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ABSTRACT 

 

INVESTIGATION OF SURFACE EVOLUTION FOR  

ABDOMINAL AORTIC ANEURYSMS INTERACTING WITH SURROUNDING TISSUES 

 

By 

 

Alexander C. Dupay 

 

Three-dimensional patient-specific models of abdominal aortic aneurysms (AAAs) were 

reconstructed from CT scans and vessel migration, eccentricity, and cross-section line curvature 

were identified as morphological features which are influenced by surrounding tissues during 

disease progression.  A novel centerline algorithm was developed in Matlab and applied capable 

of qualitatively estimating vessel migration away from the vertebrae during disease progression 

and automatically parameterizing patient-specific surface models with respect to the generated 

centerline.  The parameterized surface is then approximated using shape functions and 

reconstructed appropriately.  Image analysis and reconstruction was performed through a 

commercial biomedical imaging software suite for a high-resolution CT dataset consisting of 51 

scans across 11 patients which were obtained through collaboration with Dr. Whal Lee at Seoul 

National University Hospital (SNUH).  A longitudinal dataset, multiple scans taken at multiple 

times per patient, presents additional challenges such as the need for accurate model registration 

and the unique opportunity of increasing our understanding of geometrical evolution during the 

progression of AAA. This study discovers that a rich and complex biomechanical relationship 

exists between an AAA and the spine during AAA disease progression.  The most significant 

implication of these results highlights the necessity of incorporating surrounding tissue, whether 

patient-specific or idealized, for computational biomechanics stress simulations of AAAs to 

improve their accuracy and prediction of rupture potential.  Incorporating such interactions 

would also considerably enrich documented analyses. 
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CHAPTER 1. Introduction 

1.1 Motivation 

1.1.1 Clinical Review of AAAs 

 

The aorta is the major artery which blood circulates through from the heart.  It can be 

segmented into different sections such as the aortic arch, thoracic aorta, and abdominal aorta, or 

ascending and descending aorta.  The infrarenal aorta is the section of the abdominal aorta which 

lies between the renal branches and the iliac bifurcation.  The normal diameter of the infrarenal 

aorta is approximately 2 cm.  An aortic aneurysm is identified as an enlargement of the aorta 

greater than 50% of the normal diameter, or in the case of the infrarenal aorta a diameter of 

greater than 3 cm (Figure 1).  Aneurysms affecting part of the vessel’s circumference are known 

as saccular, while those affecting an area spanning the entire circumference are known as 

fusiform.  The vast majority of aortic aneurysms are AAAs (abdominal aortic aneurysms), and 

over 90% of AAAs occur specifically within the infrarenal aorta [1–3].  AAAs are a serious 

medical condition that when left untreated ends in vessel rupture with patient mortality rates up 

to 95% [4], [5].  AAAs are responsible for at least 10,000 deaths annually in the U.S. alone [1], 

[6], [7]. 
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Figure 1. A sample CT scan of a patient diagnosed with an AAA highlighting a coronal slice 

(left, upper-left), a sagittal slice (left, upper-right), a transverse slice (left, bottom), and the 

intersection of all three (right).  White arrows are used to identify the AAA.  For interpretation of 

the references to color in this and all other figures, the reader is referred to the electronic version 

of this thesis  The text is not meant to be readable this figure and other CT reference figures, and 

is for visual reference only. 

 

 

The highest risk group is men over 65 years of age, and AAAs are less common for 

women than men and for individuals of black race/ethnicity [8].  The reasoning for this is not 

clear, and studies are underway suggesting things such as hormones and different anatomically 

influenced gender-based hemodynamics in the abdomen due to reproductive organs as possible 

reasons for gender differences while differences between race/ethnicity are harder to discern.  

Other risk factors include smoking, chronic obstructive pulmonary disease (COPD), high 

cholesterol, atherosclerosis, and hypertension; approximately 50% of individuals with AAAs 

also have hypertension [1], [2], [9].  Arterial tissue consists of three layers: the intima, media, 
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and adventitia.  Loss of medial tissue and atherosclerosis, the stiffening of vessels due to internal 

plaque buildup commonly from high cholesterol, are the most common causes of AAAs.  AAAs 

are usually asymptomatic until rupture, but can be associated with lower back and abdominal 

pain as they progress; as an AAA’s size increases it may become palpable and/or tender [1], [10].  

Rupture risk is the ultimate complication which clinicians consider for surgical decisions; rupture 

risk for aortic aneurysms with diameters larger than 5 cm, 6 cm, and 7 cm are approximately 

20%, 40%, and 50% respectively based on documented diameters immediately following rupture 

[4], [9]. 

 

Currently medical professionals consider one geometrical parameter as the ultimate 

indicator of rupture risk for a patient diagnosed with an AAA: the maximum cross-sectional 

diameter.  If the maximum cross-sectional diameter exceeds 5.0 cm or 5.5 cm an elective 

surgical intervention, either open surgical repair or EVAR (endovascular aneurysm repair), is 

suggested. Aortic replacement with a prosthetic graft was first introduced in 1952 by DuBost and 

has been the treatment of choice until the introduction of transfemoral intraluminal graft 

implantation in 1991 by Parodi [11], [12].  Implanting an ELG (endoluminal graft) promotes 

beneficial tissue remodeling to decrease the aneurysm sac size by redirecting blood to flow 

through the ELG to relieve pressure from the weakened aortic wall [13–15].  AAA research is 

usually divided into two sub-fields: the study of the natural progression of AAAs pre-EVAR, and 

the healing/recovery process of AAAs post-EVAR.  This thesis will focus on pre-EVAR AAA 

pathology and biomechanics. 
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The 5.0 cm to 5.5 cm maximum cross-sectional diameter criteria was developed to set a 

clear boundary where the risk of rupture becomes appreciably greater than the risks involved in 

surgery, which has mortality rates of up to 5.8% - 6% [16], [17].  Statistically significant studies 

suggest continued monitoring for patients in lieu of early elective surgery carries a lower rate of 

mortality [7], [17], [18].  This diagnosis can best be made through the attainment of an 

Ultrasound (US), X-Ray Computed Tomography (CT), or Magnetic Resonance Imaging (MRI) 

screening of the region of interest for an individual; it is estimated that physical examination 

alone can miss more than one third of diagnoses [15], [19].  After the initial diagnosis is made, 

patient monitoring is required for an expansion rate to be determined and for general AAA 

stability to be assessed.  From such scans parameters can be defined and analyzed based on 

morphological features to develop more sophisticated measures and attainment algorithms that 

account for more factors inherent to patient variance.  Doing so will allow clinicians and patients 

to make more informed treatment decisions and allow for the more accurate estimation of rupture 

risk.  Perhaps the least understood part of AAA pathology and rupture risk is the influence of an 

intraluminal thrombus (ILT) though clinical studies have shown that 75% of AAAs contain ILT 

[20].  An ILT is essentially a blood clot within the vessel which adheres to the intraluminal 

surface (Figure 2).  Formation of an ILT is influenced by hemodynamic and biochemical factors. 
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Figure 2. Transverse slice of a patient CT scan in the abdominal region (left), and a zoomed 

section of a transverse slice in the abdominal region (right) focusing on AAA transverse cross-

sections exhibiting varying thickness of the arterial wall due to ILT presence shown by the 

arrows.  The intensity scale is adjusted on the right to show clear contrast between lumen, tissue, 

and intraabdominal space. 

 

1.1.2 Biomechanics Research of AAAs 

1.1.2.1 Introduction 

 

The primary goals of current research of small pre-EVAR AAAs are the accurate 

quantification of morphological features and the accurate estimation of mechanical stress 

experienced by the arterial wall.  Doing so builds a greater understanding of AAA disease 

progression on an individual level such that the estimation of rupture risk can shift from general 

statistic probabilities to estimates tailored to patient specific concerns.  There exists much 

controversy on the merits of surgery for small AAAs less than 5-cm in diameter.  In general it is 

assumed the risks of surgery outweigh the risk of rupture for such cases, but rupture of small 

AAAs is still responsible for high mortality rates [21], [22].  Understanding patient specific 

biomechanics is most beneficial for treatment decision making with regards to small AAAs 
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where rupture risk may exceed surgical risks but the AAA maximum diameter criterion suggests 

otherwise. 

1.1.2.2 Arterial Wall Mechanics 

 

Technical studies tend to focus on the geometrical analysis and finite element simulation 

of 3-D models generated from the segmentation of 2-D multi planar reconstructions (MPRs) of 

CT scans, which introduces the additional step of 3-D model generation.  Many research groups 

have reconstructed 3-D AAA geometries from CT scans with the aim of evaluating wall stress 

through conventional finite element analysis (FEA).  Giannoglou et al. evaluated peak wall stress 

(PWS) and found good correlation between PWS and mean centerline curvature, maximum 

centerline curvature, and maximum centerline torsion, but not with maximum diameter, the 

standard clinical correlation [23]. They based the surrounding tissue model on a uniform wall 

thickness derived from Raghavan and Vorp, whom are leading experts on AAA tissue wall 

material mechanics [24].   

 

There have been significant developments for computational biomechanical models.  

Doyle et al. evaluated wall stress via FEA using validated realistic nonlinear material properties 

in an attempt to correlate wall stress to diameter and centerline asymmetry, finding that posterior 

wall stress increases with anterior centerline asymmetry by 38% [25].   Raghavan et al. 

incorporated a nonlinear biomechanical computational AAA tissue model in place of a 

conventional model into the reconstructed geometries to evaluate wall stress distribution, finding 

the PWS to be posterior in all cases and showing that AAA volume is a better predictor of PWS 

than maximum diameter, and therefore possibly a better indicator of rupture risk [26].  Wang et 

al. evaluated the effect of ILT on wall stress using a nonlinear large deformation algorithm 



7 

 

finding that PWS was reduced in the presence of ILT.  The results showed an association 

between increase in ILT presence and decreases in peak wall stress of 6% - 38% from a range of 

30 – 44 N/cm
2
 to a range of 28 – 37 N/cm

2
, compared to 12 N/cm

2
 for a healthy aorta [20].  

Georgakarakos et al. evaluated PWS in the presence and absence of an ILT and its relation to 

geometric parameters such as torsion, tortuosity, and mean curvature.  They found a positive 

correlation between PWS and ILT volume, and in the presence of an ILT found significant 

correlation with the degree of centerline tortuosity and maximum diameter [27].  Speelman et al. 

focused on preserving wall calcifications, or mineralization of sections of the arterial wall, 

throughout 3-D model reconstruction and analyzing their effect on wall-stress [28].  Wall 

calcifications are an interesting part of AAA pathology which develop from unique biochemical 

conditions, but as they were rare in our dataset they were not modeled and considered. FEA 

methods quantifying wall stress have proven more effective than the maximum diameter 

measurement alone at predicting rupture risk.  While it is clear AAA maximum diameter is not 

the measurement best correlated to rupture risk, it is not completely clear what is the best 

measure either. 

1.1.2.3 Morphological Predictors of Arterial Wall Stress 

 

There are a number of limitations when analyzing the clinical methods of rupture risk 

estimation.  Simple parameters are not perfect measures and do not necessarily account for 

patient-specific information.   This has prompted researchers to investigate more sophisticated 

parameters, but such investigations are also confronted with limitations.  For example, it is 

known that the assumed 2 cm normal infrarenal aorta diameter can actually vary from 1.5-cm to 

2.5-cm between individuals, but that a difference of 1 cm diameter can indicate much different 
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rupture risks [4], [9], [13].  Advanced geometrical parameter definitions & attainment algorithms 

will lead to more accurate risk predictions, increased sensitivity to patient-specific concerns, and 

form a foundation for defining more reliable indicators of rupture risk.  Much research has been 

done to identify suitable geometric parameters to this end. 

 

Martufi et al. evaluated geometric indices and validated an in-house automated software 

package, VESSEG, suggesting use of a geometrical index incorporating multiple morphological 

features [13].  Shum et al. evaluated geometric indices and regional variations in wall thickness 

based on novel segmentation algorithms [29].  A number of fluid structure interaction (FSI) 

simulations have also been performed in an attempt to link wall stress distribution to 

hemodynamic factors.  Xenos et al. analyzed FSI with a focus on ruptured aneurysm [30].  

Bluestein et al. analyzed FSI in the presence of ILT [31]. Fillinger et. al determined the wall 

stress distribution as a result of geometry and blood pressure using a hyperelastic nonlinear 

model [32].  Wolters et al. developed a novel patient-specific mesh generation algorithm to 

generate FSI meshes based on CT scan data [33].  Leung et al. compared a FSI model to a solid 

stress model [34].  Papaharilaou et al. performed a decoupled FSI-FEA simulation for estimating 

wall stress [35].  

 

While not directly studying AAAs and CT scans, other works have contributed to the 

general discussion surrounding AAAs.  Borghi et al. reconstructed 3-D geometries of thoracic 

aortic aneurysms from MRI by scanning the same region using different parameters optimized 

for resolution of the aneurysm lumen, thrombus, and wall to reconstruct a 3-D model detailing 

each component accurately [36].  Steinman et al. reconstructed a 3-D large intracranial aneurysm 
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model and performed a finite element computational fluid dynamics simulation of the 3-D 

pulsatile velocity field [37]. 

 

Current work makes frequent use of isolated patient-specific 3-D AAA geometries 

reconstructed from CT scans [13], [20], [23], [25–35].  Patient-specific 3-D aneurysm geometries 

are also useful for the study of thoracic aneurysms and large intracranial aneurysms [36], [37].  

Conventional FEA wall stress studies for idealized and patient-specific geometries are more 

predictive of rupture than AAA maximum diameter, but many of these studies assume arterial 

tissue to be isotropic and linearly elastic as well as disregard vertebral interaction of an AAA 

during disease progression [23], [27], [28], [38–40].  The desire in the research community to 

use patient-specific models is clear, and the inclusion of longitudinal data and surrounding tissue 

would serve to directly enrich the findings of any of these existing works. 

1.1.2.4 Intraluminal Thrombus 

 

It has been shown that there is a correlation between an AAA diameter increase and ILT 

growth [41], [42].  It has been more recently suggested that there is not only an association, but 

that the ILT plays an active role in AAA pathology via mechanical stress shielding and pressure 

reduction [20], [43].  Such findings are important given that the basic mechanical definition of 

rupture of an AAA is when the wall stress at a surface exceeds the wall strength at that surface.    

Hinnen et al. extracted actual ILT samples and implanted them in model aneurysms composed of 

rubber and paraffin.  The systolic circulatory pressure was measured as well as the systolic 

pressure at various depths within the ILT from the wall and it was found that the ILT served to 

reduce pressure as distance to the wall decreased. At 1 cm, 2 cm, and 3 cm from the wall 

pressure ratios between the systolic circulatory pressure and systolic ILT pressure were 0.9 ± 
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0.09, 0.86 ± 0.10, and 0.81 ± 0.09 respectively [43].  The results carried two-fold importance: 

they experimentally verified the theory of stress-shielding presented by Wang [20], and they 

highlight the importance of considering ILT for FSI.  The proper inclusion and modeling of ILT 

is another source of enrichment for current works, but there are significant challenges in such 

incorporation.  Most technical studies of patient-specific AAAs reference CT data, which does 

not offer clear boundaries between the vessel wall and ILT.  Idealized geometries often assume a 

uniform wall thickness ranging from 1.2 mm to 1.8 mm.  High resolution CT scans can offer 

sub-millimeter resolution on the order of at least 0.5 mm / pixel, which does not offer a clear 

benefit over idealized thicknesses when other sources of error are taken into account.  As ILTs 

become increasingly larger their accurate modeling becomes more realistic and worthwhile, 

however, as the error due to CT resolution is absolute and only a concern for low thicknesses. 

1.1.2.5 Discussion 

 

The weighing of rupture risk against surgical risk is the bottom line for treatment 

decision, and therefore a proper understanding of long-term AAA pathology and biomechanics is 

paramount to accurately estimating rupture risk.  The last two decades have been a time of 

significant advancement for such understanding, leading to FEA / computational biomechanics 

studies utilizing patient-specific AAA geometries.  Computational biomechanics considers 

vascular adaptations associated with AAA pathology through growth and remodeling (G&R) 

mathematical models.  Conventional FEA is useful for studying present and short term 

deformations of patient-specific AAA geometries, but its inherent exclusion of vascular adaption 

limits its potential for long-term studies. The stress analyses of patient-specific AAA geometries 

producible through computational biomechanics have proven more effective than standard 

clinical measures at predicting rupture risk thereby affirming its potential usefulness, and 
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perhaps necessity, as a rupture risk assessment tool.  One significant drawback hindering the 

incorporation of these methods clinically is their inability to explain why rupture occurs most 

often at the lateral / posterolateral regions of an AAA.  There is no doubt that future expansion of 

studies not already doing so would benefit from the inclusion of patient specific geometries.  It is 

clear from these studies that a generally accepted set of guidelines and methods exist for 

segmentation and model generation.  For this study we additionally include the generation of the 

vertebrae model adjacent to the AAA for global registration. 

1.1.3 Surrounding Tissues 

 

The pathology of AAAs is such that enlargement of the aorta is associated with disease 

progression.  As an AAA enlarges it becomes subject to increased reaction forces from 

surrounding tissue, especially from the vertebrae of the spine. The maximum diameter criterion 

may serve to distinguish stable and unstable aneurysms to an extent, but cannot necessarily 

explain the degree of stability.  Back pain can be associated with AAAs due to aneurysm 

expansion exerting pressure on the lumbar nerve roots as a result of vertebral contact.  It is also 

well known that there is an association between the presence of an AAA and vertebral erosion as 

well as evidence shown for ruptures tending towards the posterolateral surface of the aorta.  

There are not many studies that have been done considering the growth and remodeling 

interactions of an AAA, the lumbar region of the spine, the ILT, and surrounding tissues.  Vorp 

et al. suggested that the “limitation of posterior expansion caused by the vertebral column might 

result in preferential anterior expansion of the aneurysmal wall and an asymmetric 

configuration” [44].  Watton et al. developed the first mathematical model to predict aneurysm 

growth including spinal contact based on this suggestion, but it was not paired with a 
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longitudinal study or additional tissue constraints [45].  In this study it is shown that different 

patients display different degrees of interaction with surrounding tissues.  For a subset of the 

patients, however, a marked effect on AAA geometry is observed.  Clearly defined 

morphological parameters describing these interactions would be of significant value. 

 

The vena cava is the major vein for returning blood back to the heart.  The superior vena 

cava returns blood from the upper half of the body to the heart while the inferior vena cava 

returns blood from the lower half of the body to the heart.  The inferior vena cava, spine, renal 

system, and aorta interact as shown (Figure 3). 

 

Figure 3. Near the lumbar vertebrae (white) the inferior vena cava (blue) runs opposite to the 

aorta (red) on its right lateral side. The inferior vena cava and the aorta are connected, most 

notably for AAAs, to the renal system (purple).  The left renal vein crosses anteriorly over the 

aorta inferior to the superior mesenteric artery. 
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All renal arteries and renal veins segment and terminate at the respective kidneys.  In 

healthy individuals the two vessels do not have substantial physical interaction, but in the 

presence of an AAA the inferior vena cava presents an asymmetric right-sided growth barrier to 

AAA geometrical evolution.  Mean arterial blood pressure, which has a pulsatile flow, in healthy 

individuals usually ranges from 90 – 100 mm Hg compared to the non-pulsatile venous side of 

the circulation which is approximately 84 mm Hg less; mean venous blood pressure ranges from 

approximately 10 mm Hg at the venules to approximately 0 mm Hg at the heart [1].  Blood flow 

in the inferior vena cava is strongly influenced by the intraabdominal pressure (IAP), which 

typically ranges from 2 – 10 mm Hg [1].  When considering the influence of the inferior vena 

cava as a growth barrier of an AAA the mean venous pressure is thus far less influential than the 

biomechanical resistance the tissue itself provides.   

 

Each kidney of the renal system is sheathed by a fibrous external capsule and surrounded 

by fatty connective tissue which, in combination with attached vessels and fascia, holds each 

kidney in place [1].  The kidneys have some freedom of movement to react to movement of the 

diaphragm, but otherwise remain relatively stable.   As an AAA progresses it is possible for renal 

arteries or veins to become stressed or distended, though migration of the vessels is resisted by 

the other tissues serving to anchor the kidneys in place, most notably the left renal vein crossing 

anteriorly over the aorta. 

 

The spine acts as a rigid boundary for AAA growth, and can therefore affect the 

remodeling of the aorta [44–46].  The interaction between vertebral contact & ILT position is 

also extremely important.  It is believed that the circumferential position of an ILT can lead to 
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substantially different AAA growth & remodeling, especially with regards to accelerated tissue 

degradation.  An anteriorly growing ILT may grow relatively unconstrained, while a posteriorly 

growing ILT presents additional considerations. Such an ILT could cause a general vessel 

centerline migration of the associated AAA away from the spine, as well as expose the posterior 

side of the associated AAA to compressive forces of the spine as a growth barrier.  It is known 

that the arterial wall becomes thinner and weaker at areas contacting ILT, so it should be 

considered whether such an area is also contacting the spine and therefore under additional force.  

Additionally such a situation favors curvature flattening of the vessel at the region of spinal 

contact and such a geometrical profile changes the stress experienced by the vessel, especially at 

circumferential regions of significant and sudden curvature change. 

1.2 Objectives 

 

 This thesis will detail an investigation of AAA surface evolution for a longitudinal CT 

scan dataset progressing from qualitative to quantitative methods.  The identification of 

influential morphological features coupled with automated algorithms to obtain parameters 

representing those features will lend insight into the link between AAA pathology and AAA 

biomechanics and thereby provide a strengthening tool for computational biomechanics.  In the 

selection of the parameters it is important that they should be intrinsically understood by medical 

professionals as integrated study of AAA pathology and biomechanics requires clear discourse 

between medical and research professionals.  It is known that some morphological features arise 

from contact between an evolving AAA and vertebrae, but the impact of these effects on rupture 

risk is not fully known. The geometrical parameters investigated in this work will reflect 

interactions with surrounding tissues, most notably the lumbar vertebrae.  A longitudinal study 
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serves to further justify the suitability of selected morphological parameters by investigating 

their respective evolution throughout AAA progression.  Therefore the objectives of the study 

are as follows: 

 

- Process a collection of CT scans to obtain fully segmented and registered 3-D models of 

the vertebral and arterial surfaces. 

- Identify morphological features from the reconstructed CT scans and perform analysis 

akin to clinical measurements. 

- Perform a relatively defined parameter study based on arterial centerlines generated by a 

developed program to assess morphological feature evolution during AAA progression. 

 

 Chapter 2 will introduce a working knowledge of medical image modalities such CT, 

MRI, and US.  The advantages and disadvantages of each modality will be discussed with 

respect to AAA diagnosis, monitoring, and surgical planning.  The processing methodology 

employed for our dataset will be covered in which 3-D models are reconstructed from CT scans.  

The sum of 3-D models for a patient form a longitudinal model set.  Three dimensional models 

of the AAA luminal surface, AAA tissue surface, and lumbar vertebrae will be developed 

following established methods of image segmentation.  Models belonging to longitudinal subsets 

of the data will additionally undergo an image registration process to find the spatial transform 

that maps their positions and orientations with respect to the lumbar vertebrae, which is assumed 

relatively unchanging over time. Image registration allows for an accurate investigation of the 

true spatial differences between scans at different times. 
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 Chapter 3 will examine the CT scan slices concurrently with the generated 3-D models to 

identify morphological features influenced by surrounding tissue.  It is theorized that certain 

morphological parameters may be more suitable for indicating or estimating rupture risk than the 

currently used maximum diameter criterion as such features may be indicative of unique sources 

of increased wall stress observable through FEA.  Each CT scan will be imported to and 

visualized through biomedical imaging software for analysis and subsequent determination of 

suitable morphological parameters.  Measurements of the maximum tissue and luminal diameters 

will be taken directly from the CT scans according to established clinical methodology.   

 

 Chapter 4 will cover parameterization of the surface.  The centerline generation, 

smoothing, and parameterization of the surface will be described in detail.  After 

parameterization of the surface is complete, the method for extracting morphological 

measurements from the surface will be covered.  The centerlines serve as a reference, or an axis 

to parameterize the surface to, for each model which allows for parameterization of the surface 

and the relative definition of geometrical parameters.  It is theorized that interaction with 

surrounding tissue, particularly the lumbar vertebrae, vena cava, and renal system, plays an 

important role in the evolution of the AAA surface geometry. 

1.3 Contributions 

 

   It is believed that the evaluation of morphological parameters throughout AAA 

progression that can be used to quantify AAA surface evolution with respect to surrounding 

tissues is the pivotal next step in advancing the general understanding of AAA biomechanics.  
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Through collaboration with Dr. Whal Lee at Seoul National University Hospital (SNUH) in 

South Korea we have obtained a high resolution CT scan dataset for this purpose. 

 

 The influence of surrounding tissues is understudied in current works.  Immediately upon 

visually reviewing the CT scans it could be seen that surrounding tissues, particularly the spine, 

were significantly interacting with the AAAs during their progression.  A FEA or computational 

biomechanics study would typically involve the internal arterial pressure and vessel pre-stretch 

as the sole mechanical driving forces of surface evolution, but the addition of a growth barrier 

such as the lumbar vertebrae would introduce significant reaction forces.  Considering the 

lumbar vertebrae would change the outcome of such simulations and offer more insight as to the 

complex biomechanics in effect under in vivo conditions.  Consideration of the mechanical 

influence of other tissues such as the inferior vena cava, adipose tissue, and connective tissue 

would also lend insight into the link between AAA pathology and biomechanics, but the spine is 

focused upon for its clear contribution. 

 

 The dataset contains a total of 51 CT scans from 11 patients with a mean surveillance 

interval of 373 days between longitudinal scans allowing for the unique investigation of AAA 

surface evolution.  Such data allows not only for the investigation of morphological parameter 

values, but their evolution as well.  Studies including longitudinal data sets are seriously 

underrepresented as access to such data collections is rare, especially at high-resolutions.  

Typically 3-D meshes developed from patient-specific data are based on single CT scans of 

individual patients with no additional follow-up CT images for study, unlike access to a 

longitudinal dataset provides.  The major contribution of this study is to showcase the 
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importance of considering surrounding tissue, particularly the spine, when performing stress 

studies and geometrical parameter indexing of ideal and patient-specific AAA geometries.  The 

developed centerline algorithm is proposed to be superior to standard algorithms which calculate 

the 2-D transverse polyline centroids to develop a centerline [13], [23], [25], [29], [47–50].   
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CHAPTER 2. Biomedical Image Processing: Segmentation and Registration 

2.1 Introduction 

2.1.1 Biomedical Image Processing Background 

 

This chapter serves to highlight the processes involved in fully visualizing and modeling 

the anatomical structure of an in-vivo patient-specific AAA.  Medical professionals performing 

diagnosis, continued monitoring, or surgical planning of patients require clear visualization of 

the AAA geometry. Research groups performing morphological feature surveys, FEA, or growth 

and remodeling simulations of patient-specific AAA geometries need to have quantitative 

information about the geometry.  In standard clinical practice the qualitative imaging resulting 

from US is most commonly used for diagnosis and continued monitoring.  Use of CT and/or 

MRI scanning is typically reserved for surgical planning, though they offer the ability to record 

quantitative geometry data for delayed decision making and analysis [51–53]. From a qualitative 

image, whether from US, CT, or MRI, an accurate production of quantitative geometry 

measurements can result, though the AAA maximum external tissue diameter is the standard 

measure of interest.  In clinical practice measurement is usually performed through the use of 

calipers on real-time US imaging [51–53].  Technical studies trying to quantify various 

parameters tend to focus on 3-D analyses, which involve additional processing of the data, 

usually CT scans, before analysis (Figure 4). 
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Figure 4. A process diagram highlighting key elements of the biomedical imaging process from 

data obtainment to generating technical computing models. 

 

 A brief review of the relevant biomedical imaging modalities is first presented.  This 

serves to justify the use of CT scans seen by most studies and introduce key terminology 

associated with each modality.  After this introduction the methods utilized for segmentation and 

3-D modeling / image registration are covered. 

2.1.2 Biomedical Imaging Modalities 

 

To properly diagnose, perform continued monitoring, and perform surgical planning for 

an AAA, noninvasive imaging modalities are employed clinically; Acharya et al. provides an 

excellent resource to become familiar with noninvasive imaging modalities from which much of 

this summary is derived [54].  Noninvasive imaging modalities can visualize internal anatomical 

structures of the human body accurately and quickly, even providing real-time imagery in some 
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cases.  With respect to diagnoses of AAAs US, MRI, and CT are the most widely favored 

modalities.  A summary of each will be presented and discussed. 

 

US refers to sound waves with high temporal frequencies.  US imaging involves 

producing US signals, directing them to a particular area in the body with handheld probes, and 

receiving the signal at an appropriate detector array.   Image reconstruction takes places in real-

time on a monitor.  As the signal passes through different layers of tissue and encounters tissue 

layer boundaries partial reflection and partial transmission of the signal occurs.  There are a wide 

variety of electronic transducer arrays that can be employed to acquire different dimensionality 

and quality of this qualitative imagery, but the same basic principles apply for each setup.  Many 

setups allow for the 2-D real-time visualization of structures within the body, which is 

particularly useful for cardiology. 3-D US was patented in 1987 but still sees contention for 

widespread clinical use mainly due to cost, training, and data storage [55].  US imaging is 

capable of not only acquiring qualitative imagery, but quantitative diagnostic information.  

Doppler Echocardiography, for example, can provide vector measurements of blood flow 

direction and magnitude.  The major advantage of US is real-time feedback and equipment that is 

compact, lightweight, and of comparatively low-cost which also requires less specialized 

personnel compared to other imaging modalities’ equipment. 

 

MRI is based on Nuclear Magnetic Resonance (NMR), which is a phenomenon 

associated with physical chemistry.  NMR was discovered in 1946 by Bloch and Purcell, who 

were later awarded the Nobel Prize in 1952 for the discovery, which was coincidentally the same 

year that aortic replacement surgery was introduced by DuBost [11], [54].  For an MRI scan a 
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magnetic field is generated and maintained enclosing the scanning area.  MRI thus requires 

patients to be subject to extremely powerful magnetic fields within a gandry during the scanning 

process, which makes factors such as implants, pacemakers, and claustrophobia important to 

consider as contraindications.  Radio Frequency (RF) energy is introduced into the scanning area 

to excite nuclei within the field, which releases RF energy as the MR signal to be recorded.  The 

ideal element to perform MRI with is Hydrogen, which is also the most common element in 

biological tissue.  MRI is capable of collecting images at any plane through a volume and is 

excellent for soft-tissue resolution.  Automatic Multi Planar Reconstruction (MPR) of the image 

takes place after the scan data is reconstructed allowing for 3-D viewing of internal anatomical 

structures.  MRI is extremely expensive and not widely available, rendering it an uncommon 

choice for AAA diagnosis and monitoring protocols.  Usually MRI is only utilized for AAAs if 

an individual requires a CT scan but has contraindications for CT scanning. 

 

CT scanning utilizes X-rays to acquire diagnostic images.  A conventional radiograph 

produces a single 2-D image by placing the scanning area of a patient between an X-ray emitter 

and X-ray receiver.  X-rays sent through the scanning area are linear and lose energy as they pass 

through tissue.  The resultant X-ray energy is recorded for the field of view.  The result is a 

radiograph, which is only a 2-D projection of a 3-D scanning area. CT, on the other hand, is 

capable of returning 3-D information as a series of 2-D slices based on the same principles.  An 

X-ray source on one side of the scanning area propagates X-rays to an X-ray detector on the 

opposite side of the scanning area parallel through the axial plane. The detector is capable of 

electronically storing the information.  Relative motion is applied to the system between the 

scanning apparatus and the scanning area such that the X-ray source and detector remain in the 
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axial plane, but at some fixed angle from their previous positions.  The emission and detection 

process is repeated according to the parameters set by a given scanning algorithm.  A total of 

180° of rotation is required to fully image the plane in two dimensions.  There exist many 

reconstruction algorithms, but in essence they all manage to reconstruct 2-D tissue density 

information from the saved collection of X-ray projection information.  The 2-D imaged plane 

represents a finite 2-D matrix of tissue density values known as an axial or transverse slice.  

Slices have a thickness dimension, however, as well as a finite resolution as a result of the 

electronic digitization.  Therefore each element of a slice matrix actually represents a voxel, or 3-

D pixel, with dimensions fixed by the scanning algorithm and reconstruction algorithm.  Some 

algorithms are inherent to the scanner used in that they produce identical resolution of data every 

time, but some scanners exist such as the Dynamic Spatial Reconstructer that are capable of 

dynamic algorithms to meet spatial resolution demands.  CT scans are the method of choice for 

surgical planning of an AAA after US monitoring has identified the need for treatment [51–53]. 

 

There are advantages and disadvantages to US, MRI, and CT with respect to AAA 

diagnosis.  US has the advantage of mobile compact equipment such that patient comfort is 

minimally affected whereas  MRI and CT both require the patient to remain motionless during 

scanning, in addition to often presenting a claustrophobic environment which dissuades some 

patients from being comfortable with the process.  US also presents both a low cost up-front for 

the medical provider and for the patient relative to MRI and CT which present much higher 

costs.  US is additionally able to visualize motion of anatomical structures through real-time 

imaging and extract quantitative information such as blood flow direction and magnitude.  If a 

medical professional wishes to quantify the maximum tissue diameter of an AAA for diagnosis 
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or continued monitoring, US provides a quick, low-cost, noninvasive method of accomplishing 

that goal, and studies have shown it is only marginally less reliable than CT for maximal 

diameter measurements [56].  Motion of the vessel from the cardiac cycle introduces intra-

operator variability in maximal AAA tissue diameter measurements from US, however, and there 

is no standardized method to reduce this variability [57].  US sees widespread use in the United 

States as a diagnostic and monitoring tool as it provides clear information about AAA size.  

Obesity and the presence of bowel gas can render US diagnosis of an AAA less effective, 

however.  AortaScan, a portable 3D ultrasound device which measures abdominal aortic tissue 

diameter automatically, was investigated against conventional CT scanning for the diagnosis of 

AAAs in 44 known AAA cases.  Conventional CT diagnosis by trained screening personnel was 

able to correctly diagnose 43 / 44 cases, while AortaScan missed the diagnosis in 8 / 44 cases 

and reported 13 / 44 false positives [58].  This may not be a fault of US, but rather illustrates the 

shortcomings of automated diagnosis vs. the judgment of trained screening personnel.  US is an 

ideal choice for visualizing small stable AAAs, but becomes inadequate when advanced 

investigation and/or surgical treatment planning is required.   

 

CT and MRI are also effective at diagnosis, but considered unnecessary for small stable 

AAAs due to their higher cost, decreased patient throughput, lessened availability, and principle 

concerns.  CT involves X-rays which are inherently harmful to tissue, and though permissible 

levels have been set, exposure should be limited as much as possible.  In the case of CT for 

AAAs an intravenous dye is injected into the aorta to render the luminal volume easily 

differentiable from surrounding tissue.  In some cases patients may have an allergic reaction or 

experience irritation of the kidneys due to the dye, especially patients with chronic kidney 
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concerns.  For MRI the necessity of strong magnetic fields defines absolute contraindications for 

scanning.  Such magnetic fields could disrupt the proper function of a pacemaker for example, as 

well as affect other implants in undesirable or fatal ways.  US is the preferred clinical tool for 

initial diagnosis and continued monitoring due to low cost, wide availability, compact and 

mobile equipment, and minimal patient discomfort.  If AAA disease progression warrants 

additional investigation and/or surgical planning CT scans with intravenous dye then become the 

preferred scanning method due to the clear and absolute depiction of volumetric information.  

CT scans are otherwise considered unnecessarily time and cost consuming for small stable 

AAAs even though they offer superior qualitative imagery [56].  If a patient has 

contraindications for CT scanning, MRI is then an adequate alternative for surgical planning.  

This review serves to illustrate the rarity of a longitudinal CT scan collection of small AAAs and 

the quality of information that can be extracted. 

2.2 Methods 

2.2.1 Data 

 

A biomedical software, Mimics® (Materialise, Leuven, Belgium), is used to process the 

CT scans, which are axial/transverse slice stacks [59].  The software interface allows for viewing 

of up to 3 voxel domain, or slice, windows simultaneously through MPR and a 3-D rendering 

window.  MPR is a general term that refers to the interpretation of additional planes based on 

known planes.  Standard MPR results in the additional view of the sagittal and coronal planes 

from the transverse planes, but other methods exist that generate curvilinear planes based on 

arterial centerlines for example.  Other commercial biomedical imaging software packages exist, 

as well as some in-house programs such as that used by Martufi et al. (VESSEG v.1.0.2, 
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Carnegie Mellon University, Pittsburgh, Pennsylvania) [13].   For the current study a collection 

of high resolution CT scans of patients with AAAs was obtained through collaboration with Dr. 

Lee’s clinical group at SNUH according to an approved institutional IRB protocol; any 

identifiable information that could be traced back to the patient was removed prior to our 

obtainment of the dataset.  Supplemental information was also provided: blood pressure 

measurements, age, and gender for each scan.  Typically clinical small AAA monitoring is done 

using US, and a collection of CT scans of this caliber for small AAAs is rare, especially in the 

United States.  Each scan features a contrast agent in the form of an intraluminal dye which 

renders the luminal volume easily differentiable from nearby tissue. 

 

We obtained a total of 51 sets of CT images representing the longitudinal study of 11 

patients termed patients A - K, with 2 to 9 sets of images from each patient and a mean 

surveillance interval of 373 days.  The combination of patient ID and scan number will be 

adopted for this study such that the first scan from patient G would be known as scan G1, the 

second scan from patient G would be G2, etc. Of these 51 scans were included 3 post-EVAR 

scans, 2 thoracic aortic aneurysm scans, and 1 scan which failed to capture the AAA region 

completely. 

 

Discounting the aforementioned scans reduces the dataset to a total of 45 sets of CT scans 

representing the longitudinal study of 10 patients, with 2 to 7 sets of images from each patient 

and a mean surveillance interval of 401 days.  Each CT scan has dimensions of 512 px × 512 px 

in the transverse plane and a 0° gandry tilt.  The voxel resolution varies between scans as a result 

of the scanner brand/model, scanning algorithm, and reconstruction algorithm employed.  The 
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total number of slices varies as well but usually includes the entire torso of the patient, 

presumably allowing for the additional diagnosis of thoracic aneurysms.  It is possible for the 

geometry data to be scaled, but scaling of the entire dataset was at 100% upon obtainment and 

never altered or further considered henceforth.  Patient information and a statistical summary of 

the scans are shown by Tables 1 and 2.  More detailed information for every scan is located in 

Appendix A (Tables A.1 and A.2). 

 

 

Table 1. Patient age, number of scans, and sex after discounting irrelevant scans. 

 

Patient # Scans Age Sex 

A 2 68 M 

B 3 71 M 

C 2 69 M 

D 3 63 F 

F 6 78 F 

G 6 65 M 

H 7 68 M 

I 6 66 M 

J 5 54 M 

K 5 62 M 

    

 

Table 2. Statistical summary of the CT dataset discounting irrelevant scans.  The surveillance 

interval refers to the time between individual scans, such as between J1 and J2 or J4 and J5.  The 

total study length refers to the total time between the first and last scan of a patient, such as 

between J1 and J5. 

 

# of Patients 10 

 Mean age 66.4  

Minimum # scans 2 

 Maximum # scans 7 

 Mean # scans 4.5 

 Minimum surveillance interval 84 days 

Maximum surveillance interval 1713 days 

Mean surveillance interval 401 days 

Minimum total study length 182 days 

Maximum total study length 3325 days 

Mean total study length 1502 days 
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Some scans were discounted from this study for different reasons, which are important to 

justify before moving on.  Scan F1 is not focused on the abdominal region, and the scan is 

therefore fully discounted (Figure 5). Scans H8 – H9 are post-EVAR, and the presence of an 

ELG is clearly present (Figure 6).  The focus of this study is AAAs pre-EVAR, and these scans 

are therefore fully discounted.  Scan K6 appears to be post-EVAR but it is difficult to discern as 

no ELG is present, though it is possible a full aortic vessel graft is present (Figure 7).  While the 

cause is unclear, it is clear that scan K6 does not represent natural progression of an AAA and 

the scan is therefore fully discounted.  Scans E1 – E2 clearly feature a thoracic aneurysm only 

and the focus of this study is AAAs, so the scans discounted (Figure 8).  Figures 5 - 8 clearly 

describe the reason for discounting the aforementioned scans and are detailed below.  These 

figures feature 3-D results from the methodology covered in Chapter 2 for the sake of visual aid, 

but the same conclusions are clear from visual analysis of the CT scans without employing the 

methodology covered in Chapter 2. 

 

 

Figure 5. A 3-D left side view of F1 after initial processing.  The lower scan boundary is 

equivalent to the bottom of the image which clearly does not contain the abdominal cavity nor 

the full presence of an AAA.  The scan F1 was therefore discounted from this study on the basis 

of insufficient data. 
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Figure 6. A 3-D transparent frontal view of the tissue surface (green, left) and the ELG (blue, 

left), and the luminal surface (red, right) and the ELG (blue, right) of scan H8.  The presence of 

an ELG indicates this to be data from a post-EVAR scan, which is not the focus of this study.  

The scans H8 – H9 were therefore discounted from this study on the basis of irrelevant data. 

 

 

          

Figure 7. a 3-D view overlaid on a respective CT scan coronal plane for scan K4 (left) and for 

scan K6 (right).  The shape of the AAA from scan K6 does not represent natural AAA disease 

progression; it instead more closely represents a post-EVAR geometry.  The focus of this study 

is pre-EVAR AAAs and K6 is therefore fully discounted. 
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Figure 8. A 3-D view overlaid on a respective CT scan coronal plane for scan E1.  A thoracic 

aneurysm is present, but no AAA is present.  The focus of this study is AAAs, so the scans are 

discounted. 

2.2.2 Segmentation 

 

The software interface allows for viewing of up to 3 voxel domain windows and a 3-D 

rendering window.  The voxel domains, or slices, can be viewed from the sagittal, coronal, and 

transverse planes expectedly.  Each voxel represents a finite volume with a single intensity value 

based on the HU (Hounsfield Unit) scale, a measure of tissue density.  A brief summary of some 

core tools of the biomedical imaging software package is covered first.  The application of these 

tools is then described in some detail to produce specific voxel domains, more commonly 

referred to as masks, representative of desired anatomical structures through a process known as 

segmentation. 

 

Thresholding refers to setting an upper and lower bound based on voxel intensity values, 

in this case representative of tissue density, and separating voxels within the bounds from voxels 
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outside the bounds to binarize a subset of the data.  Essentially a range is identified on the tissue 

density histogram associated with the sum of all the voxels, of which many preset ranges exist, to 

develop a mask.  Cropping is a standard operation for any type of image processing in which 

new borders are defined within an image and segments of the image outside these bounds are 

removed.  In this biomedical imaging application it works no differently, save for the operation 

is performed in 3-D to voxels instead of 2-D to pixels.  Region Growing is a unique operation 

which can greatly increase overall processing speed by examining the 2-D or 3-D connectivity of 

voxels.  A single voxel is selected as a source and only voxels connected by the specified 

dimension of connectivity which are already within the mask remain within the mask while all 

others are removed.  This can serve to eliminate disconnected voxels from a mask acting as 

background noise as well as more advanced applications.  Morphologic Operations define a set 

of advanced tools that utilize generated masks created through other means.  An existing mask 

can be dilated, eroded, opened, or closed in three dimensions automatically by a set voxel value.  

For example, a voxel cube with dimensions 3×4×5 dilated by 1 voxel would become a voxel 

cube with dimensions 5×6×7.  Additionally this tool can limit operations to only occur within a 

specified mask, effectively applying user-specified bounding constraints. 

 

The first step to 2-D mask generation of the arterial lumen & vertebrae is the proper 

selection of a HU intensity value range, better known as thresholding.  When selecting the 

threshold limits it is important to consider the fact that any range could be tightened following 

any future operations if deemed necessary later, but there is no way to widen the range after 

other operations.  The arterial lumen contains a contrast agent which renders it easily identifiable 

for a select threshold for each scan, usually > 226 HU.  Applying a threshold selects every pixel 
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matching the criteria and assigned them to a mask.  The threshold range for the vertebrae, on the 

other hand, is not always straightforward to assign.  It is well known that bone density 

differences exist between individuals for a variety of reasons such as age, sex, nutritional intake, 

and lifestyle.  The threshold for the vertebral region of interest therefore has to be adjusted from 

a base range of > 226 HU on a scan-by-scan basis.  There is additionally a fill holes option for 

thresholding that is used to fill empty voxels within the region of interest.  The goal of 

processing the data within Mimics was to export surface information, which would have been 

erroneous with internal surfaces caused by holes within regions of interest. 

 

Upon completion of thresholding a number of tools are used.  First and foremost the 

region of interest is specified by a virtual bounding box and cropped.  Connective pixels are then 

identified between regions of interest and virtually severed; for example, the intercostal arteries 

of the aorta are virtually severed from the spine.  This process is done with manual editing tools 

in both 2-D and 3-D, which are time-intensive user-based subjective operations.  Upon 

successfully severing connective pixels the region growing tool can be used on the region of 

interest to remove background artifacts.  Employing this process for the vertebral and luminal 

regions results in two masks which represent the internal anatomical structures.  An example of a 

segmented mask of lumen in a coronal and transverse slice is shown by Figure 9. 
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Figure 9. A segmented mask for the arterial lumen (red) and arterial tissue (green) of scan B2 

shown for a coronal slice (left) and transverse slice (right).  The transverse slice (right) highlights 

the rectangular nature of voxels which occupy a segmented mask.  The arterial tissue is seen to 

contain a wide region on the upper-left, or left anterior, side indicating the presence of an ILT. 

 

 

The mask generation for the tissue domain is much different than for the luminal and 

vertebral domains, and also somewhat depends on the prior generation of each.  The vertebral 

and luminal domains each occupy a distinct region of the tissue density spectrum of the entire 

image.  The arterial tissue, on the other hand, shares a widely populated region of the tissue 

density spectrum with other soft and/or muscular tissues.  Intuitively, however, it is known that 

the tissue domain exists immediately adjacent to the luminal domain.  Thus a working domain 

can be defined based on the tissue density and the tissue thickness at its thickest point through 

morphology operations.  These operations are based on the existing luminal model and 

discussion with Mimics® representatives reinforced the advantages of this method as it is 

repeatable and reliable. 

 

The preset thresholding range for the arterial tissue was > -25 HU.  The region of interest 

was then further defined by a cropping operation.  The current tissue mask thus contains 
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vertebral and luminal voxels.  The vertebral mask was subtracted from the tissue mask via a 

Boolean operation to quickly and efficiently remove voxels pre-defined as vertebral voxels.  The 

tissue mask now contains luminal voxels as well as other voxels > -25 HU.  A new mask 

containing the resulting voxels from dilating the luminal mask by a user-defined number of 

voxels is created.  This user-defined number represents the maximum thickness between the 

luminal domain and the tissue domain bounds.  This new mask will serve to automatically limit 

the resulting voxels to those already existent within the arterial tissue mask.  The arterial tissue 

mask was thus discarded as the controlled dilation mask replaced it. This process was attempted 

repeatedly to find an ideal dilation value which minimized the inclusion of excess voxels.  

Connective pixels were then identified between regions of interest and virtually severed.  This 

process was done with manual editing tools in both 2-D and 3-D, which are time-intensive user-

based subjective operations.  For the arterial tissue this process was much more prone to operator 

bias.  CT scans do not offer excellent soft tissue differentiation, and often boundaries were 

approximated as best as possible. A final region growing operation successfully removed any 

remaining disconnected voxels. 

2.2.3 3-D Modeling 

 

Completed 2-D masks represent voxel domains, where every voxel is a 3-D rectangle.  

The direct 3-D interpretation of a mask would therefore appear as the sum of many connected 

rectangular volumes, which would feature a very rough and noisy surface. The masks are 

modeled in 3-D through pre-defined and/or custom methods to produce surfaces in Standard 

Tessellation Language (STL) format instead, which describes an unstructured surface by the unit 

normal and vertices of triangles in 3-D Cartesian coordinates.  The STL quality is still dependent 
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upon the voxel resolution, however, which differs between every scan.  A generated STL model 

highlighting the surface structure is shown by Figure 10. 

 

 

Figure 10. A 3-D AAA lumen STL reconstructed from scan B2.  STL format describes a 

triangularly meshed surface, as can be clearly seen.  The data exported from the 3-D models for 

Chapters 3 & 4 uses point cloud format.  This format will only contain the vertex information 

from STL models. 

 

A wide variety of options exist for generating and refining an STL model from a mask, 

thus STL generation from masks was standardized according to the a set of parameters (Table 3).  

Given that the voxel resolution and therefore the STL resolution is not standardized no 

standardized smoothing or wrapping criteria could be clearly established past the initial STL 

model generation.  Laplacian smoothing was applied via a subjective number of iterations from 0 

- 10 to each STL at a constant smoothing factor of 0.7 (Table 4).  The goal of smoothing is to 

reduce surface irregularities, spikes, and noise with qualitative visual inspection as the means to 

gage the reduction. 
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Table 3. Optimal STL model generation parameters used for every STL model generated in the 

study.  Contour interpolation results in a smoother model with less gaps and is recommended for 

medical CT applications [59].   Matrix Reduction is set to 1, equivalent to no matrix reduction, 

which inherently nullifies the need to select a matrix reduction algorithm as well (not shown).   

 

Interpolation Contour instead of Gray Value 

Smoothing 
Iterations: 2 

Smooth factor: 0.3 

Triangle Reduction 

Reducing mode: Advanced Edge 

Tolerance: Automatic (mm) 

Edge angle: 10 degrees 

Iterations: 3 

 

 

 

Table 4. The number of employed smoothing iterations at a constant smoothing factor of 0.7 on 

each STL model after optimal model generation.  The smoothing was limited to a maximum of 

10 iterations to avoid significant loss of detail. 

 

 
Smooth Iterations 

 
Smooth Iterations  Smooth Iterations 

Scan Tissue Lumen Scan Tissue Lumen Scan Tissue Lumen 

A1 10 6 G1  3 I1  4 

A2 8 5 G2  3 I2  4 

B1 10 8 G3  3 I3  4 

B2 10 6 G4  3 I4  5 

B3 10 5 G5  8 I5  5 

C1 8 4 G6  3 I6  5 

C2 9 5 H1 6 4 J1 8 3 

D1 
 

3 H2  4 J2 8 4 

D2 
 

7 H3  8 J3 10 4 

D3 
 

10 H4  6 J4 10 4 

F2 
 

4 H5  6 J5 10 4 

F3 
 

7 H6  8 K1 10 4 

F4 
 

7 H7  6 K2  4 

F5 
 

9    K3  5 

F6 
 

10    K4  5 

F7 
 

10    K5  4 
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For each scan surface models for the arterial lumen, arterial tissue, and adjacent vertebrae 

are generated, then smoothed as judged necessary.  The 3-D STL models can then be registered.  

Registration refers to translating, rotating, and scaling a data set to a common position with a 

reference data set.  Within the software three relevant modes of registration exist.  Image 

Registration requires landmark point pairs to be identified in a reference image and secondary 

image.  The landmark points can be identified in the sagittal plane, coronal plane, and transverse 

plane.  The 4×4 transformation matrix that best relates the sets of landmark points is then 

automatically calculated and applied to the secondary image.  Point Registration requires 

landmark point pairs to be identified in a reference position and desired position.  The landmark 

points can be identified in the sagittal plane, coronal plane, transverse plane, and in 3-D.  The 

4×4 transformation matrix that best fits the set of landmark points is then automatically 

calculated and applied to the selected STL.  Global Registration simply requires the 

identification of a fixed reference STL and a moveable STL.  The distance field between the 

STLs is then automatically minimized over the course of a user-defined number of iterations.  

Each iteration of global registration calculates a 4×4 transformation matrix that further reduces 

the distance field and automatically applies it.  Global registration is chosen for its high 

accuracy, ease of use, repeatability, and objectivity. 

 

Global registration is an iterative process based on minimizing the distance field between 

STLs.  The sum of all of a patient’s scans are first imported to a common Mimics workspace, for 

example scans A1 & A2 of patient A.  The existing STLs for a given scan are then linked such 

that transformation of one model would affect the linked models identically, but minimization of 

the distance field is unaffected by the linked models.  In essence this means the distance field is 
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minimized between two models, and the resulting transformation matrix is applied to any 

additional desired models.  A fixed reference vertebral STL and a second moveable vertebral 

STL are chosen then the moveable vertebral STL is manually translated and rotated to be in as 

identical a position as possible to the reference vertebral STL by eye.  The two vertebral models 

are selected and global registration is applied for 1000 iterations to register the moveable set of 

STLS according to the transformation matrix describing the minimum distance field.  This 

process was very quick (<1 minute) and was repeated for all STLs from a patient on a common 

reference vertebral STL. 

 

The resulting STLs of a patient include the vertebral STL from each scan aligned with 

vertebral STL of the first scan, and all associated lumen and tissue models positioned 

automatically based on this alignment.  This registration method allows for the unique 

visualization of the true spatial differences of the AAA geometry and offers insight into the 

surface evolution of an AAA. 

2.3 Results 

 

Lumen models were generated for 45 scans, and tissue models were generated for 14 

scans. Figures 11 and 12 represent lumen STL models from each patient from the front coronal 

plane and right sagittal plane views, respectively.  These models include the renal arteries, iliac 

arteries, sometimes the mesenteric arteries, and occasionally the celiac trunk.  The region of 

interest for Chapter 3 onwards is the infrarenal aorta, and only the infrarenal region is generated 

for all 45 scans as shown by Figure 13. 
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Figure 11. Front coronal plane view of 3-D luminal STL models generated for all 11 patients.  

From top-left to bottom-right in reading order the STLs originate from scans: A2, B3, C2, D3, 

E2, F7, G6, H7, I6, J6, K5. 
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Figure 12. Right sagittal plane view of 3-D luminal STL models generated for all 11 patients.  

From top-left to bottom-right in reading order the STLs originate from scans: A2, B3, C2, D3, 

E2, F7, G6, H7, I6, J6, K5. 
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Figure 13. A 3-D STL model of a reconstructed infrarenal AAA luminal surface as seen from the 

left sagittal plane (left), front coronal plane (center), and right sagittal plane (right).  A bounding 

box indicates the infrarenal region specifically to be exported to a technical computing software 

package. 

 

 

 An example of two registered vertebral models from scans I1 & I3 is shown (Figure 14).  

It is clear that the models positions match extremely closely given that they are independently 

generated from different CT scans.  
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Figure 14. An example of two registered vertebral models from scans I1 & I3 as viewed from the 

left (left), front (center), and right (right).  Each model is the same color, and has been registered 

to match the position of its pair.  Near the top and bottom of the models clipping can sometimes 

be observed, which highlights the boundaries of a model (red).  In general, however, it is clear 

that the models’ positions match extremely closely given that they are independently generated 

from different CT scans.  The associated lumen and tissue models are also automatically 

registered (not shown) according to the transformation matrix generated by minimizing the 

distance field between vertebral models. 
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Tissue models are very time consuming to produce, and as such they are only produced in 

the infrarenal aorta with the absence of any branches.  Tissue models were generated for 14 of 45 

scans based first on the order the data was received and second on the number of scans available 

per patient.  Eventually all of the data will be processed.  Tissue models underwent the same 

registration process concurrently as the lumen as shown by Figure 15.  Additionally the arterial 

wall thickness can be visualized through the transparent overlay of a respective lumen and tissue 

model as shown by Figure 16. 

 

       

Figure 15. Transparent and registered front coronal plane view (left) and right sagittal plane view 

(second from left) of 3-D luminal STL models for B1 and B3.  Transparent and registered front 

coronal plane view (second from right) and right sagittal plane view (right) of 3-D tissue STL 

models for B1 and B3.  The lumen and tissue models presented are not to scale, as the lumen 

models are inherently always smaller than the tissue models. 

 

 



44 

 

                               

Figure 16. Transparent and registered front coronal plane view (left) and right sagittal plane view 

(right) of 3-D luminal and tissue STL models for B3. 

 

 

 Regions of significant vertebral interaction with the vessels were identified for some 

cases.  The region with significant vertebral interaction displays flattening of vessel curvature in 

the cross-sectional view (Figures 17 and 18).  The vertebral surface can feature ossifications 

originating and projecting from the spine known as osteophytes.  The presence of osteophytes on 

the spine increases the complexity of the relationship between an AAA and the spine, but not the 

nature of the relationship; osteophytes serve as a growth barrier and have an influence on vessel 

flattening (Figures 17 and 18).  The prevalence and variability of osteophyte growth on the spine 

is patient-specific and must be considered on a case-by-case basis. 
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Figure 17. A transverse slice un-zoomed (upper-left) and zoomed (upper-right) from scan A2.  A 

3-D reconstruction of the AAA tissue geometry for scan A2 from the right (bottom-left) and an 

opened version of the AAA tissue geometry for scan A2 from the right (bottom-right).  Red 

circles indicate linked areas between images.  Within the red circles it is clear that the AAA 

tissue is interacting with the spine and that the local geometry of the tissue is affected. 
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Figure 18. A transverse slice un-zoomed (upper-left) and zoomed (upper-right) from scan A2.  A 

3-D reconstruction of the AAA tissue geometry for scan A2 from the left (bottom-left) and an 

opened version of the AAA tissue geometry for scan A2 from the left (bottom-right).  Red circles 

indicate linked areas between images.  Within the red circles it is clear that the AAA tissue is 

interacting with the spine and that the local geometry of the tissue is affected. 

 

 

 The inferior vena cava was modeled for scan B2 to visualize its interactions with an AAA 

(Figure 19).  The shape of the aorta deviated from standard anatomical positions below the left 

renal vein and we speculate that the left renal vein can serve as an anchor to the infrarenal during 
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the aneurysm progression. It may also be possible that the physical constraint of the left renal 

vein over the vessel and the tethering of the renal arteries provide a strong confinement, or an 

anchor at the region of the aorta, below which the aorta gradually bends as the lesion progresses.     

               

Figure 19. Reconstructed 3-D models for the vertebrae (white), AAA lumen (red), and inferior 

vena cava tissue/lumen (blue) as seen from the left (left), front (center), and right (right) for scan 

B2. 

 

2.4 Discussion 

 

 The 3D models generated from the biomedical software are relatively good, but there is 

some degree of error inherent to segmentation and modeling. The resolution is approximately 0.7 

mm per pixel, which is high for CT images, but some detail can still be lost in areas of thin 

tissue, such as arterial tissue compressed against the spine (Table A.1). CT scans are also not 

instantaneously obtained for the whole region. For this collection the entire torso was scanned, 

usually within 10 seconds.  The resulting CT scan is therefore taken to be an average of the 

geometry in vivo, which is important to consider when observing the aorta given it is constantly 

undergoing cyclic deformation by means of the cardiac cycle. 
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It is shown from the results of Figures 11 and 12 that the reconstructed models represent 

AAA geometries accurately.  Although smoothing was applied subjectively, the surface finish of 

each model appears to have similar quality. Showing all results for 45 lumen models, 45 

vertebral models, and 14 tissue models is not practical and, hence, a subset of images was chosen 

per patient to be representative.  As the infrarenal aorta begins at the renal branches it is clear for 

each case that the vessel is at some angle from the z-axis.  Patients C and J do not support this 

trend as strongly, but upon examination it is clear that all vessels present some degree of 

tortuosity.  This tortuosity is three-dimensional, as the same trend can be observed in the coronal 

and sagittal planes.  A significant presence of an ILT is also likely to be a factor affecting the 

tortuosity. 

 

The majority of AAAs contain an ILT layer, though the thickness and circumferential 

position of the ILT varies significantly between patients.  For example patient J presents a 

relatively small predominantly anterior ILT while patient D presents a relatively large 

predominantly left lateral ILT.  There is no uncontested cause and effect relationship between 

patient specific AAA geometries / hemodynamics and ILT formation sites.  Regardless of the 

factors influencing ILT growth sites, the presence or absence of an ILT affects the biomechanical 

relationship between the AAA and surrounding tissues; the spine serves as a rigid growth barrier 

to AAA expansion, and if ILT is present in the circumferential region in contact with the spine 

then disease progression is affected [44–46].  Arterial tissue and ILT carry different mechanical 

properties, which directly leads to different interface mechanics when considering vertebral / 

vessel interaction.  It is observed from Figures 17 and 18 that extended areas of contact between 

tissue and vertebrae present marked vessel flattening within the cross section.  This vessel 
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flattening was observed both in the case of vessel contact with normal vertebral tissue and vessel 

contact with vertebral ossifications.  The inferior vena cava is adjacent to the abdominal aorta 

and may interact with an AAA.  For the lesion shown in Figure 19, however, no clear 

morphological features representing interaction between an AAA and the inferior vena cava are 

observed, although the idea of the left renal vein serving to anchor an AAA in place is clear 

when visualized. 

 

From these observations it is hypothesized that the observed change of the centerline, 

eccentricity and asymmetry of the vessel, and the curvature of the vessel cross section polylines 

are morphological features representing the effects of surrounding tissue. 
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CHAPTER 3. Morphological Features Influenced by Surrounding Tissue 

3.1 Introduction 

 

 The pathology of AAA is such that enlargement of the aorta is associated with disease 

progression.  The simplest measure of aortic enlargement is maximum diameter.  Aneurysms less 

than 5 cm to 5.5 cm in diameter are considered small and aneurysms over 5 cm to 5.5 cm are 

considered large.  Surgical treatment is usually only recommended for large aneurysms unless 

patient-specific concerns warrant otherwise.  As covered in Chapter 2, US is the usual imaging 

modality used for screening and monitoring of small AAAs, while CT is used when intervention 

is deemed necessary.  Regardless of imaging modality, values of the maximum diameter can be 

extracted according to four criteria: plane of acquisition, axis of measurement, caliper placement, 

and diameter selection [51].  Critical reviews of the clinical obtainment of AAA maximum 

diameters are offered by Long et al., Ferket et al., and Powell et al. from which much of this 

review is derived [51–53].  The plane of acquisition, axis of measurement, and caliper placement 

variability between studies is described. 

 

 The plane of acquisition refers to whether the maximum diameter is obtained from the 

anatomical (absolute) reference planes or the aortic (relative) planes.  The anatomical reference 

planes are the sagittal, coronal, and transverse planes.  The aortic reference planes are normal to 

the arterial centerline, such that the (x, y, z) coordinate basis differs as the centerline is traversed, 

especially for tortuous vessels; a plane normal to the centerline is known as a longitudinal plane.  

US can be aligned with either reference by a skilled operator, while CT scanning is automatically 
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aligned to the transverse plane as the native plane.  CT MPR usually generates the additional 

anatomical planes, the sagittal and coronal planes, but other MPR algorithms exist to generate 

planes for the aortic reference.  Non-standard MPR algorithms for CT scans inherently suffer 

from a loss of resolution however, as the scanning algorithm cannot be adjusted from the 

anatomical standard planes to match unique MPR algorithms.  MRI scanning has the unique 

advantage of being able to take measurements in any plane, and additional MPR algorithms exist 

to take advantage of this. 

 

 The axis of measurement refers to the chosen axis within to the cross-sectional plane of 

measurement for maximum AAA diameter.  The anteroposterior and transverse axes refer to the 

sagittal and transverse axes respectively.  The transverse cross-sectional view allows for 

simultaneous multi-axis measurement while the sagittal and coronal views only allow for a 

single axis of measurement.  For US measurements are performed during scanning, while CT 

MPR offers delayed analysis where any axes can be used for measurement. 

 

 After identifying the acquisition plane and axis of measurement the caliper positioning 

must be defined.  The caliper positioning refers to which surface of the AAA wall to bound the 

maximum diameter measurement to whether with calipers for an US or digital measurements for 

a CT reconstruction.  The positioning can be internal, external, leading edge to leading edge, and 

outer anterior to inner posterior.  A total of 56 studies were critically reviewed by Long et al., 

Ferket et al., and Powell et al. to identify the choices of plane of acquisition, axis of 

measurement, and positioning of the calipers defined by different clinical groups [51–53].  The 

results of their studies are summarized in Table 5. 



52 

 

Table 5. Summary of the definition of techniques employed over the survey of 56 studies by 

approximate percentage [51–53].  Some groups reported multiple methods of measurement to be 

in use rather than a single method, resulting in total percentages not equal to 100%. 

 

Plane of Acquisition 

Not Specified 51% 

Longitudinal 34% 

Transverse 30% 

  

Axis of Measurement 

Anteroposterior 63% 

Not Specified 37% 

Transverse 30% 

 Positioning of the Calipers 

Not Specified 61% 

External 27% 

Internal 4% 

Leading edge to leading edge 2% 

Outer anterior to inner posterior 4% 

 

 These results clearly show that no undisputed standard methodology can be extracted 

from the literature to determine maximum AAA diameter.  An axis of measurement 

(anteroposterior) was the only variable that was more often specified than not. 

3.2 Method 

 

 From reviewing the literature it is clear that no standardized method of diameter 

measurement exists.  In general 4 steps are identified and followed, however.  The plane of 

acquisition is specified, the measurement axis is specified, the caliper positioning is specified, 

and the final maximum diameter is obtained as either a maximum obtained value or a multi-trial 

average value.  For obtaining maximum diameters from the CT standard MPR of anatomical 

planes the transverse plane was selected as the plane of acquisition, as 30% of reviewed studies 

suggest.  The longitudinal plane which 34% of studies suggest is subjectively defined or requires 
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centerline generation to perform relative MPR and attain true longitudinal planes to the 

centerline.  An example transverse measurement plane is shown by Figure 20.   

 

          
 

Figure 20. A sagittal slice (left) of scan J5 and a transverse slice (right) of scan J5 with the 

segmented lumen/tissue (red/green).  The blue line indicates an anteroposterior maximum AAA 

tissue diameter measurement axis in the transverse plane (left, right), the solid red line indicates 

an anteroposterior maximum AAA tissue diameter measurement in the longitudinal plane (left), 

the dashed red line indicates a crude longitudinal axis approximation (left), and the orange line is 

simply the AAA tissue diameter measurement at 90° in the transverse plane to the 

anteroposterior measurement axis.  The caliper positioning for this case was external/tissue. 

 

 

The measurement axis specified is anteroposterior unless it is clear that the vessel is 

noticeably asymmetric in which case multiple axes were tested and the axis corresponding to the 

maximal measurement was chosen.  The caliper positioning for obtaining tissue values was 

external while the caliper positioning for obtaining lumen values was internal.  Specifying the 

axis of measurement for the lumen additionally considers the presence of ILT and its asymmetry.  

Measuring both the maximum diameter of the lumen/tissue and the diameter on the axis 90° to it 

within the plane of acquisition allows for a simplistic calculation of eccentricity based on the 
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diameter ratio. Asymmetric ILT can lead to very different axes of measurement for the 

maximum AAA lumen diameter as shown by Figure 21. 

 

 

 

Figure 21. A transverse slice of scan D2 with the segmented lumen (red), maximum 

internal/lumen diameter axis (blue) and axis 90° to the maximum internal/lumen diameter (red).  

It is clear that anteroposterior measurements will not yield maximal results in the presence of an 

eccentric ILT.  This is the reason that the maximum diameter axis was used and anteroposterior 

was not strictly used in all cases. 

 

3.3 Results 

 

 Maximum diameter measurements for the lumen and tissue were recorded from 

anatomical plane CT MPRs for each patient.  For patient C two aneurysmal sacs are recorded, 

the primary is referred to as Patient C, while the secondary is referred to as Patient C (sac) 

(Figure 22). 

 



55 

 

 

Figure 22. 3D CT reconstruction of patient C as viewed from the right.  Two aneurysmal sacs are 

present and the primary is referred to as Patient C, while the secondary is referred to as Patient C 

(sac). 

 

 

 The values obtained from measuring the AAA maximum tissue diameter in the transverse 

plane preferring an anteroposterior measurement axis unless asymmetry is present, with external 

caliper positioning, and no value averaging are plotted by Figure 23 (Table A.3). The linear 

approximations of annual expansion rate are calculated by fitting the data linearly and the results 

are shown by Table 6.  

 

Patient C (sac) 

 

 

 

     Patient C 
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Figure 23. The maximum transverse diameter of the arterial tissue vs. scanning date for each 

patient. 

 

 

Table 6. Linear approximation of annual transverse maximum AAA tissue diameter growth and 

R
2
 fit value. 

 

Patient Dmax  linear increase (cm / year) R
2
 

A 0.3010 1.0000 

B 0.3931 0.9569 

C 0.2462 1.0000 

C (sac) 0.1208 1.0000 

D 0.5410 1.0000 

F 0.4796 0.9804 

G 0.4670 0.9542 

H 0.2427 0.9536 

I 0.1888 0.9253 

J 0.2542 0.9381 

K 0.4064 0.9406 
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 The annual expansion rates of the tissue were additionally calculated for successive scans 

and plotted as shown by Figure 24.  A measure of eccentricity of the tissue was taken as shown 

by Equation 1 and plotted for each scan as shown by Figure 25. 

             
    

               
                                                 ( ) 

 

 

Figure 24. The annual expansion rate of maximum AAA tissue diameter growth calculated on a 

successive scan basis for each patient. 
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Figure 25. The tissue eccentricity based on eccentricity = (Dmax) / (D @ 90° to Dmax) for each 

patient scan. 

 

 The values obtained from measuring the AAA maximum lumen diameter in the 

transverse plane preferring an anteroposterior measurement axis unless asymmetry is present, 

with internal caliper positioning, and no value averaging are plotted by Figure 26 (Table A.4).  

The linear approximations of annual expansion rate are calculated by fitting the data linearly and 

the results are shown by Table 7. 
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Figure 26. The maximum transverse diameter of the arterial lumen vs. scanning date for each 

patient. 

 

 

Table 7. Linear approximation of annual transverse maximum AAA lumen diameter growth and 

R
2
 fit value. 

 

Patient Dmax  linear increase (cm / year) R
2
 

A 0.0151 1.0000 

B 0.0183 0.9705 

C 0.0059 1.0000 

C (sac) 0.0065 1.0000 

D 0.0141 0.9879 

F 0.0027 0.3166 

G 0.0140 0.9694 

H 0.0006 0.0542 

I 0.0041 0.9954 

J 0.0038 0.7776 

K 0.0030 0.6189 

 

25

30

35

40

45

50

55

60

65

0 500 1000 1500 2000 2500 3000 3500

M
ax

 D
ia

m
et

er
 (

m
m

) 

Days 

Maximum Transverse Diameter Growth of Arterial Lumen 

A

B

C

C (sac)

D

F

G

H

I

J

K



60 

 

 The annual expansion rates of the lumen were additionally calculated for successive 

scans and plotted as shown by Figure 27. A measure of eccentricity of the lumen was taken as 

shown by Equation 1 and plotted for each scan as shown by Figure 28. 

 

 

 

Figure 27. The annual expansion rate of maximum AAA lumen diameter growth calculated on a 

successive scan basis for each patient. 
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Figure 28. The lumen eccentricity based on eccentricity = (Dmax) / (D @ 90° to Dmax) for each 

patient scan. 

 

3.4 Discussion 

 

 The results of the maximum tissue diameter study from Figure 23 are straightforward in 

that they all appear relatively linearly increasing.  Other methods of fit were tested and found to 

have lower R
2
 coefficients when compared to linear fits.  Some positive trend was expected as 

AAA diameters continually increase during disease progression.  A decrease in AAA maximum 

transverse diameter of the arterial tissue is only observed in the case from I1 – I2.  The value 

appears to be approximately 3mm less than expected from the trend.  Most likely the plane of 

acquisition was improperly judged and this value is not representative.  The R
2
 fitting values 

from Table 6 obtained by fitting linear trend lines to the tissue diameters are excellent at an 

average of 0.9681 ± 0.0287.  The actual rates of increase mostly all fall below 0.5 cm/year which 
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indicate relative stability of the AAAs.  The estimated rate of increase for patient D, however, 

was over 0.54 cm / year.  Some studies suggest less than 1 cm / year is stable, others suggest less 

than 0.5 cm / year is stable.  Regardless, it is unclear why this patient’s AAA, with a higher 

growth rate and the fact that monitoring began at a maximum tissue diameter over 5 cm, was 

allowed to progress as far as it did without treatment.  On that same note, inspection of the 

maximum tissue diameter values clearly shows at least 21 / 49 measurements over 5 cm in 

maximum tissue diameter.  Such measurements would suggest the dataset equally represents 

small and large AAAs, even though all are pre-EVAR.  The successive scan calculated growth 

rate did not yield any interesting trends, aside from the possibility of some measurement error 

between scans F2 – F3 yielding an uncharacteristically high number.  The scanning algorithms 

and resultant voxel resolutions are quite different between scans, leading to different standard 

deviations of measurement (Tables A.1 and A.2).  For smaller vessel diameters the resolution of 

the voxels influences the results more significantly, such as between scans F2 – F3.  By 

measuring the basic eccentricity for each scan it was hoped a clear trend would emerge 

reinforcing the idea of asymmetric growth, but no clear trends emerged across patients. 

 

 The results of the maximum lumen diameter from Figure 26 showed increasing diameters 

over time, as expected.  For patients G & F it is interesting to note the large dip in diameter 

between 2000 – 2500 days.  This dip is most likely due to growth of an ILT reducing the lumen 

volume at a rate faster than the entire vessel can expand.  Fitting linear trend lines to the 

maximum diameter growth resulted in R
2
 fitting parameters averaging 0.7901 ± 0.3276 (Table 

7).  Therefore the maximum lumen diameters did not fit linear trends as well as the maximum 

tissue diameters did.  The successive scan calculated expansion rates offered both positive and 
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negative expansion rates.  No doubt this is a combination of the chosen acquisition plane and 

relative growth of an ILT.  Measuring maximum lumen diameter changes may be more 

beneficial if ILT measurements are made in the same plane concurrently.  This would offer 

insight to the influence of ILT on maximum lumen diameter measurements.  The eccentricity 

showed some favorable results and the range of eccentricity values recorded suggest significant 

variation amongst patients.  Lumen eccentricity outweighed tissue eccentricity in that at least 13 

lumen eccentricities were greater than the maximum tissue eccentricity.  If the maximum tissue 

diameter and maximum lumen diameter were always measured in the same plane the ILT would 

represent the difference between the values after accounting for wall thickness.  This would then 

no longer represent the maximum lumen diameter, however, as the maximum lumen diameter 

and maximum tissue diameter often occur in different planes and axes. 

 

 The methods followed suffer from subjectivity.  Experienced screening personnel have an 

in-depth intuitive understanding of how to make these measurements according to their 

institution’s guidelines to achieve reliable and repeatable results.  No such personnel aided in the 

attainment of these measurements, and the overall accuracy was most likely decreased.  No 

information could be found on established protocol for the analysis of longitudinal data.  Perhaps 

there exist some unknown conventions to ensure a logical progression of recorded values that 

trained personnel are aware of.  As longitudinal studies become more widespread proper 

protocols need to be established to standardize the interpretation of the results. 
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CHAPTER 4. Parameterization of Luminal and AAA Surfaces 

4.1 Introduction 

 

 For an AAA in vivo there are multiple tissues contacting its boundary, none of which 

have been previously, fully considered for their effect throughout disease progression.  

Morphological features such as maximum diameter, asymmetry, cross-sectional polyline 

curvature flattening, tortuosity, and eccentricity are significantly influenced by both surrounding 

tissue and hemodynamic factors. In order to quantify either the combined or separate influence 

of such factors during disease progression a precise characterization of aneurysm’s geometrical 

evolution is needed.  Multiple methods for geometrical parameterization of abdominal aortic 

aneurysms (AAAs) have been previously developed using individual patient CT scan data but 

the focus has been mainly on the association of such geometrical parameters with the rupture risk 

and the efficacy of the parameterization is not fully investigated for a longitudinal study yet [60].  

For this study a series of 3D models for AAAs in longitudinal studies, an arterial centerline 

generation algorithm (Appendices B.1 – B.6), and a geometric parameterization procedure for 

the arterial surfaces are developed. 

 

 An iterative algorithm was developed to generate a centerline for an arbitrary arterial 

surface model by collecting the center points of maximally inscribed spheres that fit within the 

surface boundaries at fixed travel intervals. The number of inscribed spheres is dependent on the 

choice of travel interval. Using the sphere center points and 4
th

 order polynomial base functions, 

a smooth line approximation is made. The surface data is then parameterized to the centerline by 

defining an (s, θ) coordinate system where s is the travel length in mm along the centerline and 0 
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≤ θ ≤ 2π radians.  We then calculate r for each surface point where r is the minimum distance 

from the centerline to the point on the surface at a given (s, θ). The parameterized surface r(s, θ) 

is then approximated by normal shape functions with fitting coefficients using a nonlinear least 

squares method. The change of the surface over time is calculated by the difference between 

these surface functions.  The approximated surface can be regenerated in Cartesian coordinates.  

Alongside the parameterization technique a set of code was developed to characterize 

morphological features of the surface.  The maximum diameter at each plane, the simplified 

eccentricity, and polyline curvature were then determined.   

4.2 Methods 

4.2.1 Importing the data 

 

 A 3-D point-cloud model is imported to Matlab.  The point cloud model is essentially a 

subset of an STL model developed in Chapter 2 in that point cloud models are comprised of 

solely the vertices of STL models.  The imported data is a matrix containing 3 columns for the x, 

y, and z coordinates across a number of rows representing the total number of coordinates.  The 

model represents a closed surface with capped vessel ends.  When defining the coordinate 

system inherited from the biomedical image processing methodology care must be taken.  

Depending on the scan, significantly different origin points were observed with respect to the 

STL positions.  Registration serves to identify relative positions of one data set relative to 

another data set, but not across all sets.  There is no single coordinate system to represent all 

scans, but a set of planes parallel to the x-y, y-z, and x-z planes for every scan can be identified 

(Figure 29). The unit of measure is millimeter. 
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Figure 29. The coordinate planes inherited from the anatomical planes where the coordinate axis 

is such that the x-y plane is parallel to the transverse plane (green), the y-z is parallel to the 

sagittal plane (red), and the x-z plane is parallel to coronal plane (blue). 

 

The coordinates of M unordered points in the model can be defined by Equation 2. 

   (        )       ,     -                                              ( ) 

One requirement for the algorithm is that the vessel ends should be an open surface to 

accurately approximate centerline points at the model bounds. Therefore the volume of points is 

first truncated transversely immediately near the top and bottom to open the vessel ends with 

minimal removal of other points.  Two truncation planes are identified from the top: ( max(zN)- 

2.5) mm, and from the bottom: (min(zN)+ 2.5) mm, respectively.  Only coordinates of qN within 

these bounds remain, and are processed through the rest of the calculations.  Thus it is most 

x-y : Transverse 

y-z : Sagittal 

x-z : Coronal 
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efficient to now consider that M be redefined as the total remaining points after truncation.  The 

only variables carried forward are qN for N = [1, …, M]. 

4.2.2 Centerline Generation Algorithm 

 

 The centerline generation algorithm serves to generate a centerline in the three-

dimensional space.  The previous method used most for centerline generation is the one that 

simply collects the centroids of transverse polylines [13], [23], [25], [29], [47–50].  The 

algorithm proposed in this work generates a centerline by fitting maximally inscribed spheres 

within the surface model constrained to planes approximately normal to the centerline at 

relatively evenly spaced intervals (Figure 30). 

                 

Figure 30. The arterial surface (blue) with two maximally inscribed spheres (red) and their 

respective constraint planes (green) shown. The centerline (black) is shown within the lumen 

model for scan B2 as seen from an isometric point of view (left), parallel to the x-z or coronal 

plane (center), and the y-z or sagittal plane (right). 
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 The result is a set of n points pi = (xi, yi, zi) for i = [1, …, n] that is constructing the 

centerline. The algorithm begins by selecting a set of points (q1, …, qK) whose z values are 

bounded by min(qN(z)) and (min(qN(Z))+g), where g is a constant variable defining a small gap.   

The first point p1 is then located to the middle of the set of points (q1, …, qK) in the x-y plane 

and at the bottom in the z axis as shown by Equation 3. 

   

[
 
 
 
 
 
  ( )    ( )      ( )

 
  

  ( )    ( )      ( )

 

    .  ( )/ ]
 
 
 
 
 

                                              ( ) 

The distances dN for N = [1, …, M] to all points on the surface model qN for to the center point 

p1 are calculated by Equation 4. 

   √(  ( )    ( ))
  (  ( )    ( ))

  (  ( )    ( ))
                 ( ) 

The resulting vector A corresponding to     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  at N for min(dN) is then recorded.  The center 

point p1 is then translated in the opposite direction of the projection of A onto the x-y plane C, 

simply the x and y components of A in this case, a fixed distance t where t is a user-defined 

variable, usually 1 – 2 mm.  If the absolute position of the center point has not changed by 1 mm 

over 15 iterations then the algorithm halves the translation amount and continues.  This process 

of reducing the translation amount is repeated until a maximum number of iterations is met.  

When this process is completed the point p1 represents the approximate center point of a 

maximally inscribed sphere at the bottommost x-y plane of the volume.  Essentially the z-
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coordinate of a sphere is locked, and the sphere is allowed to grow and translate in the x-y plane 

until it reaches a maximum size and the center point p1 is recorded.  For the second center point 

p2 the final (x,y) coordinates of p1 are used, but vertical translation kv is applied where v is a 

user-input.  Otherwise the estimation of p2 continues the same as p1. 

 

For each successive point referring to Figure 31 is extremely useful to visualize the 

terminology used.  For each successive point for n = 3 onward the normal of the vector between 

the previous two center points B = pn-1 – pn-2 is calculated and serves as the translation direction 

and v serves as the translation magnitude to determine the initial distance between the previous 

center point pn-1 and the current center point pn.  This serves to better place the initial guess to 

more quickly and accurately converge on the best value of pn. Using B to place the initial guess 

of pn is especially important for tortuous vessels.  The point on the surface of qN at a minimum 

distance to the center point pn is calculated as well as the vector from pn to qN as A such that the 

minimum distance is equivalent to ||A||.  The center point pn is then translated in the opposite 

direction of C, the projection of A onto the plane normal to B, by 1 mm where C is defined by 

Equation 5. 

  
  (

   
‖ ‖

)

‖ ‖
                                                                 ( ) 
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If the absolute position of the center point has not changed by 1 mm over 15 iterations 

then the algorithm halves the translation amount and continues.  This process of reducing the 

translation amount is repeated until a maximum number of iterations is met. 

    

Figure 31. The lumen point cloud model for scan B2 colored by z-coordinate values with a red 

sphere at approximately (155, -180, -163) (left), and the sphere itself colored by z-coordinate 

values with vectors indicating the orientations of vectors A (blue), B (black), and C (red) for a 

sample center point (right). 

 

 

 This process is repeated until the z-value of an initial guess for pn exceeds the maximum 

z-value of the model bounds, at which point the z-coordinate of pn is reset to the maximum z-

value and the final center point is recalculated using x-y plane projections in place of projections 

on the plane normal to B.  The result is a collection of n points defined by pi = (xi, yi, zi) for i = 

[1, n] in Cartesian coordinates which approximate points on the centerline of the vessel, all other 

variables are discarded moving forward.  The points attained from the centerline generation 
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algorithm represent approximations subject to surface roughness, approximation functions are 

now applied to attain a smooth centerline function and derive points on that line.  The only 

variables carried forward to the next step are qN for N = [1, …, M] and pi for i = [1, …, n].  An 

example of centerline approximation points is shown by Figure 32. 

 

                         

Figure 32. The final collection of centerline points plotted within the lumen point cloud model 

for scan B2 colored by z-coordinate value as seen from an isometric point of view (left), parallel 

to the x-z or coronal plane (center), and the y-z or sagittal plane (right). 
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4.2.3 Smooth Centerline Approximation 

 

 Based on the existing set of points from the centerline generation algorithm some new 

terms can be introduced.  The successive distance between each of n points defined by pi = (xi, 

yi, zi) for i = [1, …, n] is defined by resultant vectors as shown by Equation 6.  The total distance 

traversed along the centerline from p1 to pi is defined as li by Equation 7. 
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 .       /

 
 .       /

 
       ,     -              ( ) 

            ∑   

   

   

       ,   -                                               ( ) 

 These quantities are shown for clarification in a diagram for n = 7 by Figure 33. 

 

 

 
 

Figure 33. The meaning of p, d, and l can be hard to ascertain from equations alone.  The 

variable d represents the point to point distances between p values.  The variable l represents the 

sum of d values thus far at a given l. 
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 The sum of the point to point distances ln represents the length of the centerline. We 

define an integer set of m integers existing from [0, ln].  Therefore if ln = 149.63 for example, 

then m = 149 and 150 points will be defined on the smooth line approximation for sk where s ϵ 

ℝ0
+ 

and k = [0, m].    In this case a discrete set of sk values is defined to produce and analyze a 

discrete set of longitudinal planes.  From this definition of an s parameter a smooth 

approximation function can be generated based on the set of points pi.  This method is adapted 

from a previous method employed in our lab by Zeinali-Davarani et al. [60].  Depending on a set 

of conditions outlined in Table 8 an appropriate interpolation function element   ( ) is 

constructed and its partial derivative    ( )    calculated for each sk. 
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Table 8. Conditional table for shape function assignment of smooth line approximation. 

  

 Condition   ( ) 

       
           

(      )
 
(      )

 

(       )
 
(       )

 
 

Else 0 

       
            

(    )
 (      )

 

(     )
 (       )

 
 

Else 0 

    

      

        

      

            
(      )

 (      )
 

(       )
 (       )

 
 

Else 0 

         
            

(      )
 (          )

 

(       )
 (       )

 
 

Else 0 

       
          

(      )
 (          )

 

(       )
 (       )

 
 

Else 0 

 

 

 After the interpolation function elements   ( ) are constructed and their partial 

derivatives    ( )    are calculated for each s the approximation function elements   ( ) and 

derivatives    ( )    are then normalized as   ( ) and    ( )   ⁄  by Equations 8 and 9. 
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The interpolation function   ( ) is multiplied by pi and the sum of these multiplications at each 

s results in a point Xk = (xk, yk, zk) such that the total collection of points represent points that lie 

on the smooth line approximation of the centerline as shown by Figure 34 by Equation 10. 

  ( )  ∑  ( )  
 

                                                            (  ) 

The derivative approximation function    ( )    is also multiplied at each s by pi.  The 

normalized sum of these multiplications for a given s results in a vector N1 by Equation 11. 
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 A unique vector N1 exists for each s and represents a centerline tangent vector at Xk = 

(xk, yk, zk).  From N1 at each s additional vectors N2 and N3 can be calculated to form unique 

longitudinal coordinate bases at each point Xk = (xk, yk, zk).  The only variables carried forward 

to the next step are qN, Xk, s, and N1. 
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Figure 34. The final collection of centerline points plotted within the point-cloud lumen model of 

scan B2 colored by z-coordinate value and the fitted centerline (black) as seen from an isometric 

point of view (left), parallel to the x-z or coronal plane (center), and the y-z or sagittal plane 

(right). 

 

4.2.4 Longitudinal Acquisition Plane Generation 

 

 As described in the previous section, tangent vectors N1 exist for each s originating from 

the point Xk for k = [1, m].  In order to fully define a longitudinal acquisition plane two 

additional coordinate basis vectors N2 and N3 must be calculated (Figure 35).  The transverse 

plane, on the other hand, uses the known Cartesian standard basis {i, j, k}. The longitudinal 

plane at each s is defined by projection of the x-axis onto the plane perpendicular to N2, and 

therefore N3 = N1 × N2 by Equation 12. 
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Figure 35. The vectors N1 (red), N2 (blue) and N3 (green) are plotted for each s originating from 

the points Xk for k = [1, m] for the lumen model of scan B2. 

 

 

 Points lying on the longitudinal planes defined by (N1, N2, N3) can then be determined 

through use of the dot product.  For each s the vectors from Xk to all points on the surface model 

qN, or     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , are calculated for all combinations for k = [1, m] and N = [1, M].  A dot product 

inequality is evaluated and the vector results are stored for valid pairs of k & N as rh by 

Equations 13 and 14. 

             ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                             (  ) 

        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ( )      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ( )      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ( )                                          (  ) 
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h is the number of points Xk  which lie in longitudinal planes.  As rh is additionally populated the 

associated surface points qN are stored in a new point-cloud volume vh representing only points 

that lie on the longitudinal planes defined by (N1, N2, N3).  An example clarifying these 

variables is shown by Figure 36. 

 

 

Figure 36. The imported point-cloud lumen model composed of points qN for scan B2 colored by 

z-coordinate value with points on the smooth approximated centerline shown (black, left), and 

the subset of points vh colored by z-coordinate value from the point-cloud lumen model for scan 

B2 which lie on longitudinal planes defined by (N1, N2, N3) (right).  For example, the vectors in 

rh from Xk to the associated points on the surface vh at the plane defined by (N1, N2, N3) for k = 

40 are shown in green (right). 
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 The determination of points lying on the longitudinal planes at s only using dot product 

thresholding reports extra erroneous values when planes intersect the surface at more than one 

boundary.  To compensate for this phenomenon the magnitude of each vector from rh for a 

longitudinal plane at s is calculated and analyzed.  If a vector’s magnitude is greater than the 

minimum vector magnitude in that plane by some threshold, say 5 mm, the vector is removed 

from rh.  A more statistically justified approach was originally implemented, but was found 

unreliable across geometries.  The method described requires a small degree of user-guided 

iteration to ensure accurate results in place of full statistical automation, but was deemed an 

appropriate trade-off with regards to development time (Appendices B.1 – B.6).  The magnitudes 

of vectors within rh represent the radius from the centerline points Xk to the surface points vh.  

The mean and maximum radius at each longitudinal plane can be found as a useful measure of 

growth (Figure 37). 
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Figure 37. The radii values are calculated for all h by ||rh||.  The mean is then calculated at each 

longitudinal plane for the lumen of scan B2 (left), and the circles of mean longitudinal radii at 

each longitudinal plane can be visualized for the lumen of scan B2 (right). 

  

4.2.5 Parameterization of Cross Sections into r(s, θ) 

 

 At each longitudinal plane defined by (N1, N2, N3) a collection of vectors rh exists in 

Cartesian coordinates that describe the distance from the centerline point Xk to surface points qN. 

To more efficiently analyze the data on a longitudinal plane basis a transformation to polar 

coordinates takes place.  In polar coordinates the magnitudes of rh vectors represent r. By 

considering a suite of dot products between each rh vector, N1, and N2 within each longitudinal 

plane at a given s the angular values θ within that plane associated with each rh can be obtained.  

First a set of 4 calculations determines if the value of θ is 0, π/2, π, or 3π/2.  If the dot product 
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does not correspond to one of those exact values then the region θ lies in can be determined and 

θ subsequently calculated.  This process is clarified by Table 9 and Figure 38. 

 

Table 9. Conditional table for calculation of θ from a given rh vector.  First it is determined 

whether θ lies on the N2, N3, -N2, or -N3 axis. If it does not lie on an axis than the region it lies 

in is determined and θ is calculated appropriately. 
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Figure 38. Schematic representation for the calculation of θ from a given rh vector.  First it is 

determined whether θ lies on the N2, N3, -N2, or –N3 axis (left), and if it does not lie on an axis 

then the region it lies in is determined and θ is calculated appropriately (right). 

 

4.2.6 Coordinate transformation from r(s, θ) to (x, y, z) 

 

 Successfully parameterizing the data from (x, y, z) space to r(s, θ) space allows for unique 

surface visualization of the cross-sectional radii along the vessel circumference relative to the 

vessel centerline parameter s (Figure 39). 

 

 



83 

 

 

Figure 39. Parameterized surface data (red) from scan B2 shown as r(s, θ) surface. 

 

  

 From the parameterized coordinate system any point can be reconstructed within the 

Cartesian coordinate system through coordinate transformations.  Each longitudinal plane is first 

assumed to share an origin with the Cartesian origin to determine the relative rotation of the 

plane.  Given that <N2, N3, N1> represents the unit vector basis at each s, and that <ei, ej, ek> 

represents the unit vector basis in Cartesian coordinates a rotation transformation tensor between 

each basis is attainable.  In reality there exist translation transformation vectors at each 

longitudinal plane defining translation from the origin. These vectors are derived from the 

centerline point Xk for each s.  This two-step transformation allows for the reconstruction of the 

surface from r(s, θ) coordinates to Cartesian coordinates at each s first by rotation and then by 

translation.  The transformation of any given r(s, θ) point at a given s to any given (x, y, z) point 

is thus given by Equation 15. 
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 It is apparent that reconstruction of the points into Cartesian coordinates is 

straightforward and directly applicable to any set of data in longitudinal planes.  Therefore any 

fit or approximation of the parameterized surface is directly transformable back to Cartesian 

coordinates (Figure 40). 

                     

Figure 40. Subset of the original point cloud data which lie on longitudinal planes (left) and the 

data reconstructed from the r(s, θ) data (right). 

 

4.2.7 Surface Approximation 

 

 After using the parameterization presented in the previous section, the distance of each 

point on the surface from the centerline, r, is plotted with respect to two variables {s, θ} as seen 

in Figure 39. In this section, we present a smooth numerical approximation of the surface with a 

function r(s, θ).  The numerical code for the approximation in MatLab can be found at 
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Appendices B.7 and B.8.  Figure 41 shows the schematic diagram for the parameterization and 

the functional approximation. 

 

 

Figure 41. A sample arterial lumen surface from scan C2 (left) is shown to undergo the steps of 

parameterization (center) followed by surface approximation (right) with the optional 

reconstruction to Cartesian coordinates shown for clarity in both cases. 

 

 

 The surface is approximated by a linear combination of fitting parameters and shape 

functions, i.e.,  (   )  ∑    (   ), where the shape functions are defined at Ns x (Nθ - 1) 

nodal points. Nθ and Ns are the number of grids in the domain along the θ and s axes. The 

parameterized data is special in the sense that θ spans from 0 to 2π radians, but the continuity 

between θ = 0 radians and θ = 2π radians should be ensured. For this reason, the shape functions 

at θ = 2π become not independent and the shape functions are defined from 1 to (Nθ - 1) in the 

circumferential axis. Given the variable θ is connected at 0 and 2π, the shape function must 

1. Parameterize from 

Cartesian to r(s, θ) 

 

2. Reconstruct in 

Cartesian coordinates 

3. Fit surface with 

shape functions 

 

4. Reconstruct in 

Cartesian coordinates 
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reflect this.  For this, let us define new variables dθi and dsj by Equation 16.  The shape function 

at k
th

 node is then defined by Equation 17. 

       *|    |    |    |+                  |    |                           (  ) 

      .      
       

 /                                                      (  ) 

  

β1 and β2 are two fitting parameters, which requires optimization for the given number of shape 

functions. Finally the resulting approximations   can be obtained by using the least squares 

method. To optimize β1 and β2 an iterative solver, fminsearch [61], in MatLab is employed to 

minimize the squared sum of the residual error to a convergence tolerance of 0.0001 based on 

initial guesses of β1 = 0.009 and β2 = 1.5.  This allows for the determination of points 

approximated by shape functions from each r(s, θ) value based on the residual error between the 

data and the approximation value (Figures 42 and 43).  From this optimization any point of the 

parameterized surface can then be defined by the resulting shape functions (Figure 44). 
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Figure 42. Parameterized surface data (red) and the respective points from the best fit surface 

(blue) from scan B2 shown as r(s, θ) surfaces. 

 

 

Figure 43. Plot of the residual error between the parameterized surface data and the respective 

points from the best fit surface from scan B2 shown as an r(s, θ) surface. 
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Figure 44. Parameterized surface data (red) and the respective cross-sectional lines from the best 

fit surface (blue) from scan B2 shown as r(s, θ) surfaces. 

 

4.2.8 Eccentricity and Polyline Curvature 

 

 Eccentricity and polyline curvature are two morphological features which can be 

examined on the cross-sectional level.  Mathematically the eccentricity of a conic-section is 

based on the ratio between the semimajor axis and the distance along the semimajor axis at 

which the focus lies.  Some alternatives exist which are simplified and carry slightly different 

formulations, though all represent the tendency of a conic-section towards or away from 

circularity.  A clear measure of eccentricity intrinsically understood by medical professionals is 

simply the ratio between the diameter of a cross-section’s major and minor axes.  This can be 

automated by finding the largest distance between two points of a cross-section iteratively as the 

major axis, and then identifying the axis joining the point pair closest to 90° to the major axis as 

the minor axis (Figure 45). 

 



89 

 

 

Figure 45. Major axis (left, red) and minor axis (left, green) of a cross-section (blue) used for 

eccentricity determination.  Terminology of the 3-point polyline curvature method is detailed 

(right). 

 

 To define polyline curvature, a two dimensionally derived value, many methods were 

available.  The chosen method was by defining the curvature at a given point (x2, y2) to be the 

inverse of the radius of a circle fit to that point and two neighboring points (x1, y1) and (x3, y3) 

by first finding the center of the circle (xc, yc) by Equations 18 and 19. 
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 After identifying the center of the circle based on 3 points the radius, and therefore the 

inverse of the radius, can be calculated by considering the center of the circle (xc, yc) and any of 

the points (x1, y1), (x2, y2), or (x3, y3) by Equations 20 and 21. 

       √(     )
  (     )
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 The processes for eccentricity and polyline curvature were both automated (Appendices 

B.9 and B.10) 

4.3 Results 

4.3.1 Centerline generation 

 

 The centerline generation algorithm was ran for 59 cases and it was able to successfully 

generate centerline points for 55 / 59 cases, or ≈ 93% of cases with the default input parameters.  

The failed models were lumen models from scans D3, F5, H3, and K3 with their error detailed in 

Appendix C (Figures C.1 – C.4).  By tweaking the input parameters to generate fewer points at a 

higher number of iterations per point models were then successfully generated for scans F5, H3, 

and K3.  Scan D3 featured a highly irregular anomaly that was outside the scope of the algorithm 

completely.  The centerlines of patient H are highlighted below (Figures 46 and 47). 
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Figure 46. Isometric view of the centerlines (left) and a transverse view (right) for scans H1 – H5 

where black, blue, green, red, cyan, magenta represent H1, H2, H3, H4, H5, H6 respectively.  In 

this case the general region of the spine is the x-z plane at y = 100 such that the arrow indicates 

migration away from the spine. 
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Figure 47. x-z/frontal/coronal view of the centerlines (left), and y-z/sagittal view of the 

centerlines (right) for scans H1 – H5 where black, blue, green, red, cyan, magenta represent H1, 

H2, H3, H4, H5, H6 respectively.  In the x-z plane (left) migration of the vessel centerline is 

taking place towards the left, and in the y-z plane (right) migration is also taking place towards 

the left.  In this case the general region of the spine is the x-z plane at y = 100 such that the arrow 

indicates migration away from the spine. 

 

4.3.2 Eccentricity and Curvature 

 

 The results of the eccentricity ratio and 3-point polyline curvature parameter 

measurements for the arterial lumen surface of B2 are shown (Figures 48 and 49).  It is clear that 

eccentricity of cross-sections differ along s in an easily understood manner such that more 

elliptical cross-sections have higher eccentricities.  The polyline surface curvature is a bit less 
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intuitive.  Lower values represent flatter surfaces, and were expected at regions of contact with 

the spine.  This appears to be present at two points in the proximal posterior and left lateral sides.  

There are 4 visible stripes of extreme curvature representing θ = 0, π/2, π, and 3π/2.  Due to a 

lack of foresight the method used did not account for sinusoidal behavior at these values, though 

it very easily could. 

 

                      

 

Figure 48. Eccentricity parameter values displayed for B2 lumen before surface approximation 

with a cutoff of 1.4 (left) and after surface approximation (right). 
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Figure 49. Curvature parameter values displayed for B2 lumen after surface approximation with 

a cutoff of mean + 1 standard deviation. 

 

4.4 Discussion 

4.4.1 Centerline Generation Algorithm 

 

 The centerline generation method yielded results comparable to those found using a trial 

of the MedCAD module within Mimics®, a commercial grade centerline generation code.  Those 

results cannot be shown because access to them was lost when module access expired.  The 

developed algorithm can handle complex paths, and the number of center points is easily 

adjustable. Estimation of an individual maximally inscribed sphere usually showed excellent 

convergence within 200 iterations.  The centerline generation technique is automated, repeatable, 

and relatively insensitive to outward saccular growth.  If a different file format than STL was 

used, preferably a meshed surface, the top and bottom vessel ends could be more easily excluded 

from the algorithm providing a small increase in data near each vessel end as well as rendering 

the method insensitive to vessel end surface orientations.  It is important to smoothly 

approximate the centerline for the longitudinal plane acquisition method presented.  Longitudinal 
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planes are defined normal the centerline, and even a slightly noisy centerline would yield 

inaccurate results. 

 

 It should be noted that other centerline generation algorithms have been developed for 

use with the carotid bifurcation which are based on maximally inscribed spheres, but the 

proposed method was developed independently [62–64].  The definition of a centerline is 

straightforward and unarguable for ideal geometries such as tubes, but as geometries become 

more complex the definition and method of acquiring the centerline becomes more obscure.  For 

example, a maximally inscribed sphere method is insensitive to extreme saccular growth, 

whereas a transverse polyline centroid method would reflect every change in such a growth; 

protrusions of the surface inward cause a direct decrease of the size of a maximally inscribed 

sphere near that boundary, whereas protrusions outward have no effect.  There is no answer as to 

which of these methods is correct, and instead the focus should be on which one yields more 

meaningful and justifiable results for the purpose of a given study.  For example, in the proposed 

method the radius is more conservatively defined as the distance from the centerline; the distance 

from the centerline can be affected and interpreted in a number of unique ways.  If the anterior 

side of the vessel expands and the posterior side remains stable, the distance from the centerline 

on each side would also increase, which is an important concept to be aware of.  As a result the 

distance to the centerline can be a misleading parameter unless properly understood. 

 

 The initial guess for iteratively fitting a maximally inscribed sphere for a given cross-

section also limits the final result.  By enforcing a dependency on the previously generated points 

of the centerline for the generation of the next point, the overall path of the centerline can be 
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predicted and maintained in an intuitive way.  However, this can lead to scenarios where slightly 

different inputs yield vastly different results.  In order to fully automate centerline generation and 

render reliable and repeatable results more advanced measures must be developed.  Such 

measures might involve multiple quick passes of centerline generations to accurately predict the 

most likely general course of the final centerline to generate using the detailed algorithm.  An 

additional important consideration is how to accurately compare intra-patient results; each 

surface from a longitudinal study has a unique centerline, and therefore each parameterized 

surface is parameterized to a different centerline, so the difference in the surfaces are not directly 

related with the local change. Nevertheless, this geometric characterization may allow, to some 

degree, the separation of local expansion from global shifting (i.e., movement of the centerline) 

of the aneurysm shape. A shortcoming of the method presented here then stems from the fact that 

individual surface points cannot be individually tracked from one CT surface to the next except a 

few identifiable markers. 

 

 If two centerlines are generated from two scans for the same patient at different times 

they may have different degrees of tortuosity, not to mention aneurysm expansion.  Both of these 

changes can lead to centerlines with longer total arc lengths, which makes translation of 

geometric changes through parameterization difficult. For instance, one surface may have 125 

longitudinal planes, while the next may have 140 for the same region.  The changes observed are 

also regionally based; the proximal or distal end of an aneurysm may see large changes while 

another may not, resulting in an uneven change of the spatial distribution of the interpreted 

longitudinal planes.  Understanding these changes in such a way that their interpretation can be 

automated is vital to advancing the utility of longitudinal parameter estimation. 
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4.4.2 Parameterization and Surface Approximation 

 

 Another utility of surface parameterization is that various quantities at the aneurismal 

wall or on the surface, such as wall thickness, surface curvature, or wall stresses from 

biomechanical analyses, can be given as functions of two spatial parameters (s, θ) and time t.  

FEA, FSI, or computational fluid simulations could be done with a parameterized arterial surface 

mesh and the resulting data would represent both geometrical and mechanical values across the 

surface. This will allow future work to utilize techniques such as linear regression or Gaussian 

process learning to analyze the effect of various factors on aneurysm expansion and stress and to 

predict the time evolution.  Many computational biosolid studies use idealized geometries, but 

when coupled with this automated surface parameterization, new possibilities emerge to analyze 

stress distribution or rupture risk over different geometries. 

 

 A major drawback of the proposed method is the reduction of the number of surface 

points.  For example, the lumen surface of scan B2 before parameterization contains 17,247 

points, while after parameterization it contains only 5,106 points.  This reduction is due to the 

condition that a point must pass a particular inequality to be considered as a point lying on a 

given longitudinal plane.  Alternatively the s parameter of a given surface point could be 

approximated by the minimum distance from the point to the centerline as done by Zeinali-

Davarani et al. [60].  This method results in an s value for every point on the surface, but as the 

surface strays from an ideal cylinder complications arise to render this method imperfect as well.   
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 There are significant drawbacks associated with the degree of reduction seen by the 

proposed method.  If an FEA, FSI, or fluid simulation was performed and mechanical values are 

recorded for each point of the utilized surface mesh, then the reduction of points on the surface 

results in a direct loss of data.  Less data renders statistical methods less powerful, especially 

with respect to surface approximation and correlation analyses.  An advanced parameterization 

method which preserves every point on the surface and has the speed of the minimum-distance 

method as well as the robustness of the longitudinal plane method would be ideal.  In order to 

accomplish this surface meshes would have to replace surface STLs as the input of choice.  The 

information a connectivity matrix provides is invaluable for ensuring a reliable algorithm can be 

developed. 

 

 The surface approximation algorithm itself is quite robust, although some optimization is 

required for it to reach its full potential.  A test case was run for every combination of the 

number of shape functions in each dimension to find an optimum pair.  The quality of the result 

was based on minimizing the sum of the squared error of the residuals (SSE).  The resulting 

values are first sorted by Nη and then Nθ for 100 cases to show the general trend of the resulting 

SSE values (Figure 50, Table C.1).  The resulting values are then sorted by the SSE values 

themselves (Figure 51, Table C.2).  The important conclusion is that the number shape functions 

in each dimension do not evenly contribute to improved accuracy, and that unique optimum 

combinations exist on a case by case basis between accuracy and computational time.  One goal 

of surface approximation is to translate the surface data into a form suitable for rigorous 

statistical computations absent from biomechanical rationale to push the limits of what statistics 

alone can accomplish before reinforcing it with biomechanical rationale. 
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Figure 50. SSE values curve sorted by Nη and Nθ for 100 cases of shape function surface fitting. 

 

 

 

Figure 51. SSE values curved sorted by SSE value for 100 case of shape function surface fitting. 

 

4.4.3 Morphological Parameters 

 

 The proposed methods for determining parameter values of eccentricity and polyline 

curvature are inadequate.  The measure of eccentricity suffers from major drawbacks: there is no 

constraint that the major and minor axes intersect at the given cross-sections origin, the axes are 
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only approximately 90° from one another, the direction of the major axis is subject to surface 

irregularities, and there is no continuity of axes from one cross-section to the next.  All of these 

problems stem from the fact that point-cloud data was used instead of surface data; by 

constraining the eccentricity/asymmetry axes to pre-defined unstructured points along the 

polyline of a cross-section there is no way to remedy the drawbacks listed.  In order to properly 

define the eccentricity axes a more structured distribution of data for a given cross-section is 

required.  If the pre-fit and post-fit values are compared numerically it is clear how the results are 

drastically improved with clear continuity of eccentricity trends across cross-sections for the 

ideally structured post-fit surface (Figure 52).  The following conditions are able to be enforced 

for the post-fit surface that cannot be enforced for the pre-fit surface: the major and minor axes 

intersect at a given cross-section’s origin, the axes are exactly 90° from one another, the surface 

is smooth rendering the direction of the major axis less influenced by surface irregularities, and 

there is a natural continuity and progression of eccentricity across cross-sections as a virtue of 

utilizing normal shape functions.  The proposed method of eccentricity calculation is therefore 

only really meaningful when paired with the post-fit surface of a given AAA. 
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Figure 52. Eccentricity of the arterial lumen surface of B2 pre-fit (blue) and post-fit (red). 

 

   The second analyzed morphological parameter, the polyline curvature, is also limited in 

its interpretation.  First and foremost a small revision to the method would eliminate the high-

value stripes seen at θ = 0, π/2, π, and 3π/2.  After such a fix it must also be critically analyzed as 

to the best set of 3 points to use to determine the curvature of a given point.  For the results 

shown a set of a given point and the points immediately neighboring it on either side are used for 

the curvature calculation.  The selection of the additional points for the calculation affects results 

and should be considered very carefully. The results shown are for a post-fit approximated 

surface, which is mathematically smooth.  The polyline curvature method yields nonsensical 

results for the pre-fit surface due to surface spikes and irregularities and no discernable trends 
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could be identified.  The selection of curvature calculation points for the pre-fit data is extremely 

difficult to determine to yield meaningful results. 

 

 It is clear that both of the morphological parameters described are not easily obtained for 

pre-fit surfaces.  Whether this highlights the importance of a proper approximation algorithm or 

the shortcomings of the methods themselves is hard to distinguish, but it is clear the results show 

more intuitively understood trends for post-fit surfaces.  The post-fit surfaces are still 

approximations, however, so the results have to be presented with that caveat.  It is believed that 

the surface approximation presented is worthwhile and actually enhances the readability and 

reliability of results for the methods proposed. 

4.4.4 Future Work 

 

 The algorithms presented are not finalized and this study has many possibilities for 

expansion to serve as a useful tool for clinical management of AAAs or computational 

biomechanical studies. There exist many places to further automate and optimize the existing 

methods, but some methods presented may benefit from a total redesign.  For example, it must 

be clarified that eccentricity and asymmetry are intertwined but distinctly different.  Eccentricity 

is simply a measure of the skewedness of a given cross-section, but the asymmetry can be best 

analyzed by considering the directions of the major and minor axes utilized to calculate 

eccentricity.  The currently proposed method is highly influenced by surface irregularities.  

Alternatives exist such as the principal axes method and calculating the second moment of inertia 

of a cross-section.  These methods are not as heavily influenced by surface irregularities and 

carry a more two-dimensionally robust justification than simply identifying the maximum 
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diameter pair of points constrained to the origin of a cross-section.  Likewise the polyline 

curvature method presented is simplistic and an increase in dimensionality would be ideal.  

Considering the 3-D curvature of the surface instead of polyline curvature constrained to 

individual planes would offer a more intuitive global understanding of the curvature across the 

aneurysm and provide a more robust solution for unique AAA surfaces. 

 

 Aside from the various improvements that could be done to the existing parameterization 

method proposed, a lot still must be done to fully bridge the gap between AAA pathology and 

biomechanics.  The consideration of the interactions with surrounding tissues of AAAs will serve 

to enrich the biomechanical understanding of AAA pathology.  Other biomechanical factors still 

exist of course; for example, it is not understood why different demographics such as women vs. 

men exhibit much different risk for AAA development.  Ongoing studies have been examining 

the unique blood flow due to anatomical differences between men and women in the abdomen 

and suggest that hemodynamics may play a role in AAA development.  Other studies have 

suggested that hormones in the body and bloodstream may contribute to AAA risk as well.  At 

this point it is clear that not only do the engineering and medical communities need to cooperate 

but biochemistry, statistics, and biology experts should become involved to further the 

understanding of AAAs.  The mechanical understanding and simulation of AAAs has reached a 

critical point that must be overcome.  The logical next step for the research community is the 

widespread adoption of longitudinal datasets to understand the mechanical and geometrical 

evolution of AAAs over time considering mechanical, statistical, biological, and biochemical 

factors between AAAs and surrounding tissues. 
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APPENDIX A 

 

 

 

 

Detailed information and measurements of CT scan data 
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Table A.1. Detailed scan resolution information for the CT data set studied. 

 

Scan Pixel Size (mm) # Slices Slice increment (mm) Slice thickness (mm) 

A1 0.656 1003 var. 1.000 

A2 0.645 618 var. 1.000 

B1 0.680 931 var. 1.000 

B2 0.678 951 0.699 1.000 

B3 0.777 1073 var. 1.000 

C1 0.688 961 var. 1.000 

C2 0.684 684 1.000 1.000 

D1 0.605 375 1.499 2.000 

D2 0.635 596 1.000 1.250 

D3 0.578 621 0.699 1.000 

E1 0.617 863 0.699 1.000 

E2 0.572 899 0.699 1.000 

F1 0.477 124 2.000 3.000 

F2 0.375 133 2.000 3.000 

F3 0.510 441 1.249 1.250 

F4 0.531 381 var. 3.200 

F5 0.545 411 1.500 2.000 

F6 0.539 730 0.699 1.000 

F7 0.656 588 1.000 1.000 

G1 0.783 2096 var. 1.000 

G2 0.670 1020 0.699 1.000 

G3 0.730 805 0.699 1.000 

G4 0.639 510 1.000 1.000 

G5 0.684 642 1.000 1.000 

G6 0.633 463 var. 1.000 

H1 0.494 249 var. 3.200 

H2 0.547 409 var. 3.200 

H3 0.723 693 var. 1.000 

H4 0.678 666 0.699 1.000 

H5 0.688 653 0.699 1.000 

H6 0.652 640 0.699 1.000 

H7 0.625 504 1.000 1.000 

H8 0.703 505 1.000 1.000 

H9 0.684 453 var. 1.000 

I1 0.547 468 1.250 1.250 

I2 0.625 653 1.000 1.250 

I3 0.645 287 var. 3.200 

I4 0.676 659 0.699 1.000 

I5 0.549 443 1.000 1.000 
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Table A.1 (cont’d) 

 

I6 0.582 608 0.699 1.000 

J1 0.684 732 var. 1.000 

J2 0.621 673 0.699 1.000 

J3 0.658 650 var. 1.000 

J4 0.650 456 1.000 1.000 

J5 0.652 654 0.699 1.000 

K1 0.742 926 0.699 1.000 

K2 0.793 701 1.000 1.250 

K3 0.637 717 var. 1.000 

K4 0.660 995 0.699 1.000 

K5 0.758 1086 0.699 1.000 

K6 0.750 787 0.699 1.000 

 

Table A.2. Detailed scanner manufacturers and models, date of scans, and total time elapsed 

from initial scanning. 

 

Scan Manufacturer Model Date Elapsed 

A1 SIEMENS Definition 9/11/2009 0 

A2 Philips Brilliance 64 3/12/2010 0 y, 6 m, 1 d 

B1 SIEMENS Definition 10/30/2008 0 

B2 SIEMENS Definition 5/21/2009 0 y, 6 m, 21 d 

B3 SIEMENS SOMATOM Definition 11/2/2010 2 y, 0 m, 3 d 

C1 SIEMENS Definition 3/9/2009 0 

C2 Philips Brilliance 64 12/1/2010 1 y, 6 m, 22 d 

D1 SIEMENS Sensation 16 7/31/2004 0 

D2 GE_MEDICAL_SYSTEMS LightSpeed Ultra 12/7/2005 1 y, 4 m, 7 d 

D3 SIEMENS Definition 4/18/2008 3 y, 8 m, 18 d 

E1 SIEMENS Definition 4/4/2008 0 

E2 SIEMENS Definition 10/13/2008 0 y, 6 m, 9 d 

F1 SIEMENS SOMATOM PLUS 4 12/15/1999 0 

F2 SIEMENS SOMATOM PLUS 4 3/9/2001 1 y, 2 m, 22 d 

F3 GE_MEDICAL_SYSTEMS LightSpeed Ultra 12/2/2003 3 y, 11 m, 17 d 

F4 Philips Mx8000 2/24/2004 4 y, 2 m, 9 d 

F5 SIEMENS Sensation 16 8/17/2004 4 y, 8 m, 2 d 

F6 SIEMENS Sensation 16 12/2/2005 5 y, 11 m, 17 d 

F7 Philips Brilliance 64 3/6/2007 7 y, 2 m, 19 d 

G1 SIEMENS Sensation 16 4/20/2005 0 

G2 SIEMENS Sensation 16 10/13/2005 0 y, 5 m, 23 d 

G3 SIEMENS Sensation 16 4/13/2006 0 y, 11 m, 24 d 

G4 Philips Brilliance 64 10/9/2006 1 y, 5 m, 19 d 

G5 Philips Brilliance 64 4/4/2007 1 y, 11 m, 15 d 

G6 Philips Brilliance 64 10/11/2007 2 y, 5 m, 21 d 

H1 Marcon Mx8000 10/25/2001 0 

H2 Philips Mx8000 11/18/2002 1 y, 0 m, 24 d 
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Table A.2 (cont’d) 

 

H3 SIEMENS Sensation 16 7/28/2007 5 y, 9 m, 3 d 

H4 SIEMENS Definition 7/9/2008 6 y, 8 m, 14 d 

H5 SIEMENS Definition 6/29/2009 7 y, 8 m, 4 d 

H6 SIEMENS Sensation 16 6/16/2010 8 y, 7 m, 22 d 

H7 Philips Brilliance 64 12/2/2010 9 y, 1 m, 7 d 

H8 Philips Brilliance 64 3/9/2011 9 y, 4 m, 12 d 

H9 Philips Brilliance 64 3/19/2011 9 y, 4 m, 22 d 

I1 GE_MEDICAL_SYSTEMS LightSpeed Ultra 8/26/2003 0 

I2 GE_MEDICAL_SYSTEMS LightSpeed Ultra 9/3/2004 1 y, 0 m, 8 d 

I3 Philips Mx8000 9/9/2005 2 y, 0 m, 14 d 

I4 SIEMENS Sensation 16 8/4/2006 2 y, 11 m, 9 d 

I5 Philips Brilliance 64 8/3/2007 3 y, 11 m, 8 d 

I6 SIEMENS Definition 7/1/2009 5 y, 10 m, 5 d 

J1 SIEMENS Sensation 16 11/2/2006 0 

J2 SIEMENS Sensation 16 11/23/2007 1 y, 0 m, 21 d 

J3 SIEMENS Definition 11/28/2008 2 y, 0 m, 26 d 

J4 Philips Brilliance 64 11/27/2009 3 y, 0 m, 25 d 

J5 SIEMENS SOMATOM Definition 5/15/2010 3 y, 6 m, 13 d 

K1 SIEMENS Sensation 16 10/5/2005 0 

K2 GE_MEDICAL_SYSTEMS LightSpeed Ultra 5/20/2006 0 y, 7 m, 15 d 

K3 N/A N/A 8/10/2007 1 y, 10 m, 5 d 

K4 N/A N/A 8/19/2008 2 y, 10 m, 14 d 

K5 N/A N/A 8/8/2009 3 y, 10 m, 3 d 

K6 N/A N/A 12/1/2009 4 y, 1 m, 26 d 
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Table A.3. Tissue Measurements from individual patient CT scans. 

 

  

A B C C (sac) D F G H I J K 

Scan 1 

Time t 0 0 0 0 0 0 0 0 0 0 0 

Dmax 57.31 46.21 41.11 31.82 52.02 

 

45.03 44.85 31.68 40.20 42.22 

90° to Dmax 50.43 44.21 39.53 29.82 49.59 

 

40.42 40.81 29.81 39.29 42.18 

Scan 2 

Time t 182 203 632 632 494 450 176 389 374 386 227 

Dmax 58.81 50.06 45.37 33.91 59.21 44.69 49.01 48.80 30.32 42.69 43.46 

90° to Dmax 55.42 44.31 41.68 32.25 55.68 42.74 41.47 44.78 28.82 41.50 42.42 

Scan 3 

Time t 

 

733 

  

1357 1448 358 2102 745 757 674 

Dmax 

 

54.53 

  

72.10 58.79 49.90 56.14 35.02 44.09 45.68 

90° to Dmax 

 

54.58 

  

70.03 56.46 43.78 50.30 32.28 43.79 42.22 

Scan 4 

Time t 

     

1532 537 2449 1074 1121 1049 

Dmax 

     

62.41 52.18 59.23 36.16 46.74 53.00 

90° to Dmax 

     

56.96 49.84 52.87 34.28 45.67 51.94 

Scan 5 

Time t 

     

1707 714 2804 1438 1290 1403 

Dmax 

     

62.73 53.38 61.74 37.78 50.07 57.53 

90° to Dmax 

     

61.92 49.73 54.49 36.61 49.30 55.24 

Scan 6 

Time t 

     

2179 904 3156 2136 

  Dmax 

     

69.11 58.08 67.28 41.63 

  90° to Dmax 

     

67.92 52.08 59.53 37.98 

  

Scan 7 

Time t 

     

2638 

 

3325 

   Dmax 

     

73.10 

 

69.20 

   90° to Dmax 

     

72.23 

 

60.22 
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Table A.4. Lumen Measurements from individual patient CT scans. 

 

  

A B C C (sac) D F G H I J K 

Scan 1 

Time t 0 0 0 0 0 0 0 0 0 0 0 

Dmax 54.24 38.36 36.05 25.38 45.88 

 

39.87 38.48 28.86 35.62 35.39 

90° to Dmax 47.91 37.73 34.05 24.53 40.12 

 

33.94 36.26 27.08 33.23 27.29 

Scan 2 

Time t 182 203 632 632 494 450 176 389 374 386 227 

Dmax 56.99 44.40 39.80 29.51 50.85 40.81 40.80 40.81 30.32 35.27 38.98 

90° to Dmax 52.46 39.65 38.40 26.05 32.29 39.33 37.03 39.92 28.82 33.78 28.74 

Scan 3 

Time t 

 

733 

  

1357 1448 358 2102 745 757 674 

Dmax 

 

52.37 

  

64.69 48.48 43.72 40.77 32.14 37.65 38.32 

90° to Dmax 

 

49.34 

  

45.40 36.43 38.52 31.90 28.80 33.04 30.27 

Scan 4 

Time t 

     

1532 537 2449 1074 1121 1049 

Dmax 

     

49.09 47.54 33.97 33.67 37.92 41.24 

90° to Dmax 

     

37.52 43.80 28.05 32.17 36.05 28.91 

Scan 5 

Time t 

     

1707 714 2804 1438 1290 1403 

Dmax 

     

49.58 50.22 38.58 35.12 41.01 39.94 

90° to Dmax 

     

39.56 45.25 31.64 33.47 39.54 29.32 

Scan 6 

Time t 

     

2179 904 3156 2136 

  Dmax 

     

44.17 51.20 41.18 37.55 

  90° to Dmax 

     

39.96 43.95 34.22 34.54 

  

Scan 7 

Time t 

     

2638 

 

3325 

   Dmax 

     

48.89 

 

45.30 

   90° to Dmax 

     

40.76 

 

36.35 
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APPENDIX B 

 

 

 

 

MatLab code developed for automatic parameterization of AAAs 
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Appendix B.1. step_0.m, part of the Matlab code written to generate the centerlines 

 

clear all; close all; clc; 

  

a = dir('*.txt'); 

  

global A B i Xs Xstan s N1 N2 N3 perp2 meanR radius circ theta C D num_data 

  

for i = 1:length(a) 

     

    A{i,1} = load(a(i).name); A{i,2} = a(i).name(1:2); A{i,3} = a(i).name(4); 

    B{i,2} = A{i,2}; B{i,3} = A{i,3}; 

     

end 

  

for i = 1:length(a) 

     

        step_1; 

%     step_2; 

    %     step_3; 

    %     step_4; 

    %     step_5; 

    %     step_6; 

     

end 
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Appendix B.2. step_1, the core functionality of the centerline generation algorithm 

 

%% script for the centerline generation 

  

min_z = min(A{i,1}(:,3)); 

max_z = max(A{i,1}(:,3)); 

  

k = 0; 

  

for j = 1:length(A{i,1}) 

    if A{i,1}(j,3) > (min_z + 2.5) && A{i,1}(j,3) < (max_z - 2.5) 

        k = k + 1; 

        A_temp(k,1) = A{i,1}(j,1); A_temp(k,2) = A{i,1}(j,2); A_temp(k,3) = A{i,1}(j,3); 

    end 

end 

  

A{i,1} = A_temp; 

  

itenum = 250; 

S_n = 2; 

  

min_z = min(A{i,1}(:,3)); max_z = max(A{i,1}(:,3)); 

  

S = 0; 

S_chk = max_z - 1; 

  

while S_chk < max_z 

     

    S = S + 1; 

     

    htext = sprintf(['Calculating Center Point for s = ',num2str(S),' ...']); 

     

    clear A2 d CoT k; k = 0; 

     

    if S == 1 

         

        for l = 1:length(A{i,1}); 

             

            if A{i,1}(l,3) >= min_z && A{i,1}(l,3) <= min_z + 1 

                k = k+1; 

                A2(k,:) = A{i,1}(l,:); 

            end 

             

        end 
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Appendix B.2 (cont’d) 

 

       B{i,1}(S,1) = sum(A2(:,1))/length(A2); B{i,1}(S,2) = sum(A2(:,2))/length(A2); B{i,1}(S,3) 

= min_z; 

        

    elseif S == 2 

         

        B{i,1}(S,1) = B{i,1}(S-1,1); B{i,1}(S,2) = B{i,1}(S-1,2); B{i,1}(S,3) = B{i,1}(S-1,3) + 

S_n; 

         

    else 

         

        PQ_S1 = [B{i,1}(S-1,1)-B{i,1}(S-2,1), B{i,1}(S-1,2)-B{i,1}(S-2,2), B{i,1}(S-1,3)-

B{i,1}(S-2,3)]; 

        PQ_S2 = sqrt((B{i,1}(S-1,1)-B{i,1}(S-2,1))^2 + (B{i,1}(S-1,2)-B{i,1}(S-2,2))^2 + 

(B{i,1}(S-1,3)-B{i,1}(S-2,3))^2); 

        PQ_S = PQ_S1 / PQ_S2; 

         

        B{i,1}(S,1) = B{i,1}(S-1,1) + S_n*PQ_S(1); B{i,1}(S,2) = B{i,1}(S-1,2) + S_n*PQ_S(2); 

B{i,1}(S,3) = B{i,1}(S-1,3) + S_n*PQ_S(3); 

         

    end 

     

    itesize(S) = 1; 

     

    h = waitbar(0,htext); 

     

    for j = 1:itenum 

         

        for k = 1:length(A{i,1}) 

            d(k) = sqrt((A{i,1}(k,1)-B{i,1}(S,1))^2 + (A{i,1}(k,2)-B{i,1}(S,2))^2 + (A{i,1}(k,3)-

B{i,1}(S,3))^2); 

        end 

         

        [d_X,d_Y] = min(d); 

         

        [X,Y,Z] = sphere(20); %Makes a dummy unit sphere 

         

        X = d_X*X; Y = d_X*Y; Z = d_X*Z; %Makes the unit sphere have radius = minmum 

distance above 

         

        X = X + B{i,1}(S,1); %Moves the sphere's center to the centroid 

        Y = Y + B{i,1}(S,2); 

        Z = Z + B{i,1}(S,3); 

         

     PQ_1 = [A{i,1}(d_Y,1)-B{i,1}(S,1), A{i,1}(d_Y,2)-B{i,1}(S,2), A{i,1}(d_Y,3)-B{i,1}(S,3)];  
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Appendix B.2 (cont’d) 

 

        PQ_2 = sqrt((A{i,1}(d_Y,1)-B{i,1}(S,1))^2 + (A{i,1}(d_Y,2)-B{i,1}(S,2))^2 + 

(A{i,1}(d_Y,3)-B{i,1}(S,3))^2); 

        

 PQ = PQ_1 / PQ_2; 

         

        if S==1 

            B{i,1}(S,1) = B{i,1}(S,1) - PQ(1)*itesize(S); B{i,1}(S,2) = B{i,1}(S,2) - 

PQ(2)*itesize(S); 

        elseif S==2 

            B{i,1}(S,1) = B{i,1}(S,1) - PQ(1)*itesize(S); B{i,1}(S,2) = B{i,1}(S,2) - 

PQ(2)*itesize(S); 

        else 

            proj_PQ = cross(PQ_S,(cross(PQ,PQ_S)/norm(PQ_S)))/norm(PQ_S); 

            proj_PQ = proj_PQ /norm(proj_PQ); 

            B{i,1}(S,:) = B{i,1}(S,:) - proj_PQ*itesize(S); 

        end 

         

        x_c2(j,S) = B{i,1}(S,1); y_c2(j,S) = B{i,1}(S,2); z_c2(j,S) = B{i,1}(S,3); 

        d2(j,S) = d_X; 

         

        if j >= 15 

            CoT(j-14,S) = sqrt((x_c2(j,S)-x_c2(j-14,S))^2 + ((y_c2(j,S)-y_c2(j-14,S))^2)); 

             

            if CoT(j-14,S) < itesize(S) 

                itesize(S) = itesize(S) / 2; 

            end 

             

        end 

         

        %                     if j==1 

        %                         

figure;scatter3(A{i,1}(:,1),A{i,1}(:,2),A{i,1}(:,3),1,'CData',A{i,1}(:,3),'marker','.'); hold on 

%Plots the AAA colorfully 

        %                         plot3(B{i,1}(S,1),B{i,1}(S,2),B{i,1}(S,3),'g.','Markersize',15); %Plots the 

centroid as a green dot 

        %                         title(A(i,2));xlabel('x direction (mm)');ylabel('y direction (mm)');zlabel('z 

direction (mm)');axis image %labels the graph 

        %                         hold 

on;plot3(A{i,1}(d_Y,1),A{i,1}(d_Y,2),A{i,1}(d_Y,3),'b.','Markersize',20) %Marks the 

minimum distance point with a blue dot 

        %                         plot3(X,Y,Z,'ro');axis image %Shows the sphere before any iterations 

                if S~=1 && S ~= 2 && j==itenum 

                    figure;scatter3(A{i,1}(:,1),A{i,1}(:,2),A{i,1}(:,3),1,'CData',A{i,1}(:,3),'marker','.'); 

hold on %Plots the AAA colorfully  
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Appendix B.2 (cont’d) 

 

                    plot3(B{i,1}(S,1),B{i,1}(S,2),B{i,1}(S,3),'g.','Markersize',15); %Plots the centroid 

as a green dot 

 

                    title(A(i,2));xlabel('x direction (mm)');ylabel('y direction (mm)');zlabel('z direction 

(mm)');axis image %labels the graph 

                    hold on;plot3(A{i,1}(d_Y,1),A{i,1}(d_Y,2),A{i,1}(d_Y,3),'b.','Markersize',20) 

%Marks the minimum distance point with a blue dot 

                    plot3(X,Y,Z,'ro');axis image %Shows the sphere after all iterations 

                    figure; 

                    plot3(B{i,1}(S,1),B{i,1}(S,2),B{i,1}(S,3),'g.','Markersize',15); %Plots the centroid 

as a green dot 

                    title(A(i,2));xlabel('x direction (mm)');ylabel('y direction (mm)');zlabel('z direction 

(mm)');axis image %labels the graph 

                    hold on;plot3(A{i,1}(d_Y,1),A{i,1}(d_Y,2),A{i,1}(d_Y,3),'b.','Markersize',20) 

%Marks the minimum distance point with a blue dot 

                    scatter3(X(:),Y(:),Z(:),'Cdata',Z(:),'marker','.');axis image %Shows the sphere after 

all iterations 

                    

plot3([B{i,1}(S,1),B{i,1}(S,1)+proj_PQ(1)*d_X],[B{i,1}(S,2),B{i,1}(S,2)+proj_PQ(2)*d_X],[B

{i,1}(S,3),B{i,1}(S,3)+proj_PQ(3)*d_X],'r','Markersize',15); %graphs projection vector 

                    

plot3([B{i,1}(S,1),B{i,1}(S,1)+PQ(1)*d_X],[B{i,1}(S,2),B{i,1}(S,2)+PQ(2)*d_X],[B{i,1}(S,3),

B{i,1}(S,3)+PQ(3)*d_X],'b','Markersize',15); %graphs min_dist vector 

                    

plot3([B{i,1}(S,1),B{i,1}(S,1)+PQ_S(1)*d_X],[B{i,1}(S,2),B{i,1}(S,2)+PQ_S(2)*d_X],[B{i,1}

(S,3),B{i,1}(S,3)+PQ_S(3)*d_X],'k','Markersize',15); %graphs normal vector 

                end 

         

                waitbar(j / itenum,h,htext) 

         

        S_chk = B{i,1}(S,3); 

         

    end 

    delete(h) 

end 

  

disp(['Refining Final S value: ',num2str(S),' ...']) 

  

clear d d_X d_Y CoT h htext 

  

B{i,1}(S,1) = B{i,1}(S-1,1) + S_n*PQ_S(1); 

B{i,1}(S,2) = B{i,1}(S-1,2) + S_n*PQ_S(2); 

B{i,1}(S,3) = max_z; 
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Appendix B.2 (cont’d) 

 

itesize(S) = 1; 

  

for j = 1:itenum 

Appendix 6 (cont’d) 

 

    for k = 1:length(A{i,1}) 

        d(k) = sqrt((A{i,1}(k,1)-B{i,1}(S,1))^2 + (A{i,1}(k,2)-B{i,1}(S,2))^2 + (A{i,1}(k,3)-

B{i,1}(S,3))^2); 

    end 

     

    [d_X,d_Y] = min(d); 

     

    PQ_1 = [A{i,1}(d_Y,1)-B{i,1}(S,1), A{i,1}(d_Y,2)-B{i,1}(S,2), A{i,1}(d_Y,3)-B{i,1}(S,3)]; 

    PQ_2 = sqrt((A{i,1}(d_Y,1)-B{i,1}(S,1))^2 + (A{i,1}(d_Y,2)-B{i,1}(S,2))^2 + 

(A{i,1}(d_Y,3)-B{i,1}(S,3))^2); 

    PQ = PQ_1 / PQ_2; 

     

    B{i,1}(S,1) = B{i,1}(S,1) - PQ(1)*itesize(S); B{i,1}(S,2) = B{i,1}(S,2) - PQ(2)*itesize(S); 

     

    x_c2(j,S) = B{i,1}(S,1); y_c2(j,S) = B{i,1}(S,2); z_c2(j,S) = B{i,1}(S,3); 

    d2(j,S) = d_X; 

     

    if j >= 15 

        CoT(j-14,S) = sqrt((x_c2(j,S)-x_c2(j-14,S))^2 + ((y_c2(j,S)-y_c2(j-14,S))^2)); 

         

        if CoT(j-14,S) < itesize(S) 

            itesize(S) = itesize(S) / 2; 

        end 

         

    end 

     

    disp(['S value: ',num2str(S),' ... ']) 

    disp(['Iteration #: ',num2str(j),' / ',num2str(itenum)]) 

     

end 

  

figure;scatter3(A{i,1}(:,1),A{i,1}(:,2),A{i,1}(:,3),1,'CData',A{i,1}(:,3),'marker','.'); 

hold on; axis image; 

scatter3(B{i,1}(:,1),B{i,1}(:,2),B{i,1}(:,3)); 

plot3(B{i,1}(:,1),B{i,1}(:,2),B{i,1}(:,3)); 

  

clear A_temp CoT PQ proj_PQ PQ_1 PQ_2 PQ_S PQ_S1 PQ_S2 S S_chk _n X Y Z d d2 d_X 

d_Y itenum itesize j k l max_z min_z x_c2 y_c2 z_c2 
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Appendix B.3. step_2.m of the centerline generation algorithm  This step generates smooth 

points along the centerline by an approximation function 

 

X = B{i,1}'; 

  

Lbp=zeros(1,length(X)-1); %Length between points: calculates distance between each point. 

Lbp(1)=distance between X(1) and X(2), etc. 

  

for j=1:(length(X)-1) 

    Lbp(j)=(((X(1,(j+1))-X(1,j))^2)+((X(2,(j+1))-X(2,j))^2)+((X(3,(j+1))-X(3,j))^2))^(1/2); 

end 

  

B{i,4} = sum(Lbp); % Length of the centerline X or B{i,1} 

  

l=zeros(1,length(X)); %the distance along the centerline at each point. l(1) is the distance from 

X(:,1) to X(:,1). l(2) is the distance from X(:,1) to X(:,2), etc. 

  

for j=1:length(Lbp) 

    l(j+1)=sum(Lbp(1:j)); 

end 

  

phi=zeros(1,(length(l)));%a group of base functions that depend on s. Use phis functions to fit a 

centerline.  

dphi_ds=zeros(1,length(l)); %derivative of phis with respect to s. Used to find tangent vectors at 

each s for use as a reference vector later.  

Xsarray=zeros(1,length(X),3); %contains the x,y,z elements that need to be summed to create 

Xs. It is the result of X.*nphis (nphis is a normalization of the phis variable). 

Xstanarray=zeros(1,length(X),3); %contains the x,y,z elements of X.*dnphidss.  

s=l(1):1:l(end); %longitudinal distance along the centerline 

Xs=zeros(1,length(s),3); %function of s that defines the coordiantes of the centerline at any s. It 

is a smooth 4th order approximation function of the centerline. 

Xstan=zeros(1,length(s),3); %contains the x,y,z coordinates that, at each s, will create a vector 

from the origin to the aforementioned coordinates parrallel to the tangent vector at that s. 

  

j = length(l); 

for k=1:length(s) 

    for m=1:j 

        if m == 1 

            if ( s(k) >= l(1) ) && ( s(k) <= l(3) ) 

                phi(m) = (s(k)-l(3))^2*(s(k)+l(3))^2/((l(1)-l(3))^2*(l(1)+l(3))^2); 

                dphi_ds(m) = (2*(s(k)-l(3))*(s(k)+l(3))^2+2*(s(k)-l(3))^2*(s(k)+l(3)))/((l(1)-

l(3))^2*(l(1)+l(3))^2); 

            else 

                phi(m) = 0.0; 

                dphi_ds(m)=0.0; 

            end  
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        elseif m == 2 

            if ( s(k) >= l(1) ) && ( s(k) <= l(4) ) 

                phi(m) = (s(k)+l(2))^2*(s(k)-l(4))^2/((l(2)+l(2))^2*(l(2)-l(4))^2); 

                dphi_ds(m) = (2*(s(k)+l(2))*(s(k)-l(4))^2+2*(s(k)+l(2))^2*(s(k)-

l(4)))/((l(2)+l(2))^2*(l(2)-l(4))^2); 

            else 

                phi(m) = 0.0; 

                dphi_ds(m)=0.0; 

            end 

        elseif m == j-1 

            if ( s(k) >= l(j-3) ) && ( s(k) <= l(j) ) 

                phi(m) = (s(k)-l(j-3))^2*(s(k)-2*l(j)+l(j-1))^2/((l(j-1)-l(j-3))^2*(l(j-1)-l(j))^2); 

                dphi_ds(m) = (2*(s(k)-l(j-3))*(s(k)-2*l(j)+l(j-1))^2+2*(s(k)-l(j-3))^2*(s(k)-2*l(j)+l(j-

1)))/((l(j-1)-l(j-3))^2*(l(j-1)-l(j))^2); 

            else 

                phi(m) = 0.0; 

                dphi_ds(m)=0.0; 

            end 

        elseif m == j 

            if ( s(k) >= l(j-2) ) && ( s(k) <= l(j) ) 

                phi(m) = (s(k)-l(j-2))^2*(s(k)-2*l(j)+l(j-2))^2/((l(j)-l(j-2))^4); 

                dphi_ds(m) = (2*(s(k)-l(j-2))*(s(k)-2*l(j)+l(j-2))^2+2*(s(k)-l(j-2))^2*(s(k)-2*l(j)+l(j-

2)))/((l(j)-l(j-2))^4); 

            else 

                phi(m) = 0.0; 

                dphi_ds(m)=0.0; 

            end 

        else 

            if ( s(k) >= l(m-2) ) && ( s(k) <= l(m+2) ) 

                phi(m) = (s(k)-l(m-2))^2*(s(k)-l(m+2))^2/((l(m)-l(m-2))^2*(l(m)-l(m+2))^2); 

                dphi_ds(m) = (2*(s(k)-l(m-2))*(s(k)-l(m+2))^2+2*(s(k)-l(m-2))^2*(s(k)-

l(m+2)))/((l(m)-l(m-2))^2*(l(m)-l(m+2))^2); 

            else 

                phi(m) = 0.0; 

                dphi_ds(m)=0.0; 

            end 

  

        end 

    end 

     

    n_phi=phi/(sum(phi)); %Normalize 

    n_dphi_ds=((dphi_ds*sum(phi))-(phi*sum(dphi_ds)))/(sum(phi)^2); %normalize 

     

    for m=1:j  
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        for n=1:3 

            Xsarray(1,m,n)=X(n,m)*n_phi(m); 

            Xstanarray(1,m,n)=X(n,m)*n_dphi_ds(m); 

        end 

    end 

     

    for n=1:3 

        Xs(1,k,n)=sum(Xsarray(1,:,n)); 

        Xstan(1,k,n)=sum(Xstanarray(1,:,n)); 

    end 

end 

  

for j=1:(length(Xs)-1) 

    Lbp2(j)=(((Xs(1,(j+1),1)-Xs(1,j,1))^2)+((Xs(1,(j+1),2)-Xs(1,j,2))^2)+((Xs(1,(j+1),3)-

Xs(1,j,3))^2))^(1/2); 

end 

  

Lbp3 = (((Xs(1,length(Xs),1)-Xs(1,1,1))^2)+((Xs(1,length(Xs),2)-

Xs(1,1,2))^2)+((Xs(1,length(Xs),3)-Xs(1,1,3))^2))^(1/2); 

  

tort(i) = sum(Lbp2(:)) / Lbp3; 

  

figure('Color',[1 1 

1]);scatter3(A{i,1}(:,1),A{i,1}(:,2),A{i,1}(:,3),1,'CData',A{i,1}(:,3),'marker','.'); 

hold on; 

% scatter3(B{i,1}(:,1),B{i,1}(:,2),B{i,1}(:,3)); 

% plot3(B{i,1}(:,1),B{i,1}(:,2),B{i,1}(:,3)); 

plot3(Xs(:,:,1),Xs(:,:,2),Xs(:,:,3),'k','LineWidth',2); 

tort_string = sprintf('Tortuosity = %f',tort(i)); 

title(tort_string); 

axis image; 

  

B{i,5}(:,:) = Xs(1,:,:); 

  

clear j k l m n Lbp Lbp2 Lbp3 dphi_ds n_dphi_ds n_phi phi 
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Appendix B.4. step_3.m, the section of the Matlab code which calculates the normal vectors 

 

%% Find N1, N2, N3 and perpendicular vector planes at each point s along the centerline. 

  

%% Normal to centerline basis 

  

%N2: is a unit vector that is a projection of the x axis unit vector perpendicular to vector N1. 

%N3: is a unit vector that is the result of the cross product of N1 X N2. 

  

N1=zeros(1,length(s),3); %Xstan vectors as unit vectors: the unit tangent vector at each s along 

the centerline approximation. 

  

for j=1:length(Xstan) 

    for k=1:3 

        N1(1,j,k)= Xstan(1,j,k)/(sqrt((Xstan(1,j,1)^2)+(Xstan(1,j,2)^2)+(Xstan(1,j,3)^2))); 

    end 

end 

  

graphN1=zeros(1,2,3); %A vector from the nth point along s, to the coordinates of the N1 vector 

added to the nth point along s. 

  

figure; 

  

for j=1:length(Xs) 

    for k=1:3 

        graphN1(1,:,k)=[Xs(1,j,k),(Xs(1,j,k)+N1(1,j,k))]; 

    end 

    plot3(graphN1(1,:,1),graphN1(1,:,2),graphN1(1,:,3),'r'); 

    hold on 

end 

  

%% N2 Calculations: the projection of the x axis onto the perpendicular plane at point s along 

the centerline 

  

k=zeros(1,2,3); %serves as a unit vector in the x direction. 

k(1,2,1)=1; 

  

N2_num = zeros(1,length(N1),3); %the numerator of the equation to compute N2 

N2_den = zeros(1,length(N1)); %the denominator of the equation needed to compute N2 

  

N2=zeros(1,length(N1),3); 

  

for j=1:length(N1) %This for loop calculates N2 for each s 

    for m=1:3 

        N2_num(1,j,m)=(k(1,2,m)-

(((k(1,2,1)*N1(1,j,1))+(k(1,2,2)*N1(1,j,2))+(k(1,2,3)*N1(1,j,3)))*N1(1,j,m))); 
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    end 

     

    N2_den(j)=sqrt((N2_num(1,j,1)^2)+(N2_num(1,j,2)^2)+(N2_num(1,j,3)^2)); 

     

    for m=1:3 

        N2(1,j,m)=N2_num(1,j,m)/N2_den(j); 

    end 

end 

  

for j=length(N2) %makes N2 vectors into unit vectors 

    N2_den(j)=sqrt((N2(1,j,1)^2)+(N2(1,j,2)^2)+(N2(1,j,3)^2)); 

    for m=1:3 

        N2(1,j,m)=N2(1,j,m)/N2_den(j); 

    end 

end 

  

for j=1:length(Xs) %Graphs each N2 at it's respective s 

    for m=1:3 

        graphN2(1,:,m)=[Xs(1,j,m),(Xs(1,j,m)+N2(1,j,m))]; 

    end 

    plot3(graphN2(1,:,1),graphN2(1,:,2),graphN2(1,:,3),'b') 

end 

  

%% N3 Calculations 

  

N3=zeros(1,length(N2),3); %the result of the cross product between N1 and N2 

  

for j=1:length(N2) %calculates N3 

    N3(1,j,1)=(N1(1,j,2)*N2(1,j,3))-(N1(1,j,3)*N2(1,j,2)); 

    N3(1,j,2)=-((N1(1,j,1)*N2(1,j,3))-(N1(1,j,3)*N2(1,j,1))); 

    N3(1,j,3)=(N1(1,j,1)*N2(1,j,2))-(N1(1,j,2)*N2(1,j,1)); 

end 

  

for j=1:length(Xs) %graphs N3 at it's respective s 

    for m=1:3 

        graphN3(1,:,m)=[Xs(1,j,m),(Xs(1,j,m)+N3(1,j,m))]; 

    end 

    plot3(graphN3(1,:,1),graphN3(1,:,2),graphN3(1,:,3),'g') 

end 

  

%Manipulates and labels the first figure properly. 

grid on 

axis image 

title('Approximated Centerline with N1, N2, and N3 Vectors at each point s','fontsize',12)  
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xlabel('X direction (mm)') 

ylabel('Y direction (mm)') 

zlabel('Z direction (mm)') 

  

%% Perpindicular vector determination 

  

perp=zeros(length(A{i,1}),length(s),3); %a structured array that contains x,y,z coordinates of 

perpendicular vectors going from a designated s to a known point on the surface 

  

for j=1:length(N1) %Performs the dot product between the tangent vector at each s with the 

vector going from that point s to each known surface point to determine where the dot product is 

close to zero. This indicates the vectors are perpendicular and the information for that vector is 

stored in perp. 

    for m=1:length(A{i,1}) 

        k=[A{i,1}(m,1)-Xs(1,j,1), A{i,1}(m,2)-Xs(1,j,2),A{i,1}(m,3)-Xs(1,j,3)]; 

        if norm(k(3))<15 

            dotprod=(N1(1,j,1)*k(1))+(N1(1,j,2)*k(2))+(N1(1,j,3)*k(3)); 

            h=norm(k); 

            if dotprod/h<.01 && dotprod/h>-.01 

                for n=1:3 

                    perp(m,j,n)=A{i,1}(m,n)-Xs(1,j,n); 

                end 

            end 

        end 

    end 

end 

  

for j=1:length(s) %Eliminates all of the dot products that did not result in perpendicular vectors 

to vastly decrease the size of the perp vector and store it as perp2 

    k=0; 

    for m=1:length(A{i,1}) 

        if perp(m,j,:)~=0 

            k=k+1; 

            for n=1:3 

                perp2(k,j,n)=perp(m,j,n); 

            end 

        else 

        end 

    end 

end 

  

k=size(perp2); 

  

figure  
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for m=1:k(1)%Graphs the perpendicular perp2 vectors at their respective s 

    for j=1:k(2) 

        if perp2(m,j,1)==0 && perp2(m,j,2)==0 && perp2(m,j,3)==0 

        else 

            for n=1:3 

                graphperp(:,:,n)=[Xs(1,j,n),(Xs(1,j,n)+perp2(m,j,n))]; 

            end 

            plot3(graphperp(:,:,1),graphperp(:,:,2),graphperp(:,:,3),'g') 

            hold on 

        end 

    end 

end 

  

axis image 

  

%% Radii Checks 

  

radius=zeros(k(1),k(2)); %the magnitude or radius of a given perp2 vector at a given s 

  

for m=1:k(2) %This for loop finds the magnitude, or radius, of each particular perpendicular 

vector 

    for j=1:k(1) 

        radius(j,m)=sqrt((perp2(j,m,1)^2)+(perp2(j,m,2)^2)+(perp2(j,m,3)^2)); 

    end 

end 

  

% radius_script 

  

for m=1:k(2) 

    for j=1:k(1) 

        if radius(j,m)==0 

            radius(j,m)=NaN; 

        end 

    end 

end 

  

for j=1:k(2) %check of radius irregularities 

    for m=1:k(1) 

    if radius(m,j)>(min(radius(:,j))+5) 

        perp2(m,j,:)=0; 

    end 

    end  
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end 

  

clear radius 

  

for m=1:k(2) 

    for j=1:k(1) 

        radius(j,m)=sqrt((perp2(j,m,1)^2)+(perp2(j,m,2)^2)+(perp2(j,m,3)^2)); 

    end 

end 

  

meanR=zeros(1,length(s)); %the mean radius at a given s 

  

k=size(perp2); 

for m=1:length(s)%Finds the mean radius at each s 

    h=0; 

    for j=1:k(1) 

        if radius(j,m)~=0 

            h=h+1; 

        end 

    end 

    meanR(m)=sum(radius(:,m))/h; 

end 

  

maxR_all(i) = max(meanR(:)); 

  

figure; 

  

for m=1:k(1)%Graphs the perpendicular perp2 vectors at their respective s 

    for j=1:k(2) 

        if perp2(m,j,1)==0 && perp2(m,j,2)==0 && perp2(m,j,3)==0 

        else 

        graphperp(:,:,1)=[Xs(1,j,1),(Xs(1,j,1)+perp2(m,j,1))]; 

        graphperp(:,:,2)=[Xs(1,j,2),(Xs(1,j,2)+perp2(m,j,2))]; 

        graphperp(:,:,3)=[Xs(1,j,3),(Xs(1,j,3)+perp2(m,j,3))]; 

        plot3(graphperp(:,:,1),graphperp(:,:,2),graphperp(:,:,3),'g') 

        hold on 

        end 

    end 

end 

  

l=0; 

  

for m=1:k(1)%Graphs the perpendicular perp2 vector endpoints at their respective s 

    for j=1:k(2)  
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        if perp2(m,j,1)==0 && perp2(m,j,2)==0 && perp2(m,j,3)==0 

        else 

            l=l+1; 

            raw_str(l,1,i)=[(Xs(1,j,1)+perp2(m,j,1))]; 

            raw_str(l,2,i)=[(Xs(1,j,2)+perp2(m,j,2))]; 

            raw_str(l,3,i)=[(Xs(1,j,3)+perp2(m,j,3))]; 

            hold on 

        end 

    end 

end 

  

figure; subplot(1,2,1) 

plot3(Xs(1,:,1),Xs(1,:,2),Xs(1,:,3),'k'); 

hold on; 

scatter3(Xs(1,:,1),Xs(1,:,2),Xs(1,:,3),5,'k'); 

scatter3(A{i,1}(:,1),A{i,1}(:,2),A{i,1}(:,3),1,'CData',A{i,1}(:,3),'marker','.'); 

title('Raw (x,y,z) data');axis image;hold off; 

subplot(1,2,2) 

plot3(Xs(1,:,1),Xs(1,:,2),Xs(1,:,3),'k'); 

hold on; 

scatter3(Xs(1,:,1),Xs(1,:,2),Xs(1,:,3),5,'k'); 

scatter3(raw_str(:,1,i),raw_str(:,2,i),raw_str(:,3,i),1,'CData',raw_str(:,3,i),'marker','.') 

title('s Normal Plane (x,y,z) data');axis image; hold off; 

  

clear N2_den N2_num dotprod graphN1 graphN2 graphN3 graphperp h j k l m n perp raw_str 
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Appendix B.5. step_4.m of the developed centerline generation algorithm 

 

%% Find the magnitude of each individual perpendicular vector at a given s, and plot the mean 

radius with respect to s.  

  

theta=0:pi/20:(2*pi); %contains the vector with angle values for the parametric computation of 

the circles 

circ=zeros(1,length(theta),3); %contains information on the mean radius and orientation of the 

plane at a particular s so that a circle can be plotted to approximate the surface. 

  

figure; 

  

for j=1:length(meanR) %Plots circles of uniform radii corresponding to the radius at the 

particular perpendicular point. 

    for m=1:length(theta) 

        

circ(1,m,1)=(meanR(j)*cos(theta(m))*N2(1,j,1))+(meanR(j)*sin(theta(m))*((N1(1,j,2)*N2(1,j,3)

)-(N1(1,j,3)*N2(1,j,2))))+Xs(1,j,1); 

        circ(1,m,2)=(meanR(j)*cos(theta(m))*N2(1,j,2))-

(meanR(j)*sin(theta(m))*((N1(1,j,1)*N2(1,j,3))-(N1(1,j,3)*N2(1,j,1))))+Xs(1,j,2); 

        

circ(1,m,3)=(meanR(j)*cos(theta(m))*N2(1,j,3))+(meanR(j)*sin(theta(m))*((N1(1,j,1)*N2(1,j,2)

)-(N1(1,j,2)*N2(1,j,1))))+Xs(1,j,3); 

    end 

    plot3(circ(1,:,1)',circ(1,:,2)',circ(1,:,3)') 

    hold on 

end 

  

%Manipulates and labels the second figure properly. 

axis image 

grid on 

title('Representation of Surface with Perpendicular Cross-sections A1','fontsize',12) 

xlabel('X direction (mm)') 

ylabel('Y direction (mm)') 

zlabel('Z direction (mm)') 

%Graphs the mean radius with respect to distance s along the centerline. 

figure 

plot(meanR,s) 

%Manipulates and labels the third figure properly. 

axis image 

grid on 

title('Mean radius with respect to s','fontsize',12) 

xlabel('Mean radius (mm)') 

ylabel('Longitudinal direction s (mm)') 

  

clear j m 
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Appendix B.6. step_5.m of the developed centerline algorithm 

 

perp2dotN=zeros(length(perp2),length(s),3); %contains dot product of perp2 with N2 and N3 

depending on the 2nd or 3rd structured array in. The first structured array is empty 

theta=zeros(length(perp2),length(s)); %contains the angle theta in radians that the perpendicular 

vector makes with the N2 vector. 

  

k=size(perp2); 

  

for m=1:k(2)%a series of conditions and inverse tangent function formulas to determine which 

angle theta should be assisgned to which perpendicular vector.  The perpendicular plane was 

divided up into four different regions that had their own conditions and formulas. 

    for j=1:k(1) 

  

        perp2norm = 

[perp2(j,m,1)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)]),perp2(j,m,2)/norm([perp2(j,m,1),p

erp2(j,m,2),perp2(j,m,3)]),perp2(j,m,3)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)])]; 

        N2norm = [N2(1,m,1),N2(1,m,2),N2(1,m,3)]; 

        N3norm = [N3(1,m,1),N3(1,m,2),N3(1,m,3)]; 

  

        %         

perp2dotN(j,m,2)=(N2(1,m,1))*(perp2(j,m,1)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)]))+(

N2(1,m,2))*(perp2(j,m,2)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)]))+(N2(1,m,3))*(perp2(j

,m,3)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)])); 

        %         

perp2dotN(j,m,3)=(N3(1,m,1))*(perp2(j,m,1)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)]))+(

N3(1,m,2))*(perp2(j,m,2)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)]))+(N3(1,m,3))*(perp2(j

,m,3)/norm([perp2(j,m,1),perp2(j,m,2),perp2(j,m,3)])); 

  

        perp2dotN(j,m,2)=dot(N2norm,perp2norm); 

        perp2dotN(j,m,3)=dot(N3norm,perp2norm); 

        perp2dotN(j,m,4)=dot(-N2norm,perp2norm); 

        perp2dotN(j,m,5)=dot(-N3norm,perp2norm); 

         

        if radius(j,m)~=0 

  

            if perp2dotN(j,m,2) == 1 

                theta(j,m) = 0; 

  

            elseif perp2dotN(j,m,3) == 1 

                theta(j,m) = pi/2; 

                 

                            elseif perp2dotN(j,m,4) == -1 

                theta(j,m) = pi 

                 

                            elseif perp2dotN(j,m,5) == -1 
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                theta(j,m) = 3*(pi/2); 

  

            elseif perp2dotN(j,m,2) > 0 && perp2dotN(j,m,3) > 0 

                theta(j,m) = acos(perp2dotN(j,m,2)); 

  

            elseif perp2dotN(j,m,2) < 0 && perp2dotN(j,m,3) > 0 

                theta(j,m) = acos(perp2dotN(j,m,2)); 

  

            elseif perp2dotN(j,m,2) > 0 && perp2dotN(j,m,3) < 0 

                theta(j,m) = -acos(perp2dotN(j,m,2)) + (2*pi); 

  

            elseif perp2dotN(j,m,2) < 0 && perp2dotN(j,m,3) < 0 

                theta(j,m) = -acos(perp2dotN(j,m,2)) + (2*pi); 

  

            else 

            end 

        else 

        end 

    end 

end 

  

%% Graph r(theta) along an s axis in 3D, fit an approximated surface over it 

  

j=size(perp2); 

snew=zeros(j(1),j(2)); %new array s that has an s value in each place holder that a radius of a 

perp vector would appear. 

for m=1:j(2) 

    snew(:,m)=s(m); 

end 

num_data=0; 

  

% figure 

  

for j=1:length(s) %Graph the radius wrt theta along an s axis to represent the 3D surface with a 

straightened centerline and split about the N2 vector. 

    for m=1:length(perp2) 

        if theta(m,j)~=0 

            num_data=num_data+1; 

            %             plot3((theta(m,j)),snew(m,j),radius(m,j),'.r') 

            A{i,4}(num_data,1)=snew(m,j); 

            A{i,4}(num_data,2)=theta(m,j); 

            A{i,4}(num_data,3)=radius(m,j); 

%             hold on 

        End 
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    end 

end 

  

% %Manipulates and labels the fourth figure properly. 

% title('Raw data','fontsize',12) 

% xlabel('Angle theta (rad)') 

% ylabel('Longitudinal distance s (mm)') 

% zlabel('Radius (mm)') 

% set(gca,'XTick',0:pi/4:2*pi) 

% grid on 

  

%% Clearing variables 

  

clear N2norm N3norm j k m perp2dotN perp2norm 
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Appendix B.7. step_6a of the developed approximation code to determine fitting coefficients 

 

function [LSE] = step6a(beta) 

  

global s num_data A i n_eta n_theta 

  

n_node = (n_eta+1)*(n_theta); 

node = zeros(n_node,2); 

dy = s(end)/n_eta; 

dx = (2*pi)/n_theta; 

  

count = 0; 

for m=1: n_eta+1 

    if m== (n_eta+1) 

        y_node = s(end); 

    else 

        y_node = (m-1)*dy; 

    end 

    for j=1:n_theta 

  

        x_node = (j-1)*dx; 

        count = count+1; 

        node(count, 1) = x_node; 

        node(count, 2) = y_node; 

    end 

end 

  

K = zeros(n_node, n_node); 

F = zeros(n_node, 1); 

 

for p=1:num_data 

    zeta = A{i,4}(p,1); 

    theta = A{i,4}(p,2); 

    for k = 1: n_node 

        x0_k=[node(k,2), node(k,1)]; 

  

        ds = abs(zeta-x0_k(1)); 

        dtheta = min( abs(theta-x0_k(2)), 2*pi-abs(theta-x0_k(2))); 

        phi_k = exp( -beta(1)*ds^2-beta(2)*dtheta^2); 

  

        F(k,1)=F(k,1)+phi_k*A{i,4}(p,3); 

        for n=1:n_node 

            x0_n=[node(n,2), node(n,1)]; 

  

            ds = abs(zeta-x0_n(1)); 

            dtheta = min( abs(theta-x0_n(2)), 2*pi-abs(theta-x0_n(2))); 
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         phi_n = exp( -beta(1)*ds^2-beta(2)*dtheta^2); 

  

            K(k,n)=K(k,n)+phi_k*phi_n; 

        end 

    end 

end 

  

alpha = K\F; 

  

n_plot_theta =length(s); 

n_plot_s = length(s); 

s2=0; 

theta=0; 

data_predict = zeros(size(A{1,4},1), size(A{1,4},2)); 

count=0; 

  

for m=1: length(A{i,4}) 

    s2=A{i,4}(m,1); 

    theta=A{i,4}(m,2); 

    approx=0.0; 

    for k=1:n_node 

        x0=[node(k,2), node(k,1)]; 

        ds2 = abs(s2-x0(1)); 

        dtheta2 = min( abs(theta-x0(2)), 2*pi-abs(theta-x0(2))); 

        phi_k = exp( -beta(1)*ds2^2-beta(2)*dtheta2^2); 

        approx = approx+ alpha(k)*phi_k; 

    end 

    if approx < 0 

         

approx = 0; 

    end 

    count=count+1; 

    data_predict(count, 1) = theta; 

    data_predict(count, 2) = s2; 

    data_predict(count, 3) = approx; 

end 

  

C{i,1}(:,1)=data_predict(:,2); 

C{i,1}(:,2)=data_predict(:,1); 

C{i,1}(:,3)=data_predict(:,3); 

C{i,1}(1,4)=n_eta; 

C{i,1}(1,5)=n_theta; 

  

D{i,1} = zeros(size(A{1,4},1), size(A{1,4},2)); 
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D{i,1}(:,1) = A{i,4}(:,1); 

D{i,1}(:,2) = A{i,4}(:,2); 

D{i,1}(1,4)=n_eta; 

D{i,1}(1,5)=n_theta; 

  

for j = 1 : length(A{i,4}) 

    D{i,1}(j,3) = C{i,1}(j,3) - A{i,4}(j,3); 

end 

  

abs_err = abs(mean(D{i,1}(:,3))); 

D{i,1}(1,6)=abs_err; 

  

LSE = sum(D{i,1}(:,3).^2); 
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Appendix B.8. step_6 of the developed approximation code 

  

%% 

  

global s num_data A i n_eta n_theta 

n_eta = 10; 

n_theta = 10; 

options = optimset('Display','iter');  

beta0 = [.9/100 1.5]; 

[beta, fval] = fminsearch(@step6a,beta0,options) 

  

% eta_shapes = [1,2,3,4,5,6,7,8,9,10]; 

% theta_shapes = [1,2,3,4,5,6,7,8,9,10]; 

%  

% for iii = 1:length(eta_shapes) 

%     for jjj = 1:length(theta_shapes) 

%         global s num_data A i n_eta n_theta 

%         n_eta = eta_shapes(iii); 

%         n_theta = theta_shapes(jjj); 

%         options = optimset('Display','iter'); 

%         beta0 = [.9/100 1.5]; 

%         [beta, fval] = fminsearch(@step6a,beta0,options) 

%         kkk(iii,jjj)= fval 

%     end 

% end 

  

  

%% Surface Approximation 

  

%Number of base functions. 

  

C_count = 0; 

  

for n_eta = n_eta 

    for n_theta = n_theta 

         

        C_count = C_count + 1; 

         

        n_node = (n_eta+1)*(n_theta); 

        node = zeros(n_node,2); 

        dy = s(end)/n_eta; 

        dx = (2*pi)/n_theta; 

         

        count = 0; 

        for m=1: n_eta+1 

            if m== (n_eta+1) 
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                y_node = s(end); 

            else 

                y_node = (m-1)*dy; 

            end 

            for j=1:n_theta 

                 

                x_node = (j-1)*dx; 

                count = count+1; 

                node(count, 1) = x_node; 

                node(count, 2) = y_node; 

            end 

        end 

 

        K = zeros(n_node, n_node); 

        F = zeros(n_node, 1); 

         

        for p=1:num_data 

            zeta = A{i,4}(p,1); 

            theta = A{i,4}(p,2); 

            for k = 1: n_node 

                x0_k=[node(k,2), node(k,1)]; 

                 

                ds = abs(zeta-x0_k(1)); 

                dtheta = min( abs(theta-x0_k(2)), 2*pi-abs(theta-x0_k(2))); 

                phi_k = exp( -beta(1)*ds^2-beta(2)*dtheta^2); 

                 

                F(k,1)=F(k,1)+phi_k*A{i,4}(p,3); 

                for n=1:n_node 

                    x0_n=[node(n,2), node(n,1)]; 

                     

                    ds = abs(zeta-x0_n(1)); 

                    dtheta = min( abs(theta-x0_n(2)), 2*pi-abs(theta-x0_n(2))); 

                    phi_n = exp( -beta(1)*ds^2-beta(2)*dtheta^2); 

                     

                    K(k,n)=K(k,n)+phi_k*phi_n; 

                end 

            end 

        end 

         

        alpha = K\F; 

         

        % Working method for approximated surface generation 

         

        % n_plot_theta =length(s); 
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     % n_plot_s = length(s); 

        % ds = s(end)/n_plot_s; 

        % dtheta = 2*pi/n_plot_theta; 

        % s2=0; 

        % theta=0; 

        % count = 0 

        % data_predict = zeros((n_plot_theta+1)*(n_plot_s+1), 3); 

         

        % for m=1: 1 

        %     for j=1: n_plot_theta+1 

        %         s2= (m-1)*ds; 

        %         theta=(j-1)*dtheta; 

        %         approx=0.0; 

        %         for k=1:n_node 

        %             x0=[node(k,2), node(k,1)]; 

        %             ds2 = abs(s2-x0(1)); 

        %             dtheta2 = min( abs(theta-x0(2)), 2*pi-abs(theta-x0(2))); 

        %             %             phi_k = basis_cyl(s2, theta, x0, [beta1, beta2]); 

        %             phi_k = exp( -beta1*ds2^2-beta2*dtheta2^2); 

        %             approx = approx+ alpha(k)*phi_k; 

        %         end 

        %         if approx < 0 

        %             approx = 0; 

        %         end 

        %         count=count+1; 

        %         data_predict(count, 1) = theta; 

        %         data_predict(count, 2) = s2; 

        %         data_predict(count, 3) = approx; 

        %     end 

        % end 

         

        % My method 

         

        n_plot_theta =length(s); 

        n_plot_s = length(s); 

        s2=0; 

        theta=0; 

        data_predict = zeros(size(A{1,4},1), size(A{1,4},2)); 

        count=0; 

         

        for m=1: length(A{i,4}) 

            s2=A{i,4}(m,1); 

            theta=A{i,4}(m,2); 

            approx=0.0; 
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   for k=1:n_node 

                x0=[node(k,2), node(k,1)]; 

                ds2 = abs(s2-x0(1)); 

                dtheta2 = min( abs(theta-x0(2)), 2*pi-abs(theta-x0(2))); 

                phi_k = exp( -beta(1)*ds2^2-beta(2)*dtheta2^2); 

                approx = approx+ alpha(k)*phi_k; 

            end 

            if approx < 0 

                approx = 0; 

            end 

            count=count+1; 

            data_predict(count, 1) = theta; 

            data_predict(count, 2) = s2; 

            data_predict(count, 3) = approx; 

        end 

         

        C{i,C_count}(:,1)=data_predict(:,2); 

        C{i,C_count}(:,2)=data_predict(:,1); 

        C{i,C_count}(:,3)=data_predict(:,3); 

        C{i,C_count}(1,4)=n_eta; 

        C{i,C_count}(1,5)=n_theta; 

         

        %Plots the known data and the approximated surface to see how good the fit is. 

         

                figure 

                plot3(A{i,4}(:,1), A{i,4}(:,2), A{i,4}(:,3),'r.','MarkerSize',4) 

                grid on 

                hold on; 

                plot3(C{i,C_count}(:,1), C{i,C_count}(:,2), C{i,C_count}(:,3),'b.','MarkerSize',4) 

                str_title = sprintf('Approximated (blue) vs. raw (red) for n eta = %d & n theta = 

%d',n_eta,n_theta); 

                title(str_title,'fontsize',12,'fontname','Times') 

                xlabel('s','fontsize',12,'fontname','Times') 

                ylabel('\theta (deg)','fontsize',12,'fontname','Times') 

                zlabel('r (mm)','fontsize',12,'fontname','Times') 

         

        % Statistics of fit 

         

        D{i,C_count} = zeros(size(A{i,4},1), size(A{i,4},2)); 

         

        D{i,C_count}(:,1) = A{i,4}(:,1); 

        D{i,C_count}(:,2) = A{i,4}(:,2); 

        D{i,C_count}(1,4)=n_eta; 

        D{i,C_count}(1,5)=n_theta; 
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        for j = 1 : length(A{i,4}) 

            D{i,C_count}(j,3) = C{i,C_count}(j,3) - A{i,4}(j,3); 

        end 

         

                figure 

                plot3(D{i,C_count}(:,1), D{i,C_count}(:,2), D{i,C_count}(:,3),'g.','MarkerSize',4) 

                grid on 

                title('Residuals plot of approxmation fit','fontsize',12) 

                xlabel('s','fontsize',12,'fontname','Times') 

                ylabel('\theta (deg)','fontsize',12,'fontname','Times') 

                zlabel('r (mm)','fontsize',12,'fontname','Times') 

         

        abs_err = abs(mean(D{i,C_count}(:,3))) 

        D{i,C_count}(1,6)=abs_err; 

         

        clear n_node node dy dx count y_node y_node x_node K F beta1 beta2 hhh zeta theta x0_k 

ds dtheta phi_k x0_n phi_n str_hhh alpha n_plot_theta n_plot_s s2 theta data_predict approx x0 

ds2 dtheta2 phi_k 

         

    end 

end 

  

%% Surface Approximation take 2 

  

% %Number of base functions. 

%  

% C_count = 0; 

%  

% for n_eta = n_eta 

%     for n_theta = n_theta 

%          

%         C_count = C_count + 1; 

%          

%         n_node = (n_eta+1)*(n_theta); 

%         node = zeros(n_node,2); 

%         dy = s(end)/n_eta; 

%         dx = (2*pi)/n_theta; 

%          

%         count = 0; 

%         for m=1: n_eta+1 

%             if m== (n_eta+1) 

%                 y_node = s(end); 

%             else 

%                 y_node = (m-1)*dy; 
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%             end 

%             for j=1:n_theta 

%                  

%                 x_node = (j-1)*dx; 

%                 count = count+1; 

%                 node(count, 1) = x_node; 

%                 node(count, 2) = y_node; 

%             end 

%         end 

%          

%         K = zeros(n_node, n_node); 

%         F = zeros(n_node, 1); 

%          

%         for p=1:num_data 

%             zeta = A{i,4}(p,1); 

%             theta = A{i,4}(p,2); 

%             for k = 1: n_node 

%                 x0_k=[node(k,2), node(k,1)]; 

%                  

%                 ds = abs(zeta-x0_k(1)); 

%                 dtheta = min( abs(theta-x0_k(2)), 2*pi-abs(theta-x0_k(2))); 

%                 phi_k = exp( -beta(1)*ds^2-beta(2)*dtheta^2); 

%                  

%                 F(k,1)=F(k,1)+phi_k*A{i,4}(p,3); 

%                 for n=1:n_node 

%                     x0_n=[node(n,2), node(n,1)]; 

%                      

%                     ds = abs(zeta-x0_n(1)); 

%                     dtheta = min( abs(theta-x0_n(2)), 2*pi-abs(theta-x0_n(2))); 

%                     phi_n = exp( -beta(1)*ds^2-beta(2)*dtheta^2); 

%                      

%                     K(k,n)=K(k,n)+phi_k*phi_n; 

%                 end 

%             end 

%         end 

%          

%         alpha = K\F; 

%          

%         % Working method for approximated surface generation 

%          

%         % n_plot_theta =length(s); 

%         % n_plot_s = length(s); 

%         % ds = s(end)/n_plot_s; 

%         % dtheta = 2*pi/n_plot_theta; 
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%         % s2=0; 

%         % theta=0; 

%         % count = 0 

%         % data_predict = zeros((n_plot_theta+1)*(n_plot_s+1), 3); 

%          

%         % for m=1: 1 

%         %     for j=1: n_plot_theta+1 

%         %         s2= (m-1)*ds; 

%         %         theta=(j-1)*dtheta; 

%         %         approx=0.0; 

%         %         for k=1:n_node 

%         %             x0=[node(k,2), node(k,1)]; 

%         %             ds2 = abs(s2-x0(1)); 

%         %             dtheta2 = min( abs(theta-x0(2)), 2*pi-abs(theta-x0(2))); 

%         %             phi_k = exp( -beta1*ds2^2-beta2*dtheta2^2); 

%         %             approx = approx+ alpha(k)*phi_k; 

%         %         end 

%         %         if approx < 0 

%         %             approx = 0; 

%         %         end 

%         %         count=count+1; 

%         %         data_predict(count, 1) = theta; 

%         %         data_predict(count, 2) = s2; 

%         %         data_predict(count, 3) = approx; 

%         %     end 

%         % end 

%          

%         % My method 

%          

%         n_plot_theta =length(s); 

%         n_plot_s = length(s); 

%         ds = 1; 

%         theta_div = 200; %Some even number, div per x-sec from 0 - 2*pi 

%         dtheta = (2*pi) / theta_div; 

%         data_predict = zeros(length(s)*(theta_div), length(s)*(theta_div)); 

%         count=0; 

%          

%         for j = 1 : length(s) 

%             s2 = j-1; 

%         for m = 1 : theta_div 

%             theta = dtheta*m; 

%             approx=0.0; 

%             for k=1:n_node 

%                 x0=[node(k,2), node(k,1)]; 
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%                 ds2 = abs(s2-x0(1)); 

%                 dtheta2 = min( abs(theta-x0(2)), 2*pi-abs(theta-x0(2))); 

%                 phi_k = exp( -beta(1)*ds2^2-beta(2)*dtheta2^2); 

%                 approx = approx+ alpha(k)*phi_k; 

%             end 

%             if approx < 0 

%                 approx = 0; 

%             end 

%             count=count+1; 

%             data_predict(count, 1) = theta; 

%             data_predict(count, 2) = s2; 

%             data_predict(count, 3) = approx; 

%         end 

%         end 

%          

%         C{i,C_count}(:,1)=data_predict(:,2); 

%         C{i,C_count}(:,2)=data_predict(:,1); 

%         C{i,C_count}(:,3)=data_predict(:,3); 

%         C{i,C_count}(1,4)=n_eta; 

%         C{i,C_count}(1,5)=n_theta; 

%          

%         %Plots the known data and the approximated surface to see how good the fit is. 

%          

%                 figure 

%                 plot3(A{i,4}(:,1), A{i,4}(:,2), A{i,4}(:,3),'r.','MarkerSize',4) 

%                 grid on 

%                 hold on; 

%                 plot3(C{i,C_count}(:,1), C{i,C_count}(:,2), C{i,C_count}(:,3),'b.','MarkerSize',4) 

%                 str_title = sprintf('Approximated (blue) vs. raw (red) for n eta = %d & n theta = 

%d',n_eta,n_theta); 

%                 title(str_title,'fontsize',12,'fontname','Times') 

%                 xlabel('s (mm)','fontsize',12,'fontname','Times') 

%                 ylabel('\theta (deg)','fontsize',12,'fontname','Times') 

%                 zlabel('r (mm)','fontsize',12,'fontname','Times') 

%          

%         % Statistics of fit 

%          

%         clear n_node node dy dx count y_node y_node x_node K F beta1 beta2 hhh zeta theta 

x0_k ds dtheta phi_k x0_n phi_n str_hhh alpha n_plot_theta n_plot_s s2 theta data_predict 

approx x0 ds2 dtheta2 phi_k 

%          

%     end 

% end 

clear abs_err j k m n n_eta n_theta p 



142 

 

Appendix B.9. ecc_testing.m code developed for automatic eccentricity testing 

 

sc = 0; 

k = 0; 

  

for j = 1:length(A{i,4}) 

     

    if j == length(A{i,4}) 

         

        k = k+1; 

        x_img(k,1) = A{i,4}(j,2); 

        x_img(k,2) = A{i,4}(j,3); 

         

        x_img(:,:) = sortrows(x_img(:,:),1); 

        x_img(k+1,:) = x_img(1,:); 

         

        kk = 0; 

         

        for l = 1:length(x_img) 

            for m = 1:length(x_img) 

                kk = kk + 1; 

                 

                x_img_1(kk) = x_img(l,1); 

                x_img_2(kk) = x_img(l,2); 

                x_img_3(kk) = x_img(m,1); 

                x_img_4(kk) = x_img(m,2); 

                 

                R_d(kk) = sqrt((x_img_2(kk)^2) + (x_img_4(kk)^2) - 

(2*x_img_2(kk)*x_img_4(kk)*cos(x_img_1(kk)-x_img_3(kk)))); 

            end 

        end 

         

        [R_max(sc+1),I_R] = max(R_d(:)); 

         

        x_img_5 = x_img_1(I_R) + (pi/2); 

        x_img_6 = x_img_1(I_R) - (pi/2); 

         

        if x_img_5 > (2*pi) 

            x_img_5 = x_img_5 - (2*pi); 

        elseif x_img_5 < 0 

            x_img_5 = x_img_5 + (2*pi); 

        end 

         

        if x_img_6 > (2*pi) 

            x_img_6 = x_img_6 - (2*pi); 

        elseif x_img_6 < 0 
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           x_img_6 = x_img_6 + (2*pi); 

        end 

         

        for l = 1:length(x_img) 

            t_1(l) = (abs(x_img_5 - x_img(l))) / x_img(l); 

            t_2(l) = (abs(x_img_6 - x_img(l))) / x_img(l); 

        end 

         

        [t_1_val,t_1_ind] = min(t_1(:)); 

        [t_2_val,t_2_ind] = min(t_2(:)); 

         

        R_min(sc+1) = sqrt((x_img(t_1_ind,2)^2) + (x_img(t_2_ind,2)^2) - 

(2*x_img(t_1_ind,2)*x_img(t_2_ind,2)*cos(x_img(t_1_ind,1)-x_img(t_2_ind,1)))); 

         

                figure('Color',[1 1 1]); 

                polar(x_img(:,1),x_img(:,2),'b'); 

                axis image; 

                hold on; 

                polar([x_img_1(I_R) x_img_3(I_R)],[x_img_2(I_R) x_img_4(I_R)],'r') 

                polar([x_img(t_1_ind,1) x_img(t_2_ind,1)],[x_img(t_1_ind,2) x_img(t_2_ind,2)],'g') 

         

        clear x_img x_img_1 x_img_2 x_img_3 x_img_4 x_img_5 x_img_6 I_R R_d t_1 t_2 

t_1_val t_2_val t_1_ind t_2_ind 

         

    elseif A{i,4}(j,1) == sc 

         

        k = k+1; 

        x_img(k,1) = A{i,4}(j,2); 

        x_img(k,2) = A{i,4}(j,3); 

         

    elseif A{i,4}(j,1) ~= sc 

         

        x_img(:,:) = sortrows(x_img(:,:),1); 

        x_img(k+1,:) = x_img(1,:); 

         

        kk = 0; 

         

        for l = 1:length(x_img) 

            for m = 1:length(x_img) 

                kk = kk + 1; 

                 

                x_img_1(kk) = x_img(l,1); 

                x_img_2(kk) = x_img(l,2); 

                x_img_3(kk) = x_img(m,1); 
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x_img_4(kk) = x_img(m,2); 

                 

                R_d(kk) = sqrt((x_img_2(kk)^2) + (x_img_4(kk)^2) - 

(2*x_img_2(kk)*x_img_4(kk)*cos(x_img_1(kk)-x_img_3(kk)))); 

            end 

        end 

         

        [R_max(sc+1),I_R] = max(R_d(:)); 

         

        x_img_5 = x_img_1(I_R) + (pi/2); 

        x_img_6 = x_img_1(I_R) - (pi/2); 

         

        if x_img_5 > (2*pi) 

            x_img_5 = x_img_5 - (2*pi); 

        elseif x_img_5 < 0 

            x_img_5 = x_img_5 + (2*pi); 

        end 

         

        if x_img_6 > (2*pi) 

            x_img_6 = x_img_6 - (2*pi); 

        elseif x_img_6 < 0 

            x_img_6 = x_img_6 + (2*pi); 

        end 

         

        for l = 1:length(x_img) 

            t_1(l) = (abs(x_img_5 - x_img(l))) / x_img(l); 

            t_2(l) = (abs(x_img_6 - x_img(l))) / x_img(l); 

        end 

         

        [t_1_val,t_1_ind] = min(t_1(:)); 

        [t_2_val,t_2_ind] = min(t_2(:)); 

         

        R_min(sc+1) = sqrt((x_img(t_1_ind,2)^2) + (x_img(t_2_ind,2)^2) - 

(2*x_img(t_1_ind,2)*x_img(t_2_ind,2)*cos(x_img(t_1_ind,1)-x_img(t_2_ind,1)))); 

         

        %         figure('Color',[1 1 1]); 

        %         polar(x_img(:,1),x_img(:,2),'b'); 

        %         axis image; 

        %         hold on; 

        %         polar([x_img_1(I_R) x_img_3(I_R)],[x_img_2(I_R) x_img_4(I_R)],'r') 

        %         polar([x_img(t_1_ind,1) x_img(t_2_ind,1)],[x_img(t_1_ind,2) 

x_img(t_2_ind,2)],'g') 
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Appendix B.9 (cont’d) 

 

        clear x_img x_img_1 x_img_2 x_img_3 x_img_4 x_img_5 x_img_6 I_R R_d t_1 t_2 

t_1_val t_2_val t_1_ind t_2_ind 

         

        k=1; 

        sc = sc+1; 

        x_img(k,1) = A{i,4}(j,2); 

        x_img(k,2) = A{i,4}(j,3); 

         

    end 

     

end 

  

ecc = R_max ./ R_min; 

  

sc = 0; 

  

for j = 1:length(A{i,4}) 

    if A{i,4}(j,1) == sc 

        A{i,4}(j,6) = ecc(sc+1); 

    elseif A{i,4}(j,1) ~= sc 

        sc = sc+1; 

        A{i,4}(j,6) = ecc(sc+1); 

    end 

end 

  

clear k kk sc l m R_d 
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Appendix B.10. surf_curv.m code developed for automatic curvature determination 

 

%% post fitting curvature 

  

sc = -1; 

count = 0; 

  

for j = 1 : length(s) 

     

    sc = sc+1; 

     

    for k = 1 : theta_div 

         

        count = count+1; 

         

        if k == 1 

             

            R1 = C{i,C_count}((sc*theta_div)+theta_div,3); 

            R2 = C{i,C_count}((sc*theta_div)+k,3); 

            R3 = C{i,C_count}((sc*theta_div)+k+1,3); 

            t1 = C{i,C_count}((sc*theta_div)+theta_div,2); 

            t2 = C{i,C_count}((sc*theta_div)+k,2); 

            t3 = C{i,C_count}((sc*theta_div)+k+1,2); 

             

        elseif k == theta_div 

             

            R1 = C{i,C_count}((sc*theta_div)+k-1,3); 

            R2 = C{i,C_count}((sc*theta_div)+k,3); 

            R3 = C{i,C_count}((sc*theta_div)+1,3); 

            t1 = C{i,C_count}((sc*theta_div)+k-1,2); 

            t2 = C{i,C_count}((sc*theta_div)+k,2); 

            t3 = C{i,C_count}((sc*theta_div)+1,2); 

             

        else 

             

            R1 = C{i,C_count}((sc*theta_div)+k-1,3); 

            R2 = C{i,C_count}((sc*theta_div)+k,3); 

            R3 = C{i,C_count}((sc*theta_div)+k+1,3); 

            t1 = C{i,C_count}((sc*theta_div)+k-1,2); 

            t2 = C{i,C_count}((sc*theta_div)+k,2); 

            t3 = C{i,C_count}((sc*theta_div)+k+1,2); 

             

        end 

         

        x1 = R1*cos(t1); 

        x2 = R2*cos(t2); 
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Appendix B.10 (cont’d) 

 

      x3 = R3*cos(t3); 

        y1 = R1*sin(t1); 

        y2 = R2*sin(t2); 

        y3 = R3*sin(t3); 

         

        m1 = (y2-y1)/(x2-x1); 

        m2 = (y3-y2)/(x3-x2); 

         

        xc = (((m1*m2)*(y1-y3)) + (m2*(x1+x2)) - (m1*(x2+x3))) / (2*(m2-m1)); 

        yc = ((-1/m1)*(xc-((x1+x2)/2))) + ((y1+y2)/2); 

         

        R = sqrt(((x2-xc)^2) + ((y2-yc)^2)); 

        C{i,C_count}(count,7) = 1/R; 

         

        clear R1 R2 R3 t1 t2 t3 x1 x2 x3 y1 y2 y3 m1 m2 xc yc R 

         

    end 

end 
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APPENDIX C 

 

 

 

 

Results of centerline and surface approximation algorithm performance 
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Figure C.1. A 3-D model of the lumen for D3 as seen in the x-z plane (upper-left), a coronal, or 

x-z, slice from scan D3 (upper-right), an x-z (bottom-left), and a y-z (bottom-right) view of the  

centerline algorithm results for scan D3.  It is clear that scan D3 features a geometric anomaly.  

This anomaly is highly unusual and tends to force the centerline generation to follow the 

observed path regardless of input parameters. 
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Figure C.2. An x-z (left) and y-z (right) view of the centerline algorithm results from scan F5.  If 

the final approximation of a centerline point differs greatly from the initial guess, the vector 

between the previous centerline point and current centerline point becomes more extreme.  In the 

case when the vector points directly at a vessel boundary the algorithm will tend to fail.  This 

failure occurs because the minimum distance vector is nearly parallel to the axis normal to the 

projection plane used for translations, resulting in near-zero translational adjustment vectors.  

The algorithm assumes that at any given two points the vector between them is relatively parallel 

to the centerline of the vessel. 
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Figure C.3. An x-z (left) and y-z (right) view of the centerline algorithm results from scan H5.  If 

the final approximation of a centerline point differs greatly from the initial guess, the vector 

between the previous centerline point and current centerline point becomes more extreme.  In the 

case when the vector points directly at a vessel boundary the algorithm will tend to fail.  This 

failure occurs because the minimum distance vector is nearly parallel to the axis normal to the 

projection plane used for translations, resulting in near-zero translational adjustment vectors.  

The algorithm assumes that at any given two points the vector between them is relatively parallel 

to the centerline of the vessel.  For this case the algorithm was able to recover, but it resulted in a 

large erroneous region before recovery. 

                          

Figure C.4. An x-z (left) and y-z (right) view of the centerline algorithm results from scan K3.  It 

is unclear why the centerline fluctuated from its expected center, but it is clearly erroneous and 

requires adjustment of operating parameters. 
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Table C.1. SSE values from surface approximations sorted first by Nη and then by Nθ 

 

combo # Nη Nθ SSE 

1 1 1 56956.98 

2 1 2 56108.11 

3 1 3 56312.28 

4 1 4 55796.18 

5 1 5 55296.88 

6 1 6 55137.28 

7 1 7 54892.25 

8 1 8 54792.57 

9 1 9 54611 

10 1 10 54499.47 

11 2 1 17815 

12 2 2 17125.56 

13 2 3 16736.05 

14 2 4 16336.73 

15 2 5 15430.52 

16 2 6 15452.52 

17 2 7 15157.9 

18 2 8 15176.29 

19 2 9 15049 

20 2 10 15038.77 

21 3 1 11652.39 

22 3 2 10549.91 

23 3 3 10432.27 

24 3 4 9682.665 

25 3 5 8776.14 

26 3 6 8765.256 

27 3 7 8547.275 

28 3 8 8489.009 

29 3 9 8269.801 

30 3 10 8283.601 

31 4 1 6487.158 

32 4 2 6042.208 

33 4 3 5676.069 

34 4 4 5211.81 

35 4 5 4139.079 

36 4 6 4108.915 

37 4 7 3904.917 

38 4 8 3854.168 

39 4 9 3747.15 
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Table C.1 (cont’d) 

 

40 4 10 3703.919 

41 5 1 5955.562 

42 5 2 5603.217 

43 5 3 5077.259 

44 5 4 4528.495 

45 5 5 3557.47 

46 5 6 3509.808 

47 5 7 3253.571 

48 5 8 3216.315 

49 5 9 3089.596 

50 5 10 3044.364 

51 6 1 5932.707 

52 6 2 5311.066 

53 6 3 5100.357 

54 6 4 4378.236 

55 6 5 3290.206 

56 6 6 3269.365 

57 6 7 2946.388 

58 6 8 2868.631 

59 6 9 2752.81 

60 6 10 2713.908 

61 7 1 6082.858 

62 7 2 5466.559 

63 7 3 5097.665 

64 7 4 4436.855 

65 7 5 3181.129 

66 7 6 3249.602 

67 7 7 2767.998 

68 7 8 2699.992 

69 7 9 2554.182 

70 7 10 2480.305 

71 8 1 5563.773 

72 8 2 4903.801 

73 8 3 4671.616 

74 8 4 3896.41 

75 8 5 2684.641 

76 8 6 2635.93 

77 8 7 2306.582 

78 8 8 2204.442 

79 8 9 2035.634 

80 8 10 1974.096 
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Table C.1 (cont’d) 

 

81 9 1 5612.163 

82 9 2 5180.029 

83 9 3 4673.011 

84 9 4 3833.785 

85 9 5 2583.552 

86 9 6 2499.712 

87 9 7 2132.18 

88 9 8 1986.855 

89 9 9 1846.959 

90 9 10 1729.718 

91 10 1 5579.099 

92 10 2 5131.247 

93 10 3 4651.369 

94 10 4 3779.547 

95 10 5 2608.741 

96 10 6 2532.217 

97 10 7 2078.223 

98 10 8 1951.817 

99 10 9 1823.693 

100 10 10 1673.866 
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Table C.2. SSE approximations sorted based on SSE values 

 

combo # Nη Nθ SSE 

1 1 1 56956.98 

2 1 3 56312.28 

3 1 2 56108.11 

4 1 4 55796.18 

5 1 5 55296.88 

6 1 6 55137.28 

7 1 7 54892.25 

8 1 8 54792.57 

9 1 9 54611 

10 1 10 54499.47 

11 2 1 17815 

12 2 2 17125.56 

13 2 3 16736.05 

14 2 4 16336.73 

15 2 6 15452.52 

16 2 5 15430.52 

17 2 8 15176.29 

18 2 7 15157.9 

19 2 9 15049 

20 2 10 15038.77 

21 3 1 11652.39 

22 3 2 10549.91 

23 3 3 10432.27 

24 3 4 9682.665 

25 3 5 8776.14 

26 3 6 8765.256 

27 3 7 8547.275 

28 3 8 8489.009 

29 3 10 8283.601 

30 3 9 8269.801 

31 4 1 6487.158 

32 7 1 6082.858 

33 4 2 6042.208 

34 5 1 5955.562 

35 6 1 5932.707 

36 4 3 5676.069 

37 9 1 5612.163 

38 5 2 5603.217 

39 10 1 5579.099 

40 8 1 5563.773 
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Table C.2 (cont’d) 

 

41 7 2 5466.559 

42 6 2 5311.066 

43 4 4 5211.81 

44 9 2 5180.029 

45 10 2 5131.247 

46 6 3 5100.357 

47 7 3 5097.665 

48 5 3 5077.259 

49 8 2 4903.801 

50 9 3 4673.011 

51 8 3 4671.616 

52 10 3 4651.369 

53 5 4 4528.495 

54 7 4 4436.855 

55 6 4 4378.236 

56 4 5 4139.079 

57 4 6 4108.915 

58 4 7 3904.917 

59 8 4 3896.41 

60 4 8 3854.168 

61 9 4 3833.785 

62 10 4 3779.547 

63 4 9 3747.15 

64 4 10 3703.919 

65 5 5 3557.47 

66 5 6 3509.808 

67 6 5 3290.206 

68 6 6 3269.365 

69 5 7 3253.571 

70 7 6 3249.602 

71 5 8 3216.315 

72 7 5 3181.129 

73 5 9 3089.596 

74 5 10 3044.364 

75 6 7 2946.388 

76 6 8 2868.631 

77 7 7 2767.998 

78 6 9 2752.81 

79 6 10 2713.908 

80 7 8 2699.992 

81 8 5 2684.641 
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Table C.2 (cont’d) 

 

82 8 6 2635.93 

83 10 5 2608.741 

84 9 5 2583.552 

85 7 9 2554.182 

86 10 6 2532.217 

87 9 6 2499.712 

88 7 10 2480.305 

89 8 7 2306.582 

90 8 8 2204.442 

91 9 7 2132.18 

92 10 7 2078.223 

93 8 9 2035.634 

94 9 8 1986.855 

95 8 10 1974.096 

96 10 8 1951.817 

97 9 9 1846.959 

98 10 9 1823.693 

99 9 10 1729.718 

100 10 10 1673.866 
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