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ABSTRACT

DERIVATION OF AN ARBITRARY TRIANGULAR PLATE BENDING

STIFFNESS MATRIX AND ITS APPLICATION TO LARGE

DEFLECTION SHELL PROBLEMS

by George Lasker

This investigation is concerned with a discrete model

formulation and solution of certain shell structure problems. The

discretization requires a modeling of the shell by flat triangular

plate elements which can have any side lengths and thickness. Each

element is assigned an independent set of deformed configurations

and its elastic properties are described by two stiffness matrices

associate; with membrane and bending stresses. Displacement

and slape compatibility conditions are satisfied at the corner points

of elements and in a limited sense these conditions are then satisfied

along the common edge of adjacent members.

The main objective of the investigation is to obtain an explicit

representation of a bending stiffness matrix for an arbitrary triangular

plate element and to examine its applicability to small and large

deflection plate and shell problems. Two bending stiffness matrices

are obtained. One is associated with a set of deformed configurations

that permit compatibility between elements to be completely satisfied

for some problems and to be satisfied to a high degree for problems

in general. The other is associated with a set of deformed configurations

that relaxes 810pe compatibility but appears to give better numerical

results for some problems.
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The solution to the geometrically non-linear problem is

obtained by a formulation consisting of a sequence of linear solutions

which enable equilibrium conditions to be approximately satisfied

with respect to the deformed configuration.

A computer program is given for a class of axially loaded

shell of revolution problems having a symmetrical or an asymmetrical

deformed configuration describable by a half period strip. Most

interpretive and computational operations are performed internally

from a small amount of input .data describing the undeformed

geometry, material properties, and boundary conditions.

Numerical results are obtained for several shallow conical

shells exhibiting a snap-through type of instability. These results

compare favorably with both experimental and numerical results

given by several other investigators.
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NOTATIONS

A scalar quantity is represented by a lower case Greek or

Latin letter except the letter A. A bar above a lower case letter

implies the quantity is a vector (not a column matrix). A capital

Greek or Latin letter is used to designate a matrix with the

exception of A . The elements of matrices are scalars with the

exception of J, H, Hi which have elements that are vectors and

9 which has elements that are vector operators. The transpose

and inverse matrices of B are respectively designated by BT

and B-1.

Two groups of rectangular coordinate systems, associated

with triangular members and node points, and one general coordinate

system are used. A bracketed subscript refers a quantity to the

appropriate coordinate system and/ or node point. Greek, Latin,

and the 0 subscripts respectively refer quantities to node, triangular

member, and general coordinate systems.

In Chapter II we refer to triangular member 1 with node

points 0., 5, 'Y3 in Chapter III we refer to a triangular member

with node points 1, 2, 3; and in Chapter IV we refer to a triangular

member i, j with node points ((11, BI), (a 2’ [32), (C13, 03).

ix
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I. INTRODUC TION

l. 1. Preliminary Remarks

In engineering, particularly in the aerospace field where

weight minimization is of the utmost importance, thin walled

structures, consisting of thin bars, plates and shells, are widely

used.

To facilitate the formulation and solution of broad classes

of these structural analysis problems and related dynamic and

aeroelastic problems, discrete element methods using matrix

notation are now widely used. Their increasing use has very

closely followed the improvements and increasing availability of

digital computers.

These methods are part of the so called ”matrix methods

of structural analysis" put forward by Langeforsl and Argyris.

The components of these structures are characterized by

their flexibility, i. e. , their relatively small resistance to bending

and torsion. When they are loaded the resulting displacements

are frequently comparable in magnitude to their linear dimensions.

The classical (linear) theory of elasticity and in particular the

theory of shells is based on the assumption that the displacements

of points in the body are infinitesimal which in turn permits a

formulation of equilibrium and compatibility conditions with respect

to the undeformed geometry.



If a theory requires the formulation of the conditions for

equilibrium and compatibility to be with respect to the deformed

geometry, as in reality it is, then it is said to be "geometrically

non-linear. " If the constitutive equations are non-linear, then

the theory is said to be "physically non-linear. "

In the following, the Kirchhoff-Love hypothesis is assumed.

Some books on shell theory used as source material are given by

references 3, 4, and 5.

The discrete model method used requires that the shell

geometry be modeled by flat triangular plate members. Each

triangle is assigned 12 independent deformed configurations

specified so that adjacent member displacement continuity and in a

limited sense (see Sec. 3. 7) normal sloPe continuity is maintained

between triangular members by maintaining these conditions at

corner points. These are used to obtain triangular plate stiffness

matrices in the generalized displacement sense which in turn are

used to construct the stiffness matrix of shell structures. The

modeling is discussed in detail in Chapters 11 and HI.

This investigation is devoted to the formulation of arbitrary

plate

flat triangular‘stiffness matrices associated with the membrane

and bending stress states, and their applications to geometrically

non-linear thin elastic shell problems. The investigation is

restricted to shell materials which are isotrOpic,homogeneous,

and linear elastic, and numerical results 'are presented for axially

symmetric geometries. The method is applicable to somewhat

general configurations and boundary conditions and can be directly



extended to include physically non-linear materials.

As formulated here, this method may be interpreted as

consisting of two parts, i. e. , the linear problem and the linear

incremented extension of the linear problem into the non-linear

range.

The linear problem is closely related to the Rayleigh-Ritz

method; however, the concept of a minimizing sequence cannot

be interpreted directly, at least not for the more general problem

considered. Each element of such a sequence would be associated

with a different triangulation. The inconsistency of the require-

ment is discussed later.

The method is interpreted as a direct method of the calculus

of variations which gives an approximation to the problem, i. e. , a

set of arbitrary constants (generalized coordinates) associated with

a set of admissible shell displacement modes (generalized diSplace-

ments) are determined so that the integral of potential energy is

minimized.

An admissible shell displacement mode is interpreted here

as one which forms a compatible field, 8 i. e. , satisfies compatibility

conditions and displacement boundary conditions. In this case the

potential energy is bounded from above. 8’ 9

A compatible field is not necessarily an equilibrium field,

i. e. , it does not necessarily satisfy the equilibrium equations and

stress boundary conditions. If a solution yields a compatible field

and also an equilibrium field then it is said to be exact.

 



In its relationship to the matrix methods of structural

analysis the method us ed is part of the matrix displacement

method. 2 This is also called the direct stiffness method.

The non-linear problem is essentially a step by step

procedure based on the linear formulation. The iteration can be

interpreted as consisting of two parts; i. e. , the load is advanced

in increments (since the solution may encounter unstable regions

the load can increase or decrease in increments) and it searches

for a deformed configuration in equilibrium with the specified load.

Equilibrium is here interpreted to mean with reSpect to the deformed

configuration.

1. 2. Previous Deve10pments

Much of the impetus for the development of discrete model

formulations to shell problems, at least during the past two decades,

has come from the aircraft industry and in particular from applications

to dynamic and aeroelastic problems.

The various discretization procedures used to approximate

the behavior of a structure can be classified according to their

properties of either satisfying compatibility but not equilibrium, or

satifying equilibrium but not compatibility, or violating both

equilibrium and compatibility. It is desirable that a procedure

admit to a refinement which in the limit converges to the exact

solution and/ or converges monotonically.

Hrennikoff10 developed and McHenry11 improved on the ”frame

work analogy method" in which an analogy, consisting of a beam element



lattice, is made to the plane stress problem. It was later gener-

alized to include bending by Parikh and Norris. 12 This method

implicitly relaxes both compatibility and equilibrium conditions so

that solutions based on it do not in general form either compatible

or equilibrium fields. Many procedures similar to this have been

and are now being used in both static and dynamic applications.

We note, in this connection, that some finite difference

formulations to some differential equations in elasticity implicitly

relax both equilibrium conditions and compatibility conditions, and

satisfy these conditions in general only in the limit as the mesh size

is made smaller.

A plane stress triangular plate element stiffness matrix, in

the generalized displacement sense, was put forward in a paper by

Turner, Clough, Martin, and TOpp. 13 The stiffness matrix is

associated with three independent deformed configurations which

have displacements that vary linearly in all directions and strains

that are consequently uniform over the entire element. This matrix

is now widely used. It was given a different form by Argyris.

one which he calls the natural or invariant form.

In the absence of bending, solutions based on this matrix give

displacements which form a compatible field for the triangulated

model of plane or curved surfaces and for linear or non-linear

problems. If bending is present, then compatible fields in general

are obtained only for plane surfaces and geometrically linear problems.

In general this matrix does not yield equilibrium fields; how-

ever, de Veubeke8 gives an alternate approach which yields equilibrium



 

but not compatible fields and uses it, in what he calls a dual treatment,

to obtain upper and lower bounds to static influence coefficients.

In order to satisfy compatibility between a triangular plate

and a beam segment de Veubeke15 generalizes the plane stress

stiffness matrix to include parabolic variations in displacements along

its sides. The formulation requires nine independent deformed

configurations for each triangle and that interelement displacements

be satisfied at corner points and at the midpoint of sides.

In their paper Turner et. all3 also present a membrane stress

rectangular plate stiffness matrix. As pointed out by Melosh16

this matrix does not in general yield a compatible field. Compatibility

conditions are satisfied in the interior of elementsand at node points;

however, gapping may result, 1. e. , displacement compatibility between

elements is not necessarily maintained.

In the same paper Melosh presents a rectangular stiffness

matrix which yields compatible fields. This matrix is associated

with five independent deformed configurations. Argyrisl4 gives a

presentation of the so-called natural forms of these nodes. All the

deformed configurations have displacements that vary linearly along

the sides of the member, however, the diSplacements associated

with them have terms that are quadratic.

Melosh gives a sufficiency condition for increasing the number

of rectangles so that with each refinement the potential energy

monotonically approaches a minimum. In essence he requires a

refined subdivision, in a sequence of subdivision, to be so constructed

that its displacement field can contain any displacement field of a



coarser subdivision. This sufficiency condition can be interpreted

with respect to the plane stress triangular plate elements.

Displacement -modes for flat surface plane stress problems

obtained by a sequence of subdivisions satisfying Melosh's

sufficiency condition can be used to obtain a minimizing sequence

similar to the Rayleigh-Ritz type; however, the concept of

completeness necessary for convergence to the exact solution

has not been demonstrated and would, undoubtedly, require

additional sufficiency conditions, as noted by de Veubeke. 15

ArgyrisI4 presents a paralleIOgram plane stiffness matrix

and indicates a method for constructing one for a plane quadrilateral

panel which he has obtained. A11 yield compatible fields.

In a report by Bogner, Mallett, Minich, and Schmitl7 the

authors give the displacement modes for constructing the stiffness

matrix for a curvilinear rectangle associated with any orthOgonal

curvilinear coordinate system. For rectangular coordinates it

reduces to those of Melosh.

Melosh16 gives a rectangular bending stiffness matrix. As

pointed out by Pian31 the displacement modes do not in general

maintain 810pe compatibility between elements and consequently

solutions based on this matrix do not yield compatible fields.

Melosh18 previously had given a bending stiffness matrix.

Bogner et. a1. 17 present displacement modes which can be

used to construct bending stiffness matrices for curvilinear

rectangles, which yield compatible fields and can be used with

Melosh's sufficiency condition to obtain monotonically converging



sequences. These rectangular member displacement modes and

those of Melosh do not form an independent set of deformed

configurations in as much as they include rigid body displacements.

19
Clough, 15 Adini, and Zienkiewicz15 use a polynomial to

numerically calculate the coefficients of a rectangular plate bending

stiffness matrix, i. e. , the polynomial forms a set of displacement

modes which in this case include rigid body displacements.

Zienkiewicz15 extends this to quadrilateral plates. Clough15 and

TocherzO use similar polynomials for triangular plates.

Several objections can be raised with this type of procedures

as pointed out by the authors. With the exception of the rectangle

the use of these polynomials in general results in displacement

discontinuities between members and in all cases s10pe continuity

is not maintained between members. A member, and in particular

a triangular member, will in general have different stiffness coefficents

depending on its orientation with respect to the coordinate system of

the polynomial even after they have been properly transformed so

that components of node rotations and displacements are with respect

to the same coordinate system, i. e. , the stiffness coefficients are

not uniquely defined by the polynomial.

This points out the desirability in selecting deformed

configurations that reflect the geometric prOperties and symmetries

of the member and which are independent of pure rigid body displace-

ments as Argyris did in his plane stress formulations.

The matrix methods of structural analysis were originally

developed to facilitate linear formulations of complex problems. These



methods of analysis have been given three classifications: the

displacement formulation, the force formulation and the combined

formulation. They have been shown to be equivalent to stationary

energy principles, i. e. , the displacement formulation is equivalent

to the principle of stationary potential energy, the force formulation

is equivalent to the principle of stationary complementary energy,

and the combined formulation is equivalent to Reissner's principle

21’ 22 A useful survey on linear structuralof stationary energy.

. . . . 23
analyS1s 13 given by Argyris..

During the past few years various investigators have extended

these linear procedures to include geometric non-linearities, and

. . . . . . , 7,24-2

both conservat1ve and non-conservat1ve material non--11near1t1es.l4 l 8

1. 3. Present Investigation

This investigation was primarily directed at obtaining an

plate

explicit representation for an arbitrary flat triangular‘bending

stiffness matrix and to studying its applicability to geometrically

linear and non-linear shell problems.

Two bending matrices were obtained. The form in which

these matrices are used requires a representation of node variables

with respect to rectangular coordinates. A direct representation in

this form is, however, so awkward that it has little value. The

matrix is represented in the form

T
M2i F2 M2 (1.1)

i i



10

where F21 (Table 3. 2 or Table D1) is the bending stiffness matrix

with reSpect to a set of generalized variables and M21 (D. 6) is a

transformation matrix that relates the generalized variables to a

set of node variables referred to rectangular coordinates. The

generalized variables were selected so as to take advantage of the

symmetric and geometric properties of an arbitrary triangle and

consequently the coefficients of both I72. and M2 have a

1 1

particularly simple form.

A derivation obtained by representing all quantities with

resPect to a rectangular coordinate system was found to be for all

practical purposes prohibitive due to the very large volume of

algebra required. By using oblique coordinates and representing

the bending strain energy expression in terms of a set of deformation

parameters that reflect the geometric pr0perties of an arbitrary

triangle, the derivation was performed with relatively little algebra.

Since membrane behavior is in general present, the plane

stress matrix of Turner et. a1.13 is used. It is, however,

generalized by including three additional inplane diSplacement

modes associated with components of node rotation normal to the

plane of the triangle. These were included in order to remove the

possibility of obtaining singular shell stiffness matrices.

 



 

11. GENERAL FORMULATION

2.1. Some General Pr0perties

Let 1:071, 172, ’T) be the position vector of points on the middle

surface of a thin elastic shell possessing a positive-definite strain-

energy function, quadratic in the components of strain. The

parameters 771, n2 are the curvilinear coordinates of the surface

and the parameter 'r is associated with various deformed config-

urations. When the shell undergoes a continuous deformation from

configuration '1:(nl,n2,'rl) to configuration ?(n1,n2,72), the

parameter 'r varies continuously over an internal (7'1, 7'2). In

particular the configuration of the undeformed middle surface is

designated by ;(n1, n2, 0).

The displacement vector of a point 171, n2 with respect to

the interval (71, T2) is defined by

— 1 2 _ — l 2 — 1 2

u(n.n.'rZ-'rl)—r(n.n.'rZ)-r(n.n.71) (2.1)

. . — l 2 . .
The displacement vector relat1ve to r (n , n , 0) 15 de31gnated by

_ 1 2 _ 1 2 — 1 2

u(n.n.'r)=r(n.n.T)-r(n.n.0) (2.2)

The external force per unit area acting on the shell surface

is designated by

Emlmzur) = p('r)?1(n1.n2.'r) (2.3)

where p('r) is called the load intensity parameter and aml, 172,7)

is called the load distribution vector. The load distribution vector

ha 8 the prOpe rty

11
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ff 5 ° 13 dA = constant (2.4)

S

where the integration is carried out over the entire middle surface

area S.

If the interval (0, '1') is partitioned into n subintervals

(0.3% 01.72% '°°’(Tkal’TkL ""(Tn11’7)

(2. 5)

= A71,ATZ, ..., A'rk, ..., A'rn

then the displacement vector can be expressed in the form

_ 1 Z — l 2 — l 2

um1n.fl=um.n.An)+u.+um.n.Am)+

_ 1 2 (2.6)

+ ... +u(n 2n 1A7)

11

In general it is assumed that

< < < < < < <0 7'1 7'2 7k “In-1 'r . (2.7)

This investigation is concerned with shell deflections of

sufficient magnitude so as to require a formulation of the equilibrium

and compatibility conditions in the deformed state. The resulting

non-linearities are dealt with by a formulation consisting of a

sequence of linear intervals. Each linear interval has a one to one

correSpondence with an element of the sequence {Aqi‘} . The linear

problem intrinsic in the non-linear problem is thus one of starting

with a deformed configuration TM], 772, 'rk) and seeking a deformed

configuration ?(nl , nzxr k+1).
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The following simplified notation is used when convenient:

H
I

I: H
I

:
5

p
—
n

:
5

”-
4

W
V

C
i
l

l
l

E
l

:
5

H

:
1

.
1

W
V

5 = Emlmznrk) (2.8)

;' =r+A1-1

1_1' =T1+Au

15" = 13+A1-3

All symbols preceded by A are interpreted as finite functional

changes in the interval A‘Tk .

It is assumed that Au together with its first partial derivatives

with respect to n1 and n2 are sufficiently small, in accordance with

linear shell theory, for all partition intervals A'rk . The assumption

of smallness in the interval ATk implies that geometry changes in

the interval are small, and that superposition of displacement

configurations and corre3ponding surface loads associated with the

interval is admissible.

The middle surface stress resultants and deformation parameters

defined in linear shell theory are respectively designated by the six

element column matrices
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T . 1 2 6 1 2

T = [t1(n.n.'rk).....t(n.n.'rk)] (2.9)

T _ 1 2 1 2

E — [61(1) .n .Tk). 66(1) .n .Tk)] (2.10)

They are related by

T = GE (2.11)

where G is a 6x6 symmetric positive definite matrix with elements

that are assumed constant throughout the range of '1' . We define

AT, AE, T', and E' in accordance with (2. 8). Then

AT = GAE (2.12)

E' = E+AE (2.13)

T' = T+AT (2.14)

The strain energy, associated with the infinitesimal middle

surface area dA, and strains E is given by

_ 1 2 _ 1_ T
dWI —dWI(r) ,n ,Tk) - 2T EdA (2.15)

Substituting from (2.11) into (2.15) we obtain

dWI = ~12—ET G E dA (2.16)

The total strain energy is

p
—
a

T
lezjéfE GEdA (2.17)

The total strain energy after the next increment is similarly related

to E' by

.
—
n

T
W'Izzfst' GE'dA (2.18)
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The change in strain energy WI due to a virtual change 6E is

6W = l—ff(ET+6ET)G(E+6E)dA-l—ffETGEdA
1 2 5 2S

= %ff{ETG6E+6ETGE+6ETG 6E} dA (2.19)

5

On dropping higher order terms and noting that G is Symmetric

(2.19) reduces to

ff ETGéE dA

s

6WI

(2. 20)

ffTTéEdA

5

Similarly the virtual change in the total strain energy after the next

increment is related by

ff E'TGéE dA

s

1

6W1

l
l ff {ETG6E+AETG6E} dA

S (2.21)

ff {TT 6E+AETG6E}dA

s

(SWI + ff AETG 6E dA

S

The external work due to the surface load 13 and the virtual

displacement 61-1 is

awe = fsf'fi- 65 dA (2.22)

Similarly for 13' we obtained

6W' 2 f f '5' - 6T1 dA

e s

(2.23)
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= 6W +ffAfJ- 51311.1.
e

S

The principle of virtual work requires

0 = 6WI - 6We (2.24)

and

0: 6W' - 6W'

1 e

(2.25)

= 6WI+ ffAETG 6EdA- 5w -fpr-6T1dA

s e s

From (2. 24) and (2. 25) we obtain

{fpr-éudA-ffAETGéEdA} =0 (2.26)

s 3

Let Q designate a six element matrix operator that relates

the deformation parameters to the displacements such that

AB = GAG (2.27)

This Operator is obtainable from linear shell theory and in the form

used is given by (3. 27).

_ l 2 — 1 2

If a1, a2 are scalar constants and ul(n , r) ), u2(n ,n ) are vector

functions then the linear property of this Operator requires

{Mala +a 111 2 2) = :11 521-11 + 212 $2132 (2,23)

2. 2. Discrete Method

The term discretization is used here to imply the reduction of

the problem from a formulation in terms of unknown functional quantities



17

whose domain contains all points of the middle surface to a

formulation in terms of a finite discrete set of unknown parameters.

If the discrete set contains n unknown parameters then the

discretization is said to have n degrees of freedom.

The discretization is based on Rayleigh's method, in which

the displacement vector is approximated by a linear combination of

independent displacement configurations that satisfy compatibility

conditions and displacement boundary conditions. Implicit in an

11 degree of freedom discretization is the existence of an n element

set of independent displacement configurations designated in matrix

formby

T ‘— 1 2— .. 2—
H =[h1(n.n.r). hn(n1.n.r)] (2.29)

The construction of the vector functions hi depends on a

knowledge of 1:011, 172, 7k) and as used here the Hi are functionally

dependent on Tml, n2, 7' In accordance with the step-wise
k)'

linearization discussed above the functions hi are assumed to be

independent of T, in the interval AT and corrected after each

such interval. Each function hi is Specified so as to satisfy

diSplacement boundary conditions and compatibility conditions.

The displacements are then approximated by

- T
Au = H AV (2. 30)

where

AVT = [Av], Avn] (2.31)
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are scalar parameters associated with the interval AT and called

the generalized coordinates. Substituting (2. 30) into (2. 27) we

obtain

AE = QHT AV

A 6xn matrix is defined by

B = nHT

Then (2. 32) has the form

AE : BAV

The virtual changes 61-1 and 6E are then related to 6V by

65: HT6V

6E: B6V

Let

pT — T

=ffp H M

s

T
szAp H dA

s

T — HT
Q =1;qu dA

The dot product is used since the elements of H are vectors.

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

The

P, AP, and Q are respectively called the generalized load matrix,

the generalized load increment matrix, and the generalized load

distribution matrix.

On substituting (2. 34), (2. 35), and (2. 36) into (2. 26) we

obtain
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T T
{fpr-H 6VdA-ffAVTB GB6VdA} = o (2.40)

s s

Noting that 6V and AV are not functions of 171,172 and substituting

from (2. 38) into (2. 40) we obtain

{APT - AVTffBTGBdA) 6V = o (2.41)

5

Eq. (2. 41) can be satisfied for all virtual changes 6V only if

APT-AVTffBTGBdA = o (2.42)

s

The matrix K, called the shell stiffness matrix, is defined by

K = ffBTGBdA (2143)
S

Since G is symmetric and positive definitive, K is symmetric and

positive semi -definite and if in addition det K > 0 then K is

symmetric and positive definite.

In the physical sense the stiffness matrix is positive semi-

definite if the . elastic System is not tied down, i. e. , if an adequate

number of constraints have not been imposed so as to prevent rigid

body displacements or rotations of the entire structure. Consequently,

the displacements associated with a given loading are not unique and

the relating coefficient matrix K is not invertable.

Substituting (2. 43) into (2. 42) and taking the transpose of the

entire expression we obtain

AP = K AV (2. 44)
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The generalized displacement parameters are chosen so

that the displacement boundary conditions may be Specified by

specifying a subset of these parameters AVZ. The matrices in

(2. 44) are partitioned as follows:

= (2. 45)

where AVl are unspecified and AV are Specified generalized
2

coordinates, and AP are specified and AP2 are unspecified
1

generalized forces. The matrices API and AP2 are resPectively

called the generalized load increment and generalized reactions

increment.

If in (2.45) the det Kll > 0 then K11 is invertable and

we can solve for the unknown generalized displacements and reactions.

We then obtain

-1
.AVI = K11 {APl - KIZAVZ} (2.46)

_ -1
APZ _ K21K11 {APl — Klev2)+ ansv2 (2.47)

If a load vector ”15 = pq is in equilibrium with a distribution

of stress resultants T , then from (2. 20), (2. 22) and (2. 24) it

follows that

ffp-éfidAszTTéEdA (2.48)

s s



21

Substituting from (2. 35) and (2. 36) into (2. 48), noting that the resulting

expression must hold for all 6V, and then substituting from (2. 37)

we obtain

P=ffTTBdA (2.49)

S

The above is a relationship between the externally applied generalized

load P and internal distribution of stress resultant T for an elastic

system in equilibrium, 1. e. , it is a form of the equilibrium equation.

In the sequel we use the equation relating the load intensity

parameter p(7'k) to the generalized load matrix P and generalized

load intensity matrix Q.

From (2. 3), (2. 37), and (2. 39) it follows that

P : pQ (2.50)

QTP = pQTQ (2.51)

T

p = Q—T—P (2.52)

Q Q

The matrix H, as already indicated, is functionally dependent

on '1': , and consequently B and K are also. The distribution of

stress resultants T is associated with configuration T = T071, 112, TR),

but it is determined from quantities defined with resPect to

configuration ;(nl, n2,7k_1). Consequently the generalized forces

implicit in T do not necessarily conform to the specified load

distribution of Q. The matrix PI’ associated with 'r = 7' and

k

called the implied generalized load matrix, is related to T by (2. 49)

and is given by
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pI = ffTTBdA (2.53)
S

The load intensity p = p(7'k) is defined by

QT P1
p = T (Z. 54)

Q Q

The matrix PR , associated with 7k and called the residual

generalized load is defined by

P : P - pQ (2. 55)

The above two definitions (2. 54) and (2. 55) have a conceptually

useful interpretation. We multiply the terms of (2. 55) by pQT and

obtain

11er PR = pQT P1 - pZQTQ (2. 56)

Solving for QTPI in (2. 54), substituting into (2. 56) and dividing the

resulting expression through by the scalar p we obtain

Q P = o (2.57)

It then follows that Q is orthogonal to PR' If we interpret Pi, PR’

and Q geometrically as vectors in a hypersPace,then these three

vectors may be interpreted as lying on a hyperplane, pictorially

shown in Fig. 2.1, and the vector PI may be interpreted as being

equal to the sum of two orthogonal vectors PR and p0.
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hyperplane

 
Fig. 2.1. Hyperplane formed by load vectors.

It is desirable to choose a generalized load increment APl

so as to minimize the next residual load. There does not appear to

be any convenient method of making a best choice for APl. It is

taken in the form

AP = Ale - wP1 (2. 58)

R1

where Ap is called the load intensity increment and w is called the

residual load relaxation constant. The matrices Q1 and PR in

l

(2. 58) are submatrices of Q and PR obtained by partitioning in

accordance with (2. 45). Substituting (2. 58) into (2. 46) we obtain

AV = K;1{Ale-wP1 - KlZAVZ } (2.59)

R1
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Note that

'i-i = I- + All

(2.60)

.. AV
=r+[H1H2] 1

AV2

The matrices H, B, K are constructed after each linear

increment from a knowledge of T . This is symbolically

represented by HG), 13(5), KG). The algorithm employed in

determining the elements of the sequence { T011, 112, 7k)} is

obtained by substituting (2. 59) into (2. 60) and is given by

$1 = ¥ +[ H163) 112(5)] Kl‘i(?){Ale - wPRl - K12(?)AV2}

...sz '...)  

(2.61)

Associated with every deformed configuration T071, 172, 'rk) we

have a residual generalized load matrix PR(7k). If PR(7k) = 0 then

- 1

r(n , flank) is a configuration in equilibrium with the specified loading.

In general, elements of { Tml, n2,7k)} do not satisfy this condition

and consequently their acceptability is determined by interpreting

the smallness of the magnitude of PR(7k).

2. 3. Simplified Model

To simplify the analysis of this problem the shell is interpreted

as a model consisting of flat triangular plate elements. This process

can be interpreted as a p node In element triangulation of T011, 172, 0)

into curvilinear triangles and an isomorphism which deforms the
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curvilinear triangles into simple triangles without materially

disturbing the relative position of node points.

The assumptions implicit in the simplified model cannot

always be justified. This restriction is not, however, very severe

for many applications.

In the following, quantities associated with node points have

Greek subscripts, quantities associated with triangular elements

have Latin subscripts and quantities associated with the shell in

general either have no subscripts or the subscript 0.

2. 4. Matrix Relating Nodes and Members

The formulation of the shell problem in terms of discrete

parameters defined with respect to the simplified model described

above deals with configurations of node points and triangular

members formed by lines joining node points. This leads to the

definition of the mathematical sets N and S . The node set

N is defined as the set of all node points of the simplified model

and the member set S is defined as the set of members Si or

of ordered node triplets (o. , (3, Y) that in turn define all triangular

members of the simplified model. A correspondence between

elements Si and ordered triplets (a, (3, Y) is formed and

represented in matrix form by

S. = [a1 (3. Y] (2162)
1

The dependence of S on N is symbolically represented by

S : S(N) (2.63)
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Elements of S and N are ordered respectively by integer

numbers

(2.64)

l: 2: 00-, Cl, ..., p

The functional dependence implicit in (2. 63) is explicitly represented

by an mx3 matrix S of integer elements and is

F5 5 s S r— ‘-
11 12 13 ° '

s =[sij] = = (2.65)

811 312 513 a ‘3 Y

    

The Symbol S will serve the dual but analogous role and will

also refer to the set of all points on the middle surface of the simplified

model, and similarly Si will refer to the subset of S associated with

the ith triangular. member. The quantities T, 11, and A171 are defined

over S and the quantities ;i’ iii, and Ai-ii are defined over Si .

2. 5. Interpretation of Non-Linear Problem

The member Si is displaced and deformed from some initial

undeformed position.. Part of the rigid body displacements are

described by a triangular member 3' associated with Si (the node

points of Si are designated by (1', (3', Y'). The triangle Si is

identical to the triangle Si in its undeformed state and is fixed to

the deformed member Si so that point 8', line B'Y ', and plane

a 'fl'Y' lie respectively on point (‘3, line BY and plane QBY.



27

The displacements of points on Si can be represented in the

form

Au. 2 Au . + Au . (2.66)

111 = uR + uL. (2.67)

where A13. , T1 are displacements of S! and A11 , T1 are
R1 R L.

i 1 1 Li

displacements of Si relative to S; .

Since AER- and ER- are rigid body displacements, the

1 1

magnitude of the strain deformation parameters correSponding to

them are identically zero. From (2. 27) we obtain

(2. 68)

= QAfiLi

The displacements uL_ are approximated by

1

— _ T

uLi - HiA i (2.69

and consequently

AB = HTAA (2 70)
L. i i °

1

where Hi is a column matrix of linearly independent vector valued

functions and A i is a column matrix of scalar parameters called

the member generalized coordinates. Eq's (2. 69) and (2. 70) imply

that

Ai(7k) = AAi(A7k) + + AAi(A'rk) (2.71)
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In a manner similar to that used to obtain (2.33 ), (2. 34), (2. 38),

(2.43), and (2. 44) we obtain

II. = 52H:
1 1

AE: IIAA.
1 1

Azi = ijAp HldA

1

(2.72)

(2.73)

(2.74)

(2.75)

(2. 76)

where 21 is called the member generalized force matrix and Pi

is called the member stiffness matrix. The matrix Pi is symmetric

and positive-definite. From (2. 71) it follows that

21: Pi‘Ai

Let

AT _[J\1T

23T : [2T,

1

II = [III,

I"

1" z

o

(2. 77)

(2.78)

(2. 79)

(2. 80)

(2. 81)
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Then

AB = TIA (2.82)

23 = FA (2. 83)

The total strain energy in the shell for 7' = 7k is

wI =JZ—2TA =% ATI‘A (2.84)

The displacement of a point measured relative to the undeformed

shell is interpreted as the sum of two parts. One part is associated

with certain rigid body displacements and rotations of the entire

triangle and the second part is measured relative to these displace-

ments. The linear relation (2. 83) is associated with displacements

obtained after the first part has been subtracted off, and is assumed

valid through the range of 7' .

The non-linearities are, therefore, limited to those resulting

from displacements associated with rigid body displacements and

rotations of triangles Si .

2. 6. Shell Stiffness Matrix

The shell generalized coordinates V and generalizedforces

P are related to Z and A of the same elastic system by the strain

energy expres sion

8wI = awe = PT6V = zTaA (2.85)

The two sets of generalized coordinates, in accordance with the step-

Vvise linearization used, are related by
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A A = CVAV (2.86)

and consequently

8A = cvav (2.87

In general the elements of CV change with 7' so that

CV(7k) ,1 CV(Tk+1) (2.88)

Substituting (2. 87) into (2. 85) we obtain

PT6V = zchav (2.89)

Eq. (2. 89) can hold for all virtual displacements 6V only if

P = c 2: (2.90)

T

V

From (2.34), (2. 82), and (2. 86) we obtain

AEleAA = IICVAV = BAV (2.91)

and c ons equently

B = IIC (2.92)

Substituting (2. 92) into (2. 43) and noting that the elements of CV

are not functions of 111, n2 we obtain

KszBTGBdA =ffCTV'IITG‘II'CVdA

s s

(2.93)

_ T T _ T T
_CV{fo1'I GTIdA}CV—CV[SfoIIiGTIj (1.1).]cV

ij
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The integration in the last of the integrals of (2. 93) is carried out

over points common to both Si and Sj since “IIi is defined over

Si and IIj is defined over Sj' Since the triangles do not overlap

and from (2. 75) is follows that

o if 1,1 j

ffnfon. dA = (2.94)
85 J P. 111:1“

i j 1

Then from (2. 81), (2. 93), and (2. 94) we obtain

_ T
K — CV l"CV (2.95)

2. 7. Member - Shell Parameter Transformation Matrix

If the generalized coordinates are interpreted as components

of node displacement and rotation vectors then the associated

components of generalized forces, being related through the strain

energy as in (2. 85), can be interpreted as components of force and

moment vectors. The shell generalized coordinates and generalized

forces having this interpretation are respectively designated by the

column matrices U and F.

The formulation in terms of U and F is desirable since

most boundary conditions and in a limited sense, load distributions

can be irterpreted directly in terms of these parameters.

The undeformed simplified model has a continuous middle

surface consisting of flat triangular members. Two adjacent

undeformed triangles have an intersection line and intersection

angle. We have required the displacement vector A11 to satisfy

compatibility conditions on the entire middle surface. This can
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be satisfied only if continuity and intersection angles are preserved

for all points on the intersection line. These requirements are not

strictly satisfied nor essential.

The requirements are useful, however, inasmuch as the

approximating surfaces that satisfy them also satisfy compatibility

conditions with respect to the simplified model. In this case the

elements of the shell stiffness matrix can be interpreted as

satisfying certain upperbound requirements. 9

It is desirable to choose the functions Hi so that whenever

compatibility requirements between two adjacent triangles are

satisfied at their common node points they are satisfied at all points

on their intersection line. The degree to which this condition is

satisfied is discussed in Sec. 3. 7.

The member displacements obtained by substituting (2. 70)

into (2. 66) are

AB. = AB + H? AA. (2.96)
1 R1 1 1

These displacements can be directly related to AU. In the formulation

used the member displacement vector (2. 96) is related only to

components of AU associated with its nodes. Each node has six

elements of AU associated with it and consequently each member

has 18 degrees of freedom. The rigid body displacements AER-

1

have six degrees of freedom associated with them, i. e. , three

translation components and three rotation components. In addition

AAi has degrees of freedom associated with it equal in number to

its dimension. Since the member has 18 degrees of freedom and six

can be interpreted as rigid body displacements it follows that the
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dimension of AA must be 12 or reducible to 12. That is, the

formulation used requires that all possible displaced configurations

Aui be linear combinations of six independent rigid body displace-

ments AER- and 12 independent deformed configurations H?AAi .

1

Consider a triangular member 1 with node points a, B, Y

and a reference point 0 as shown in Fig. 2. 2. We associate a

rectangular cartesian coordinate system

r(c1)

Fig. 2. 2. Triangular member 1.

with each of the quantities i, 0, a, (3, Y and refer to them as the

i-member, O-general, 0. -node, 8-node, and Y -node coordinate

systems. The base vectors of these coordinate systems have the

£0 m . , . , . and th mat of th 8 base vectors 18r 3(1) 3(1) 3(1) e r1x e e

designated by

T *2 “'3 ] (2.97)
-:-1

J I = a ’ c , I

(1) [Jm J(1) J<1>

The bracketed subscripts on a quantity refer it to a node point and/ or

a coordinate System. These subscripts are used only when necessary

for clarity.
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The matrices J and I“) are related bya 3x3 matrix

(0)

131(0)) where the indices are interpreted by the relations

.1 : D“) .1. (2.98)

-1 T

Dlm) = Dw) (2.99)

m m 1m

(i) 's definedb

(0) 1 Y

r . '

D1“) 0

m _ m
D(0) — O D (i) (2.100)

1m

The matrix D

  

The position vector of node point a relative to point 0 is

Tm) and its O-general coordinate components are xléa), X(Zo.)’ x(3a) .

The matrices of their components are respectively designated by

X1, X2, X3. The elements of these matrices are arranged in

accordance with the ordering in (2. 64).

The i-member coordinate system is redefined after each

interval A 7k so that its origin is incident to point a , base vector

3%) is normal to plane a (3 Y and base vector It) lies along line

a 8 and directed toward (3. The base vectors J“) can be

represented in terms of the position vectors 1'0, rfi, ;Y as follows

 

 

fl): flm-RQ_
“m'fiwl

3.3. _ {(1711) ' I'(11))X(rhtl ' rm)” (2.101)
(1) |('r' _; )xG -? )l

((3) (a) (Y) (9)

T2 : ':'3 X31

Jm (0
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By representing the position vectors in (2. 101) in terms of the elements

(0)

mm
of Jw), the elements of D can be obtained directly and are given

in Appendix B.

The base vectors J(a) of the 0. -node coordinate system as

used here do not change with 7' and are specified so that the

(0)
transformation matrix 131(0) can be constructed directly. Then

we obtain

(a) _ (0) (11)
DH” _ Dunfhm) an0m

Node point a has a displacement vector A11”) and

rotation vector 135(0). The O-general coordinate components of

2 2- " 1 3 1
0 .Aum) and A9(a) are Au(a0)’ Au(a0)’ Au(0.0) and A9(c1 of),A ((10)’

A9?C1 0.). The a -node generalized diSplacement matrix is

T _ 1 2 3 1 2 3

AU(a 0) ‘ [2% or Au(nor Au(<10)’ A9(111w AG(<1 or A9010)]

(2.103)

The generalized displacement matrix is

T T T T
AU = AU , AU , ..., AU 2.104

[ (1.1) (2, 2) (11.11)] ( ’

The column matrix AUi is defined by

T T T T
AU. = AU ., AU . , AU . 2.105

1 [ (<11) ((11) 0/1)] ‘ ’

We can construct a transformation matrix Mi defined by

AA.: M AU. (zuom
1 1 1
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We partition Mi in the form

p—- —1

M13] AU(ai) (2.107)

AU(131)

AAi : [M11 M12

  LAUWi)—

The matrix Mi is explicitly given by (3. 74).

The following relationship follows from (2.102)

      

AU _ 11‘“) o o [ rAU —
(111) (i) ( ) (ca)

_ (3
AUmi) _ o D“) c: ) AUmB) (2.108)

Y

AU< Y1) O O 13(1) AU(YY)
... L. _ _ .3

Substituting (2.108) into (2.107) we obtain

_ (a) ((1) (v) ‘ ‘
AAi ‘[M11D(1) , Mi2 11(1), Mi3 13(1) ] AU(aa) (2.109)

”(1111)

AU

_ (YY)_J  

We define the transformation matrix C, which is similar to CV,

as follows

AA = CAU

We partition C into 6x6 submatrices in the form

011 C12 cipj

c - = [C (2.110)

jk]

m1... mp
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The algorithm for constructing C can be obtained by examining

matrix S defined in (2.65) and (2.109) given above. Then for

jzl, ..., m and k=l, ..., p

Cjk = 0

exceptfor

CJ11 - M31 13(3))

where

n = ij



III. TRIANGULAR MEMBER MATRICES

3. 1. Member Coordinate Systems

Consider a triangular member with middle surface points

referred to rectangular coordinates yl, yZ, y3 and y;, yé, y;

and oblique coordinates £1, £2, £3. The member is displaced from

an initial position as shown in Fig. 3.1a to a position as shown in

Fig. 3. lb. The coordinates £1, £2, 23 are fixed to the member as

symbolically shown in Fig. 3.1b. The coordinates Viv YR’ y; are

fixed so that the components of rigid body rotation of the triangle

(defined explicitly at the end of Sec. 3. 5) relative to them vanish.

The triangular member rigid body rotations are directly related

to node displacements so that if the node displacements relative to

yfi, y; coordinates will

lie respectively on them. The £1, Q2, 4.3 coordinates have covariant

the yl,y2,y3 coordinates vanish, the yL,

unit base vectors e1, e2, '53 , and contravariant base vectors

.. -2 _ . 2
e1, e , e3 . The coord1nates yl, y ,y3 have base vectors

.—1 +2 4-3

3(1), 3(1), 3(1) and are the i-member coordinates of Sec. 2. 7.

In addition we introduce three oblique coordinate systems

associated with the three node points. Their covariant and contra-

variant base vectors are as shown in Fig. 3. 2. The inplane covariant

components of each system are parallel to lines defined by node points

and two of the contravariant components are perpendicular to these

lines.

The coordinates yl, yz, y3 are redefined after each interval

A7k so that the displacements measured relative to all the coordinates

38



 

 

(a)

Fig. 3.1.

Fig. 3. 2.

39

Member coordinates

(b)

Covariant and contravariant node

base vectors

 

 
e(2.)
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defined in this section are small in accordance with linear theory.

3. 2. Geometric Parameters

Consider a triangle of side lengths £1, £2, 13; node points

1, 2, 3; included angles 411, LIJZ, 413; and referred to oblique cartesian

coordinates £1, £2 as shown in Fig. 3. 3. The coordinates Q1, L2

are components of a position vector

5 = 4131 + 1232 (3.1)

where El’ :32 are the covariant base vectors (see Appendix A). The

dimensionless parameters 0. and 8 are defined by

1

a 2 4_

I3

(3.2)

(1 = %i
2

Wedefine

_l 2 2 2
8.1 — :(-£1+£2+13)

_l 2 2 2

_1 2 2 2
a3 _ Z(£1+£Z-f3)

The area A of the triangle is related by

_1 2 2 2 2 2 2 4 4 41/2
A _ Z(2£1£2+2£2£3+2£3£1 -11 -12 -13)

(3.4)
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Fig. 3. 3. Member parameters and oblique

coordinates

,\/ \/"l

1' T '2

”3

Fig. 3. 4. Unit normal and tangent vectors
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The trigonometric functions are related by

2A 2A 2A

 

 

sinq.) = , SinkiJ : , SinLIJ =

1 1223 2 £311 3 2122

(3. 5)
a a a

_ l _ 2 _ 3
COSLpl—TT, COS¢Z—W1 COSLIJ3—fl—

2 3 3 l l 2

The unit normal vectors 1-11, 1—12, 33 and tangent vectors T1, T2, T3

are defined in Fig. 3. 4, and are related to the base vectors by

- _ . —1 . —2

nl — SlnLlJze +51n¢3e

E = -Sinlll El (3 6)
2 1 °

.. , —2

n3 — - Sln LlJl e

_ _ —1 _2 sin 1113 _ sin 1112 _

tl — - cos 1112 e + cos L113 e — - sianl el + sin “1’1 82

_ _ -1 -2 _ ..

tZ—-coqu1e -e — -e2 (3.7)

.. -1 -2 -
t3—e+cos¢1e — el

The displacement vector of points on the member in terms of its

covariant components is

- 1 2 —1 l 2 —2 l 2 —3

u=W1(€.{-.)e +W2(§.§)e +W3(€.§)e

(3. 8)

—l —2 -3

2 W1 ((1,8) e + w2(o,(3) e + w3(o,(3) e

The rotation vector is related to 1—1 by

3w 8w
- l 2 1 3 — _ 3 _.

9(§,§)= - ( -—_—e)+e e (309)

S1n1p1 81,2 e1 811 2 3
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Substituting from (3. 2) and (3. 5) into (3. 9) we obtain

3w 3w 3_

e6(ap)=1(1 3 z - 1 EZ)+0
2K 3 as 1 2 8o (3°10)

  

3

The rotation component 9 3 is not defined in general. It is, however,

given an explicit definition for the three node points at the end of

Sec. 3. 5.

The normal distances as shown in Fig. 3. 3 are designated by

bb b and are related by
1’ 2’ 3

_ 2A _ 2A _ 2A

3. 3. A Symmetric Form of the Strain Energy Expression

The plane stress strain energy expression associated with the

oblique coordinates C1, £2 (see Appendix A) is

W1 _ 6t ff{'—‘12‘—‘(€11 '2C°S Ll’1612‘L'522)_ 2 o . .

1 2(1-1/ )s1n1111 Si 8111 1.111

2 1 Z

-#(€11€ZZ-612)}d§ d§ (3112)

where 6 is the Young's modulus, V is the Poisson's ratio, ,

u = 2(1-V), and where the strain components are related to the

components of displacement by

awl

11 341

6 : __ (3.13)
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Introducing the change of variables (3. 2) into (3. 13) we obtain

Bwl

611 :11 aa

8w2

€22 31—5—55— (3.14)

8w 3w

6 = L( 1 +--——---—-)

12 2 13 88 £2 80.

For convenience we define the deformation parameters 61, 62, E3 in

the form

2 2

61‘ £3 €11+12 e22'2’2’23'512

e = 1 26 (315)
2 2 22 '

2

53 ‘ ’3 611

The parameters do not have dimensions of strain, but they are,

however, related to the elongations in directions defined by the

three sides of the triangle. The parameters are related to diSplace-

ments by

awl 8w awz awz

- ___. ___1 ___. ___.

51‘ ’3‘aa ' 38) +’2‘88 ‘ 6o)

8W2

62 : [2 __‘8—8- (3.16)

8w

_ 1

63 ‘ ’3 86

 

Solving for the strain components in terms of the deformation

parameters in (3.15) we obtain
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1

6 = —-€
11 2 3

13

e - J—e (317)
22 '— 12 2 °

2

6 = 1 {E +6 '6}

12 21213 3 2 1

Substituting from (3. 2), (3. 3), (3. 5), and (3.17) into (3.12) we obtain

after some rearranging of terms

2 2

a a

. 2 1 2 Z
W = ___a— ff{_l__(_l.+u)€ +_.( +u)€

1l 404,2) Si 4A A2 1 4A A7 2

3.2 aa aa

1 3 2 2 12 2 2 3

+ To.(—+“)€3+IA'(—T'“)€1€2+ZK(—_2-"”€2€3

A A A

Z a3‘11 5t T
+-( ~u)€€}dad(3=——-——-ffE G dad8

4A "TA" 3 1 40-1/2) Si 1 1E1

(3.18)

where

T _

and
_.

r 32 aa aa-

1 1 l 12 l 13

—4A(—2 ”J 4—A'(—“2"“) inky”)

aa a2 33.

1 21 1 2 1 2 3

c = —(—~u) —(—+u) ——+——-u)
1 4A A2 4A A2 4A A2

a'2

——1 (——a3al -u) —1 (Lie12 -u) —‘ (—3 +11)
4A A2 4A A2 4A A2

  
(3. 20)
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The plate bending strain energy expression (see Appendix A)

is

 

 

 

  

 

2 2

{ 1 8 W3 8 W3

W = . f f - 2cos L): -——

I2 2 811le1 Si 31112111 81,1811 latlaéz

82w 2 82w 82w 82w 2
3 3 3 3 1 2

+ “'2'"'2 ' 1 1 2 2 '(' ‘1 2) Nd” d4
8!, 8L 81’; 8Q 8§ 8Q. 8Q 8Q

(3.21)

where ,d is the flexural rigidty. Note that

2 2
8 W3 : 8 W3

841811 1; a 2

82w 82w

7‘35 = T‘T3‘
(3.22)

81; 8C, 12 88

2 2

8 w3 _ 8 W3

81.1812 — 1 1 80. as
2 3

We define the deformation parameters €4,65,€6 by

82w3 82w3 2 82'w3

e z + -
4 8&2 a‘32 '8'688

82w3

65 = —2— (3.23)

315

E -_- 82w3

6 8112

From (3. 22) and (3. 23) we obtain



82w

___.}. z -1_ E

841811 1: 6

82w3 1

: -- € (3.24)

31.2312 1: 5

82w3 1

—— = (-€ +6 +6)

8§18§2 21213 4 5 6

Substituting from (3. 2), (3. 3), (3.

2 a2 2
a a

_ D 1 1 2 1 a2 2 1 3 2

W12 ‘ 4ff{4A(—2+”’€4+ “41""? “’65 4A’AZ+”’€6
si A. A

a a 32a3 3a

2 2 1
44,}12-u)e4€5+ -4-A(—23-- 10656 6 +4-A(-a—3-z—— -IJ)€6€4}d<1d

A2 A2

=9ffET GEdad8 (325)
4 1 2

.

where G1 is given by (3.20) and

ET 2 [6 e E ] (3 26)
2 4 5 6 °

If the middle surface deformation parameters (2. 10) are taken in

the form (3.16) and (3. 23) then the matrix operator 9 in Chapter II

is given by
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8 8 8 8 -

‘3‘3‘3‘+5'§)61 ”ass-saw

a ..

’2 87362

a _

1 —- e
52 = 3 8a 1 (3.27)

32 -2 32 + 82 E
80.2 80.88 882 3

2 m

e

882 3

a2 E

80.2 3

Also the matrix G in (2.11) then has the form

___.12. 91 o

4(1-1/ )

G: 60 (3.28)

0 4 G1
  

where G1 is given by (3. 20).

3. 4. The Member Displacement Configurations

2

The vector of displacements measured relative to the L1, Q , {.3

coordinates in terms of its covariant components is

EL(§’. 4") = “(11, 12) 31 + w2(§’. 1.2) 3" + w3(§’. 1.") 3.3 (3.29)

In terms of the dimensionless parameters (3. 2), (3. 29) is

EL(6,8) = w1(c1,8) :1 + w2(o.,8) 32 + w3((1,8)33 (3.31)
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Six of the deformed configurations Hi are associated with

membrane stresses and consequently have the component W3 = 0.

The other six are associated with bending stresses and have the

components wl = w‘2 = 0.

Three of the deformed configurations used have displacements

desc ribable in" the' form

.. ..1 -2

uL = (c0 + c111 + c28) e + ((10 + dlo + d28) e (3.32)

where ci and di are arbitrary constants.

This displacement vector is linear in o. and 8, and consequently

has the property of displacing straight lines into Straight lines. It

is the same one used by Turner et al.13

The six arbitrary constants in (3. 32) are determined in terms

of the three parameters >11, )1 2, )1 3 called member generalized

coordinates. These parameters are respectively defined as the

elongations of sides 11’ £2, 13 and are the natural forms given by

Argyris.l4

The node diSplacements and constraints, relative to the

£1, L2, 43 coordinates are shown in Fig. 3. 5, and given by

_. _ —1 —2 _ —1 -2
uL(0,0)—w1(1)e +w2(1)e — coe +doe

71(10):“) ‘8‘ = (c +c)'é'1+(d +11)?2
L ’ 1(3) 0 1 0 1

11(01)=0 =(c+c)E’+(d+d)E2
L ’ 0 2 0 2

(3.33)
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42

3 .5"

A -1w1(3) e

1113

 

w -2

2(1)8

4» ’2

l 4
1 —l 2

W1(1)e

Fig. 3. 5. Covariant components of node displacements

relative to oblique coordinates.

___....g
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Solving for the six constants in (3. 33) and substituting into (3. 32)

we obtain

.. .—1 —2
= - - - - 3. 34u [+fiwl(3)+(l c1 8)w1(l)]e +[(1 a 8)w2(1)]e ( )

The member generalized displacements are then related to the

components of node diSplacement by

13
A1: 'tl. W(O,1): ‘1’]: W1(3)

12: -t2° w(0,0) = -1112“) (3.35)

)‘3: 't3. W(090): -W1(l)

where f , F2, t3 are vectors tangent to the three sides of the triangle

and are given in (3. 7). Substituting from (3. 35) into (3. 34) we obtain

uL = 71; {81111+(1-a-8)13x3}21

1 _2
+ :{U-a-mlzkz} e (3.36)

In general when a member is displaced from its initial position

(Fig. 3.1a) to its displaced position (Fig. 3.1b) it undergoes a

rigid body rotation AER defined below. The coordinate system

le, yRZ, yR3, see Fig. 3.1b, is defined so that the rigid body member

rotation and node 1 displacements relative to it vanish.

Nine deformed configurations are directly related to components

of node rotation measured relative to the le, yRZ, YR3 coordinate

system. Three deformed configurations are of a type graphically

shown in Fig. 3. 6 a, b, c and only have displacement components in
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1 ..

_ ___.). 1 -

51an 881(1) 2 —.1 e

l /y Sintlll 9 2(1) V2

__1_._. 1 E \

    
  

   

  

   

\

\

1

\ 1 1 >./"' \Y
y -—.-— e

yl
SlnLIJZ 9 1(2)

((1) (e) (f)

3 3 3

Y tY t Y

2 \_Ti:|1_xllgl(l) ’ >1 '5S1n -

___..Y _:_l____.. 2 ‘flanl iii-(3v)- y2

C

1 — \

T - --.——-—>» e

I sin 4J1 "10e1(3) S1an3 11 2(3)

/

1 ...

' -¢———>. e
\31n 412 10 2(2) \ 1 / k y1

1 )1 e

\Y1 Y sin ((12 12 1(2)

(g) (h) (i)

 

Fig. 3. 6. Displacement modes associated with node

rotations.
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the plane of Si (see page26). The remaining six only have displace-

ments components normal to Si and are shown in Fig. 3. 6 d-i.

The nine functions of Hi shown in Fig. 3. 6 are constructed

from the equations of the six phnes intersecting the plane of S;

as shown in Fig. 3. 7 and given in Table 3. 1. The equation of the

planes are normalized so that their principal intersection angle is

unity.

The set of points defining the domain of a subtriangle as

shown in Fig. 3. 8 are designated by Aal’ AaZ’ Aa3’ Abl’ AbZ’

Ab3; i. e. , Aal corresponds to the set of points lying on triangle

1, 2, 4, etc. The symbol Aa when used witha function gal in

l

the form Aal g implies that ga‘1 is defined over Aal' The form
a1

(Aal gal) (AaZ gaZ) = Aal AaZ gal gaZ implles that ga1 ga2 is

defined only for points common to both Aal and Aa2°

Consider the two functions taken in the form

._ .1.

Z12 ‘ 2 {ga2(gal + gb3)Aa3 + gal(ga2 + gb3)A'b3} 13 (3'37)

_ 1.

213 _ 7- {gal (ga3 + gbzmaiz + ga3(ga1 + gbZ)AbZ} 12 (3°38)

The functions Z12 and Zl3 together with their first partial

derivatives are continuous for all points of the triangle. The second

derivatlves of Z12 are constant on Aa3 and Ab3’ and have a

discontinuity along line 3, 6. The second derivatives of Zl3 are

constant on AaZ and AbZ , and have a discontinuity along line 2, 5.

It follows that all third derivative of 212 and Zl3 vanish for all

points of the triangle and consequently strain compatibility is

satisfied for inplane displacement configurations constructed from



  
Fig. 3. 7. Lines of intersection of planes given in

Table 3. 1.

 

 

 

Fig. 3. 8. Symbols used to designate subdomains of

triangle.

Table 3.1. Functions Used to Construct Displacement

 

 

hAodes.

LINE FUNCTION EQUATION ‘

2, 3 gal = 1-0. 43 = O

3, 1 gaZ = a = O

1, 2 ga3 = s = o

1, 4 gbl = a - fl = O

2, 5 gbZ = -1+o.+2[3 = O

3: 6 gb3 = 1-2a -p = o     
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these functions. A graphic description of these functions is shown

in Fig. 3. 9. The function Z12 vanishes along lines 1, 3 and 2, 3

as indicated in Fig. 3. 9 and its normal derivativesvanishes along

2, 3. It has a sIOpe of unity in the direction of g1 at point 1.

The configuration associated with X 4 is graphically

described in Fig. 3. 6a and has the form

uL = >\4(Z13 nZ - Z12 n3) (3.39)

where 32 and 33 are defined in (3. 6) and Fig. 3. 4. By two

consecutive permutations of the indices 1, 2, 3 into 3, 1, 2 and

2, 3, 1 in (3. 36) and (3. 37) we construct four additional functions

Z21, Z23, Z31, Z32. On substituting from Table 3.1 we obtain

2 = l {a(2-3a-2p)A + (1-01 433 } 1
12 2 a3 A'b3 3

_ L213 _ 2 { -(1-o. -13)(1-a -3B)Aaz + [3(2-211 -3s)Ab2} 12

z =1—{s(2a-s)A +02A }1 (3 40)
23 2 a1 bl 1 °

Z21 : 12(32 Aa3 - (l-a -B)(1-3a -[3)Ab3} 13

z31 - 12-{41-(1 -s)(1-a -3[3)Ab2 + 52 Abz} 12

é-{fiZA -a(a-213)Ab1} I,
Z al32

The displacement vector associated with the three additional

inplane deformed configurations then has the form

6L ‘ "4(213‘12212113)+ "5‘221’13 ‘ 223111) +k(3(232’11 ' 23an)

(3.41)
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2 \LI

 
Fig. 3. 9. Graphic description of functions Z12 and Z13.

(a) (b)

Fig. 3.10. Force vector subjected to a. virtual

diSplacement.
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On substituting in (3. 41) for the functions and unit vectors, rearranging

terms and combining with (3. 36) we obtain

EL = II; { -1311x1 - (1-01 -p)£3x3 -[ (1-11 -mzAaz + (3(2-2a 739M132] M4

2
- [ [3(2c1 -[3)Aa1 + o. Abl] Axs + [ fiZAal + o.(213-c1)Abl

- (1-11 pm -11 -3B)Aa2 + sZAbZ] Axé} “e1 + 721: { ..(1 -a -fi)12>~2

+ [ o.(2-3o. .2(3)Aa3 + (1-01 -B)2Ab3] A114 -[(12Aa3 + (1-11 —s)(1-3a+s)Ab3

+p(2a -B)Aa1 + azAb1]A)\ 5 + [(321181l + c1(2[3-o.)Ab1] Axé} 32

(3.42)

Eq. (3. 42) contains six of the independent vector functions of Hi'

The remaining six configurations are taken in the form

E =w E3 = { g g X + g )x + g )1
L 3 a2 a3 7 ga3 al 8 gal a2 9

+ [ g1:1(gaL3 Aal + gaZ A131” )‘10 + [ gb2(gal AaZ + ga3 A1.-;2)])‘11

-3

+[g (g A H; A )]X e
b3 a2 a3 a1 b3 12 (3.43)

The 81x functions gaZga3’ . . , [gb3( gaZ Aa3 + g3.l Ab3)] and their first

partial derivatives are continuous for all points of the member. The

last three of these functions respectively have second derivative

discontinuities along lines 1, 5; 2, 6; 3, 4.

Substituting for the function in (3. 43) we obtain
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+[ -(1-0 -2£3)(l -0 -F5)Aa2 - (l -a -ZB)BA~bzl>\11

+ [ (1(1 -Zo. -[3)Aa3 + (1 -o —s)(1—2(3-(3)Ab3] x12 33

An alternate form of (3. 44) is given in Appendix D.

3. 5. Member-Shell Transformation Matrix

(3. 44)

uL = {apx7 + p(1—a -(3)x8 + o(l -o. -mxg + [ (3(a -[3)Aa1 + (1((1 -(3)Ab1] km

The member generalized forces 2i and member generalized

coordinates Ai are related by the strain energy relation

T

(SW = FT 6U
I. 1 1

1

andif

6A = M. 6U.
1 1

then

F 6U = 2:511.
1 1 1

2 2T M. 6U.
1 1 1

(3.

(3.

(3.

(3.

If (3.48) must hold for all virtual displacements 6Ui it follows that

(3

45)

46)

47)

48)

. 49)
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On taking the transpose of both sides of (3. 49) we obtain

F. = MT 2. (3.50)
1 1 1

Here the components of Fi are components of node moment and

force vectors, and the components of Ui are components of

displacement and rotation vectors.

Consider the displacement vector 61} and force vector f

shown in Fig. 3. 10b. The work due to f when it undergoes a virtual

displacement 65 is defined by the dot product

5w = “f- 613 (3.51)

The covariant base vectors (unit vectors) of an oblique Cartesian

coordinate system are —el, 32 and the contravariant base vectors

(not necessarily unit vectors) are 31, 32. They are related by

—l — _ —Z - _ 1

e e1 — e . e2 —

—1 _ _ _ . _2 _ o (3.52)

e e2 - el e .—

The vectors f- and 61-1 in terms of their components are

.. 1 _ _

6n = 6w e1 + 6w e2 (3. 53)

= 5w1 El + 5w2 EZ

_ 1 _ z _

f ..f e1+f e2 (3.54)

: f 1 + f E2

V
?
“
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Substituting from (3. 53) and (3. 54) into (3. 51) we obtain

 

..1 —2 1— Z— 1 2

6W = (fle + fze )' (6w el + 6w e2) = flow + fzow

— — — - 2

=(f1el + f2e1)' (owle1 + 6w2e2) = f1 owl + f 5w2

= (£131 + fZ-e'l) ' (owlel + 6w2E2) : . 12

Sln L);

[11 6w1 + fzéwz + c051); (f1 6wz + f26w1)]

= (fl; + £2; ) ' ((5le + 6wZ-e ) : f16w1 + f26w2
l 2 1 2

+ c0511: (f16w2 + fzéwl) (3.55)

where LIJ is the included angle of the oblique coordinates.

We note that

6W:[f1 12] 6w1 = [f1 12] 6w1 (3.56)

2
L6w 6w2

but in general

6W )4 [f1 12] 5w1 (3.57)

6W2

6W )4 [f1 12] 6wl (3.58)

6w2

We then conclude that if the generalized coordinates are contravariant

components of a displacement vector then the associated generalized

forces are covariant components of a force vector and vice versa.
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From (3. 35) and Fig. 3. 5 we obtain the node displacements

relative to the £1, £2, L3 coordinates in the form

.. ..1 -2
uL(l) = X3 e(.1‘)+ X2 e“)

5M2) = o (3.59)

-2

u13(3) : >‘1‘"3(3)

where the base vectors are those of Fig. 3. 2a.

It then follows from the above discussion that if the components

of node displacements are interpreted as components of generalized

coordinates then the associated components of generalized force can

be interpreted as components of node forces through the energy

relation

aw =? -5IiI (1) (1) +?(2)- 6'13 611 (3.60)+ 'f -

(2) ‘ (3) (3)

To do this we take the variation of (3. 59) and then substitute it into

(3. 60) and obtain

_ 1 - 2 —. . ...1 -2
6WI - (f(l,e1)el(l)+f(l,el)eZ(l;)) (6X3 8(1) + 6X2e(1))

1 - Z .. ...2

+ ”(3. e3) 61(3)+ f(3, e3) e2(3)" ”"1 6(3)) ‘3' 6”

= f1 5X + f2 6R + f2 5X

(l,el) 3 (l,el) 2 (3,e3) 1

l 2
where f“: el)’ f“, el)’ etc. are force components referred to the base

vectors of Fig. 3.2. If

6114 = 6X5 =... =6Xlz = O (3.62)

then

u M

”
H

6WI . 6A1 0'l 6X1+ 0'2 6112 + U36K3 (3.63)
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Eq. '8 (3. 61) and (3. 63) can hold for all virtual displacements that

also satisfy (3. 62) only if

f1(1,e1) 3

f2(l,el) 0'2 (3.64)

f2(3,e3) : ‘71

The components of the node forces ?(1)’f(2)'?(3) expressed

in terms of 0'1, 0 2, 0'3 can be obtained directly from (3. 64) and the

equations of equilibrium. They are shown in Fig. 3.11a and have the

form

1'(1) : ”331(1)+"232(1)

f(2) : “131(2)+"2ez(2)
(3.65)

f =
(3) “281(3)+"182(2)

The member generalized displacements A4, K5, . . . , X12

are related to the components of the node rotation vector measured

relative to the yi, yli, y; coordinates as shown in Fig. 3. 6. The

node rotation vectors are

_ _ 1 _ _ _

¢(1) ‘ sianl 0‘11 ‘ x8) e1(1) sin—__ITJI “12+ kc9)‘"2(1) + >‘4‘°'3(1)

- _1 _ 1 _

15(2) ‘ amp—'7 0‘12 >‘9) e1(2) + simpzo‘m + )‘7’ 82(2) + >‘5‘33(2)

_ _ _L_ _ _ _

¢(3) sin¢_—: 0‘10 ‘ >‘7)‘31(3)+1311r1‘_"1(3"3()‘11 + x8) e2(3) + x6630)

(3.66)



63

 

 

    

\ /Zel(3)

3

“3 e1(1) 1 2 .63 32(2)

0" — _-

2 82(1) \o-l elm

(a)

q132(3) q E
\ / 2 1(3)

3

q3 e1(1) 1 2 , 'q3 E2(2)

432(1) C11 31(2)\

(b)

Slnl.IJ3(O'll + 0-8)E(23) sin¢3(010 - 07);:3)

—3

6 8(3)

sin1p1(0' l -0’8)El
__2

\( Sinlllzfirlo + 0’7) e(2)

_3 ‘ —3

“4 911111, \1) “59(2)

sinu|41(0'12 + 09%?” sinxpzwlz - 09);:2)

(C)

Fig. 3.11. Relationship of generalized forces to node variables.



64

If the components of the node moment vectors 5(1), “1(2), 5(3) are

interpreted as generalized forces and related to the member by means

of an energy relation similar to (3. 48) then by using arguments

similar to the above we can obtain

(1) = sin1p1(crll - 08);:1) + sian1(0'12 + 09)E(21)+ 0'43?”B
l

“1(2) 2 sinipzwlz - 69)-5(2) + sinupzwlo + 67);.(22) + 0' E?“

5(3) = Sin¢3W1o ' ofire-(3) + Simp3(‘711 + “8):;(23) + 663(3)

(3.67)

The above are shown in Fig. 3.11b.

The node forces, necessary for equilibrium when the member

is subjected to node moments given by (3. 67), can be obtained from

the six scalar equations of equilibrium.

The force components normal to the plane of the triangle

are associated only with the in-plane moment components and can be

obtained directly, by taking moments about the three sides of the

triangle.

The in-plane force components are associated only with the

moment components normal to the plane of the triangle. Since

there are six in-plane force components and only three independent

equilibrium equations associated with them, it follows that this

system of forces has three redundancies. The redundencies are

essentially removed by imposing certain symmetry requirements

on the components, i. e. , the six components are interpreted in

terms of three parameters ql’ q2, q3 related as shown in Fig. 3.11b.
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The six equilibrium equations are, after some simplification,

givenby

3 _ .1.
f(1,.21) ‘ 2(1";"12 '12 0'11)

3 1 1

f(2, e2) 2‘1“; “1o '1; “12)

e _ _l_ l

f(3,e3) ‘ 2‘22 “11 ”Tl—“10) (3'68)

11

q1 ___ ZX(°4+“5+“6)

12

‘12 = Z‘K("4+“5+“6)

13

q} : ZA(U4+“5+“6)

From (3. 65), (3. 67), (3. 68) we obtain the relationship between

node forces and moments referred to the coordinates of Fig. 3. 2 a, b,

and the member generalized forces. This relationship is given'in.

matrix form by (3. 69).

1



 

f(1,121)

f(1,121)

f(1, e1)

m1(1, el)

m2(1, e1)

m3(1, el)

f(2,132)

f(2,152)

f(2. e2)

m1(2, e2)

m2(2, e2)

m3(2, e2)

f(3, e3)

f(3, e3)

f(3, e3)

m1(3, e3)

m2(3, e3)   m3(3,e3)

h N N

N
J
: :>

N
A

>
|

N
4
: (1

1>

 
(3.69)
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The coefficient matrix in (3. 69) is designated by ME . The relation-

1

ship between the components of node forces and moments referred to

the i-member coordinates (yl, y2, y3) and those in (3. 69) can be

obtained directly from (A. 22), (A. 23), and from the definitions of

the quantities. The relationship in matrix form is given by (3. 70).

The coefficient matrix in (3. 70) is designed by Mr; .

1

The matrix Mi is related by

MT = MT MT (3.71)

and is given explicitly by (3. 72).
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f(11)

f(11)

f(11)

m(11)

 

2

m(11)

 

m(11)

f(21)

f(21)

f(21)

m(21)

m(21)

m(21)

(31)

f(31)

f(31)

m(31)

m(31)

m(.11)  

N W
3
2
1
1

 

 

a2 a2 a2

'1’4A1 “4.4.1 ”4'A1 O 0 0 O
3 3 3

0 1 1 1

27— T 21—

3 3 3

o o o o

A
o 17— 0 0

23

a

1 1
o - _ o

323 2

o 1 o o

1_a1_a1_a1

411.1 2 4.4.1 3 4A1 3

o--—-1---1—-—1—2123 23 23

o o 0 fl—

1

fi- 0 01%
13 13

8‘2 0 _1_ 6‘2

21113 221112

o o 1 o

1 1

0 f3 _3_ .3.
4A 4A 4A

0 o o o

_1
0 O 0 I—

1

73-1—1 01—3-
13 23 13

_32 31 032

21113 2213 2113

o o o 1  
(3. 72)
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Two of the triangle rigid body rotation components have a

direct interpretation, i. e. , they are the two inplane components of

rotation of the plane defined by the three node points of the triangle.

The component of rigid body rotation (A9111) normal to the plane

does not have a direct interpretation and is in fact intrinsically

related to the manner in which the redundancies, mentioned above,

are removed.

In order to obtain this interpretation we let a triangle in

equilibrium undergo a virtual rigid body rotation 69; so that

the magnitude of the forces and internal strain energy do not change.

Only inplane components of node forces and displacements need be

considered. The virtual displacements of the node points with

respect to the oblique coordinates of the node points (Fig. 3. 2) can

be represented in the form

.. ..1 —2

5‘10) z 6""1(1)‘*(1) + 5W2<1)e<1)

._ _ _1 -2
5u(2) — 6w1(2) 6(2) + 6w2(2) e(2) (3.73)

_ _ _1 -2

611(.1) ‘ 5W1(3)e(3) + 5W2(3)e(3)

The node forces can be represented in terms of the six parameters

0'1, 0'2, 0'3, ql, q2, q3 (Fig. 3.11a, b). They are

f(1) = (”3 + ‘13) 31(1) + (“2 ‘ q2’2520)

1(2) =(0'1+ (1151(2) + (0'3 - q3)'éz(2) (3.74)

5(3) = (“2 + q2)-‘;1(3) +("1 ' q1)-‘52(3)
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The components of the node moment vector (0'4, 0'5, 0’6) normal to

the plane are also required.

The work due to the node forces and moments when the

triangle is subjected to a rigid body rotation 69; must vanish.

This can be expressed in the form

3 - - - - - - _
(0'. +0'S+0'6)69R +f 6u +f ~6u +f -6u(3)—0

4 (1) (1) (2) (2) (3)

(3.75)

Since 69;. does not cause the sides to elongate the work

due to the equal in magnitude and Oppositely directed force components

associated with each of the parameters 0'1, 0'2, 013 must vanish

independently. On removing these parameters from (3. 74) and

substituting the resulting expression and (3. 73) into (3. 75) we

obtain after some simplification

3
(0'4 + 0'5 + 0'6) 69R - q1 (5w2(3) - 6w1(2)) - q2 (5w2(1) - 6w1(3))

- q3 (6w2(3) - 6Wl(l)) = 0 (3-76)

Substituting the last three of (3. 68) into (3. 76) and dividing through

by (0'4 + 0'5 + 0'6) we obtain

3 I 12l
59R = 32‘: (5W2(3) - 5W1(2)) + EX (5W

2(1) ' 5W1(3))

I

3
+ a (5W2(3) - 5W1(1)) (3.77)

From the assumptions of linear theory we have
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3 £1 £2
AGR = 4A (Aw2(3) - AW1(Z)) + 4A (AWZU) - Awl(3))

£3
+ :3. (“’20) -Aw1(l)) (3.78)

The rotation of the coordinate system y;, ya, ya relative

the coordinate system yl, yz, y3 referred to in Sec. 3.1 is AGR

defined above.

3. 6. Member Stiffness Matrix

The triangular member stiffness matrix defined by (2.75) is

a 12x12 matrix I"i with det Pi > 0. We partition (2. 70) in the

form

6 =[115 Hg] .Al. 9.79)
i 1

A
%

wh IETA d tth a 1 t t ° bere 1i 11 corre8pon s o e 18p acemen vec or given y

(3. 42) and HT_ A corresponds to the displacement vector given by

1
2 q

(3. 44). If the deformation parameters are taken in the form

T_ T T
E .[E1 E2] (38m

where E1 and E2 are respectively given by (3.16) and (3. 26) then

from (3. 27), (2. 70), and (2. 71) it follows that

  



1 U (3.81)    

From (3. 27), (3. 42), and (3. 44) it follows that (3. 81) will reduce to

      

FIE; 321in1 o T .1111—

b113,] :1. 0 52711112; _A21_

(11111 0- ”All

— .0 H223. _AZL (3.82)    

On substituting the coefficient matrix of (3. 82) into (2. 75) we obtain

 

1' 3 r1 - r - r 1
1"mi I121 11.111 0 G1 0 H11. 0

: £1. T i, ‘
dA

1“21. I‘ 1 0 I122. O C'1 O 11’22.
1 22i 1 U

       

"' T
éfIIll.Gi'fl'lidA o

1 1 11i _J

(3.83)

The matrices I”11 and F22 are respectively called the member
i .

 
o 1£11111. Gi'II' dA

 

membrane stiffness matrix and member bending stiffness matrix.

These matrices are given in Tables (3. 2) and (3. 3), and a detailed

derivation is given in Appendix C.
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3. 7. Continuity Conditions Between Adjacent Members

We now examine the displacement continuity between two

adjacent members and the conditions necessary for intersection

angles (normal slope continuity) to be preserved. The deformed

configurations have been chosen in groups of three, the elements

of which are constructed symmetrically with resPect to the three

sides so that we need only examine one side of a member with

arbitrary side lengths 11’ 12, 13.

Since the formulation requires the node displacements of

adjacent members to be identical we can examine diSplacement

continuity by examining displacements relative to the line joining

the common nod-e point.

Consider the side with node points 1 and 2 lying along the

(,1 axis as shown in Fig. '5 3.1, 3. 5, 3. 6. By substituting from

(3.40) into (3. 41), setting {3 = 0 in the resulting expression and in

(3. 42), and on noting that

- _ -2

n3 " “3(1)

*3 _ *3 (3.84)

ML) J(1)

the desired displacements along the §1 axis are obtained and given

by

1'1 = {%[0.(2-30.)Aa3 + (1-a)2Ab3])\4. - %)[ c1(2-3c1)Aa3 +(1-a)

(l-30.)Ab3] )5} 3"(21) + {o(l-o))\9 + ozA — (l-o)2Aa ).
blxlo 2 ll

3
+ [ (1(1 -2o)Aa3 + (1 -a)(l-2c1)Ab3] 112} '1'“)

(3. 85)
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Let L1, L2 correspond respectively to the line segments

1-6, 6-2 shown in Fig. 3. 7 so that f(a))L‘.I,. g(a)(Ll+L2) implies

that f(a) is defined over L1 and g(o.) is defined over L1 and

L2. Along the K14 axis the following then holds

A'al = L1 + L2

AbZ = 1..1 + L2

(3.86)

Aa3 : I"l

Ab3 = L2

From the above it then follows that (3.85) can be expressed in the

form

E = {%[a(2-3Q)Ll + (14021.21).4 - [11(2.3a)131

N
I
H

.,.2

+ (l-o.)(l-3c1)LZ]).5} 1(1) + {o(1-11)(L1 + L2».9

+ [11(1—211)L1 +(1-a)(1-20)L21"1.{2(3-(31) (3. 87)

The components of node rotation about the y]: axis (192“ i)’ $2” 1)

1 .
and about the yR ax1s #33”, .i.)’ (1)3(2’ i) are related to )1 4, A 5, )1 9

and A by

   

12

)- -1 F — — '-

¢2(1,1) ° 0 '1 '1 "4

4542’” 0 o 1 -1 )5

= (3.88)

413“,” 1 o 0 0 >19

¢3(2.i) 0 1 O 0 >‘12

... .3 _ ...I _.   
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The above can be obtained directly from Fig. 3. 6. These rotation

components are identical for adjacent members only if the components

of rigid body rotation (see Sec. 3. 5) about axes normal to the plane

of the trianges are identical for the two members. On solving (3. 88) for

A4, A5, A9, A12 and substituting into (3. 87) we obtain after some

simplification

Ii = -l-{[o.(2-3a)L +(l-a)ZL ]¢

2 1 2 3(1.i)

4-2

-[a(2-3a)Ll + (1-(1)(1-30.)L2] 413(2, 1)} (1)

{-[ a(2-3a)L1 + (1-0)ZL2] 412“, 1)

N
I
H

-.32

L1 + (l-o.)(l-3o)LZ] ¢2(2,i) } J<i> (3.89)- [ -a

A graphic description of the manner in which the displacements along

the line are related to components of node rotation, is given in Fig. 3.12.

From (3. 89) it can be seen that along the line the inplane

di Splacements are related to the components of node rotation in a

ITrianner identical to displacements normal to the plane. Since the

COmponents of rotation for common node points of adjacent members

ar e required to be identical it follows that displacement continuity is

ITlaintained along the entire line even if the initial intersection angle

d~Oes not vanish, provided that the normal components of rigid body

1‘ Otations of the two members are identical.

If in addition the normal SIOpes of two adjacent members vary

C ontinuously and linearly along their intersection line then normal

slope continuity is maintained for all points of this line. In the
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v

 

 

 
(a) (b)

  

 
(d) 

Fig. 3. 12. Relationship between displacement components normal

to an edge and node rotation components.
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formulation used, normal slqae continuity is completely satisfied only

under a restrictive set of conditions. These conditions are related to

the geometric shape of adjacent members and the type of deformation

present along the intersection line. The inplane diSplacements (3. 42)

do not result in slope change along the edge. The displacements

normal to the plane of the triangle are constructed by polynomials

no higher than the second degree. Consequently the normal slopes

associated with the deformed configurations of 17, . . . , A12 (see

Fig. 3. 6) vary linearly along line 1-2, but the variation of the

configuration associated with A can have a finite discontinuity
12

at the midpoint.

The manner in which the normal slope is related to A12 is

shown in Fig. 3.13. Also the relationship of the midpoint discontinuity

to the geometric parameters is described there. The magnitude of

the discontinuity is designated by d and is related to the components

of node and midpoint rotations by

1

d : ¢1(6,i) ' 2(¢1(1,1)+¢1(2,1)) (3'90)

From Fig. 3. 13(a) we obtain the relationships between the components

in (3.90) and X12. They are

.311

<1’1(1,1) z 'COt‘I’INz = '2A )‘12

8‘2

¢1(2,1) : COtLp2112 : 2A "12 (3°91)

(Ii-1f)

¢1(6,1) : c0116 "12 = "4A )‘12
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I); x12=‘I’2(2.1)

4’1(1.i)|_4 (1:13" i) J‘I’HZ. i)
1* I rlfi 1 f1

3 3

y3 2" (a) 2—

' R

1
>//

12 .1i

-'“” 1 V 7‘ YR

(b)

1(2,1
<I>

' M 3 IIIIIl ""'

V’xi,
I In“1’ +

.3”,
d (ll IIIIIIIII m -

<1°1(1..1)

d’1(2,1)

1 1

(C) (d)

Fig. 3.13. Variation of normal slope for secondary bending modes.
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Substituting from (3.91. ) into (3. 90) and simplifying we obtain

1:4?

).T 12 (3.92)d:

In order to interpret the conditions necessary for slope continuity

to be satisfied we first consider two adjacent members with their middle

surfaces on (near to, in the linear sense) a plane as shown in Fig. 3.14.

The various parameters of one member are designated in accordance

with earlier notation and its adjacent member has its corresponding

parameters distinguished by a prime.

By examining Fig. '3 3.13 and 3.14 it can be seen that

112 = ")12 (3.93)

Then for normal slope continuity to be preserved

d Z -d' (30 94)

Substituting from (3. 92) into (3. 94) we obtain

 

2 2 2 1 2
I -1 (1') - (I )
2 l A = _ 2- 1 k1 (3.95)

2A 12 2A' 12

Substituting from (3. 93) into (3. 95) and dividing through by X12 we

 

obtain

2 2 1 2 I Z 3 . 6

12 -11 _ ”2) -(11) . ( 9)

2A — ZA'

If the adjacent member does not lie in the same plane/then

(3. 93) is not in general satisfied and normal slope continuity is

insured only if

d : -d' : O (3.97)
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3’3
 

  
 

 
Fig. 3.14. Notation for two adjacent triangles.
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This can be satisifed in general only if

2 2
12-11

2A

' 2 2 3. 8

(15) 41;) I 9’

2A

 

or simply if

1 2

(3. 99)

I
I

b
-I

II

If the intersection angle is not very large then 112 z 4312

and (3. 96) will be approximately applicable. If it is large, as for

example at a 900 corner, then normal slope continuity can be

insured for all points of the intersection line only if (3.99) is

satisfied.

As already implied, the normal slope discontinuities along

side 11, 12, 13 are respectively related only to the member

generalized coordinates; A10, )‘11' A12. These can in turn be

interpreted as being related to curvature changes along their

respective lines. Consequently large discontinuities can occur

along a line only if large curvature gradients are present there and

then only if geometric pr0perties discussed above admit to it.

For a given triangulation of a shell the slope discontinuities and

curvature gradients associated with a solution can be obtained directly.

From this information a better triangulation can be obtained by satisfying

or more closely satisfying conditions (3. 96) and/or (3. 99) between

members with large curvature gradients.
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We classify the bending displacement configurations into those

associated with )1 7, 18, X9 which we call the primary bending modes

and those associated with 110, "11' 1.12 which we call the secondary

bending modes. As already indicated, adjacent member slope

discontinuities are associated only with secondary bending modes.

We now examine the normal slope continuity between adjacent

members with respect to a limiting process that causes the area of

the triangle to vanish without materially disturbing the ratio of its

side lengths.

We assume that the deformed intersection line forms part of a

regular curve and in the above indicated limit approaches a straight

line. There is no ad hoc reason why this should be the case and to

prove such an assertion would undoubtedly require several sufficiency

conditions on the limiting process together with a proof demonstrating

that it is an inherent requirement for minimizing the potential energy.

For this the explicit representation of the bending stiffness matrix

should prove of value. In any event this assumption leads to a useful

speculation.

Consider the displacements along the intersection line of two

adjacent members relative to the line joining the common node

points. Since the components of displacements tangent to this line do

not affect normal slope continuity we need not consider them. The

displacements normal to this line can be decomposed into two

orthogonal components which, as has already been indicated are

identically related to associated node rotation components so that

we need only consider one of these components.
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Consider a curve described by the function f(x) in the

interval (x, x + Ax) as shown in Fig. 3.15a. We approximate the

curve by summing the two functions associated with the parameters

61, 62 and graphically shown in Fig. 3.15b, c. The approximating

function and its first derivative are required to be identical at the

end points of the interval. The functions assoc1ated

with 61 and 62 respectively vary relative to line AB (Fig. 3.15a)

in a manner identical to the normal displacements along an edge of

the primary and secondary bending modes. For the alternate bending

modes given in Appendix D this is equivalent to a Hermite inter-

polation.

From the Taylor series expansion we obtain

f(x + Ax) = f(x) + f1(x) Ax + 1311.17.- +

2 (3.100)

f'(x +Ax) = f"(x) + f" (x)Ax + f"'(x) 923‘,— + . ..

where primes denote derivatives. From Fig. 3.15 we obtain

f'(x) = 0-6 +6

 

 

l 2

(3.101)

f'(x+Ax) = a +61+62

f(x + Ax) - f(xL

Ax

Solving for 61 and 62 we obtain

51 - -:—[f'(x + Ax) - f'(x)]

(3.102)

1 f +A -f
62 = Elf'(x+Ax) +f'(x)] - (x A? (x)
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+ I

: 1m+am

. 2 I

 
  

(b) (C)

Fig. 3.15. Type of approximation implicit in bending nodes.
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Substituting (3.100) into (3.102) and simplifying, we obtain

81 = f"(x)Ax 0%) + f"'(x)Ax2 (é- . %) + f”"‘(x)Ax3 (115° £7) + . . .

62 = f"'(x)Ax2 (2717-,- - 171-H f""(x)Ax3 (2' 131 - 343-) +

(3.103)

As Ax approaches zero

A
51 z f"(x) 7’5-

2 (3.104)

6 z Ax
2 fIII(x) _1._2___

Therefore, when Ax is small, 62 is small compared with 61 . In

its relationship to the limiting process of the triangular element, Ax

corresponds to one of the side lengths of the triangle.

From (3. 104) it would appear that in the limit the primary

bending modes will dominate the behavior, and that the secondary

modes and consequently also the slope discontinuities become

higher order effects.

We note that for the alternate bending modes given in

Appendix D the normal slope discontinuities are associated with

cubic terms whereas the highest terms in the primary bending

nodes are quadratic .



IV. FORMULATION FOR SHELLS OF REVOLUTION

4.1. Interpretation of Problem in Terms of Discrete Elements

The method presented in Chapters II and III is used to formulate

the problem of large deflections of shells of revolution having a small

imperfection. The undeformed shell geometry is thus describable by

the meridian curve of the middle surface (Fig. 4.1), a function

describing the thickness, here assumed to vary only along the

meridian, and a function describing the imperfection described

later in the Chapter.

We limit the solution to one describable by a half period strip.

The strip is in turn described by a simplified model consisting of 48

triangular members (see Fig. 4. 2). The pattern used consists of 12

rows of four triangles. In order to accommodate a given geometry

the triangles vary in size and shape from one row to the next, but the

undeformed triangles of a given row are identical. In the computer

program used the location of node points along the meridian can be

arbitrarily Specified. If one end of the shell is closed the triangles

in that end row degenerate into lines and are consequently removed.

In the procedure used it is necessary to invert a matrix of

rank equal to the number of unknown generalized coordinates ”for

each linear increment. If the generalized Coord-inates'are,

interpreted as components of node displacement and rotation vectors,

and if the pattern of triangles is. as indicated above (Fig. 4. 2) then

the rank of the matrix is between 121 and 167 depending on the

boundary conditions used. If for a given elastic system and loading

89
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Fig. 4.1. Shell geometry.

 

 

Fig. 4.2. Triangulation.
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Fig. 4.3. Node coordinates.
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the incremented solution does not' undergo a region of instability,

then it may be possible to obtain acceptable results by using only

two to five linear increments; however, if the solution does undergo

an unstable region then it is unlikely that acceptable results can be

obtained with less than 20 to 30 linear increments. A pattern

consisting of a much smaller number of triangles cannot adequately

describe the elastic properties of the class of structures being

considered.

To deal with problems having a region of instability would

require an excessive amount of computer time (approximately 10

times the amount used) esPecially for the computer program deve10p-

ment which required a considerable amount of testing. For this

reason, the degree of freedom of the system is reduced by inter-

preting the node displacements and rotations in terms of a smaller

set of unknown parameters. The explicit form of the interpretation

(equations of constraint) is presented later in this chapter.

4. 2. Coordinate Systems

In accordance with the discussion in Sec. 2. 7 three types of

right handed orthogonal coordinate systems are used, 1. e. , the

general, node, and member coordinate systems. The general and

node coordinates systems are fixed, and the member coordinate

are'redefined after each linear increment. The O-general coordinates

l
x ,x2, x3 are defined (see Fig. 4. 2) so that the x3 axis lies on the

axis of the shenand is directed upward, the x1 axis is directed radially
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outward and intersects the shell axis and bottom middle node point,

and the x2 axis is perpendicular to the x1 and x3 axes. The

0. -noc:e coordinates 23d),z(2a),z(':).are defined (see Fig. 4. 3) so that

the 2(0) axis is parallel to the shell axis, the 2:0) axis is directed

outward intersecting the shell axis and the c1 -node point, and the

Z . . . 1 ,3'
Z(G)ax1s 18 perpendicular to the 2(a) and 2(a) axes. Note that the

node coordinate systems of node points on a meridian curve have

their axes directed in identical directions. The member coordinate

systems are defined in accordance with Sec. 2. 7.

4. 3. Reduced Set of Generalized Displacement Parameters

For convenience each node point is designated by the integers

0., [3 (Fig. 4. 4). Since the axes of node coordinates associated with

a common meridian curve are parallel, we distinguish them by using

only the first integer of the associated node point. The following

node displacement and rotation components are with re8pect to the

node coordinate systems .

1 2 3 1 2 3

(a0. a)’ Au(c113.1)’Au(1113,<1)A9010.<1)’Ae(c111.<1)”"9(c113.c1)
Au

(4.1)

These variables are related to a smaller set of generalized ~

coordinates ‘ as follows:

1 1 2 . 1 ,-

Au(051 a) = Avm) + Ava” 31n[ 2 (a -3) 11.]

3 l -

(043,0) 2 AV(5) cos[-2-(a-3)Tr]

3 4 5 . l
Au((1 5, c1) = Avm) + Av(m51n[-2—(o. -3) TI' ]
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l 6 l .
A6015: (1) = Avm) cos[:(o-3)1r ]

2 7 8 . l
A9010, (1) : Avm) + Avm) 8111):: ((1-3) 1r. ]

3 _ 9 1 .
A0 (013,0) — AVII3) cos [-2—(11-3) TI’]

(4. 2)

By using (4. 2) we in effect relate the 30 discrete variables of the five

node points of a row to nine variables. This in the discrete sense

implied by (4. 2) constrains the strip to a sinusoidal type of variation.

The boundary conditions along the two meridian edges are automatically

satisfied when (4. 2) is used.

We designate by

T _ 1 2 3

”(110. a) ‘ [ “(1113.11) Au(c111. a)’ Au(c111. a)’

  

1 2 3

A90113. a)’ M 0113.01) A9 («113. 1)] (4'3)

T __ 1 2 3 4 9

AV(11) ‘Mvmr A"(13) A"(13) A"(13) A"(3)1 (4'4)

)- -1

1 sin[-£—(o.-3)fl.] 0 0 0 0 0 0 0

0 cos[ 12((1-3).TT]

0 1 s1n[1§(e-3)r]

CR :0
cos[%(043)i17]

(.9)

0 1 s1n[1§(d-3)n[

0 cos[%(o.-3)Itri]

(4.5)

Then (4. 2) can be represented in the form

AU = c AV (4.6)
(113.1) Rm ((3)
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1,12 2,12 3,12 4,12

1,11 2,11 3,11 4,11

1,10 2,10 3,10 4.10

1.9 2.9 3.9 4.9

1,8 2,8 3,8 4,8

1,7 2,7 3,7 4,7

1,6 2,6 3,6 4,6

1,5 2,5 3,5 4,5

184. 2,4 3,4 4,4

1,3 2,3 3,3 4,3

1,2 2,2 3,2 4,2

1,1 2,1 3,1 4,1

 

Fig. 4. 4. Ordering of triangular members.
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Let

T _ T T T T

AU ‘IAU<11,1)'AU(21,2)' A”(51..5)’AU(1.2,1)’

T T T

A = A ...,V [ V“), AV(7)]

.., A
T

”(57. 5)]

(4. 7)

(4. 8)

The generalized forces associated with AU , AV , AU, and AV

(0-0. C1) (I3)

are re8pectively cbsigiated by A Fe.

3.11) A (13)

elements of AP(I3) are designated by

lT _ 2

AP(11) ‘ [AP(0)'AP<13)’ "

7

" ”(3)1

Let CR be defined so that

 

 

AU = CR AV

Then from (4.6) and (4.8) it follows that CR has the form

r _. _

C 0 . 0 c 0

R1,1 R(1)

C 0 0 c 0

R31 R<5)

C = 0 c 0 = 0 CR 0

R6. 2 Rm

0 C 0 0 c

R12, 2 R(5)

0

0 0 c 10 0

R31, 7 I

0 0 c 0 0

R35, 7 

P AF, and AP. The

(4. 9)

(4.10)

1)

 R(5)

(4.12)
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In a manner similar to that used to derive (2. 90) the generalized

forces AF and AP are related by

AP = cg AF (4.13)

The generalized forces AP(I3) do not have as simple an

interpretation as the node forces and moments. Many boundary

conditions can, however, be interpreted directly in terms of the

generalized parameters associated with the two end rows. We

note that pf?) corresponds to the vertical component of the

resultant force acting on the top edge of the half period strip and

p31) is the corresponding component for the lower edge.

4. 4. Node Coordinate Transformation Matrix

If the shell has n periods, the angle enclosed by the half

period strip is % . The matrices of base vectors of the general

coordinate system are designated by Jun and those of the

0., (BI-node coordinate system are designed by J(0. , (3) or simply

by 3(0) since the base vectors of node points on a common

meridian are identical. The base vectors are related by

J = D“) J(0) 1(0) (4.14),

(a)

The coefficient matrix in (4. 14) can be obtained directly from

Fig. '8 4. 3 and 4. 4 and is given below.
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F I ~ I

cos[(a-3)Z%- I - sin[(a-3)jf;1-] I 0—)

I I

' I ' l

13:93) = sin[(0.-3)-§-£ , COS[(G-3)fg : 0 (4.15)

I

I I

0 . 0 , 1

In a manner similar to (2. 100) we defined

(a)
D 0

1(3) = 1(0) (a) (4.16)

0 Dl(0)

4. 5. Formulation of Shell Stiffness Matrix

Since two integers are used to designate a node point, matrix

S defined in (2.63.) and (2.65) becomes a 48x6 matrix for this

formulation and is given in Table 4. 1.

We designate the triangular member by integer pairs i,j as

indicated in Fig. 4. 4. The elements of S are designated by 8k! ,

where the kth row of S defines the node points of triangle k which

in turn is ordered by

k = i+4(j-1) 1 (4.17)

If (01, 01), (02, (32), and (03, (33) are the node points of member i,j

then

‘11 = skl

‘31 = 81(2

CL2 = 8k3



99

8 Matrix.Table 4.1.

   

1
1
1
1
2
2
2
2

1
2
3
4
2
3
4
5

       

2
2
2
2
3
3
3
3

1
2
3
4
2
3
4
5

 
 

 
 
 

L 3
3
3
3
4
4
4
4
.

1
2
3
4
2
3
4
5

 

 

 

1
2
3
4
2
3
4
5
1
2
3
4
2
3
4
5

 
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
7
7
7
7
7
.

 

1
2
3
4
2
3
4
5

  

2
3
4
5
1
2
3
4

2
2
2
2
1
1
1
1
.
”
3
3
3
3
2
2
2
2

2
3
4
5
1
2
3
4

 
 
 

 

2
3
4
5
1
2
3
4

W
«
I
s
a
/
H
7
“
«
l
u
fi
a
a
e
a
a
i
e
x
u

 

4
4
4
4
3
3
3
3

7
.
3
4
5
1
2
3
4

3
3
3
3
4
4
4
4

 
2
3
4
5
1
2
2
4

 

2
3
4
5
1
2
3
4
;

4
4
4
4
5
5
5
5

 

5
5
5
5
4
4
4
4
6
6
6
6
5
5
5
5
7
7
7
7
6
6
6
6

7
.
3
4
5
1
2
3
4
2
3
4
5
1
2
3
4

 

      5
5
5
5
6
6
6
6

6
6
6
7
7
7
7

2
3
4
5
1
2
3
4
2
3
4
5
1
2
3
4

 
 
2
3
4
5
1
2
3
4
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O. = 8

3 k6

:3 = s
3 1‘7 (4.18)

As can be observed from Table 4.1

‘31 = ‘33

fil > [32 if i is even

51 < [32 if i is odd (4.19)

Substituting (2.102) into (2.109) and using the notation of this section

we obtain

(a.(a )' )' (a )
z (0) 1 l (0) 2 , (0) 3

Mk [Mk1 Doc) D(0) .Mkz D<k> D<0) .Mk3 Doc) D(0) ]

P '1

AU("‘1‘31 ' “1 )

Auwz"? “2)

  
AU

((13133: 0-3)

J

  

..
(4. 20)

From (4. 6) and (4.19) we obtain

...AU -1 r—C I O - p—Av —

(“151' “1) Rail): ($1)

I .

I (02) L _J

I

    
Substituting (4. 21) into (4. 20) we obtain
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(a ) (a > (a )
(0) 1 (0) 3 9(0) 2

1:“leD(1013(0) CR(G)+M1<3D(1<)D(0) CRR( D(k)D(0) CR02)]
1(1):3

1

WI)

Vail) (4.22)

This equation has the form

AA = [M M ]_AV 2 (4.23)

1‘ Vkl sz “31)

mag)   

The shell stiffness associated with triangular member k is

then given by

  

 

K = FMT r‘ [M . M ] =M 1‘ M
1‘ vkl k Vkl, sz Vk 1‘ Vk

T

ka2 if j is odd

Kkergq I“kn‘dv Mv1=M$Pka
k2 k2 kl k k

T

kal if j is even

h ..J 
(4. 24)

We partition the stiffness matrix in (4. 24) into 9x9 submatrices in

the form

r- H

Kk, L l Kk,1,’ 2

Kk == (4. 25)

Kk, 2, 1 Kk, 2,__2J
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The shell stiffness matrix has the form

where

  

r- -1

K11 K12

K21 K22 K23

K K K
K = 32 33 34 .

K43 K44 ' .

. ~

' , K13,13. K13,14

. K14,13 K14,14
L .4

(4.26)

K11= K1,1,1+K2,1,1+°” +K8,1,1

T

K12 ‘ K21" K1,1,2“K2.,1,2.+”° +K8,1,2

K22 K1,2’Z+...+K8,2,2+K9,1,l+...+K16’l’l

_ T ..

K23 " K32 ‘ K9124”“ +K16,1,2

K33 ‘ K9,2,2"'°' +K16,2,2"K17,1,1“"' +K24,1,1

K = K
14,14 41,2,2+"°+K48,2,Z

(4. 27)

4. 6. Shell ImPerfection

The meridian curve of a shell of revolution can be described

by the two functions rm) and z(n) (Fig. 4.1b) where n is a

parameter. In the discrete sense used here these functions become
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rm) = r“), r(z), ..., r(7)

(4.29)

Z

2(:3) = 25(11' ”'(21' (7)

The components of node points relative to the O-general coordinates

are then given by

l .9.

"(mm = "(131 MW 4%]

2 . ’L

3 _

“(4.13) ' ”(m ‘4'”)

The shell surface is assumed to have a slight imperfection with n

circumferential periods. The form of the imperfection is taken so

that the node components of the position vector of the undeformed

surface have the form

1 _ , , .1.

xm, 1'3) = (rm) + Egm) sm[ (a-3)—E—]) 6031(0-3lfil’l

2 . L .

"(mm = ".(m ”gun sm[“"3)%']’ “““'”f;

3 . .'

where

3(a) : g(1)' 00., g7 (4032)

called the imperfection function ani scalled the imperfection constant

are specified.
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4. 7. Boundary Conditions and Loading

The generalized displacement parameters of AV“) and

AV”) describe the deformation respectively along the top and

bottom edges of the half period strip. In order to interpret the

various types of boundary conditions we give the physical inter-

pretation of these parameters below and a graphic description in

Fig. 4. 5.

v?” = uniform radial displacement

2 . . . .
v0) = 8111 varying radial displacement

v(31) = cos varying tangential displacement

v?” = uniform vertical displacement

5 . . . . .

v“) 2 sm varying vertical displacement

6 _ . . .
vu) — cos vary1ng radial rotation

7 . . .
V“) = uniform tangential rotation

8 . .. . .
V“) = Sln varying tangential rotation

9 _ . . .
v”) - cos varying vertical rotation

(4. 33)

A similar interpretation holds for the elements of AV7 .

In order to tie down the shell we always required

4

Va) —- 0 (4. 34)

Four types of boundary conditions are considered. These boundary

conditions and their requirements on AV“) along the bottom edge

are as follows:
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Fig. 4. 5. Distributions associated with generalized coordinates v1.
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Free

4 _
V(1) - 0

Hinged

v1=v2 =v3 =v4 =v5 =v6 =v9 =0

(1) (1) (1) (1) (1) (l) (1)

Fixed

vl =v‘2 =v3 =v4 =v5 =v6 =v7 =v8 =v9 =0

(l) (l) (l) (l) (1) (1) (1) (l) (1)

Symmetry

4 5 6 7 8

vm ‘ Va) z "(1) = Vm ' Va) z 0
(4.35)

By symmetry boundary conditions we imply that the bottom edge lies on

a plane of symmetry with respect to the resulting deformations.

The type of load used is limited to an axial load. For convenience

we use axial displacement increments so that v37) is always specified.

The boundary conditions for the t0p edge are then as follows:

Free

no zero components

Hinged

vl =v2 =v3 =v5 =v6 =v9 =0

(7) (7) (7) (7) (7) (7)

Fixed

vl =v2 =v3 =v5 =v6 =v7 =v8 =v9 =0

(7) (7) (7) (7) (7) (7) (7) (7)

Symmetry

5 6 7 8

Vm = Vm z Vm = Vm ‘ 0

(4.36)
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The axial displacement increment is taken in the form

Av4 = p('r ) 5 (4.37)
(7) k

where 6 is a specified constant called the displacement increment

constant, and p (7k) is in general assigned a different value for each

linear increment and called the displacement increment function.

4. 8. Computer Pregram

A computer prOgram was written for the class of problems with

a geometric configuration, boundary conditions, and triangulation as

described in this Chapter. It permits a fixed normal surface load

and an incremented average axial displacement of the top edge. It

is used to obtain resultant axial force versus average axial displace-

ment curves, and displacement curves.

The program was written in 3600 Fortran source language for

the Control Data 3600 computer at Michigan State University. This

language contains the features of Fortran-63.

The program was written so that a minimum of input data is

needed. This data consists of fifteen computer cards describing the

geometry, material properties, boundary conditions, surface load,

and magnitude of axial displacement increment.

Computer program details are given in Appendix E.



V. COMPUTATIONAL RESULTS AND CONCLUSIONS

5.1. Some General Remarks

This investigation was primarily directed at the development

and explicit representations of arbitrary triangular member bending

stiffness matrices, and to determining their applicability for

geometrically linear and non—linear plate and shell problems.

Two bending stiffness matrices were obtained. As already

indicated, the displacement modes (3. 44) for one of them satisfies

compatibility to a high degree (see Sec. 3. 7) whereas the other (D. 2)

relaxes slope compatibility along the edge of adjacent members but

appears to give better numerical results. The importance of the

coupling between membrane and bending behaviors, particularly in

geometrically non-linear problems, is of course contained in the

shell formulation and reflected in some of the numerical results,

but membrane behavior was not a major point of consideration.

Very good comparative results were obtained; however,

the numerical results are in no way adequate for the purpose of

drawing any general conclusions. For this purpose the solution of

problems having regions with various forms of singular behavior

and the numerical examination of convergence associated with

increased refinement would be very useful.

Most of the numerical results were obtained from the computer

program given in Appendix E and based on the formulation given in

Chapter IV. The prOgram performs almost all interpretive and
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computational Operations internally from a relatively small amount

of input data necessary for the description of the problem and for

both linear and non-linear problems.

5. 2. Linear Results

In order to obtain an approximate estimate of the accumulative

roundoff error due to all sources in the sequence of computations,

an axially loaded perfect cylinder (Fig. 5.1) was solved. The problem

results in a uniform membrane stress state which the modeling can

describe exactly and yield results that are exact to within computational

erros. The results are given in Table 5.1. The accumulative effect

in non-linear problems is contained in these results since 25 increments

were performed.

Although the cylinder is initially perfect the accumulated round-

off error results in a fictitious imperfection. This appears suddenly

in the 20th increment and accounts for part of the reduction, in the

20th and 25th increments shown in Table 5.1. The imperfection

results in both circumferential and longitudinal waves. The longitudinal

waves are, however, too long, due to the node distribution, and

consequently the sharp reduction in axial load associated with the

bifurcation phenomenon is not revealed.

The displacements along a radial line for the linear problem

of a concentric plate3 with fixed boundary conditions and axial load

are given in Fig. 5. 2 and Table 5. 2. Results were obtained for both

bending stiffness matrices. Both matrices gave good results; however,

as already indicated, the matrix given in Appendix D gave particularly



Fig. 5. l and Table 5.1.
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Comparison for a uniform stress field.
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accurate results, that are in fact to within the roundoff error of the

c omputations .

Some useful results can be obtained by introducing the

constants c1 and C2 which we respectively call the primary and

secondary bending constants. We use these constants to alter the

6x6 member bending stiffness matrix I"i as follows

 

F of Pi clczri

ll 12

2 (5.1)

(11 czri czri

21 22  

where the F. are the 3x3 submatrices of I". . If c = c = l. 0
1k! 1 l 2

then the matrix is unaltered. If 0 < cl < 1 then the stiffness

associated with the primary bending modes is partially nullified and

if 0 < c-z < 1 then the stiffness associated with the secondary

bending nodes is partially nullified.

The node displacements along a radial line for various values

of 01 and c 2 of the concentric plate shown in Fig. 5.1 are given

in Table 5. 2. These results clearly show the dominant role that the

primary bending modes have on this solution. For c = l. 0 and
1

c2 = 0. 6 the stiffness associated with the secondary bending modes

is essentially reduced by 64% but the resulting increase in the

maximum displacement is only 2. 2%. From the definition of the

constants it follows that for c =1 02 = 0. 6 the displacement will

increase by

l
( 2 - 1) 100% = 177% (5.2)

(0.6)

 



Table 5. 2.

112

Plate (Fig. 5.2).and‘Percent Error.

Displacements Along a Radial Line for a Concentric

 

 

 

 

 

 

 

 

 

 

 

        

Radius of Node 3. 0 3. 5 4. 0 4. 5 5. 0 5. 5 6. 0

Exact Displacement 2. 852 2. 597 2. 011 l. 307 0. 6525 0. 1796 0. 0

Bending V 7

iiatrix, C1 C2

Table

13.1 1.0 1.c> 2.854 2.606 2.020 1.315 0.6573 0.1820 0.0

° 0.06 0.35 0.44 0.57 0.73 1.32

Table

3.3 1.0 1.0 2.752 2.516 1.949 1.265 0.6276 0.1694 0.0

3.51 3.10 3.06 3.24 3.97 5.68

Table

3 3 1.0 0.8 2.775 2.536 1.966 1.277 0.6344 0.1723 0.0

' 2.70 2.33 2.75 2.36 2.77 4.06

T;b3le 1. 0 0. 6 2. 814 2. 569 1. 992 1.295 0. 6465 0-1780 0- 0
° 1.34 1.45 0.97 0.92 0.92 0.89

T390313 1.0 0.5 2.852 2. 601 2.016 1.314 0.6582 0.1836 0.0

' 0.02 0.14 0.25 0.47 0.87 2.23

T333” 1.0 0. 62 2. 806 2. 563 1. 986 1. 292 0. 6441 0.1768 0. 0

' 1.61 1.30 1.25 1.22 1.29 1.56 -

T331316 0.992 0.62 2.854 2.607 2. 020 1.314 0.6552 0.1800 0.0

‘ 0.07 0.38 0.44 0.50 0.41  0. 22

   



113

E

l
\
\
\
\
\
\
X
R

r

  

   

P 60.

rigid-'1'

7

/

/

0‘. l'Lh/F"

)/    
III” II ”III

— — Bending matrix Table 3. 3 used

2

 Bending matrix Table D.l used and exact solution

/7'

O 

/

H

 

 

V
e
r
t
i
c
a
l
d
i
s
p
l
a
c
e
m
e
n
t
,

x
1
0

/

/

/

/

3.0 3.5 4.0 4.5 5.0 5.5 6.0

       
 

Radial distance from shell axis, in.

Fig. 5. 2. Vertical Displacements Along a Radial Line for a

Concentric Flat Plate with Fixed Boundary Conditions.
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5. 3. Non-Linear Results

Some numerical results for the large deflection problem of a

concentric plate (Fig. 5. 3) and two shallow conical shells (Fig. '3 5. 4,

5. 5) were obtained. These results are compared with the numerical

results of Newman and Reiss30 and the experimental results of Almen

and Lazyle. 29 Free boundary conditions were assumed and the bending

stiffness matrix given in Table 3. 2 was used for all three problems.

The results obtained in general compare favorably. For one

of the conical shells, both the numerical results of Newman and

Reiss and those obtained have a noticable discrepancy with the

experimental results of Almen and Lazyle. This could be due to the

presence of a partial constraint (friction) on the boundary when the

experiment was performed. To demonstrate this, numerical results

were obtained for a variety of boundary conditions (Fig. 5. 6). It can

be seen from Fig. 5. 7 that for hinged boundary conditions the

maximum axial load just before instability is approximately 12 times

the value obtained for free boundary conditions. A relatively small

radial constraint could account for most of the 10% discrepancy

present.

Results were obtained for the large displacement problem of

the concentric plate with the bending constants c 1 = 0. 992 and

C2 = 0. 62. The curve for these results is not shown since there is

no discernible difference between it and the curve given by Almen

and Lazyle.



115

 

 

 

 

 

 

  
 

 

         
 

0. 020"

mm

| 0.375" |

1. 0"

r: :1

Almen and Lazyle test

— —- — Present solution

—' "" Linear solution

9

8

/

l

/
7

/

/

I

6 ‘ I

5

. /

fl

3 4

we“ ,
«3 / /
o

1-1 3
/’/

l/

2 /

1

O/

0 1 2 3

Deflection, 0.01 in.

Fig. 5. 3. Load-Deflection Curve for a Concentric Flat Plate.



116

 

 

 
 

 

 

 

 

  

 

 

 

 

        

0.139"

I 0. 238'I

7 I E Q” I

12. 766"

rL

Almen and Lazyle test

0 Newman Reiss solution

— — — Present solution

9

8

7

6
I ’ 7%.." ’1

53' 5

o

o

-1 4

13"

8 3

._l

2

l

0

0 l 2 3 4

 
Deflection, 0.1 in.

Fig. 5. 4. Axial Load-Deflection Curve for a Shallow Cone.

  



L
o
a
d
,

1
0
0

l
b
.

117

0.0

M ‘0.25 N

98

L MM J

 

 

 
 

10. 25"
VI

 Almen and Lazyle test

0 Newman Reiss solution

— — — Present solution

 

 

 

  

 

 

 

 

           

Fig. 5. 5.

 1 2 3 4:

Deflection, 0.1 in.

Axial Load-Deflection Curve for a Shallow Cone.



1
0
0
0

l
b
.

L
o
a
d
,

@
@
®
o

ll 8

Boundary Conditions

top and bottom free

top hinged and bottom free

t0p and bottom hinged

top and bottom symmetry

 ll

10 

 

\
I
D

)
\
\
h
m

 

 

 

 

 

 

    

 
 

O

 ”
A
?

 

 

@/

if).

63
 

-2

\
P

 

-3 

-4

\
J

           
 

Fig. 5.6. Axial Load-Deflection Curve of the Shallow Cone Shown

in Fig. 5. 5 for Various Boundary Conditions.



V
e
r
t
i
c
a
l
d
i
s
p
l
a
c
e
m
e
n
t
,

x
-
l
O
.
l

i
n
.

R
a
d
i
a
l
d
i
s
p
l
a
c
e
m
e
n
t
,

x
i
o
'
3

i
n
.

31
.

a
n

O

-1

-2

-3

-4

-5

l 2 3 4 5 6 7

\ '

\
\

5.1250 4. 7396 4.3542 3.9688 3. 5833 3.1979 2. 8125

.7)

11sz
(12 f.

u

r

119

Node Point No.

 

 

 

 

 

     
 

Radial distance from shell axis, in.

  
 

 

 

 

 
 

 

 

 

       
 

Fig. 5. 5 with Free Boundary Conditions.

8

6 x
4
\\\

2 \\\

-2 \\

-4 \\

-6

. 5. 7. Displacements Along Radial Line for the Cone of



Node Point No.

120

 

 

 

 

 

 

 

 

 

      
  

1 3 4 5 (' 7

1

.3 0

"$2
-1 Q

5 \ \
8 -2 \ \

.9.

in“ s
Q -3 ; .

'5 \

.2

1:: _21
\

§ 1 \

®

-5

5.1250 4.7396 4.3542 3.9688 3.5833 3.1979 2.8125

Radial distance from shell axis, in.

 

 
 

 

 

 

 

 

 

 

-2

 
 

/
 

R
a
d
i
a
l
D
i
s
p
l
a
c
e
m
e
n
t
,

3
2
1
0
'
3

i
n
.

 -3     / 
 

Fig. 5. 8.

  
Displacements Along Radial Line for the Cone of

Fig. 5. 5 with Hinged Boundary Conditions.



121

Node Point No. (see Fig. 5. 7)
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5.4. Conclusions

The usefulness of stiffness matrices associated with arbitrary

triangular plate elements is self evident. With the aid of these matrices

and modern computing facilities we can formulate and solve many shell

problems. The ease with which many geometric configurations can be

modeled by triangular plate elements and the inherent ease with which

most boundary conditions can be imposed makes this procedure very

attractive.

The two bending stiffness matrices obtained for arbitrary

triangular plate elements appear to give results of sufficient accuracy

for many applications. To ascertain the full flexibility of this

procedures, however, will require more numerical results than

those obtained, especially for problems with various forms of singular

behavior.

This investigator was particularly interested in the bending

stiffness matrix given in Table 3. 3 because it is associated with

displacement modes that have regions of constant curvature and

twist, and can consequently be more readily adapted to problems

with non-linear stress-strain relations. The modes associated with

both bending stiffness matrices can be conveniently used to include

the effects associated with thermal strains that vary through the

thickness of the shell.
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Appendix A. OBLIQUE COOR DINATES

A. 1. Some Properties of Oblique Cartesian Coordinate Systems

Consider the oblique Cartesian coordinates designated by Lk

and the rectangular Cartesian coordinates designated by xk. These

coordinate systems are related as shown in Fig. A1. The coordinates

Ll, L2 and x1, x2 define a common plane, and the coordinates {,3

and x3 are normal to this plane. The angle {.1 0 4.2 (= x1 0 L2) is

designated by LIJ . Unit base vectors of the Lk and xk coordinates

are respectively designed by Ek and j'k . The associated reciprocal

base vectors are 3k and jk (= jk), and are defined by the properties

 

'e'k-El = 1fork=1

(A.1)

'j—k°j'£ = Ofor kfil

It then follows that the magnitudes of the base vectors are

IE I = l‘e' | - 1
1 2 (A.2)

I21) - I'ézl — 1
_ _ sian

71 -_2 1" 1-

IJI=IJI=IJ11=IJZI =1 (A...)

A position vector '1: can be represented in any me of the following

forms

- --k k:- 7k
r=§ek=§ke ZXJk=XkJ (A.4)

where Lk are called contravariant components of the vector, Ck are

called covariant components of the vector, 3k are called contravariant

126
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(b)

(
b
l



128

base vectors, and 3k are called the covariant base vectors.

The coordinates Lk and xk are related by

xl=§1+cos¢§2

x2: +sin¢§2

x3: +§3

In tensor notation (A. 5) can be represented in the form

k Ik

x =c£§

The inverse to(A.6) is designated by

Lk = d]; x1

where the matrices [cg] and [(1%] are related by

k k -1

Id, 1 = is, ]

The covariant components are related by

xk = d

§k=c

Substituting (A. 6), (A. 7), (A. 9). (A. 10) into (A. 4) we obtain

k- la- k 14-

; ek : X J! = g Ck]!

-k *1 ke-I
Cke = x1] = Lkdfj

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

5)

6)

7)

9)

10)

11)

12)

13)

Eq. '3 (A. 12) and (A. 13) can be satisfied for components of all position

vectors 7 only if
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.. I ...

= . 4

— _ k-J '
ek — d1 J(x) (A. 15)

From (A. 5) and (A. 9). we obtain

1 l 1-1 11 OT

c1 c2 c3 cos I11

1

g 2 2 2 _ .
3C1 c2 c3 — 0 51111.)! 0 (A.l6)

to? c: c; 0 0 1

‘_ _J _. ._

r— — )— —)

l 1 1 cos

d1 d2 d3 1 - sin L11 0

2 2 2 _ 1
d1 d2 d3 — 0 sin L); 0 (A. 17)

3 3 3

d1 d2 d3 0 0 l

    
For the oblique and Cartesian coordinates with covariant base

vectors as shown in Fig. A2 the transformation relationships are as

 
     

 

 

follows:

_E - 1203 0) sin (0 0-1 _7—

1 1 1 J1

32 = cos (.02 sin (1)2 0 j-Z (A. 18)

E 0 0 1 ; 3'
3 ’ 3

a _ ._ _J __ ...

'1- . - . - 1

J1 Fsm 102 81111;.)l 0 e1i

.- _ l —

J2 - (costsl sin 0.12 - sinw1 cos 002) C08 “)2 C03 (01 O 62;

3'3 0 0 1 E3;
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A. 2. The Plane Stress Strain Energy Expression Referred to

Oblique Cartesian Coordinates

The covariant components of stress, strain, and displacement

when referred to the x1, x2 coordinates are respectively designated

 

 

by gij , Sij and ui; and when referred to the L1, CZ coordinates

are reapectively designated by O'ij, eij’ and WI. The corresponding

contravariant components are designated by 9;”, g”, 111, 0'”, 61‘], and

w1 . The stress-strain relationships in plane stress are

11 _ _ E

51 ‘ 511‘ 2 (911+ ”$22)
1-1/

22 _ _ E

E ‘ £22 ‘ 1_ 2 (522 +511) (A10)

12 E E
0 = g = —— g = —- (l-v) g
«- 12 l+v 12 (l-VZ) 12

The strain displacement relationships are

_ l

m ‘ 2 (u1:j+uJ.1)

1 au'i Bu.

=7(—_—.—+ i) (A.21)

BXJ 8x

and

— 1— (w + )
6ij ‘ 2 i,j “3,1

1 3w. SW.

= §(—-}-+——J—) (A.22)

82;} at,1L

_ k 2

ij ‘ C'i Ci $1.1 ““231

= 5d! 5 (A.24)
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Eq. (A. 24) is equivalent to the following matrix operations

_

 

       

 

 

 

 

 

I " "- I - P I ‘- 1‘ 1 cos il-

511: E12 1 I '0 611 I E12 1 :'sin0
I l

"- _. 1- -- : "Eogl-T—f- --__.|---_ "—-I------

$21 I E22 'sin0 I sinq; 621 I 622 0 I

L. f ._ _ 1 .. _ I __ _ l .1

P E 1 cos 6 1 e

11 I sinL|J 11 sinlp 12

= ————————————— +———————————————————————
2

3|, 1 5|,

'2ng.). 611 silnq. €12I cos2 611+ 1 " 2cos
, sin 1).) sin L): sin I):

.. I

(21.25)

The plane stress strain energy for a thin plate of thickness t

and middle surface S is given by

1 ij

W = — t 0' 6..

I1 2 ISI“ ’1]
(A. 26)

Expanding (A. 26) and substituting (A. 20) into the resulting expression

we obtain

2 2 1

-22) " 2(1"’)(§~11§22 "£12”dx dx

(A. 27)

Substituting the strain relationships given by (A. 25) into (A. 27), putting

 

u = 2(1-v), and noting that dxl. dxz = sin 1); dgl déz we obtain

5t 1 2

WI = 2 . H .2 (611‘2C054’612J’622)
l 2(1-1/ )Slnlp S Sln 1).:

2 1 2

"“ (611622 '512 ”‘16 dg

Eq. (A. 28) is the desired relationship.

(A. 28)

2
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A. 3. The Thin Plate Bending Strain Energy Expression Referred to

Oblique Cartesian Coordinates

The covariant components of bending moments and curvatures

when referred to the xk coordinates are designated by in” and

5%., and when referred to the Lk coordinates are designated by m..

J 13

and Kij . The associated contravariant components are designated

identically except that the indices are raised.

The bending moment-curvature relationships in rectangular

coordinates are

mll : m -J(K + VK )

v- ...11 -ll 22

22

m ‘ Jr5322 ‘ "015224r ”511) (11,29)

12 _

.. - r3212 - .O’U-VHSIZ

where

’0/ = E 133

12(1 -V 2')

The curvature displacement relationships are

8 2W3

51.: 113 .. = -—-—i--—-.- (A.30)

J 1 1.1 3X 3x3

3W3

Ki. 2 W31. = ——i—'—-:' (A.31)

The components of the curvature tensors are related by

1 .k
Kij _ c.i cj 33k! (A.32)

_ k 1

:ij - di dj Kkl (A.33)
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Noting the similarity between (A. 24) and (A. 33) it follows directly

from (A. 25) that

 

 
 

    

PK“ K “ i- K I-MK + 1 K .1

«11 -12 11 : sinqu 11 sinip 12

= ' Z

_ cos 93 l l cos 1 _ 2cosgg

.512 £271 SinLIJ Kll sinL); K12l sin .0 "11 + sinzlp K22 simp “12

_ _. I ..

(A.34)

The strain energy W due to bending stresses for a thin

I
2

plate of thickness t and middle surface S is given by

1
w =—tffmin

I2 2 s"
4]. dx1 dxz (A.35)

Substituting (A. 34) into (A. 29) and then substituting the resulting

expression into (A. 35) we obtain

- __1__ 2 2 l 2

WI .- 2 Slnhll ff{ . 2 (K11 '- ZCOS¢K12+K22) ' “(K11K22 'K12)}d5 d;

2 S sin 01

(A.36)

Substituting (A. 31) into (A. 36) we obtain

2 2 2

 

 

3 w 8 w 3 w

w =—¢g:—f { l ( -2c08¢ +-'—73 )21‘2 281an sf “1124‘ 61213,; a{‘13,} 34.202;

2 2
3 w 82w 8w 2

. 3 3 3 1 2
-M [7— ' ———g -(-———).]1d§ d4

861061 8628; 2 .8802

(A. 37)

This is the desired relationship.



Appendix 13. CONSTRUCTION OF TRANSFORMATION MATRIX
(0)

D1(i)

This matrix relates the base vectors J(i) of member i with

node points 1, 2, 3 to the base vectors J(0) of the general coordinate

system and has the form

3“1(i)

720)

3'30)

  

7 _ ..

    

b11 b12 bl3 J1(0)

b21 b22 ID23 3 2(0) (3' 1’

b31 b32 b33 J3(0)
b _J h. ...

where the elements of the coefficient matrix are Obtained from (2. 101)

and are given below.

0
‘

I

11

12

U

l
l

13

21

22

23

31

32

33

_1[x1 -xl]

1'; <2) <1)

1 [x2 _x2 ]

I; (2) (1)

-1- [x3 -x3 l
13 (2) <1)

1 1 1 2 1

EU? ' aL2 x(l) ' a1"(2)+ ‘3 "(3)]

1 [-axz-a x2 ”22]

_—I—2A3 2 (1) 1 (2) 3 "(3)

1 [-a x3 -a x3 +12-x3]
"'2A"'13"' 2 (1) 1 (2) 3 (3)

3 2 3 3 2 2 3
i.[x2 x3 -x x2 +x x -x x +x x

2A (1) (2) (1) (2) (2) (3) (Z) (3) (3) (1)

3 2 ]

"‘(3)"(1)

J-[x3 x1 -x1 x3 +x3 x1 -x1 1:3 +x3 x1 -x1 x3 ]

2A (1) (2) (l) (2) (Z) (3) (Z) (3) (3) (l) (3) (1)

i-[x1 x2 -x2 x1 +x1 x‘2 «x2 x1 +xl x2 -x2 x1 ]

2A (1) (2) (l) (2) (2) (3) l2) (3) (3) (l) (3) (l)

(B.2)
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Appendix c. DERIVATION DETAILS FOR MEMBER STIFFNESS MATRICES

C. 1. Membrane Stiffness Matrix for Triangular Member

The membrane stresses of a member are associated with the

inplane displacements given by (3. 42) and have the form

L, w151+w222

e 1.1;{-p11).1 - (l-o.-[‘3)13>.3-[(1-<i-(3)2Aa2-l-0(2-2c1.-3[3)Abz]A).4

- [ (3(2a-8)Aal + 62111311».5 + [ 82Aa1+ ci(2(3..d).«.bl

- (1 -e-f1).(l-a-3f3)Aa2 + pzAbz] A16 31

+ 1}; {-(1-a-p)1212+[e(2-3s-28)Aa3 + (1-a-fi)2Ab3]A’~4

- [62.4.a3 + (1.d-(S)(1--3d+(3).4.b3 + man-(3m;1L1 + QZAbllAXS

+ [(32.4%1 + 6(2s—d)Abl]A).6} '32

(C. 1)

The partial derivatives of the displacement components are

O
:

5
9
—
0

 e 1"};{1313 + 2[ (1-6-8)Aa2 + 9613,2114

- 2[ BAal + aAbl])\5 + 2[((3..d)Abl + (1-6-28)Aal]>.6}

Ta— = "1’2: {1212 + 2[(1.3s.(3)Aa3 - (1-0-(3)Ab3]>~4

- 210.8513 + (2-30-(3)Ab3 + 8Aa1+ aAbl] 15

+ 2(8-s)A.bl>.6} (c.2)
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8w)l A

7,—5—-I;{ 11311”13 -2[ --(1-a0)A,z+(1-9-3I3IA~.21*4

- 2(e -p)Aa1 x5 + 2[ p Aal + aAbl + (2-2e-38)Aa2 + 8Ab2]).6}

awz

W: 1-2—{12X2-2[0Aa3 +(1-s-8)Ab3]>.4

- 2[(1..2d..(3)Ab3 + (a-B)Aal] A5 + 2[(3Aa1 + aAbl] 1.6}

((3.2)

The deformation parameters 61, 62, 63 are defined by (3, 15) and are

related to displacements by (3.16). Substituting (C. 2) into (3.16) we

obtain

61 a 1111 + 2A{[ .(1.2s.(3)AaL3 + (1.61—2(3)Ab2]>.4

+ [ClAa3 + (1.6...(3)A.D3]>.5 - [(1-O-(3)A.az + pAbz] 1.6}

£2 = + 1212 + 2A{f-[ aAa3 + (1-6-p)Ab3]x4

-[(1-2(1-B)Ab3 + (6-0)Aa1115 + [(3.4611 + 6Ab1]>.6} (0.3)

63 £313 + 2A{[(l-s-s)Aa2 + 8Ab2]).4 - [ [BAal + aAbl])\5

+[ -(<i-[3)Abl + (l -o-28)Aa2] )‘6

The plane stress strain energy expression (3. 18) can be expressed

in the form

a2 2

a

W =-—é—{41A i—l—+u)ff€2dadB+—l—(2+u)ff62dad(3

I1 4(1-1/2) Si 1 4“? Si 2

8.2 8.13.

2

+4-]X(_%+H)ff€§ dad{3+ 4%(—:7—— “)ff6126 dadfi

SiSI

aza a31a
3

+2A(-7—- Mffeze3dddp+4—A(T 1.0%fodads}

51 SI

(C. 4)



  



Table C1.
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Some Definite Integrals

 

   
2592 xff f(o,fi) dodB

area

 

 

 

 

GB

(.1 «Zn-ma

(1 -2a -p)(1-a -25)

(14.25)2

a (l -o 43)

(1 -a -m2

50-0 43)

o. (1 -2o 45)

o.(l -0. -2(3)

(1 -G-ZF3)(1 4143)

(1 -ZG-B)(1 4143)

(3(1 40-13)

(3(1 411-743)

(1 4143)

(l -2a-[3)

(l-a-ZB)

(l-o-ZB)2

(a -p)2

(1 -2°.-(3)(0 43)  
132

72

108

63  

-15

60

-72

36

63

-45  
-12

-108

-36

36

-45  

85

34

18

63

13

~12

-27

-3

-21

-72

24

-36

-108

63

36  

-15

12

21

-51

60

36

-72

36

63

-18  
132

108

72

36

-18  

 

-108

432

216

216

-108
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From (C. 3) and Table Cl we obtain

3 1 3 41111

gfosldadgaz-3—1l).l + -3-——593{216>.l 1.5-216 1116}

1

2

+;—$3{36xf +54x§+5412+36113-721316+36111}

41113
122

gfeg dads: 313x3+ 3T93{-43>.2161>.3+216>.16}

1

+—4——AZ {5412+361§+5412+3614x +3615). 7211}
2592 4 6 5 6 ‘ 6 4

ffezdads= 1—1212+4A1———3 {216x31 -216>.).}
s 3 2 3 3 2592 4 35

1

+—"’——A2 {5412+54>.2+36>.2 7211 +361). +3611}
2592 4 5 6' 45 56 45

21113
1

ff 6162 map: -1313>.l>.3 +———339——-3= {216 x315 - 216 1316}

SI

2.41332 3 3 3

+3-—3———931 {-216114+ 2161113} +-3——4593{.1814-1815-3613

-7211 +36156416+3611}
4 5

21113

ffeze 3 dads: -3- 13131313 +——--3——-5932(216 1413 - 216 1313}

Si

21113

+33—9—3 { 216 x413 + 216 1613}

4A2 2 2 2
+3393-{-36>.4-1815 -1816+36x4>.5 -7213x3+36x4x6}

1 2111

fS f 63 ldodB = +—3 11131113 +—-—-3--—593 {216 1x4 - 216 1113}

SI 211113

+35——9-—33'{216 1513 - 216 1613 3

312—132 2 2 2
+7—593 {-1814 - 36 15 - 18 16 + 36 1415 + 361516 - 721416}

(C. 5)
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Substituting (C. 5) into (C. 4) we obtain the expanded form of

F A (C.6)
i .

where I"11 , called the member membrane stiffness matrix, is

given in Table 3. 2 and

 

A1i = [13 .. 16] (C.7)

As shown in (3. 83) the membrane and bending behaviors of the

member are uncoupled so that from the principal of virtual work

6W

I1 .
El. : 8x3 : P11. A1. le, .00, 6 (C08)

1 J 1 1

where El are the generalized forces associated with the generalized

i

coordinates 1 A .
l.
1

C. 2. Bending Stiffness Matrix for Triangular Member

The bending stresses of a member are associated with the

displacements normal to the plane which have the form

EL - W33 '33

= 11(3)“? + (3(l-o-5))\8 + o.(1-11--(3)>\43

+ [Lam-1911.31 + run-13mm] x10 - [<1-a-2m11-a-mA32

+ [3(1 -o.-ZB)AbZ] X11 + [o.(1-20.-(3)Aa3 + (1 -o.-fl)(l -20.-(3)Ab3] X12

(C.9)
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Substituting (C. 9) into the expression (3. 23) relating the deformation

parameters €4,65,€6 to W3 we obtain

64 - 2X7 + 4(-Aa1 + Ab1))110 + ZAblel - 2Aa3X12

‘ Ab2”‘11 + 2Ab3"12
-21 -2A 1 +4(-A

a265 8 a1 10

66 = ' 2"9 + 2Ab1x1o ZAaZXII + 4"Aa3 + A163)"12

(C.10)

From (C, 10) and Table Cl we obtain

ff e4 dads: 21‘2 + 8150+ 1:1 + 1:3 - 213131+ 217113 -3139111

S].

”3110112 “311012

f f a: dads: 2128+1f9+ 81?1 + 133 + 213110 - 213113 - 31—119111

S].

'3‘10112 'gxuhz

1‘er (10.de 21f3+120 +1f3+81f3-219110+219111 -3139113

1

“3110112 éxllxlz

éf €465 dads = 21318 + 13110 - 17113 + 21?0 + 2151+ 2119111

i

' )‘loxlz ' x8xll + X8)‘12 ' k11>‘12

2 2
4f €566 dads - 2111+ 2133 + 21819 + 13111- 13110 + 2111113

1

' )‘llxlo ' 19113 + kc9>‘1o ' xlleo

2 2
131 6661 dadp _ 21133 +110 + 21917 +191133 - 19111+ 2133110

1

“)‘12X11'X7xlo +19111-139131

((3.11)
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Substituting (C. 1 1) into (3. 25) we obtain the expanded form of

P A (C. 12)

where F22 , called the member bending stiffness matrix, is given in

i :

Table 3. 3 and

 

T _
Azi - [ks], .00, x12] ((3.13)

The principle of virtual work requires

3W

I2 .
223 = 3343 =Tzzi AZi 3:7, ..., 12 (C.14)

where E 2 are the associated member generalized forces.

i



Appendix D. SOME ADDITIONAL RESULTS ON THE TRIANGULAR

PLATE BENDING STIFFNESS MATRIX

D. 1. Alternate Form of Member Bending Stiffness Matrix

The six independent displacement configurations associated

with bending and corresponding to those given by (3. 43) are taken in

the form

_ _ ..3_

uL — W3 e _ {gaZ ga3 >17 + ga3 ga1 x8 + ga1 ga2 19

. 3

+ ga2 ga3 gbl )‘10 + ga3 gal gbZ )‘11 + gal gaZ 363 "12}8

(D.l)

These displacement configurations have the same qualitative form

given by (3. 43) and shown in Fig. 3. 6; however, displacement and

slope continuity are not in general preserved for any triangulation.

As a result the element of the stiffness matrix cannot be interpreted

as satisfying upper bound requirements. This stiffness matrix

appears to give better results whenever large curvature gradients

are not present (see Ch. V) and is consequently included here.

Substituting from Table 3. 1 into (D. 1) we obtain

e = {0.317 + (S(l-o-BMB + (l-o-(B)o. X 9

+ ofl(o. 43))» 10 + (3(1-0. -(3)(-1+o.+2(3))\l1

+ (1-6-6)(a)(1-26-p)113 (13.2)

On taking the second derivatives of (D. 2) and substituting into the

expression for the deformation parameters (3. 23) we obtain

142
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64 : -211X7 - 611(a-B)Xlo + 2I3(1-u-B)Xll- 2£3(l-o. -(3))\12

65 = - 21218 - 2116119 + 612(1-0 -2(3)Xll + 213(1le

66 = - 213139 + 21113119 - 2136111- 613(1-2a -13)113

(D.3)

From (D. 3) and Table C1 we obtain

2 _ 2 2 2 2 1 2 2 _1_ 2 2
£f€4 dads _ 21117 + 311110 + 3 13111+ 3 1 113

i

4 4 2

' 3111317111 + 3111217112 ' 312191912

2 _ 22 22 1_ 22 1_ 22
ffes dads— 21318 + 313131+ 3 13113 + 3 11110

S.
1

4 4 2

' 3£2£3"8"12 + 3121311910 ' 3131111910

+3121“? +3—1f1f +-1-1"'1‘1Z -11 1 11
2 _ 2

£I‘6dadp"u3" 312 0 3 1 3 31910

1

3121011W
M
:

\
O
N

2
I -—13 1142111 I I X h

_ 2 2 2 1 2 2
3f E455 dadfi ‘ “1121718 + 311*7’30 ‘ 3 111313113 +2 13119

1

5 1 1 2

' 31113110111- 31113139113 + 2 £2111

£1111 11111
122 2 2

1" '3‘2"8"11+3 23812’3’ 231112‘6312

_ 2 2 2 _1_ 2 2

Isf65‘6 “dB ' 212‘3‘8’9 + 31211911 " 3 12111910 + 2 13111

1
5 1

3121911112 3‘2 1111119+3

:132 21211 +51111 -1111 1
1

'6! 0'3'3912 331910 3311210
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2 2 2 1 2 2
= — —- -1

£95664 dadfi 2131119119 + 3 1319113 3 131319111+ 2 3113

1

5 1 1 2
- _. 1 __1 1 —1
313 1113119 3 3 2*12"11+2 1130

1 2 2 2 2 2 1
-.. -_ _ -_ 1
612111 31113119+3 111217311 3£1 2"10"11

(D. 4)

Substituting (D. 4) into (3. 25) we obtain the expanded form of

_ 1. T
WI ‘ 2 A 2. I22. A2. (13.5)

2 1 1 1

where the member bending stiffness matrix P22 is given in Table

i

D1.

D. 2. Member Transformation Matrix for Bending

For convenience the member transformation matrix M23

relating the deformation parameters 1 7, . . . , 1 12 , associated1

with bending, to the normal node displacement components and

inplane rotation components is given. This can be obtained by

taking the transpose of the coefficient matrix in (3. 72), deleting

the first six rows, and deleting those columns associated with

inplane node displacement components and rotation components

normal to the plane. The transformation matrix is given by (D. 6).



 1
0

1

1
1

1
;

I
L

1
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3   
t.
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)
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+
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+
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Appendix E. COMPUTER PROGRAM

153.1.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(13)

(13)

(14)

(15)

Sequence of Computer Operations

Start.

Read input data (see Sec. E. 4).

Construct matrix of sin and cos functions associated with the

included angles of half period strip.

Determine the node position vector components for the perfect

undeformed shell.

Complete construction of 5 matrix.

(a)
Form node coordinate transformation matrices Dl(0)

Form the nonzero elements of CR

(0)

Interpret boundary conditions and determine the unspecified

elements of V.

Determine the node points associated with member i, j .

Compute the side lengths of member i,j .

Compute some constants associated with members i j

and used in (20).

Form membrane and bending stiffness matrices for member i j .

Form member transformation matrix Mi for member ij .

Repeat (9) to (13) for j = (1,12) or (2,12) or (1,11) or (2,11)

if both ends are open, only bottom is closed, only top is

closed, both top and bottom are closed.

Correct components of node position vectors for small

imperfection.
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(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Start non -linear iteration cycle.

Clear shell stiffness, generalized implied load, and

generalized unit normal load matrices.

Start construction of stiffness matrix.

Determine node points of member k.

Form member coordinate transformation matrix D212),

Form member transformation matrix ka .

Form Pk. ka

Form shell stiffness of member k (MAT I". M

Vk; kl Vk'.) .

Calculate generalized forces due to a unit normal load acting

on member k.

Use (22) to determine change in member k generalized forces

£3233< due to previous linear increment, and correct 2k.

Use (21) to obtain generalized implied load associated with

member k. and add to generalized implied load matrix.

Add the elements of (23) to appropriate elements of shell

stiffness matrix.

Repeat (19) to (27) for all 3members and thus form shell

stiffness, generalized implied load, and generalized unit

normal load matrices.

Determine axial load.

Print, iteration number, axial force, axial deflection,

generalized displacements, and generalized implied loads.

If the specified member of linear increment have been

performed, stop; otherwise,continue.



(32)

(33)

(3 4)

(35)

(36)

(37)

(38)
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Form load increment AP, associated with residual load,

displacement increment, and normal surface load. (The bracketed

term of 2. 59).

Form shell stiffness submatrix K11 (2. 45).

Form K11.1 .

Compute generalized displacement increment AV1 .

Correct generalized displacements Vl .

Correct components of node position vector.

Return to (17).

E. 2. List of Fortran Symbols

AUZ. 9. 2)

AREA

AXDIS

AXLOAD

C(IZ. 9.12)

CMU

CNP

CNU

COSCON(5)

cosrva)

MV.
1

A area of triangle

(531 average axial displacement of top edge

pa) , p39) resultant axial load of half

period stripu

non zero elements of C

R19)

Mi for 12 members with zero element

submatrices deleted

u = 2(1-V)

n number of periods

V Poisson's Ratio

= a1, a3, a3, a1, a5 member constants

cos[(o. -3)¥3;] for a :1, 5



COSM2(5)

CSLOAD

CT(lZ,6)

WW. 9)

DU(3)

DV(7, 9)

E

EK(1E,1E)

EP(6,12)

EPS

FE(4,12,12)

FIMP(7)

GK(63,63)

GRS(63,63)

11, 12, 13

IBC(63)

113c2(4), IBC3(4)

IBC 4(8)

IBC BD, IBCBR,

IBC TD, IBC TR

ITC YCLE

J1,JZ,J3
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cos[(o - 33313;] for (1 =1, ..., 5

constant uniform normal surface load

M31 D(O) I = 1 or 2 or 3 submatrix of M. D23)

(1) 1

AP generalized load increment

matrix used for intermediate operations

AV generalized displacement increment

Young's Modulus

K see (4. 24) shell stiffnesso'f k member

11

member constants used to constant DE?)

imperfection constant

the elements of 2 arranged in 3D array

imperfection function

complete stiffness matrix K

submatrix of K designed by K in (2. 45)
ll

integer constant of node points 0.1, o. 3, (13

matrix of integer constants designating non-

zero elements of V

matrix of integer constants describing unspecified

elements of V“) and V”) for hinged boundary

conditions, for symmetry boundary conditions,

for fixed boundary conditions

integer constants either 1 or 0 used to

specify boundary conditions

number of iteration cycles

integer constants of node points (31, (32, (33



KE, K9, LE. L9

M0(6, 48)

MOB(3), MOB(3),

MOD(9), MOE(3),

MOG(3)

NGKS

NP

OPA(3, 3), OPB(3, 3)

PINC ON(40)

C(63)

(WW. 9)

RR(7), RX(5, 7),

RY(5, 7), RZ(5, 7)

SA(3, 3, 5)

513(3, 3)

SIDE(8)

SIDESQ(8)

SINM2(5)

STIFB(6,6,12)

STIFM(6,6,12)

TAXLOAD

v(7, 9)

WBl, WBZ, WB3,WM1,

WMZ, WM3, WS( 4)

WCON
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integer constants

S matrix

matrices of integers used to locate the position

of elements in a matrix

integer indicating the rank of K11

number of periods

matrices used to describe the sign preceding

[.1 in the construction of member stiffness matrices

p (144) displacement increment function

AV1 submatrices of AV described in (2.45)

generalized forces associated with uniform

normal surface load

components of position vector

D83) for o. = 1, . . . , 5 node coordinate trans-

formation

(0)
D.

(1).

11,12,13,11,12, matrix of member side lengths

2 2 2 2

1’12’13’11’

. 1r _
sm[(o.-3)3-3-;1-] for a -l, ..., 5

f

bending stiffness matrices for 12 members

membrane stiffness matrices for 12 members

2n pg?) total axial load

matrix of generalized displacements

stiffne s s c oeffic ients

residual load relaxation constant
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1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

E
:

1
0

2
0 0
9
0
0
0
E
+
0
0

0
.
0

O
9
6

O
9
9

I
9
0

0
9
9

0
9
6

0
9
0
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E. 4. Binary Deck Structure

(a) Job card

(b) Binary object program

(c) Run card

(d) 6 data cards used for all problems

(e) 15 data cards used to describe problem as follows:

Card (all listing are from bottom to t0p) Formate

(1) 4 stiffness constants 4F5. 2

Primary membrane

Secondary membrane

Primary bending

Secondary bending

(2) Young's modulus, Poisson's ratio E10. 2, 1310.3

(3) Radial component of node points 7F10

(4) Vertical component of node points 7F10

(5) Thickness of triangles 12F5

(6) Boundary conditions are 411

described by 4 integers A, B, C, D.

A, B are for the top edge and

B, C are for the bottom edge.

A, C = 0 or 1 if radial displacement

is 0 or unconstrained

B, D = O, or 1 if rotation tangent

to the edge is O or unconstrained

(7) Relaxation constant E10. 3



172

(8) Axial displacement increment

(9) Internal pressure

(10) and (11) Axial displacement

increment function

(12) Number of periods

(13) Number of axial displacement

increments

(14) Imperfection constant

(15) Imperfection function

E10.3

E10.3

80F2.l

I2

12

1210.3

7F10



  


