1 65.431 0.005 1.38 82 6 4 3 5 2 3 94.854 0.003 1.32 82 6 3 4 4 3 2 125.564 -0.001 0.41 82 6 3 4 5 3 2 47.708 0.001 0.41 82 6 3 4 5 1 4 94.852 -0.003 0.25 82 6 2 5 4 2 3 109.838 0.004 0.10 82 6 2 5 5 0 5 95.027 -0.002 1.72 82 6 1 6 4 1 4 93.790 0.000 3.25 82 6 1 6 5 1 4 14.557 -0.007 0.41 82 7 7 0 5 5 0 207.239 0.001 0.48 82 7 7 0 5 3 2 225.589 0.001 0.25 82 7 7 0 6 5 2 129.061 0.002 0.41 82 7 7 0 7 5 2 22.801 0.003 0.10 82 7 6 1 7 4 3 28.311 0.009 0.41 82 7 5 2 6 5 2 106.257 -0.005 0.20 82 7 5 2 7 3 4 44.774 0.003 2.00 82 7 4 3 5 4 1 175.008 -0.002 0.08 82 7 4 3 5 2 3 204.425 -0.010 0.08 82 7 4 3 5 0 5 268.653 -0.001 0.06 82 7 4 3 6 4 3 109.582 -0.002 0.10 82 7 3 4 5 3 2 158.021 0.002 2.00 82 7 3 4 5 1 4 205.159 -0.008 0.02 82 7 3 4 6 5 2 61.489 -0.001 0.41 82 7 4 4 6 4 2 64.272 0.004 0.08 82 7 4 4 6 2 4 . 110.372 -0.004 0.08 82 7 3 4 6 1 6 190.610 0.007 0.05 82 7 3 4 7 1 6 79.802 0.006 0.33 82 7 2 5 5 2 3 141.397 0.020 0.05 82 7 2 5 6 4 3 46.543 0.017 0.05 82 7 1 6 5 1 4 125.377 .0.006 0.10 82 7 1 6 6 3 4 30.526 0.010 0.02 82 7 1 6 6 1 6 110.810 0.003 0.17 82 7 0 7 5 0 5 109.344 -0.002 0.48 82 144 UPPER LOWER OBSERVED OBS-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 7 0 7 6 2 5 14.316 -0.001 1.50 82 8 7 1 7 5 3 152.709 -0.001 0.05 82 8 6 2 8 4 4 43.233 0.001 0.08 82 8 7 2 8 5 4 49.954 0.001 0.08 82 8 6 3 6 2 5 300.083 -0.002 0.41 82 8 6 3 7 4 3 126.466 0.005 0.10 82 8 5 4 6 5 2 187.286 -0.002 0.41 82 8 5 4 7 5 2 81.028 0.001 0.55 82 8 5 4 7 3 4 125.801 0.003 0.41 82 8 5 4 8 3 6 79.345 0.003 0.48 82 8 4 5 6 4 3 172.498 -0.006 0.10 82 8 4 5 7 2 5 125.971- -0.007 0.10 82 8 3 6 6 1 6 237.059 -0.001 0.08 82 8 3 6 7 3 4 46.451 -0.005 0.50 82 8 3 6 '7 1 6 126.253 0.001 0.80 82 8 3 6 8 1 8 112.174 0.002 0.10 82 8 2 7 6 2 5 140.878 -0.002 2.00 82 8 2 7 7 0 7 126.562 -0.001 2.00 82 8 1 8 6 1 6 124.890 0.002 5.02 82 8 1 8 7 1 6 14.085 0.005 0.10 82 9 7 2 9 5 4 41.653 0.000 1.25 82 9 6 3 9 4 5 60.690 0.004 0.48 82 9 7 3 9 5 5 63.416 -0.009 0.05 82 9 5 4 9 3 6 78.430 0.000 0.08 82 9 4 5 8 4 5 141.207 -0.003 0.41 82 9 4 5 8 2 7 236.889 0.014 0.02 82 9 4 5 9 2 7 94.955 -0.020 0.02 82 9 3 6 8 5 4 62.205 -0.003 0.10 82 9 3 6 8 3 6 141.549 -0.001 0.10 82 9 3 6 8 1 8 253.725 0.003 0.02 82 9 3 6 9 1 8 111.429 0.001 0.48 82 9 2 7 7 2 5 172.212 -0.001 0.48 82 9 2 7 7 0 7 268.454 -0.009 0.08 82 9 2 7 8 4 5 46.241 0.006 0.08 82 9 2 7 8 2 7 141.910 0.010 0.32 82 9 1 8 7 1 6 156.375 0.001 2.00 82 9 1 8 8 1 8 142.292 -0.001 0.01 82 9 0 9 7 0 7 140.411 -0.004 5.00 82 10 7 4 10 5 6 78.250 0.012 0.05 82 10 5 6 9 5 4 78.259 -0.001 0.05 82 10 5 6 9 3 6 156.689 -0.002 0.08 82 10 5 6 10 3 8 110.610 0.002 0.20 82 10 4 7 8 2 7 298.977 -0.001 0.25 82 10 4 7 9 4 5 62.107 0.004 0.10 82 10 4 7 9 2 7 157.064 -0.014 0.25 82 10 4 7 10 2 9 127.118 -0.011 0.02 82 10 3 8 8 3 6 187.633 0.001 0.48 82 10 3 8 8 1 8 299.805 0.000 0.33 82 10 3 8 9 3 6 46.080 -0.003 0.02 82 145 UPPER LOWER OBSERVED OB S-CALC WEIGHT ISO -1 -1 J Ka Kc J Ka Kc (cm ) (cm ) 10 3 8 9 1 8 157.492 -0.019 .0.10 82 10 2 9 9 2 7 29.948 -0.001 0.25 82 10 2 9 9 0 9 158.000 0.003 0.10 82 10 1 10 8 1 8 155.926 0.003 5.00 82 11 4 7 11 2 9 126.122 -0.007 0.01 82 11 3 8 10 5 6 61.955 0.005 0.48 82 11 3 8 10 3 8 172.558 0.000 0.08 82 11 3 8 11 1 10 142.772 0.006 0.01 82 11 2 9 9 2 7 203.035 0.002 0.25 82 11 2 9 10 4 7 45.951 -0.004 0.08 82 11 2 9 10 2 9 173.086 0.002 0.27 82 11 1 10 9 1 8 187.305 0.002 0.48 82 11 1 10 10 3 8 29.813 0.021 0.08 82 11 0 11 9 0 9 171.406 -0.003 2.00 82 12 3 10 10 1 10 362.286 -0.007 0.02 82 12 2 11 10 2 9 202.731 0.000 0.41 82 12 1 12 10 1 10 186.867 0.000 2.06 82 0000000 00000 15 25 APPENDIX F SUBROUTINE CONVERT SUBROUTINE CONVERT(PAR,IFREP,HAM,JBAND) THIS SUBROUTINE CONVERTS MOLECULAR VIBRATIONFROTATION CONSTANTS BELONGING TO A REDUCED HAMILITONIAN (E.G. WATSONS 0R TYPKES) AND CALCULATES THE DETERMINABLE COEFFICIENTS DEFINED BY WATSON, WHICH ARE INDEPENDENT OF WHICH REDUCTION OF THE HAMILTONIAN IS USED. IF THE I-R ROTATIONAL REPRESENTATION WAS USED, THE COEFFICIENTS ARE CYCLICALLY PERMUTED TO CORRESPOND TO THE COEFFICIENTS OBTAINED IN THE III-R REPRESENTATION. DIMENSION C(19),D(15),PAR(24) PAR IS AN ARRAY CONTAINING THE REDUCED HAMILTONIAN CONSTANTS. C IS AN ARRAY CONTAINING THE CARTESIAN COEFFICIENTS CALCULATED FROM THE REDUCED COEFFICIENTS USING THE FORMULAS DERIVED BY W. F. MURPHY, J. MOLEC. SPECTROSC., 89, 561-565 (1981). D IS AN ARRAY CONTAINING THE DETERMINABLE COEFFICIENTS. TYPE INTEGER HAM CALL NOBLANK DO 15 I=1,15 D(I)=0.0 CONTINUE D0 25 121,19 C(I)-0.0 CONTINUE IF(HAM.EQ.3) GO TO 100 CARTESIAN COEFFICIENTS FROM TYPKES REDUCED COEFFICIENTS. C(1)-PAR(1) C(2)=PAR(2) C(3)-PAR(3) C(4)--PAR(4)-2*PAR(7)+2*PAR(8) C(5)=—PAR(4)+2*PAR(7)+2*PAR(8) C(6)=-PAR(4)-PAR(5)-PAR(6) C(7)=-PAR(4)-6*PAR(8) C(8)=-PAR(4)-0.5*PAR(5)-PAR(7) 146 100 200 147 C(9)=-PAR(4)-0.5*PAR(5)+PAR(7) C(10)=PAR(9)+PAR(13)+0.5*PAR(14)+PAR(15) C(11)=PAR(9)-PAR(13)+0.5*PAR(14)-PAR(15) C(12)=PAR(9)+PAR(10)+PAR(1I)+PAR(12) C(13)=1.5*PAR(9)+0.5*PAR(13)-1.25*PAR(14)-1.5*PAR(15) C(14)=1.5*PAR(9)-0.5*PAR(13)-1.25*PAR(14)+1.5*PAR(15) C(15)=1.5*PAR(9)+0.5*PAR(10)+PAR(13)+0.25*PAR(14) C(16)=1.5*PAR(9)+PAR(10)+0.5*PAR(11)+0.5*PAR(13) C(17)=1.5*PAR(9)+0.5*PAR(10)-PAR(13)+0.25*PAR(I4) C(18)=1.5*PAR(9)+PAR(10)+0.5*PAR(11)-0.5*PAR(13) C(19)=3*PAR(9)+PAR(10)-1.5*PAR(14) GO TO 200 CONTINUE CARTESIAN COEFFICIENTS FROM WATSONS REDUCED COEFFICIENTS. C(1)=PAR(1) C(2)=PAR(2) C(3)=PAR(3) C(4)=—PAR(4)-2*PAR(7) C(5)=-PAR(4)+2*PAR(7) C(6)=-PAR(4)-PAR(5)-PAR(6) C(7)=-PAR(4) ' C(8)=-PAR(4)-0.5*PAR(5)-PAR(7)-PAR(8) C(9)=-PAR(4)-0.5*PAR(5)+PAR(7)+PAR(8) C(10)=PAR(9)+2*PAR(13) C(11)=PAR(9)-2*PAR(13) C(12)=PAR(9)+PAR(10)+PAR(11)+PAR(12) C(13)=1.5*PAR(9)+PAR(13) C(14)=1.5*PAR(9)-PAR(13) C(15)=1.5*PAR(9)+0.5*PAR(10)+2*PAR(13)+PAR(14) C(16)=1.5*PAR(9)+PAR(10)+0.5*PAR(11)+PAR(13)+PAR(14)+PAR(15) C(17)=1.5*PAR(9)+0.5*PAR(10)-2*PAR(13)-PAR(14) C(18)=1.5*PAR(9)+PAR(10)+0.5*PAR(11)-PAR(13)-PAR(14)-PAR(15) C(19)=3*PAR(9)+PAR(10) CONTINUE IF (IFREP.EQ.1) GO TO 300 CALCULATION OF DETERMINABLE COEFFICIENTS IN THE III-R ROTATIONAL 148 REPRESENTATION (x=A, Y=B, AND z= C). D(1)=C(1)-2*C(9) D(2)=C(2)-2*C(8) D(3)=C(3)-2*C(7) D<4>=c<4> D(5)=C(5) D(6)=C(6) D(7)=C(9)+C(8)+C(7)‘ D(8)=C(1)*C(9)+C(2)*C(8)+C(3)*C(7) D(9)=C(10) D(10)=C(11) D(11)=C(12) D(12)=3*(C(13)+c(14)+c(15)+0(16)+0(17)+c(18))+C(19)' n<13>=-c<3>>*c<13>+)*c<15>-2*-c<7>> 1*> ‘ D=-c<1>)*c<17)+¥C<14)-2*) 1*(c<5)-C(7>> D(15>=-C(2)>*c<16>+—c<1>>*c<18>-2*> 1*-c<9>> GO TO 400 300 CONTINUE DETERMINABLE COEFFICIENTS FROM REDUCED COEFFICIENTS FIT IN THE I-R REPRESENTATION BY CYCLIC PERMUTATION OF THE CARTESIAN COEFFICIENTS (X=B, Y=C, Z=A). D(1)=C(3)-2*C(7) D(2)=C(1)-2*C(9) D(3)=C(2)-2*C(8) D<4>=c<6) D(5)=C(4) D(6)=C(5) D(7)=C(9)+C(8)+C(7) D(8)=C(1)*C(9)+C(2)*C(8)+C(3)*C(7) D(9)=C(12) D(10)=C(10) D(11)=C(11) D(12)=3*(C(13)+C(14)+C(15)+C(16)+C(17)+C(18))+C(19) 149 D(13)=(C(3)-C(2))*C(16)+(C(3)-C(1))*C(18)-2*(C(6)-C(8)) 1*(C(6)-C(9)) D(14)=(C(1)-C(3))*C(13)+(C(1)-C(2))*C(15)-2*(C(4)-C(7)) 1*(C(4)-C(8)) D(15)=(C<2)-C(1))*C(17)+(C(2)-C(3))*C(14)-2*(C(5)-C(9)) 1*(C(S)-C<7)) 400 CONTINUE PRINT 10 PRINT 20,JBAND PRINT 30,(D(I),I=1,3) PRINT 40,(D(I),I-4,8) PRINT 50,(D(I),I=9,15) 10 FORMAT(*0 WATSONS DETERMINABLE COEFFICIENTS,CALCULATED USING 1 RELATIONS DEVELOPED BY W.F. MURPHY,J.M.S.,89,561 (1981).*) 20 FORMAT(*0*,A8,* STATE DETERMINABLE COEFFICIENTS*) 30 FORMAT(//* A = *,F15.9,/* B a *,F15.9,/* C = *,F15.9//) 40 FORMAT(//* TXX = *,1PE15.8,/* TYY - *,E15.8,/* Tzz = *,E15.8, 1 /* T1 = *,E15.8,/* T2 - *,E15.8//) 50 FORMAT(//* Hxxx a *,1PE15.8,/* HYYY = *,E15.8,/* szz = *,E15.8, 1 /* HI = *,E15.8,/* H2 = *,E15.8,/* H3 = *,E15.8, 2 /* H4 = *,E15.8) RETURN END ”11111111111111111111111111111111155 3 1293 03085 5997