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ABSTRACT

NUMERICAL SOLUTIONS OF JEFFREY-HAMEL
FLOW AT FIXED FLOW RATES

By

Floyd Ernest LeCureux

The radial flow of viscous incompressible fluid between non-
parallel plane walls governed by the Navier-Stokes equations has been
previously investigated. However, the known solutions include trans-
cendental equations containing elliptic functions. Therefore, even
though some solutions are known, there are no explicit equations or
methods available for determining the shape of the velocity profile
for specified boundary conditions that do not require an iterative or
graphical method of solution. Further it is not readily apparent
which profiles are possible for specified boundary conditionms.

The major objective of this work is to develop a procedure
for determining the shape of the velocity profile that may be assumed
by the fluid for specified values of flow rate and angle of inclina-
tion of the walls. Further, the limits on each type of flow profile
are investigated and comparisons are made between the various profiles.

The basic types of flow considered are symmetrical diverging
where the centerline velocity is outward, symmetrical converging where
the centerline velocity is inward, nonsymmetrical with one interior
zero, and non-symmetrical with three interior zeroes. For each case
the transcendental equations resulting from application of the
boundary conditions are presented in the form of a flow parameter

graph. Each graph has coordinates of flow rate and angle of



Floyd Ernest LeCureux
inclination and has two intersecting families of curves representing
areas where solutions are possible., In each case the boundaries are
defined and relations between different profiles are noted. These
flow parameter graphs are then used to plot several examples of velo-
city profiles by reading the flow parameters for use in the velocity
distribution function from the graph for particular values of flow
rate and angle of inclination.

A minor objective of this work is the verification of a
modified perturbation technique as applied to this problem. The
modification of the normal perturbation procedure allows the deter-
mination of velocity distributions for small flow rates at a critical
angle of inclination where standard perturbation equations are not
defined. The velocity profiles obtained by use of the flow para-
meter graphs are used to verify the modified perturbation method and

to analyze the accuracy of this method for various boundary conditions.
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I. INTRODUCTION

1.1 Background

One of the classic problems of incompressible, viscous fluid
dynamics is that of flow between parallel plane walls. For this
problem the non-linear Navier-Stokes equations may be reduced to a
relatively simple form which can be integrated to yield an exact solu-
tion for the familiar parabolic velocity distribution. A slightly
less known but equally interesting problem is that of flow between
non-parallel plane walls. For this case, although the nonelinear
terms in the Navier-Stokes equations do not vanish, an exact solution
is still possible in terms of elliptic functions as first derived
independently by Hamel [5]) and Jeffery [7]. Since these first papers
a number of authors have further investigated specialized aspects of
the problem (3, 11, 12, 13].

Two of the more comprehensive studies are by Rosenblatt [12]
and Rosenhead [13]. Rosenhead's work, especially, contains a thorough
study of the possible solutions, the effect of increasing Reynolds
Number, and the definition of areas where particuylar solutions-may or
may not be mathematically possible. However, as stated in a more
recent paper by Millsaps and Pohlhausen [9], the unavailability of an
extensive table of elliptic functions appears to be one of the prin-
cipal reasons why numerically calculated velocity profiles for
assigned Reynolds Numbers have been published for only a few selected
values, Millsaps and Pohlhausen developed several solutions in their
study of thermal distributions between non-parallel plane walls.

1



Their solutions are in terms of the more familiar Jacobian elliptic
functions rather than the Weierstrass elliptic functions as used by
some previous authors. Their results, however, still contain a trans-
cendental equation which requires either a graphical solution or some
iterative procedure.

Thus, the basic solutions for the problem of purely radial
two-dimensional flow of viscous fluid between non-parallel walls are
well known, and a few velocity profiles, dependent on the solution of
a transcendental equation, have been calculated; and, these works have
in fact been referred to in several textbooks, for example, [3, 8, and
11]. On the other hand, it should be mentioned that there is
no  method - that can  easily be ~used * ta determine the
shape of the mathematically possible velocity distributions for a
fixed flow rate and a particular angle of inclination of the walls.
More specifically, the following questions remain unanswered. First,
will a particular set of values of flow rate and angle of inclination
alloy purely inward converging floy or purely outward diverging flaw,
or flow with areas of both converging and diverging flows? These
various possible solutions may all exist for a given flow rate and
angle of inclination. Second, what is the exact shape of the velocity
profile for this particular set of conditions? Several authors, [11]
for example, have obtained expressions describing the conditions
necessary for purely outward flow. Rosenhead [13] has included a
series of graphs which define the limits of the various types of flow,
However, the determination of the shape of the velocity profile for a
particular set of boundary conditions is left to the fairly complex

procedure of solving a system of trapscendental equations. It is
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difficult as well as time consuming to use the "apparently available"

exact solution for comparison with other investigations or for an

indication of how the profiles change between different regions,

1.2 Objectives

The present availability of computerized techniques of solu-
tions not only make the handling of elliptic functions more amenable
to calculations but also allow more straightforward investigation of
the limitations of the various possible solutions. The major objec-
tive of this work is to apply computer solutions to aid in the theo-
retical analysis of the problem of two-dimensional, viscous flow
between non-parallel walls to determine "flow parameter graphs."

These graphs can then be used to readily determine which particular
velocity profile is possible for a certain specification of flow rate
and angle of inclination, what the flow parameters are for this pro-
file to allow easy determination of the velocity distribution function,
and what the limits are for each type of velocity profile.

As indicated by Rosenhead [13], for every specification of
flow rate and angle of inclination the number of mathematically pos-
sible velocity profiles of purely radial motion is infinite. For
example, a particular set of conditions might have, mathematically
speéking, possible symmetrical profiles with no interior zeroes, two
interior zeroes, four interior zeroes, etc., as well as non-symmetri-
cal profiles with 1,3,5,--- etc. interior zeroes. In this investiga-
tion only a few of these profiles are considered - in particular, sym-
metrical flows with no interior zeroes and two interior zeroes, and

non-symmetrical flows with one interior zero and three interior zeroes.



Other solutions are indicated and one case of symmetrical flow with
four interior zeroes will be noted. The determination of which of
the '"mathematically possible'" flows would actually be assumed by
the fluid when a flow rate and angle of inclination are specified
can only be made after investigating stability considerations of
the flow. Only the relatively simple profiles are to be considered

in this study.

A further minor objective of this investigation is the
application of the flow parameter graphs to the verification of a
modified perturbation technique. This perturbation procedure is
used to predict velocity distributions for small flow rates near a
critical angle of inclination where standard perturbation techniques

are not applicable.

1.3 Procedure

The governing equations of mass and momentum conservation
reduce to a single equation which, for each of the different velocity
profiles can be solved in terms of elliptic functions. For this inves-
tigation each solution for the velocity distribution function is
expressed in terms of one or more of the Jacobian elliptic functions.
The velocity distribution so expressed is dependent on two "“flow para=-
meters,' referred to as k and m. These flow parameters are then
determined from the boundary conditions by specifying the flow rate

and the angle of inclination. The resulting two equations for the
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flow parameters k and m are transcendental equations in terms of
the flow rate and the angle of inclination. Explicit solutions for k
and m from these equations in terms of flow rate and angle of incli-
nation are difficult. An alternative procedure used by past authors is to
solve graphically or by iterative techniques for one of the variables and
then solve explicitly for the other. The method used in this investi-
gation is to relate the Jacobian elliptic functions to standard
trigonometric functions. Then explicit solutions can be found for k
and the flow rate or for m and the flow rate in terms of the trigo-
nometric parameter.and m, or k, respectively. Finally the angle
of inclination that has been used, but not explicitly specified, can
be determined in terms of the inverse Jacobian elliptic function. As
a result graphs of constant m and constant k can be plotted on the
flow parameter graph with flow rate and angle of inclination as coordi-
nates and this graph can then be used with reasonable accuracy to
determine the values of k and m for any point within the family of
graphs.

The above procedure is used and corresponding flow parameter
graphs are plotted for each type of flow. The limits of each region
are shown graphically and in many cases expljcit expressions for the
boundaries are derived. Several typical velocity profiles are then
plotted from the values read from the flow parameter graphs.

One of the values chosen for plotting a velocity distribu=-
tion is for small negative flow rate and an angle of inclination of
about 128 degrees., For this particular angle the standard perturba=-
tion technique for determining the velocity profile breaks down as the

unperturbed or linear solution approaches infinity. A general
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modified perturbation technique developed by Yen and Tang [l5 and 16]
can be applied to this case. In order to assess the accuracy of the
new perturbation technique, exact solutions for the velocity profile
determined by use of the flow parameter graph at this critical angle

of about 128° can now be used.

1.4 Order of Presentation

Chapter II contains the mathematical development of the
general problem. The basic equations and assumptions are presented
first. Then the basic equations are reduced to a single second order
non-linear differential equation. This equation is then solved in a
manner similar to previous work to obtain general solutions for the
three basic types of flow: symmetrical flow with outward flow on the
centerline, symmetrical flow with inward flow on the centerline, and
non-symmetrical flow. The resulting velocity profile functions are
discussed and the boundary conditions are applied. The resulting sets
of transcendental equations then serve as the basis for the flow para-
meter charts to be presented in Chapter III.

The sets of transcendental equations derived in Chapter II
are used in Chapter III to obtain explicit equations for calculating
constant k and constant m curves for the three types of velacity
profiles - symmetrical profile with outward flow on the centerline,
symmetrical profile with inward flow on the centerline, and non-symme-
trical profile. 1In each case the characteristics of the flow para-
meter graphs and the limits of each type of flow are discussed. Also,
several velocity profiles from various regions of each flow parameter

graph are shown,
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In Chapter IV an example of the application of the flow para-
meter graphs developed in Chapter III is presented. The example pro-
vides the verification of a modified perturbation technique. The stan-
dard perturbation method is reviewed and its limitations of applica-
tion near certain critical values are discussed, Then a modified
method developed by Yen and Tang and applied to other similar types of
problems [15 and 16] is applied to this problem of velocity profile
for radial flow between non-parallel planes. This modified method
gives perturbation solutions for small flow rates near the critical
value of the angle of inclination, The velocity distribution func-
tions and flow parameter graphs developed in Chapter III are then used
to assess the accuracy of these results, )

A summary of the results of this study and suggested alter-

natives for further study are presented in Chapter V.



II. FLOW MODEL

2.1 1Introduction

The governing equations for viscous flows are the familiar
Navier-Stokes' equations discussed at length in Schlichting {14].
These equations, even simplified for the conditions specified for this
study, still have relatively few exact solutions. However, purely
radial flow between non-parallel plates is one case where an exact
solution has been developed by Hamel (5], and Jeffery [7]. The solue-
tion, expressed in different forms by various authors [5,7,9, and 13],
is still very unwieldy since it involves transcendental equations con-
taining various forms of elliptic functions. This difficulty seems to
be the primary reason why even though the basic solution is well known
the presentation of the solution in a form that would be readily appli-
cable to a specific problem has not been available. In this study the
basic derivation of the equations given by Millsaps and Pohlhausen (9]
is followed, Then by relating the elliptic functions to standard
trigonometric functions the transcendental equations take on a more
explicit form. Finally, the application of computer solutions pro-
vides flow parameter graphs that can be used to easily determine the
exact solutions based on specified values of flow rate and angle of
in¢lination.

This Chapter describes the various velocity profiles to be
considered, gives the basic assumptions and governing equations,
derives the dimensionless velocity profiles for each type of flow, and

applies the boundary conditions to obtain specific solutions.

8



2.2 Type of Fluid Flow and Coordinate System

The following assumptions are made for this investigation.

l. The fluid is incompressible.

2. The flow is independent of time.

3. Gravitational and other body forces are negligible.

4, The flow is two-dimensional.

5., The fluid is linearly viscous, isotropic, and homogeneous.

6. The reference frame is inertial.

A polar coordinate system (r,0) is used, as shown in
Figure 2.1 where the walls are set at 6 = + . The velocity compo-
nents in the (r,68) coordinates will be denoted by (u,v). To effect
the flow conditions, necessary sources or sinks are assumed at the
apex, Examples of pure inward flow towards the apex and pure outward
flow away from the apex are shown in Figure 2.2, The dotted lines
indicate that r 1is not allowed to approach zero.

The terms converging and diverging flows were not used in
Figure 2,2 as they can be misleading. It is possible to have both con-
verging flow and diverging flow in the same velocity profile, and the
difference between purely converging, purely diverging, or part con-
verging and part diverging flows can be a small change in the boundary
conditions. To avoid confusion and to abbreviate the names of fre-
quently used descriptive titles the system of identification shown in
Figure 2.3 will be used., The first letter, N or S, describes the
velocity profile as non-symmetrical or symmetrical, respectively. For
symmetrical profiles, a second letter, C or D, denotes that flow
on the center line is either converging or diverging, respectively.
Also, a number, 0, 1, 2, 3, =--, is used in each name to specify the

number of interior zeroes.
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FIGURE 2.1 POLAR COORDINATE SYSTEM

INWARD FLOW OUTWARD FLOW

FIGURE 2.2 SCHEMATIC DIAGRAM OF INWARD AND OUTWARD FLOW
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2.3 Fundamental Equations

In the polar coordinate system for the flows described in
Section 2.2 .the governing equations are presented by Schlichting ([14].

Conservation of Mass (Continuity)

d(ru) , ov _
3 + S = 0 (2.1)

Conservation of Momentum

2
ou ,vou _ v _ _19 2 23v _u
USStTSe T T - pg§+v(vu-:555-:;) (2.2)
ov , vOv , uv _ op 2 9%u v
S tretT pr56+v(vv+r2§'9- r2) (2.3)
2 2
2 3 .13 .1
where ¥ = 2'+'; 8;'+'-E"'3 and p = density, p = pressure, and
or ' r 96

v = kinematic viscosity. The reduction of these equations to a single
equation 1is well-known (for example, see [9]).
Since the flow is purely radial v=0 and equation (2,2.1)

then implies

a—L-lar: = 0 ( 2, 4)

Thus, put u = VF(8)/r where F 1is a function of 6 only and is the
dimensionless velocity profile. Equations (2.2) and (2.3) can now be

written ac:

21-‘2 L9 2F"
R R - i 4 (2.5)
3 p orf r3
1 9 2v2F'
0 = -;;gg+—r3 (2.6)

where the prime denotes differentiation with respect to 6,
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3
Multiplying (2.5) by rTz gives

3

I

pv2

= F2 + F" (2.7)

1

Integrating (2.6) with respect to 6 gives

2
p o= 45 (2.8)

r

where S(r) is a function of r., Substituting (2.8) into (2.7) gives

3
r

2

pv

a.
wn

2
= 4F +F +F" (2.9)

o

r

The left hand side of equation (2.9) is a function of r only and the
right hand side is a function of 6 only. Therefore, each must be
equal to a constant. Let this constant be =-J. Then
2
4F + F +F" = -7 (2.10)

and S(r) may be chosen as

2 2
S(r) = -f Q_V_Jil; = pv. J (2.11)
r3 2r?

Therefore, the conservation of mass and the conservation of momentum
equations lead to the single second order non-linear ordinary differ-
ential equation for F in (2.10). The boundary conditions are speci=-
fied by the fact that velocity at the wall is zero, and that the total
flow between the planes remains constant and can be expressed as an

integral of the velocity function, i.e.,

v

1. u(i®) =0, or since u = T >

F(40) = 0 (2.12)
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[0

2. |/ u(8)rdd = constant = Q where Q denotes the net volume
-Q
of fluid passing between the plates per unit of depth in unit

time. Expressing the integral in terms of F,

(04
v F(6)d8 = Q
-
or (2.13)
Q
[ F(©)ds = % = ¢
-

*
where ¢ 1is a dimensionless flow rate. Equations (2.10) and boundary
conditions (2.12) and (2.13) describe completely the mathematical

problem.

2.4 Dimensionless Velocity Function

The solutions of equation (2.10) for the dimensionless velo-
city F are described in [9] and the properties of the various solu-
tions are well illustrated in [l1] and [13]. The following is based
on these works.

Equation (2.10) may be integrated once after multiplying by

6F'. This results in

3 2

2F 4+ 12F2 + 3(F') "+ 6JF - 2H = 0 (2.14)
where H 1is a constant of integration. Solving for F' which is %g
gives

OF 2 % 1

—_— = Y = )2 - - 2 o 3y 2

So x( 3 )e(H = 3JF =~ 6F F 9) (2.15)
*

Most previous publications have defined flow rate in terms of Rey-
nolds' Number. For example [9] defines Ry = Fy = ugr/v where up is
the centerline velocity. However, when considering flow with
interior zeroes uy may not be a representative velocity which
requires a re-definition of Ry. Therefore, all calculations in this
study are made with respect to € as defined above.



15

It then follows that

lF2
6 = + ( % )2 | ___QE__; (2.16)
F, [c(F) ]2
where
C(F) = H - 3JF - 6F2 - F3 (2.17)

The choice of the limits of integration for (2.16) depends on the
boundary conditions. Clearly 6 1is given by an elliptic integral.
From (2.12) if F = 0 when 6 = + & then C(F) in equation (2.16) must be

real when F = 0. Therefore
c) >0 (2.18)

An approximate plot of equation (2.17) can be obtained since C(0) > O,
C(F) < 0 for large values of F, and C(F) > 0 for large negative
values of F. Therefore, there must be at least one positive root for
C(F) = 0 and there may be three, However, assuming three roots for

(2.17), say e, ep, and ej3, then

C(F) H-3JF-6F2-F3 = (e,-F) (e,-F) (e 3-F) (2.19)
eleze3+F(-e1e2-e1e3-e2e3)+F2(eI+e2+e3)-F3 (2.20)

and equating powers of F it shows that

H = ejeje; (2.21)
3 = e)&,; +eje3 + eje; (2.22)
-6 = e; +ey + ej3 (2.23)

Therefore, from (2.23) the three roots must add to -6, so there can
only be one real positive root, say e;. The other roots are both
negative or complex conjugates., The possible solutions are sketched

in Figure 2.4, The solid curve represents 3 real roots = one positive
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and two negative - while the dash line indicates one positive real
root and two complex roots. Each curve will of course result in dif-
ferent solutions for F.

The following subsections will consider the solution of equa-
tion (2.16) where C(F) has three real roots for SD, SC, and N
flows, and then the solution of (2.16) where C(F) has one real and
two complex roots for SDO flow. The velocity profile obtained when
C(F) has one real and two complex roots will be referred to as SDCO

flow.

2.4.1 Dimensionless Velocity Function for SD Profiles, For outward

flow on the centerline, which applies to. SDO, SD2, SD4, =-- etc.
profiles, the velocity and therefore the dimensionless velocity

function F  must be positive for 6 equal zero. Therefore, from
equation (2.19) C(F) is > 0 only if F < e, since (e,-F) and

(es-F) are both- < 0. So
0L Fgey (2.24)

Using these limits and equation (2.19), equation (2.16) can be written

*
as

€1 dF

F [(e]~F) (e,-F) (e 3-F) |%

3 .1
6 = (5)2f (2.25)
This elliptic integral can be solved in terms of a Jacobian ellip-

tic function by transformation to a standard form. For example, Page

36 of [4] gives

* For convenience the + sign in equation 2.16 is not shown, but it

will be used later to indicate 6 may be positive or negative,
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el el'F 2
dF 2 -1
J T = T sn e el ok (2.26)
F [-(F'el) (F'ez) (F'e3)]2 (81-83)2 1
where
5 el-ez
K2 = o (2.27)

and sn 1s one of the Jacobian elliptic functions. Using these equa-

tions one obtains the solution to (2.25) as

1
6 3 -1f [er°F 2
6 = (‘———) sn K (2.28)
el-e3 e-e,

Let

6
€1-ej3

ml =

(2.29)

solving for F yields

F = e, + (eyep) sni(—=,k (2.30)

V=
Equations (2.23), (2.27), and (2.29) can be used to express e;, e,,
& e; 1in terms of m and k.

2
e, = 2+ k9 _, (2.31)

my

- 2
e, = 21 -2k9 _, (2.32)

my

2 .
2k -2 _, (2.33)

es = ml

Substituting into (2.30) one obtains

_o_sk2 [, 0 1™t
F = = ™ [sn (\m ,K) +3( k2 -1)] (2.34)
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A plot of F 1is shown in Figure (2.5) for m; = .65 and
k = .55, 1Items of interest are:
1. F() = e;. From equation (2.30).
2. F(K') = ep. From equation (2.30) where K' 1is the real half
period of sn. 1i.e., sn(K',k) = 1.

3. For these values of k and m if o (the inclination of

12
the walls) is equal to 98; the flow is similar to the SDO
profile sketched in Figure 2,3. If «a 1is equal to 6, the
flow is similar to the SD2 profile sketched in Figure 2.3.

If o is equal to (8; + 65) the flow is similar to the SD&
profile in Figure 2.3, and so forth.
Figure 2.6 is a plot of F for several values of m, with

k equal to a constant. The effect of a larger value of m; is to

lengthen the cycle, and to cause the entire curve to shift down on the

axis. From this plot it is noted that if m; is much smaller than

.45 or greater than 1.25 the curve shifts above or below the axis,

respectively, and there are no practical solutions as F 1is not zero

for any value of @.
Figure 2.7 is a plot of F for several values of k with

m; equal to a constant. The effect of a larger value of k 1is again

to lengthen the cycle and also to increase the size of the curve. For

this value of m;, if k 1is much smaller than .5 there will be no

solution as F will not be zero for any value of 6. For k = 1.0,

the function sn 1in (2.34) becomes TANH and F reduces to:

- 4 5 L £
F o= o--2 vm_lcanh o = 527 - 10.9 tanh( ) (2.35)

then for large 6, tanhs1.0, F»=5.63 and there is only one possible
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FIGURE 2.7 PLOT OF F FOR SD PROFILES, WITH m) = .55, k = VARIOUS
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solution for « which has no interior zeroes. This value of k =1
represents the limit for equation (2.34) and is the dividing line
between SDO flow being considered here and SDCO flow to be consi-
dered in Section 2.4.4., These graphs point out the cyclic nature of
F and the limitations on the flow parameters. The same features

characterize each of the dimensionless velocity functions.

2.4.,2 Dimensionless Velocity Function for SC Profiles. Again for con-

verging flow on the centerline, equations (2.19) and (2.23) can be
used to determine the integration limits for (2.16). The only differ-

ence is that F(0) < 0. As a result
e, <FLO (2.36)
With these limits equation (2.16) can be written as

F dF

ey [(ey-F) (e,-F) (e5-F) |2

[N

0 = (23]

(2.37)

The integral can be written in the standard elliptic form given on

Page 29 of [10] and the solution is

3.3 2 -1ffe27e3\2
6 = (%) ———dn ( ) ,k (2.38)
2 1 F-e
(e;-e3)2 3
where
1
e, =-e 5
Kk = [—2 (2.39)
€17€3
Let
€o-ej
my = — (2.40)
and solve for F.
€o-ej
F = e3 + ————— (2.41)

dn?(m 40, k)
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Using (2.23), (2.39), and (2.40) one obtains

= 2 2
e, = 2(1<2.m3 +m, 1)
e, = 2(m32 - 2k%m3% - 1)
e3 = 2(kZm32 - 2m42 -1)

Substituting into (2.41) yields

bm 32(L - k?)

F = 2[m3%(k2-2) - 1] +

dnz(m36,k)

A plot of equation (2.45) for several values of

(2.42)

(2.43)

(2.44)

(2.45)

k and mg

is shown in Figure 2.8. A comparison of these curves with those in

Figures 2.6 and 2.7 indicates the same general shape.

curves are identical for corresponding values of k,

In fact, the

and 6.

With respect to Figure 2.5, the solution for SD flow assumes flow from

-91 to +6,, and the solution for SC flow derived above assumes flow

from +0, to +0, with the vertical axis shifted to the right by a

factor of K'. Therefore, if the following substitutions are made in

(2.45), the dimensionless velocity function for SD flow given by equa-

tion (2.34) is obtained.

2 3 —
mj

(]
~
<aI

)
\/“‘1

where

(2.46)

(2.47)

(2.48)
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2.4.3 Dimensionless Velocity Function for Non-Symmetrical Profiles.

The boundary conditions given by equations (2.12) and (2.13) specify
the flow rate and require that the velocity be zero at the boundary of
+ a. However, there is no requirement that the flow must be symmetri-
cal, Mathematically either symmetrical or non-symmetrical
velocity - profiles are possible. - The plot of F for SD
profiles shown in Figure 2.5 1is sketched in Figure 2.9 for
several cycles,

In Section 2.4.1 it was noted that if + a corresponds to
+ 6, then flow profile SDO is obtained. 1In 2.4.2 it was noted that
if + @ corresponds to 6; and 6,, with the F axis shifted by K'
then flow profile SCO is obtained., However, since the only requirement
is that F(4@) = 0, then positive and negative « can be any point
where F(0) = 0. For example if + a is taken as =-6; and <6,
then the flow profile appears as in Figure 2.10 (a). Several other
possibilities are also shown in Figure 2.10.

Therefore, any of the profiles shown in Figure 2.10 and an
infiniﬁe number of other possibilities are mathematically feasible.
The areas of their applicability will, of course, depend on the boundary
conditions. However, the dimensionless velocity function F as given
by equation (2.34) for SD flow is used for each case. The m flow
parameter for non-symmetrical flow will be designated as m, although
it 1s actually the same as m; defined by equation (2.29). For this
study only the profiles shown in parts (a) and (b) of Figure 2,10 are
discussed.

2,4.4 Dimensionless Velocity Function for SDCO Flow. Repeating the

equations for 6 from Section 2.4,
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FIGURE 2.10 VARIOUS NON-SYMMETRICAL VELOCITY PROFILES
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3.3 dF
6 = (312 ——— (2.16)
[c(F) ]z

C(F) = H = 3JF = 6F% ~ F° (2.17)
Now assume one real root ej > 0 and two complex roots €, and es3,
From (2.23) since e; + e; + e3 is real, then e, and e3 are com-
plex conjugates,

e, = a +bi (2.49)

e3 = a = bi (2.50)
Substituting into (2.17) one obtains

C(F) = H - 3JF - 6F2 = F3 = (e;~F) (e,-F) (e3~F)

(2.51)
= (e, -F) (F?+a2+b2-2aF)
The real part of e; and e; is determined from (2.23).
€1

a = =-(3 +--59 (2.52)

Where 0 < F < e;, and using (2.51) in (2.16) gives:
1 €
6 = (2)%] 2 (2.53)

The solution

for this set

where

F [(el-F)(F2+a2+b2-2aF)]%

of this elliptic integral is given on page 30 of [l0] and

of parameters is:

( 3 )% 1 -1 e k (2.54)
= -— cn ——————— .
2 (mz)E m2+e l-F ’



1
my, = (e12 - 2381 + 82 + b2)2 (2.55)
1
3 +m2 + % 31\2
k 7, l (2.56)

Solving (2.54) for F gives

F e, ~m, AT (2.57)
1-+cn[—3-) 6,k
where
e1 = Z(2mk? - 3 - my) (2.58)
€1
a = -0+ (2.59)
1
b = (my?2 - e;2 + 2ae; -a?)?2 (2.60)

Since e) > 0 there are limits on the values of k and m,. From

equation (2.58)

my(2k2 = 1) > 3 (2.61)
Therefore
k> % (2.62)
and
3
mo >/ (2.63)
2k2-1

A plot of F for some typical values of k and m, 1is shown in
Figure 2.11.

The effect of changing values of k and m, on F is simi-
lar to the case of three real roots discussed in Section 2.4.1, Items

of interest are:
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FIGURE 2.11 PLOT OF F FOR SDCO FLOW, FOR VARIOUS =, AND k
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1. For k =1, cn(o,k) = sech(s) and the curve becomes asymp=
totic to a constant value (i.e., for m = 25, F » 10.33).
This again defines the dividing line between the solu-
tion with 3 real roots and the solution of 1 real root
and 2 complex roots.

2. For\/g-< k < 1 there are also solutions with 2, 4, or more
interior zeroes. However, the lower portion of the curves,
which is not shown, reaches values of 1000 to 2000 and the
resulting flow profiles with 2 or more interior zeroes have
large negative flow rates. Therefore, only the primary solu-
tion (i.e., no interior zeroes) was considered. Again the
function F is periodic and k and m, have similar roles
for stretching and adjusting the shape of the curve as with

previous cases,

2.5 Application of Boundary Conditions

In Section 2.4 the velocity functions were derived for each
type of profile being considered. In each case F 1is a function of
the flow parameters k and my (i= 1,2,3, or 4) which determines the
shape of the velocity profile. The values of k and mg used in
Section 2.4 were arbitrary values chosen for purposes of illustration.
However, normally a problem would set specific boundary conditions of

a and € as given in Section 2.3.
F(d) = O (2.12)

(04
] F(de = ¢ (2.13)
-
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Application of these boundary conditions to each dimension-
less velocity function results in two expressions relating « and ¢
to k and m . These expressions can then be used to determine neces=-
sary values of k and m, to affect specified values of «a and €,

For each case the application of (2.12) is a straightforward
substitution and the application of (2.13) requires an integration of
the dimensionless velocity profile between the limits discussed in

Section 2.4, The resulting expressions for each flow profile are sum-

marized below:

SD Flow
ml-l

sn2(-%,k) = %(1 - —_ ) (2.64)
\ﬁq k2

s Y™2 Q 2
m—1[3 e E%,k) - m, + ké - 2 (2.65)

Where E 1is the elliptic integral of the second kind, i.e.,

¢
E (6,k) = [ (1L - k2sin2¢)d¢ (2.66)
o
SDC Flow
2m2% mop~-e ]
cn[(—3-) 6,k] = v (2.67)

Nm

1 2\2
= a(e,-my) + 2(6m,)?2 E[é(:;) ,k]

(2.68)
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where
ef = (mk2 -3 - my) (2.58)
SC Flow
3m32 (1 + k?)
dn2 (mya,k) = (2.69)
1-m32 (k2 = 2)
kzsn(mgx,k)cn(maa,k)
€ = 4a[my2(k2-2)-1] + 12m, E(m3a,k) - PYCICRD) ] (2.70)
3 b}
N1l Flow

a = R\, (2.71)

where K' = complete elliptic integral of the first kind (also the

half period of sn as noted in Sectiomn 2.4.1), i.e.,

/2
K'(k) = de
o (l-kZin%)2
= 4 1 '
€ = \7§= [(k2 = m,=2)K' + 3E'] (2.73)
N
where E' = complete elliptic integral of the second kind, i.e.,
1(/2 1
E' = [ (1 - k?sin2¢)2de (2.74)
o

Also, the values of 6; and 6, shown in Figure 2,10-(a) can be

determined as:

1
il ™y °
1 = 4/my K<{sin [3(1- —)] sk (2.75)

(2.72)

6o = my 2K' - 6, (2.76)
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where K = elliptic integral of the first kind, i.e.,

0 do

1
o (L-k2sin2)2

K(o,k) = [ (2.77)

N3 Flow

a = 2K'Vﬁ (2.78)

m
1]

—i; [(k2 = my - 2)K' + 3E'] (2.79)

N

So, a and € for N3 flow are simple twice o and € for N1 flow.
6, and 6, as shown in Figure (2.10-b) are given by equations (2.75)

and (2.76) respectively.

2.6 Summary

The resulting expressions for each flow condition presented
in Section 2.5 represent a set of transcendental equations relating
desired values of o and € to the flow parameters k and m, . Pre-
vious authors, for example, [9] and [l3] have developed similar expres-
sions for the symmetrical flows in terms of Reynolds number. The non=-
symmetrical profiles have not been discussed as widely although the
limits were discussed by Rosenhead [l3]. However, in all cases pre-
vious authors have stopped at this point and used the equations in a
form similar to that shown in Section 2.5 for calculations. Therefore,
either a graphical or an iterative method of solution is required. As
a result the so-called "known exact solutions'" are very difficult to
use for determining a velocity profile for set values of  and k«.

Also, unless one is quite familiar with the equations, their limits

are not readily apparent and it is difficult to determine which flow
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profiles are mathematically possible for particular values of « and
€. The representation of these solutions in Chapter III will solve

this problem.



ITI. FLOW PARAMETER GRAPHS

3.1 Introduction

The application of the boundary conditions to each of the
velocity distribution functions in Chapter II results in two expres=-
sions for each profile relating « and ¢ to the flow parameters k

and m where 1 equals one, two, three, or four. However, since

i?
these equations require a graphical or an iterative method of solution
to determine values of k and m, for given values of « and ¢,
their direct application is difficult. It is necessary to determine,
for a particular set of a and €, which solutions are possible and
what the values of k and m, are for these solutions so the velo-
city profile may be determined. Also, it is not readily apparent
where dividing lines exist between two types of flow; e.g., where an
SDO flow changes to an SD2 flow.

The above difficulties can be reduced by plotting curves of
constant k and m;, on an Q=€ grid to be called a flow parameter
graph. Then for any value of « and € the graph is read to deter=-
mine corresponding values of k and m, . Since only curves that
represent solutions are plotted, the boundaries of each type of solu-
tion are readily apparent. In some cases these boundaries are defined
by an analytic expression, and for others the plotted curves serve as
the defined boundaries.

For each of the symmetrical profiles to be considered the
set of equations derived in Section 2.5 contains a transcendental equa-

tion. This indeterminacy arises since for each case one of the

34
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equations involves an elliptic function sn, c¢n, or dn which is a
function of two parameters, By relating these elliptic functions to
trigonometric functions, which are dependent on one parameter, expli-
cit expressions can be developed for o and € in terms of k and

m, allowing for straightforward calculation for the constant k and

i
constant m curves, Once the curves have been plotted for each pro-
file on a set of coordinate axes, then the graph can be used to deter-
mine the boundaries of each type of flow and the values of k and m,
for any set of Q-€ coordinates within these boundaries. The values
of k and m, can then easily be used to plot the velocity profiles.
The flow parameter graphs are developed and the boundaries
of the solutions for each type of flow profile are discussed in this
chapter. 1In each case the transition from an elliptic to a trigono=-
metric function is described and the resulting expressions and limita-
tions are discussed. Then the computer program used for calculating
and plotting the curves is discussed and a symbolic flow chart of the
program is shown. These flow charts do not include printing or the
so-called "book-keeping' operations such as that required to plot
dotted rather than solid lines. (Dotted lines are used for all con-
stant m curves, and solid lines are used for all constant k curves.)
However, all the basic logic used in solving the expressions 1is

included. Then several typical points are read from each graph and

the resulting velocity profiles are shown.

3.2 SD Flow

The case of symmetrical flow with diverging, or outward,
flow on the centerline is complicated by the fact that there are

two types of solutions - one assuming three real roots in the cubic
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expression for C(F) as covered in Section 2.4.1, and one assuming one
real and two complex roots in the cubic expression for C(F) as covered
in Section 2.4.4. These two cases will be considered separately.

3.2.1 Solution where C(F) has Three Real Roots., The expressions

developed in Section 2.5 by application of the boundary conditions to

the dimensionless velocity function are

(2.64)

I TR R RS
1

As pointed out in the Introduction the difficulty in working with
these expressions is that the elliptic function sn 1is dependent on
two parameters, e.g.hvﬁ%T and k. However, the function is really
quite similar to the trigonometric function sine. In fact, for k =0,
sn(4,0) = sin(¢). Although the parameter k has the effect of
stretching out the period, sn(¢,k) still only has values between
plus and minus one. Finally, in the limit, sn(4,1) = tanh(¢) and

the period is infinite. Because of these relationships sn can be

defined in terms of sine. For this case consider

sin(A) = sn(v_%l—,k) 3.1)

where
-1 o
= si Jk 3.2

A sin [Sn(ﬁ )] ( )
Or

a =/m sn l[sin(a),k] (3.3)
Further

sn”l[sin(a),k] = K(&,k) (3.4)

where K is the incomplete elliptic integral of the first kind. Therefore,
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a = WJml K(A, k) (3.5)
With this substitution equation (2.64) can be solved for m, to give
m = 1+ k2[1-3 sin2(A)] (3.6)

The system of equations does not lend itself to explicit
equations for k and m; which could then be used in calculating the
velocity profile. However, equations (2.65), (3.5) and (3.6) can now
be used to calculate directly values of m, and € for various
values of k and A (with corresponding values of ).

A series of curves for k = constant and a series of curves
for m; = constant will be combined to produce the flow parameter
graph. For the present consider only the constant k curves. The
flow chart in Figure 3.1 represents the subroutine used to plot the
constant k curves for 0° < A < 90° from the above equations. It
will be noted later that when A = 90°, where sin(A) and, hence,
sn(&ﬁﬁr,k) is a maximum, SDO flow changes to SD2 flow. The constant
k curves as plotted by the subroutine represented in Figure 3.1 are
shown in Figure 3.2.

Items of particular interest are:

1. As k approaches zero the curves approach the € = 0 axis,

2. As k approaches 1.0 the curves approach an area on the left
side of the graph which will be covered later with the solu=-
tion for SDCO flow. Therefore, k = 1.0 1is the boundary..

3. The area within the plotted lines k =0.0 and %k = 1.0
represents the only area for solutions of these equations for
symmetrical diverging flow with no interior zeroes (except

SDCO flow).
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Note, for large € all curves approach the « = 0 axis.
Therefore, for smaller values of € a wider range of angles,
a, can be used. For very large values of € the angle «
must be very small to insure purely divergent flow.
The curves are a maximum for a value of « that corresponds
to A = 909, e.g., for k = 0.0, the elliptic function sn is
equal to the trigonometric sine function, and therefore,
a = 90° is this maximum.

The equation for this boundary can be obtained from equa-

tions (2.65), (3.5), and (3.6) by setting A = 90°.

sn ,k = sin 90° = 1.0

2
N

Therefore
K = L(1-m) 3.7
= 2 ml ( . )
€ = =22 _Ersnl),k] - (1 - k2)sn” k(1) (3.8)
V1-2k2
or
e = L2 [E@/2,l0 - (1 - KDKE/2,K)] (3.9)
1-2k?
where K(n/2,k) = K' = (Complete elliptic integral of the
first kind.
E(m/2,k) = E' = Complete elliptic integral of the

second kind.
This curve is also plotted on Figure 3.2 and labeled as

A = 90°, One may then state that to the right of this curve

any solution must encompass some backflow.

To have a real solution for «a from equation (3.3), the

value of m; must be positive. From equation (3.6), m) 1is
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always positive if k éavg; If k >WV€; then sin A must be
less than‘\/%-+-—l; . For example, if k = .9, then sin (A) <
3k

‘\/%4%§ , i.e., A<®59.70 or A > % 120.3°, Then o will

approach zero for any value of k > % as € 1increases

since «a = \/ml K(A,k) and m; -0 while K remains bounded.

Figure 3.3 shows the same constant k curves for 0°9<A<180°.

The part of the curves that correspond to A > 90° represents SD2

solutions with backflow shown in Figure 2.3 Items of interest for

this graph are:

1.

For space conservation the curves were stopped at |€|< 8.5,
For the curves with larger values of k (i.e., curves with

k > .60) the curve is discontinuous. (For k 5\/%7 this dis-
continuity is required by conditions on m; as pointed out
in item 6 above.)

For any particular value of k the curve becomes tangent to
the boundary on the right side of the graph then continues to
the left of this boundary. The result is that a second solu-
tion with two interior zeroes is superimposed over both the
SDO region to the left of the A = 90° line and the SD2 region
to the right of the A = 90° line. This secondary solution
actually has solutions all the way to the a = 0° axis even
though only a few lines have been plotted to reduce confusion
due to the over-lapping families of curves. Therefore, to
the left of the A = 90° line, for example, «a = 50° and

€ = 2,0, there are two possible solutions = the primary with
no interior zeroes and a secondary with two interior zeroes.

To the right of the A = 90° line, for example, ¢ = 85° and
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FIGURE 3.3 CONSTANT k CURVES, SDO & SD2 FLOW



43

€ = 2,0, there are two possible solutions each with two
interior zeroes.

The existence of the second solution with two interior
zeroes simply implies that there are two combinations of k
and m; which will both cause F, the velocity profile func-
tion, to be zero at + &. Referring back to Figure 2.5, SD2
flow occurs if a = + 6,. Also, referring to Figures 2.6 and
2,7 it is easy to see that two different curves could have
the same values of 6,. For example, the m; = 1.05 and
k = ,55 curve on Figure 2.6 and the k = .9 and m; = .55 curve
on Figure 2.7 both have values of 6, very near 160° even
though the shape of the curves and, therefore, the shape of
the velocity profile is quite different.

As the curves continue for larger values of A they drop
below the € = 0 axis and in this region represent solutions
that are symmetrical, have outward flow on the centerline,
have two interior zeroes, and have a net flow back toward the
apex. Therefore, even though the equations were derived for
so-called diverging flow, physically they can actually repre-
sent negative or inward flow. This condition can be easily
visualized by referring first to Figure 2.5. It was noted in
Section 2.4.1 that if « is chosen to be 6, then there
will be two interior zeroes. Therefore, choose « = 6, for
each case and refer to Figure 2.6 or Figure 2.7, where the
area between the curve and the axis represents the amount of
fluid flow. Then if the positive area is greater than the

negative area the net flow will be outward: e.g., k = .5 on
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Figure 2.6. If there is more negative than positive area
then the net flow will be inward: e.g., k = .9 on Figure 2.6.
Also, a value of k can be found so that the negative and
positive areas just cancel so there is no net flow. For
example k = .7 on Figure 2.6 is close to this condition.

4. A portion of the curve for A = 180° is also shown on Figure
3.3. This curve represents the second time that sine and
hence sn is a maximum. The equation for € obtained from

equation (2.65) by setting A = 180° is

e = 2 [E@/2,k) - KG@/2,00] = sk (E'-K')  (3.10)

Vm—I

Area to the right of this curve represents solutions with four

<

interior zeroes, and the solutions could be carried to six
interior zeroes, etc. However, any area to the right of
a = 180° 1is not physically possible and will not be consi-

*
dered.

5. For positive € regions to the right of the curves (at € = 0
this is about 1289), there is no solution. For example, at
a = 130° it is not possible to obtain a solution of SDO or
Fok
SD2 flow.
For the constant m curves the same set of equations,

(2.65), (3.5), and (3.6) are used, but (3.6) is solved for k giving:

* The fact that secondary solutions, which are symmetrical, have four,
six, or more interior zeroes, and have positive flow at the center-
line, would exist over much of the region described in Figure 3.3
was not considered in this investigation.

** Other velocity profiles to be considered in later sections will
have solutions in this region.
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ml-l
k = (3.11)
1 - 3 sin?A

The negative root is not meaningful. Also, the value of A 1is limited

by the fact that

if m; > 1, then sinA <\/§— (3.12)

or, for the range of 0 to 180°: A < 35.2° or A > 144.8°
if m; < 1, for the range of 0 to 180°: 35.20< A < 144.8°
if my =1, then k = 0, therefore, € = 0 and there is no meaningful
£ low.

With these considerations, the flow chart on Figure 3.4
Yepresents the computer program used to obtain the constant m curves.
The curves for 00 < A < 90° are shown in Figure 3.5, Items of
interest are:

l. There are two separate families of curves, one for m; < 1.0
and one for m; > 1.0.

2. The curves are drawn as dotted lines so they would appear
different from the constant k curves,

3. As m; - 1.0, the curves approach the € =0 axis,

4, As m] -» 0.0, the allowable values of «a - 0.0.
Figure 3.6 shows the same constant m, curves for

1

0° < A < 180°, (Except that the curves for m, > 1 and A > 144.8°

1
are not included.) 1Items of interest are:
1. As with the constant k curves there is a corresponding
second solution which represents flow with two interior

zeroes overlapping the graph..

2. The procedure used in the computer program to produce the
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FIGURE 3.4 SYMBOLIC FLOW CHART FOR CONSTANT m CURVES, SDO FLOW
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FIGURE 3.5 CONSTANT m CURVES, SDO FLOW



EPGILON

k H XM‘ N
S

FIGURE 3.6 CONSTANT m CURVES, SDO AND SD2 FLOWS



49

dotted line effect is related to the increment of A. There-
fore, the length of the dashes is not constant,

Figure 3,7 is the combination of the constant k and the
constant m curves to give the complete flow parameter graph for SDO
and SD2 flow. This graph includes the lines for the second family of
solutions with two interior zeroes. Figure 3.8 is the same as 3.7
except that the second family of solutions is not included and the
resulting graph is clearer and easier to use for determining the pri-
mary solution which is usually the one desired. The computer routine
used to obtain Figure 3.7 is called subroutine DIVERGE and is shown
with some sample printout of calculated points in Appendix A. The
routine is in FORTRAN and is written from the flow charts given on
Figures 3.1 and 3.4. 1In addition there is a graph subroutine for the
axis and two subroutines to determine the elliptic integrals and func-
tions. The graph and function subroutines are used with each flow
parameter subroutine and therefore appears in the back of Appendix A.

Figure 3.8 can now be used to determine the flow parameters
(m; and k) for any value of «a and e* within the range of solutions
and thereby determine the velocity profile, If the point is to the
left of the A = 90° line the flow will be SDO. If the pbint is to the
right the flow will be SD2. If the point is on the A = 90° line, then
the corresponding value of € represents the maximum flow rate that
can be attained with SDO flow for the corresponding value of «. Fur-

ther increasing € for this value of « 1is only attained by allowing

* If an ~€ point is between the constant k lines or the constant m
lines then extrapolation must be used for intermediate use. In
actual application more intermediate lines could be shown in the
area of interest, Fewer lines were used here simply to reduce com=-
puter time,
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backflow as in SD2 flow. Three points with the above characteristics

are selected and shown on Figure 3.8. The values of k and m, read

from the graph for these points are approximate values as scaled from

the graph.
1. o = 310 k = .45
€ = .2 m, = 1.05
2. a = 60° k = .525
€ = 4,1 m; = .445
3. a = 920 k = .45
€ = 1.95 m, = .65

These values are then used in equation (2.34) to determine the corres-
ponding velocity profiles. The profiles are plotted with the computer
program shown in Appendix B and the resulting profiles are shown in

Figure 3.9. A fourth profile is also shown in Figure 3.9. This pro-
file is obtained by plotting point 3 on Figure 3.7 and determining the

following values of k and m; from the family of secondary solutions.
4, a = 920 k = .75
€ = 1.95 m; = .35

It should be noted that profiles 3 and 4 both correspond to the same
value of o and € and represent two possible solutions at that point.
Items of interest on Figure 3.9 are:
1. Each velocity profile is scaled so that its maximum velocity
at a radius of 1.0 inches is one inch. The scale for each
plot is as shown.

2, Each velocity profile is calculated and shown at two radii -
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1.2 inches and 3.0 inches. Then to fit in a reasonable space
the profiles were plotted half size.

3. The plotted values represent a velocity profile where v was
assumed to be .000159 ft2/sec. However, the plot can also be
considered to represent the shape of the dimensionless velo-

city profile F.

3.2.2 Solution for SDCO Flow. The expressions developed in Section

2.5 by application of the boundary conditions to the dimensionless

velocity function are

my-e 7—“‘2)% ]
. = c¢n 3~ ,k (2.67)

Nl m
|
Q
~
(1]
—
[}
=]
N
N’
+
N
~
o))
3
N
A
N
o]
Q '
.
o
N
[N
(IRal)

(2.68)

where
2 2
e) = E (2m2k -3 - mz) (2.60)
To obtain equations for the flow parameter curves consider
1
2m o\ 2
sin A = Sn[(T) Ct,k] (3.13)
As cn and sn are related as the cosine and sine functions one has
1
2m2 2
cos A = cn =5 a,k (3.14)

Using this relationship in (2.67) one cansolve for m, or k to give
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m, = 6(1 + cos A) (3.15)
4k2(1 + cos A) + cos A -5
or
1
k = SN S [lL (L + cos A) + 5 = cos A] 2 (3.16)
4(1 + cos A) ‘mj

Also, by using the relations between cn, sn and dn, equation (2.68)

can be reduced to

i mz% 1
€ = 2{a(ej-my) + 2(6m2)2EE1 3 ,k] - (6e1)2 (3.17)
Also, from (3.13)
1
o 30 8
a = (2m2) K(A,k) (3.18)

These equations may now be used to calculate constant k
and constant m curves for the flow parameter graphs. The symbolic
flow charts for the constant k and constant m curves are shown on
Figures 3.10 and 3.11, respectively. The corresponding flow parameter
graph for constant values of m, and k 1is shown in Figure 3.12.
Items of interest are:
l. For small m, the curves approach the « =0 axis. For

example, equation (3.15) shows that

- YA Wi
my -» © as A - cos 1(&) (3.19)
1+4k?

1
Therefore, since a = (Ei—-)aK(A,k) from (3.18), then o —» 0 as
2

m, -» «, since K(A,k) is bounded. For example, if k = .75

- - 2 i
A < cos I[S—“iﬂl—J ~ 32.1° (3.20)
1+4(.75) 2

as A - 32,1, my » = and «a - 0°.
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2. As noted earlier k >-\/§—.

3. For k = 1, the curve exactly coincides with k = 1 curve for
three real roots. For k = 1 equations (2.58), (2.59), and
(2.60) can be used to show b, which is the imaginary part
of e, and e is zero, Therefore, along the k = 1 curve

the complex roots become real roots and on this curve are

equal, i.e.,

my
e, = e, = a = -~ 2 + 7?) (3.21)

The computer routine to calculate and plot the constant k
and constant m curves is called "Subroutine Complex'" and is shown in
Appendix A with some sample print-out of the calculated points., The
programming represents the flow charts on Figures 3.10 and 3.1l.

Three points are chosen on Figure 3.12, the values of k
and m, are read from the graph, and the values are then used in
equation (2.57) to determine the velocity profiles shown in Figure
3.13. The coordinates and values of k and m, are shown below each
velocity profile where the scaling is the same as described in Section
3.2.1, The subroutine used for Figure 3.12 is shown in Appendix B.

The flow parameter graph for the SD solutions shown in
Figure 3.8 and the graph for the SDC solution can be combined and
the resulting graph is shown in Figure 3.14, This graph represents
SDO and SDCO profiles on the left of the A = 90° line and SD2 profiles
on the right of the A = 90° line. Other families of curves for solu-

tions with 2,4,6,=--~ interior zeroes have not been included.
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3.3 _SC Flow

The expressions developed in Section 2.5 by application of
the boundary conditions to the dimensionless velocity function are
3m32(L + k2)

dn?(mq,k) = (2.69)
1-m42(k2-2)

k2sn(m £, k)en(m 5 K)
dn(mqx, k)

e = 4a[mz2(k2-2)-1] + 12m3[E(m3a,k) - ] (2.70)

To obtain equations for plotting the flow parameter curves
again relate the elliptic functions to trigonometric functions but

first note
dn2(e,k) = 1 = kZsn?(¢,k) (3.22)

Then let

sin A = sn(m3xx,k) (3.23)

Substituting into (2.69) and solving for m3 one obtains

- 2q0in2
s =.\/ 1 + k“sin“A (3.24)
(k2-2)k2sin2A - 1 + 2k2 A
where
1 -1, . 1
a = — sn (sinA,k) = — K(A,k) (3.25)
m3 m3

Then equations (2.70), (3.24) and (3.25) can be used to
obtain values of «@, m3, and € for various constant values of k
and A. For curves with constant values of m; equation (2.69) can

be solved for k, (again using (3.22) and (3.23)) to obtain
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N3
-B + [B2 - 4m32sin2A(l-m3?) ]2
k = (3.26)
2m 32sinA
where
B = 2m32 - sin?A(l + 2m3?) (3.27)

Then (2.70), (3.25), (3.26), and (3.27) can be used to
obtain values of @, k and € for various constant values of m3
and A, The limitations on these solutions are extensive and they
will be discussed after presentation of the flow parameter graphs.

The symbolic flow charts of the computer programs using
these equations to plot the constant k and constant m curves are
shown in Figures 3.15 and 3.16, respectively. The flow parameter
graph with the curves for 0° < A < 90° is shown in Figure 3.17.
These curves represent SCO solutions (i.e., all flow is toward the
apex). Items of interest with respect to these curves and the gov=-
erning equations are:

1. As k approaches 0,0 the curves approach the € = 0 axis,
and as k approaches 1.0, the curves approach negative
infinity.

2. The line labeled A = 90° indicates the maximum value of «
for any particular € where purely convergent flow may exist,
To the right of this boundary the solutions have two or more
interior zeroes with back flow., (Actually this so=called
"backflow" is outward, away from the apex.) The equation for
this boundary can be obtained from the above equations for

A = 90°,
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Thus
sn(amy) = sin 90° = 1.0

and from (3.24)

1
2.1\ 2
my = (E_.l) (3.28)
k*-1

Then from (2.70)

1
2

-~

2_ b 2.
€ = 4K'[(u) (k2-2) -(k—l) + 12(k——1) E'] (3.29)
k41 k2-1 k-1
and
q = —— (3.30)

<k2-1)§

k-1

where K' and E' are the complete elliptic integrals of the
first and second kinds, respectively. The values of € and
a can then be plotted for various values of k.

For the constant k curves using (3.24) the expression under

the radical must be positive. If A = 0° then from (3.24)

m3 ..—F (3_31)
-1+42k?2
and k must be less thanﬂv/g_ , 1.e.,

Kk < % (3.32)

On the other hand if one specifies k then A 1is restricted.
For example if k é\/gf, then m3 1is not defined for A = 0°,

For example, if k = .9 then
A > = 53,5° (3.33)

The angle « as given by (3.25) still approaches zero since
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a = ES%*EL and m3 » 0.0 as A decreases to 53.5° and K
3

is bounded. Therefore, the constant k curves for k <

=

begin at o = 0.0 and € = 0.0, but the curves for k >
are asymptotic to the «o = 0.0 axis.

For the constant m curves equations (3.26) and (3.27) are
used to determine allowable values of A and k. For

m3 = 1.0, since k must be positive, one has

A > sin-l(-\/%_): 54,5°, and A < 90°, The plus sign for the
square root term in (3.26) is used to give real values. For
m3 > 1.0, A >0 and A # 90°, since at 90° k = 1, and @ =
infinity. For practical purposes of representing values on
the computer the value of A 1is allowed to approach 909 until
k > 0.999. The plus sign in equation (3.26) is used to give
real values. For m3< 1.0 both the plus and minus signs
give acceptable values for certain ranges of A. An analysis
of equation (3.26) for m, < 1.0 shows there are two critical
values of A, to be denoted by Ac and Aé. These are the
values of A when the inner quadratic of equation (3.26) is

zero, i.e., when
B2 = 4m3%in2a(l-m3?d) (3.34)

For Ac < A < 900 both the positive and the negative roots in
equation (3.26) give solutions. The value of Aé becomes
significant on Figure 3.19 where the curves include regions
where A > 90°, Figure 3.18 is a sketch of the m3= ,950
curve from Figure 3.17 with an indication of the values of A

for each range of the curve. This duplication of solutions
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90

FIGURE 3.18 PLOT OF m3 = ,95, SCO FLOW
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causes the computer program to be considerable more complex,
as reflected by the flow chart in Figure 3.16. Rather than
solving (3.34) for Ac the computer program is written to
increase A from 90° toward A, using the positive sign in
(3.26) until the inner quadratic in (3.26) 1s negative, indi=-
cating that A 1is now greater than Ac. Then the increment
is reversed and A is decreased from Ac toward 90° this
time using the negative sign in (3.26). Thus, Ac and fur-
ther on Aé are never explicitly calculated nor do they need
to be in order to plot the desired constant m curves. With
respect to computer time this procedure is just as efficient
if not more so than explicitly solving equation (3.27) for Ac

*
and then increasing A to this known value.

The Flow parameter graph on Figure 3,19 includes solutions
for SC2 and SC4 profiles. For this graph A has been allowed to
increase until «a is greater than 180° or le| 1is greater than 8.5.
The complete subroutine called CONVERGE and some sample printout of
calculated values is shown in Appendix A. Items of interest with
respect to these curves and the governing equations are:

1. The A = 90° line derived earlier divides SCO flow from SC2

flow.

This general procedure is used several times in the accompanying com=-
puter programs. Even though explicit solutions for the limits are
derived, very often it takes less computer time to simply increment
until a resulting expression is out of bounds. Also at times the
limits, when they are determined explicitly, are exact values which

a digital computer can only represent approximately and the differ=-
ence between the exact value and the approximation may be infinite,
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The A = 180° line divides SC2 flow from SC4 flow. To the
right of this line solutions have four interior zeroes. The
equation for this boundary is obtained by setting A = 180°
in equations (3.24), (2.70), (3.25), and (3.23). From (3.23)

sin (180°) = sn(omy) = 0 (3.35)

From (3.24)

my = =1 (3.36)
3k2-1
From (3.25)
1
o = 2K (3.37)
™3
From (2.70)
)
¢ = 2 (ny2(k2-2)-1] + 24m 8" (3.38)
3

Then equations (3.37) and (3.38) with m3; defined by (3.36)
can be used to plot values of @ and € for values of k
between 0.0 and'\/%—. As k -»V—li_, m3 »0 and a -0, so
the curve becomes asymptotic to the a = 0 axis.

For large € all curves become asymptotic to the «a =20
axis.

Again, as for SD flow there is a second family of curves indi-
cating possible SC2 profiles in all areas to the left of the
A = 180° line. Only a few lines have been plotted here

(m3= 3.0, 4.0, 5.0,---10.0), but corresponding values of k
curves may also be plotted. (In this region k would be

greater than the k = ,8 curve plotted and less than 1.0.)
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Similarly, a secondary family of curves of SC4 may be plotted
that covers all parts of the graph to the left of the envelope
of curves on the right side of the graph. (Both SC2 and SC&
solutions would cover all values of « from zero to 1800 for
€ < 0,) Other families of curves for SC6, SC8, etc. types of
flow may also be developed from these basic equations.

5. For the constant m curves, equations (3.26) and (3.27)
again give an indication of the allowable values of A and
k., Form, = 1.0 for k to be positive A< sin-l(gﬁ & 125,59,
The positive sign in (3.26) is used to give real values for
k. So for the entire m3= 1.0 curve 54,5° ® < A < 90° and
90° < A < 125,59, For m3> 1.0 the plus sign in (3.26)
gives real values for k if A # 909, For computational pur-
poses A has been allowed to approach 90° until k > .999.
For m3< 1.0 similar condition; exist as in the SCO flow.
That is, the solutions of (3.34) determine two critical
values of A, called AC and A;. For 90° < A < Aé both
the plus and the negative roots in equation (3.26) give a
solution., Figure 3.20 is a sketch of the complete m, = .95
curve from Figure 3,19 with an indication of the values of A
for each portion of the curve.

Figure 3.21 is another plot of SC flow without the secondary
solutions, This allows for easier use of the graph to determine values
for primary solutions. Four typical data points are selected from
Figure 3,21 and the values of k and mj3 are read and used in equation
(2.45) to plot the velocity profiles shown in Figure 3.22., The coordi-

nates and values of k and mj3 for each profile are shown on Figure
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FIGURE 3.20 PLOT OF my = .95, SC FLOW
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SCALE 1 INCH  0.01e88 FT/SEC
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FIGURE 3.22 TYPICAL VELOCITY PROFILES, SC FLOW
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3.22., The computer routine used for this plot called subroutine PRO SC

is shown in Appendix B.

3.4 Non-Symmetrical Flow

Non-symmetrical flow (N flow) with one and three interior
zeroes as sketched in Figure 2.10 parts (a) and (b) are now considered.
As noted in Section 2.,4.3 there are an infinite number of other
possible non~-symmetrical profiles. The N1 and N3 profiles are
similar enough so that they are considered simultaneously. From sec-

tion 2.5 the equations for the two types of flow are

for Nl Flow

a = K\ (2.71)

m
]

4 ' '
\7“1-1. [(k2 = m, = 2)K' + 3E'] (2.72)

for N3 Flow
a = 2K'\/m“ (2.78)

8 1 1
€ = —F,: [(kz-mu -2) K' + 3E'] (2.79)

where for both cases the values of 61 and 6, for F =0 can be

determined as

Cafif ™ly\q2
64 \/ml+ K¢{sin [5( - )] ,k (2.75)

k2

Also, for N3 flow

63 = 62+ 201 = 61 + 2K'w/nu+ (3.39)
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For non-symmetrical flows the equations are actually simpler
than those for symmetrical flows, The same dimensionless velocity pro-
file as given by equation (2.34) derived for SD flows is used for

non-symmetrical flows. The application of the boundary condition

62
[ F(6) d6 = € for the N1 flow
-91

and
03
[ F(6) d6 = € for the N3 flow
-92

results in expressions for € as given in equation (2.73) for NIl

flow and (2.79) for N3 flow. Similarly, the application of the
boundary condition F(+ @) = 0 results in expressions involving ellip-
tic functions which are equation (2.75) for 6, and (2.76) for 6,.
But, the angle which describes the inclination of the walls is
a=(6,4,)/2 for Nl flows and a= (6,10, /2 for N3 flows. From

(2.76) it is shown that

for N1 Flow

Q = —5— = 5 = \/mu K' (3.40)
for N3 Flow

(3.41)

]

6, +/m, 2K' -0, = 2+/m, K'

As 6, and 6, cancel, equations (3.40) and (3.41) involve only the
complete elliptic integral which does not depend on «. (For previous

cases of symmetrical flow the corresponding expressions involved either
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sn, c¢cn, dn, E, or F, which are functions of both «a and k.)
As a result there is no necessity to relate the elliptic functions
with trigonometric functions as done in Sections 3,1 and 3.2,

The general procedure for determining constant k curves
for the N1 flow parameter graph and the N3 flow parameter graph is
to assume a value of k., Then vary ¢ within the allowable limits
given by equation (2.75) and calculate m, from (2.71) or (2.78) and
€ from (2.73) or (2.79). Then (2.75) and (2.76) can be used to deter=-
mine 6; and 6, if desired. (They are not required for plotting
the solution although the existence of 6; as determined by (2.75) is
used to determine the allowable limits of «.) This general procedure
is illustrated more clearly in the constant k symbolic flow chart
for N1 flow shown on Figure 3.23.*

The constant m symbolic flow chart for N1 flow is shown
on Figure 3.24. Here the procedure is not quite as simple because an
algorithim is not available for the inverse of the complete elliptic
integral K', even though it is a function of the single parameter k.
Rather than write the necessary inverse algorithim a simple interation
procedure is used and is shown on Figure 3.24. 1In this way equations
(2.71) for N1 flow and (2.78) for N3 flow can be used to determine
k for assumed values of o and my.

The complete flow parameter graphs for N1 aﬁd N3 flows
are shown on Figures 3,25 and 3,26, respectively, Items of interest

are:

* The equations and procedures for N3 flow are similar enough to
those for N1 flow so that the flow charts for N3 flow are not
shown.
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START
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JL = 1° ja2 oo JL = ‘K' Vi-2& + 1) o0
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FIGURE 3.23 SYMBOLIC FLOW CHART FOR CONSTANT k CURVES, N1 FLOW
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Both graphs show that either 'met inflow" or '"net outflow"
may be represented equally as well.

For large +¢ all curves become asymptotic to the o =0
axis.

For € = 0 -equations (2.73) and (2.79) show that, assuming

m, £0

)
m, = -3% + K2 -2 (3.42)

Since m, > 0 for meaningful flow then

]
-3I(E,— + k2> 2 (3.43)

This limit is determined graphically to be between k = .980
and .981. Therefore, in both Figures 3.25 and 3.26 the

k = .980 curve crosses the € =0 axis and is asymptotic to
the positive € axis at o = 0° while the k = .98l curve
does not have a solution for € = 0 and as shown is asymp=-
totic to the negative € axis at «a = 0°,

For k =0 equations (2.73) and (2.79) show that € = 0,
For all other constant k curves, and accordingly constant
m curves, the upper and lower limits of the curves are
restricted by the fact that if the flow is to be non-symmet-
rical as described, then 6, must be > 0°, The equation for
6, 1is

1

Cafif,  ™woly®
6, = \/mu K {sin 3-1 - ] ,k (2.75)

k2

For 6, > 0 the expression within the inverse sine function
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FIGURE 3.26 FLOW PARAMETER GRAPH, N3 FLOW
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must have a value between 0.0 and 1.0. Define this quantity

as T

-3
m

1 m,_'-l
—(i - ) (3.44)
3 K2

For the upper limit where 6; will be maximum and € > O,

T = 1.0, Therefore
1 my -1
§<i - ) = 1.0 (3.45)
kZ
or
my = 1 - 2k?2 (3.46)

Substituting the above into (2.73) and (2.79) one obtains
for N1 Flow

12

€ = ——— [K'(k2-1) +E'] (3.47)
1-2k2

for N3 Flow

€ = —2% _ (k' (k2-1) + E'] (3.48)
1-2k2

Corresponding values of « are determined from equations

(2.71) and (2.78)

for N1 Flow

a = K'(1-2k2)% (3.49)

where

1
k SV-Z-_ (3.50)
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for N3 Flow

1
2

la = 2K'(1-2k2?) (3.51)

where (3.50) also applies.
Equations (3.47) and (3.49) for N1 flows and (3.48) and
(3.51) for N3 flows can be used to determine the right most
boundary of possible flow for ¢ > 0. These lines are not
plotted as they would interfere with the constant k lines
which are very close together in this region. However, they
are used to allow plotting of the constant k and m curves
right to the limiting values,

For the lower limit where 6, will be a minimum and

€<0, T-=0.0, therefore

1 mk"l

5( -—7—) = 0.0 (3.52)
k

or

m, = k2 + 1 (3.53)

Substituting equation (3.53) into (2.73) and (2.79) and using

(2.71) and (2.78) one obtains

for N1 Flow
€ = BSE'_'_K')_ (3.54)

Vk2+ 1
a = Klm (3.55)
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for N3 Flow

TR
¢ = 24(E K'Y (3.56)
1/k2 +1

a = 2K'1/k2 +1 (3.57)

Equations (3.54) and (3.55) for Nl flows and (3.56) and
(3.57) for N3 flows can be used to determine the right-most
boundary of possible flow for € < 0. Again, the curves are
not plotted but are used in the computer programs for limits
on the constant k and constant m curves., Figure 3,27 is
a sketch of the dimensionless velocity function for typical
values of k and m, with the limiting cases described
above. The curves are not meant to depict actual curves for
fixed k and m, but merely to show what occurs as the
limiting values are approached. In addition to the previous
discussion of € and a it can also be shown from equations

(2.75), (2.76), and (3.39) that

(a) for upper limit (T = 1.0, € > 0)

1
6, 6, = K'(L - 2k2)2 (3.58)

1
93 91 + 92 = 2K (1 - 2k2)2 (3.59)
(b) for lower limit (T = 0,0, € < 0)
6, = 0° (3.60)

1
65 = 6, = 2K'(k2+1)2 (3.61)

One further point of interest is that on the upper limit

the € equation for N1 flows given by (3.47) is identical

to the A = 90° curve dividing SDO flow from SD2 flow
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derived in Section 3.2.1 and given as equation (3.9). This
is to be expected as this line denotes the limiting case when
6, =62 and the non-symmetrical flow becomes symmetrical.
Also, the equation for the upper limit for € and N3 flows
given by (3.48) can be rearranged to become identical to equa-
tion (3.38) derived in Section 3.3 as the dividing line
between SC2 and SC4 flow. Again this is to be expected as
the N3 flow in the limit becomes symmetrical with two or
four interior zeroes depending on the boundary conditions.
Further, equation (3.30), which was derived in Section 3.3 as
the dividing line between SCO and SC2 flow, can be simpli-
fied to be identical to equation (3.54), which is the lower
limit for N1 flow. Again this is expected as the lower
limit of Nl flow is also the boundary between SCO and SC2
flow,

5. With respect to the allowable range of «, equations (3.49),
(3.50), (3.51), (3.55), and (3.57) can be summarized as

follows

for N1 Flow

Re[K' V1 - 2k?2 1< @ < win[180°,K' V1 + k2] (3.62)

for N3 Flow

Re[2k' V1 - 2k?l<ag min[180°,2k' V1 + k2] (3.63)

The computer routines for the N1 and N3 flow parameter
graphs are called NONSYMl and NONSYM3, respectively, and are shown
with some print=-out of the calculations in Appendix A. These programs

basically follow the flow charts in Figures 3.23 and 3.24.
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As illustrations two arbitrary data points are selected and
marked on each flow parameter graph in Figures 3.25 and 3.26. The
resulting values of k and my are read from the graph and used in
the dimensionless velocity function given by equation (2.45) to plot
the corresponding velocity profiles, These profiles and their corre-
sponding values of «, €, k, and my are shown on Figure 3.28.
Scaling is similar to that used for previous velocity profiles as
discussed in Section 3.2.,1., The computer routine used for this plot

is shown in Appendix B.

3.5 Summary

The flow parameter graphs presented in this chapter summarize
the derivations and calculations. These graphs show the limits of the
principal solutions for each type of wvelocity profile. The graphs can
now be used to determine the flow parameters m and k for parti-
cular values of @ and €. These parameters as used in the dimension-
less velocity functions derived in Chapter II can then be used to
quickly and easily determine the exact velocity distribution. The
various flow parameter graphs can be superimposed on one graph, but
the large number of lines would be difficult to interpret, However,
one combination that is useful is the combination of Figures 3.14 and
3.21 which represent the primary solutions for SD and SC flow.

The resulting graph is shown on Figure 3.29, This figure shows an
area for positive € between ﬁhe SD2 solution and SC2 solution
where there is apparently no possible flow, However, referring back
to Section 3.3 and Figure 3.19 one may note that this region (as well
as others) is covered by the "secondary" family of curves for

SC2,SC4,===- etc. flow profiles.
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040
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FIGURE 3.28 TYPICAL VELOCITY PROFILES, N1 AND N3 FLOW
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FIGURE 3.29 FLOW PARAMETER GRAPH, SD AND SC FLOW (PRIMARY SOLUTIONS)
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A further summary of the possible flow profiles available in
any particular region is shown in Figure 3.30. This chart can not be
used to determine the flow parameters or the velocity profiles, but
does indicate further the range of each type of flow. Some of the
values of € are read from the graphs, and some are interpolated
between calculated points so these values (particularly for SC4 where
a < 80°) are approximate., However, the general run and the order of

magnitude of the limits are as shown.
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IV. VERIFICATION OF A MODIFIED PERTURBATION TECHNIQUE

4.1 Introduction

The exact solutions of non-linear differential equations,
such as those describing the flow of an incompressible viscous fluid,
usually require such complex and tedious mathematical procedures as to
be impractical, Two possible alternatives are: (i) find exact solu-
tions for a relatively few problems to obtain a qualitative under-
standing of the nature of other flow problems where solutions are not
obtainable; or (ii) develop simple approximate solutions suitable for
practical computations. In the study of fluid flow both methods are
useful and tend to complement each other, as the few exact solutions
can be used to check the accuracy and reliability of the approximate
methods. One of the very important approximate methods of solution
is the perturbation technique where the deviation from linearized
theory is considered to be small. The flow pattern then can be thought
of as a combination of a simple velocity profile given by the linear
theory on which is superimposed small perturbation velocities resulting
from the non-linearities. The advantage of such an assumption is that
the equations for the motion now become 1linear and can more readily
be solved.

This general perturbation method is readily applicable to
the case of incompressible viscous flow between non-parallel walls and
provides a means of investigating important flow properties such as
the stability of the various '"mathematically possible'" exact solutions.

However, since the non-linear terms of the governing equations are
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ignored or approximated, the standard perturbation techniques break
down in areas where the non-linear terms would become the dominant
factors in describing the flow properties. 1In particular, for this
case of flow between non-parallel planes at an angle of inclination
(@) near the critical value of o_ = 128.7266988-=-" degrees the
standard perturbation technique does not give valid results,

A modification of the standard perturbation technique which
provides solutions for all « including a, has been developed by
Yen and Tang [1l5 and 16]. This modified method has been applied with
success to problems in other areas where the standard perturbation
method breaks down at similar critical values. However, the
verification of results obtained by applying this method to non-
parallel flowhas been difficult, since prior to this investigation
each exact solution for a particular value of a and € required
an iterative method of solution. The flow parameter graphs developed
in Chapter III for the exact velocity distribution can now be used for
desired o - € values,

In this Chapter the standard perturbation technique as
applied to the non-parallel flow problem will be presented. The
modified technique will then be discussed and the results for various
@ mear will be compared to the exact solutions as determined

from the flow parameter graphs.

* @ 1is the root of the transcendental equation (4.28) to be derived
c
in Section 4,2.
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4,2 Standard Perturbation Method

The governing equations as derived in Chapter II are

F2 + 4F + F" = =J (2.10)
B.C 1. F(+a) = 0 (2.12)
o
2. [ F(e)d e = ¢ (2.13)
-a

First it is convenient to normalize the equations by letting

= E
£f = < (4.1)
Therefore, equations (2.10), (2.12) and (2.13) become
£' + 4f + N = -€f? (4.2)
f(+ta) =0 (4.3)
a
| f(e)de = 1 (4.4)
-t
_ 2
where N = ek
Now, define N and f in terms of infinite series of €,
S
N = Z € Ni = Nog+ €N + - - = (4.5)
i=0 ’
P |
f = & € fi = fo +ef)] + -~ - (4.6)
i=0
Then
£' = £0 +€f] + e2fy) 4 - - - (4.7)

£ = fg + ef]' + €%f, + - - - (4.8)
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Using (4.5), (4.6) and (4.8) one may rewrite equation (4.2) as

£o+ ef) + e?f; 4 mem + 4(Eg + €f + ===) + (Ng + €Nj + ===)

= - €[f 2 + 2€¢f,f, + €2(£,2 + 2f¢f)) + ==-2] (4.9)

Since (4.9) must hold for all values of € it follows that

£q +4Eg + Ny = 0 (4.10)
£, +4f, + N = - £,2 (4.11)
"
£, +4f, + N, = = 2fyf, (4.12)
"
f£qa+4E5+ Ny = £,2+ 2f(f, (4.13)
i
]
etc.,

Also, using (4.6) in the boundary conditions (4.3) and (4.4) and

equating powers of € as above gives

fi( +ta) = 0 , 1=1, 2, . (4.14)
and

[0
f f0 de = 1 (4.15)
-
(04

£.d6 = 0 4,16
£1 i > i=1, 2, === ( )

So the non-linear equation (4.2) with boundary conditions (4.3) and
(4.4) has been rep1;::d by an infinite set of linear equations (4.10),
(4.11), (4.12), (4.13) ... etc., and an infinite number of boundary
conditions given by (4.14), (4.15) and (4.16). These linear equations

can easily be solved in a recursive manner.
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The solution of (4.10) is

N
0
f, = C, cos 26 + C, sin 26 - e 4.17)

applying boundary condition (4.14) at 0 = +«a gives

N
0
C,cos 2a + C, sin 20 - 7 - 0 (4.18)
Ny
C1 cos(=2) + C, sin(~20) - “ = 0 (4.19)
Solving for NO/A
Ny
- = Cy cos(a) (4.20)

Substituting equation (4.20) into (4.17) gives

£, = C,[cos(20) = cos(2m)] (64.21)

Applying boundary condition (4.15) gives

Q Q
1 = [ f,(0)d6 = [ Cy[cos(26) - cos(20)] de
[0 -
(4.22)
= C,[sin(2x) - 2a cos(22)]
or
c L (4.23)

sin(2a) - 2a cos(2x)

where (4.23) defines C; {f [sin(22) = 20 cos(2x)] daes not equal

zero. Substituting (4.23) into (4.21) one obtains

- .cos(20) =~ cos(20)
£o(®) sin(20) - 2a cos(2x) (4.24)

Similar procedures can be used to determine solutions for

£, from (4.11), f, from (4.12), etc. For each equation the solution
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is a function of the previous solution, Then the dimensionless velo-
city profile can be determined for desired values of a and € from
equations (4.6) and (4.1). The solution is then represented by an
infinite series and the number of terms required for the solution is
dependent on the desired accuracy and the size of €. Of course ¢
must be less than 1.0 to insure the convergence of equation (4.6).

It is noted that fo is not defined if
sin(20) - 20 cos(2x) = O (4.25)

Rearranging (4.25) and defining this critical value as ac

gives the following transcendental equation for a,.

tan(2r) = 2 (4.26)

Solving (4.26) gives a value of a, = 128.7266988---~~degrees. There=-
fore, as o -» Qs £,(6) » » and the solution determined by this
standard perturbation technique is completely erroneous,

Thus, the general linearization technique of approximating
the non-linear equations by a finite number of linear equations gives
acceptable results except near the critical value of @, where the

non-linear terms would normally be the dominant factor.

4,3 Modified Perturbation Method

In principle what is desired is a method of determining the
velocity function at as the ¢ritical angle, based on the solutions
of O near Q. The method developed by Yen and Tang for similar
types of problems is to express the boundary specification, in this

case (Q, by an infinite series, i.e.,

i
a = X Qe = qp +ae + a2€2 + - e = (4.27)
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For relatively small values of ¢ reasonable accuracy can

be obtained if only the first few terms are used, such as

a = qp + eo (4.28)

This relation can now be used to relate a to @, and @; so that

« could approach Q, and be determined as a function of «a; and Q.
The derivation of the equations using this modification is

similar to the derivation for the standard equations as shown in

Section 4.2, The basic equations as given in Section 4.2 are

£ +4f +N = - ef? (4.2)
£(+a) = 0 (4.3)
(0]
[ f(6) do = 1 (4.4)
-a

The following expansions are used

0 i 2
£ = p . f. = fo +€f1 +"'|-f + o ® = (4.29)
. i 28
i=0
) i 2
_ € _ €
N = = 37N, = No+eNp+5mNy+- - - (4.30)
i=0
o i 9
= L o, = g tea; FormQ, + - - (4.31)
@ L% 0 TR :
where
" " " €2 "
f = f0+€f1 +Tf2+° - - (4.32)

Substituting (4.30) and (4.32) into (4.2) and equating like

powers of € as in Section 4.2 gives
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Eo+4fg+ N, = 0 (4.33)
£)+4E, +N, = = £° (4.34)
£ + 4fp + Np = =4fof) (4.35)

1
1

etc.

where, except for the constants these equations are the same as those
derived in Section 4.2. The difference will be in the boundary condi-
tions where « appears. From equation (4.3)
2
£ = efy(@) + ef, (@ +§—, £,(0) + = === = 0 (4.36)

To substitute for «a first expand £(@) in a Taylors' Series about o

(a-a ) @ap? . (a-ap’
£(@) = £(q) + £ (@)= + " (@)= *+ £ ()= + === (4.37)

Then from 4.33
ECCZ

(@ =g = €, t—=t- - =) (4.38)

Substituting (4.38) into (4.37) gives

To ay?
f(@ = f(ag + e f'(xg + 62[7 £' (g + 5= f"(ozo):] + === (4.39)
€2
Using (4.39) to express f£fo(@), €F (@) and 5 f,(@), equation

(4.36) can be written as

£ = folag) + elfi(@g +ayfy@g]

o aq?
of1 ' 2 1 "
+ ¢ 7 folap) + af1(xp +T folay + -5 fol@ | + === (4.40)
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Where by (4.3) £( xa) =0, and therefore,

£,(2) = 0O (4.41)
Lyes = /

fl(ao) + al fO(JO) 0 (4.42)

1 @2 a2

5 £,y :l-ozl £ () + 5 £ (@) + == fhay) = 0 (4.43)

Expressing the second boundary condition specified by (4.4) in terms

of the expansion for o gives

a

0
J £, d8 =1 (4.44)
.ao
and
xo
i fi(e) de = 0 i=1, 2, = (4.45)
-ao

So the problem is now represented by the linear equations
(4.33), (4.34) and (4.35) with boundary conditions specified by (4.41),

(4.42), (4.43), (4.44) and (4.45).

The first equation for £, is

f'i9 +4fy + Ny = O (4.33)

The solution is

No
£0(6) = Cjcos(20) = & (4.46)

Applying equation (4.41) - B.C. # 1

N
0
folapp = 0 = C, cos(ZJo) - (4.47)
Therefore
No
“ = Cl cos 2ao (4.48)
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and
fo(8) = Ci1[cos(28) = cos(2ayp)] (4.49)
Applying equation (4.44) - B.C. # 2

a0
¢ [ [cos(20) = cos(2ag)] d6 = 1 (4.50)
—ao

Integrating and solving for C;

1
C1 sin(20g) - 20y cos(2Qg) (4.51)
where g # a,. Substituting (4.51) into (4.49)
- cos(26) = cos(2xp)
£o(6) (4.52)

sin(2ag) - 2ag cos(20)

Comparing this solution for fo(e) with that obtained by the standard
perturbation method (equation (4.24)), it is the same except that
(4.52) is in terms of 6 and p where (4.24) is in terms of 6 and
. Therefore, by the standard perturbation method described in
Section 4,2 (« could not equal as but by representing « as a
series, now it is g that cannot equal o Therefore, o which is

2

€
equal to Qo + ex; + - Q2= - - can take on values approaching a,

as long as «p does not approach a-

Using equation (4.52) in equation (4.34) for £,(6) gives

£) +4f1 + N1 = C1%[cos?(26) - 2cos(20)cos(2xg) + cos2(2ug)] (4.53)

A solution is

1 C12 C12
fi(6) = - Z[Nl + 5 + Clzcosz(ZJO)] + >k cos (48)
Clz (4.54)
+ —— cos(2a()6 sin(26)

2
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Equation (4.42) -B.C. #l is

fi(xg) + oy £h(@p) = O (4.42)

Substituting from (4.52) and (4.54) into (4.42) gives

Cc,2

1 .
_ 1 N14"—7—4-012c032(200) ; (oh) cos(qao)_*_cl N 2 ) \ss
S T sin(200) 48 STa(ag & Coeos(2r)  (4.39)

Also, applying (4.45) =-B.C. # 2 gives, after integration and rearranging

, [7¢,2 , c1?
I I P o
N, = o, [ ) 81n(430) ¢y X cos (2ag) 5 (4.56)

This procedure may be continued to obtain solutions for
£,(6), £f3(6), etc., and the appropriate boundary conditions may then
be used to evaluate the constants. However, even though the theory is
straightforward, it is obvious from the preceding derivations that the
solutions soon become quite unwieldy. For the purpose of this investi-
gation only these first two solutions for f; and f, are used, since
sufficient accuracy is obtained to determine if the general theory is
correct. Therefore, equations (4.29), (4.30) and (4.31) for £, N,

and « are approximated as

f = fO + €f1 (4.57)
N = Ny + eN (4.58)
a = Qa5+ ex, (4.59)

The equations derived in this section and the definitions in
Section 4.2 can now be used to determine approximations of the velocity

distribution function for values of € less than one, and hopefully,
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for values of « approaching ac. The general procedure with the
given equations is to specify a value of «; and € where Q, # Q.
and calculate o , f,;, £,, and £. Then the velocity distribution
is for the specified value of € and the calculated value of «.
Therefore, guesses of g have to be made until & happens to be
near to determine if the theory does indeed give acceptable
answers near Q. This guessing procedure is undesirable, and the
equations are very difficult to solve in terms of « since it
requires that equation (4.55) be solved for «agp. The computer solu-
tion suggested here for the velocity distribution has an iterative
loop in it so the us' r can specify € and «@. Then within the
iteration a value of «ay; is found to agree with the specified value
of o within reasonable accuracy.

The symbolic flow chart in Figure 4.1 summarizes the general
procedure, with the iterative loop, as used in the computer program
for plotting velocity distributions for radii of 1.2 and 3,0 inches

and for values of 6 between + Q.

4.4 Comparison with Exact Solution

The critical value where the standard perturbation technique
is no longer valid is shown in Section 4.2 to be the solution of equa-

tion (4.28) which gives
a, = 128.7266988 - - - degrees

Since the perturbation method - both standard and modified
versions -~ has been derived for symmetrical flow, then the graph com-

bining SD flow and SC flow on Figure 3.29 can be used. From this
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, START

EEADa&e

GUESS «gy: ag = a=0.5

et |
C, = L
1 sin(2x) = 2u; cos(2x)
2 |7C1? ;2
N, = a-(')- s sin(4xg) = C12a0 COSZ(ZQO) -5
C,2
~ 1 Nl-+—5—-+C12cos (2¢) ‘+Cl cos(4a0)_+C1a0cos(2ao)
“ 7 7 8c, sin 20, 48 sin(20q) A
~ "' — .
O/O =0 - €O/1
NO

Ng = 4C) cos(2xp)

Ny
fo = C; cos(20) = T

2 2
=1 €1 2 2 €
f, = N Ny +T+C1 cos“(2xp)| + i cos (48)
C,2
PLOT u,8 +—5—= cos(2m;) 6 sin(20)

£ = £, + €f,

F = cf
12Fvy
u = —

END R '

S

FIGURE 4.1 SYMBOLIC FLOW CHART FOR MODIFIED PERTURBATION METHOD



108

graph it is obvious there is no primary solution for € > 0 at Q-
In fact, referring back to Figure 3.7 it is clear that even including
primary and secondary solutions there is no solution for SDO or SD2
flow at o = ac and € > 0. In particular, the primary solution is
for sc2 flow. From Figure 3.19 it is also obvious there is a secon-
dary solution for SC2 flow in the same area, however, as will be
verified later, the primary solution as can be determined from Figure
3.29 is the significant solution,

With the aid of Figure 3.29, and the accompanying print-out
of results where more accuracy is desired, four data points near a,
are selected for comparing the dimensionless velocity distribution
function, F, for the modified perturbation method with the exact
solution for SC2 flow. The velocity distributions obtained from the
modified perturbation method using the flow chart on Figure 4.1 are
shown on Figure 4.2 with corresponding values printed for
a, €, Qp, and ;. The velocity distributions obtained from the
exact solution, using Figure 2.29 to determine k and m3 and equa-
tion (2.45) to determine the velocity distribution function, are
shown on Figure 4.3 with corresponding values of «, €, k, and mj.
Subroutine PRO CON used for the exact solution and subroutine PERT
which follows the flow chart in Figure 4.1 are both shown with some of
the calculated print-out in Appendix C.

Figures 4.2 and 4.3 clearly verify the general procedure of
the modified perturbation technique as the flow profiles on the two
graphs are nearly identical. Exact comparison to determine the effect
of larger values of € is difficult to obtain from Figures 4.2 and

4.3 due to the relatively small scale. Therefore, selected data values
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SCALE 1 INCH: 0.00037 FT/SEC

SCALE 1 INCH= 0.000k7 FT/SEC

W \Q@
ALPHA = 12B.727 o =127.92 | ALPHA = 122.034  ap = 120.23
EPSILON = -0.015 o, = -56.58 | EPSILON = -0.103 o, = -12.62

SCALE. 1 INCH: 0.00253 FT/SEC
€9

SCALE 1 INCH- 0.00337 FT/SEC
L)

ALPHA -
EPSILON = -0.L09 o) = =14.48

126.778  op = 122.91

$9

ALPHA

= 128.683
EPSILON =

-0.A18

g = 118.79

al = -12.09

FIGURE 4.2 VELOCITY DISTRIBUTIONS OBTAINED BY THE MODIFIED
PERTURBATION METHOD
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SCALE 1 TN 0.00097 FT/5EC

SCALE. 1 INCH: O 000&7 FT/SEC

t1) ()
ALPRHA - 128.727 K = 0.200 | ALPHA = 122.034 K = 0.200
EPSILON - -0 013 M - 1.003 [EPSILON = -0.1u3 M = 0.995

SCALE 1 INCH. 0.00250 FT/SEC

&)

SCALE. 1 INCH- 0.00330 FT/SEC

(W)

LPHA -
EFSILON -

L2B.783 K -
0.0 M =

0.4.00
0.949

LPHA = 12B.6A3 K - 0.430
EPSILON - -0.81& M = 0.9))

FIGURE 4.3 VELOCITY DISTRIBUTIONS, SC2 FLOW
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are obtained from the computer print-out and summarized in Figure 4.4.
The approximate percentage of error on Figure 4.4 was calculated as the
difference between the two solutions divided by the maximum velocity
for that profile. Analysis of this data indicates as expected that as
€ 1is increased toward 1.0 the accuracy of the overall profile is
reduced. For data point two « was chosen a significant distance
from ac, but the error is comparable to that for data point one
where « 1is very near ac.

Overall, the exact solutions clearly verify the correctness
of the theory of the modified perturbation technique as applied to
this problem. The use of one or two additional terms in the infinite
series for o, f, and N would surely improve the accuracy, but the
general procedure seems to be well founded.

The possibility that the modified perturbation method might
indeed predict solutions at « = a, for € > 0 has also been investi-
gated by calculating values of « for values of a, as Qg - ac and
for € > 0. However, in each case as ag = s the resulting values
of a are away from ac. This effect is illustrated by the results
plotted in Figure 4.5, which is a plot of « vs. € and can be used to
determine values of « for fixed values of Q, and €. Each line
represents a value of o, and it is obvious that as Ay = from
either direction the slope approaches zero and the value of «a for a
constant € becomes further and further from ac. Therefore, as none
of the lines cross the ac axis for € > 0, no solutions are
predicted for positive € when o = o, which agrees with the exact
solution., However, all the lines eventually cross the a, axis for

€ < 0, so there are definitely solutions in this region, again veri-

fying the exact solution prediction.
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Velocities at o
Plot o € 6 r = 1.2 inches times 10° %
error
Sc2 Mod. Pert.
Exact Soln. Soln.
1 128.727 -.015 1200 5.3592 5.3539 0.0223
90° 14,5837 14.5660 0.0744
60° 4.5890 4.5851 0.0164
300 -14.4651 -14.4473 0.0748
0° -23.7867 -23.7552 0.1324
2 122.034 -.143 1200 1.1400 1.1640 0.0855
90° 9.7264 9.7629 0.1300
60° -.3621 ~.3475 0.0520
300 ~19.0067 -19.0270 0.0723
oo -28.0703 -28.0999 0.1054
3 128.778 -.405 120° 19.2354 20.3168 1.0372
900 45.6877 47.1445 1.3972
600 -.5874 -.0453 0.5199
300 ~72.0406 -72.8874 0.8122
0° -104.2626 -105.3270 1.0209
4 128.683 -.818 120° 21.0358 24.8678 2.7863
900 43,7890 48.3188 3.2937
60° ~17.2405 -15.9384 0.9468
30° =-101.,1347 -103.4543 1.6866
; 0° -137.5295 -140.3150 2.0254

FIGURE 4.4 THE DIMENSIONLESS DISTRIBUTION FUNCTION FOR COMPARISON OF
SC2 FLOW AND MODIFIED PERTURBATION METHOD



113

FIGURE 4,5

RELATION BETWEEN < AND o NEAR Gc FROM MODIFIED
PERTURBATION METHOD
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4.5 Summary

An example of the application of the flow parameter graphs
developed in Chapter III is presented in this chapter. However, the
verification of the usefulness of the modified perturbation methods in deter-
mining velocity distributions for values of « near ac is but one
possible example of the general usefulness of the graphs. For most
applications it is advantageous to have the flow parameter graphs
plotted to a larger scale for more accurate determination of the flow
parameters, and in fact this has been done to determine the values
used in this chapter. However, for purposes of presentation in this

report each graph had to be reduced in size to fit on a standard size

page.



V. SUMMARY

A method has been presented in this dissertation of using
the exact solutions for the problem of radial two-dimensional viscous
flow between non-parallel plane walls to determine the exact shape of
the velocity profile for a specified flow rate (e¢) and angle of
inclination (a). The problem and the governing equations were
described in Chapter II with reference to the forms of solutions that
have been obtained by previous authors. Also, several velocity pro-
files were described, an expression for each velocity profile was
obtained, and the boundary conditions of flow rate and angle of incli-
nation were applied.

In Chapter III it was pointed out that due to the transcen=-
dental form of equations obtained in Chapter II, explicit solutions
for the velocity profile in terms of the flow conditions are difficult.
However, by relating the elliptic functions in the transcendental equa-
tions to trigonometric functions the equations were solved in terms of
two flow parameters (k and m), and the results were then plotted on
a = € coordinates referred to as flow parameter graphs. The flow
parameter graphs contain curves of constant k and constant m and
were developed for each velocity profile that was considered. These
curves describe the limits of each velocity profile and can be used to
determine the flow parameters for calculating the velocity distribu-
tion for any «a - € within the family of curves. Further, in Chapter
II1 the limits of each velocity profile and the relations between the
different profiles were investigated,

115
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In Chapter IV an example of the application of the flow para=-
meter graphs developed in Chapter III was presented. The example
involved a modified perturbation technique used for calculating velo-
city profiles for small flow rates near a critical angle of inclina-
tion where standard perturbation techniques do not apply. The velo-
city profiles as obtained by use of the flow parameter graphs verified
the modified perturbation theory as applied to this problem and pro-
vided a ready means of evaluating the accuracy of the solutions
obtained for different boundary conditions.

The flow parameter graphs presented in Chapter III best
summarize the results of this study. Several points that are shown on
these graphs, however, merit further review here.

1. For every set of «a - € values the number of possible velo=-
city profiles of radial motion is infinite. [13]

2. If nm <a<n/2 SDO Flow is impossible. [13]

3. For =10.3 ® < e <0 there are regions where SCO Flow is
not possible. [13]

4, When increasing positive € for a fixed < /2, the flow
becomes more and more concentrated in the center of the
channel until finally regions of inflow occur near the walls
giving SD2 flow. Further increasing € results in SD4
flow, SD6 flow ... etc., progressively excluding the simpler
types of flow. [13]

5. Increasing negative € for a fixed « does not exclude any
of the converging flow profiles. The SCO profile exhibits
all the well-known characteristics of boundary layers near
the walls, and an approximately constant veloéity across the

rest of the flow. [13]
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6. The dividing lines between SDO and SD2 flows and between
SC0 and SC2 flows are the boundary for N1 flow.

7. The dividing line between SC2 and SC4 flows is the
boundary for N3 flow<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>