““43“ LIBRARY Michigan State University l This is to certify that the thesis entitled The Thermal Performance Of An Underground Air Pipe presented by Brian Michael Leary has been accepted towards fulfillment of the requirements for Master's Mechanical degree in ——Eng—i—neering Major professor Date 4-24-86 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution i. RETURNING MATERIALS: )V1531u1 Place in book dron to LJBRARJES remove this checkout from .AuuumynaauL your record. FINES will be charged if BEBE-is returned after the date stamped below. THE THERMAL PERFORMANCE OF AN UNDERGROUND AIR PIPE By Brian Michael Leary A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Mechanical Engineering 1984 ti pr of tc to to of to of ABSTRACT THE THERMAL PERFORMANCE OF AN UNDERGROUND AIR PIPE By Brian Michael Leary The heat output of a typical air-to-air heat pump decreases as the ambient temperature decreases. A potential solution to this problem is to preheat the air supplied to the outside heat exchanger of the heat pump by drawing it through an underground duct. A finite difference analysis of the heat transfer from the soil to an underground pipe in which air is flowing is performed in order to determine the feasibility of this technique. The latent heat due to the formation of ice lenses and the migration of moisture toward the freezing front are included in the analysis. The results show that this would be a viable technique for preheating the air supply of an air-to-air heat pump significantly improving its capability to supply heat at low ambient temperature while raising the coefficient of performance. .uuv R IV: ;-‘ lxl. rbe .hu 5 l ACKNOWLEDGEMENTS I would like to thank Dr. Merle C. Potter for his help and guidance throughout the preparation of this work. Thanks also to Dr. J. Beck and C. R. St. Clair, Jr. for their helpful comments and suggestions. Additionally, I would like to thank Ms. Judy Duncan for her patient and careful preparation of the final manuscript, Mrs. Deann Heath for preparing many of the figures, and Mr. Paul Zang for his help with generation of the figures detailing the results. Finally, I would like to thank my parents, John and Patricia Leary, and Darlene Bloomquist for their support and encouragement throughout my academic career. ii f‘l TABLE OF CONTENTS Page LIST OF TABLES ................................................. v LIST OF FIGURES ................................................ vi NOMENCLATURE ................................................... vii CHAPTER 1 -- INTRODUCTION ...................................... l 1.1 Modifications to Improve Heat Pump Performance .......................................... 3 1.2 Surface and Well Water Systems ....................... 5 1.3 Recirculating Systems ................................ 6 1.4 Recirculating Air Systems ............................ 9 1.5 Potential for Thermal Reservoir Systems .............. 10 1.6 The Buried Duct System ............................... 11 CHAPTER 2,-- ANALYSIS .......................................... 17 2.1 Determination of Energy Stored in Soil Column .......................................... l7 2.2 Distance to which Heat Extraction Affects the Surrounding Soil ......................... 18 2.3 Governing Heat Transfer Equation ..................... 19 2.4 Modes of Heat Transfer ............................... 20 2.5 Boundary Conditions .................................. 21 2.6 Initial Soil Temperature Distribution ................ 24 2.7 Soil Thermal Properties .............................. 24 2.8 Soil Conductivity and Heat Capacity .................. 24 2.9 Moisture Attraction .................................. 26 2.10 Nature of Air Flow in the Duct ....................... 26 2.11 Numerical Stability .................................. 30 CHAPTER 3 -- NUMERICAL MODEL ................................... 31 3.1 Soil Properties and Initial Temperatures ............. 31 3.2 Soil Temperature Profile ............................. 34 3.3 Determination of Time Step ........................... 34 3.4 Moisture Migration Function .......................... 36 3.5 Determination of Soil Heat Capacity and Conductivity as Functions of Temperature .......................................... 36 3.6 Derivation of Heat Transfer Equations ................ 37 3.7 Numerical Heat Transfer Equation ..................... 41 3.8 Soil State Change Adjustment ......................... 45 3.9 Preparation for Subsequent Time Step ................. 46 TABLE OF CONTENTS (continued) Page 3.10 Adjustment for Insulation Condition and Plane of Symmetry ............................... 45 3.11 Reinitialization of Soil Temperature Array .......... 50 3.12 Programming Technique ............................... 50 3.l3 Computers Used ...................................... 51 CHAPTER 4 -- SUMMARY OF RESULTS ............................... 52 4.1 System Feasibility .................................. 52 4.2 Economic Feasibility ................................ 50 CHAPTER 5 -- CONCLUSION ....................................... 62 CHAPTER 6 -- RECOMMENDATIONS .................................. 63 APPENDIX A -- HEAT TRANSFER PROGRAM ........................... 67 APPENDIX B -- INTERACTIVE MICROCOMPUTER PROGRAM ............... 78 APPENDIX C -- ONE PASS TEST PROGRAM ........................... 87 BIBLIOGRAPHY .................................................. 103 LIST OF TABLES Table Page 1 Initial Values ............................................ 33 2 Initial Soil Temperature Distribution ..................... 35 3 State Change Adjustment Table ............................. 47 LIST OF FIGURES Figure Page 1 Balance Point of a Heat Pump ............................ 2 2 Heat Only Heat Pump Performance ......................... 4 3 Well Hater Reinjection System ........................... 7 4 Buried Refrigeration Tubing Loop ........................ 8 5 Vertical Recirculating System ........................... 10 6 Air Recirculation in Crawl Space ........................ I] 7 Crawl Space One Pass and Bypass Configurations .......... I3 8 Proposed Air Pre-conditioning System .................... I4 9 Plane of Symmetry Bisecting Pipe Vertically ............. 22 10 Insulated Y-Z Planes at Ends of Pipe .................... 23 11 Soil Temperature Profile ................................ 25 12 Soil Thermal Capacity as a Function of Temperature .......................................... 27 13 Ice Formation Around Buried Duct ........................ 28 14 Velocity Profile in Duct ................................ 29 15 Numerical Scheme ........................................ 32 16 Heat Balance on Soil Elements Surrounded by Soil Elements ........................................ 38 17 Heat Transfer to 3 Soil Element which Borders a Fluid Element ......................................... 40 18 Heat Transfer to Fluid Elements ......................... 42 19 Satisfaction of Insulated End Conditions ................ 48 20 Plane of Symmetry ....................................... 49 21 Outlet Temperature Versus Time at Four Velocities .............................................. 53 22 Temperature Versus X-Position for Various Times when the Air Velocity is One Foot per Second ...... 54 23 Temperature Versus X-Position for Various Times when the Air Velocity is Two Feet per Second ...... 55 24 Temperature Versus X-Position for Various Times when the Air Velocity is Four Feet per Second ..... 55 25 Temperature Versus Time at Various X-Positions in the Tube when the Air Velocity is One Foot per Second .................................................. 57 26 Temperature Versus Time at Various X-Positions in the Tube when the Air Velocity is Two Feet per Second .................................................. 58 27 Temperature Versus Time at Various X-Positions in the Tube when the Air Velocity is Four Feet per Second .................................................. 59 28 Potential Duct Configurations .................. - ......... 55 vi NOMENCLATURE area, FT2 thermal diffusivity, FT2 /s heat capacity, BTU/1b- F energy, FT-lb 2 convective heat transfer coefficient, BTU/FT distance FT 2 thermal conductivity, BTU- FT/HR- FT -°F distance, FT moisture content, % mass, 1b 3 density, 1b/FT heat, BTU e Reynolds number temperature, °F time, HR 2 overall heat transfer coefficient, BTU/FT -°F velocity kinematic viscosity, FT2 /5 change differential Zr-xxa'mnw D artesian coordinates Cartesian X Cartesian Y Cartesian Z rray indices Cartesian Z direction Cartesian X direction Cartesian Y direction time ubscripts air deep soil region final initial soil time zom—h-hCLmM PRC—4H):- N-<> uwum_:mc_ -r- eQm .op mmeHu [/11 1 I 7 EEXHX Q X 24 conservative assumption since there would be heat transfer from these blocks to the region containing the horizontal pipe. 2.6 Initial Soil Temperature Distribution The initial soil temperature distribution is described by a second order polynomial with a sinusoid superimposed (Figure 11) (19). The sinusoidal variation in temperature does not extend to a significant depth since heat transfer occurs into the low temperature areas from above and below as the fluctuations penetrate deeper into the soil, tending to quickly eliminate the fluctuations. 2.7 Soil Thermal Properties After the governing heat transfer equation is identified, the initial and boundary conditions determined, and the geometry of interest specified, the thermal properties Of the heat transfer medium are considered. The thermal properties of soil depend upon composition, partical size, and moisture content. Soil thermal properties are empirically determined due to the enormous variation possible even in similar soils. 2.8 Soil Conductivity and Heat Capacity Some of the changes in soil thermal properties as functions Of temperature are universal and can be specified. Soil, at temperatures above 32 degrees Fahrenheit has relatively low thermal conductivity, and relatively high heat capacity. Soil which is in the process of freezing has a slightly better conductivity, and a very high apparent heat capacity due to the release Of the latent heat of fusion of the soil moisture as it freezes. The bulk of the water in the soil freezes 25 N mrweogm mgzgmgmasoh Fvom .PF mmonm FREQ Mbfikmbm I N1 wtbkv‘mquxmk $2.3m“)? RZMQQDQT mtbkv‘QMQIE 45% QMMQIIJ EL HMEQmm .e_ mmauea m 2KOQQ 2.2925be /1\ A\ sand «2 NOS a form is us ‘lalul the DISC 30 2.11 Numerical Stability Finally, before the numerical model is developed the problem was analyzed to determine if it would be numerically stable. The formula 2 * Ax /v At > 6 is used to insure three dimensional numerical stability using these values a = .00144 ftz/hr Ax = 1 ft2 1/360 hours At the above criterion gives Ax2/a*At = 250,000 predicting a numerically stable solution. CHAPTER 3 NUMERICAL MODEL The geometry and boundary conditions for the numerical model are shown in Figure 15. A description of the procedures performed in the numerical analysis, in the order in which they are performed in the program follows, beginning with the values chosen for the program variables. 3.1 Soil Properties and Initial Temperatures Initially, reasonable values for the soil properties and initial soil temperatures had to be determined (Table l). The deep earth temperature in central lower Michigan is 50 degrees Fahrenheit (24). The lowest average ambient temperature in central lower Michigan occurs during the month Of January and is 30 degrees Fahrenheit (25). In order to create a "worst case" condition for the input air temperature to the duct, it was held at zero degrees Fahrenheit. The heat capacity Of air is 0.24 BTU/1bm-°F and its thermal conductivity is 0.0142 BTU-l HR-FT-°F (26). The overall coefficient of transmission from the soil to the air is 1.40 BTU/HR-FT2-°F (27). The density of air at 20 degrees Fahrenheit is 0.08275 1bm/FT3(28). Clay was chosen as the soil for the simulation. The thermal conductivity of Healy clay with 10 and 20 percent moisture content is 0.458 and 0.833 BTU-FT/HR-FT2-°F, respectively, and their respective heat capacities were .2 and .3 BTU/1bm-°F. The 31 32 Pete: Fcowcoszz .m_ umame mmo $2th 0: Lao; we we_h mamcm> ocsumcmaEmh uw—uzo .FN mmawmd Amcnvp ~. __ o. m o u m m r n o o. Imam o. :11 oN mac 4 on man N ov mac _ om Aaav 54 vacuum can wood oco m_ xuvoopm> cw< on» cue: weave msowce> com :o_upmoaix mzmcm> weaveLmQEmh .NN mmszm Aummevx om ow on ON 0. o o. \ .\ ON on . e... a. an... a; on H 55 accomm cog wood ozh mw xuwoopm> cw< on“ cog: weave mzopcm> so; coeu_moaix mamcm> mczumcmasmh .mm mmzwfia Apmmwvx om ca on o~ o. 7 o .v o. o~ «I ~. on m: a x: v m: _ ov Aaav on H. 56 ccouom cog Home caou we xu_oo_o> c_< asp cog: woe?» maowce> com cora_moa-x mzmcm> mcaumchEmh .em umaoHd Aummmvx om ow on ON 0. o 0. ON :1 ~_ m: m m: w m: _ on ov CL P on 57 ccoomm com “com mco we xuwoopm> c_< esp cog: maze one cw m:o_awmoa-x mzoece> no we?» mzmcm> acauecmasmh .mm mzswad 3.2: N. : o. m o h m m t n N _ o . 0. Pump. 0. ON on hum—u on I 9. hum... om Cay A om 58 uncomm son new; 03» m? xuwoo~m> sw< esp cog: maze we“ cw mco_ppmoaix mzowce> an we?» mzmco> mezuecmasop .om mmzuHL :2: N. : o. m w h m w v. n N . o o. hum... 9 ON kmm... on om hum... cm I 0? CL A om 59 vacuum cog Home Lao; me xawoopm> cw< one can: mnap msu cw meowuwmoaix maowce> on week mzmcm> mczaecoasmh .NN Manama at: N. : o. m o b m m f n N . o hum: o. o. hum... on ON Hum... cm on O? Gav Om ._. 6D for a 12 hour period. A 24,000 BTU heat pump would require approximately 1200 cubic feet per minute of 30 degree air to maintain its output (31). Therefore, 20 ducts would be required to supply air to a heat pump of this size. If the 50 foot long pipes were located 15 feet apart, assur- ing no interference between pipes, 15,000 square feet of land would be required. However, since sufficient heat is contained in only 2063 square feet of land to supply the heat pumps seasonal demand an area substantially smaller than 15,000 square feet would probably be adequate. If the full 15,000 square feet of land were required, an area 122 feet on a side would be needed for pipe installation. 4.2 Economic Feasibility The preceding analysis demonstrates that it is physically possible to use a buried duct system to maintain the performance of the heat pump in northern climates. However, the system must be economically feasible. Hill the duct system save enough energy to pay for its installation and upkeep? If a heat pump is supplied with 30 degree Fahrenheit air, its coefficient of performance will be close to 2.8 (32). If a home requiring 83,000,000 BTU's of heat were heated with electric resistance heat, 24,319 kilowatt hours of electricity would be required. This electricity would cost $1824 at a cost of $.075 (33) per kilowatt hour. If a heat pump were used with an overall coefficient of performance of 2.8, only 8685 kilowatt hours of electricity ‘would be needed at a cost of $651. This would yield an annual savings of $1173. Flexible irrigation pipe in the size required costs approximately $2.00 per foot, so the pipe required would cost $2000. A heat pump 61 costs approximately $1000 more to install than central air conditioning and electric resistance heating (34). A trench must be dug in which to bury the pipe. Trenchers capable of digging 30 feet of trench per hour rent for $30 per hour (35). Therefore, assuming free labor, the cost of installing the duct would be $1000. Finally, a small supplemental fan would be required to pull the air through the duct system. The duct system has two 5 foot vertical sections, a 50 foot horizontal section and an entry and an exit. Pulling air through this system would create a pressure drop of approximately 0.02 inches of water (36). The fan required would consume about 50 watts of electricity and cost approximately $50 (37). During the course of a heating season 333 kilowatt hours would be used, which at $.O75 a kilowatt hour would cost $25.00. The system would cost $4050 more to install than an electric resistance furnace and central air conditioning, and would require a supplemental fan consuming $25 worth of electricity per year. It would cost $1173 less to operate than electric resistance heat each heating season, for a net annual savings of $1148. Assuming an 18 percent interest rate the system would pay for itself in less than 5 years. CHAPTER 5 CONCLUSION The program only allows the simulation of a duct system in the single pass mode, and a very low constant ambient air temperature was chosen for evaluation. If actual weather data were used and pro- vision made in the program for Operation of the duct in a mode appropriate for the current ambient temperature, system performance would probably be significantly improved. The buried duct system is an energy and cost effective method of improving the performance of an air—to-air heat pump in a northern climate. A five year payback is predicted when compared with an electric resistance heating system. The economic analysis was per- formed for a system using a duct air flow speed of 1 foot per second and capable of supplying 100 percent of the heating requirement of a residence at an ambient temperature of zero degrees Fahrenheit. Since the duct system can supply 26 degree Fahrenheit air at 4 feet per second and since the system need only operate down to ambient temperatures of 10 degrees Fahrenheit in order to supply twice the normal heat pump's contribution to the heating requirement, a much smaller system could be installed which would yield an even higher rate of return on investment. 62 CHAPTER 6 RECOMMENDATIONS Since soil thermal properties for different soils vary greatly and since different references give different values of thermal properties for the same soil, experimental research should be carried out to determine soil conductivity and thermal capacity as a function of soil composition, soil temperature and soil moisture content. In the program the soil conductivity was modeled as two discrete values when in actuality the conductivity changes as the moisture content of the soil changes and then increases by a factor of 1.4 when the soil is completely frozen (38). Additionally, values as high as 1.6 BTU/FT-HR-°F were listed for clay with a 15 percent moisture content (39). Research should also be conducted to produce a curve fit which will give the correct soil temperature distribution as a function of the soil thermal properties, moisture content, ambient temperature and time. The process of moisture migration as a function of soil properties, water table location, soil temperature and time should be studied and a reliable estimator for this phenomenon should be determined. The overall heat transfer coefficient from the atmosphere to the surface should be determined for a variety of temperatures, wind speeds solar insulation and surface conditions. 63 64 The overall heat transfer coefficient from the soil to the air flowing in the pipe should be verified to determine the effects of soil packing, pipe material and air velocity. Values as low as .4 and as high as 2 BTU/FTZ-HR-°F were noted in the literature. The effect of pipe material is probably minimal since high density plastic pipe has a conductivity of .226 BTU/FT-HR-°F and, in the .3 inch thicknesses used, only affects the overall heat transfer coefficient by about 3 percent when compared to higher conductivity materials such as tile (40). The program could be modified so that small elements could be used in the vicinity of the pipe and large elements used away from the pipe. This would speed the processing without significantly affecting the accuracy of the simulation. The number of cubic feet per minute of 30 degree Fahrenheit air required for the heat pump's outside heat exchanger should be experi- mentally verified. A number of configurations could be simulated and tested such as ducts with fins, rectangular ducts installed vertically and horizontally with a number of different height-tO-width ratios (Figure 28). Tests should also be made to find a formula for equating the results for a rectangular duct to the heat transfer into a round pipe. The program should be modified so that a weather record for a typical winter complete with ambient temperatures, wind speeds, humidity and solar insulation could be used in order to accurately simulate an entire winter of operation. The program could be addi- tionally modified to allow for Operation of the duct in single pass, 65 LS URFA CE '“CONCRE TE BLOCK a. Vertical Block Duct b. Horizontal Block Duct FIGURE 28. Possible Duct Configurations Using Concrete Block 66 recirculating, bypass, and recovery modes depending on the current weather conditions. Modifications should be made to the program which allow it to graphically display the temperature profile in the pipe as a function of x-position and time step. Sufficient computer time should be obtained so that a large number of runs could be made to optimize the pipe length. Ducts of various sizes and shapes should be compared in order to find the duct cross section which produces the most BTUs per dollar. APPENDICES APPENDIX A CYBER PROGRAM LISTING 67 1008 1208C 1308C 1408C 1508C 160'C 1708C 1803C 1908C 2003C 2103C 2203C 2308C 2408C ZSOIC 2603C 2708C 2803C 290‘C 3003C SIC-C 3203C 330=C 3403C 3508C 3603C 370-C 3803C 3908C 40080 410'C 420-C 4308C 4403C 4508C 4603C 470=C 460=C 4908C 500*C 510=C 5203C 5303C 5403C 5508C 5608C 570-C 5308C 5908C 6008C 610=C 6203C 630-C 6408C 6503C 6608C 670=C 6808C 68 PROGRAM TUBECYB 110-C§§*§§***§****§§*****a*§*§************§***********§***§§**§*§ PROGRAM TO DETERMINE THE THERMAL PERFORMANCE OF AN UNDERGROUND TUBE THIS PROGRAM PERFORMS A FINITE ELEMENT ANALYSIS ON A BURIED TUBE THROUGH WHICH AIR IS FLOWING CENTRAL DIFFERENCES ARE USED TO CALCULATE THE HEAT GAIN OF AN ELEMENT AND FORWARD DIFFERENCES ARE USED IN THE TIME STEP. DATA FILES TEMPFIL CONTAINS THE ARRAY TSOIL VARIABLE LIST TAVGAM AVERAGE AMBIENT TEMPERATURE TCURAM CURRENT AMBIENT TEMPERATURE TSOILD DEEP SOIL TEMPERATURE CPAIR HEAT CAPACITY OF AIR KAIR THERMAL CONDUCTIVITY OF THE AIR UAIR SOIL-AIR HEAT TRANSFER COEFFICIENT DNAIR DENSITY OF AIR KSOIL THERMAL CONDUCTIVITY OF SOIL BASED ON ITS CURRENT TEMPERATURE KSOILN THERMAL CONDUCTRIVITY OF NORMAL SOIL KSOILF THERMAL CONDUCTIVITY OF FROZEN SOIL IMOIST INITIAL MOISTURE CONTENT OF SOIL FMOIST FINAL MOISTURE CONTENT OF SOIL CPSOIL HEAT CAPACITY OF THE SOIL BASED ON ITS CURRENT TEMPERATURE CPSOLF HEAT CAPACITY OF THE SOIL IN A FROZEN STATE CPSOLN HEAT CAPACITY OF THE SOIL IN A THAHED STATE CPSOLC HEAT CAPACITY OF THE SOIL BASED ON A COMBINATION OF THANED HEAT CAPACITY AND HEAT OF FUSION DNSOIL DENSITY OF THE SOIL XINCRE THE INCREMENT SIZE IN THE X DIRECTION YINCRE THE INCREMENT SIZE IN THE Y DIRECTION ZINCRE THE INCREMENT SIZE IN THE Z DIRECTION VELCTY THE VELOCITY OF THE AIR XNUM NUMBER OF INCREMENTS IN THE X DIRECTION YNUM NUMBER OF INCREMENTS IN THE Y DIRECTION ZNUM NUMBER OF INCREMENTS IN THE Z DIRECTION . TNUM THE DEPTH AT HHICH THE TUBE IS LOCATED VERTICALLY TDIFFD TEMPERATURE DIFFERENCE REQUIRED FOR STABILITY MOICON MOISTURE CONTENT OF SOIL AS A PERCENTAGE BY HEIGHT TSOIL ARRAY CONTAINING TEMPERATURES OF SOIL BLOCK TIMEX MAXIMUM NUMBER OF TIME STEPS TO BE PERFORMED TEMPT TEMPERATURE OF PREPROCESSED INCREMENTS SAVEAN ANSWER FOR DATA RETENTION PREANS DIRECT CHOICE OF GENERATING INITIAL TEMPERATURES USING THE PREPROCESSOR OR AN EXISTING TSOIL ARRAY CPFUSE HEAT OF FUSION OF H20 CPWATR HEAT CAPACITY OF HATER CPICE HEAT CAPACITY OF ICE TIMSTP TIME STEP MASSOL SOIL MASS DRY MASSAR AIR MASS MASS MASS 69 690-C KMAJOR COEFFICIENT OF HEAT TRANSFER EQUATION CONTAINING 700'C TIME STEP, HEAT CAPACITY AND SOIL MASS 710-C K1 COEFFICIENT OF THE X-1 TERM HEAT TRANSFER EQUATION 7208C K2 COEFFICIENT OF THE X+1 TERM HEAT TRANSFER EQUATION 7308C K3 COEFFICIENT OF THE 2-1 TERM HEAT TRANSFER EQUATION 7403C K4 COEFFICIENT OF THE 2+1 TERM HEAT TRANSFER EQUATION 750'C K5 COEFFICIENT OF THE Y-1 TERM HEAT TRANSFER EQUATION 760'C K6 COEFFICIENT OF THE Y+1 TERM HEAT TRANSFER EQUATION 7703C I LOOP COUNTER ARRAY INDEX 7BO‘C J LOOP COUNTER ARRAY INDEX 7903C K LOOP COUNTER ARRAY INDEX 8003C L LOOP COUNTER ARRAY INDEX 8108C M LOOP COUNTER ARRAY INDEX 3208C N LOOP COUNTER ARRAY INDEX 8303C T LOOP COUNTER ARRAY INDEX B408C D LOOP COUNTER ARRAY INDEX 8503C B LOOP COUNTER ARRAY INDEX 8603C C LOOP COUNTER ARRAY INDEX B70=C O LOOP COUNTER ARRAY INDEX BBC-C TUBEHT TUBE LOCATION ABOVE 0 Z INCREMENT 8908C Q HEAT CAPACITY FOR STATE CHANGE CALCULATIONS POO'C Q1 HEAT CAPACITY FOR STATE CHANGE CALCULATIONS 9103C Q2 HEAT CAPACITY FOR STATE CHANGE CALCULATIONS 9203C DELTAI TEMPERATURE CHANGE FOR STATE CHANGE CALCULATIONS 930-C DELTAZ TEMPERATURE CHANGE FOR STATE CHANGE CALCULATIONS 940-C DELTA3 TEMPERATURE CHANGE FOR STATE CHANGE CALCULATIONS 950‘C 9603C 970-C 9BO=C WRITTEN BY BRIAN LEARY 9908C AUGUST 10, 1984 VERSION 10008c§§§*§****§§*§§**§§**§*§§i§§§§§§§§§{‘{**§*§§*§§**§**§*§§*§§**§** 1010-C 1020=C SPECIFICATION STATEMENTS 1030-0 1040- IMPLICIT REAL (A-Z) 1050- integer i,J,k,1,m,n,xnum,ynum,znum,tnum,timex, 1060- +d,b,C,TIMLOP,D 1070- character savean 1080'II dimension tsoil(0:6,-1:8,0:12,0:1) 1090-C 1100-0 OPEN DATA FILE 1110-C 1120-20 open(6,2rr-4100,file-’TEMPFIL') 1130-C 1140-C INITIALIZE TEST VARIABLES 1130-C 1160-800 continue 1170- tavgam-SO 1180- tcuram-O 1190- tsoild=50 - 1200- cpair-.24 1210- kair=.0142 1220- uair-1.40 1230- dnair-.08275 1240- ksoiln-.4SB 1250- ksoilf-.833 1260- imoist-.1 1270- {moist-.2 1280- cpsolf-.3 1290a 13008 1310- 1320- 1330‘ 1340'I 1350- 1360' 1370'I 1380- 1390- 14003 1410- 14203 1430- 1440a 1430- 1460- 14708 1480- 1490' 1500-1000 1310=C 1520=C 15308C 1540- 1550-1100 15603 1570- 1380a 1590- 1600- 1610-I 1620- 1630-1160 1640-1180 1650'I 1660=3 1670- 1680- 1690-1200 1700. 1710-C 1720=C 1730'C 1740- 17508C 1760=C 1770-C 1780- 1790=C 1800-C 1810-C 1820- 1830'C 1840'C 1850-C 1860' 1870-C 1880-C 7O cpsoIn-.2 dnsoiI-95 xincre-lo yincre-I zincre-1 velcty-3600 ynum-7 znum-11 tnum-b tdiffd-.0000000001 timex-36 TIHLOP-ioo xnum-S SAVEAN-'N' preensai cpfuse-143.3 cpuatr-1.0 cpice=.5 debug-0 debugz-O I-O continue PREPROCESS ARRAY if(preans.eq.2) then read(*)tsoil else do 1200 k-0,znum+1 tempt-tsoild-((tsoild-tavgam)*((FLOAT(K)/FLOAT(ZNUH+1))**2)) do 1180 i=0,xnum+1 do 1160 j=-1,ynum+1 tsoil(i,j,k,1)=tempt tsoil(i,j,k,1+1)-tempt continue continue if(debug.ge.5) then print *,'tempt= ',tempt,' at ',k print *,'tsoi1- ’,tsoi1(1,0,k,1),' at ',k endif continue endif COHPUTE HEAT CAPACITY OF FREEZING SOIL cpsolc=cpso1n+4moisticpuatr+4moist*cp¥use/2 COHPUTE POSITION OF TUBE IN SOIL tubeht-znum-tnum+1 COHPUTE TIHE STEP timstp-xincre/velcty COMPUTE MASS OF AIR IN AN ELEMENT massar-dnairfixincrefiyincreezincre COMPUTE MASS OF SOIL IN AN ELEMENT 1390-0 1900- 1910-0 1920-0 1930-0 1940- 19:0- 1950- 1970-1800 1990- 1990- 2000- 2010- 2020-0 2030-0 2040-0 2050-2000 2060- 2070- 2080- 2090- 2100- 2110-0 2120-0 2130-0 2140-2010 2150- 2160- 2170- 2180- 2190- 2200-0 2210-0 2220-0 2230-0 2240- 2250- 2250- 2270- 2280- 2290- 2300- 2310- 2320- 2330- 2340- 2350- 2360- 2370-0 2380-C 2390-0 .2400-0 2410-0 2420- 2430- 2440- 2450- 2460- 2470- 2480- 71 massol-dnsoilfixincreiyincrefizincre SET AIR TEMPERATURE AT TUBE ENTRANCE TO current ambient do 1800 i-0,xnum+1 tsoil(i,0,tubeht,l)-(TCURAM)+((tavgam-tcuram)* +((float(i)/float(xnum+1))**2)) continue if(debug.ge.1) print *, 'preprocessing complete' if(debug.ge.5.)print *, 'cpsoIc -',cpsolc,' tubeht =‘,tubeht, +‘massar -',massar,' massol -‘,masso1 if-32)/<(TSDILD-3214-2111 ELSE MOICON-FMOIST ENDIF SELECT SOIL HEAT CAPACITY AND THERMAL CONDUCTIVITY AS A FUNCTION OF SOIL TEMPERATURE 81 1290-0 1300- IF(TSOILII,J,K,L).GE.32)THEN 1310- CPSOIL-CPSOLN4MOICON-CPNATR 1320- KSOIL-KSOILN 1330- ELSE IF(TSOIL(I,J,K,L).LE.30)THEN 1340- CPSOIL-CPSOLF+MOICON*CPICE 1350- KSOIL-KSOILF 1360- ELSE 1370- CPSDIL-CPSOLC 1380- KSOIL-KSOILN 1390- END IF 1400- IF(DEBU82.GE.1) PRINT 4, ‘SOIL THERMAL PROPERTIES SELECTED' 1410- IF(DEBUGZ.GE.5)PRINT 4,'0PSDIL -',CPSDIL,'KSOIL - ',KSOIL, 1420- +‘MOICON -',MOICON 1430-0 1440-0 SELECT APPROPRIATE HEAT TRANSFER COEFFICIENTS 1450-0 1460-0 IF THE ELEMENT IS AT THE SURFACE USE AIR TD SOIL AT K+1 1470-0 1480- IF(K.EO.ZNUM)THEN 1490- KMAJOR-TIMSTP/CPSOIL*MASSOL 1500- KI-KSOIL4zINCR84YINCRE/xINCRE 1510- K2-KSOIL*ZINCRE*YINCRE/XINCRE 1520- K3-KSOIL-xINCRE+YINCREIZINCRE 1530- K4-UAIR4xINCRE4YINCRE 1540- K5-KSOIL4zINCRE-XINCRE/YINCRE 1550- Ke-KSOIL-zINCRE4XINCRE/YINCRE 1560- IF(DEBU82.GE.10) PRINT -,'CHOICE - 1' 1570-0 FOR ELEMENTS BEYOND THE FIRST TWO COLUMNS BUT BELOW 1580-0 THE SURFACE USE SOIL TO SOIL 1590-0 1600- ELSE IF(J.GE.2) THEN 1610- KMAJOR-TIMSTP/CPSOIL*MASSOL 1620- Kl-KSOILillNCRE*YINCRE/XINCRE 1630- K2-KSOIL*ZINCREiYINCRE/XINCRE 1640- K3-KSOIL*XINCREiYINCRE/ZINCRE 1650- K4-KSOIL*XINCRE*YINCRE/ZINCRE 1660- K5-KSOIL*ZINCRE*XINCRE/YINCRE 1670- K6-KSOIL*ZINCRE*XINCRE/YINCRE 1680- IF(DEBUGZ.GE.10) PRINT *,'CHOICE - 2' 1690-0 1700-0 FOR ELEMENTS IN THE FIRST TWO COLUMNS BUT NOT CONTACTING 1710-0 THE TUBE USE SOIL TO SOIL COEF. 1720-0 1730- ELSE IF(K.GE.TUBEHT+2 .OR. K.LE.TUBEHT-2)THEN 1740- KMAJOR-TIMSTP/CPSOIL*MASSOL 1750- Kl-KSOIszINCRE§YINCREIXINCRE 1760- K2-KSOILQZINCRE*YINCRE/XINORE 1770- K3-KSOIL*XINCREQYINCRE/ZINCRE 1780- 1790- K4-KSOIL*XINCRE-YINCRE/ZINCRE 1800- K5-KSOIL*ZINCRE*XINCRE/YINCRE 1810- K6-KSOIL*ZINCRE*XINCRE/YINCRE 1820- IF(DEBU82.GE.10) PRINT *,'CHOICE - 3' 1830-0 1840-0 ELEMENTS IN THE FIRST TWO COLUMNS ON A DIAGONAL FROM THE 1850-0 TUBE USE SOIL TO SOIL COEF. 1860-0 . 1870- ELSE IF(J.EQ.1 .AND. K.NE.TUBEHT) THEN 1880- KMAJOR-TIMSTP/CPSOIL*MASSOL 1890- K1-KSOIL§ZINCRE*YINCRE/XINCRE 1900- K2-KSOILfiZINCREiYINCRE/XINCRE 1910- K3-KSOIL9XINCRE4YINCRE/ZINCRE 1920- K4-KSOILGXINCREfiYINCRE/ZINCRE 1930- K5-KSOILPZINCRE*XINCRE/YINCRE 1940- K6-KSOIL*ZINCRE*XINCRE/YINCRE 1950- IF(DEBU62.GE.10) PRINT *,'CHOICE - 4' 1960-0 1970-0 FOR ELEMENT ADJACENT TO THE TUBE USE AIR TO SOIL COEF 1980-0 FOR THE J-1 TERM 1990-0 2000- ELSE IF(J.EQ.1 .AND. K.EQ.TUBEHT)THEN 2010- KMAJOR-TIMSTP/CPSOILiMASSOL 2020- Kl-KSOIL*ZINCRE*YINCRE/XINCRE 2030- K2-KSOIL*ZINCRE*YINCRE/XINCRE 2040- K3=KSOIL*XINCRE*YINCRE/ZINCRE 2050- K4-KSOIL5XINCREiYINCRE/ZINCRE 2060- K5-UAIR*ZINCRE*XINCRE 2070- K6-KSOIL*ZINCRE*XINCRE/YINCRE 2080- IF(DEBUG2.GE.10) PRINT i,‘CHOICE - 5' 2090-0 2100-0 FOR ELEMENT DIRECTLY BELOW THE TUBE USE AIR TO SOIL COEF. 2110-0 FOR THE K*1 TERM 2120-0 2130- ELSE IF(J.EQ.0 .AND. K.EQ.TUBEHT-1)THEN 2140- KMAJOR-TIMSTP/CPSOILOMASSOL 2150- K1-KSOIL*ZINCRE*YINCRE/XINCRE 2160- K2-KSOILPZINCRE*YINCREIXINCRE 2170- K3-KSOIL*XINCRE*YINCRE/ZINCRE 2180- K4-UAIR*XINCRE*YINCRE 2190- K5-KSOILPZINCRE*XINCRE/YINCRE 2200- K6-KSOILiZINCREiXINCRE/YINCRE 2210- IF(DEBUG2.GE.10) PRINT *,'CHOICE - 6' 2220-0 2230-0 FOR ELEMENTS DIRECTLY ABOVE THE TUBE USE AIR TO SOIL 2240-0 FOR THE J-I TERM 2250-0 2260- ELSE IF(J.EQ.0 .AND. K.EQ.TUBEHT+1)THEN 2270- KMAJOR-TIMSTP/CPSOIL'MASSOL 2280- Kl-KSOIL*ZINCRE*YINCRE/XINCRE 2290- K2-KSOILGZINCRE*YINCRE/XINCRE 2300- K3=UAIR-XINCRE*YINCRE 2310- K4-KSOIL-XINCRE*YINORE/ZINCRE 2320- K5-KSOILGZINCRE*XINCRE/YINCRE 2330- K6-KSOILfiZINORE*XINCRE/YINCRE 2340- IF(DEBUGZ.GE.10) PRINT *,'0HOICE - 7' 2350-0 2360-0 COEFFICIENTS FOR THE ELEMENTS CONTAINING THE TUBE 2370-0 2380- ELSE IF(J.EQ.0 .AND. K.EQ.TUBEHT) THEN 2390- KMAJOR-TIMSTP/CPAIR*MASSAR 2400- Kl-KAIR*ZINCRE*YINCRE/XINCRE 2410- K2-KAIR-ZINCRE*YINCRE/XINCRE 2420- K3-UAIR5XINCREfYINCRE 2430- K4-UAIR*XINCRE#YINCRE 2440- K5-UAIR*ZINCRE*XINCRE 2450- K6-UAIR*ZINCRE*XINCRE 2460-0 CONVECTIVE TRANSFER EQUATION 2470-0 2480-2050 TSOIL(I,J,K,L+1)-KMAJOR*(K1*(TSOIL(I-l,J,K,L)+TSOIL(I,J,K,L))- 82 2600-0 2610-2050 2620- 2630- 2640- 2650- 2660- 2670- 2680- 2690- 2700- 2710- 2720- 2730- 2740-0 2750-0 2760-0 2770-0 2780-0 2790-0 2800-0 2810- 2820-0 2830-0 2840-0 2850- 2860- 2870-0 2880-0 2890-0 2900-0 2910- 2920- 2930- 2940-0 2950-0 2960-0 2970-0 2980- 2990- 3000- 3010- 3020- 3030- 3040- 3050- 3060- 3070- 3080- 83 +K2-+TSOIL(I,J,K,L)1+ +K3§+TSOIL(I,J,K,L1I)+TSOIL(I—1,J,K,L) IF(DEBU62.GE.10) PRINT -,'CHOI0E - 8' GO TO 2100 ENDIF IF(DEBUGZ.GE.1) PRINT 4, ‘HEAT TRANSFER COEFFICIENTS SELECTED HEAT TRANSFER EQUATION TSOIL>- +K2-(TSDILII+1,J,K,L)+TSOIL(I,J,K,L)1+ +K3-(TSDILII,J,K-1,L)+TSDIL(I,J,K,L)1+ +K44THEN DELTA2-(Q-O1)/0PSOLC TSOIL(I,J,K,L+1)-32-DELTA2 ELSE DELTA3-(O-Ol-02)/CPSOLN 3090- 3100- 3110-0 3120-0 3130-0 3140-0 3150- 3160- 3170- 3180- 3190- 3200- 3210-0 3220-0 3230-0 3240- 3250- 3260-0 3270-0 3280-0 3290- 3300- 3310- 3320-0 3330-0 3340-0 3350- 3360- 3370- 3380- 3390- 3400- 3410- 3420- 3430- 3440- 3450- 3460- 3470- 3480-0 3490-0 3500-0 3510-0 3520- 3530- 3540- 3550- 3560- 3570- 3580-0 3590-0 3600-0 3610- 3620- 3630-0 3640-0 3650-0 3660- 3670- 3680- 84 TSOIL ’2 Read the data From a data File?’ NRITE(#), ’9.9 Terminate Program?’ WRITEC#). ’ ’ MRITEfifi); ’InPut the number c0rresPondin9 to aour’ MRITEcfi), ’selection’ REHDC$> PRERNS IF option 1 or 2 is chosen then go to 56 IF(PREHH3.EQ.1) THEN 60 TD 58 ELSE IF(PREHHS.EQ.2) THEN GO TD 58 I? termination of program is chosen then end ELSE IFfiPRERHS=999> THEN END allow user to correct For keyboard input errors ELSE HRITECfi); ’PLEHSE SELECT R NUMBER FROM THE MENU’ GO TU 48 ENDIF fisk user to choose whether the parameters are to be read From the test data set, From a File or input From the keyboard NRITEfifi) ’Do sou wish to’ HRITECfi) ’ ’ MRITE(#) ’1 Read From the set of test data?’ NRITE(#) ’2 Read the data From a data File?” NR1TEC$D ’3 Input the data via the keeboard?’ HRITEfifi); ’999 Terminate” NRITEflfi), ’ ’ WRITEfifl), ’InPut the number corresPondin9 to aour’ HRITEfifi); ’selection’ RccePt menu choice €rom keyboard REHDCfi) SELECT I? test File is chosen move to line number 886 IF(SELECTSI) THEN 00 T0 886 I? data tile is chosen read Parameters ELSE IF(SELECT=2) THEN GI I'lfln ++++“~i fll'l n n HOOD 91 REHDfi5,ERRa4286;EunslooobTRVBHm,TCURHM,TSDILD,CPHIR, KHIRTURIR)DHHIRJKSDILHJKSDILF,IMOISTJFMDIST,CPSDLFJ CPSOLN,DNSOILax1HCRE,VIHCRE,ZINCREJWELCTVJVNUM,ZHUM, THUMJTDIFFanIMEH,DSOILH;DEDILF,KHUHJSRWEHH,PRERHS, CPFUSE,CPHRTR,DPICE 50 TD 1838 IF keyboard input is specified then move to line 188 ELSE IF(SELECT=3) THEN 50 T0 136 IF termination or Prooram is chosen then end ELSE IF(SELEDT=999) THEN END Hllow user to correct For keyboard input errors ELSE MRITECfi); ’PLEHSE SELECT R NUMBER FRON THE MENU’ GO TO 53 ENDIF Thermal Quantities NR1TE<¥D ’Input averaQe ambient temperature over MRITE(#) ’Previous month’ REHDfifi); THVBRM WRITECWD ’Enter current ambient temPerature’ REHDCt); TCuRHM NR1TE<¥> ’enter the deep soil temperature For’ NR1TEC$§ ’the area to be evaluated’ REHDCfi), TSDILD NRITE<#) ’Enter the heat capacity of the air’ REHDfifi), CPRIR WRITE€#) ’Enter thermal conductivity of the air’ REHDCfi), KHIR WRITE(#> ’Enter soil-air heat transFer coeFFicient’ REHDfiV), UHIR NRITE(#) ’Enter thermal conductivits 0? normal soil’ REHD<$>1 KSOILN NRITEfifi) ’Enter thermal conductivity oF Frozen soil’ REHDfievi KSOILF NR1TE(*)J ’enter initial moisture content or soil’ RERD(#); IMOIST NRITEceb, ’enter Final moisture content of soil’ RERDC#), FMOIST NRITEfit) ’enter heat capacity 0? unfrozen soil REHDfifibi CPSOLN NRITEce) ’enter heat capacity of Frozen soil REHDCfi); CPSOLF NR1TE¢$D ’enter density of the soil’ REHD(#), DNSOIL NR1TEC$> ’enter the density or air REHDcfi), DHHIR NR1TEK$3 ’enter the thermal diFFusivits o? unfrozen soil REHDCfl); DSDILH MRITEfifiD ”enter the thermal diFFusivits of Frozen soil (:0 m D REHDCfibe NRITEfifl) REHDCfih, NRITECfi) REHDfifi); HRITEEfi) fiERDfifi); Dimensio NRITEC?) WRITEifi) REHDfifib; NRITECfi) WRITEiflb REHDCfi); NRITEEfi) REHD(¥); HRITEfifi) NRITEC$P HRITECfi) MRITECfi) REHDCfl); MRITECfi) HRITE($) HRITECfi) REHDC$DJ WRITEfifl) WRITEfifi) HRITECfi) REHDCfl); MRITEfifi) HRITEfifi) HRITECK) WRITEifi) HRITEfifl) REHDC‘); WRITEC$3 HRITECfi) WRITEifi} MRITEifi) IF(TNUM HRITE(*)J 92 DSUILF ’enter tre heat of €usion o? H20 CPFUSE ’enter the heat capacits of water CPMRTR ’enter the heat caPacite oF ice CPICE ns section ’enter the increment size desired in the’ ’direction 0? the PiPe (In +eet“’ XINCRE "enter the number in the o? increments I ’direction o? the PiPe (<51) KHUM ’enter the welocits o? the air desired’ VELCTV ’The time steP is ’KIHCRE/VELCTV’ sec’ ’enter the increment size desired in the” ’horizontal direction in the Plane’ ’ orthoeonalto the Pipe (In Feet)’ YINCRE ’enter the number ’Horizontal direction in ’to the PiPeCéEi) VNUM ~ ’enter the increment size desired in the’ vertical direction in the Plane ' ’orthogonal to the Pipe (In Feet)’ ZINCRE ’enter the number of increments in the ’ vertical direction in the Plane orthogonal’ ’to the PiPe ((31: the # oF increments’ OF ifiCPENEfitS ih the the Plane orthoeonal’ times the increment size should eQual’ ’at least 7.5 Feet For accurate results)’ ZNUM ’Enter the increment at which the tube“ ’ should be located verticalle’ ’increments should extend at least ’Feet below the tube For accurate results’ 7 e! II'J TNUM .LT.3 THEN ’Tube increment must be Ereater than 2’ DO TO EBB ENDIF WRITE(*) HRITECfi) RERD(*)J HRITECfi) HI? I TE '3: 1* ,‘J REHEC‘); Check InPut HEITEfifi) NRITEfifl) MRITE(#> HRITEfieb NR1TE€$D ’Enter the temPerature diFFerence ’ For stabilite’ TDIFFD ’Enter the maximum number o? time stePsN to be PerFormed’ TIMER Quantities ’Rweraoe ambient temPerature’.TRWGHM ’Current ambient temPerature’ TCUPHH soil temPerature for’,TSDILD ’Thermal conductivity o? the air“ HRIR ’Soil-air heat transfer coefficient’JURIR ’DeeP MRITE(#) WRITEfifib MRITECfl) NRITEfifi): NRITEfifi) MRITEKfl) NRITEfi!) NR1TE<$3 MRITEC?) HRITECfi) MRITEfifl) NRITECfi) NRITECfi) MRITEC#) MRITECV) HRITECfi) NRITEfiW) NRITECi) HRITEE!) NRITEiib NEITEfifi) NRITE(#) NRITEfifi) WRITEfifi) HRITEC¥D HRITE<$> MRITE<#} HRITECfi) WRITEfififi HRITECfi) HRITECW) HRITEfifi) NRITE(#) HRITEC$> waiTecwa HRITEEfi) REHEfifl): GO TO J 93 ’Thermal conductivity oF normal soil’JKSDILH ’Thermal conductivity of ¢rozen soil’,KSDILF ’Initial moisture content of soil’,IMDIST ’Final moisture content of soil’iFNDIST ’Heat caPacits of the soil’ICPSDLH ’Heat caPacita o? the soil’,CPSDLF ’Densite o? the soil’JDHSDIL ’The increment size desired in the x’ ’ direction 0? the PiPe (In Feet)’,XIHCRE ’Thc velocita of the air’,VELCT¥ ’The time steP is ’ XINCREHVELCTV ’ ’The increment size desired in the’ ’horizontal direction in the Plane’ ’ orthogonalto the PiPe (In FeetD’JVIHCRE ’The increment size desired in the’ ’ vertical direction in the Plane ’ ’orthosonal to the PiPe (In feet)’,ZIHCRE ’The number of increments in the ’direction of the eiPe’,KHUM ’The number 0? increments in ’horizontal direction in the ’orthosonal to the PiPe’,VHUM ’The number of increments in the ’wertical direction in the Plane ’to the PiPe’, ZHUM ’The increment at which the tube’ - ~-’ 3:?!— the Plane ‘0 orthogonal’ ’ should be located uerticalls’; TNUM ’The density of air ’JDHRIR ’TemPerature diFFerence resuired ’JTDIFFD ’Maximum number or time stePs ’iTIMEK of unFrozen soil ’iDSDILN ’.DSDILF ’Thermal di€€usiwit3 ’Thermal diffusivity of Frozen soil ’Heat 0? Fusion o? H20 ’JCPFUSE ’Heat capacity of water ’JCPHHTR ’Heat capacity of ice ’JCPICE ’Hre these values correct (V or H)’ HHSNER IF(HHSNER.HE.¥> 1896 DD TD 16% 94 Rugust 15; 1934 version Test Data File mflnlin G! 0 THVBRM=3B TCURHM=8 TSDILD=SB CPHIR=.24 KHIR-.8142 URIR=1.4B DNRIR=.832?5 KSOILH=S.$ KSOILF=18 IMOIST=.1 FMOIST=.2 CPSOLF=.3 CPSDLH=.2 DNSOIL-95 XINCRE=2 YINCRE=.5 ZINCRE=.5 VELCTV=3688 vuum-za znum-se THUM=18 TDIFFD-.81 TINEX=432888 XNUM~25 SRVERH-"H" PRERNSai CPFUSE=143.3 CPNHTR=1.8 CPICE=.5 DEBUG=8 DEBUBZ=8 1888 Continue casesasweawe*eesees##aammummuumwauwwuawmwammsmmumwwmw*mmau PreProcessor jdegrees F ;BTUXLBN-F JETU~FTKHR—FT2~F 3BTU/HR-FT2-F gLBMXFTS jFT/HR flairinflnliflfl The PrePhocessor establishes a distribution in the soil based earth temPeratuhes the average temperature For the Past month thermal Properties of the soil. The actual superimposed and would include temperature on the deep ambient and the distribution is expotential with a sinusoid additional Factth' such as short term temperature Fluctuations. cfififififififlfifififififlflfifififififlfifififimmfifififififlwfiwfififlfififie*#$**#*$$#$*fifi* IF(FRERHS.EQ.2> THEN RERD(#> TSDIL ELSE Preprocess Rrras DO 1288 K=BJZNUN+1 TEMPT=TSDILD~C(TSDILD-TRVGRM)¥((FLUHTCK3HFLDHTCZNUM+1)fifiEDD D0 1188 I=B;RHUM+1 DD 1168 J=~13VHUH+1 TSDILiliJaKaBD=TENPT CONTINUE 95 1188 CONTINUE 1288 CONTINUE ENDIF c c c Compute Tube Pcsition c TUBEHT=ZNUM-THUH+1 c c Compute timestep c TINSTPzXINCREHVELCTV 5 Compute mass of soil and air elements - MHSSHR=DHHIR$XINCRE#VINCRE¥ZIHCRE MHSSOL=DHSOIL$XINCRE$VIHCREfiZIHCRE c c Set air temperature distribution in pipe c DD 1388 I=8»XHUM+1 TSDIL(I:8;TUBEHT1L3=TCURHM+CCTRVGHM-TCURHM)# +((FLOHT(I)/FLDRTCHHUM+1)#$2>> . 1888 CONTINUE 2888 Continue c#*##$####*#*#########*#$#$*#*##fifififlfififlflfiflfifififififififi$§¥§$fi¥fl c Main Bods c The heat capacity and moisture content are c evaluated based on temfierature caseaweeweaeeae#eeeeeameweeewmeeeeeaeeesemeeeeeeseasnmeeee L-8 DD 2488 T3 1JTIMEMX DD 2388 I= IJHNUM D0 2288 J= BJVNUM DD 2188 K8 laZNUM c c Calculate moisture content as a Function 0? temperature c Hote moisture content is also a ?unction o? the cooling c rate and time would be included i? Quantitative c information were available c IF(TSDILCIiJJK,L>.GT.32) THEN MOICUN=IMDIST+CFMDIST-INDIST)$ + (1—(ETSUILCI;J,K,L)-32)Hfi(TSDILD-32>$$2)J) ELSE MOICDH=FMUIST ENDIF c c Select correct thermal conductivits based on soil temperature c Select correct thermal capacita based on soil temperature IF(TSDILEIJJJK,L>.FE.32> THEN CPSDIL=CPSULH+MUICDH$CPHRTR KSOILzKBDILH ELSE IF(TSOIL.LE.38) THEN CPSUIL=CPSOLF+MDIEOH$CPICE KSOIL =KSDILF ELSE CPSOLCsCPSDLH+MDICDH#CPNHTR+MDICUHfiCPFUSENZ CPSOILsCPSDLC fl 1': nrin rufifln filirun fl ninrnn 96 KSOIL=KSDILN END IF Select appropriate heat transfer coeFFicients IF element is at the surTace use IF(K.EQ.ZNUM) THEN KMRJORflTIMSTP/fiCPSDIL#M SSDL) K1=KSUIL¥ZINCRE$VINCREHHINCRE K2=KSDIL¥ZINCRE¥VINCRE/XINCRE K3=KSUIL#XINCRE*VINCREHZINCRE K4=URIR*HINCRE¥VINCRE K5=KSDIL¥ZINCRE$XINCREXVINCRE K6=KSUIL$ZIHCRE$EINCREHVINCRE For elements beyond the First two columns air to soil but below the surface use soil to soil eQuation ELSE IF(J.BE.2> THEN KMHJOR=TIMSTP/(CPSOILfiMHSSDL) K1=KSDIL#ZINCRE#YINCRE/XINCRE K2=KSUIL#ZINCREWVINCREXHINCRE K3=KSDIL*XINCRE*VINCREXZINCRE K49KSDIL#XINCRE#VINCREXZINCRE K5=KSOIL§ZINCRE$XINCREHWINCRE K6=KSDIL§ZINCRE$XINCREfVINCRE Elements in the First two columns but above or below the elements surrounding the tube use soil to soil ELSE IF(K.BE.TUBEHT+2 .UR. K.LE.TUEEHT-2) KMHJDRBTIMSTP/(DPSDILfiMHSSDL> K1=KSDIL#ZINCRE*YINCRE/HINCRE K2=KSDIL$ZINCRE$W1NCREXKINCRE K3=KSDIL#XINCRE$HINCRE/ZINCRE K48KSUIL§HINCRE$VINCREKZINCRE K5=KSDIL#ZINCRE#XINCREHWINCRE K6=KSDILfiEINCRE#XINCREXVINCRE Elements adJacent the tube on a dia9onal ELSE IF(J.E8.1 .HND. K.NE.TUBEHT) THEN KMHJDR=TIMSTPX(CPSOILfiMHSSDL) K1=KSDIL§ZINCRE§VINCRE/KINCRE K2=KSDIL¥ZINCRE$¥INCREXKINCRE K3=KSDIL#XINCRE#VINCREXZINCRE K4=KSDIL§XINCRE$VINCEEKZINCRE K5=KSDIL#ZINCRE¥XINCREXVINCRE K6=KSDIL$ZINCRE$XINCREEVINCRE For the element adJacent to the tu one side air to soil the other sid s ELSE IF(J.E@.1 .HND. K.EQ.TUBEHT) THEN KMRJDR=TIMSTP/(CPSOILfiMHSSDL) K1=KSDIL#ZINCRE$WINCREHKINCRE K2=fSDIL§ZINCRE$VINCRE/EINCRE K3=KSDILflXINCRE$VIHCRE/ZINCRE K4=KSDIL#KINCREfiVINCREXZINCRE H- 6; THEN ntifln n11 n + ++-+-++»+nonrin +~++-++!unlfln 6 m 13] 97 K5=UHIR$ZINCRE§HINCRE K6=KSDIL$ZINCRE#XINCREKVINCRE For elements directly below the tube use one side air to soil the other sides soil to soil ELSE IF(J.EQ.8 .RND. K.E8.TUBEHT-13 THEN KMHJUR=TIMSTP£CCPSDIL¥MHSSDLD K1=KSUIL121NCRE*YINCREXHINCRE K2=KSUIL#ZINCRE#VINCREXKINCRE K3=KSDIL$XINCREfiVINCREHZINCRE K4=UHIR$XINCRE$VINCRE K58KSOIL¥ZINCREfiXINCRE/VINCRE K6=KSDIL$ZINCRE§HINCREKVINCRE For elements directly above the tube us” one side air to soil the other sides soil to soil ELSE IF(J.EQ.8 .RND. K.EQ.TUBEHT+1) THEN KMHJDR=TIMSTPHCCPSUILfiMHSSUL) KlzKSDILfiEINCREfi91NCRE/HINCRE K2=KSUIL$EINCREfiVINCREXXINCRE K3=URIR#XINCRE#VINCRE K4=KSDILWXINCRE#VINCREXZINCRE K5=KSDIL¥ZINCREfiXINCRE/VINCRE K6=KSOIL*ZINCREfiXINCRE/VINCRE element containing tube ELSE IF(J.ED.8 .RND. K.EQ.TUBEHT)THEN KMRJOR=TIMSTP/CCPRIRtMRSSHR) K1=KRIR#ZINCRE#VINCRE/XINCRE K2=KRIRfiZINCREfiVINCREfXINCRE K3=UHIR#XINCRE¥VINCRE K4=UHIR*XINCRE#VINCRE K5=UHIR*ZINCRE#XINCRE K6=UHIR#ZINCRE*KINCRE Convective Heat Transfer EQuation TSDILCI;J:K;L+1)' KMHJ0R*(K1#(TSUILCI-11JaKJLD-TSUILCInJ-KJL))+ k2*':T'SIjIL-"1+1I'JIksJLD~TSIJIL+ K2$iTSOILC1+1aJiK2LD~TSDIL(I,J,K,L)3+ KafifiTSUILCI,J,K-1»L)-TSDIL.LE.38> THEN DELTHiaTSDIL=38-DELTHS I? the Final temperature is below 32 but above 38 the temperature reduction is reduced to account For the higher soil heat capacity below 32 ELSE IF(TSUILfiliJJK;L+1).LT.32 .RND .PT. 38} THEN DELTHI=32~TSDILCI:JsK;L+1) DELTRZ=CPSDLN/CPSDLC#DELTR1 TSDIL£IiJiKiL+1)=S2-DELTHE ENDIF IF the beginning temperature is below 38 degrees ELSE IF(TSDILCIJJJKJL).LE.38) THEN find the ending temperature is below 38 degrees then no adJustment is necessars IF(TSDILEIIJJKJL+1}.LE.38) THEN 58 TD 2188 . compound (d N ‘+ w- .J n J .J (u find the Final temperature is above ” adJustment must be made nrnn niin nt1r:n:1 fl 0 fl fl n11 nrun + 99 ELSE IF(TSOILCIaJiK,L+1).OE.32> THEN DELTRI=TSOIL£OPSOLN TSOILKIJJJKiL+1>=32+DELTHS find iF the Final temperature is between 38 and 32 degrees then the Final temperature is reduced ELSE DELTRI=TSDIL. BE. 32) THEN DELTRi-TSOILCI..J K.L+1)-‘2 DELTR2=CPSOLC(:PEDLNtDELTHl TSUILfiiiJiiiL+iD=TSDILfiI J. K L+1>+DELTHZ and the Final temperature is below 38 degrees then the temperature is Further reduced ELSE IF(TSUIL(IaJ:KJL+1).LE.S8) THEN DELT81="8- TSDILC IJJJKJL+1) DELTH2=CPS OLC '8 'SDLFfiflELTHI T'SDIL(I; J.K;L+1)=S8-DELTH2 find the Final temperature is between 38 and 32 then no adjustment is necessary ELSE GO TO 2188 ENDIF ENDIF CONTINUE CONTINUE CONTINUE Test For temperature constant condition IF temperature is less than the temperature chan desired Jump to program Finish q;- II! WRITE(#)J TSDILfikNUN 8.- TUBEHT L+1). ’Jews we ’ IF(TSDILC.4.NUM. 8 TUBEHT L+1J-T-UIL'VP|1 8 TUI’EHT. L) LT. TDIFFD) 88 TD 2? 88 nlnrnnri ntwnim U) ‘4! Ltd 6C9 fiflfl FIfiiTth mrhnru (on ' fl +-++ can 100 Taking advantage of the plane of semmetra around the tube in the x-: plane Fill TSDILfiIJ~1JKiL+1> arras with TSDILCIJ+IaKiL+1) values DO 2328 M=1JNNUH D0 2318 N=1aZNUN TSOILfifli-l:NJL+1)=TSOIL CONTINUE CONTINUE Reset tube inlet temperature to current ambient TSDILIBIBJTUBEHT,L+1)=TCURRM Move L+1 temperatures into the L arras For next loop DO 2398 D=8;NNUM+1 D0 2398 B=~IJVNUM DO 2398 C=112NUN TSOILCD:BICJLD=TSOIL(DJBJC;L+1) CONTINUE CONTINUE IF maximum time step is reached print out message WRITEC*); ’Maximum time exceeded’ 80 TO 2888 IF stable temperature is achieved print message HRITEfifi); ’Output temperature stable at’ MRITEfifi). TSOILiNNUMJBJTUBEHT.L+1); ’de9rees.’ Hsk i? user wishes to save parameters MRITEfiflD, ’Do sou wish to save the parameters?’ (9 or N) REHECfi); PRRHN IFQPHRHN.EQ.’V’)THEN NRITEfifiifisERR=4488§THVORM,TCURHNJTSDILD:CPHIRJ KHIRJUHlfiinNRIR,~SOILNaKSOILFaIMOISTJFMOISTitPSOLF; CPSOLN,DNSOILJNINCREJVINCRE,ZINCREJVELCTV,VNUM,ZNUM’ TNUM;TDIFFD,TIMEX,XNUH;$HVEHN.PRERNSJCPFUSEJCFNRTRTOPIOE ENDIF Rsk i? user wishes to store the array walu I7! 3. NRITE(#3, ’Do sou wish to save th REflnfifi), SRVERN IF(SRVERN.EO.’9’>THEN temperatures (V or N) 11; (.0 is) (5' SI ‘5' G! 4188 4488 4588 4688 101 NRITECSI¥JERR=4S88D TSOIL ENDIF CLOSECoxERR=4688D CLOSEfiéiERR=4788D NRITEfifi); ’NORNHL TERMINHTION’ STOP Error messases and recovers NRITE<#) ’Open Failed For parameter File’ MRITECfiD ’Do sou wish to attempt to solve the problem’ HRITE(#> ’ and trs asain?’ NR1TE€$> ’Oorrect error cause and answer 9’ MRITE<$> ’IF sou wish to Quit enter N’ RERD(#> H IF(R.EO.’V’) GO TO 18 STOP HRITECfi) ’Open Failed For data File’ MRITECSJ ’Do sou wish to attempt to solve the problem’ HRITECfi) ’ and trs asain?’ NRITE£$D ’Correct error cause and answer s WRITE(#> ’IP sou wish to Quit enter N’ REHDCfi) R IF(H.EO.CV’) GO TO 28 STOP HRITE(*) ’Read Failed For parameter File’ NRITEfifi) ’Do sou wish to attempt to solve the problem’ HRITE(*) ’ and trs asain?’ MRITECfi) ’Correct error cause and answer 9’ WRITEESD ’IF sou wish to Quit enter N’ REHDCfi) H IF(R.EO.’V’> GO TO 78 STOP NRITE<#) ’Read Failed For data File’ NPITECfi) ’Do sou wish to attempt to solve the problem’ NRITECS) ’ and trs again?’ HRITEC#) ’Oorrect error cause and answer V’ NR1TE£¥> ’IF sou wish to Quit enter N’ REHD(#) H IF(H.EO.’V’) GO TO 1188 STOP NRITEfia) ’Nrite Failed For parameter File’ MRITECS) ’Do sou wish to attempt to solve the problem’ MRITECfi) ’ and trs again?’ MRITEC$> ’Correct error cause and answer V’ NRITEC#D ’IF sou wish to Quit enter N’ RERDC#) H IF(H.EO.’V’) GO TO 2758 STOP MRITECS) ’Nrite Failed For data Pi NRITE<#) ’Do sou wish to attempt t NR1TE<$D ’ and trs again?’ NRITEifib ’Correct error cause and answer 9’ NR1TE£§> ’IF sou wish to suit enter N’ PEHDCSD R IF(R.EO.’V’) GO TO 2388 STOP NRITECfi) ’Olose Failed For paramet r 1 HEITEflfi) ’Do sou wish to attempt to sole NRITEifib ’ and trs asain?’ ' I I le' o solve the problem’ 57} the problem’ 102 [ll NRITEfifib ’Correct error cause and answer 7 NRITEifi) ’IF sou wish to Quit enter N’ REHDfifl) H IF(H.EQ.’V’) GO TO 3488 STOP NRITE(#> ’Close Failed For data File’ MRITE(*) ’Do sou wish to attempt to solve the problem’ NR1TEC¥> ’ and trs asain?’ NRITEce) ’Correct error cause and answer s! NRITEcwb ’IF sou wish to suit enter N’ RERD(#> H IF(H.EO.’V’) GO TO 3688 STOP END BIBLIOGRAPHY 10) 11) 12) 13) BIBLIOGRAPHY Heap, R. D. Heat Pumps. A Halstead Press Book, Copyright 1979 by R. D. Heap, page 11. McGuigan, Dermot, and McGuigan, Amanda. Heat Pumps, An Efficient Heating & Coolinnglternative. Charlotte, Vermont: Garden Nay Publishing, 1981, page 29. Reference 2, page 53. Reference 1, page 25. Kirschbaum, H. S. and Veyo, S. E. "An Investigation of Methods to Improve Heat Pump Performance and Reliability in a Northern Climate." EPRI EM-319 Project 544-1 Final Report, Prepared by Westinghouse Electric Corporation, Pittsburgh, Pennsylvania, January 1977. Rice, C. K., Jackson, w. L., Fischer, S. K. and Ellison, R. D. Design Optimization and the Limits of Steady-State Heating Efficiency for Conventional Single-Speed Air-Source Heat Pumps. OakTRidge, Tennessee: Oak Ridge National Laboratory, National Technical Information Service, 1981, Chapter 4. Gannon, Rogert. "Ground-water Heat Pumps." Popular Science, 1978. Bylinsky, Gene. "Water to Burn." Fortune, October 20, 1980. Sumner, John A. Domestic Heat Pumpg. Chalmington, Dorchester: Prism Press, Stabel Court. Dorset DT2 OHB, Great Britain. Copyright 1976 by John Sumner, page 36. Metz, Phillip D. "Design, Operation and Performance of a Ground Coupled Heat Pump System in a Cold Climate.“ Solar Technology Group, Brookhaven National Laboratory, Upton, New York, 1981. Bose, J. E. "Earth Coil/Heat Pump Research at Oklahoma State University." Stillwater, Oklahoma: School of Technology, Oklahoma State University. Nasserman, M. "Crawl-Space Assisted Heat Pump with Numerical Model.“ M.S. thesis, University of Tennessee, 1983. Robb, Ronald J. "An Analytic Analysis of the Air-to-Air Ground Coupled Heat Pump." March 9, 1983. MN 4500 104 Reference 11. Reference 9, page 41. Reference 11. Jennings, Burgess H. Environmental Engineering,_Analysis and Practice. New York, New York: International Textbook Company, I970, page 142. Reference 17, page 139. Koorevaar, P., Menelik, G., and Dirksen, C. Elements of Soil Physics. New York, New York: Elsevier Science Phblishers, 1983, Equation 4.31. Tsytovich, N. A. The Mechanics of Frozen Ground. McGraw-Hill Book Company, 1975, pageg34. Yong, Raymond N., and Warkentin, Benno P. Soil Properties and Behaviour. New York, New York: Elsevier Scientific Publishing Company, 1975, page 417. Reference 20, page 70. Reference 20, Section 11.11. Reference 7. Boyer, Richard, and Savageau, David. Places Rated Almanac. New York, New York: Rand McNally, 1981, page 26. Reference 17, page 136. Reference 17, page 164. Potter, Merle C., and Foss, John F. Fluid Mechanics. New York, New York: The Ronald Press Company, 1975. Reference 17, page 138. Reference 17, Table 4.3. Manufacturers data. Reference 3, page 41. Consumers Power, 1984 rates. Reference 3, page 23. 105 35) Aero Rental, 1984 rates. 36) Reference 17, page 422. 37) Grainger Fan and Blower Catalog, Fall 1983 edition. 38) Jumikis, Alfred R. Thermal Geotechnics. New Brunswick, New Jersey: Rutgers University Press, 1977. 39) Reference 11. 40) Reference 11. General References Potter, Merle C. Numerical Methods in the Physical Sciences. Englewood Cliffs, New Jersey: Prentice—Hall, Inc., 1978. Holman, J. P. Heat Transfer. New York, New York: McGraw-Hill, Inc., 1976. Jumikis, Alfred R. Soil Mechanics. Princeton, New Jersey: 0. Van Nostrand Company, Inc., 19621 Jumikis, Alfred R. Thermal Soil Mechanics. New Brunswick, New Jersey: Rutgers University Press, 1966. Reedy, w. R., and Bullock, C. E. ”Northern Climate Heat Pump Field Performance Evaluation." EPRI EM-2319. Carrier Corporation, July 1982. Reay, D. A., and Macmichael, D. B. A. Heat Pumps Design and Application. New York, New York: Pergamon Press, 1979, page 39. Heins, Royal 0., and Rotz, C. Alan. "Final Report to Detroit Edison on Feasibility of Greenhouse Production in the Detroit Area Utilizing Heat Pumps for Temperature Control." September 1981. "Heat Pump Demand Characteristics, A Study of the Impacts of Single- Family Residential Heat Pump Technologies on Electric Utility System Loads." EPRI EA-2074, Project 1100-1, Final Report, October 1981, Prepared by Gordian Associates, Inc., Washington, DC. Collie, M. J., ed. Heat Pump Technology for Saving Energy. Park Ridge, New Jersey: Noyes Data Corporation, 1979. "Backyards Heat New York Homes." The Lansing State Journal, February 20, 1983. Faltermayer, Edmund. "Solar Energy Goes Underground.” Fortune. December 27, 1982. 106 Andrews, J. N., "Ground Coupled Solar Heat Pumps: Analysis of Four Options." ASME Solar Energy Division Conference, Reno, Nevada, April 27-May 1, 1981, Department of Energy and Environment, Brookhaven National Laboratory, Upton, New York. M11111 3 TAYE U S 1293 0 1111 TYLB 11111“ 716