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ABSTRACT

DERIVATION OF AN ARBITRARY TRIANGULAR PLATE BENDING
STIFFNESS MATRIX AND ITS APPLICATION TO LARGE
DEFLECTION SHELL PROBLEMS

by George Lasker

This investigation is concerned with a discrete model
formulation and solution of certain shell structure problems. The
discretization requires a modeling of the shell by flat triangular
plate elements which can have any side lengths and thickness. Each
element is assigned an independent set of deformed configurations
and its elastic properties are described by two stiffness matrices
associatéfi with membrane and bending stresses. Displacement
and slope compatibility conditions are satisfied at the corner points
of elements and in a limited sense these conditions are then satisfied
along the common edge of adjacent members.

The main objective of the investigation is to obtain an explicit
representation of a bending stiffness matrix for an arbitrary triangular
plate element and to examine its applicability to small and large
deflection plate and shell problems. Two bending stiffness matrices
are obtained. One is associated with a set of deformed configurations
that permit compatibility between elements to be completely satisfied
for same problems and to be satisfied to a high degree for problems
in general. The other is associated with a set of deformed configurations
that relaxes slope compatibility but appears to give better numerical

results for some problems.



GEORGE LASKER

The solution to the geometrically non-linear problem is
obtained by a formulation consisting of a sequence of linear solutions
which enable equilibrium conditions to be approximately satisfied
with respect to the deformed configuration.

A computer program is given for a class of axially loaded
shell of revolution problems having a symmetrical or an asymmetrical
deformed configuration describable by a half period strip. Most
interpretive and computational operations are performed internally
from a small amount of input data describing the undeformed
geometry, material properties, and boundary conditions.

Numerical results are obtained for several shallow conical
shells exhibiting a snap-through type of instability. These results
compare favorably with both experimental and numerical results

given by several other investigators.
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NOTATIONS

A scalar quantity is represented by a lower case Greek or
Latin letter except the letter A. A baf above a lower case letter
implies the quantity is a vector (not a column matrix). A capital
Greek or Latin letter is used to designate a matrix with the
exception of A . The elements of matrices are scalars with the
exception of J, H, Hi which have elements that are vectors and
2 which has elements that are vector operators. The transpose

and inverse matrices of B are respectively designated by BT

and B-1 .
Two groups of rectangular coordinate systems, associated
with triangular members and node points, and one general coordinate
system are used. A bracketed subscript refers a quantity to the
appropriate coordinate system and/or node point. Greek, Latin,
and the 0 subscripts respectively refer quantities to node, triangular
member, and general coordinate systems.
In Chapter II we refer to triangular member i with node
points a, B, 'Y; in Chapter III we refer to a triangular member

with node points 1, 2, 3; and in Chapter IV we refer to a triangular

member i, j with node points (al, [31), (uz, BZ), (a3, [33).

ix



A area of triangular member
Aal’ NN Ab3 subsets of points of member middle surface
2y, a5, a5 constants
B matrix relating E to AV
bl’ bZ’ b3 constants
C matrix relating A to AU
CR matrix relating AU to AV
submatrices of C

R(p) R
CV matrix relatingAf\ to AV
p{e) matrix relating J,., to J

(0) (0) (a)
d magnitude of slope discontinuity between

adjacent members

A/ flexural rigidity

E matrix of deformation parameters

_el, EZ, ;.3 contravariant, covariant base vectors of
31, -ez, '63 §1, §2, g3 oblique coordinates
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€/11s €111 €
(1)’ =) =) base vectors defined in Fig. 3.2
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6 Young's modulus
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T 1 2 3
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force components are referred to base vectors
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I(Y) force vector of node point Y
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I. INTRODUCTION

1.1. Preliminary Remarks

In engineering, particularly in the aerospace field where
weight minimization is of the utmost importance, thin walled
structures, consisting of thin bars, plates and shells, are widely
used.

To facilitate the formulation and solution of broad classes
of these structural analysis problems and related dynamic and
aeroelastic problems, discrete element methods using matrix
notation are now widely used. Their increasing use has very
closely followed the improvements and increasing availability of
digital computers.

These methods are part of the so called "matrix methods
of structural analysis'' put forward by Langeforsl and Argyris.

The components of these structures are characterized by
their flexibility, i.e., their relatively small resistance to bending
and torsion. When they are loaded the resulting displacements
are frequently comparable in magnitude to their linear dimensions.
The classical (linear) theory of elasticity and in particular the
theory of shells is based on the assumption that the displacements
of points in the body are infinitesimal which in turn permits a
formulation of equilibrium and compatibility conditions with respect

to the undeformed geometry.



If a theory requires the formulation of the conditions for
equilibrium and compatibility to be with respect to the deformed
geometry, as in reality it is, then it is said to be ''geometrically
non-linear." If the constitutive equations are non-linear, then
the theory is said to be ''physically non-linear."

In the following, the Kirchhoff-Love hypothesis is assumed.
Some books on shell theory used as source material are given by
references 3, 4, and 5.

The discrete model method used requires that the shell
geometry be modeled by flat triangular plate members. Each
triangle is assigned 12 independent deformed configurations
specified so that adjacent member displacement continuity and in a
limited sense (see Sec. 3.7) normal slope continuity is maintained
between triangular members by maintaining these conditions at
corner points. These are used to obtain triangular plate stiffness
matrices in the generalized displacement sense which in turn are
used to construct the stiffness matrix of shell structures. The
modeling is discussed in detail in Chapters II and III.

This investigation is devoted to the formulation of arbitrary
flat triangulalx)'iztt:ffness matrices associated with the membrane
and bending stress states, and their applications to geometrically
non-linear thin elastic shell problems. The investigation is
restricted to shell materials which are isotropic,homogeneous,
and linear elastic, and numerical results are presented for axially
symmetric geometries. The method is applicable to somewhat

general configurations and boundary conditions and can be directly



extended to include physically non-linear materials.

As formulated here, this method may be interpreted as
consisting of two parts, i.e., the linear problem and the linear
incremented extension of the linear problem into the non-linear
range.

The linear problem is closely related to the Rayleigh-Ritz

method; however, the concept of a minimizing sequence cannot
be interpreted directly, at least not for the more general problem
considered. Each element of such a sequence would be associated
with a different triangulation. The inconsistency of the require-
ment is discussed later.

The method is interpreted as a direct method of the calculus
of variations which gives an approximation to the problem, i.e., a
set of arbitrary constants (generalized coordinates) associated with
a set of admissible shell displacement modes (generalized displace-
ments) are determined so that the integral of potential energy is
minimized.

An admissible shell displacement mode is interpreted here
as one which forms a compatible field, 8 i. e., satisfies compatibility
conditions and displacement boundary conditions. In this case the
potential energy is bounded from above. 8,9

A compatible field is not necessarily an equilibrium field,
i.e., it does not necessarily satisfy the equilibrium equations and

stress boundary conditions. If a solution yields a compatible field

and also an equilibrium field then it is said to be exact.



In its relationship to the matrix methods of structural
analysis the method used is part of the matrix displacement
method. 2 This is also called the direct stiffness method.

The non-linear problem is essentially a step by step
procedure based on the linear formulation. The iteration can be
interpreted as consisting of two parts; i. e., the load is advanced
in increments (since the solution may encounter unstable regions
the load can increase or decrease in increments) and it searches
for a deformed configuration in equilibrium with the specified load.
Equilibrium is here interpreted to mean with respect to the deformed

configuration.

1.2. Previous Developments

Much of the impetus for the development of discrete model
formulations to shell problems, at least during the past two decades,
has come from the aircraft industry and in particular from applications
to dynamic and aeroelastic problems.

The various discretization procedures used to approximate
the behavior of a structure can be classified according to their
properties of either satisfying compatibility but not equilibrium, or
satifying equilibrium but not compatibility, or violating both
equilibrium and compatibility. It is desirable that a procedure
admit to a refinement which in the limit converges to the exact
solution and/or converges monotonically.

Hrennikoff]‘0 developed and McHenry11 improved on the '"frame

work analogy method' in which an analogy, consisting of a beam element



lattice, is made to the plane stress problem. It was later gener-
alized to include bending by Parikh and Norris. % This method
implicitly relaxes both compatibility and equilibrium conditions so
that solutions based on it do not in general form either compatible
or equilibrium fields. Many procedures similar to this have been
and are now being used in both static and dynamic applications.

We note, in this connection, that some finite difference
formulations to some differential equations in elasticity implicitly
relax both equilibrium conditions and compatibility conditions, and
satisfy these conditions in general only in the limit as the mesh size
is made smaller.

A plane stress triangular plate element stiffness matrix, in
the generalized displacement sense, was put forward in a paper by
Turner, Clough, Martin, and Topp. 13 The stiffness matrix is
associated with three independent deformed configurations which
have displacements that vary linearly in all directions and strains
that are consequently uniform over the entire element. This matrix
is now widely used. It was given a different form by Argyris,
one which he calls the natural or invariant form.

In the absence of bending, solutions based on this matrix give
displacements which form a compatible field for the triangulated
model of plane or curved surfaces and for linear or non-linear
problems. If bending is present, then compatible fields in general
are obtained only for plane surfaces and geometrically linear problems.

In general this matrix does not yield equilibrium fields; how-

ever, de Veubeke8 gives an alternate approach which yields equilibrium



but not compatible fields and uses it, in what he calls a dual treatment,
to obtain upper and lower bounds to static influence coefficients.

In order to satisfy compatibility between a triangular plate
and a beam segment de Veubeke1 > generalizes the plane stress
stiffness matrix to include parabolic variations in displacements along
its sides. The formulation requires nine independent deformed
configurations for each triangle and that interelement displacements
be satisfied at corner points and at the midpoint of sides.

In their paper Turner et. al13 also present a membrane stress
rectangular plate stiffness matrix. As pointed out by Melosh16
this matrix does not in general yield a compatible field. Compatibility
conditions are satisfied in the interior of elements and at node points;
however, gapping may result, i.e., displacement compatibility between
elements is not necessarily maintained.

In the same paper Melosh presents a rectangular stiffness
matrix which yields compatible fields. This matrix is associated
with five independent deformed configurations. Argyris14 gives a
presentation of the so-called natural forms of these nodes. All the
deformed configurations have displacements that vary linearly along
the sides of the member, however, the displacements associated
with them have terms that are quadratic.

Melosh gives a sufficiency condition for increasing the number
of rectangles so that with each refinement the potential energy
monotonically approaches a minimum. In essence he requires a
refined subdivision, in a sequence of subdivision, to be so constructed

that its displacement field can contain any displacement field of a



coarser subdivision. This sufficiency condition can be interpreted
with respect to the plane stress triangular plate elements.

Displacement modes for flat surface plane stress problems
obtained by a sequence of subdivisions satisfying Melosh's
sufficiency condition can be used to obtain a minimizing sequence
similar to the Rayleigh-Ritz type; however, the concept of
completeness necessary for convergence to the exact solution
has not been demonstrated and would, undoubtedly, require
additional sufficiency conditions, as noted by de Veubeke. 15

Argyris14 presents a parallelogram plane stiffness matrix
and indicates a method for constructing one for a plane quadrilateral
panel which he has obtained. All yield compatible fields.

In a report by Bogner, Mallett, Minich, and Schmit17 the
authors give the displacement modes for constructing the stiffness
matrix for a curvilinear rectangle associated with any orthogonal
curvilinear coordinate system. For rectangular coordinates it
reduces to those of Melosh.

Melosh16 gives a rectangular bending stiffness matrix. As
pointed out by Pia.n31 the displacement modes do not in general
maintain slope compatibility between elements and consequently
solutions based on this matrix do not yield compatible fields.
Melosh1 8 previously had given a bending stiffness matrix.

Bogner et. al. 17 present displacement modes which can be
used to construct bending stiffness matrices for curvilinear
rectangles, which yield compatible fields and can be used with

Melosh's sufficiency condition to obtain monotonically converging



sequences. These rectangular member displacement modes and
those of Melosh do not form an independent set of deformed
configurations in as much as they include rigid body displacements.

19

Clough, 15 Adini, and Zienkiewicz1 > use a polynomial to
numerically calculate the coefficients of a rectangular plate bending
stiffness matrix, i.e., the polynomial forms a set of displacement
modes which in this case include rigid body displacements.
Zienkiewicz1 > extends this to quadrilateral plates. Clough1 > and
TocherZo use similar polynomials for triangular plates.

Several objections can be raised with this type of procedures
as pointed out by the authors. With the exception of the rectangle
the use of these polynomials in general results in displacement
discontinuities between members and in all cases slope continuity
is not maintained between members. A member, and in particular
a triangular member, will in general have different stiffness coefficents
depending on its orientation with respect to the coordinate system of
the polynomial even after they have been properly transformed so
that components of node rotations and displacements are with respect
to the same coordinate system, i.e., the stiffness coefficients are
not uniquely defined by the polynomial.

This points out the desirability in selecting deformed
configurations that reflect the geometric properties and symmetries
of the member and which are independent of pure rigid body displace-
ments as Argyris did in his plane stress formulations.

The matrix methods of structural analysis were originally

developed to facilitate linear formulations of complex problems. These



methods of analysis have been given three classifications: the
displacement formulation, the force formulation and the combined
formulation. They have been shown to be equivalent to stationary
energy principles, i.e., the displacement formulation is equivalent
to the principle of stationary potential energy, the force formulation
is equivalent to the principle of stationary complementary energy,
and the combined formulation is equivalent to Reissner's principle

21,22 A useful survey on linear structural

of stationary energy.
cs .23
analysis is given by Argyris..
During the past few years various investigators have extended
these linear procedures to include geometric non-linearities, and

. . . . .. 4,17,24-2
both conservative and non-conservative material non-hneantles.l 1 8

1.3. Present Investigation

This investigation was primarily directed at obtaining an

plate

explicit representation for an arbitrary flat triangular‘bending
stiffness matrix and to studying its applicability to geometrically
linear and non-linear shell problems.

Two bending matrices were obtained. The form in which
these matrices are used requires a representation of node variables
with respect to rectangular coordinates. A direct representation in

this form is, however, so awkward that it has little value. The

matrix is represented in the form

T
M, T, M, (1.1)

1 i 1
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where I"Zi (Table 3.2 or Table D1) is the bending stiffness matrix
with respect to a set of generalized variables and Mzi (D.6) is a
transformation matrix that relates the generalized variables to a
set of node variables referred to rectangular coordinates. The
generalized variables were selected so as to take advantage of the

symmetric and geometric properties of an arbitrary triangle and

consequently the coefficients of both I', and M, have a
1 1

particularly simple form.

A derivation obtained by representing all quantities with
respect to a rectangular coordinate system was found to be for all
practical purposes prohibitive due to the very large volume of
algebra required. By using oblique coordinates and representing
the bending strain energy expression in terms of a set of deformation
parameters that reflect the geometric properties of an arbitrary
triangle, the derivation was performed with relatively little algebra.

Since membrane behavior is in general present, the plane
stress matrix of Turner et. al. 13 is used. It is, however,
generalized by including three additional inplane displacement
modes associated with components of node rotation normal to the
plane of the triangle. These were included in order to remove the

possibility of obtaining singular shell stiffness matrices.




II. GENERAL FORMULATION

2.1. Some General Properties

Let ;(nl, nz, T) be the position vector of points on the middle
surface of a thin elastic shell possessing a positive-definite strain-
energy function, quadratic in the components of strain. The
parameters nl, nz are the curvilinear coordinates of the surface
and the parameter 7 is associated with various deformed config-
urations. When the shell undergoes a continuous deformation from
configuration ;(nl,nz,'rl) to configuration ?(nl,nz,'rz), the
parameter T varies continuously over an internal ('rl, '1'2). In
particular the configuration of the undeformed middle surface is
designated by ?(nl, nz, 0).

The displacement vector of a point nl, n2 with respect to

the interval ('rl, '1'2) is defined by
-, 1 2 -, 1 2 -, 1 2
um ., 7, -T)=rM,n,7T,) -r(n,n,T,) (2.1)
. . -, 1 2 . .
The displacement vector relative to r(n ,n ,0) is designated by

-, 1 2 -, 1 2 -, 1 2
u(ﬂ » N .'T)=1‘(TI » N ,'T)-I‘(TI » N :0) (2-2)

The external force per unit area acting on the shell surface

is designated by

Bt n% 1) = p(m amt.n% ) (2.3)

where p(7) is called the load intensity parameter and (_1(111, nz,'r)
is called the load distribution vector. The load distribution vector

has the property

11
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Jf Q- qdA = constant (2. 4)
S

where the integration is carried out over the entire middle surface
area S.

If the interval (0,T) is partitioned into n subintervals

(0,8), (T15To)s woes (Ty 15 Tyds eees (T 15 7T)

(2.5)
= A'rl,A'rZ, cees BT, AT
then the displacement vector can be expressed in the form
-1 2 -1 2 -1 2
um o, T)=um L AT ) .. tun,nT,AT) +
(2.6)
+ ... + u(nl,nZ,A‘T )
n
In general it is assumed that
< < < < < < <
0 T 75 Tk Th-1 T . (2.7)

This investigation is concerned with shell deflections of
sufficient magnitude so as to require a formulation of the equilibrium
and compatibility conditions in the deformed state. The resulting
non-linearities are dealt with by a formulation consisting of a
sequence of linear intervals. Each linear interval has a one to one
correspondence with an element of the sequence {Avi‘ }. The linear
problem intrinsic in the non-linear problem is thus one of starting
with a deformed configuration ?(nl, nZ, 'rk) and seeking a deformed

2

configuration ;(nl, 5T )
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The following simplified notation is used when convenient:

AT = A'Tk

T o= Tt
3 = snlnd )
u = un ,n 'Tk

A% = Tt 0’ AT))
- - 2
p = p(nl,n .'rk) (2.8)

- 1 2
Ap = p(n",n A7)

T = T+ Au
' = u + Au
p' = ptAp

All symbols preceded by A are interpreted as finite functional
changes in the interval A'rk .

It is assumed that Au together with its first partial derivatives
with respect to r)1 and n2 are sufficiently small, in accordance with

linear shell theory, for all partition intervals AT The assumption

K*

of smallness in the interval AT, implies that geometry changes in

k
the interval are small, and that superposition of displacement
configurations and corresponding surface loads associated with the
interval is admissible.

The middle surface stress resultants and deformation parameters

defined in linear shell theory are respectively designated by the six

element column matrices
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T 2 6, 1 2
T = [’ n 0 A U ] (2.9)
T _ 1 2 1 2
E - [61(77 » N ’Tk)’ e o0y 66(77 N ’Tk)] (2010)
They are related by
T = GE (2.11)

where G is a 6x6 symmetric positive definite matrix with elements
that are assumed constant throughout the range of 7. We define

AT, AE, T', and E' in accordance with (2.8). Then

AT = GAE (2.12)
E' = E + AE (2.13)
T' = T+ AT (2.14)

The strain energy, associated with the infinitesimal middle

surface area dA, and strains E is given by

_ 1 2 1.7
dWI —dWI(n , N ,'rk) = 2T E dA (2.15)

Substituting from (2.11) into (2.15) we obtain

aw, = 17 ET GE 4a (2.16)

The total strain energy is

—

T
WI:EJ‘SJ‘E G E dA (2.17)

The total strain energy after the next increment is similarly related

to E' by

—

T
W'I=Z‘£.'IE' G E' dA (2.18)
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The change in strain energy WI due to a virtual change O6E is

sw.= L 1 (ET+sET)G(E+6E)dA -2 fETGE aA
17 7 [ z
- > f{ETGSE+8ETGE +6ET G 6E} dA  (2.19)
5

On dropping higher order terms and noting that G is symmetric
(2.19) reduces to

§W, = [ [ E'GSE dA
S

(2. 20)
= ;7 TY 6E da
s

Similarly the virtual change in the total strain energy after the next

increment is related by

§W) = [ [ E' GSE da
S

Ir {ETG6E + AETGSE )} da
S (2.21)

rr{tt s+ AETGSE } aa
5

SW, + [f AETG 6E aa
S

The external work due to the surface load p and the virtual

displacement 6&u is

8W_ = [ [Pp- SudA (2.22)
€ S

Similarly for p' we obtained

SW' =
e

(2.23)
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= W + [ [ Ap- SudA
e
S
The principle of virtual work requires
0= 6W, - 6W_ (2. 24)
and

0=6W! - W'
I e

(2. 25)
= 6W + [ [AETG6E dA - 6W_- [ [ Ap- 60 dA
S € s
From (2.24) and (2. 25) we obtain
{f[Ap- 60dA - [[AETGSEdA} = 0 (2. 26)
s s

Let 2 designate a six element matrix operator that relates

the deformation parameters to the displacements such that
AE = QAu (2.27)

This operator is obtainable from linear shell theory and in the form
used is given by (3.27).
If a),a, are scalar constants and Tzl(nl, n?‘), ﬁz(nl,nz) are vector

functions then the linear property of this operator requires

Q(al u, + azuz) = a, Qul +a, Qu2 (2.28)
2.2. Discrete Method

The term discretization is used here to imply the reduction of

the problem from a formulation in terms of unknown functional quantities
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whose domain contains all points of the middle surface to a
formulation in terms of a finite discrete set of unknown parameters.
If the discrete set contains n unknown parameters then the
discretization is said to have n degrees of freedom.

The discretization is based on Rayleigh's method, in which
the displacement vector is approximated by a linear combination of
independent displacement configurations that satisfy compatibility
conditions and displacement boundary conditions. Implicit in an
n degree of freedom discretization is the existence of an n element
set of independent displacement configurations designated in matrix

form by
H = [R0'n%D, ..., B et D] (2.29)

The construction of the vector functions Bi depends on a
knowledge of ;(nl, nz, 7)) and as used here the Hi are functionally
dependent on -r'(nl, nz, ’Tk). In accordance with the step-wise
linearization discussed above the functions Tli are assumed to be
independent of T in the interval AT and corrected after each
such interval. Each function Ei is specified so as to satisfy
displacement boundary conditions and compatibility conditions.

The displacements are then approximated by
- T
Au = H AV (2.30)
where

T
AV"© = [Avl, ooy Avn] (2.31)
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are scalar parameters associated with the interval A7 and called

the generalized coordinates. Substituting (2.30) into (2.27) we

obtain
AE = QHT AV
A 6xn matrix is defined by
B=QH"

Then (2.32) has the form

AE = BAV

The virtual changes &u and SE are then related to 6§V by

65 = HY &V

6E = B 6V

Let

The dot product is used since the elements of H are vectors.

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

The

P, AP, and Q are respectively called the generalized load matrix,

the generalized load increment matrix, and the generalized load

distribution matrix.

On substituting (2.34), (2.35), and (2.36) into (2.26) we

obtain
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T

{frap-H svaa-yraviBTaBevaa) = o  (2.40)
s s

Noting that 6V and AV are not functions of nl,nz and substituting

from (2. 38) into (2. 40) we obtain

{apT - avT yyBTGBaa ) 6v = o (2. 41)
s

Eq. (2.41) can be satisfied for all virtual changes 6V only if

apT _avT ;BTGB aa = o (2. 42)
s

The matrix K, called the shell stiffness matrix, is defined by

K = [[BIGBdA (2.43)
S
Since G is symmetric and positive definitive, K is symmetric and
positive semi-definite and if in addition det K> 0 then K is
symmetric and positive definite.

In the physical sense the stiffness matrix is positive semi-
definite if the . elastic system is not tied down, i.e., if an adequate
number of constraints have not been imposed so as to prevent rigid
body displacements or rotations of the entire structure. Consequently,
the displacements associated with a given loading are not unique and
the relating coefficient matrix K is not invertable.

Substituting (2. 43) into (2. 42) and taking the transpose of the

entire expression we obtain

AP = KAV (2. 44)
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The generalized displacement parameters are chosen so
that the displacement boundary conditions may be specified by
specifying a subset of these parameters AVZ' The matrices in

(2.44) are partitioned as follows:

= (2. 45)

where AV1 are unspecified and AV2 are specified generalized
coordinates, and AP1 are specified and APZ are unspecified
generalized forces. The matrices APl and AP2 are respectively
called the generalized load increment and generalized reactions
increment.

If in (2.45) the det K11 > 0 then K11 is invertable and
we can solve for the unknown generalized displacements and reactions.

We then obtain

-1

Av1 = K[, {Apl - KIZAVZ} (2. 46)
-1
= - K
AP, KZl K11 {AP1 KIZAV2}+ 228V,  (2.47)

If a load vector p = pq is in equilibrium with a distribution
of stress resultants T , then from (2.20), (2.22) and (2. 24) it

follows that

[[P-60dA = [ [T 6E dA (2. 48)
s s
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Substituting from (2.35) and (2. 36) into (2. 48), noting that the resulting
expression must hold for all 6V, and then substituting from (2.37)

we obtain
P= /T Bda (2. 49)
S
The above is a relationship between the externally applied generalized
load P and internal distribution of stress resultant T for an elastic
system in equilibrium, i.e., it is a form of the equilibrium equation.
In the sequel we use the equation relating the load intensity
parameter p('rk) to the generalized load matrix P and generalized
load intensity matrix Q.

From (2.3), (2.37), and (2.39) it follows that

P =pQ (2.50)

QTP = paTa (2. 51)
T

p = &F (2. 52)
QlQ

The matrix H, as already indicated, is functionally dependent
on r, and consequently B and K are also. The distribution of
stress resultants T is associated with configuration T = ;(nl, nZ, 'rk),
but it is determined from quantities defined with respect to
configuration ;(nl, nZ,'rk_l). Consequently the generalized forces
implicit in T do not necessarily conform to the specified load
distribution of Q. The matrix PI’ associated with 7 = T and
called the implied generalized load matrix, is related to T by (2.49)

and is given by
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P, = foTTBdA (2. 53)

The load intensity p = p('rk) is defined by

Q' p,
p = T (2. 54)
Q Q
The matrix PR , associated with Ty and called the residual
generalized load is defined by
PR = PI - pQ (2. 55)

The above two definitions (2. 54) and (2. 55) have a conceptually
useful interpretation. We multiply the terms of (2. 55) by pQT and

obtain
pa’ P, = pa” P - p’@’0 (2. 56)

Solving for QTPI in (2. 54), substituting into (2. 56) and dividing the

resulting expression through by the scalar p we obtain

Q'P, = 0 (2.57)

It then follows that Q is orthogonal to P If we interpret Pi, PR’

R’
and Q geometrically as vectors in a hyperspace,then these three
vectors may be interpreted as lying on a hyperplane, pictorially

shown in Fig. 2.1, and the vector PI may be interpreted as being

equal to the sum of two orthogonal vectors PR and pQ.
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hyperplane

Fig. 2.1. Hyperplane formed by load vectors.

It is desirable to choose a generalized load increment AP1
so as to minimize the next residual load. There does not appear to
be any convenient method of making a best choice for API' It is

taken in the form

AP, = ApQ - wPRI (2. 58)

where Ap is called the load intensity increment and w is called the

residual load relaxation constant. The matrices Q1 and PR in
1

(2.58) are submatrices of Q and PR obtained by partitioning in

accordance with (2.45). Substituting (2. 58) into (2. 46) we obtain

|
av, = K, { 8pQ, - wPy

) - KIZAVZ} (2.59)

1
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Note that

T = T+ AL
(2. 60)
AV

1
AV2

= r+[H1 HZ]

The matrices H, B, K are constructed after each linear
increment from a knowledge of r . This is symbolically
represented by H(r), B(r), K(r). The algorithm employed in
determining the elements of the sequence { ?(nl, nz, 'rk)} is

obtained by substituting (2. 59) into (2. 60) and is given by

T =T+ H[® H,@®]|K]®{ap, -wPp - Kpp(FIAV, )

AV2

(2.61)
Associated with every deformed configuration ;(nl, nz, 'rk) we
have a residual generalized load matrix PR (‘Tk). If PR('rk) = 0 then
;(nl, nz,'rk) is a configuration in equilibrium with the specified loading.
In general, elements of { ;(nl, nz,'rk)} do not satisfy this condition
and consequently their acceptability is determined by interpreting

the smallness of the magnitude of PR('rk).

2.3. Simplified Model
To simplify the analysis of this problem the shell is interpreted
as a model consisting of flat triangular plate elements. This process

2

can be interpreted as a p node m element triangulation of ;(nl, n ,0)

into curvilinear triangles and an isomorphism which deforms the
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curvilinear triangles into simple triangles without materially
disturbing the relative position of node points.

The assumptions implicit in the simplified model cannot
always be justified. This restriction is not, however, very severe
for many applications.

In the following, quantities associated with node points have
Greek subscripts, quantities associated with triangular elements
have Latin subscripts and quantities associated with the shell in

general either have no subscripts or the subscript 0.

2.4. Matrix Relating Nodes and Members

The formulation of the shell problem in terms of discrete
parameters defined with respect to the simplified model described
above deals with configurations of node points and triangular
members formed by lines joining node points. This leads to the
definition of the mathematical sets N and S. The node set
N is defined as the set of all node points of the simplified model
and the member set S is defined as the set of members Si or
of ordered node triplets (a, B, y) that in turn define all triangular
members of the simplified model. A correspondence between
elements Si and ordered triplets (a, B, Y) is formed and

represented in matrix form by

S, = [a, B, V] (2.62)

1

The dependence of S on N is symbolically represented by

S = S(N) (2.63)
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Elements of S and N are ordered respectively by integer

numbers
1, 2, ..o, i, oo, m
(2.64)
1, 2, e e oy a [} o o oy p
The functional dependence implicit in (2. 63) is explicitly represented

by an mx3 matrix S of integer elements and is

S11 512 513 e . .e
Cre 1 - i} . '
S 1J] (2.65)
sll si2 s13 @ B Y

The symbol S will serve the dual but analogous role and will
also refer to the set of all paints on the middle surface of the simplified
model, and similarly Si will refer to the subset of S associated with
the ith triangular member. The quantities r, u, and Au are defined

over S and the quantities ;i’ Ei’ and Aﬁi are defined over Si .

2.5, Interpretation of Non-Linear Problem

The member Si is displaced and deformed from some initial
undeformed position.. Part of the rigid body displacements are
described by a triangular member S' associated with Si (the node
points of Si' are designated by a', B', Y'). The triangle S{ is
identical to the triangle Si in its undeformed state and is fixed to
the deformed member Si so that point (', line B'Y', and plane

a'B'y' lie respectively on point B, line By and plane afy.
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The displacements of points on Si can be represented in the

form
Au1 = AuRi + AuLi (2.66)
u, = up toup (2.67)

i i
- - . . - -
where AuRi , uRi are displacements of Si and AuLi, uI“i are
displacements of Si relative to Si .
Since AER' and GR~ are rigid body displacements, the
i i

magnitude of the strain deformation parameters corresponding to

them are identically zero. From (2.27) we obtain

AE = Q(AuRi + AuLi)

(2.68)
= QAﬁLi
The displacements u; ~are approximated by
1
- T
uLi = HiA i (2.69
and consequently
AT, = HTAA (2. 70)
L. i i :

1

where Hi is a column matrix of linearly independent vector valued
functions and A i is a column matrix of scalar parameters called
the member generalized coordinates. Eq's (2.69) and (2. 70) imply

that

Ar) = AAi(A'Tk) +... + AAi(A'rk) (2.71)
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In a manner similar to that used to obtain (2.33), (2.34), (2.38),

(2.43), and (2. 44) we obtain

o - QHu! (2. 72)
1 1
AE = T AA, (2.73)
—-— ‘. T
AT, = [ AR H|dA (2. 74)
i
) T
Iy - [ST;GT aa (2.75)
i
AZ. = T, AA, (2.76)
1 1 1

where Ei is called the member generalized force matrix and 1"i
is called the member stiffness matrix. The matrix l"i is symmetric

and positive-definite. From (2.71) it follows that

T, = T A, (2.77)
Let
AT = (AT, AT (2.78)
zt - (z7, ..., 27 (2.79)
T = (1, ..., T_] (2. 80)
r, o
r - (2.81)
o r
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Then
AE =TT A (2. 82)
Z =TA (2.83)
The total strain energy in the shell for T = Th is
W, = 1zTA =1 ATra (2. 84)

The displacement of a point measured relative to the undeformed
shell is interpreted as the sum of two parts. One part is associated
with certain rigid body displacements and rotations of the entire
triangle and the second part is measured relative to these displace-
ments. The linear relation (2.83) is associated with displacements
obtained after the first part has been subtracted off, and is assumed
valid through the range of 7.

The non-linearities are, therefore, limited to those resulting
from displacements associated with rigid body displacements and

rotations of triangles Si .

2.6. Shell Stiffness Matrix
The shell generalized coordinates V and generalizedforces
P are relatedto X and /A of the same elastic system by the strain

energy expression

W, = sW_ = PloV = =T (2. 85)

The two sets of generalized coordinates, in accordance with the step-

wise linearization used, are related by
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AN = CVAV
and consequently
8N = CV6V
In general the elements of CV change with 7 so that
Cylr) £ Cylmyyy)
Substituting (2. 87) into (2. 85) we obtain
T

T
P &V = Z CV6V

Eq. (2. 89) can hold for all virtual displacements &V only if

P =C_,Z

T
v
From (2.34), (2.82), and (2. 86) we obtain

AE =TTAAN = IICVAV = B AV

and consequently

Substituting (2. 92) into (2. 43) and noting that the elements of CV

are not functions of nl,nz we obtain

K=£fBTGBdA =10 CL T GITC, dA

_cT T _~T T
_CV{fS_[‘II GIIdA}CV-CV[SfoIIiandA]CV

i)

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

86)

87

88)

89)

90)

91)

92)

93)
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The integration in the last of the integrals of (2.93) is carried out
over points common to both Si and Sj since 'JIi is defined over
Si and Hj is defined over Sj‘ Since the triangles do not overlap
and from (2.75) is follows that
T 0 if if£]
S SO, GII. dA = (2.94)
s.§. ? J L if i=j

i7j i
Then from (2. 81), (2.93), and (2. 94) we obtain

_ ~T
K = CV I"CV (2.95)

2.7. Member - Shell Parameter Transformation Matrix

If the generalized coordinates are interpreted as components
of node displacement and rotation vectors then the associated
components of generalized forces, being related through the strain
energy as in (2. 85), can be interpreted as components of force and
moment vectors. The shell generalized coordinates and generalized
forces having this interpretation are respectively designated by the
column matrices U and F.

The formulation in terms of U and F is desirable since
most boundary conditions and in a limited sense, load distributions
can be irterpreted directly in terms of thes’e parameters.

The undeformed simplified model has a continuous middle
surface consisting of flat triangular members. Two adjacent
undeformed triangles have an intersection line and intersection
angle. We have required the displacement vector Au to satisfy

compatibility conditions on the entire middle surface. This can
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be satisfied only if continuity and intersection angles are preserved
for all points on the intersection line. These requirements are not
strictly satisfied nor essential.

The requirements are useful, however, inasmuch as the
approximating surfaces that satisfy them also satisfy compatibility
conditions with respect to the simplified model. In this case the
elements of the shell stiffness matrix can be interpreted as
satisfying certain upperbound requirements. ?

It is desirable to choose the functions Hi so that whenever
compatibility requirements between two adjacent triangles are
satisfied at their common node points they are satisfied at all points
on their intersection line. The degree to which this condition is
satisfied is discussed in Sec. 3.7.

The member displacements obtained by substituting (2.70)

into (2. 66) are

AT =BGy HT AN, (2. 96)
These displacements can be directly related to AU. In the formulation
used the member displacement vector (2. 96) is related only to
components of AU associated with its nodes. Each node has six
elements of AU associated with it and consequently each member

has 18 degrees of freedom. The rigid body displacements AﬁRi

have six degrees of freedom associated with them, i.e., three
translation components and three rotation components. In addition
AAi has degrees of freedom associated with it equal in number to

its dimension. Since the member has 18 degrees of freedom and six

can be interpreted as rigid body displacements it follows that the
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dimension of A/A must be 12 or reducible to 12. Thatis, the
formulation used requires that all possible displaced configurations
Aui be linear combinations of six independent rigid body displace-

ments AﬁR_ and 12 independent deformed configurations H'irAAi .

1
Consider a triangular member i with node points a, B, Y

and a reference point 0 as shown in Fig. 2.2. We associate a

rectangular cartesian coordinate system

"(a)

Fig. 2.2. Triangular member i.

with each of the quantities i, 0, a, B, Y and refer to them as the
i-member, O-general, a -node, P-node, and Yy -node coordinate
systems. The base vectors of these coordinate systems have the
form 3'(1),_'_] (21), 'f?) and the matrix of these base vectors is

designated by

T

J(i) = [‘](1)’ J(l)’ J(l)] (2.97)

The bracketed subscripts on a quantity refer it to a node point and/or
a coordinate system. These subscripts are used only when necessary

for clarity.
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The matrices J(O) and J(i) are related by a 3x3 matrix

Di(l) where the indices are interpreted by the relations

(0)

(i)
J = D J,. (2.98)
(0 = P14 ")

. -1 T
Dl(l) = Dl(o) = Dﬁo) (2.99)
(0) (i) (1)

(i)

The matrix D(O)

is defined by

o —

p,! o
(i) _ (0)
Doy < | o ) (2.100)

L0

The position vector of node point a relative to point 0 is

;(o.) and its 0-general coordinate components are xlka )’ x(za), x?a) .

The matrices of their components are respectively designated by

X XZ’ X The elements of these matrices are arranged in

1’ 3°
accordance with the ordering in (2. 64).

The i-member coordinate system is redefined after each
interval A'rk so that its origin is incident to point a, base vector

T?i) is normal to plane a B Yy and base vector -_]Pzi) lies along line

a B and directed toward PB. The base vectors J(i) can be

represented in terms of the position vectors ;a’ rﬁ, ;Y as follows

-l T'6) " T(a)
I (i) N
®) " T(a)

S ) Bl Y Uk ) ikl Y LU

| G gy - T(a)) Xy = Fa)

+2 =3

=1
Ta) T @ X
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By representing the position vectors in (2.101) in terms of the elements

of J(O)’ the elements of D1 E?)) can be obtained directly and are given

in Appendix B.
The base vectors J(o.) of the a -node coordinate system as

used here do not change with T and are specified so that the

(0)

transformation matrix D can be constructed directly. Then

1(a)
we obtain
(a) _ (0) ~ (a)
Dy 7 Pig) Pi(o) (2.102)

Node point a has a displacement vector Aﬁ(a) and

rotation vector A(-)(a) . The O-general coordinate components of

- I 1 2 3 1 2
6
Au(a) and Ae(a) are Au(ao), Au(aO)’ Au(aO) and AB(Q 0(),A (a 0)*
A9(3a 0)° The a -node generalized displacement matrix is
T a1 2 3 1 2 3
AU o) = [8%a o) A¥(0) 2Ya0) %m0y A%(a 0 2%(a0)!
(2.103)
The generalized displacement matrix is
T T T T
AU = AU , AU y «ee, AU 2.104
L4001y 2%, 2) (pv p)] (2.104)
The column matrix AUi is defined by
T T T T
AU = [ AU, ., AU, .., AU, . 2.105
i = [AU@s) AUy AU (2.109)

We can construct a transformation matrix Mi defined by

AA. = M. AU. (2.106)
1 1 1



Al = [M, M

AU
AU 1)
AU

(yi)
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We partition Mi in the form

2

[ (a)

a

SCH.
© Dy
O (@)

M;s]

_

A

A
A

Yai)
Ysi)

U(Yi)

The matrix Mi is explicitly given by (3.74).

The following relationship follows from (2.102)

Substituting (2.108) into (2.107) we obtain

_ (a) 8)
AN =[M;; D)’y M, D

(i)’

We define the transformation matrix C, which is similar to C

as follows

AN = C AU

We partition C into 6x6

(@) AU
(aa)
‘z) AU(sp)
Y
Do)’ | | 2%yy)
v)y [
Mi3 D(i) ] AU(o.o.
AU (ga)
AU
(vyy

submatrices in the form

)

)

-

(2.107)

(2.108)

(2.109)

(2.110)
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The algorithm for constructing C can be obtained by examining
matrix S defined in (2.65) and (2.109) given above. Then for

j=1, ..., m and k=1, ..., p

Cjk = 0
except for

Cin = Maj D)
where

n = Sjl



II. TRIANGULAR MEMBER MATRICES

3.1, Member Coordinate Systems

Consider a triangular member with middle surface points
referred to rectangular coordinates yl, yz, y3 and y;, ylz:(, Y13={
and oblique coordinates él, EZ, 43. The member is displaced from
an initial position as shown in Fig. 3.1la to a position as shown in
Fig. 3.1b. The coordinates Ll, QZ, §3 are fixed to the member as
symbolically shown in Fig. 3.1b. The coordinates y;{, YIZR’ y; are
fixed so that the components of rigid body rotation of the triangle
(defined explicitly at the end of Sec. 3.5) relative to them vanish.
The triangular member rigid body rotations are directly related
to node displacements so that if the node displacements relative to
the yl, yz, y3 coordinates vanish, the Y}R’ yIZ{, y; coordinates will

lie respectively on them. The El, {-.2, §3 coordinates have covariant

unit base vectors 31, EZ’ 33 , and contravariant base vectors
El, 32, 33 . The coordinates yl, yz, y3 have base vectors
=1 -2 -3

3y Jay Ta) and are the i-member coordinates of Sec. 2.7.

In addition we introduce three oblique coordinate systems
associated with the three node points. Their covariant and contra-
variant base vectors are as shown in Fig. 3.2. The inplane covariant
components of each system are parallel to lines defined by node points
and two of the contravariant components are perpendicular to these
lines.

The coordinates yl, yz, y3 are redefined after each interval

A'rk so that the displacements measured relative to all the coordinates

38



(a)

Fig. 3.1.

39

(b)

Member coordinates

Fig. 3.2.

(b)

Covariant and contravariant node
base vectors
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defined in this section are small in accordance with linear theory.

3.2. Geometric Parameters
Consider a triangle of side lengths 11, 12, f3; node points
1, 2, 3; included angles Lpl,tpz, ¢3; and referred to oblique cartesian

coordinates C.l, LZ as shown in Fig. 3.3. The coordinates Ll, ?;2

are components of a position vector

T=tle ¢ LT, (3.1)

where El' 32 are the covariant base vectors (see Appendix A). The

dimensionless parameters a and B are defined by

1
5
¢ 71
3
(3.2)
o - 5
L
We define
1, .2, 42, 42
a, = Z('£1+£2+13)
1,2 .2, ,2
1,2, ,2 0 2
a; = 2(£1+£2-l3)
The area A of the triangle is related by
1, ,2,2 2,2 2,2 ,4 ,4 ,41/2
A = 2(211£2+212£3+2£311 -11 -12 -23)
(3.4)

1/2

1
Z(a1 a2 + aza3 +a3a1



Fig. 3.3. Member parameters and oblique
coordinates

\/ N

l ————— 2

——

N3

Fig. 3.4. Unit normal and tangent vectors
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The trigonometric functions are related by

sin . = ZA sin y, = 28 sin ¢, = 20
= , = , =
1 LT, 2° I,I 3 0T
(3.5)
a a a
cos Yy, = T]—l cos y, = 1-7—2 cos Y, = ——31—
150 2 A5 3405
The unit normal vectors 1-11, 1_12, ?13 and tangent vectors ?1, ?2’ ?3

are defined in Fig. 3.4, and are related to the base vectors by

?11 = sin 442 El + sin 413 e
- . -1
n, = - sin lJ,Jl e (3.6)
- . -2
n, = - sin qu e
_ -1 _ sin lIJ3 _ sin q;z _
t1=-cos¢2e +cos¢3e = -Sinll’l e1+sianl e,
T, =-cosy & -3 = -3, (3.7)
s | =2 =
t3—e+cos¢le = e
The displacement vector of points on the member in terms of its
covariant components is
- 1 ,2 - 1 ,2, =2 1 ,2, =3
a=w @t v w, e T w, el th e
(3.8)
=1 =2 =3
=w, (aB) e +w,(ap) e +w,(ap)e
1 bl AN IV
The rotation vector is related to u by
ow ow
=.,1 ,2 1 3 = 3 - 3 =
0(L",87) = — ( - —— ¢e,) +07 e (3.9)
sin {52 9 arl 2 3
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Substituting from (3. 2) and (3. 5) into (3. 9) we obtain

- 1 8w3 _ 8w3 _ 3 -
G(QB) = -Z-K(23—3T el - 12 _ET eZ) +e e3 (3.10)

The rotation component 6 3 is not defined in general. It is, however,
given an explicit definition for the three node points at the end of
Sec. 3.5.

The normal distances as shown in Fig. 3.3 are designated by

bl’ b2’ b3 and are relatgd by
_ 2A _ 2A _ 2A
bl = TT N ‘b2 = T; N b3 = —I; (3. ll)

3.3. A Symmetric Form of the Strain Energy Expression
The plane stress strain energy expression associated with the

oblique coordinates Ll, éz (see Appendix A) is

_ Et 1 2
Wi JI{—Z— (e} -2 cosy €, +€,,)

- 2 ] . 2.
1 2(1-v )smq,al Si sin d"l
2 1 2
-H(€) €5, - €, )} d¢” dg (3.12)

where 5 is the Young's modulus, v is the Poisson's ratio, ,
M = 2(1-v), and where the strain components are related to the
components of displacement by

Bwl

11 8@1

ow
—2 (3.13)
g
ow ow

1 + _2)

S W
12 2 agz 6731
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Introducing the change of variables (3. 2) into (3.13) we obtain

Bwl
‘11 "I 3.
awz
€22 “T;3p (3-14)
. i} 1_( awl 4 awz )
12 2 13 ap 12 da
For convenience we define the deformation parameters €1, €, €54 in
the form
2 2
€= by ety e m2 e,
€, = £%e (3.15)
2 2 ~22 *
2
€3 = 137 €

The parameters do not have dimensions of strain, but they are,
however, related to the elongations in directions defined by the

three sides of the triangle. The parameters are related to displace-

ments by
o, 2 iy
1 3'9a ap 2' 9B da
awz
62: 12 —a—p (3.16)
ow
= 8 1

€3 3 da

Solving for the strain components in terms of the deformation

parameters in (3.15) we obtain
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m
"
=
m

(3.17)

m
[\ V]
[\

1}

—

[y}

m
[\V]

—
[\
1
[\
—
-
m
w
+
m
[\
]
m
—
et

Substituting from (3.2), (3.3), (3.5), and (3.17) into (3.12) we obtain

after some rearranging of terms

J2 2
_ t 1,21 1,22
Wi, ® _% ff{IK(Az"“)e 4A(7+“)‘

41-v)) Si
8.2 a,a a,a
1 3 2. 2,112 2, 22%3
tmZ ) egt p(—7 -p) e g (—5 - K) €65
A A A
2 233 Et T
+ o= ( -u)e,e }da df = ———— [ [E, G, E da dp
i 7 3€) D) L 1 618
(3.18)
where
T _
E| = [451 €, 63] (3.19)
and —
r- az a,a aa
1 1 1 2122 3
wmlz tH) g7 -k 4A<—z- - H)
A
a,a az a,a
1 223 1 22 1 2223
G = | gx S5 -H) gz (S M) gz E5 o-m)
1 a7,z A 2 A 7,2
a,a ay a az
1 232 1 23232 1 23
Z( =3 -H)  gx 5 -H) gz (5 HH)
A2 4R\, 2 1A V2

(3.20)
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The plate bending strain energy expression (see Appendix A)

is

2 2
( 1 ] wa ] W
W, = : ) - 2cos Yy, ———>
azw 2 Bzw 32w azw 2
3 3 3 3 1 2
ey e IR G werw i sen-Sill pow wor B B LR
9L~ d¢ ot ot” a9t 9L ot a¢
(3.21)
where ,d is the flexural rigidty. Note that
32w3 i 82w3
atlat! 1§ 9a?
82w 3 %w
. 33 = - 23 (3. 22)
at~atL 12 ap
2 2
°] Wy - 0 Wy
atlat? 1.2, 8a ap
23
We define the deformation parameters 64,65, 66 by
82w3 8Zw3 2 62w3
€ = + -
4 50 2 262 Badp
82w3
€g = —3 (3.23)
9p
32w3
€6 ° T, 2
9a

From (3.22) and (3. 23) we obtain
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2

A T
atlagl 15 ‘6
32w3 1
32w3 1

Substituting from (3. 2), (3.3), (3.5), and (3.24) into (3.21) we obtain

2 2 2
a a a
D A | 2 1 %2 2.1 %3 2
W, = TIf{ggG+u)eg +gz(F+u)egtgz(S+u)e
12 4 s, 4A U2 4 7 2A 2’ 57 4A° 2 6
2,212 2 2233 2 233
+'4'Z(°1—2—-#)e4€5+m(?— -#)6566 +ﬂ(7'")€6€4}dad
- %ffE'gGl E, da df (3. 25)
A
where G1 is given by (3.20) and
ET - [e, €. €,] (3.26)
2 4 55 6 :

If the middle surface deformation parameters (2.10) are taken in

the form (3.16) and (3. 23) then the matrix operator § in Chapter II

is given by
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9 ., 9 9 -
Iy Gataple t1s 5g -ap)e2
0 -
t 3p ©2
9 -
1, — e
Q =| 39 1 | (3.27)
22, 82 , 8’ E)
52 8a0p T g2 3
82 P
2pl 3
2% -
5.2 O3

Also the matrix G in (2.11) then has the form

t
—t G 0
. 41-v% 1! 528
= 0 .
0 Z Gl

where Gl is given by (3. 20).

3.4. The Member Displacement Configurations
The vector of displacements measured relative to the él, QZ, §3

coordinates in terms of its covariant components is

- 2 2, - 2, =2 2, =3

uL(§1,§ ) = wl(gl, £7) e:l + w2(§1,§ ) e” + w3(§l,§ ) e (3.29)
In terms of the dimensionless parameters (3.2), (3.29) is

T, (aB) = w,(aB) T' + w,(ap) T + w,(ap) ©° (3.31)
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Six of the deformed configurations H, are associated with
membrane stresses and consequently have the component Wy = 0.
The other six are associated with bending stresses and have the
components wy =W, = 0.

Three of the deformed configurations used have displacements

describable in the form

- -1 =2
up = (c0 tca+ czﬁ) e + (d0 + dla + dzﬁ) e (3.32)

where <, and di are arbitrary constants.
This displacement vector is linear in a and B, and consequently
has the property of displacing straight lines into straight lines. It
is the same one used by Turner et al. 13
The six arbitrary constants in (3.32) are determined in terms

of the three parameters \  ,\ 2 A 3 called member generalized

l)
coordinates. These parameters are respectively defined as the
elongations of sides 11, 12, 13 and are the natural forms given by
Argyris.14

The node displacements and constraints, relative to the

§.1, QZ, 43 coordinates are shown in Fig. 3.5, and given by

- _ - -2 _ -1 =2

uL(O, 0) _Wl(l)e +w2(l)e = cye +d0e

3. (1,0) = w. .. &} = (c.+c.)e) 4 (d.+4,)3?
L 1(3) ot¢1 0™
3.(0,1) = 0 = (c.tc,) 3! + (d.+d,) &2
L' - 0 2 0 2

(3.33)
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Fig., 3.5, Covariant components of node displacements
relative to oblique coordinates.
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Solving for the six constants in (3.33) and substituting into (3.32)

we obtain

[ 4pwy gyt (Lo -p)wy )] L B wy )] e (3.39

The member generalized displacements are then related to the

components of node displacement by

£

T .= _ 3
Ny = -F 0 w(0,1) = - 1-1- w1 (3)
N, = -'2 + w(0,0) = - W) (3.35)
\32 -F3‘ G(0,0): -W].(l)

where ?1,?2, f3 are vectors tangent to the three sides of the triangle

and are given in (3.7). Substituting from (3.35) into (3.34) we obtain

up = -11—3 {pllxl + (1-a-p)£3x3}21
1 =2
+ 2;{(1-0.-[3)12)\2} e (3.36)

In general when a member is displaced from its initial position
(Fig. 3.1a) to its displaced position (Fig. 3.1b) it undergoes a
rigid body rotation AaR defined below. The coordinate system
le, yRZ, YR3’ see Fig. 3.1b, is defined so that the rigid body member
rotation and node 1 displacements relative to it vanish.

Nine deformed configurations are directly related to components
of node rotation measured relative to the le, yRZ, YR3 coordinate

system. Three deformed configurations are of a type graphically

shown in Fig. 3.6 a, b, c and only have displacement components in
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Ngel (1) ;2
_.-/1

Y S NN
sin}, "8 2(3)\\
\

MNoea1) 2

—_— Y

sin q;l sianl

y
y1 smq)z 9 1(2)
(d) (e) (f)
3 3 3
y twy 1 y
\sinltp M) L\
‘1 2 ~._.31nn.|,ll 1272(1) YZ
_._1__)\ s 0
M f13) sinys 11%2(3)
_._1_)\ e
\5in ¢, '10°2(2) \ 1 1 / J
\ 1 y sin g, "12°1(2)

(g) (h) (i)

Fig. 3.6. Displacement modes associated with node
rotations.
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the plane of Si' (see page26). The remaining six only have displace-
ments components normal to S; and are shown in Fig. 3.6 d-i.

The nine functions of Hi shown in Fig. 3.6 are constructed
from the equations of the six pganes intersecting the plane of S;
as shown in Fig. 3.7 and given in Table 3.1. The equation of the
planes are normalized so that their principal intersection angle is
unity.

The set of points defining the domain of a subtriangle as
shown in Fig. 3.8 are designated by A A A Abl’ Ao
Ab3; i.e., Aal corresponds to the set of points 1lying on triangle

1, 2, 4, etc. The symbol Aa when used with a function .1 in

1

implies that 8.1 is defined over Aal' The form

implies that 8.1 8a2 is

the form Aal 8,1

(Aal gal) (AaZ gaZ) = Aa.l AaZ ga.l gaZ

defined only for points common to both Aa and AaZ’

1

Consider the two functions taken in the form
=1
Z,,=5{g 508, t83)A,; t 8,08, t BL3) Ays) 43 (3.37)
=L
Zys =z le, (es YA, T 5le,) tap ) Ayt E,  (3.38)

The functions Z and Z together with their first partial

12 13

derivatives are continuous for all points of the triangle. The second
derivatives of le are constant on Aa3 and A‘b3’ and have a
discontinuity along line 3,6. The second derivatives of Z13 are
constant on A_, and A‘bZ , and have a discontinuity along line 2, 5.
12 and Z13 vanish for all

points of the triangle and consequently strain compatibility is

It follows that all third derivative of Z

satisfied for inplane displacement configurations constructed from



Fig. 3.7. Lines of intersection of planes given in
Table 3.1.

Fig. 3.8. Symbols used to designate subdomains of
triangle.

Table 3.1. Functions Used to Construct Displacement

Modes.

LINE FUNCTION EQUATION
2,3 8, ° l-a-f=0
3,1 8,2 = a =0
1,2 8,3 = B =0
1, 4 8, ° a -pB =0
2,5 8p2 = -l1+a+2p =0
3,6 8p3 * 1-2a-B=0
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these functions. A graphic description of these functions is shown
in Fig. 3.9. The function le vanishes along lines 1,3 and 2, 3
as indicated in Fig. 3.9 and its normal derivativesvanishes along
2,3. It has a slope of unity in the direction of gl at point 1.

The configuration associated with X\ 4 18 graphically

described in Fig. 3.6a and has the form

u; = )\4(Z13 n, - le n3) (3.39)
where ?12 and ?13 are defined in (3.6) and Fig. 3.4. By two
consecutive permutations of the indices 1,2, 3 into 3,1, 2 and
2,3,1 in (3.36) and (3.37) we construct four additional functions
ZZI’ 223, Z31, Z32. On substituting from Table 3.1 we obtain

Z . =i{a@2-30-28)A , +(1-a-B)* A .} ¢
1272 a3 Apzt 53
-1
Z,5=3 {-(1-a -B)(1-a -3B)A_, + B(2-2a -3p)Ab2} 12
Z, . =2{B(2a-B)A . +a’ A, .} 2 (3. 40)
23 ~ 2 al bl 1 )
z =1—{a2A - (l-a-B)(1-3a -B)A, .} 1
21 ~ 2 a3 b3 3
Z, =:{-(1-a-B)(l-a-3B)A . +pZA .} ¢
31 2 b2 b2 2
Z,, =L1{pB’A  -a(a-28)A .} £
32 2 al bl 1

The displacement vector associated with the three additional

inplane deformed configurations then has the form

up, = Ng(Z) 30, = Z),03) + Ng(Zy 0y = Zp30)) + N (Z3,n) - Zy) 1))

(3.41)



56

12

2 \gl

Fig. 3.9. Graphic description of functions Z12 and le'

(a) (b)

Fig. 3.10. Force vector subjected to a virtual
displacement.
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On substituting in (3. 41) for the functions and unit vectors, rearranging

terms and combining with (3.36) we obtain

u = % {-L A - (1-a-p)yxy -[(1-a ‘B)ZAaz +B(2-2a -3B) A, ] AN,

2

-[B(2a -B)A , +a Abl] AN + [ pZAal +a(2B-a) AL

- (1-a -B)(1-a -3p)A_, + BZAbZ] Axé} e+ % {-(1-a -B),\,

+[a(2-3a -2B)A_5 + (1-a -p)ZAb3] A\, - [azAa3 + (1-a -B)(1-3a +(3)Ab3

+B(2a -p)A_ + aZAbl] AN, + [;32,4\.al +a(2p-a)A, ] AN,) i
(3. 42)

Eq. (3.42) contains six of the independent vector functions of Hi‘

The remaining six configurations are taken in the form
3, cw,o = {g g Aot N, + \
L™ %3 €a2 Ba3 7 T Ba3 831 Mg T Ba1 Ba2 Mg

tley e,y Ay * 8 AN g t g, le,) A p * 8y3 ApRlIN

-3
tlgysle,, Az t 8y Aps)Ing ) e

b3'®a2 “"a3 al " b3’" 12 (3. 43)
The six functions g ,g -+, [gb3( 8,2 A3 18, A'b3)] and their first
partial derivatives are continuous for all points of the member. The
last three of these functions respectively have second derivative
discontinuities along lines 1, 5; 2, 6; 3, 4.

Substituting for the function in (3. 43) we obtain

»o
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up, = {apry +B(l-a p)hg +a(l-a -B)hg +[Bla -B)A,, +ala-B)A, 1N ¢

+[-(1-a-2p)(1-a-B)A_, - (1-a -2B)B A, ]\ |
+la(l-2a -p)A_; + (1-a -B)(1-28-P)A, ;I\ ,} &

An alternate form of (3. 44) is given in Appendix D.

3.5. Member-Shell Transformation Matrix

(3.44)

The member generalized forces Ei and member generalized

coordinates Ai are related by the strain energy relation

§W. = FL 6U
I. i i
1
and if
SA. = M, §U.
1 1
then
Fl su, = eréA
- zT M. sU,
1 1 1

(3.45)

(3. 46)

(3.47)

(3.48)

If (3.48) must hold for all virtual displacements 6U.1 it follows that

(3.49)
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On taking the transpose of both sides of (3. 49) we obtain

F. = M! . (3. 50)
1 1 1

Here the components of Fi are components of node moment and
force vectors, and the components of U, are components of

displacement and rotation vectors.

!’-u

Consider the displacement vector 6&u and force vector f

shown in Fig. 3.10b. The work due to f when it undergoes a virtual :
displacement &u is defined by the dot product i

W = f - 6u (3.51)

The covariant base vectors (unit vectors) of an oblique Cartesian
coordinate system are El’—eZ and the contravariant base vectors

(not necessarily unit vectors) are El, 2. They are related by

(3.52)

The vectors f and 6&u in terms of their components are

60 = 6wl s + 6wl

1 2 (3.53)

= 6w 731+6w2-é

1 - 2 -
e, +1°C, (3. 54)

ae|
]
.y

PL I EZ

f) e 2
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Substituting from (3. 53) and (3. 54) into (3. 51) we obtain

W = (13 +1,8%) - (bw's + 6w’E,) = £ 6w + £, 6w
= (flEl + fZEI) . (6W1;l + GWZEZ) _— bw, + f26w2
-1 -1 -1 =2 1
= (fle +f2e ) ° (6w1e +6w2e ) = —
sin
[f1 £5w1 + fchaw2 + cosy (fl 6w2 + fzéwl)]
(e + £%5,) - (bw's, + swPe,) = flew! + fPEw’
1 2 1 2
+ cosy (flow? + £26w!) (3. 55)
where ¢ is the included angle of the oblique coordinates.
We note that
_ 1 ol o2
6W-[f1 fz] Sw = [ £7] bw, (3. 56)
! 6w2 6w2
but in general
—
sW £ [ 2] | sw (3. 57)
_6w2
-
§W £ [f1 fz] Sw, (3. 58)
_éwz

We then conclude that if the generalized coordinates are contravariant
components of a displacement vector then the associated generalized

forces are covariant components of a force vector and vice versa.
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From (3.35) and Fig. 3.5 we obtain the node displacements

relative to the Ll, Z_.Z, §.3 coordinates in the form

-1 -2
uL(l) = )\3 e(»l') + )\2 e(l)

Ui2) C 0 (3.59)
- ~2
i) C M1e3)
where the base vectors are those of Fig. 3. 2a.
It then follows from the above discussion that if the components
of node displacements are interpreted as components of generalized

coordinates then the associated components of generalized force can

be interpreted as components of node forces through the energy

relation

6w1=?(1)-aﬁ +f . - &u,,, +f., - 6u (3.60)

(1)  (2) (2) - 7(3) (3)
To do this we take the variation of (3. 59) and then substitute it into

(3. 60) and obtain

! 2 - ) 1
) (f(l,el)el(l)+f(l,el)ez(l.))

(1)

-~ -2
oW (6)\3e + 6)\2e(1))

—

1 2 - -2
(£3, e3) S13)t 13, e3) Sx3))" (1 2(3)) (3.61)

+

1 2 2
=10 e1) M T 1) P2 T 13, e3) N

1 2
where f(l, el)’ f(l, el)’ etc. are force components referred to the base

vectors of Fig. 3.2. If

6)\4 = 6)\5 = ... =6X12 =0 (3.62)

then

6WI=2. 6Ai 7 6N, + ¢ 6)\2+0'36)\3 (3.63)

1 2
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Eq.'s (3.61) and (3. 63) can hold for all virtual displacements that

also satisfy (3. 62) only if

flel) = 93
f2(Lel) = %2
f2Be3) = 1

(3. 64)

The components of the node forces ?(1),'{(2),?(3) expressed

in terms of 01,0 ,,05 can be obtained directly from (3. 64) and the

equations of equilibrium. They are shown in Fig. 3,11a and have the

form

T

) = 93%0) T 2%0)
f2) 7 "1%102) Y T2%22)
f3) = o213)t 71 %22

(3.65)

The member generalized displacements )\4, )\5, e ey )\12

are related to the components of the node rotation vector measured

2 3
YR’ 'R

node rotation vectors are

relative to the y;,

- _
%) = sy, MM !
- _

®2) = siny, (Mg = rgleypy *
- _ 1 -
*3) = sy, Mo M)

coordinates as shown in Fig. 3. 6.

s1nq,tl ()\

1 _
sin\l:2

S1n¢3 ()\

Mo

The

5+ )\9)22(1) + )\433(1)

A7) e, t X583 2)

+ )‘8)—82(3) + )‘633(3)

(3. 66)
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T2%2(1) \0'1 31(2)
(a)
-9 e2(3) \ /q231(3)
3
q3 El(l) 1 2 ~q3 E2(2)
/qZ(EZ(l) 9 El(Z}‘
(b)
. =2 ’ . -1
s1nt113(<r11 + 0-8)3(3) 51n¢3(0'10 - 0'7)e(3)

sint.pl (0'l >t 09)3(2]) Sinkliz(()'l 5> -

(c)

Fig. 3.11. Relationship of generalized forces to node variables.
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If the components of the node moment vectors a(l), Fn-(z), 5(3) are
interpreted as generalized forces and related to the member by means
of an energy relation similar to (3. 48) then by using arguments

similar to the above we can obtain

E(l) = sin\Pl (0'11 - 0-8);}1) + Sinl.pl(o'lz + 0-9);‘(21) + 0'4-e:(51)

E(Z) = siny, (o), - 0'9)3%2) + sing, (o, o + 07)2(22) + 05;1(52)

E(3) = sintJ,:3(0'10 - 07)3t3) + si1'11113(c1'11 + 08)3(23) + 662?3)

(3.67)

The above are shown in Fig. 3.11b.

The node forces, necessary for equilibrium when the member
is subjected to node moments given by (3.67), can be obtained from
the six scalar equations of equilibrium.

The force components normal to the plane of the triangle
are associated only with the in-plane moment components and can be
obtained directly, by taking moments about the three sides of the
triangle.

The in-plane force components are associated only with the
moment components normal to the plane of the triangle. Since
there are six in-plane force components and only three independent
equilibrium equations associated with them, it follows that this
system of forces has three redundencies. The redundencies are
essentially removed by imposing certain symmetry requirements
on the components, i.e., the six components are interpreted in

terms of three parameters q;» 9, 93 related as shown in Fig. 3.11b.
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The six equilibrium equations are, after some simplification,

given by
3 1
f,en = 2 “12'2';"11)
3 o1 ]
f2,e2) = 2T 710 " T T12)
e _ 1 1
f(3,e3) 2(12 o1 -1-1—0'10) (3.68)
4
q = zalo4t o5+ )
£,
9 = galogtogtog)
Ly

93 = ga (T4 * 5 T )

From (3.65), (3.67), (3.68) we obtain the relationship between
node forces and moments referred to the coordinates of Fig. 3.2a, b,
and the member generalized forces. This relationship is given in.

matrix form by (3. 69).

)



f(1, el)

f(1, e1)
f1, 1)
™11, el)
™2(1, el)
™31, el)
f(2, e2)
f(2, e2)

f2, e2)

M1(2, e2)
™2(2, e2)
M3(2, e2)
£3, e3)
13, e3)
f3, e3)
™1 (3, e3)

M2(3, e3)

M3(3, e3)

Ea

£ 2

2

2A

£ 2

2A

(3.69)
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The coefficient matrix in (3. 69) is designated by Mg . The relation-
1

ship between the components of node forces and moments referred to
the i-member coordinates (yl, yZ, y3) and those in (3. 69) can be
obtained directly from (A. 22), (A.23), and from the definitions of

the quantities. The relationship in matrix form is given by (3.70).

The coefficient matrix in (3. 70) is designed by Ml];. .
i

The matrix Mi is related by

T T T
M{ = My M, (3.71)

and is given explicitly by (3. 72).
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Two of the triangle rigid body rotation components have a
direct interpretation, i.e., they are the two inplane components of
rotation of the plane defined by the three node points of the triangle.
The component of rigid body rotation (AG;) normal to the plane
does not have a direct interpretation and is in fact intrinsically
related to the manner in which the redundancies, mentioned above,
are removed.

In order to obtain this interpretation we let a triangle in
equilibrium undergo a virtual rigid body rotation 69; so that
the magnitude of the forces and internal strain energy do not change.
Only inplane components of node forces and displacements need be
considered. The virtual displacements of the node points with

respect to the oblique coordinates of the node points (Fig. 3.2) can

be represented in the form

- -1 -2
Sugy = Wiy )t 2q) Cq)

~ =1 =2
Gu(z) = 6w1(2) e(z) + 6w2(2) e(z) (3.73)
&u = &w 31 + 5w 32

(3) 1(3) (3) 2(3) “(3)

The node forces can be represented in terms of the six parameters

01195, 03,959,595 (Fig. 3.11a,b). They are

f1) = (o3t a5) &) gy + (o, -qy)e, ),

F(Z) = (0'1 + ql)-él(Z) + (03 - q3)32(2) (3.74)

f3) = (0t ap)e; 3 * (o) - qp)e, s,
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The components of the node moment vector (0'4, Tgs 0'6) normal to
the plane are also required.
The work due to the node forces and moments when the

triangle is subjected to a rigid body rotation &6 3 must vanish.

R
This can be expressed in the form
(0, +0. +0,)60> +T, . + 60, +F,oue 60,,  +F 0 s 83,5, = 0
4 "5 "6 "R (1) (1) “(2) (2)  ~(3) (3)
(3.75)
Since 66 does not cause the sides to elongate the work

R

due to the equal in magnitude and oppositely directed force components
associated with each of the parameters 0)» Ty, 03 must vanish
independently. On removing these parameters from (3.74) and
substituting the resulting expression and (3. 73) into (3.75) we

obtain after some simplification
3
(cr4 + oy + 0'6) 69R - q (6w2(3) - 6w1(2)) -q, (6W2(1) - 6w1(3))

Substituting the last three of (3. 68) into (3.76) and dividing through
by (o4 tog+ 0'6) we obtain

3 ll 12

8ORr = 2 (8%p(3) - dWy ) * 7&

(6w2(1) - 6w1(3))

£

3
+ ZA (5W2(3)

- ow (3.77)

1(1)

From the assumptions of linear theory we have
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3 11 12
AGR il vy (Aw2(3) - AWI(Z)) t i (AWZ(I) - Awl(3))
13
+ —4-K(Aw2(3) -Awl(l)) (3.78)

The rotation of the coordinate system y;, yg, y; relative
the coordinate system yl, yz, y3 referred to in Sec. 3.1 is AGR

defined above.

3. 6. Member Stiffness Matrix
The triangular member stiffness matrix defined by (2.75) is
a 12x12 matrix ]."i with det Pi > 0. We partition (2. 70) in the

form

T
Hzi] Ali (3.79)

A,

1

where H'lri Ali corresponds to the displacement vector given by

(3.42) and Hg AZ- corresponds to the displacement vector given by
1 1

(3.44). If the deformation parameters are taken in the form

T

T
1 E3] (3.80)

ET-[E

Wwhere El and E2 are respectively given by (3.16) and (3. 26) then

from (3.27), (2.70), and (2. 71) it follows that




T T
Q, H Q H
) 1 H @y Hy
T T
Q> H (9} H
g 1y T2y Ty (3. 81)

E, QliHlTi o Ay,
E, | oo o, Hy | | 4,
1 1 1

m, o

Tl oo I,

(3.82)

T
N, o2, o, © G O[T, ©
i - f i 1 dA
T
r s T o G o T
21, T,, | "i|o 22; 1 22,
T
LI Gty da ©
i 1 1
i o nl G 1. 4a
s{f 11, St

i
(3.83)

The matrices I"11 and I’,, are respectively called the member
i .

membrane stiffness matrix and member bending stiffness matrix.

These matrices are given in Tables (3. 2) and (3.3), and a detailed

derivation is given in Appendix C.
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3.7. Continuity Conditions Between Adjacent Members

We now examine the displacement continuity between two
adjacent members and the conditions necessary for intersection
;ngles (normal slope continuity) to be preserved. The deformed
configurations have been chosen in groups of three, the elements
of which are constructed symmetrically with respect to the three
sides so that we need only examine one side of a member with
arbitrary side lengths f 1’ 12, 13.

Since the formulation requires the node displacements of
adjacent members to be identical we can examine displacement
continuity by examining displacements relative to the line joining
the common node point.

Consider the side with node points 1 and 2 1ying along the
§1 axis as shown in Fig.'s 3.1, 3.5, 3.6. By substituting from
(3.40) into (3.41), setting B = 0 in the resulting expression and in
(3.42), and on noting that

- =2
73T 7))

3 (3.84)

=3
S CURRR €
the desired displacements along the §1 axis are obtained and given

by

u = {;—[0.(2-3(1)Aa3 + (l-a)ZA In ‘. %‘[ o.(2-30,)Aa3 +(1-a)

b3" "4

(1-30.)Ab3] )\5} j_‘(zi) + {a(l-a))\g +alaA - (l-a)zAa

b1M10 2M1
+3
+[a(l-2a JA 5 + (1-a)(l-2a )Ab3] le}J(i)

(3. 85)
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Let Ll’ L2 correspond respectively to the line segments
1-6, 6-2 shown in Fig. 3.7 so that f(a))Ll-;. g(o.)(Ll+LZ) implies

that f(a) is defined over L, and g(a) is defined over Ll and

1

LZ' Along the l;l axis the following then holds
Ay < L1 + L,
Ab?. = L1 + L,
(3.86)
Aa3 - Ll
i )

From the above it then follows that (3.85) can be expressed in the

form
- 1 2 1
u = {'2‘[0.(2-30.)]_41 +(1-a) LZ] Ny - z[a(2-3a)L1

2

+ (1-a)(l1 -3a)L2] )‘5} J*(i)

+ {a(l -a)(Ll + LZ))\‘)
t[a(l-2a)L + (l-a)(l-Za)LzT)‘i.fz,} J?(31) (3.87)

T he components of node rotation about the y; axis 4)2(1 i) ¢2(2 i)

1 .
=N
xad about the yg axis ¢3(1, iy ¢3(2’ i) are related to \ 4 X\ 5 X\ 9
axnad 12 by
_ -4 - - - -
2,y (¢ O -1 - Mg
= : (3. 88)
4’3(1,1) 1 0 0 0 xg
®3(2, 1) o 1 0o 0 M2
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The above can be obtained directly from Fig. 3.6. These rotation
components are identical for adjacent members only if the components
of rigid body rotation (see Sec. 3.5) about axes normal to the plane

of the triangles are identical for the two members. On solving (3. 88) for
)»4, )\5, )\9, )\12 and substituting into (3. 87) we obtain after some

simplification
u = -1-{[a(2-3a)L +(l-a)2L ]¢
2 1 277 3(1,1)

-2
J

-[u(2-30)Ll + (l-a)(1-3°)Lz]4’3(z, i)} (i)

{ {a(2-30)L, + (l-a)szH’zu,i)

N

[ -a? L, + (1-a)(1-3a)L,1 ¢, 4 }3(3“ (3. 89)

A graphic description of the manner in which the displacements along
the line are related to components of node rotation, is given in Fig., 3.12.
From (3. 89) it can be seen that along the line the inplane
di splacements are related to the components of node rotation in a
Traianner identical to displacements normal to the plane. Since the
< O mponents of rotation for common node points of adjacent members
A x e required to be identical it follows that displacement continuity is
X aintained along the entire line even if the initial intersection angle
A oes not vanish, provided that the normal components of rigid body
¥ Otations of the two members are identical.
If in addition the normal slopes of two adjacent members vary
< ontinuously and linearly along their intersection line then normal

S lope continuity is maintained for all points of this line. In the



79

(a) (b)

(d)

Fig, 3.12. Relationship between displacement components normal
to an edge and node rotation components.
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formulation used, normal slgpe continuity is completely satisfied only
under a restrictive set of conditions. These conditions are related to
the geometric shape of adjacent members and the type of deformation
present along the intersection line. The inplane displacements (3. 42)
do not result in slope change along the edge. The displacements
normal to the plane of the triangle are constructed by polynomials

no higher than the second degree. Consequently the normal slopes
associated with the deformed configurations of )\7, eees N 12 (see
Fig. 3.6) vary linearly along line 1-2, but the variation of the
configuration associated with X\ 12 c€an have a finite discontinuity

at the midpoint.

The manner in which the normal slope is related to )\12 is
shown in Fig. 3,.,13. Also the relationship of the midpoint discontinuity
to the geometric parameters is described there. The magnitude of
the discontinuity is designated by d and is related to the components

of node and midpoint rotations by

d (3.90)

1
= %16, 20, %2, 1)

From Fig. 3.13(a) we obtain the relationships between the components

in (3.90) and )\12. They are
2
®i1,i) T CcotY M, = -3F Mo
)
®12,i) = °t¥a M2 = za M2 (3.91)
2,2

®16,i) = SCt¥e Mo T Tam—— M2
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Fig. 3.13. Variation of normal slope for secondary bending modes.
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Substituting from (3.91) into (3. 90) and simplifying we obtain

zg -zf
a= 4L\, (3.92)

In order to interpret the conditions necessary for slope continuity
to be satisfied we first consider two adjacent members with their middle
surfaces on (near to, in the linear sense) a plane as shown in Fig. 3.14.
The various parameters of one member are designated in accordance
with earlier notation and its adjacent member has its corresponding
parameters distinguished by a prime.

By examining Fig.'s 3.13 and 3.14 it can be seen that

)\12 = -)\1‘2 (3.93)

Then for normal slope continuity to be preserved
d= -d' (3.94)

Substituting from (3. 92) into (3. 94) we obtain

12 -12 (l')z - (13)2
2z 1, _ __z 1 (3.95)
2A 12 ~ 2A! 12 *

Substituting from (3. 93) into (3. 95) and dividing through by )‘12 we

obtain
2 2 ' 2 1,2 3. 6
12-11 _ (12) -(11) _ (3.96)
2A - 2A'

If the adjacent member does not lie in the same plane then
(3.93) is not in general satisfied and normal slope continuity is
insured only if

d = -4 =0 (3097)
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3'°3

Fig. 3.14. Notation for two adjacent triangles.
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This can be satisifed in general only if

22 _ g2
L-h
A

(I'é)z - (l{)z (3.98)

A =0

or simply if

1
(3.99)

1]
~

1
11

If the intersection angle is not very large then )‘12 = -):12
and (3. 96) will be approximately applicable. If it is large, as for
example at a 90o corner, then normal slope continuity can be
insured for all points of the intersection line only if (3.99) is
satisfied.

As already implied, the normal slope discontinuities along
side ll’ L,, 13 are respectively related only to the member
generalized coordinates. xlo, Xll’ xlz. These can in turn be
interpreted as being related to curvature changes along their
respective lines. Consequently large discontinuities can occur
along a line only if large curvature gradients are present there and
then only if geometric properties discussed above admit to it.

For a given triangulation of a shell the slope discontinuities and
curvature gradients associated with a solution can be obtained directly.
From this information a better triangulation can be obtained by satisfying

or more closely satisfying conditions (3.96) and/or (3.99) between

members with large curvature gradients.
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We classify the bending displacement configurations into those
associated with X\ 7 )‘8’ )\9 which we call the primary bending modes
A

and those associated with \ )N which we call the secondary

10° 711’ 12
bending modes. As already indicated, adjacent member slope
discontinuities are associated only with secondary bending modes.

We now examine the normal slope continuity between adjacent
members with respect to a limiting process that causes the area of
the triangle to vanish without materially disturbing the ratio of its
side lengths.

We assume that the deformed intersection line forms part of a
regular curve and in the above indicated limit approaches a straight
line. There is no ad hoc reason why this should be the case and to
prove such an assertion would undoubtedly require several sufficiency
conditions on the limiting process together with a proof demonstrating
that it is an inherent requirement for minimizing the potential energy.
For this the explicit representation of the bending stiffness matrix
should prove of value. In any event this assumption leads to a useful
speculation.

Consider the displacements along the intersection line of two
adjacent members relative to the line joining the common node
points. Since the components of displacements tangent to this line do
not affect normal slope continuity we need not consider them. The
displacements normal to this line can be decomposed into two
orthogonal components which, as has already been indicated are
identically related to associated node rotation components so that

we need only consider one of these components.
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Consider a curve described by the function f(x) in the
interval (x, x + Ax) as shown in Fig. 3.15a, We approximate the
curve by summing the two functions associa?ed with the parameters
61, 62 and graphically shown in Fig. 3.15b, c. The approximating
function and its first derivative are required to be identical at the
end points of the interval. The functions associated
with 61 and 62 respectively vary relative to line AB (Fig. 3.15a)
in a manner identical to the normal displacements along an edge of
the primary and secondary bending modes. For the alternate bending
modes given in Appendix D this is ec‘iuivalent to a Hermite inter-
polation.

From the Taylor series expansion we obtain

| , A2
f(lx + Ax) = f(x) + f'(x) Ax + f"(x)—zT- + ...

2 (3.100)
f'(x +Ax) = f£'(x) + £ (x)Ax + £'''(x) %’,‘— +...

where primes denote derivatives. From Fig. 3.15 we obtain

£(x) = a -8 +8,

1
(3.101)
1 =
f'(x + Ax) = a +61 +62
f(x + Ax) - f(x)
Ax
Solving for 61 and 62 we obtain
5, = 3 [£(x+ax) - £(x)]
(3.102)
1 f(x + Ax) -
6, = 3lfx+ax) +1(x) - Hxtox) - f(x)
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|IB_—7 f(x + Ax)

-
~

f(x + Ax)

R

(b)

Fig. 3.15.

(c)

Type of approximation implicit in bending nodes.
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Substituting (3.100) into (3.102) and simplifying, we obtain

5, = '(x)Ax (3) + £1(x)Ax" (3 10) + 1A (T L)+l
5, = £"'(0)Ax” (5ir - )+ E1M0AX (3o 37 - 57) H e
(3.103)
As Ax approaches zero
5, = f1(x) 5=
o N (3.104)

5 =~ flll(x) _l_z_

Therefore, when Ax is small, 62 is small compared with 61 . In
its relationship to the limiting process of the triangular element, Ax
corresponds to one of the side lengths of the triangle.

From (3.104) it would appear that in the limit the primary
bending modes will dominate the behavior, and that the secondary
modes and consequently also the slope discontinuities become
higher order effects.

We note that for the alternate bending modes given in
Appendix D the normal slope discontinuities are associated with

cubic terms whereas the highest terms in the primary bending

nodes are quadratic.



IV. FORMULATION FOR SHELLS OF REVOLUTION

4.1. Interpretation of Problem in Terms of Discrete Elements

Theé method presented in Chapters II and III is used to formulate
the problem of large deflections of shells of revolution having a small
imperfection. The undeformed shell geometry is thus describable by
the meridian curve of the middle surface (Fig. 4.1), a function
describing the thickness, here assumed to vary only along the
meridian, and a function describing the imperfection described
later in the Chapter.

We limit the solution to one describable by a half period strip.
The strip is in turn described by a simplified model consisting of 48
triangular members (see Fig. 4.2). The pattern used consists of 12
raows of four triangles. In order to accommodate a given geometry
the triangles vary in size and shape from one row to the next, but the
undeformed triangles of a given row are identical. In the computer
program used the location of node points along the meridian can be
arbitrarily specified. If one end of the shell is closed the triangles
in that end row degenerate into lines and are consequently removed.

In the procedure used it is necessary to invert a matrix of
rank equal to the number of unknown generalized coordinates for
each linear increment. If the generalized coordinates are
interpreted as components of node displacement and rotation vectors,
and if the pattern of triangles is. as indicated above (Fig. 4.2) then
the rank of the matrix is between 121 and 167 depending on the

boundary conditions used. If for a given elastic system and loading
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3
X
[ r(n)
2

(2) (b)

Fig, 4.2. Triangulation,



91

Fig. 4.3.

Node coordinates.
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the incremented solution does not undergo a region of instability,
then it may be possible to obtain acceptable results by using only
two to five linear increments; however, if the solution does undergo
an unstable region thén it is unlikely that acceptable results can be
obtained with less than 20 to 30 linear increments. A pattern
consisting of a much smaller number of triangles cannot adequately
describe the elastic properties of the class of structures being
considered.

To deal with problems having a region of instability would
require an excessive amount of computer time (approximately 10
times the amount used) especially for the computer program develop-
ment which required a considerable amount of testing. For this
reason, the degree of freedom of the system is reduced by inter -
preting the node displacements and rotations in terms of a smaller
set of unknown parameters. The explicit form of the interpretation

(equations of constraint) is presented later in this chapter.

4.2. Coordinate Systems
In accordance with the discussion in Sec. 2.7 three types of
right handed orthogonal coordinate systems are used, i.e., the
general, node, and member coordinate systems. The general and
node coordinates systems are fixed, and the member coordinate
are redefined after each linear increment. The 0-general coordinates
1

x ,xz, x3 are defined (see Fig. 4.2) so that the x3 axis lies on the

axis of the shell ard is directed upward, the xl axis is directed radially
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outward and intersects the shell axis and bottom middle node point,
and the xZ axis is perpendicular to the x1 and x3 axes. The
a -nocie coordinates z(la,).z(za).z(z).a.re defined (see Fig. 4.3) so that
the z(u) axis is parallel to the shell axis, the z(la) axis is directed
outward intersecting the shell axis and the a -node point, and the

2 i s . 1 3
2 .

(o) 2Xis is perpendicular to the z(a) and z(a) axes. Note that the
node coordinate systems of node points on a meridian curve have
their axes directed in identical directions. The member coordinate

systems are defined in accordance with Sec. 2.7.

4.3. Reduced Set of Generalized Displacement Parameters

For convenience each node point is designated by the integers
a,B (Fig. 4.4). Since the axes of node coordinates associated with
a common meridian curve are parallel, we distinguish them by using
only the first integer of the associated node point. The following
node displacement and rotation components are with respect to the

node coordinate systems,

1 2 3 1 2 3
AU(ap, o) AYap, ) A%ap,a ) 2%ap, o) A0(ap, a) 2%(ap, a)

(4.1)

These variables are related to a smaller set of generalized -

coordinates . as follows:
" ! 2 ol -
Au(o_ B, a) = AV(B) + Av(p) S1n[ 3 (a -3) 'n',]

2 3 1 /

Au(ap, a) " Av(ﬁ) cos [ 5 (a-3)m ]

3 4 5 . 1
Au((1 B,a) " AV(B) + AV(B) sin [ 5 (a-3)m ]
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1 6 1
Ae(aﬁ’ a) = Av(m cos[z(a-3) T ]

2 7 8 .l
A6 (aB, a) = AV(B) + Av(ﬁ) 81n[2 (a-3) 7]

= Av).. cos [li(a-3) 7 ]

3
A9 (ap,a) = A¥(p) (4.2)

By using (4.2) we in effect relate the 30 discrete variables of the five
node points of a row to nine variables. This in the discrete sense
implied by (4. 2) constrains the strip to a sinusoidal type of variation.
The boundary conditions along the two meridian edges are automatically

satisfied when (4. 2) is used.

We designate by

T Al 2 3
AU(48, a) = L B9(ap, ) A%ag, a) 2% ap, o)’

1 2 3
A6 (aB, a)’ A0 (aB, a)’ A6 (B, a)] (4.3)
T Al 2 3 4 9
AVig) =LAvig)y Ay AV BV o0 AV (4.4)
- -
1 sin[3(a-3)1] 0 0 0 0 0o 0 0
0 cos[ 1E(<1-3).1r]
0 1 sin[3(a-3)x]
Cr T 0 cos[lz(o.43)ﬁ1r]
(a)
0 1 sin(a-3)n]
0 cos[lz(a-3).’1'ri]
(4. 5)
Then (4.2) can be represented in the form
AU(QB, a) = CR Av(ﬁ) (4. 6)

(a)
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‘ﬁ
7
1,12 2,12 3,12 4,12
1,11 2,11 3,11 4,11
6
1,10 2,10 3,10 4,10
1,9 2,9 3,9 4,9
5
1,8 2,8 3,8 4,8
1,7 2,7 3,7 4,7
4
1,6 2,6 3,6 4,6
1,5 2,5 3,5 4,5
3
1,4 2,4 3,4 4,4
1,3 2,3 3,3 4,3
2
1,2 2,2 3,2 4,2
1,1 2,1 3,1 4,1
1
1 3

Fig., 4.4, Ordering of triangular members.
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Let
T _apeT T T T
AT =AUy 1y 801, 2y +o0 AUs1, 59 AU, 1)
T _ T T
AV ™ = [AV(I)’ ooy AV(7) ]

.,A

T
Uisz, 5)]

(4.7)

(4. 8)

The generalized forces associated with AU , AV, ., AU, and AV
(aB, a) (®)

are respectively designated by A F(aﬁ a)’ AP(B),

elements of AI—"(m are designated by

T 1 2 7
APy = [Apg) Ap(g)s -+ v Bpg)]

Let CR be defined so that
AU = Cp AV
Then from (4. 6) and (4. 8) it follows that CR has the form
C 0 0 T TJe 0
R R
C 0 0 C 0
Rg ) R(s)
Cr =10 C 0 =10 C
R .
Re. 2 Rip)
0 C . 0 0 C
Ri2.2 R5)
. 0 L]
0 0 C 0 0
Ray 7l
0 0 C 0 0
Ris5 7

AF, and AP. The

(4.9)

(4.10)

Ry

R(s)

(4.12)
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In a manner similar to that used to derive (2. 90) the generalized
forces AF and AP are related by

AP = c;_f AF (4.13)

The generalized forces AP(ﬁ) do not have as simple an
interpretation as the node forces and moments. Many boundary
conditions can, however, be interpreted directly in terms of the
generalized parameters associated with the two end rows. We
note that p(47) corresponds to the vertical component of the
resultant force acting on the top edge of the half period strip and

p?l) is the corresponding component for the lower edge.

4. 4. Node Coordinate Transformation Matrix

If the shell has n periods, the angle enclosed by the half
period strip is % . The matrices of base vectors of the general
coordinate system are designated by J(O) and those of the
a, B-node coordinate system are designed by J(o. ,B) or simply
by J(a) since the base vectors of node points on a common

meridian are identical. The base vectors are related by

J - ple) g

(0 = Pi(o) (414

(a)

The coefficient matrix in (4.14) can be obtained directly from

Fig.'s 4.3 and 4. 4 and is given below.
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o
r-cos[ (o.-3)ﬁ-l-] : - sin[(a-3):‘1%] | 0—1
| |
1 o |
D{o('g) = sin[(a-3)-fr'—l- | cos[(a-3)fr'-l- ;0 (4.15)
I |
| |
0 | 0 p 1
In a manner similar to (2.100) we defined
(a)
D 0
1%8; = | 1) (@) (4.16)
0 Dl(O)

4.5. Formulation of Shell Stiffness Matrix

Since two integers are used to designate a node point, matrix
S defined in (2.63) and (2.65) becomes a 48x6 matrix for this
formulation and is given in Table 4.1.

We designate the triangular member by integer pairs i,j as
indicated in Fig. 4.4. The elements of S are designated by 80
where the ktB row of S defines the node points of triangle k which

in turn is ordered by
k = i+ 4(-1) : (4.17)

If (o.l, [51), (az, (32), and (a3, B3) are the node points of member i,

then
4 = %
Pr = %k2
G2 T By3
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a = 8

3 k6
B, = 8
3 k7 (4.18)
As can be observed from Table 4.1
By = B3
[31 > [32 if i is even
B, < B, if i is odd (4.19)

Substituting (2.102) into (2.109) and using the notation of this section
we obtain

(a,)! (a,)! (a;)
N © @y, o e (0 3
k= M P Pro) 1 Mi, Py Do) Mk, Py Do) ]

— -

AU(Qlﬁl ’ al )

pR(C NS

AU
Qo)
_ RELE °3 | (4. 20)
From (4.6) and (4.19) we obtain
- - ~ | -r -
4Y(a,p,.q)) Ca(al) | V)
| _
AU‘“zpz' ap |7 o cp Av(ﬁz) (4.21)
: (az) L -
|
AU(a3p3n .0'3) CR(Q3) : 0

Substituting (4.21) into (4. 20) we obtain
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(ay) (a;) ' (a5)
an, =[m, D@p Ve +m D@ p 3c  1m pl®p 2 ]
k5 P00 N0 R )" M P B0 R, M, Px) Ro) CR(az)
Ve,
4V(p,) (4. 22)

This equation has the form

AA, = [M M, ] AV(ﬂl) (4.23)

Vi1 K2
4V(p,)

The shell stiffness associated with triangular member k is

then given by

K, = FM'{,kl— r, [kali kaz] - M$k T My
M;rrkz if j is odd
Kk=FM$— I [My My ] = Mg TMy
k2 K2 Kkl k k
M3k1 if j is even

(4. 24)

We partition the stiffness matrix in (4. 24) into 9x9 submatrices in

the form

(4. 25)
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The shell stiffness matrix has the form

r
Kh ¥
Koy Koo Ky
K K K
K - 32 Ki3 34
Kes Kaa o
. -
* L K313 %314
Kig13 ¥Kig,14
L
where
Ky = Ky ¥ 0 v v K 1
T
Ko =Ky =K 1, 2%Ky 2t tKg 1
KZZ = KI’Z,Z"'... +K8’2,2+K9,1’1+... +K16,1'1
- wl
Koz = Ky = Kg ot eeo v K 1,2

(4. 26)

K33 = K9’2’2+oo. +K16’2’2+K17’1’1+'00 +K24’1’1

K = K

14,14 41,2,2 7 - v Eyg. 2,2

4.6. Shell Imperfection

(4. 27)

The meridian curve of a shell of revolution can be described

by the two functions r(n) and z(n) (Fig. 4.1b) where n is a

parameter. In the discrete sense used here these functions become
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T@) < Tay Ty cccr ()
(4. 29)

z

B T Fay %@y o 2

The components of node points relative to the 0-general coordinates

are then given by

1 qr.
X(a,8) ° r(p) cos[ (a -3)-2';—1']

2 . .4
x(a' p) = r(p) Bln[ (CI. -3)2‘;
3
*@p) T ) (4.30)

The shell surface is assumed to have a slight imperfection with n
circumferential periods. The form of the imperfection is taken so
that the node components of the position vector of the undeformed

surface have the form

" i L. %
*a,B) ~ (r(p) + €g(p) sin| (0-3)—2-]) cos[(o,-3).;.‘r.1.]

2 . o .
*(a,B) ~ (IT(B) +€g(ﬁ) 81n[(ﬂ-3)-2—]) s1n[(a-3)£;]

3 : :
X(a,p) Zg) * €€(p) sin[(a-3) ] (4.31)

where

g(p) = g(l)a c0 0y g7 (4.32)

called the imperfection function ard €called the imperfection constant

are specified.
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4.7. Boundary Conditions and Loading

The generalized displacement parameters of AV(I) and

AV(.,) describe the deformation respectively along the top and

bottom edges of the half period strip.

In order to interpret the

various types of boundary conditions we give the physical inter-

pretation of these parameters below and a graphic description in

Fig. 4.5.

Vl
(1)
vz
(1)
3
V(1)
4
V(1)
5
Y(1)
v6
(1)

v7
(1)

v8
(1)

!
(1)

i

Ll

uniform

sin

cos

uniform

sin

cos

uniform

sin

cos

varying

varying

varying

varying

varying

varying

radial displacement
radial displacement
tangential displacement
vertical displacement
vertical displacement
radial rotation
tangential rotation
tangential rotation

vertical rotation

A similar interpretation holds for the elements of AV7 .

In order to tie down the shell we always required

4
V(1)

0

(4.33)

(4.34)

Four types of boundary conditions are considered. These boundary

conditions and their requirements on AV(I) along the bottom edge

are as follows:
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Displacements Rotations

shell axis

/
L/

Fig, 4.5. Distributions associated with generalized coordinates v,
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Free
4 _
v(l) =0
Hinged
v1 =vZ =v3 =v4 =v5 =v6 =v9 =0
(1) (1) (1) (1) (1) (1) (1)
Fixed
1 2 3 4 5 6 _ .7 8 9 -0

O 'O T T T T T Yy T Yy T Yy T

Symmetry

v4 =v5 =v6 =v‘7 =v8 =0
(1) (1) (1) (1) (1)
(4.35)

By symmetry boundary conditions we imply that the bottom edge lies on
a plane of symmetry with respect to the resulting deformations.

The type of load used is limited to an axial load. For convenience
we use axial displacement increments so that v?.?) is always specified.

The boundary conditions for the top edge are then as follows:

Free

no zero components

Hinged
v1 =v2 ‘-'v3 =v5 =v6 =v9 =0
(7) (7) (7) (7) (7) (7)
Fixed
1 2 _ 3 5 6 7 8

VO TV TV T T Y TV TV TV =0
Symmetry

v5 =v6 =v7 =v8 =0
(7) (7) (7) (7)

(4.36)
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The axial displacement increment is taken in the form
avi o= o(ry) 6 (4.37)
(7) k

where 6 is a specified constant called the displacement increment
constant, and p('rk) is in general assigned a different value for each

linear increment and called the displacement increment function.

4.8. Computer Program

A computer program was written for the class of problems with
a geometric configuration, boundary conditions, and triangulation as
described in this Chapter. It permits a fixed normal surface load
and an incremented average axial displacement of the top edge. It
is used to obtain resultant axial force versus average axial displace-
ment curves, and displacement curves.

The program was written in 3600 Fortran source language for
the Control Data 3600 computer at Michigan State University. This
language contains the features of Fortran-63,

The program was written so that a minimum of input datais
needed. This data consists of fifteen computer cards describing the
geometry, material properties, boundary conditions, surface load,
and magnitude of axial displacement increment.

Computer program details are given in Appendix E.



V. COMPUTATIONAL RESULTS AND CONCLUSIONS

5.1. Some General Remarks

This investigation was primarily directed at the development
and explicit representations of arbitrary triangular member bending
stiffness matrices, and to determining their applicability for
geometrically linear and non-linear plate and shell problems.

Two bending stiffness matrices were obtained. As already
indicated, the displacement modes (3. 44) for one of them satisfies
compatibility to a high degree (see Sec. 3.7) whereas the other (D. 2)
relaxes slope compatibility along the edge of adjacent members but
appears to give better numerical results, The importance of the
coupling between membrane and bending behaviors, particularly in
geometrically non-linear problems, is of course contained in the
shell formulation and reflected in some of the numerical results,
but membrane behavior was not a major point of consideration.

Very good comparative results were obtained; however,
the numerical results are in no way adequate for the purpose of
drawing any general conclusions. For this purpose the solution of
problems having regions with various forms of singular behavior
and the numerical examination of convergence associated with
increased refinement would be very useful.

Most of the numerical results were obtained from the computer
program given in Appendix E and based on the formulation given in

Chapter IV. The program performs almost all interpretive and

108
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computational operations internally from a relatively small amount
of input data necessary for the description of the problem and for

both linear and non-linear problems.

5.2. Linear Results

In order to obtain an approximate estimate of the accumulative
roundoff error due to all sources in the sequence of computations,
an axially loaded perfect cylinder (Fig. 5.1) was solved. The problem
results in a uniform membrane stress state which the modeling can
describe exactly and yield results that are exact to within computational
erros. The results are given in Table 5.1. The accumulative effect
in non-linear problems is contained in these results since 25 increments
were performed.

Although the cylinder is initially perfect the accumulated round-
off error results in a fictitious imperfection. This appears suddenly
in the 20th increment and accounts for part of the reduction in the
20th and 25th increments shown in Table 5.1. The imperfection
results in both circumferential and longitudinal waves. The longitudinal
waves are, however, too long, due to the node distribution, and
consequently the sharp reduction in axial load associated with the
bifurcation phenomenon is not revealed.

The displacements along a radial line for the linear problem
of a concentric plate3 with fixed boundary conditions and axial load
are given in Fig. 5.2 and Table 5.2. Results were obtained for both
bending stiffness matrices. Both matrices gave good results; however,

as already indicated, the matrix given in Appendix D gave particularly
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(]

=
1l

0.0 [

;. P_ (x10°) u_ x10"2
x1072 Exact Computed Exact Computed
1 9.4248 5.389 .15 .1500

2 18. 8495 18.73 .30 . 2994

3 28.2743 28.03 .45 . 4484

5 47.1238 46. 48 .75 . 7455
10 94, 2477 91. 80 1.50 1.482
15 141.3715 136.0 2.25 2.212
20 188.4954 177.4 3.0 --
25 235,6192 212.4 3.75 --

Fig. 5.1 and Table 5.1. Comparison for a uniform stress field.
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accurate results, that are in fact to within the roundoff error of the
computations.

Some useful results can be obtained by introducing the
constants c,; and <, which we respectively call the primary and
secondary bending constants. We use these constants to alter the

6x6 member bending stiffness matrix I"i as follows

0 cf I"i <y CZFi
11 12
2 (5.1)
Q c?_ri CZPi
21 22

where the T . are the 3x3 submatrices of I'.. If ¢, =c, =1.0
lkl 1 1 2
then the matrix is unaltered. If 0 < ¢, < 1 then the stiffness

1
associated with the primary bending modes is partially nullified and
if 0< c, < 1 then the stiffness associated with the secondary
bending nodes is partially nullified.
The node displacements along a radial line for various values
of ¢ and ¢ 2 of the concentric plate shown in Fig. 5.1 are given
in Table 5.2. These results clearly show the dominant role that the

primary bending modes have on this solution. For ¢, =1.0 and

1
c, = 0.6 the stiffness associated with the secondary bending modes
is essentially reduced by 64% but the resulting increase in the
maximum displacement is only 2.2%. From the definition of the
constants it follows that for ¢, = ¢, = 0.6 the displacement will

increase by

(—Ls - 1) 100% = 177% (5.2)

(0.6)




Table 5. 2.
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Plate (Fig. 5.2).and Percent Error.

Displacements Along a Radial Line for a Concentric

Radius of Node 3.0 | 3.5 4.0 | 45 | 5.0 5.5 |6.0
Exact Displacement | 2.852 |2.597 | 2.011 | 1.307 |0.6525| 0.1796 |[0.0
Bending
Matrix < €2
Table
D.1 1.0 h.o|2.8524 |2.606|2.020] 1.315|0.6573 | 0.1820 | 0.0
' 0.06 |0.35 |0.44 |o0.57 |o.73 |1.32
Table
3.3 1.0 1.0 |2.752 |2.516]|1.949| 1.265 |0.6276 | 0.1694 |0.0
3.51 |3.10 [3.06 |3.24 |3.97 |5.¢68
Table
25 1.0 lo.8 |2.775 |2.536 [ 1.966| 1.277 |0.6344 | 0.1723 |o0.0
. 2.70 12.33 |2.75 | 2.36 |2.77 |4.06
T;bge 1.0 lo.6 | 2.814 |2.569]1.992| 1.295 |0.6465]0.1780 | 0.0
. 1.34 [1.45 |0.97 | 0.92 |o0.92 |o.89
Table 1.0 5 6 6 6 6
2ol .0 lo.5|2.852 |2.601 | 2.016] 1.314 |0.6582 | 0.1836 [0.0
. 0.02 |0.14 |0.25 | 0.47 |o0.87 |2.23
T;b;e 1.0 |o0.62]| 2.806 |2.563 |1.986] 1.292 |0.6441 | 0.1768 | 0.0
. 1.61 |1.30 [1.25 [1.22 [1.29 |1.56 |
T;b;e 0.992|0.62| 2.854 |2.607 | 2.020| 1.314 |0.6552 | 0.1800 | 0.0
. 0.07 |o.38 |o0.44 | 0.50 |o.41 |o.22
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I,
/
Y/
/
1
/
4
P—-— ——'60,

rigid
0.14
— — Bending matrix Table 3.3 used
N Bending matrix Table D.1 used and exact solution
o
= 0 ———
£
)
;
g1
—i
& G
5 P
W 5 ”
o Z
v =
~
) -
g /
3
3.0 3.5 4.0 4.5 5.0 5.5 6.0

Radial distance from shell axis, in.

Fig. 5.2. Vertical Displacements Along a Radial Line for a
Concentric Flat Plate with Fixed Boundary Conditions.
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5.3. Non-Linear Results

Some numerical results for the large deflection problem of a
concentric plate (Fig. 5.3) and two shallow conical shells (Fig.'s 5.4,
5.5) were obtained. These results are compared with the numerical
results of Newman and Reiss3o and the experimental results of Almen
and Lazyle. 29 Free boundary conditions were assumed and the bending
stiffness matrix given in Table 3.2 was used for all three problems.

The results obtained in general compare favorably. For one
of the conical shells, both the numerical results of Newman and
Reiss and those obtained have a noticable discrepancy with the
experimental results of Almen and Lazyle. This could be due to the
presence of a partial constraint (friction) on the boundary when the
experiment was performed. To demonstrate this, numerical results
were obtained for a variety of boundary conditions (Fig. 5.6). It can
be seen from Fig. 5.7 that for hinged boundary conditions the
maximum axial load just before instability is approximately 12 times
the value obtained for free boundary conditions. A relatively small
radial constraint could account for most of the 10% discrepancy
present.

Results were obtained for the large displacement problem of
the concentric plate with the bending constants c¢ y = 0- 992 and
C, = 0.62. The curve for these results is not shown since there is
no discernible difference between it and the curve given by Almen

and Lazyle.
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Fig. 5.3. Load-Deflection Curve for a Concentric Flat Plate.
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Fig. 5.4. Axial Load-Deflection Curve for a Shallow Cone.



Load, 100 1b.

0.098
% lo.2s5 |
| | 5 ﬁ:sll I
| 10. 25"
e >

Almen and Lazyle test
o Newman Reiss solution

—— = — Present solution

‘/
rd
74
Vs

Fig. 5.5.

1 2 3 4

Deflection, 0.1 in.

Axial L.oad-Deflection Curve for a Shallow Cone.
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Boundary Conditions
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Fig. 5.6.

Axial Load-Deflection Curve of the Shallow Cone Shown
in Fig. 5.5 for Various Boundary Conditions.
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Fig. 5.7. Displacements Along Radial Line for the Cone of
Fig. 5.5 with Free Boundary Conditions.
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—
N
w
KN
(6,
~

Vertical Displacement, x107! in,

RN
. ~1 | N
N
N

@

-5
5.1250 4.7396 4.3542 3,9688 3.5833 3.1979 2.8125

Radial distance from shell axis, in.

Q

: 1 T

2 N
N

-1 \\\___z /
L/

Radial Displacement, x1073 in.
ON
/ / \\

-3

Fig. 5.8. Displacements Along Radial Line ior the Cone of
Fig. 5.5 with Hinged Boundary Conditions.
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Node Point No. (see Fig. 5.7)

ol 2 3 4 5 6
g
- 1 AN
' \
®
g 2
v N
g
[ ]
(8]
L]
%
2 3
o \ @
o @
-‘.3
I 8
> Y 5:
5
5.1250 4.7396 5.342 3.9688 3.5833 3.1979 2.8125

Radial distance from shell axis, in.

el

@

-2

™.

-4

Radial displacement, x10~ in.

-6

~_

Fig. 5.9.

Displacements of Node Points Along Radial Line for
the Cone of Fig. 5.5 with the Various Boundary

Conditions of Fig. 5.

6.
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5.4. Conclusions

The usefulness of stiffness matrices associated with arbitrary
triangular plate elements is self evident. With the aid of these matrices
and modern computing facilities we can formulate and solve many shell
problems. The ease with which many geometric configurations can be
modeled by triangular plate elements and the inherent ease with which
most boundary conditions can be imposed makes this procedure very
attractive.

The two bending stiffness matrices obtained for arbitrary
triangular plate elements appear to give results of sufficient accuracy
for many applications. To ascertain the full flexibility of this
procedures, however, will require more numerical results than
those obtained, especially for problems with various forms of singular
behavior.

This investigator was particularly interested in the bending
stiffness matrix given in Table 3.3 because it is associated with
displacement modes that have regions of constant curvature and
twist, and can consequently be more readily adapted to problems
with non-linear stress-strain relations. The modes associated with
both bending stiffness matrices can be conveniently used to include
the effects associated with thermal strains that vary through the

thickness of the shell,
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Appendix A. OBLIQUE COORDINATES

A.l. Some Properties of Oblique Cartesian Coordinate Systems
Consider the oblique Cartesian coordinates designated by t_.k
and the rectangular Cartesian coordinates designated by xk. These
coordinate systems are related as shown in Fig. Al. The coordinates
Ll, §2 and xl, x2 define a common plane, and the coordinates {.3
and x3 are normal to this plane. The angle él 0 3;2 (= xl 0 42) is
designated by { . Unit base vectors of the Lk and xk coordinates
are respectively designed by 'e-k and :]Pk . The associated reciprocal

base vectors are & and Tk (= 7)), and are defined by the properties

e e = 1 for k=1
(A.1)
J’k . J*l = 0 for k /4
It then follows that the magnitudes of the base vectors are
el =], =1
! 2 (A. 2)
-1, _ =2y _ _1
l € l - l € | - sin '-lJ
-1 -2 - -
1550 = 15°1 = 15,1 =15, =1 (A.3)

A position vector r can be represented inany me of the following

forms
- k— ~k k = -k
r =¢ e = le = X J 7 ox) (A.4)

where Qk are called contravariant components of the vector, Lk are

called covariant components of the vector, Ek are called contravariant

126



127

ol
(")

Fig. Al. Coordinates and Base Vectors.

(a)

Fig. A2, Base Vectors.

(b)

ol
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base vectors, and Ek are called the covariant base vectors.

The coordinates §k and xk are related by

x1 =§l +cos¢§2
x2= +sin¢§2
x3= +§3

In tensor notation (A.5) can be represented in the form

k £

k
x =c1§.

The inverse to(A.6)is designated by

Qk = dl; x‘e

where the matrices [c%] and [ dlf] are related by
k kq-1
[ dl ] =1 Cy ]

The covariant components are related by

I}

X = 4 &
2

bk T kX

Substituting (A.6), (A.7), (A.9), (A.10) into (A.4) we obtain

k - - k £+
She = x Uy 7 by
=k +~1 k —4£
éke = xp ) = del_]

(A.5)

(A.6)

(A.7)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

Eq.'s (A.12) and (A.13) can be satisfied for components of all position

vectors r only if
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£

e = Sk J(x)2 (A.14)
- k-t '
e = 430 (A.15)
From (A.5) and (A.9), we obtain
1 1 1T Fl 0
< c, c3 cos Y
!
c‘;‘ cg cg = 0 siny O (A.16)
§ c:: CZ cg 0 0 1
_ | L _
1 1 1 cos
d 4 44 “einy
2 2 2 _ 1
dl d2 d3 = 0 sin § 0 (A.17)
3 3 3
dl d2 d3 0 0 1

For the oblique and Cartesian coordinates with covariant base

vectors as shown in Fig. A2 the transformation relationships are as

follows:

€ cos w, sin Ch 0 31
22 = |cos w, sin w, 0 j-2 (A.18)

e 0 0 1 T

3 3
- N

- . . -

3 rsm w, - sinw, 0 e i
7 = 1 -cos W cos W 0 e '
J2 (cosw1 sin w, = sinw1 cos wz) 2 1 2
73 0 0 1| |y,




130

A.2, The Plane Stress Strain Energy Expression Referred to

Oblique Cartesian Coordinates

The covariant components of stress, strain, and displacement
when referred to the xl, xz coordinates are respectively designated
by [P Sij and u; and when referred to the §1, Z_.Z coordinates
are respectively designated by °-ij’ eij’ and Wy The corresponding
contravariant components are designated by g_'ij, gij, ui, O'ij, eij, and

w' . The stress-strain relationships in plane stress are

11 _E
A S T A TR 7Y
22 _ _E
g = %52 F 3 (522 +‘§ll) (A. 20)
1-v
12 E E
o =g = 7o € = ———(l-v)s
-~ 12 l1+v =12 (1-1/2) 12

The strain displacement relationships are

Sij 77 M5 T

] :
7(_l+——$) (A.21)

and

1
€ij = 'E'(W .t w. L)

l,J _],1

1 ow, ow.
- L= 4 (A. 22)

ol att

The components of the two covariant strain tensors are related by

k!

€ij = ¢y € &4 (A. 23)
k12

€55 ° di di €14 (A. 24)
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Eq. (A.24) is equivalent to the following matrix operations

11! S22 S
|
T T 7| ees T I
=21 | =22 sin{y ! siny
‘11
_cosy .1
siny 11  siny 12

! a | m
el T | ceny
11 | 12 | sin
e et I SRR
€110 €22 |9 1 TmY
o J L ! -
I _cosy o 1 € ]
| siny "11 " siny¢ 12
e o e o
2
' cos 1 2cos
| € + € -
I SinZLIJ 11 sin 2 sin 12
| -
(A. 25)

The plane stress strain energy for a thin plate of thickness t

and middle surface S is given hy

ij
Je £ij

Wy

1
= =t f
1 % s

dxl dx

2 (A. 26)

Expanding (A. 26) and substituting (A. 20) into the resulting expression

we obtain

£22)

2

2y 1,2
- 20-v)lg)) €55 - €1 W dx dx

(A.27)

Substituting the strain relationships given by (A. 25) into (A.27), putting

M = 2(1-v), and noting that dxl. dx2
Wy = —bt L
1 2(1-v7)singy S sin Y

2 1 2
- M (ell 622'612 )}dg dg

Eq. (A.28) is the desired relationship.

(€)) -2 cospe, +¢€,,)

- siny dt! dt® we obtain

2

(A.28)
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A.3. The Thin Plate Bending Strain Energy Expression Referred to
Oblique Cartesian Coordinates
The covariant components of bending moments and curvatures
when referred to the xk coordinates are designated by mij and

., and when referred to the Ek coordinates are designated by m_.

‘B‘iJ 1)
and Kij . The associated contravariant components are designated
identically except that the indices are raised.
The bending moment-curvature relationships in rectangular
coordinates are
m11 = m - ,OI(K + VK,,)
- ~11 11 22
22
m™ = my, = gt Ve (A.29)
12 _
m " = m, = LUk,
where
A/ = _iti_
12(1-v %)
The curvature displacement relationships are
0 2w3
5‘i° = u3 T = —-—1———— (A.30)
J » 1) 9x* 9xY
8w3
Kij = W3 ii = —T'—,' (A.31)
) 1) ot agj
The components of the curvature tensors are related by
L k
Kij = c, c.j X1l (A.32)
gk gt
Xy = d; dj K1t (A.33)
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Noting the similarity between (A.24) and (A.33) it follows directly

from (A. 25) that

' cos ¢y
11 K12 11 : sin
_ cos | cos
K12 %22 [ siny 1+sm¢ 12 7, 11 ¥

The strain energy WI
2

1

* sin Y “12

K
sin 4:

plate of thickness t and middle surface S is given by

W, = 1 ax®

IZ —tfmedx

22 °

2cosy «

siny

(A.34)

due to bending stresses for a thin

(A.35)

Substituting (A.34) into (A.29) and then substituting the resulting

expression into (A.35) we obtain

2
w =2 siny g [f{— 2 Kpp = 2cosik) Hk,o) = MKy 1%,
8in ¢
Substituting (A.31) into (A.36) we obtain
{1 22w, 04w, 0w,
W, =52~ 7T ( - 2cosy +
IZ 2s8iny S sianJ at“la(.l ag'la‘,;z agzagz
32w3 82w3 Bzw
'“[ 1 1' 2 ( 2)]}d§ dg
1A TSN 14 3§ 3’; 14 .

This is the desired relationship.

(A.36)

(A.37)

12

-kt at?



Appendix B. CONSTRUCTION OF TRANSFORMATION MATRIX Dg(g)

This matrix relates the base vectors J(i) of member i with

node points 1,2,3 to the base vectors J(O) of the general coordinate

system and has the form

pu

Tl(i)
3.Z(i)

T30

[~ i B
b b2 B3l [0
by bax b3l | T 0) (B.1)
LXVLZ PR Y B R EYT)
e - e -

where the elements of the coefficient matrix are obtained from (2.101)

and are given below.

b11

blZ

b13

by

bs2

by,

b3

32

33

1 [ xl - xl ]
T, Uxz) - =q)
1 [ xz - xZ ]
1— (2) (1)

1
[xw)'xuﬂ

1 1 2 1
—7‘[’a X(1) "1 xw)*‘ X(3)]
"T[‘azu)‘a X(z) *+ 43 %(3) ]

3
_TZA 3 [ -azx(l) -a x(z.)+lZ (3)

-l-[x2 x3 -x3 xz +x2 x3 -x x2 -l-x2 x3
2A " T(1)7(2) (1)7(2) (2)7(3) (2)7(3) ~ 7(3)7(1)

%, x2 ]

T3
L[x3 x1 --xl x3 +x3 x1 -xl x3 +x3 xl -xl x3 ]
ZATT(1)7(2) T(1)T(2) TH(2)T(3) T(2)7(3) T(3)7(1) T(3)7(1)
—1-[x1 xz -x2 xl +x1 x2 -xZ x1 +x1 x2 -xz xl ]
2ATT(1)7(2) T(1)7(2) T(2)T(3) TH2)T(3) T(3)7(1) T(3)7(1)

(B.2)
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Appendix C. DERIVATION DETAILS FOR MEMBER STIFFNESS MATRICES

C.1. Membrane Stiffness Matrix for Triangular Member

The membrane stresses of a member are associated with the

inplane displacements given by (3. 42) and have the form

LT % o w, -e'2
11; {-BL X, - (1-a-B)L N, -[(1-a-B)%A_,+B(2-2a-3p)A, ] AN,

-[Ba-p)a,; +a®A, JAN, +[p%A_ +a(2p-0)A,,
- (1-a-p)M1-a-3B)A_, + pzAbZ] Ax6} re
+ -};— {-(1-a-p)L\, +[a(2-3a-2B)A , + (1-a-p)2Ab3] A,

-[a®a,, + (1-a-p)(1-3a+B)A, , + B(2a-B)A,, +a’A | 1AN,

+[B?‘Aal + a(ZB-a)Abl]AX6 22

(C.1)

The partial derivatives of the displacement components are

8wl A
Lol o {£0; +2[(1-a-B)A_, + aBA, I\,

- pA,; taA Ing +2A(B-a)Ay, +(1-a-28)A 1N}
Z'iw2

= ='1‘“2; {40, + 2(1-3a-p)A_; - (1-a-B)A ]\,
- aA 5 +(2-3a-B)A, ; +BA | + o.Abl] Ng

+ 2(p-a)Ablx6} (C.2)
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awl A
_a_p_=1;.{ LN N, -2 —(1-a-B)A,, + (1-a-3B)A, ]\,

- 2(a-B)A_, g + 2B A, toA , +(2-2a-3B)A_, + pA.b_,_] xb}

&)w2

- z[(1-2a-p)Ab3 + (a-B)Aal]Xs + Z[ﬁAal + aA.bl]x6}
(C.2)

The deformation parameters €, €,, €5 are defined by (3,15) and are

related to displacements by (3.16). Substituting (C. 2) into (3.16) we

obtain
€, =4\ + 2A{[ -(1-2a-p)A_; + (1-a-2B)A, 51N,
tlaA 3 +(1-a-B)A, 3]0 - [(1-a-B)A,, + BA,,] x6}
€, =+ 1\, + 2A { -[o.A + (1-a-p)Ab3]x4

-[(1-2a-B)A, 5 + (a-B)A, 1N g +([pA_ | + o.AbI]X6} (C.3)

m
il

3= 405 +2A{[(1-a-B)A_, +BA,IN, -[BA | +aA, ]N,

+[ -(t::.-[i)Abl + (1 -u-Zﬁ)Aaz] )\6

The plane stress strain energy expression (3.18) can be expressed

in the form

2
a
w —é—{ ( L i) reddadp + 242 +u) [ fed daap
L s HA fslfl Az éi 2
a.z a.a

4A(—2-+u)ff€ dadp + A(—é M) [ €€, dadp
1

1
aa aa

4A(_T3 “)ff€2€3 dad13+4A(—5-1- u)ffe | dadp}
1

(C.4)
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Some Definite Integrals

2592 x [ [ f(a,B) da dp

area

ap
(1-2a-p)°

(1-2a -B)(1-a -2B)
(1-a-2p)°
a(l-a-B)
(1-a -p)°
B(1-a -p)
a(l-2a -B)
a(l-a -2B8)

(1-a-2B)(1-a-B)

(1-2a-B)(1-a-B)
B(1-2a-p)
B(1-a-2p)

(1-a-)
(1-2a-B)
(1 -a-2pB)
(1-a-2p)°
(a -p)°
(1-2a-B)(a -B)

132
72
108
63

-15

60
-72
36

63
-45

-12

-108
-36

36
-45

-12
=27

-3
-21
-72

24
-36

-108

63

36

-15
12
21

-51
60
36

-72
36
63

-18

132
108
72
36

-18

-108
432

216
216
-108
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From (C.3) and Table C1 we obtain

2 1 .2 4AL,
é‘fel dadﬁ-zll)\ + 2592{216x xs-zléx x6}
;
442 2 2
2592{36x + 54 A7 + 54N, + 36X x5-72x5x6+36xx}

1,2.2 4L,
j‘fe dadp = 5 Lo\ + 3593 3 {216 A N, 216 x2x6}

1

4A2 2 2
+ 3593 {54x + 3622 +54x6+36x )\5+36)\ Ng - T2 N x4}
2 1 ,2.2 Al
JJe5dadB = 5 L3N] + 505> 3553 3 {216\ 3hg - 216 x3x5}
S.
1
4A2 2 2
* 3597 {54 Nyt 54N +36 x6 -T2 N\ +36x5x6 + 36x4x5}
1 2A!
ff €€, dadp =52 LN\, + 5z 2592 {216 A N - 216 M\ )
1
ZAI 2
4A 2 2 2
2592 {-216 \ Mgt 216 )\ xb} +2592{ -18\, - 18\ -36x¢
-7zx4x5+36x x6+36x A }
L ZAI
£f6263 dadp = 5 1213x2x3 +2592 {216 \ ghp - 216 A\ }
i
2A13
+ 3553 {-216\ a3 +216x 3}
4p° 2 2 2
+E§§'{ -36 N\, - 18\, - 18 2¢ +36 X g - T2 NN, + 36\ x6}
) ZAI
{qf €56, dadp = + 5 1113x1x3 + oo 2592 {216 ) Mg - 216 "1)‘5}
i 241,
+ 3553 {216 Nghy - 216 6N 9
4A2 2 2 2
+ 3597 {-18 Ng - 361A; - 18 Ng 36 M\ g+ 36x5x6 - 7zx4x6}

(C.5)
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Substituting (C. 5) into (C. 4) we obtain the expanded form of

r A (C.6)

where I"ll , called the member membrane stiffness matrix, is

given in Table 3.2 and

(C.7)

As shown in (3. 83) the membrane and bending behaviors of the

member are uncoupled so that from the principal of virtual work

oW

I
= 1 _ .
El. il vw _rll.Al. ji=1, «.., 6 (C.8)
i j i i
where 21 are the generalized forces associated with the generalized
i
coordinates Al .

i

C.2. Bending Stiffness Matrix for Triangular Member
The bending stresses of a member are associated with the

displacements normal to the plane which have thée form
GL = w, —e3
= ap)\.? + B(1 -a-ﬁ))\e + a(l -o.-[3))\9
+[Bla-p)a,; +a(a-BlA_ N o -[(1-a-2p)(1-a-P)A,,

+ B(1 -o.-ZB)AbZ] Nyt [a2 -2a-B)A_5 + (1-a-B)(1 -za-p)Ab3] N2

(C.9)
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Substituting (C.9) into the expression (3.23) relating the deformation

parameters 64,65, €6 to Wy we obtain

= - 2h, + 4(-A_| AL N o+ 2A N - 2A 5\

€4 7 b2™11 a3"12
€5=-2hg = 2A (Mot A=A, - AN F 2A 5N,
€6 = = 2hg t 2Ap M - 2A 0 T AA 3 H AN,
(C.10)
From (C,10) and Table Cl we obtain
2 2 2 2 .2 4
é‘f erdadp =22+ a2 ad ead o r g, -2 A 0N
i
4 4
-3 MoMz 3 MM
2 2.2 2 2 4
éf T Y R N N S L Sy U
i
4 4
TMoMz "3 MM
2 z 2 2 4
f I e6 R D N S U O - S Sys W
1
4 4
=3 MoM2 "3 MM
[ [ e ecdadB =2y + A A~ =Ah o+ 202 + 202 +2n, A
Sf45 = ehqhg t AN 0 T M2 10 11 10M1

i

- Motz “ MM Mz - MM

2 2
js'f €g€¢ dadp = 2)\11 + 2)\12 + 2)\8)\9 +)\8)\11 -)\8X10+ 2)‘11)'12

i
“MiMo " MMz FAMo - M2Mo

2 2
f Jegey dadp = 2hT5 + AT+ 2hghg + Aok o = NN |+ 2h N o
1

= MM o MMo TR oM Mot

(C.11)
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Substituting (C.11) into (3.25) we obtain the expanded form of
A (C.12)

where l"?_2 , called the member bending stiffness matrix, is given in
i H

Table 3.3 and

T
Azi = [hge vevs N, (C.13)
The principle of virtual work requires
oW
I2 .
22- = X, = FZZ_ AZ' i=7 ..., 12 (C.14)
1 J i i

where 22 are the associated member generalized forces.
i



Appendix D. SOME ADDITIONAL RESULTS ON THE TRIANGULAR
PLATE BENDING STIFFNESS MATRIX
D.1. Alternate Form of Member Bending Stiffness Matrix
The six independent displacement configurations associated
with bending and corresponding to those given by (3. 43) are taken in

the form

- -3 _
U, =W e = {gaZ a3 )\7 + a3 831 )‘8 + ga1 Ba2 )‘9

A A

3
* 822 823 8p1 M0t 8a3 Ba1 Bp2 M11 T Bal Ba2 B3 "12.}e

(D.1)

These displacement configurations have the same qualitative form
given by (3. 43) and shown in Fig. 3.6; however, displacement and
slope continuity are not in general preserved for any triangulation.
As a result the element of the stiffness matrix cannot be interpreted
as satisfying upper bound requirements. This stiffness matrix
appears to give better results whenever large curvature gradients
are not present (see Ch. V) and is consequently included here.

Substituting from Table 3.1 into (D. 1) we obtain

2% = {apr, +B(1-a-pg + (1-a-Blay

u =w

L 3
tap(a-p)\ o+ B(1-a-B)(-1+a+2p)\

+ (1-a-B)(a)(l-2a -ﬁ)KlZ (D.2)
On taking the second derivatives of (D. 2) and substituting into the

expression for the deformation parameters (3.23) we obtain
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€4= 20 N - 68, (a BN o+ 28,(1-a -B)\ | - 2L5(1-a -B\,
€5= - 2L,hg - 28 ak o+ 64,(1-a 2PN, +2L5a N,
€g = - 2Lk + 28 BN - 20, BN - 64(1-2a B\ |,

(D. 3)

From (D.3) and Table Cl we obtain

[feldaap= 20222 + 302
S, 1

Y TN 5t N N o\

2 1 ,2,2 |1 ,2,2
103111 3112

1

4 4 2
-3 E NN P NN -3 N,

2 5522 2,2 1,22 1,22
£_I€5 dadp = 212)‘8 + 312x11 + 3 £3x12 + 3 11)‘10

1

4 4 2
=340 gh o 3Lt gh g - T 434 M Mg

[ ctdadp = 20002+ 3002, LaBZ L LaB2 -‘3£z3zlx9xw
1
+%’3'1"<}‘11 SN
£.f €465 dodp = 20 LN Ny + %4"7"10 - %1113>\ M2 +%.z';-y:-0
1
P S LT T TR Lo
S Fr SOV s W N Y IV SO WE W 3 20 VR

"6 "3M12 73 8%11 T3 7273%8%12 "3 "273M11712

_ 2 ,2 2 1,22

g]‘eseé dadp = 21213"8)‘2* TN - 5428 Mo t 3N
i
2

)

5 1 1
2. 2% 50 VD URNa-— 5V 25 WD \ +-2-..¢ 12

32371112 3 211110

2.2 2.2 2 ]
LMo - 380 o F 34340 g - T 434 M oM

O\ =
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2

2 2 1,2
A2 -3 40N M,

2
£f€6€4 dadp = 21311)\9)\10 + gl

1

5 1 1,2
-3 430NN -3 M t2 Mo

1 ,2,2 2 ,2 2 1
-g 4 -3 e T M - TR Mo
(D. 4)
Substituting (D. 4) into (3. 25) we obtain the expanded form of
- L T
WI T2 A 2. rZZ. AZ. (D.3)
2 i i i

where the member bending stiffness matrix 1"22 is given in Table
i
Dl.

D.2. Member Transformation Matrix for Bending

For convenience the member transformation matrix MZ.
relating the deformation parameters \ 70 e \ 12° associa.ted1
with bending, to the normal node displacement components and
inplane rotation components is given. This can be obtained by
taking the transpose of the coefficient matrix in (3.72), deleting
the first six rows, and deleting those columns associated with

inplane node displacement components and rotation components

normal to the plane. The transformation matrix is given by (D. 6).
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Appendix E. COMPUTER PROGRAM

E.1l. Sequence of Computer Operations

(1) Start.
(2) Read input data (see Sec. E. 4).
(3) Construct matrix of sin and cos functions associated with the

included angles of half period strip.
(4) Determine the node position vector components for the perfect

undeformed shell.

(5) Complete construction of S matrix.
(6) Form node coordinate transformation matrices D(lo('g)
(7) Form the nonzero elements of CR(Q)
(8) Interpret boundary conditions and determine the unspecified
elements of V.
(9) Determine the node points associated with member i, j .
(10) Compute the side lengths of member i,j .
(11) Compute some constants associated v)ith members 1i j
and used in (20).
(12) Form membrane and bending stiffness matrices for member i j.
(13) Form member transformation matrix Mi for member ij.

(14) Repeat (9) to (13) for j =(1,12) or (2,12) or (1,11) or (2,11)
if both ends are open, only bottom is closed, only top is
closed, both top and bottom are closed.

(15) Correct components of node position vectors for small

imperfection.

147



(16)
(17)

(18)

(19)

(20)

(21)
(22)
(23)

(24)

(23)

(26)

(27)

(28)

(29)

(30)

(31)
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Start non-linear iteration cycle.

Clear shell stiffness, generalized implied load, and
generalized unit normal load matrices.

Start construction of stiffness matrix.

Determine node points of member k.

Form member coordinate transformation matrix ng))
Form member transformation matrix ka .
Form l"kv MV. .

k
T

Form shell stiffness of member k (Mv I MV _) .

k K K’

Calculate generalized forces due to a unit normal load acting
on member k.

Use (22) to determine change in member k generalized forces
AZk due to previous linear increment, and correct Ek-.
Use (21) to obtain generalized implied load associated with
member k and add to generalized implied load matrix.

Add the elements of (23) to appropriate elements of shell
stiffness matrix.

Repeat (19) to (27) for all'members and thus form shell
stiffness, generalized implied load, and generalized unit
normal load matrices.

Determine axial load.

Print, iteration number, axial force, axial deflection,
generalized displacements, and generalized implied loads.
If the specified member of linear increment have been

performed, stop; otherwise, continue.
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(32) Form load increment AP, associated with residual load,

displacement increment, and normal surface load.
term of 2.59).

(33) Form shell stiffness submatrix K11 (2. 45).

(34)  Form K, .

(35) Compute generalized displacement increment AV1 .
(36) Correct generalized displacements v, -

(37) Correct components of node position vector.

(38) Return to (17).

E.2. List of Fortran Symbols

A(l12,9,2)

AREA
AXDIS

AXLOAD

B(9, 5)

C(12,9,12)

CMU
CNP

CNU
COSCON(5)
COSM1(5)

MV.
i

A area of triangle

(The bracketed

60. average axial displacement of top edge

4 4
p(l) ’ P(g)
period strip:

non zero elements of C

Ra)

resultant axial load of half

Mi for 12 members with zero element

submatrices deleted

M =2(1-v)

n number of periods
v Poisson's Ratio
= al, az, a3, al, as member constants

cos [ (a -3)1—11-] for a =1, ..., 5



COSM2(5)
CSLOAD
CT(12, 6)
DQ(7, 9)
DU(3)
DV(7, 9)

E

EK(1E, 1E)
EP(6, 12)
EPS
FE(4,12,12)
FIMP(7)
GK(63, 63)
GRS(63, 63)
11, 12, I3

IBC(63)

IBC2(4), IBC3(4)
IBC4(8)

IBCBD, IBCBR,
IBCTD, IBCTR

ITCYCLE

J1,J32,73
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cos[(a - 3) 4l-] for a =1, ..., 5

constant uniform normal surface load

M, D(g) £ =1 or 2 or 3 submatrix of M, D(p)
il (i) i 7(i)

AP generalized load increment

matrix used for intermediate operations

AV generalized displacement increment

Young's Modulus

K, ., see (4.24) shell stiffness of k member

11
member constants used to constant D&)))
imperfection constant

the elements of £ arranged in 3D array
imperfection function

complete stiffness matrix K

submatrix of K designed by K., K in (2.45)

11
integer constant of node points a 1’ a 2 a 3

matrix of integer constants designating non-

zero elements of V

matrix of integer constants describing unspecified
elements of V(l) and V(7) for hinged boundary
conditions, for symmetry boundary conditions,
for fixed boundary conditions

integer constants either 1 or 0 used to

specify boundary conditions

number of iteration cycles

integer constants of node points Bl, ﬁz, [53



KE, K9, LE, L9

MO(6, 48)

MOB(3), MOB(3),
MOD(9), MOE(3),
MOG(3)

NGKS

NP

OPA(3, 3), OPB(3, 3)

PINC ON(40)
Q(63)
QN(7, 9)

RR(7), RX(5, 7),
RY(5,7), RZ(5,7)

SA(3, 3, 5)

SE(3, 3)
SIDE(8)
SIDESQ(8)
SINM2(5)
STIFB(6, 6, 12)
STIFM(6, 6, 12)
TAXLOAD
V(7,9)

WB1, WBZ2, WB3,WMI1,
WM2, WM3, WS(4)

WCON
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integer constants

S matrix

matrices of integers used to locate the position

of elements in a matrix

integer indicating the rank of K11

number of periods

matrices used to describe the sign preceding

4 in the construction of member stiffness matrices
p('rk) displacement increment function

AV. submatrices of AV described in (2. 45)

1

generalized forces associated with uniform
normal surface load

components of position vector

D(a) for a =1, ..., 5 node coordinate trans-

(0)

formation

D(s)

Il’ 1'2, 13, 11, 12, ... matrix of member side lengths
zf,zg,zg,tf,

sin [ (a -3)%] for a =1, ..., 5

bending stiffness matrices for 12 members
membrane stiffness matrices for 12 members

2n Pg)) total axial load

matrix of generalized displacements

stiffness coefficients

residual load relaxation constant
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E. 4. Binary Deck Structure

(a) Job card

(b) Binary object program

(c) Run card

(d) 6 data cards used for all problems

(e) 15 data cards used to describe problem as follows:
Card (all listing are from bottom to top) Formate
(1) 4 stiffness constants 4F5, 2

Primary membrane
Secondary membrane
Primary bending

Secondary bending

(2) Young's modulus, Poisson's ratio E10.2, E10.3
(3) Radial component of node points 7F10

(4) Vertical component of node points 7F10

(5) Thickness of triangles 12F5

(6) Boundary conditions are 411

described by 4 integers A, B, C, D.
A, B are for the top edge and
B, C are for the bottom edge.
A,C = 0 or 1 if radial displacement
is 0 or unconstrained
B,D =0, or 1l if rotation tangent
to the edge is 0 or unconstrained

(7) Relaxation constant El0.3
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(8) Axial displacement increment

(9) Internal pressure

(10) and (11) Axial displacement
increment function

(12) Number of periods

(13) Number of axial displacement
increments

(14) Imperfection constant

(15) Imperfection function

E10.3

E10.3

80F2.1
12

12

E10.3

7F10
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