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ABSTRACT

EXPERIMENTAL STUDIES OF ISOBARIC QUINTETS

BY

Arno George Ledebuhr

The mass excesses of the lowest T=2 states in the

nuclei 2"Al, 8Be, and 8Li have been determined.

The highly proton—rich nucleus 2"Si has been produced

via the 2"Mg(3He,3n) reaction. A cryogenic helium jet and

a recoil time-of-flight mass analyzer system were constructed

for use in observing short-lived beta-delayed particle

emitters. The half-life of 2"‘31 was found to be 103(42) ms,

and the energy of the protons de-exciting the T=2 state in

the daughter, 2"A1, has been measured as 3912.7(37) keV.

From detailed consideration of masses in the A=24 completed

isobaric quintet, it is concluded that this quintet con-

stitutes a test of the quadratic isobaric multiplet mass

equation (IMME) as precise as the mass 9 quartet and that

there is, in this case, no significant departure from the

equation.

Measurements of the Q values for the reactions

1°Be(p,t)°Be(T=2) and 1°Be(p,3He)°Li(T=2) have been carried

out using an Enge split-pole magnetic spectrograph. Data



were recorded on photographic plates and analyzed using

the MSU plate-scanning system. The Q values determined

were -27484.3(14) keV and -26821.3(57) keV for the 8Be and

8Li experiments respectively. These measurements have

removed the deviation from the quadratic IMME that existed

previous to these results.

An analysis of all A=4n isobaric quintets (five com-

plete) for A544 has been carried out. Predictions for

missing members have been made using the quadratic IMME.

In no case has any significant deviation from the quadratic

form of the isobaric multiplet mass equation been found.

This leaves only the mass 9 ground state quartet where a

known deviation is present and where sources of significant

experimental error have probably been eliminated.
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INTRODUCTION

The isobaric multiplet mass equation (IMME) is a result

of first—order perturbation theory, with the assumption that

only two-body forces are responsible for charge-dependent

effects in nuclei. The equation predicts that the mass

excesses AM of analog states of an isobaric multiplet can be

determined by a three-parameter quadratic equation

AM = a + sz + cTé.

Deviations from the quadratic form of the IMME could be

expected if there were charge-dependent many-body nuclear

forces, isospin mixing or shifts in unbound levels. These

deviations are usually parametrized as cubic or quartic

terms in T2 (dT;,eT;). If an isobaric quintet (T=2

multiplet) is used to test this equation, both additional

terms can be determined, whereas only one can be determined

in a quartet (T=3/2 multiplet).

In a review article by Benenson and Kashy (Be79), an

analysis of 22 complete isobaric quartets found that only in

one case - the ground state A=9 quartet - was there a

significant deviation from the quadratic IMME (d coefficient

of 5.8(16) keV). However, mass 9 is also the most

accurately measured quartet and one cannot conclude that
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this deviation is exceptional without obtaining results of

comparable accuracy in other multiplets. Isobaric quintets

offer the prospect of improved tests of the IMME.

This dissertation describes measurements which yield a

test of the IMME in the A=24 quintet of the same level of

precision as the mass 9 quartet. New measurements on

the A=8 quintet have removed the slight deviation that

existed previous to this work.

The thesis is organized as follows: Chapter One

contains a discussion of the theory of the isobaric

multiplet mass equation: Chapter Two describes the

measurement of the 2"Al T=2 level and includes the details

of the design of a cryogenic helium jet and recoil time-of-

flight mass analyzer system constructed for this

measurement: Chapter Three contains the details of the

measurements of the lowest T=2 levels in 8Be and 8Li;

Chapter Four discusses the A=24 and 8 quintets along with

a summary of the remaining A=4n quintets for A544. There

are now five completed quintets.



CHAPTER ONE

1.1 Isotopic spin and charge-independence.

Isotopic spin has its origins in the observations of

low energy proton scattering which revealed that,

neglecting Coulomb effects, the proton-proton (p—p) and

proton-neutron (p-n) forces are very similar (Br36,Ca36).

These observations led to the hypothesis of the

charge-independence of the nuclear force and started the

development of isospin as an important quantum number.

The hypothesis of charge-independence is that,

neglecting the electromagnetic effects, the force between

p-p, p-n and n-n pairs will be identical when these pairs

are in the same space and spin states. Because the p-n

system is not made of identical particles, there are

space and spin configurations available to this system

that are not allowed for the p-p and n-n system.

It is only those configurations (where the identity

of the nucleons does not matter) for which the forces

may be compared.

Heisenberg postulated (He32) (shortly after the

discovery of the neutron) that the specifically nuclear

forces between a pair of protons (p-p) would be the same as

that between a pair of neutrons (n-n). The hypothesis, of
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the equivalence of the p-p and n-n force, is known as

charge-symmetry. This is a less restrictive statement than

the one of charge-independence because charge-independence

implies charge-symmetry but not vice versa.

The charge-dependent nature of the nuclear force is

considered to be due solely to the effects of the

electromagnetic interaction. These effects are classified

as direct and indirect (He69). The direct part includes the

Coulomb force, vacuum polarization effects, the neutron-

proton mass difference, and the magnetic forces (such as the

spin-orbit force). These direct effects involve no meson

exchange between the nucleons and are present even in the

absence of hadronic forces.

The indirect charge-dependent effects are present only

when there are nuclear forces. These effects, as described

by Henley (He69,He81), include the mass difference between

the neutral and charged mesons, mass differences of baryons

(during two-pion exchange for example), radiative

corrections to meson-nucleon coupling constants, meson

mixing caused by the electromagnetic interaction, and forces

that arise from meson plus photon exchanges.

In isospin formalism, the proton and neutron

are opposite projections of the nucleon in isotopic spin

space. This is not a projection in physical space as with

normal spin but rather a fictitious space used as a

convenience. Because of the two-state nature of the

nucleon, the same formalism as with spin 1/2 can be applied.
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The presence of the isospin quantum number allows for the

generalization of the Pauli principle so that the wave

function for a system of nucleons must be antisymmetric

under interchange of any two nucleons.

The operator t is defined as the isospin operator for

an individual nucleon with three cartesian components of tx,

ty, and t2. The projection of the t operator is defined as

tz. The neutron is assigned an isospin projection of

tz=+l/2 and the proton a projection of tz=-1/2. This is the

original (and still-standard) convention that is used in

nuclear physics. In particle physics the opposite sign

convention is used. The standard nuclear physics notation

will be used here.

T is the total isospin operator for the nucleus. This

is defined as

A

a = Z t. ”-1)
1

i=1

and has a projection given by,

A (1-2)

T2 = §E3tz(i) = (N-Z)/2 -

i=1

The charge-independent part of the nuclear Hamiltonian

HN commutes with the total isospin operator,

[HN.T2] = o (1-3)

In the isospin representation, the wave functions of the

nuclear Hamiltonian are eigenstates of T and have no Tz

dependence. That is

HNIao,TTz>=E(°)(ao,T) Iao,TTz> (1-4)
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Where do represents all the other quantum numbers (aside

from T and T2) that are necessary to specify the nuclear

wave function (such as spin and parity). The energy of

these states E(°)(ao,T) is independent of T2 so there are 2T+l

degenerate states with this energy and with quantum numbers

do and T.

These 2T+l states, all having the same wave functions,

will occur in 2T+1 different nuclei. They all have the same

total number of nucleons and, therefore, have become known

as an isobaric multiplet. The A=8 isobaric quintet (T=2) is

shown in Figure 1-1.

For a nucleus with T=1/2, there are two degenerate

states with Tz=+1/2 and -1/2. These are called mirror

pairs. A state with a T that is larger than the T2 of the

nucleus (e.g., a T=1 state in a Tz=fl nucleus) is known as an

analog state, because there exist states in neighboring

nuclei that are analogous to it.

The total Hamiltonian for a system of nucleons contains

change-dependent terms which do not commute with the isospin

operator and, therefore, break the degeneracy of the

analog states among a given isobaric multiplet. As'

mentioned earlier, these terms are considered to be

electromagnetic in origin.

Aside from the neutron-proton mass difference, the

major contributor to the breaking of the degeneracy among

the analog states is the static Coulomb potential.

Because the strength of the electromagnetic interaction is
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only 1/137 that of the nuclear force, it can be considered

as a perturbation on the nuclear force. Perturbation theory

can then be used to calculate the splitting between the

analog states.

Wigner (W157) was the first to show the effect of the

Coulomb potential on the mass differences of the analog

states. His derivation involved a simple application of

the Wigner-Eckart theorem in first-order perturbation

theory and produced the well-known isobaric multiplet mass

equation (IMME):

AM = a + sz + cT; (1-5)

The crucial decomposition of the Coulomb operator

(in isospin representation) into its irreducible parts was

first accomplished by MacDonald (MaSS). This explicit

decomposition into an isoscalar, isovector and isotensor

part allowed for the simple application of the Wigner-

Eckart theorem (Wi57).

1.2 Derivation of the IMME.

The total Hamiltonian can be written as the sum of the

charge-independent nuclear part H and the charge-dependent
NI

electromagnetic part BC. This latter term can be considered

to be due principally to the static Coulomb interaction.

H = HN + HC (1-6)

In first-order perturbation theory, the correction to

the unperturbed energies Iflm(ao,T) is

E(1)(ao,T) = (aoTTleCIOLoTTz) (1-7)



The Coulomb potential in isospin representation is

given by

l- i l-t '

H _ 22 (2 9‘) (2 2”) <1-a)
- e

C ri.

i<j 3

With the stated convention that tz=1/2 for neutrons and

tz=-l/2 for protons, the (1/2-tz(i))(1/2-tz(j)) product will

then be nonzero only for proton pairs. Multiplying these

terms together yields

HC = e22 —1—[-‘1I-%(tz(i)+tz(j))+ tz(i)tz(j)] (1-9)
r..

i<j 13

+ O + O

Inserting the isoscalar t(l)3t(3) into equation

1-9, (Ma55) results in

+ . + . ‘t (i)+t (j)
_ 1 l t(1)-t(j) _ z z _

Hc'ezz:?"{[Z+ 3 ] l: 2 ]+ (110)

i<j ij

. . _ Em-Eu‘)
[tz(1)tz(3) 3 ]}

The first term in brackets is the zeroth component (in

 
 

 

cartesian form) of a zero-rank irreducible tensor operator

Hfil The second and third bracketed terms are the zeroth

components (in cartesian form) of rank 1 and rank 2

irreducible tensor operators Hg’ and Hg) respectively.

These terms are listed separately as follows,



+ I

1 1 + t(1)’

10

 

H30) = ez

b
l

‘t’m. _3 y.-.

 

 

3
-—— [tz(i)tz(j)-t(i)'t(j)] ; AT = 0, :1, :2

l<j

. t (i)+t (j)

H31’=eZZE%‘[z 2z ]:AT=0.:1 (1'11)

i<j

i<j

The Coulomb operator can now be expressed as

HC = 115°) +1151) +1132) (1-12)

The AT's following the explicit forms of the tensor

operators, Equation l-ll,

operator can make between

These connections are not

perturbation theory where

are considered. However,

these operators may cause

isospin mixing.

show the connections that each

states of differing isospin.

important for first-order

only diagonal matrix elements

in second-order perturbation,

additional energy shifts due to

The fact that the Coulomb operator is reducible into

the zeroth components of these tensors assures that only

states with the same Tz values will overlap (i.e., states in

the same nucleus).

Application of the Wigner-Eckart theorem yields for the

first-order correction to the unperturbed energies
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2

3(1) (ac/r) = éoTTZIHCIaOTTZ>=Z@oTTlegk) IaoTTz>

k=0
(1-13)

2

= E <TkTZOITTz> {mom [HUG | law)

k=0

The Clebsch-Gordan coefficients are

(TOTZOITTZ> = 1

T2

<T1TZOITTZ> = ——

/T(T+1) (1-14)

3T;-T(T+1)

 

 

<T2T 0|TT>
z z

/(2T-1)T(T+l)(2T+3)

Inserting the Clebsch-Gordan coefficients into Equation 1—13

yields

E(‘)(ao,'r) = <10TI|H(°)II0L0T> +

T -

+ ——-z— (aoTIIHmllaoT> + (1 15)

/T(T+1)

3T - T(T+1)

+ 2 (ml IH‘Z’I laoT>
/(2T-1)T(T+1)(2T+3)

 

 

Rewriting Equation 1-15 in terms of powers of T2 results in
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E(1)(ao,T)
 

[(aowlmomm) - T<T+n semifinal] +

/(2T-1)T(T+1)(2T+3)

(1-16)
+ [QOTLleJ 100T):l T +

/TTT:TT z

+

 

[ a gaowjlmmaa) ]T.

/(2T-1)T(T+1) (2T+3) z

The 1%”(ao,T) is the mass correction to the

unperturbed states and is the well-known isobaric multiplet

mass equation (Equation 1-5).

AM = a + sz + CT; (1—17)

The neutron-proton mass difference may be accounted for

by simply including a sum of the neutron and proton masses

in the Hamiltonian.

H = MnN + M z (1-18)
P

where N+Z=A and Mn is the neutron mass and M

AM

p is the proton

mass. The mass difference effect is made more transparent

when Equation l-18 is written in isospin formalism

A

- ' l - .1__ -
HAM ' E [Mn(2+tz(l)) + Mp(2 tz(l))] (1-19)

i=1

Upon rearrangement this becomes

Mn+M A A

HAM = __22 Z . (Mn-Mp)thm
i=1

.=1

(1-2fl)

which further reduces to

M +M (1-21)

_ n _
HAm - (TB)A + (Mn Mp)Tz
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These terms can then be absorbed into the a and b

coefficients of the IMME.

The spin-orbit interaction has been shown by Garvey

and Hecht (Ga69,He66) to also be expressible in terms of

irreducible tensor operators of rank zero, one and two. So

it too will preserve the form of the IMME.

In general, any two-body force will have the form

(Ga69)

Vij = V1[tz(i) +tz(j)] + V2[tz(i)tz(j)] (1-22)

which may be decomposed into a linear combination of

irreducible scalar, vector and tensor operators. Hence, the

IMME will result from the use of any two-body force in

first-order perturbation theory.

1.3 Violations of the IMME.

In second-order perturbation theory, the correction to

the energies for the static Coulomb potential is given as

(GA69,BA73)

 

. 2

E‘ZNOLO ,T)=ZZ 131' é°TTz|HC|aiT z>|

T' i.

ONO-01.1.) ‘ E(0N('1i,T')

(1-23)

(When T'=T, then i%0.)

where T'=T, Til, T12.
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With the application of the Wigner-Eckart theorem, the

explicit Tz dependence of this second-order correction can

be extracted. Janecke and Garvey (Ja69,Ga69) have Shown

that the major effect of this higher-order correction is to

alter the a, b, and c coefficients. These changes can then

be absorbed back into the standard form of the IMME

(Equation 1—17). There are, however, terms with a T; and

T; dependence generated by this expression which result in

the "quartic" form of the IMME

.__ 2 3 x. _
AM a + sz + cTz + de + e'I‘z (1 24)

These d and e terms, though small relative to a, b,

and c, will have the form

a T HQ) a.T' a.T' HE) G T

d :2 < 0 ILWLIHT) >-<I-3(:5(0L:)T')H 0) (1-25)
1

(When T'=T, then i#o.)

where T'=T, Til.

and

 

T HP) .TV 2
e g2 (00 l' Ila]. > (1'26)

5- EFNa,,T) - Em(ai,T')

(When T'=T, then i#0.)

where T'=T, Til and T12.
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In order to distinguish between the effects of a

charge-dependent, many-body force (which presumably would

manifest itself in first-order perturbation theory) over the

higher-order effects of a two-body force, detailed

shell-model calculations will be required.

Isospin mixing is expected to cause deviations from the

IMME. Isospin-forbidden resonance reactions have been used

successfully to discover a number of higher T levels in

lower Tz nuclei (T=2 states in Tz=0 nuclei). So isospin

admixtures are known to exist and could therefore be

responsible for generating relative shifts between multiplet

members. Figure 1-2 illustrates the effect of isospin-

mixing in both quartets and quintets. For quartets, it is

apparent that mixing with lower T levels would primarily

produce only changes in the c coefficient. In quintets,

however, mixing between T=0 and T=2 levels in the Tz=fl

nucleus (R076) would, by symmetry, produce an even-order

eT;.

In the case of the A=8 multiplet, it is known that this

state is admixed with a T=D state (from the observation of

the T=2 state in the Tz=0 nucleus 8Be, as an isospin

forbidden resonance in the 6Li + d reaction). A generation

of an e coefficient is seen to occur, both from the

qualitative argument shown in Figure 1—2 and from the

results of second-order perturbation theory Equation 1-26.

Assuming only one T=fl perturbing state with the same spin

and parity as the T=2 state, the e coefficient has the form
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1 (zlln‘z’llo)2
= __

1-27

8 20 E(°)(2) - 3W0) ( )

where the ilacomes from evaluation of the Clebsch-Gordan

coefficients.

For an e coefficient of 1 keV and an off-diagonal

matrix element of order 169 keV, the perturbing state must

lie within 520 keV of the T=2 state. As of yet this state

has not been observed but evaluation of the sign of the e

coefficient will determine its position with respect to the

T=2 state. Actual observation of this T=fl state would then

allow a determination of the size of the off-diagonal

Coulomb matrix element.

It has also been suggested that changes in the wave

functions between members of a multiplet could cause a

deviation from the quadratic IMME. For example, the

expansion of the radial wave function due to the effects of

the Coulomb repulsion in the proton-rich member of a

multiplet could cause a change in the calculated expection

value, and hence a change in the relative separation of the

levels. However, calculations have shown (Be7fl,Be77) that

the major change occurs in the b and c coefficients and only

small d and/or e coefficients are generated. The change to

the b and c coefficients is absorbed back into the IMME

without causing a significant deviation.

For a complete quintet the five coefficients of the

quartic IMME are completely specified:
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a = M0

b =f;[8(M1-M_l)-(M2-M_2)1

c =-:—[16(M1+M_1)-(M2+M_2)-36M0] (1-28)

d =332—[(M2-M.2)-2(M1-M.1)1

e = 71;. [(M2+M_2)-4(M1+M_1)+6M0].

From these expressions it is apparent that the coefficients

are more sensitive to the inner members of the multiplet

and therefore accurate determination of these are necessary

for a precise test of the IMME.



CHAPTER TWO

2.1 Introduction

The use of the helium jet technique for the rapid

transport of activities from a region of high background

radioactivity to a much lower one has been quite successful.

In most applications, room temperature helium gas has been

used. This necessitates the use of some sort of macroscopic

impurity or cluster in the gas to obtain useful transport

efficiencies and in fact, quite impressive and even

reproducible results (5@% over ten meters) have been

obtained with some impurities (Ma76).

The high transport efficiencies are understandable in

terms of Bernouilli's equation for laminar flow. A radial

pressure gradient exists that forces the clusters which

carry the activity to remain in the center of the capillary

over long distances.

Though the impurity—laden helium jet has shown its

ability to transport activity over long distances and with

high efficiency, these impurities may limit or even

eliminate its use in certain applications. These include

interfacing the helium jet to certain types of ion sources

for mass spectroscopy, precise studies of B-spectra,

high-resolution Studies of heavy particle emission and

19
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fundamental weak interaction studies which rely on the line

shapes of B-delayed heavy particle lines.

It was found in 1974 by Aysto et a1. (Ay74) that for

"pure" helium cooled to liquid nitrogen temperatures (77°K)

that a significant improvement in transport efficiency was

possible relative to room temperature impurity-free helium

jets (Ay73).

A model presented by Robertson et al. (R077) explains

this behavior in terms of the thermal diffusion of active

atoms through the carrier gas. This model assumes the loss

of active atoms is due to collisions with the capillary wall

which occur during their transport through the capillary.

The increased efficiency is shown to be due in equal measure

to the decrease in temperature (which decreases the rate of

thermal diffision to the capillary wall) and to the

increased molecular flow rate (which shortens the time the

active atoms remain in the capillary).

In a paper by Robertson et a1. (R077), the description

of a cryogenic (liquid-nitrogen cooled) helium jet coupled

to a recoil time-of-flight mass analyzer for use in

observing short-lived B-delayed particle emitters was

presented. This apparatus was used at Princeton University

in an attempt to observe 2“Si. Results tentatively

suggested that protons from the decay of this nucleus had

been observed and that the mass of the T=2 state in the

daughter nucleus 2“Al was consistent with the prediction

from the quadratic form of the isobaric multiplet mass
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equation. With these promising results, an improved

apparatus was contructed here at Michigan State University

with the intent of observing 218i and other Tz=-2 nuclei.

It is a feature of this apparatus that mass

identification and background reduction can be obtained with

only a single surface barrier Si detector (rather than a

counter telescope) to detect the protons. The improved

resolution and linearity, as well as the simultaneous

recording of strong calibration groups, make possible a very

precise measurement of the mass of the T=2 state in 2"Al.

In addition, the first direct measurement of the half-life

of 2"Si has been made. Figure 2-1 illustrates the

B+-de1ayed proton decay of 2"Si.

2.2 Beamline and beam transport

For these experiments a beam of 70 Mev 3He ions from

the Michigan State University Cyclotron produced 2|‘Si via

the 2"Mg(3He,3n) reaction. Figure 2-2 shows the beamline

layout to the cryogenic helium-jet target chamber (located

in vault 1). Also shown is the capillary feedthrough to the

recoil time-0f-flight apparatus (located in vault 5).

Beam position and focus were verified with a

scintillator placed fl.3 m in front of the target chamber.

The beam passed through a 1.3 cm diameter aperture in each

side of the target chamber and stopped in a water Faraday

cup placed fl.4 m past the target chamber. This Faraday cup

was electrically isolated from the target chamber and the
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rest of the beamline with an 8 cm section of insulating beam

pipe. A current integrator gave both the total charge

and the beam current. The beamline elements were adjusted

to yield the maximum current from the Faraday cup.

Depending on the tuning of the cyclotron, this current

usually lay between 1 and 3 uA of aHe++. Such currents did

not lead to failures of the 5.25 mg/cm2 Havar windows of the

target chamber (H175). However, on one occasion, the

windows ruptured after just three hours of 4-6 uA of beam

current 0

2.3 Helium jet target chamber

The helium jet target chamber consisted of a large (18

cm outer diameter x 35.5 cm long and 2.54 cm thick) aluminum

tube, sealed at both ends with 1.3 cm thick aluminum cover

plates. All flanges were sealed with indium wire.

The chamber was connected to the beamline by two

stainless steel (5 cm outer diameter x 23 cm long and 1.7 mm

thick) tubes, a 7.6 cm long section of which was turned down

to a thickness of only 51 mm. This was done to minimize the

heat loss through these tubes. The chamber was placed in a

large (24 cm inner diameter x 46 cm inside depth) stainless

steel dewar (Mv76) which was filled periodically with liquid

nitrogen (LNZ). A LNZ level controller (Nv76a) was used to

keep the dewar full. A sensor placed 220 cm from the top of

the dewar detected when the level of LN2 went below this

sensor. A solenoid valve then pressurized a feed dewar
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which delivered LN2 to the target chamber dewar for

approximately three minutes. An insulating styrofoam cover

was fit over the top of the dewar and target chamber and the

stainless steel beamline connecting tubes were wrapped with

a flexible styrofoam insulation. Figure 2-3 shows a

cross-section of the target chamber.

Commercially "pure" He (99.995%) was sent at room

temperature via 1/4 inch "poly flo" tubing to the vicinity

of the target chamber where it connects to a 1.3 cm diameter

copper tube of 2.5 m in length. As Figure 2-3 shows, this

tubing was coiled about the target chamber and also placed

in the LN2 dewar. Thus, the He gas was cooled to g77°K

before entering the target chamber. The gas entered through

a porous stainless steel diffuser with 2 pm openings (Nu77).

This prevented turbulence created by incoming gas which

could significantly reduce the transport of activities

(R077).

The target was mounted on a target holder which

projected into the chamber as shown in Figure 2-4. The

recoiling activities from the reaction of the beam in the

target were thermalized (slowed down) in the cold He gas.

In order to prevent the range of the recoils in the gas from

exceeding the width of the target holder, the gas pressure

was kept at approximately .7 atmospheres. Because of the

increased gas density at 77°K, this pressure was sufficient

to limit the range of the recoils to under 1 cm. The

activities were then swept out of the chamber along with the
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He gas via a flared polyethylene capillary tube (1.8 mm

inner diameter) and transported 2.4 m to the recoil

time-of-flight mass analyzer.

2.4 Target holder and target

It was found by Robertson et al. (R077) that the target

holder design was critical to the transport efficiency. Any

turbulent flow behind the target reduced the transport of

activities dramatically. Three target holder geometries

were tested in this apparatus. Figure 2-5 shows views of

the three configurations. Configurations A and C gave

relatively similar results, but configuration B, which was a

hoped-for improvement to configuration A, gave poor results.

Configuration C was a later design which was used for the

majority of the data collected. Transport efficiencies were

on the order of a few percent.

The target used for these experiments was 5 mg/cm2 of

ang (99%) enriched that had been evaporated on a 2.3 mg/cm2

copper backing.

2.5 Capillary-skimmer cone interface

The activity exited the capillary two to three

millimeters from a skimmer cone. A 149 l/s Roots blower

(R038) backed by an 80 l/s mechanical pump (Ki65) removed

a large fraction of the He gas. Figure 2-6 shows this

arrangement, along with a layout of the recoil time-of-

flight mass analyzer system. The skimmer is a 98°
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cone with a 1.6 mm opening. The capillary is flared and

seals against the o-ring on the end of a glass guide tube.

This tube supports and also aligns the capillary with the

skimmer opening.

During assembly the capillary is first flared on

only one end (by holding vertically downward over a

flame) and then fed through both the target holder and

the shielding wall. After it is all the way past the end

of the glass guide tube's seal, it is cut to length and

flared. It is possible to move the recoil apparatus toward

or away from the shielding wall where the capillary exits,

allowing any slack to be taken up and the capillary put

under tension.

2.6 Foil wheel and particle detection system.

The main chamber was pumped by a 150 l/s Roots blower

(He6l) backed by a 16.5 l/s mechanical pump (Va78) and a 25

l/s mechanical pump (We77) connected in parallel.

The transported atoms passed through the skimmer and

into the main chamber, where they were deposited on a 10-12

ug/cm2 thick, (6.4 mm diameter) Formvar catcher foil.

A vertically aligned foil wheel held six catcher foils.

The foil wheel was stepped at a rate of 5 Hz with a high-

torque hollow-rotor D.C. motor (Mi77). The wheel was

connected to the motor by a Ferrofluidic shaft seal (Fe77).

This seal allows for high shaft accelerations while

maintaining vacuum integrity. Mounted on the opposite end
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of the motor shaft, were a potentiometer (De78) and a small

six-blade wheel. The potentiometer was used for recording

the wheel position. The six-blade wheel (half the diameter

of the catcher wheel) was part of the servo system for

controlling the motor's motion. A linear filament light and

a photodiode were mounted of Opposite sides of the small

blade wheel. The photodiode was part of a servo circuit

which responded when the leading edge of the blade

interrupted the light coming to the diode. This servo

circuit controlled the motor which could keep the catcher

foils locked into place between steps. The stepping rate

was controlled external to the motor circuitry through a

square wave generator.

The activity was allowed to collect for 266 ms, minus

the approximate 20 ms stepping time. The wheel was then

moved to its next position, where the newly-deposited

activity was placed between the particle detectors (see

Figure 2-7). After B-decay to particle-unstable states,

both the particle emitted (proton or alpha) and the

recoiling ion were observed in coincidence. Protons (or

alphas) passed through the thin catcher foil and were

detected using a single 15% mmz, 368 um deep Si detector

(Or78). The residual nucleus is ejected from the surface of

the foil. Figure 2-8 illustrates this arrangement.

The recoil ions have enough energy (168 keV for 23Mg)

to pass through a thin converter foil, placed opposite the

Si detector. Secondary electrons from the converter were
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detector system layout.
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observed by a pair of Microchannel Plates (MCP) (Ga76). The

58.8 mm-diameter converter foil served also to isolate the

MCP from the .14 torr pressure in the main detector chamber.

This allowed the operation of the channel plates in a clean,

'7 torr provided by a 1,588 l/shigh vacuum of 18-6 - l8

turbomolecular pump (Sa77).

The converter foil was shaped as a section of a sphere

with an 88 mm radius of curvature. When placed 88 mm from

the catcher foil, this curvature reduced the time spread of

the recoil ions. Both the Si detector and converter foil

subtended a solid angle of 2.6% of 4a. The converter foil

consisted of a 238 ug/cm2 layer of Formvar on a 295%

transmission curved wire screen. The screen was made with

8.885 inch diameter c0pper wire layed onto a 88 mm radius

convex wooden form. Onto the Formvar surface a 218 ug/cm2

layer of gold and a gl8 ug/cm2 layer of Cal were evaporated.

The layer of gold was used to prevent the converter foil

from charging up. The CsI, with its higher secondary

emission coeficient (Fa77,Bu77), was used to improve the

detection efficiency of the recoils.

It may easily be shown (see Appendix A for a derivation

of this result) that the mass of the recoil (daughter)

nucleus Mrec is given by:

/2E m t

Mrec = d (2‘1)

where t is the time of flight of the recoil mass, Ep the

laboratory energy of the proton (or a), m the mass of the

P

proton (or a) and d is the flight path (distance traveled by
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Mrec during the time t). The recoil mass is pr0portional to

t, not t2 as in the usual time-of-flight system.

A start signal from the proton or alpha in the Si

detector and a stop signal from the MCP gave a value for the

time-of—flight of the recoil ion. This time, combined with

the particle energy in the Si detector, was used in the

above formula to derive the recoil mass.

The B-decay recoil determines the mass resolution in

these measurements. For example, for 25Si, which was

produced in a competing reaction, this B—recoil limited the

mass resolution to 7%, a value nevertheless adequate for

mass identification. Appendix A also contains a discussion

of this effect.

In initial experiments, it was found that the double

coincidence data (between Si detector and MCP) showed two

different recoil mass groups for the same particle energy.

The second (slower) group was delayed by g9 ns and was

attributed to recoil ions directly striking the MCP but

failing to produce secondary electrons in the converter

foil. In order to remove these ghost groups, which were

producing a background in the region of interest, the design

of an electrostatic lens was undertaken. It was hoped that

a design could be found which would stop the recoils from

striking the channel plates while still allowing the

electrons to do so.

Lens designs were first modeled using the method of

successive over-relaxation to solve Laplace's equation. See
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Appendix B for a discussion of this method. A program was

developed which allowed the testing of many different

geometric configurations. This program also calculated

particle trajectories through the lens.

A gridded lens design, illustrated in Figure 2-9, that

focused the electrons to the central region of the channel

plates was chosen. This design required only the central

portion of the MCP to be used. The outer regions were

masked off, and a small disk placed in front of the

converter foil prevented the recoil ions from hitting the

channel plates. A loss of only 7% in solid angle resulted

from this arrangement, and a significant reduction in the

background was achieved.

As in the previous apparatus (R077), an annular plastic

scintillator was used to observe the initial B-decay of the

parent nuclei. This scintillator was placed opposite the Si

detector and subtended a solid angle of g37% of 4a. A

plastic light pipe connected the scintillator to a photo-

tube (Am77). Recoil ions traveled through a conical hole

(28° half angle) in the scintillator to the converter foil.

A cross-section of this scintillator is visible in Figure

2-8.

Many different activities are produced by the beam in

the target and several delayed particle emitters were

observed in our experiments. To make use of the mass

identification capability, data was recorded in the event

mode and, upon subsequent playback, proton and alpha energy
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spectra for different recoil mass bands were extracted.

Eight parameters for each event were written on

magnetic tape, proton energy, recoil time of flight, energy

and time information from the plastic scintillator, MCP

pulse height, leading-edge to crossover time for pulses from

the silicon detector (used in discriminating against

pileup), position of the foil wheel and, lastly, a ramp

initiated by the end of a foil wheel step and strobed by

pulses from the silicon detector (used in the measurement of

half-lives).

Figure 2-18 shows a block diagram of a typical

electronics set-up for these experiments.

2.7 Experimental results and analysis.

The principal delayed-particle activities observed in

this experiment are 2°Na (T8=445 ms), 21Mg (T%=228 ms), 2551

(T%=125 ms) and 2"Si (T%=183 ms, this work). Figure 2—11

shows the results of a calculation using the compound

nuclear evaporation code ALICE (B176). The cross sectionss

for the production of each activity are plotted versus beam

energy. After losing energy in the target chamber windows

and gas, the beam energy was on the maximum of the

production cross section. The B-delayed activity 2°Mg was

not observed in these experiments.

Figure 2-12 shows a section of triple coincidence data

(in which coincidences between the Si detector, MCP and

scintillator are required), with proton energy on one axis
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and recoil mass (i.e., the atomic mass of the nuclide formed

following proton emission) on the other. The groups

centered on 24 u at channel numbers 322 and 424 are the 4089

and 5402.2 keV protons lines from 25Si decay. The groups

centered on mass 20 u at channel numbers 304 and 367 are the

3900 and 4669 keV protons lines from the decay of 21Mg. The

box centered on 23 u at channel number 308 shows the

position of the 3912.7 keV protons from the decay of 2“Si.

The low statistics of the 2"Si group results from the triple

coincidence requirement.

Triple coincidence data (between the Si detector, MCP

and scintillator), though useful in reducing the background

and improving the mass resolution for the verification of

weak groups, were not directly used in obtaining the proton

energy because the beta-induced recoil of the daughter has a

component of its velocity toward the Si detector. Thus the

particles detected in the Si detector would be on the

average shifted up in energy. Therefore, only double

coincidence data (between Si detector and MCP) were used to

obtain the proton energy. Even for the double coincidence

data there are in principle small energy shifts, which will

be discussed later.

In order to convert the energy and time-of-flight data

to these two-dimensional energy versus recoil mass spectra

the expression,

Mrec = G/Ep-Eo (t-to) ‘ (2_2)

was used. Where EO and to are energy and time offsets
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respectively and G is a scaling parameter. An analysis of

the energy and time-of—flight one-dimensional spectra

provided initial values for these offset parameters.

However, to remove skewing of the 2-D spectra it was

necessary to optimize these offsets. The strong groups in

25Si and 21Mg (made in competing reactions) defined the mass

scale. An assignment of a recoil mass of 24u to the 4089

KeV and 5402.2 keV groups from 2531 and 20u to the 4669 keV

and 6225 keV lines from 21Mg was made. The 6225 keV peak

was just at the edge of the silicon detector's range for

these particles. Both with and without this group the

needed parameters could be found.

A program was written that used a portion of the energy

vs. recoil mass data around each peak. For a given Eo and

to a point-by-point construction of a recoil spectrum, i.e.,

projection along recoil axis) and a calculation of the

centroid, via a simple average, was done for each peak. By

using the known recoil mass, a scale factor G was

calculated. This procedure was repeated for different Eo and

to values until the closest agreement between the scale

factors for each group was obtained. The average of these

four quantities was used in equation 2-2. This procedure

successfully provided undistorted two-dimensional energy

versus recoil mass spectra as shown in Figure 2-12.

Spectra from B-delayed protons from 2SSi and 21Mg, and

B-delayed alphas from 2°Na, are shown in Figure 2-13. These

were Obtained with the Princeton apparatus (R077) by setting
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2 u wide windows centered on the appropriate mass regions

(24 u, 20 u and 8 u) in double—coincidence (particle-recoil)

data.

A projection of two-dimensional double-coincidence data

along the recoil axis (as seen with the Princeton apparatus)

forms the integral mass spectrum seen in Figure 2-14.

Recoils (160) from the B-delayed alpha decay of 20Na will

appear at only half of their actual mass (8 u). Appendix A

also contains a discussion of this effect.

Figure 2-15 shows a proton energy spectrum gated on a

recoil mass of 23 u with a window width of 2 u. The energy

resolution in this spectrum is approximately 25 keV full

width at half maximum (FWHM). In addition to prominent

peaks from 2531 Which extend partially into this band, a new

peak, not seen in lower-energy bombardments (Se73), is

present at an energy of 3912.7 keV. Mass spectra gated on

the new peak, the 4669-keV line from 21Mg and the 4089-keV

line from 25Si are shown in Figure 2-16. The peak at recoil

mass 23 u (to the right of the peak from broad lines in the

21Mg spectrum) identified it as originating from 2"Si

B-decay. This transition has been observed by Aysto et al.

(Ay79) at high mass resolution, with a proton energy of

3914(9) keV, in good agreement with the present value. The

energy is in the vicinity of the IMME prediction for the

ground-state proton decay of the T=2 state in 21‘Al.

The proton energy was obtained from the double-

coincidence (Si detector and MCP) spectra using the strong
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lines from 25Si decay as calibrants. The energies of these

lines are determined mainly by the measurement of the

excitation energy of the lowest T=3/2 state in 25Al carried

out by Rogers et al. (Ro77a). This result, 7901(2) kev,

coupled with the 2“Mg(p,y)25Al Q-value (Wa77), 2271.3(8)

keV, and the excitation energy (En78) of the first excited

state in 2"Mg, 1368.59(4) keV, leads to lab proton energies

of 4089.0(22) and 5402.2(22) keV. Peak positions were

obtained by fitting bivariate Gaussian distributions to the

two—dimensional (recoil mass vs. proton energy) spectra,

using the method of Maximum Likelihood (Me75). Figure 2-17

shows an example of a bivariate Gaussian distribution. The

use of such distributions with non-zero correlation

coefficients gives much improved results over simple

projection of recoil bands onto the energy axis because much

of the proton line broadening caused by B-recoil can be

removed, since it appears as a correlation between proton

energy and recoil time of flight. In this way the proton

energy resolution was improved from 25 keV to 15 keV.

An illustration of two extreme cases of the correlation

between proton energy and recoil time of flight is given in

Figure 2-18. This shows the momentum vectors when the

B—decay and subsequent proton decay are (a) parallel and (b)

anti-parallel. For case (a) the excited 2"Al (following

B-decay of 2“Si) is left recoiling toward the MCP detector.

After proton emission the measured proton energy will be

lower and the 23Mg will take less time to reach the MCP.
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Figure 2-17. Three-dimensional plot of a bivariate Gaussia

distribution.
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For case (b) the excited 2"Al is left recoiling toward the

Si detector, so the measured proton energy is shifted up and

the 23Mg will take longer to reach the MCP. According to

equation 2-1 the calculated recoil mass for case (a) will be

smaller than that calculated for case (b). This correlation

is observed as a tilting of the mass groups shown in Figure

2-12.

The shapes of the bivariate Gaussian distributions were

fixed using the strong 2sSi lines as standards. In general,

the recoil distributions are a function of 8+ end point

energy, but the end points for 21‘Si and 25Si are so similar

(within 200 keV) that the same recoil distribution

parameters were used for the two isotopes. There is a

background underlying the 2"Si peak which was fitted making

various assumptions about its dependence on recoil mass and

proton energy. The result for the centroid of the 2"Si peak

was insensitive to these assumptions, and the final form of

the background chosen was linearly varying in the recoil

dimension and constant in the energy dimension. Integration

of the maximum likelihood function provided an estimate for

the uncertainty in the centroid position. Appendix C

contains a discussion of the method of Maximum Likelihood

and its application in this analysis.

A possible systematic effect arises from the B+Aproton

angular distribution. Even though neither the positron (in

double-coincidence data) nor the neutrino are detected,

there are still two effects which can lead to centroid
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shifts of the proton lines:

1) Kinematic terms in the B+-p correlation

function with a dependence on the cosine of the

angle between the positron momentum and the

8p):

2) Rejection (loss) of proton events for which the

proton momentum (cose

associated positron passed through the Si

detector (i.e., events with 6 €30 ).

8P

Both of these effects were analyzed approximately using

the formalism of Holstein (H074) and were found to cause a

centroid shift of the order of +fl.4 keV in the 2“Si peak.

The second effect was found to be the dominating cause of

the centroid shift. This small shift is, furthermore,

almost exactly cancelled by a commensurate shift in the 258i

calibration lines which arise from a quite pure Fermi

transition of similar energy (Se73). Thus, no correction is

needed. Appendix A contains a description of this calcula-

tion.

A linear energy calibration was used to extract the

energy of the 2"Si proton group. The latter group lies

sufficiently close to the 4089 keV line that only small

effects would be expected from neglecting higher-order

terms; however, this assumption was tested by extracting the

energy of the 4669(4)-keV group (Se73) from 21Mg decay for

several different experimental arrangements, involving

different analog-to-digital converter gains, amplifier gains

and amplifier manufacturers.
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25.

$1The 21Mg group lies almost midway between the two

calibration lines, so it was a more severe test of the

linearity assumption (see Figure 2-13). Centroids were

extracted from a projection along the energy axis as in

Figure 2-15 using the peak-fitting routine SAMPO (R069).

The standard deviation of the data indicated that the actual

uncertainties were slightly larger than the statistical ones

(which were determined from the fits). An average linearity

error was thus added in quadrature with the statistical

error. It is assumed that departures from linearity will be

in random directions from run to run. The size of this

error was chosen to bring the reduced chi-squared for a set

of four 21Mg energy measurements to approximately unity.

The value obtained was 1.5 keV.

The uncertainties present in the measurement of the

laboratory proton energy from decays of the T=2 level in

2“A1 are the aforementioned linearity error (1.5 keV), the

statistical error in fitting the proton peak (2.5 keV), and

the uncertainty in the calibration lines (2.2 keV). A sum

of these in quadrature (i.e., ‘20: ) yields an uncertainty

of 3.7 keV. The value for the pioton energy from the decay

of the T=2 level in 2l+Al is:

3912.7(37) keV.

A weighted average of this value with the result of Aysto et

al. (3914(9) keV), is

3912.8(36) keV

where the common 2.2 keV calibration error is removed before
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calculating this weighted average. It is then added back

(in quadrature) to obtain the above value.

Chapter Four contains a discussion of the effect of

these results on the IMME fit to the A=24 quintet.

2.8 2"Si Half-life Measurement

The half-life of 2"Si was extracted from the data using

the well-known half-lives of 2°Na (T%=446(3) ms), 21Mg (Tg

=226(3) ms) and 25Si (T%=125(3) ms) as calibrations. Figure

2-19 shows a portion of the ramp data for the 4089 keV peak.

The width of the ramp spectrum determined the total interval

for detecting activity. This interval was divided into four

equal sections, corresponding to equal counting times. The

end points of each of these sections served as gates for the

energy and recoil data. Four two-dimensional spectra of

particle energy vs. recoil mass were generated for each

activity. These data were again fit with the bivariate

Gaussian distribution, but now the only free parameter was

the peak height. These heights would of course be

proportional to peak area and, therefore, the decay rate in

the given interval.

In order to calculate the half-life it was necessary to

determine the actual time that the four intervals

corresponded to. The foil wheel was stepped at a rate of 5

Hz, so the total interval was about 230 ms. However,

because the stepping time was only approximately measured

(526 ms), the exact length of time that the catcher foils
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were between the detectors was unknown. This difficulty was

resolved by using the known activities to define a time

scale.

The half-lives were first calculated for the

calibration activities assuming a known total time interval.

These values were compared to known half-lives using the

expression 2-3.

 

2

3 T13heo- 'r flex?
2 = 1 1

X Z otheo (2-3 )

i=1 i

e .

TXP 18 theWhere Ttheo is the calculated value,

experimental value and Oitheois the calulated uncertainty.

The three calibration half-lives were known experimentally

to equal precision and therefore these uncertainties were

not included in the X2. First a total time interval was

assumed, and the half-lives were calculated and compared to

their known values. The total interval was then varied

until the best agreement (smallest X2) between the

calculated and known half-lives was achieved. The best

total time interval was found to be 189(1) ms. This

represents a stepping time of only '3.11 ms.

In Figure 2-20 a plot of the extracted peak height as

210.

a function of time is shown for the decay of $1. This

measurement yields a half-life for the B-decay of 2|'Si of,

T8 = 103(42) ms.



59

25 l I I nun—no.3"

218: DECAY

 

  
10—

C
O
U
N
T
S

 

   4 J T
0 50 10iO 1510 200

TIME [ms]

Figure 2-20. Decay of 24Si. The half-life derived is

103(42) ms.

 



60

This result is in good agreement with the predicted value of

115 ms, based on a shell model calculation by Robertson and

Wildenthal (R073). It is also in good agreement with the

. + g .. ..

estimate of 100_“: ms made by Aysto et al (Ay79).



CHAPTER THREE

3.1 Introduction

The A=8 isobaric quintet is of special interest in that

it is the only completed quintet which shows a slight devia-

tion from the quadratic form of the IMME. Figure 3-1 shows

the residuals (Mexp-MIMME) 0f the quadratic IMME fit for the

A=8 isobaric quintet. These values were derived following

the remeasurement of the 6He mass excess (R078). It can be

seen that a small but significant departure from the IMME

exists. Isospin mixing in the Tz=fl member of the multiplet

(aBe) has been suggested as a possible cause for part of

this deviation (R076). For quintets, as previously

discussed, mixing with T=fl or T=l states immediately causes

a T; dependence in the IMME (see Figure'l-2). To understand

these effects further, a remeasurement of the T=2 levels in

8Be and 8Li was undertaken at the Michigan State University

Cyclotron Laboratory.

The first Observation of the lowest T=2 level in 8Be

was made by Black et a1. (8169). This was Observed as a

narrow resonance using the 6Li(d,p)7Li and 6Li(d,a)“He

reactions. A more precise measurement was subsequently

carried out by Robertson et al. (R075). This work verified

61
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the assignment of the resonance as a 6+ T=2 state (the

angular distribution displayed a prominent L=fl shape). The

1°Be(p,t)aBe reaction was used for that work and serves as

the basis for our new measurement. A measurement of the

radiative width of this level by Noe et al. (N076) using the

6Li(d,Y)eBe reaction provided a value for the excitation

energy of comparable precision.

The only measurement of the lowest T=2 level in 8Li was

made by Robertson et al. (R075) using the 1°Be(p,3He)°Li

reaction.

In the previous measurements by Robertson et al.

(R075), the reactions were analyzed using an Enge split-pole

magnetic spectrograph, and the reaction products were

observed using a position-sensitive Si detector placed in

the focal plane of the spectrograph. The spectrograph field

was set to place the reactions of interest onto the active

region of the detector and then was successively changed to

place the calibration reactions on the detector. This

required an accurate magnetic calibration of the

spectrograph (Tr71).

An alternative approach, developed by Nolen, Hamilton,

Kashy and Proctor (N074), is to use nuclear emulsions in

the focal plane of the spectrograph. The advantage in this

method is that the necessary calibration lines can be

recorded simultaneously with the reaction of interest. This

helps reduce some of the systematic errors that are

associated with sequential measurements, such as changes in
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the beam energy, spectrograph saturation and hysteresis

effects as well as changes in the target thickness resulting

from deterioration or a build up of contamination. In

addition, this approach enables a linearized least squares

fit to be performed to determine all the unknowns in the

experiment (assuming sufficient calibration lines are

available). These unknowns are the beam energy, the

reaction angle, and the spectrograph focal plane

calibration.

Photographic emulsions are more linear and more stable

than counters and they provide better position resolution

than that which is obtainable with electronic detectors (at

best 6.25 mm). There are, however, several drawbacks to

using emulsions. These drawbacks include poor particle

identification properties, poor saturation characteristics

(overexposure) and the inability to display the data in real

time as is possible with electronic detectors.

Though there usually is some observable difference in

the track density between different types of ionizing

particles, this difference cannot be relied on in most

cases to observe a low cross section reaction in a

high background environment. A partial way around this

particle identification difficulty was worked out by

Robertson et al. (R078a) through the development of an

electrostatic deflector Which fitted in the gap of the Enge

split-pole spectrograph. Figure 3-2 shows the location of

the deflector in the spectrograph.
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The deflector plates were oriented parallel to the pole

faces and provided a vertical deflection of the particles.

The shape of this deflector was designed so that, to good

approximation, the deflection of the particles is constant

along most of the focal plane. For particles of the same

magnetic rigidity, the vertical deflection is pr0porti0nal

to m/q where m is the mass and q is the ionization state of

the particle. In general, the deflection at the high-rho

end of the spectrograph is approximately 19.6(Vq/E) mm,

where V is the applied voltage in kV, and E is the kinetic

energy of the particle in Mev (R078a). This deflection

resulted in tracks in the emulsion that were vertically

separated into bands along the plate according to the m/q of

the reaction products. For this method to be of use, small

vertical beam spots are required. So care must be taken to

focus the beam onto the target. The deflector would of

course not be of use if particles of the same m/q from some

other reaction fall on the peak of interest.

Figure 2—2 shows the beamline arrangement to the

spectrograph (located in vault 3). The dipole magnets M3

and M4 served to analyze the beam energy and the dipole M5

directed the beam to the spectrograph. The quadrupoles

(labeled Q7, 08, etc.) focused the beam on the target.

The beamline to the spectrograph was designed (8171) so

that the beam could be brought to a dispersed focus at the

target of the spectrograph. By matching the dispersion of

the beam to the dispersion produced by the spectrograph, the
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line widths in the focal plane could be significantly

reduced (C059). A depiction of a dispersion matched

condition is shown in Figure 3-3. Rays leaving the target

from the E+AE side have a larger radius of curvature (as a

result of their higher energy) but because they are

physically displaced as shown they move towards the central

ray of energy E. The E-AE rays with their smaller radius of

curvature will also move towards the central ray because

they leave the target from the opposite side of the central

E ray.

3.2 Experimental Procedure.

A 45 Mev beam of protons from the MSU cyclotron

bombarded a 113 ug/cm2 target of 94% enriched 10BeO on a

1mg/cm2 Pt backing. This was the same target as was used in

the previous work by Robertson et al. (R075). The target

material was produced in the Oak Ridge high-flux isotope

)1°Be reaction (6074).reactor via the 13C(n,a

The proton beam was used to populate the T=2 states in

8Be and 8Li via the (p,t) and (p,3He) reactions

respectively. Tritons, deuterons, and helium 3 reaction

products were recorded on 20—inch photographic plates (1174)

mounted in the focal plane of the Enge split-pole

spectrograph. Deuterons were recorded simultaneously with

the tritons and were used as calibrations in the 1°Be(p,t)

experiment. In the 1°Be(p,3He) experiment only the 3He

spectrum was used. Two sets of exposures were made at
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Figure 3-3. Dispersion matching in the spectrograph.
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laboratory angles of 8, 9, and 1e degrees. The

electrostatic deflector was run at a negative 26 kV

potential on the upper plate (deflecting the positively

charged ions upward).

The spectrograph focal plane is angled at 45 degrees

relative to the particle trajectories (see Figure 3-2).

Particles entering the photographic emulsions do so at 45

degrees with respect to the surface. After development, the

particle paths appear as small tracks under the microscope.

The brightness and density of the tracks depend on the

ionization properties of the particles. Because the

ionization of a charged particle increases as it slows down,

absorbers were placed in front of the emulsion to lower the

particle energy. A 6.602-inch (SE-micron) Al foil was used

with both the helium 3 and triton plates while an additional

0.62-inch (0.5-mm) acetate absorber was used with the

tritons. This enhanced the visibility of the particle

tracks.

The plates were developed in a dilute solution of D-19

developer at 4°C. They were scanned using the automatic

plate scanner developed at MSU by Robertson and Nolen

(R073a). This scanner uses an analog approach to the

problem of track identification rather than the more common

digital one (Er79). Tracks are imaged onto a three-segment

diode array through a rectangular aperture (6.6 um x 25 um)

oriented paralled to the tracks. Bright-field illumination

is provided by a high-intensity xenon arc lamp filtered by
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three infrared filters and a Kodak blue-green gelatin

filter.

Automatic focusing is maintained with a motor drive

connected to the fine focusing knob of the microscope. This

is controlled via a pressure-sensing arrangement that keeps

the objective lens at a constant distance from the emulsion.

The scanning was done in 9.601-inch (25.4-um) steps

with vertical bands that were 4 mm wide. Only a lfl-inch

segment of the plates could be scanned at one time, so it

was necessary to scan the 29-inch plates in two segments.

The plate holder moves in a rectangular grid pattern

with tracks passing across the diode array vertically. As

the tracks pass across the aperture the light reaching the

diode array is reduced. This signal is inverted and sent to

the scanner electronics. When these signals are viewed on

an oscilloscope a track event registers as a peak in the

trace. For valid track identification several criteria must

be satisfied simultaneuosly. These include the signal

height, its duration, rise time and centering on the diode

array. If all these requirements are satisfied a valid

track count is recorded at the current position in the scan.

These counts form a histogram of the band of tracks along

the plate. The reliability of the system has been elicited

in a number of comparisons with hand scanned spectra (R081).

Data for both the 8Be and 8Li experiments were recorded

sequentially during the same runs. Two plates were placed

in the focal plane one above the other. The spectrograph
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angle and the field were set for a given reaction and one

plate was exposed. Then the field was changed for the other

reaction and the plate holder moved so the other plate could

be exposed. Running these experiments together enabled the

use of the beam energies determined in the triton exposures

to be used in the helium 3 experiment. This was necessary

because the observation of only the (p,3He) reaction in the

8Li experiment did not provide the needed decoupling of the

beam energy and the spectrograph angle. Therefore, an

average beam energy was used for the analysis of the 3He

data. The Q value showed little sensitivity to the beam

energy so this procedure was not a problem.

3.3 Analysis

Spectra from the plates are shown in Figures 3—4 and

3-5. Higher energy particles are at lower channel number.

The resolution obtained is 25-35 keV FWHM. Figure 3-4

contains both the deuteron band and the triton band (that

were collected simultaneously during the exposure). The

deuteron band contains some additional peaks from reactions

in the platinum backing. These are the unlabeled peaks at

low channel number. The labeled peaks indicate the

calibrations used in determining the energy of the T=2

state. The ordering is according to increasing channel

number.

The peaks in the deuteron spectra numbered 1, 5, 6, and

14 show a reduction in counts near their centers. This is
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caused by the high track density in the center of these

groups. The track number becomes so large that a large

fraction of the tracks overlap and the scanner electronics

can no longer distinguish the individual tracks. The

overexposure of these lines was necessary in order to obtain

enough statistics in the T=2 state.

A specialized peak fitting routine was written to

determine the centroids of the "burned-in" peaks. This

program performs a peak fit with a symmetric three-parameter

gaussian with a background that could include constant,

linear or quadratic terms. The code allowed the removal of

the central portion of the peak from the fit. The method of

maximum likelihood was used to find the best fit and to

determine the centroid uncertainty.

The use of the maximum likelihood method was necessi-

tated by the discovery that a chi-squared minimization

method did not produce realistic centroid uncertainties for

fits to the burned-in peaks. This was determined by testing

with normal peaks that had their center regions removed. As

more channels were left out of the fit, the resulting

centroid uncertainties decreased. Because less information

should not produce greater certainty in the results, a

different approach to the calculation of the centroid

uncertainties was tried. Integrating the likelihood

distribution with respect to the centroid provided a

reliable estimate of the centroid uncertainty. See

Appendix C for a discussion of the method of maximum
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likelihood.

In addition to three-parameter symmetric gaussians, an

attempt was made to fit the peaks with functions containing

more parameters. This was done in the hope that the

slightly asymmetric nature of the peaks would be better fit

with a distribution that could include this asymmetry.

Four- and five-parameter functions were tried but the extra

parameters produced unrealistic peak shapes. So only fits

with three parameters were used in the final analysis.

Because of the inability to obtain realistic peak shapes

with the four- and five-parameter functions, it was not

possible to determine if a systematic error was present when

the fitting was done with the three-parameter functions.

However, because of the large number of calibration lines on

each plate, as well as the number of plates used in the

analysis, the deviations should average out. Furthermore,

if a constant centroid shift were introduced, the relative

peak separations would not change and the shift would have

no effect. No additional uncertainty will be introduced to

account for this possible effect.

DOALL, a code developed at MSU by Hamilton and Vance

(Ha74), was used to determine the Q values. This program

performs an energy calibration on a given spectrum. It

utilizes a linear chi-squared minimization procedure on

designated calibration lines with accurately-known reaction

excitation energies to calculate changes in the beam energy

(AE) and spectrograph angle (A9) while simultaneously
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calculating the parameters for the relation between the

effective radius of curvature p and the particle position D,

along the focal plane of the spectrograph. Measurement of

the spectrograph magnetic field, combined with the effective

radius of curvature, enables the determination of the

particle energy. This code then calculates accurate

excitation energies and Q values from the fit parameters.

Nominal values for the magnetic rigidity, (Bpi)O for a

given line i are provided from calibration of the beam

analyzing system. The analyzing system determined the beam

energy to 3100 keV. The spectrograph angle was known

nominally to 0.2 degrees. DOALL calculates corrections to

the nominal values of the beam energy Eo and the scattering

angle 90 and applies these to an actual value of B01 using

the first order expansion,

i
. i 1

BO = (B0110 + ELEM AB + MEAL A0 (3-1)

8E 30

The relation between D and D is usually expressed in

terms of an expansion around an arbitrary point and takes

into account the nonlinear relationship between these

quantities.

pi = p0 + a(Di-DO) + 8(Di--DO)2 (3-2)

This can then be related to the magnetic rigidity as

Bpi = Boo + Ba(Di-DO) + BB(Di--DO)2 (3-3)

The po,<1, and B are the unknowns of the spectrograph

calibration. Combination of equations 3-1 and 3-3 results



77

in an expression for each calibration line which contains

five unknowns.

_ 3 (B01)
1 - - -—

(3° ’0 ‘ as 39
A0 + BpO +

(3-4)

+ (113(1)i - D0) + BB(Di - DO) 2

With five or more appropriately-chosen calibration lines it

is then possible to determine these unknowns. Once the

chi-squared minimization procedure determines the best

values for these unknowns the energy and Q value of the

reaction of interest can be obtained (N073).

Table 3—1 contains the excitation energies used in the

analysis (Aj79,Aj80,Aj8l). Recent high precision

measurements (Bi8l,Ba82) of states in 1“N were combined in

quadrature with the compilation of Ajzenberg-Selove (Aj81).

These are shown in Table 3-2. The Q values used in the

analysis were those calculated from the 1981 mass tables of

Wapstra and B08 (Wa81).

The weighting for each calibration line included both

the centroid uncertainty from the peak fitting routine taken

in quadrature with the excitation energy uncertainty. The

excitation energy was first converted to channel number via

the first order conversion between energy and channel number

along the focal plane. In the compressed spectra the

energy/channel number conversions for 3He, d, and t were

5.0, 6.9, and 4.5 keV/channel respectively.

The target thickness and uniformity were determined

using the alpha particle backscatter technique (Fo77a,Ro82).
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Table 3-1 Calibration excitation energies for the

8Li and 8Be experiments.

Nuclide Excitation Peak Numbers

Energy(keV) in Spectra

8Li Experiment

1“N 9.9 1

2312.99(3) 4

3948.12(18) 6

5105.88(15) 8

569l.43(12) 19

5834.21(l6) 11

6203.5(6) 12

7028.94(13) 16

7966.6(6) 17

8487.7(12) 18

9172.44(39) 19

8Li 9.9 2

980.8(1) 3

2255.(3) 5

10822.2(55) 23

1°B 9.9 7

718.32(9) 9

l740.16(l7) 13

2154.3(5) 15

5163.9(6) 29

8Be Experiment

150 9.9 5

5183.(l) 19

5249.9(3) 11

6176.3(17) 14

9Be 0.0 l

2429.4(13) 2

14392.6(18) 12

11c 9.9 6

2999.9(5) 9

1“o 9.9 3

6590(10) 8

°Be 27494.9(29) 13

1°C 9.9 4

3350.8(9) 7



Table 3—2

Excitation

Energy (keV)

(Aj81)

2312.s7(7)

3947.8(4)

5105.87(18)

5689.6(11)

5834.23(21)

6293.5(6)

7927.9(14)

7966.6(6)

8487.7(12)

9170.7(16)

79

Excitation

Energy (keV)

(Bi8l)

2312.90(3)

3948.2(2)

5105.9(3)

5691.55(13)

5834.3(3)

7029.4(3)

9172.5(3)

1+ 0 o o

1 N ex01tat10n energies.

Excitation

Energy (keV)

(Ba82)

5690.5(4)

5834.0(4)

7028.85(14)

Weighted

Average (keV)

2312.90(3)

2948.12(18)

5105.88(15)

5691.43(12)

5834.21(16)

6203.5(6)

7028.94(13)

7966.6(6)

8487.7(12)

9172.44(30)
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A 3 MeV alpha beam, from the single-ended Van-de-Graaff at

Los Alamos National Laboratory, was used in the measurement.

Alpha particles were backscattered off the platinum target

backing. The energy shift and width of the high energy side

of the Pt backscatter peak (with particles passing through

the BeO layer) showed that the target was quite uniform

(though the platinum backing appeared not to be). The

measured target thickness of 113 ug/cm2 was in excellent

agreement with a previous measurement of 114 ug/cm2 by

Robertson et al. (R075).

To account for energy loss in the target, corrections

were made to the excitation energies corresponding to the

calculated energy loss for each reaction in the target. The

program SPECTKINE IV, developed at MSU by Trentelman,

Robertson, Gleitsmann and Robinson (Tr76b) contained the

calibration of the beam transport system and calculated the

particle energies for the reactions. The energy loss for

each reaction was then calculated using the stopping power

tables from Saclay (Wi66). An average beam energy was used

in this calculation, and the particle energies were

determined for a scattering angle of 9 degrees. Energy loss

corrections for the deuterons and tritons were between 0 to

4 keV while those for 3He were between 0 to 13.2 keV.

The 1981 mass tables have not as yet been incorporated

into the library of the MSU computer system. Therefore, to

take into account the new 0 values, it was necessary to

enter corrections to the excitations energies used in the
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calibration. For a given reaction, the ground state as well

as all the excited states were corrected with the negative

of the Q value change (1981-1977).

Table 3-3 lists the ground state mass excesses that are

needed in the calibration reactions (Wa77,Wa81). There

currently exist some discrepancies between the ad0pted

values and some recent high resolution mass measurements.

In particular the masses of 1°C and 10C are in doubt.

Unpublished measurements by Barker and Nolen (Ba82a), differ

by several keV from the 1977 and 1981 mass tables (see Table

3-3). An additional and independent measurement of the

1°C-1”O mass difference (see footnote in Table 3-3), also by

Barker and Nolen, is consistent with the mass difference

extracted from their individual mass measurements. Table

3-4 lists the Q values based on the 1981 and 1977 mass

tables for all the ground state reactions in the

experiments. The Q value changes using the Barker and Nolen

mass excesses are also listed. An analysis of the 8Be data

using these alternate values produced a change in the 8Be

T=2 Q value of less than 0.13 keV. These masses were not

used in the 8Li measurement, and so had no effect on the Q

value in that case.

3.4 Results

The deviation of the Q values (about their unweighted

average) derived from individual plate exposers, from the

8Be and 8Li experiments are shown in Figures 3-6 and 3-7.



Table 3-3

Mass Excess

1977

la 7289.034(23)

H 13135.84(4)

3H 14949.94(5)

3He 14931.32(5)

Li 29946.9(9)

8Be 494l.76(10)

Be 11348.0(4)

1°Be 12607.6(6)

1°B 12951.7(5)

c 15792.9(7)

11c 10650.0(11)

12c 9.9

1“N 2863.444(23)

o 8008.3(5)

150 2955.4(7)

o -4737.02(4)

1977 and

82

1981 mass excesses.

Mass Excess

1981

7289.028(23)

13135.823(42)

14949.910(52)

14931.311(52)

20945.312(787)

4941.696(105)

11347.600(397)

12606.869(412)

12050.042(393)

15700.472(394)

10649.287(435)

0.0

2863.430(24)

8006.563(81)

2855.450(630)

-4737.048(47)

Difference

-0.006

-0.017

~0.030

-0.009

-1.588

-0.064

-0.400

-0.731

-1.658

~2.428

-0.713

-0.014

-1.737

0.050

(1981-1977) (Nolen-1977)

a

-2.71(47)

0.01(29)

a

0.35(51)

Calculated 1°C-“O mass difference relative to the 1977 mass

table is 3.06(42) keV.

keV (Ba82a).

Measured mass difference is 3.44(27)
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In the 8Li data, one 9-degree run was not included because

of an incorrect setting of the spectrograph field which

placed the T=2 state off the end of the plate. The

uncertainty for each value is from a sum (in quadrature) of

the centroid uncertainty (from the peak fitting routine) and

the uncertainty in the excitation energy (calculated in

DOALL from the variance-covariance matrix). The difference

between a weighted and unweighted average of these data is

also shown in the figures. The standard deviation of the

data points (internal error) is shown as dotted lines in

these figures. The weighted average falls well within the

internal spread of the data. The unweighted average of the

Q values is adopted for the final result. For the

1°Be(p,t)°Be reaction the Q value is

~27484.3(l4) keV.

For the 1°Be(p,°He)°Li reaction the Q value is

-26821.3(57) keV.

Table 3-5 contains a list of the major uncertainties in

the measurements. All the uncertainties were taken in

quadrature to yield the errors quoted above.

For the 8Be experiment there are four ground state 0

values that could change:

Q =12C(Ptd)llc
1

02=1°Be(p,d)9Be

aa=160(p.t)1“o

Qu=12C(ptt)1 0C0

Future corrections to our 0 value will be approximately
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Table 3-5 Contributing uncertainties to the Q value

measurements 0

A 10% uncertainty in 10BeO

A possible 10 ug/cm2 carbon

layer

25 keV shift in beam energy for

8Li experiment

10% uncertainty of the relative

shift between d and t from

deflector

Uncertainty in appending two

halves of the scans together;

1/16 channel shift to all

peaks ?- 1200 channels

Barker and Nolen Q values

(Table 3-4)

Uncorrelated Q value

uncertainty from %

E 39 (T=2) 205

i BQi 1

(Partials from Equations

3-5 and 3-6. Q value

uncertainties from

Internal errors

(See Figures 3-6 and 3-7)

8Be('r=2)

AQ(keV)

0.30

0.23

0.12

8Li('r=2)

AQ(keV)

0.42

0.45

0.32

Total sum in quadrature 1.41 5.67
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AQ=(0.59)AQI+(0.1034)AQZ+(0.025)A03+(1.0217)AQH (3—5)

where AQ's are defined as QNew-QOld.

For the 8Li experiment the qround state Q values

subject to change are

Ql=12C(p,3He)1°B

Qz=1°Be(p,3He)°Li.

Possible corrections to our value will be approximately

Equations 3-5 and 3-6 are based on the approximation

that small Q value changes may be taken as independent.

These expressions give the change in our result as a

function of calibration Q value changes. The coefficients

are partial derivatives calculated by making 1 keV changes

to the calibration Q values and taking the difference of the

averages for all the runs before and after the change. This

sum of partial derivatives works quite well and gives

reasonable results even when several values are changed at

once.

The Q values from the measurement of Robertson et al.

(R075) are -27487.6(26) and -26804.1(54) keV for the

reactions 1°Be(p,t)8Be(T=2) and 1°Be(p,3He)°Li(T=2)

respectively. Comparison of our values with these previous

results shows a fairly good agreement between the 8Be
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measurements. For the 8Li Q value, however, our new value

is 17.2 keV below the older measurement. The calibration Q

values used in the Robertson analysis have only changed by a

few keV and are not the cause of this discrepency. Because

of the introduction of the additional calibration lines as

well as the non-sequential aspect of the new measurements,

it may be argued that only the new values should be adopted.

The mass excess for the T=2 state in 8Be (based on our

new Q value of -27484.3(14) keV for the reaction

1°Be(p,t)°Be) is

32430.4(15) keV.

The resonance energy for the reaction 6Li(d,Y)8Be(T=2)

by Noe et al. is Ed=6962.8(30) keV. This measurement is

based on an accelerator energy calibration of Ep=14230.75(20)

keV from the resonance reaction 12C(p,Y)13N(T=3/2) (Aj81).

This calibration has not changed, so just using the Ed

resonance energy and the 1981 mass table to recalculate the

Q value, the T=2 8Be mass excess becomes 32435.7(23) keV.

A weighted average of the mass excesses obtained from

the resonance experiment of Noe et al. and from our (p,t)

work is 32432.0(13) keV. Because these two values are two

standard deviations apart, the approach of the particle data

group (Ba70) has been adopted. Namely, the uncertainties of

the measurements have been scaled to bring the reduced

chi-squared to unity. The resulting change is only in the

size of the error and does not affect the value of the

average. The adopted mass excess for the T=2 state in 8Be
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is then

32432.0(24) keV.

The 8Li T=2 mass excess (based on the Q value from our

new measurement -26821.3(57) keV and the 1981 mass tables)

is

31785.9(57) keV.

Chapter Four contains a discussion of the effect of

these new results on the IMME fit to the A=8 quintet.



CHAPTER FOUR

4.1 A=24 Quintet

In the A=24 quintet, the mass of the Tz=2 nucleus 21‘Ne

was measured by Silbert and Jarmie (Si61) using the

22Ne(t,p)2”Ne reaction. The most accurate measurement of

the lowest T=2 state in 2“Na was made by Start et al. (St73)

via the 22Ne(3He,py) reaction. The lowest T=2 level in 21'Mg

was first observed in the 26Mg(p,t) reaction by Garvey,

Cerny and Pehl (Ga69). It has subsequently been studied as

an isospin-forbidden resonance in the 23Na(p,y) reaction by

Riess et al. (R167), by Szucs, Underwood, Alexander, and

Anyas-Weiss ($273), and by Heggie and Bolotin (He77).

The T=2 level in 2“Al was first observed by Ayst0 et

al. (Ay79) using the 2"Mg(3He,3n)2“Si reaction. The 2"Si

activity was transported via helium jet to an on-line mass

separator system. Mass-24 activity was deposited in front

of a AE-E telesc0pe and the energy of protons from the T=2

level in 2"Al (POPUIated by the beta-decay of 21+Si) were

measured. This level has subsequently been measured using

the same reaction (see Chapter Two and Le80). The observa-

tion of 2"Si in the 28Si("He,8He) reaction by Tribble et al.

(Tr80) brings this quintet to completion.

In the A=24 multiplet some of the mass excesses are

91
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derived from measurements of nuclear reaction Q-values, some

from excitation energies and some from proton resonance or

decay energies. Considered independently, each of these T=2

state mass excesses includes in its uncertainty the

uncertainty in a ground state mass excess. However, mass

differences in a local group of nuclides are frequently

known more precisely (by direct measurement) than are the

absolute mass excesses themselves. It is these mass

differences which are relevant in testing the IMME because

the higher-order terms are all expressible as mass

differences. In other words, the uncertainties in the

ground state masses are strongly correlated, and a proper

evaluation of the uncertainties in the coefficients of the

IMME requires consideration of these correlations.

We therefore return to the original measurements which

link the nuclei of interest. Those measurements constitute

a practically uncorrelated body of data, although there are

small correlations which arise from the use of common

calibration lines, e.g., the 6129.17 keV line of 160. The

uncertainties in these calibrations are small enough that

their influence can be neglected. We may confine our

attention to masses which affect the T=2 states in 2"A1,

2“Mg and 2“Na because the uncertainties in the masses of

2"Si and 2"Ne, 22 keV and 10 keV, respectively, are so large

Furthermore, the masses of the T=2 states in 2“Al and 2"Na

are, for all practical purposes, correlated only with the

masses of 23Mg and 2"Na (respectively), while in 21’Mg the
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gamma decay energy to the ground state and the proton

resonance energy in 23Na(p,y) are known to comparable

precision. In earlier mass evaluations these two

independent measures of the mass <15 the 2"Mg T=2 state were

consistent, but the 1977 Wapstra-Bos tabulation (Wa77) leads

to values obtained in the two types of experiment

(Ri67,Sz73,He77) which differ by 5.0(24) keV. The origin of

this discrepancy is difficult to identify exactly because of

the global nature of mass adjustments; however, it appears

to lie outside of the local group of masses needed for the

present purposes, a group interrelated by several precise

and consistent experimental measurements.

This problem in the middle of the s-d shell has been

noted by Wapstra and Bos (Wa77). Wapstra (private

communication) has carried out an adjustment in which the

direct mass spectrosc0pic data is omitted and the results

show reduced closure errors. Furthermore, Wapstra and Bos

have published tables of mass differences which have been

calculated taking correct account of the correlations

between the masses concerned. However, these tabulations do

not list the correlations between mass differences, nor do

they include the linkage through the T=2 state of 2“Mg,

i.e., the proton resonance energy and the Y-decay energy,

which significantly constrains the 23Na-“Mg mass

difference. For these reasons we have adopted a local mass

adjustment.

The ground state masses required in the analysis are
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23Mg, 23Na, 2“Mg and 2“Na. In addition, the mass of the

T=2 state in 2"Mg should be included on the same footing

as the ground state masses because it links 2"Mg and 23Na.

The data base given in Table 4-1 forms the input for a

local least-squares mass adjustment. Each mass is linked to

at least two others, and 5 masses are related by 7 mass

differences. This is illustrated graphically in Figure 4-1.

The solid lines show the 7 connections between the 5 masses

and the dotted lines represent the measured proton energies

and excitation energies used in determining the T=2 level in

2"A1.

The normalized x: for the fit is 1.1 (2 degrees of

freedom). To obtain actual numerical values for masses we

arbitrarily assign 2“Mg a mass excess of -13930.6 keV -- all

the derived masses are then based on (and fully correlated

with) this mass. The resulting ground state mass excesses

(along with a comparison to the 1977 mass tables) are listed

in Table 4-2. Table 4-3 contains a summary of the T=2 state

mass excesses (and their excitation energies) as derived

from the local mass adjustment. These masses are used to

derive the coefficients of the IMME which are also shown in

Table 4-3. The covariances are negligible with the

exception of 23Na - 2"Na. It should be borne in mind that

the masses in Tables 4-2 and 4-3 do not include the 2“M9

mass uncertainty (0.7 keV), and that it is this distinction

which eliminates the otherwise strong correlation between

them. The coefficient (a) is therefore subject to the
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Table 4-1 Reaction Q values used in the local mass

adjustment.

Reaction Q values (keV) References

23Na(p,Y)“Mg 11691.2(11) (Wa77)

23Na(n,v)2“Na 6959.4l(12) (Wa77)

23Na(p,n)23Mg -4839.l(26) (Wa77)

2"1~ag(p,d).“1~ag -14397.5(15) (Wa77)

2"blade—)“Mg 5514.8(20) (Wa77)

2"1~4g('r=2)+“1~1.-.-1 + p 3741.2(23) (Ri67,Sz73)a

2"1~ag('r=2)+“Mg + y 15436.3(6) (5193,5273)a

Weighted average of these measurements.

Table 4-2 Mass excesses obtained using the local mass

adjustment, and a comparison to the 1977 mass table (Wa77).

Nuclide Local Adjustment 1977 Mass Table

Mass Excess(keV) Mass Excess(keV)

23Na -9527.7(9) -9529.6(8)

23Mg -5479.2(13) -5470.6(15)

2“Na -8415.6(9) -8417.5(8)

°“Mg -13939.6a -13930.6(7)

2"Mg(T=2) 1505.5(6) -

Assigned reference mass excess.
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Table 4-3 Summary of the properties of the A=24 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excessa Excitation References

(keV) (keV)

2“Si -2 19792(22) 9 - (Tr80)

2»

b

Al -1 5993.4(49) 5955.4(57) (Ay79,This

work)

2“Mg 9 1505.5(6) 15436.1(6) (Wa77)

2“Na 1 -2445.4(13) 5979.2(9) (St73)

2“Ne 2 -5949(19) 9 (Wa77)

----------_-_-_---_---------_--_------------------_-----;---

----3___________E__________f...........3_________f_____52-__

1505.5(6) -4l71.6(l9) 224.7(18) - - 9.9

1505.4(6) -4174.3(25) 225.0(18) -l.2(16) - 1.3

1505.5(6) -4175.3(29) 223.9(28) - 9.4(9) 1.7

1505.5(6) -4171.6(35) 222.1(31) -2.8(21) 1.4(12) -

Mass excesses of the three inner members of the quintet

(Al,Mg,Na) make use of the local mass adjustment. See

tables 4-1 and 4-2 for input values. Outer members (Si,Ne)

do not.

b

Weighted average of these measurements.
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additional uncertainty contributed by the uncertainty in the

mass of 2"Mg.

Examination of Table 4-3 shows that the quadratic IMME

gives a reasonably good fit to the data, with X$=0.9 per

degree of freedom. A plot of the residuals of the quadratic

fit is shown in Figure 4-2. Addition of either a cubic or

quartic term by itself does not improve the quality of the

fit. The uncertainty in the d coefficient, 1.6 keV in the

cubic fit, may be compared directly with other d

coefficients in both quintets and quartets.

4.2 A=8 Quintet

In the A=8 quintet, the T=2 nucleus 8He was first

observed by Cerny et al. (Ce66), using the 26Mg(“He,8He)22Mg

reaction. More recently the 180(“He,°He)“0 (Ja74) and

6"Ni(“He,°He)°°Ni (Ko75a,Tr77) reactions have been used to

determine the 8He mass excess. Previous to the work

described in Chapter Three, the only measurement of the T=2

state in 8Li was made by Robertson et al. using the

1°Be(p,3He)8Li reaction. The T=2 level in 8Be was discovered

as a narrow resonance by Black et al. (B169), using the

6Li(d,p)7Li and 6Li(d,a)”He reactions. This was later

verified by Robertson et al. using the 10Be(p,t)°Be reaction

(R075). The T=2 state in 8B has only been measured once

using the 11B(3He,6He)°B reaction (R075). The T=2 nucleus

8C was first observed by Robertson et al. (R074), via the

12C(“He,°He)°C reaction. A measurement by Tribble et al.
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(Tr76) also used this reaction. A later measurement by

Robertson et al. (R076), used the 1L'N(3He,9Li)°C reaction to

determine the 8C mass excess. This later measurement helps

80to reduce the correlation between the 8He mass and the

mass that results when using the 12C(“He,°He)8C reaction.

Table 4-4 contains the mass excesses for the A=8

isobaric quintet. The 1981 mass tables (Wa8l) have been

used to derive these masses. Because of the large number of

connections between the ground state masses in this region,

it was felt that a local adjustment was not necessary. The

measurements of the T=2 states were, however, analyzed with

this table.

Table 4-4 also contains the coefficients from a fit

using the IMME. With the change in the 8Li mass from its

previous value, the deviation from the quadratic form of the

IMME has been eliminated. This holds even when the new and

old 8Li masses are averaged together. Figure 4-3 shows the

residuals of the quadratic fit to the A=8 quintet.

It is striking that even in this case, where several

members of the quintet (8C, 8B and 8Be) are unbound to

isospin allowed particle decay, that agreement with the

quadratic form of the IMME is still maintained.

4.3 Quintet Summary

Besides the A=8 and 24 isobaric quintets, the A=20, 32,

and 36 quintets have been completed. 0f the remaining A=4n

systems for A344 there are four multiplets A=l2, 16, 28,
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Table 4-4 Summary of the properties of the A=8 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

8 a

c -2 35995(23) 9 (Wa81)

e b

B -1 33542.3(79) 10622.1(80) (R075)

C

8Be 9 32432.9(24) 27499.3(24) (No76,This

work)

8 d

Li 1 31785.9(57) 10840.6(58) (This work)

8He 2 31598.0(91) 9 (Wa81)

--------_---_------------------------_--_---------------;---

_----3-----------E__________f__________§_---_----f_-_-_§2--_

32432.3(23) -876.7(38) 229.9(25) - - 9.2

32432.4(23) -878.1(64) 229.4(28) 0.6(23) - 9.3

32432.9(24) -876.7(38) 232.3(79) - —0.7(18) 9.3

32432.0(24) -879.5(68) 233.3(72) 1.3(26) -l.2(20) -

Based on a weighted average of (Tr76,Ro76).

Used measured Q value ratio from (R075) and 1981 mass

tables (Wa81) to obtain these values.

0

Adjusted value from (N076) using (Wa81) then took a

weighted average with this work. Quoted error has been

scaled according to the prescription of (Ba70).

d

The measurement of (R075) has not been included.
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and 40 which contain four known members (A=44 has only three

members known). Each of these is missing the Tz=-l member

of the quintet. Experimentally, this has been the most

difficult mass to measure, because no good general method

has been found to identify the T=2 state in these Tz=-l

nuclei (Be79).

There are at least 9 excited quartets that have been

completed (Be79). However, there is as of yet no case of

a complete excited quintet. Only for the A=l6 multiplet

are four members known. For the A=12 and 20 multiplets

three members are known.

Tables 4-5 through 4-15 contain a summary of these

quintets. The uncompleted cases are included and use the

quadratic form of the IMME to predict the unknown mass

excesses and excitation energies. The residuals of the

quadratic fit to the IMME have been plotted for the three

completed quintets (20, 32, and 36) and are shown in Figures

4-4 through 4-6.

In all cases the 1981 mass tables (Wa81) were used in

the analysis of the data.

Figures 4-7 through 4-10 contain plots of the d and e

coefficients obtained from IMME fits. For fits with only a

d or e coefficient the uncompleted quintets were included.

It is worth noting, that for a multiplet where the Tz=-l

mass is missing, the derived d coefficient will equal the e

coefficient. For the completed quintets both d and e could

be tested simultaneously. These coefficients are shown in
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Table 4-5 Summary of the properties of the A=12 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

12 a

o —2 32066(45) 9 (Ke78, Bu89)

12 b

N -1 [29589(16)] [12251(16)] IMME

12c 9 27595.9(24) 27595.9(24) (R078)

C

12B 1 26080(19) 12711(19) (Ne7l,As76)

12Be 2 25977(15) 9 (A178)

'"""""""""g"""""""""""3""""“"";3"

-____f........................S___--__-__-__-_-__-f_-__--2--

27594.9(24) -l749.6(1ll) 244.7(59) - - 9.2

27595.0(24) -1763.0(260) 244.1(60) 4.0(69) - -

27595.0(24) -1747.3(119) 228.3(292) - 4.0(69) -

A weighted average of these two measurements. The value

from ref. (Bu80) required a small -3 keV correction

(Mo82a).

Prediction using the quadratic form of the IMME.

c

A weighted average of these two measurements. This

differs from the adopted value of Ex=12750(50) keV in

(Aj80) based on (As76) and (Aj75). The latter measurement

is 9Be(7Li,a)12B which is isospin forbidden to the T=2

level and is therefore unlikely to populate it.
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Table 4-6 Summary of the properties of the A=12 first

excited (2+) isobaric quintet and coefficients of the IMME

fits.

Nuclide T Mass Excess Excitation References

(keV) (keV)

a

12o -2 [33810(860)] [1740(860)] IMME

12 a

N -1 [31599(349)J [14l60(340)] IMME

12c 9 29630(50) 29630(50) (As76)

12B 1 28189(100) l4820(100) (As76)

1 b

2Be 2 27179(19) 2192(12) (A178,Al78a)

a b c d e X3

29630(50) -1657(2l4) 216(104) — - -

a

Predictions using the quadratic form of the IMME.

A weighted average of these two measurements.
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Table 4-7 Summary of the properties of the A=l6 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

16
a

Ne -2 24922(51) 9 (Ke78,Bu80)

16 b

F -1 [29793(17)] [19113(19)] IMME

16o 9 17983(5) 22729(5) (Aj82)

16N 1 15609.8(74) 9928(7) (He68)

C

16c 2 13694.2(36) 9 (Wa81)

a b c d e X3

17981.3(47) -2589.4(l01) 222.8(49) - - 9.9

17983.0(50) -2595.3(119) 218.8(65) 3.3(35) - -

17983.0(50) -2582.0(128) 295.4(199) - 3.3(35) -

a

A weighted average of these two measurements. The value

from (Bu80) required a -3 keV correction to the Q value

(M082a).

Prediction using the quadratic form of the IMME.

c

This is based on a weighted average of Q values from ref.

(F077) and (Se78).
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Table 4-8 Summary of the properties of the A=16 first

excited (2+) isobaric quintet and coefficients of the IMME

fits.

Nuclide Tz Mass Excessa Excitation References

(keV) (keV)

16Ne -2 25712(87) 1690(70) (Ke78)

b

169 -1 [22593(28)] [11913(29)] IMME

16o 9 19785(ll) 24522(11) (A170)

C

16N 1 17382.8(74) 11791(7) (He68)

16c 2 15460(ll) 1766(10) (F077)

a b c d e X3

19771.1(94) -2600.9(156) 229.9(75) - - 6.0

19785.0(110) -2615.6(167) 200.3(113) 13.2(54) - -

19785.0(110) -2563.0(219) 147.7(308) - 13.2(54) -

The ground state masses used are tabulated in Table 4-7.

Prediction using the quadratic form of the IMME.

This could be a l- or 2+ level.
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Table 4-9 Summary of the properties of the A=20 isobaric

quintet and coefficients of the IMME fits.

Nuclide T Mass Excess Excitation References

(keV) (keV)

20 a

Mg -2 1757(27) 0 (Wa81)

20 b
Na -1 13420(50) 6580(50) (M079)

20 C

Ne 0 9689.4(23) 16735.7(31) (B167,Ku67,

Ad69)

20F 1 6502.4(31) 6519.4(30) (Mi76)

20 d

O 2 3799.5(84) 0 (Wa81)

___-__-__---__-----_-----__--------__---_--___------_--_3-__

_--_-3...........E-__-_---_-f__________§__--_----f--__-32-_-

9690.4(22) -3437.6(49) 247.5(32) - - 1.1

9689.5(23) -3434.4(56) 249.4(36) -2.3(l9) - 0.8

9689.4(23) -3444.0(68) 259.7(95) — -2.6(l9) 0.4

9689.4(23) -3464.1(335) 279.4(335) 5.3(87) -7.6(85) -

Based on a measurement by ref. (Tr76a).

This value based on the mass difference between the T=2

and ground state (Wa81) mass excesses. This differs from

the value of Ex=6570(50) keV from ref. (M079).

c

Weighted average of these three measurements.

d

Based on weighted average of Q value from (Ja60,Hi62).
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Table 4-10 Summary of the pr0perties of the A=20 first

excited (2+) isobaric quintet and coefficients of the IMME

fits.

Nuclide Tz Mass Excess Excitation References

(kev) (keV)

a

2°Mg -2 [20460(800)] [2900(800)] IMME

a

2°Na -1 [15539(399)] [8690(300)] IMME

b

2°Ne 9 11383.8(29) 18430.1(35) (Ad68,Ku72)

C

20F 1 8933(199) 8050(100) (Aj78)

2°o 2 5473.2(84) 1673.68(15) (Wa73)

’""""""""g"""""""""""3"“""""""'3"

_ -3 ________ ° ............f __-_-§2-_

11383.8(29) -3746(200) 396(100) - - -

a

Prediction from the quadratic form of the IMME.

Weighted average of these two measurements.

From a measurement in ref. (Ce64).
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Table 4-11 Summary of the properties of the A=28 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

28s -2 -4134(160) 9 (M082)

28
a

P -1 [-1252.8(98)] [5908(11)] IMME

23
b

Si 0 -6269.3(31) 15223(3) (Sn69,Je72)

28A1 1 -l0858.l(8) 5992.4(4) (St73)

2“Mg 2 -15018.7(21) 9 (Wa81)

..-_.___..___.__._.._...._._.._.____....................3...

a b c d e Xv

-6269.4(31) -4802.7(50) 214.0(20) - - 0.1

-6269.3(31) -4798.0(l37) 206.7(200) 2.5(67) - -

-6269.3(3l) -4788.2(400) 196.9(468) - 2.5(67) —

a

Prediction using quadratic form of the IMME.

b

Updated the value from (Sn69) brought it into agreement

with (Je72). This excitation energy differs from that of

(En78) Ex=15225(3) keV.
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Table 4-12 Summary of the properties of the A=32 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

32 a

Ar -2 -2176(50) 9 (Bu80,M082)

32c1 -1 -8296.4(54) 5933.1(93) (Ha77)

32S 9 -13971.1(5) 12945.9(4) (An80)

32 b

p 1 -l9232.6(11) 5973.2(9) (Pi60,Ly67,

Va67,Fo72)

32s1 2 -24979.1(12) 9 (Wa81)

----_----------_-------------_--------_---------_-_-----;---

-----3-----------E----------E__________§_-_-__--_f-_--_§2_--

13971.1(5) -5468.8(l9) 297.4(11) - - 9.2

13971.1(5) -5468.8(21) 207.3(26) 9.9(19) - 9.4

13971.1(5) -5468.5(27) 206.8(33) - 9.1(5) 9.4

13971.1(5) -5465.5(56) 205.2(43) -2.6(43) 1.4(23) -

Based on Q value for 32$(fl+,fl-)32Ar = -23840(50) keV.

Weighted average of these four measurements.
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Table 4-13 Summary of the properties of the A=36 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

36 a

Ca -2 -6440(40) 9 (Wa81)

36K -1 -13168(22) 4258(23) (Ay81a)

36

b

Ar 9 -l9379.6(22) 10851.8(22) (Hu76,Ma76a)

C

36c1 1 -25223.2(19) 4298.9(10) (Ma75,Ri75,

Ve76)

353 2 -30664.51(26) 9 (Wa81)

'""""""""g"""""""""""5"""""""';E"'

_____E__________________c __________ e v _

19379.8(20) -6044.5(34) 291.1(13) - - 1.9

19380.2(22) —6045.3(38) 203.1(46) -0.8(17) - 3.5

19379.6(22) -6043.2(74) 199.3(91) - 9.3(14) 3.7

19379.6(22) -6018.1(151) 176.4(150) -9.5(50) 7.6(41) -

Based on Q value from (Tr77).

A weighted average of these measurements; uncertainty

scaled according to (Ba70). This excitation energy differs

from that of (En78) where Ex=10853.4(15) keV.

0

Result is a weighted average of these three measurements.

In ref. (En78) the value adopted was from ref. (Ve76)

where Ex=4299.5(11) keV.
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Table 4-14 Summary of the properties of the A=40 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

u a

0T1 -2 -8792(160) 9 (M082)

“0 b b c

Sc -1 [-l6l64(39)] [4364(39)] IMME

d

“°Ca 9 -22874(15) 11974(15) (Ce68,Ha70,

Ad72,Bo77)

“°K 1 -29151.9(12) 4384.0(3) (St77)

“°Ar 2 -35040.8(l4) 9 (Wa81)

a b c d e x:

22859.7(131) -6494.2(197) 201.8(66) - - 3.8

22874.0(150) —6592.3(291) 239.4(293) -15.9(77) - -

22874.0(150) -6562.2(499) 299.3(593) - -15.9(77) -

e e e

22874.9(159) -6472.4(226) 194.5(76) - - -

a

This mass is predicted to be -9151(9l) keV from the

quadratic IMME (using Ca,K and Ar).

This mass is predicted to be -16207(45) keV with

Ex=4321(45) from the quadratic IMME (using Ca,K,

and Ar).

c

Prediction from the quadratic IMME, with Ti in the fit.

d

Weighted average of these four measurements.

e

Coefficients from the IMME fit, did not include Ti.
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Table 4-15 Summary of the properties of the A=44 isobaric

quintet and coefficients of the IMME fits.

Nuclide Tz Mass Excess Excitation References

(keV) (keV)

a

““Cr -2 [-13461(36)] 9 IMME

a

““v -1 [-21923(14)J [2839(1999)] IMME

b

““Ti 9 -28211.8(25) 9338(2) (3172)

C

““Sc 1 -35927.3(49) 2787.4(27) (En78)

HCa 2 —41469.4(16) 9 (Wa81)

--------------------------------_-_----__-----------_---_-:-

-----3-_---_------E-__-------f---_-_----§---------f------§2_

28211.8(25) -7002.2(89) 186.7(43) - - -

a

Prediction using the quadratic form of the IMME.

A possible doublet with a companion level at Ex=9298(2) keV

(Di78).

c

A weighted average of seven measurements tabluated in ref.

(En78), the adopted value in this ref. was Ex=2787(3) keV.
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Figure 4-9. The d coefficient of the quartic IMME (e#0)

plotted versus mass number of the quintet.
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the latter two figures (4-9 and 4-10).

It is apparent that for fits using either a d or e

coefficient there is quite good agreement with the quadratic

form of the IMME. Only in the excited A=16 and the ground

state A=40 multiplet are there significant deviations from

the quadratic IMME. Neither of these multiplets is

completed and in particular the measurement of the I‘°Ti mass

excess is still preliminary (M082).

For the completed quintets there is a larger spread in

the coefficients when both d and e are used simultaneously,

but only in the A=36 case are the two coefficients

inconsistent with zero. However, because the reduced chi-

squared for the quadratic fit was significantly smaller

than that for a fit using either a d or e coefficient, there

is no real need for these coefficients. Also, the residuals

for the quadratic fit in this case reveal that both the Tz=

-l and -2 masses are poorly determined relative to the other

members of the multiplet, which may account for the apparent

deviation.

4.4 The b and c coefficients

Examination of the experimentally-determined mass

excesses shows that in most cases the quadratic form of the

IMME is satisfied. Figure 4-11 shows the b and c

coefficients of the quadratic IMME plotted versus mass

number (A) of the quintet. The trend of a decreasing

positive c coefficient and an increasing negative b
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coefficient is the same as that observed in isobaric

quartets (Be79).

A simple model which explains the approximate size of

the b and c coefficients may be used to compare these

coefficients.

Considering the nucleus to be a uniformly-charged

sphere of radius Rc' the total Coulomb energy is

3 2(z--1)e2 (4'1)
Em(ao,T) = (aoTTzIHCIaoTTZ> = E R

 

C

Expressing the proton number Z as A/2-Tz (from Tz=(N-Z)/2

and A=N+Z), this expression becomes

1) .. 9_-_6e_2 a: _ _ “-2)
E( (OLo,T)- RC [4 (A 1)Tz+Tzz]

Comparing this quadratic equation in T2 to the quadratic

IMME the coefficients b and c may be expressed as

(4-3)
- 2b = 0.6e

R

A- -c( 1) +(MJr1 Mp)

and

 

0.6e2 (4-4)

R

where the neutron-proton mass difference has been added to

the b coefficient (used Mn'MIH in the calculations).

Defining the quantity b* as

b = b - (Mn-Mp) (4-5)

an expression for the relation between b* and c is

*

- b* _ (4-6)
R : C(l-A) — 1
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where the quantity R is by definition 1 for a uniform

sphere. Figure 4-12 shows the quantity R plotted versus

mass number (A) of the quintet. Deviations are apparent,

but the agreement is quite good for such a simple model.

The Coulomb radius parameter can also be extracted

from this model by setting RC in Equations 4-3 and 4-4

equal to roAyi Solving for r in each equation the Coulomb
O

radius parameters are

 

r = 0.6e2(l-A) (4-7)

ob b*A1/3

and

= 0.6e2 (4-8)
 

r

CC C A1/3

For a uniformly-charged sphere the ro extracted from the b

and c coefficients should be equal. Figure 4-13 shows the

Coulomb radii ro determined from the b and c coefficients of

the quadratic IMME plotted versus mass number (A) of the

quintet. There is quite good agreement between the value of

ro as calculated from the two different coefficients, much

better in fact than for quartets, where the r derived from
o

the c coefficient shows more fluctuations (Be79).

For a given multiplet there are two Coulomb energy

effects that occur when moving from the neutron-rich to the

proton-rich member (Be79). There is the increase in energy

from the Coulomb interaction between the valence proton and

the core. Then there also is the increased energy from the

Coulomb interaction between the valence protons themselves.
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The first effect is constant for each proton added so it is

expressed in the linear b coefficient. The second effect

increases as each proton is added so this dependence is

found in the nonlinear c coefficient. Hence, the b

coefficient is an average over the core whereas the c

coefficient is more sensitive to the wave functions of the

valence particles.

In the case of quartets where A=4ni1, the number of

protons alternates from even to odd for a given Tz member in

one multiplet to the same Tz member in the next multiplet.

Because of the strong pairing correlation between nucleons,

there is more of an energy difference when a paired proton

is converted to a neutron than when an unpaired one is.

This additional pairing effect would more likely manifest

itself in the b coefficient which displays more of the

average properties of the nucleus. In quintets where A is

always even, the proton number does not alternate from one

Tz member in one multiplet to the same Tz member of the next

multiplet. So this pairing effect is greatly reduced.

It is interesting to note the rather large Coulomb

radius parameter for the A=8 quintet (see Figure 4-13).

The neighboring nuclei 7Li and 9Be have ground state root-

mean-square (rms) Coulomb radii inferred from electron

scattering of 2.39(3) fm and 2.5fl(9) fm respectively (Ja74).

Taking the radius parameter derived from b (r =l.82 fm), the

rms Coulomb radius obtained for the T=2 states is 2.81 fm.

This is comparabletx>the rms Coulomb radius of 18O and 19F.
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It is apparent that the T=2 states are significantly larger

than the ground states of the neighboring nuclei in this

region.

4.5 Conclusions

In the case of the A=24 quintet application of a novel

experimental method was successfully applied to yield a

precise value for the mass of 2“Al as well as the first

direct measurement of the half-life of 21'Si. For the A=8

quintet the remeasurement of the mass excesses of 8Be and

8Li removed the deviation from the quadratic IMME that

existed previous to these measurements.

From an examination of all these A=4n quintets, it is

found that agreement with the quadratic form of the isobaric

multiplet mass equation is quite good. There seems to be no

evidence for substantial higher-order charge—dependent

effects in the nuclear interaction, though these effects may

be mostly manifested in the c coefficient as is the case for

isospin-mixing, Coulomb repulsion and second—order

perturbation effects.

It may be conjectured that cases of disagreement from

the quadratic form of the isobaric multiplet mass equation

may be attributed to experimental error. This leaves only

the case of the A=9 ground state quartet where a known

deviation is present and where sources of significant

experimental error have probably been eliminated.

The significance of the b and c coefficients has been



130

examined and it is found that they can provide detailed

structure information of the analog states.

Further experimental study of both isobaric quartets

and quintets is recommended. Mass measurements that

complete the remaining quintets as well as improve the

accuracy in the known members can, in conjuction with

theoretical calculations, provide useful nuclear structure

information.



APPENDIX A

A.1 Proton and alpha recoil masses.

The formula for the recoil mass (M ) can be derived
rec

simply from the conservation of momentum in a two-body

decay. Following the B-decay of the (A,Z) parent activities

to particle unbound levels in the (A.2-l) nuclei, particle

emission populates states in the residual recoil nuclei

(A-l,Z-2 for proton emission and A-4,Z-3 for alpha

emission). For now we neglect the B-induced recoil, since

this just mostly broadens the distribution, ultimately

limiting the mass resolution, and does not cause a

significant change in the centroid (this effect will

examined in Section A.3).

For a two-body decay at rest we have

mpvp = Mrecvrec (A'l)

where the subscript p denotes the emitted particles (proton

or alphas), m, mass and v, velocity. The rec subscript is

for the recoiling nucleus. In our case, we have 23Mg

recoiling from the delayed proton emission from the T=2

state in 2“Al.

Non-relativistically, the energy of the proton is

1
E = —1n v2
p2pp

solving for the momentum of the proton

(A-Z)
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mpvp = ' 2Epmp (A-3)

Substituting this into the conservation of momentum

equation we find

VZE m

M __B_.L (A-4)
Vrec rec

The velocity of the recoil from the flight path d and the

time of flight t is simply

_ d

Vrec — t (A-S)

Replacing this in the recoil mass equation leads to the

desired result:

VZE _M = m t (A 6)

rec d

For B-delayed alpha emitters expression for the recoil

mass is

Ma = find—t (A-7)

rec d

If, however, the proton mass is used in this equation we

 

obtain

a

M = M = 35931:: Mrec (A—8)
rec d 2d 2

Because we will be using mp in our calculations rather than

mg, the alpha emitters will appear at one half of their

actual mass.
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A.2 Beta-decay broadening of the recoil mass distribution.

Neglecting B-recoil, we have been able to obtain a

simple relation for the recoil mass Mrec (following particle

decay) in terms of the experimentally-observable quantities

Ep and t.

Assuming Mre is known, we can instead find the recoil's
c

velocity and hence its time of flight. For 25Si decaying to

the T=3/2 state in 25A1 followed by ground-state proton

emission we have a 2"Mg recoil with a velocity of Vrec = .12

cm/ns and a time of flight of 68 ns for our 8 cm flight

path. This is in contrast to the proton velocity of vp =

2.8 cm/ns.

We now consider the approximate effect of B-recoil on

25Si we have bothour mass resolution. For the B-decay of

8+ and v emission. Since we are not detecting either of

these particles, it is tempting to believe that the recoil

effects may just average out. However, as mentioned in the

text, the rejection of 8+ - p coincidences in the Si

detector and 8+ - p angular correlations complicate the

problem. Also, in any beta decay we have the sharing of

energy between the 8+ and the v as well as the angular

correlation between their decay. Figure A—l shows recoil

energy distributions between a Fermi type and Gamow-Teller

type decay (Di80,J063). For the Fermi decay, the B-v

correlation is peaked at small relative angles. We can

estimate an upper limit to the size of the effect by

assuming that the 8+ and v are collinear, and then,
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furthermore, giving all the energy to the 8+. As before, we

again have a two-body decay, and using momentum conservation

can obtain an expression for the initial recoil velocity Vi

which occurs before proton emission:

pa = Mivi (A-9)

Mi is the mass of nucleus before proton emission, and

is related to the final recoil mass M (after proton
rec

emission) by

M. s M + l

1 rec (A-1g)

From the known Q-value of this decay, (to the first

T=3/2 level in 25A1) thef?*kinetic energy is T=4325 keV.

This positron is relativistic so we use

Eé = péczi-méc“ .(A-11)

and from conservation of momentum we have for the initial

recoil velocity

 

JEE - mécT 3 (A-12)

Vi = Mic? c = 61(10 cm/ns
 

Because this velocity is so much less than the proton

velocity (vp = 2.8 cm/ns), we will neglect any 8+ - p

correlation effects in this discussion of the mass

resolution. We will consider these effects in relation to

changes in the proton centroid in Section A.3.

In comparison to the final recoil velocity (Vrec = .12

cm/ns) the initial recoil is more significant for this

discussion. Defining the direction toward the center of the

Si detector as 6°. we write the new velocity of the recoil

a

Mrec 8
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' = + . e
Vrec Vrec V1COS (A—13)

where 6 is the angle that the beta-decay makes with the

axis.

We make a simple velocity addition because the recoils

are nonrelativistic. From this expression we see that, for

B-decays toward the Si detector, the Mi recoils in the

direction of the channel plates with a velocity Vi“ Upon

the subsequent proton decay, the recoil will have this

additional velocity. If, however, the beta is emitted

toward the channel plates, then following proton emission,

the Mrec will have less velocity. Figure 2-18 illustrates

this effect.

Still neglecting any proton velocity shift, we can

express momentum conservation in terms of an angle dependent

recoil mass

= Mr(6)(Vr + Vicose)m v

P P ec (A-14)

We use the Equation A-3 to obtain

JZE m

Mr(6) = p

( V.cos(6)) (A-lS)

V 1 +

rec

and making use of the expression for Mre

"
O

<
L
‘

rec

c from Equation A-4.

M

rec

Vicos(6) (A—16)

(w- >rec

 

Mr(9)

This is an expression for the angle-dependent mass

Mr(6) in terms of the mass Mr and velocity Vre and the
6C C

initial B-recoil velocity Vi'
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The range of allowed angles is only from 19° to 188°.

This is because we reject positrons that enter the Si

detector as they will be coincident with the protons and

hence have too large an energy signal.

If we put into Equation A-16 the above limits on the

angle 6, we have a percentage change in the derived mass of

8.8%. A better estimate of our mass resolution is to

calculate the variance or root-mean square of the deviations

via the expression

0;! = <M§(e)> - (Mr(6)>2 (A-l7)

where the < > denote an integration over angles. We need to

evaluate expressions of the form

62

M 2 ' edeng r(6) n31n (A-18)

<Mr(e)> 62

2flsin6d6

 

91

92

f M2 (6)21Tsin6d6
9 r

1 (A-19)

62

Znsinede

62

Substituting Equation A-16 into the above integrals

 

(M; ( 8))

(61 = 19° and 62 = 188°) yields the result for the

fractional standard deviation in the recoil mass of

0M (A—Zfl)

E 0.03

Mrec

 

If we treat the distribution as if it were Gaussian, we

can obtain an estimate for the full-width at half-maximum

(FWHM) for the percentage mass resolution as
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o

M

rec

 

FWHM 5 2.354 x 100% E 7% (A-21)

This is the "intrinsic" mass resolution limit and has

no dependence on the length of the flight path used. A long

flight path, however, will reduce the effect of a finite

source size which can degrade the mass resolution. Monte

Carlo calculations were used in the design of the Princeton

apparatus to ensure that this effect was kept smaller than

the B-recoil limit (R077). we therefore used the same

length flight path and source size in our apparatus.

A.3 The effect of beta-recoil on the proton energy.

The recoil mass was a crudely-determined quantity and

was used only to filter out nearby masses. In contrast, the

proton energy is a precisely-determined quantity and,

therefore, scrutiny of any possible systematic effects is

essential. In the previous section, the 8+ - p correlation

was neglected; we now consider this, along with initial

B-recoil effects on the proton energy.

As with the recoil mass, Equation A-13, we can write

the new velocity of the proton as

v' = vp — Vicose (A-22)

where e is the relative angle between the proton and the

positron. Zero degrees is again in the direction of the Si

detector. vp is the velocity without B-recoil and v'p is

the observed velocity. We can write Equation A-22 in terms

of the kinetic energy by squaring it,
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v52 = v; — 2vpVicose + Vicosze (A-23)

this becomes

2

Ep(0) = Ep [1 - ecose + goosze] (A-24)

h - 2V1 - 1 2 d E (0) = lwn v"2 Aweree—VE,EP—-§mpvp an p 2p . swas

shown in Section A.2, Vi<<vp' and therefore 8 is quite

small.

The angular correlation function between 8+ and the p

can be expressed as (H074,Fr77)

W(6) = l + a(E)cose + p(E)cosZG (A-25)

It is now only necessary to calculate the average

proton energy to determine if there are any shifts from the

E value.

p e 2

E(0)W(6)2wsin6d6

(Ep(e)> = 61 92 (IX-26)

Jl. W(6)2nsin6d6

91

 

We again have 61: 19° and 02: 180°.

Though it is possible to carry out this integration

exactly, it is more instructive, and just about as accurate,

to take the following approach.

Inserting Equation A-24 into the integral, our

expression becomes

82 2

Jf (-€cose + E cosze)W(6)sin0de

 

E (e) 61 4 (A-27)

<—E3———>= 1 +
E 92

P / W(0)sin0d6

91
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We make use of the fact that the coefficients a(E) and p(E)

are small (Fr77) and about the same order of magnitude as a.

With 6 as the leading factor in our integral, we see that

only the first term in the correlation function W(0) will

contribute (i.e., W(e) s 1). All the other terms are second

order in the 8, a(E) and p(E) coefficients, and are

therefore much smaller than the first term. So this

 

 
 

becomes

62

<% (6» le cosesinede

_2__ g 1 _ 91
Ep 62 .

(A-28)

Jr Sinede

91

This reduces to

(152(9)): 1 + 2Vi 1- coszl9° (A-29)

E v 2(14—cos19°)

P P

Now recalling Equation A-12, we note that for Eé>>méc"

we have

BBC

1

Substituting this expression into Equation A-29 and

rewriting, we obtain for the proton energy shift

YE M (MD
AEP — (Ep(e)) Ep MiCT l 

1

/§

 

where

[l + cos 19°

1 - coszl9°]

In the decay of 25Si, we find a value of AEP = .443 keV

for this shift. For 2"Si this shift is AEP = .467 keV. We

see that the maximum possible relative shift between these
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two lines is only 24 electron volts. This effect is

insignificant and can therefore be neglected.



APPENDIX B

The design of the electrostatic lens was numerical in

nature since the complexity of the problem would exclude an

analytical approach. The relaxation method is a finite

difference approach to the solution of Laplace's equation

V2¢ = 0. (B-l)

It is based on the property that the value of the

solution (to Laplace's equation) at any point in space is

equal to the average of the solutions over an arbitrary

surface surrounding the point.

Through the use of a Taylor series expansion of a

function, one can obtain an approximation to the derivatives

of this function in terms of nearby values.

d2f(x) _ f(x+Ax) -2f(x) + f(x—Ax)

dxz (Ax)2 (B-z)

 

By substituting these approximations to the derivatives

into Laplace's equation, one obtains the value of the

potential as an average of nearby potentials. For a

two-dimensional Cartesian system with equally-spaced x and y

mesh points, Ax = Ay = h, we have the expression

<I>(x,y) =%[<I>(x+h,y) + <I>(x-h,y) + <I>(x,y+h) + <I>(x,y-h)] (3-3)

Here we see quite clearly that the value of the potential

142
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can be expressed as an average of the potentials around a

given point.

Since our apparatus has axial symmetry (except for the

square face of the channel plates), a lens with this

symmetry was designed. With axial symmetry our problem

reduces to a two-dimensional one. Laplace's equation in

cylindrical coordinates for an axisymmetric system,

(I) = <I>(p,z), i8

3% 13¢ 32¢

W+ET>+5ET=° 03-4)

The potential with equally-spaced p and z mesh points,

Ap = Az = h! for p > Z is

(B-S)

<I>(p,z) =%[(1+-2%)<1>(p+h.z)+ (1-2—11)-)¢(p-h.z)+ <I>(o.2+h)+<1>(o.z-h)]

and for p = 0 we have

(p(olz) = '16; [44)(1‘112) + ¢(0,Z+h) + @(0,Z-h)]
(B-6)

The alternate form of the equation at p = fl is due to the

behavior of the first derivative term in Laplace's equation.

In this coordinate system as O + 0, we find that the first

derivative term becomes a second derivative term:

B-7

11ml_a_g_,1im_1__a_g_*azq> ( )

p+Oo o o+0Ap p 302

Therefore, for p = 0, Laplace's equation becomes

2 2

23¢+3¢=0 (3‘8)
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which results in the second form for the potential (Equation

B-6).

This relaxation approach to the solution of boundary

value problems is a powerful yet simple method to apply in

practice. One first chooses a set of grid (or mesh) points.

These are the points at which the potential will be

calculated. The boundaries, as well as fixed potential

regions of this array, are held constant. The potentials

for the remaining points of the potential array are obtained

by systematically applying (in our case) Equations B-S or

B—6. The value of the potential from these equations is

then put into the array. After this has been done for all

the "free" points (those not held fixed), the process is

repeated. These iterations are continued until the

potential values have sufficiently converged.

A faster convergence can be obtained through the

application of successive over-relaxation. This method is

similar to a weighted average and uses the previous

iteration's value of the potentials. After a potential at

some point has been calculated, a correction to this

potential is made using the expression

(B-9)
current previous

¢.. ¢.. - ..13 13 + (1 w)¢lj

Where 1 < w < 2. This corrected value is then placed in the

array. Choosing w = 1 reduces over-relaxation to

relaxation. Over-relaxation acts to more rapidly diffuse

the correct values of the potentials from the fixed



145

boundaries and regions to the rest of the array.

To test a given lens design an existing Runge-Kutta-

based code was modified to calculate electron trajectories

through the lens (Di8fl). This program used the potential

array in order to calculate the electric fields acting on

the electrons. The program was previoulsy tested with

analytically-solvable cases and found to be in good

agreement (Di80).

In our design studies, a number of possible

configurations were tested until a design with acceptable

focusing characteristics was obtained.

Figure 2-9 shows the model lens upon which the actual

lens was based. Eleven equipotentials and nine particle

trajectories are shown. The particles started from rest

near the surface of the converter foil. The inner and

outer trajectories are at 0.5 cm and 2.54 cm respectively.

A time difference of 3.1 ns was calculated for these two

paths. The mass resolution is still limited by B-recoil

before the particle emission.

In this calculation an array of 81 x 126 points (0,2)

with Az = Ap = .41625 mm was used. The largest change in

the potential was monitored for each iteration. After 250

iterations the largest change was that of 2.2 mV for a 50 mV

potential. The total potential drop across the lens was

3000 V, this change was thus insignificant and shows the

good convergence of the calculation.



APPENDIX C

The principle of maximum likelihood is based on the

assumption that the sequence of observations that actually

occur in an experiment are those with the maximum

probability of occurring. The likelihood function

n

fie) = TTf(xi;C) (C-l)

i=1

is the joint probability density of getting a particular

experimental result, x1, x2, . . . xn, assuming f(xi,c) is

the "true" normalized one parameter distribution function,

where

1I(x;c)dx = 1 (C-2)

The best value of c will maximize the value of the likeli-

hood function. Another useful quantity is the log-

likelihood function, which is just the natural log of the

likelihood function.

n
n

-

NC) = lutfic) = 1n(TTf(xi:d) = Z ln(f(xi;c)) (C 3)

i=1 °i=1

To find the maximum of the likelihood function we require

the first derivative offlzzc) with respect to the parameter c

to be zero:

di(C) = 0 (c_4)

do
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In addition, the second derivative must be negative:

(361:5;ka 0 (C’s)

Since taking the log of a function does not change the

position of the maximum of the function, we can instead work

with the log-likelihood function £(c).

As a point of reference, we can show that for a set of

measurements which are Gaussian-distributed this approach

reduces to one of minimizing Chi-squared for the set of

measurements (Be69).

For example, consider a linear relationship between two

quantities (x,y):

y(x) = a + bx. (C-6)

We wish to obtain the best values for the coefficients a and

b from a series of n measurements of (xi,yi). The

probability for a given measurements will be

’ y -y( .) 2 (c-7)

f(x.;a,b) = 1 exp [-%( 1 o 1)]

l o./2? i
J.

 
 

where y(xi) contains the a and b explicitly.

The log-likelihood function becomes

(C-B)

n n n
. - (x) 2

£(a,b) = Z? ln(f(xi;a,b)> = —1— 31— .. .1. 2(y1 y 1)
 

VZN i 1i=1 ' 1 1 2 i=1 0'

The first term has no a or b dependence and, hence, is

constant for a given set of measurements. We recall that

the Chi-squared is defined as

n

2 y.-y(x.) (C-9)

x 2 EE:( 1 1 72

i=1 ° 1.
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(a,b) thus becomes

£(a,b) = constant - %; (c—1g)

From this expression we see that to maximize the

log-likelihood function is equivalent to minimizing the X2.

Underlying all of the least-squares approaches to data

analysis and curvefitting is the minimization of the X2. We

see that this approach is consistent with the method of

maximum likelihood but is valid only for Gaussian-

distributed data. However, in many applications, it is the

Gaussian distribution which is most useful and is a good

approximation to the binomial and Poisson distributions for

good statistics.

From the protons (or alpha) energies and the recoil

time-of-flight we Obtain a two-dimensional plot of energy

vs. recoil mass (see Figure 2-12). Because of the B-recoil,

there is a correlation between the proton energy and the

recoil time-of-flight. On the plot of energy vs. recoil

mass, we observe a tilting of the particle groups.

Therefore, if we simply project these groups onto the energy

axis, their energy resolution will be degraded.

As a result of this correlation, we choose to fit the

data with bivariate Gaussian distributions (BGD). (C-ll)

_ 2 .. -

why) = 1 exp _ 2(1-1-p2) {(xcux)2 _ among) (y 13+

2noxoy/I:67 x

72%;:
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The ux and u are respectively the x and y values for the

Y

centroid. The Ox and 0y are respectively the x and y

standard deviations for the Gaussians, and p is the

correlation coefficient between x and y. If p = 0, and ifvua

require that the joint distribution function be bivariate

normal (Gaussian), then we have that x and y are

uncorrelated. A three-dimensional plot of this can be seen

in Figure 2-17. Many points in the two-dimensional data

contain zero counts, and most have somewhat low statistics.

We therefore need to use the Poisson distribution rather

than the Gaussian distribution to fit our BGD (Equation

C-ll) to the data. The Poisson distribution function is

given as n.

‘u e
f(ni;u) - ——ETT-—' (C-12)

1

We recall that the experimental points must be integers,

since they are either observed or not observed (i.e., one

cannot have half a count). Since we had a two—dimensional

array of integer data, our actual distribution function was

expressed as

 

u.¥je 13

f(n..;u..) = 13 ' (C-13)
13 13 nij’

The likelihood function becomes

N M (c-14)

fia1,a2,...,as) =1T I” f(ni.;u..)

i=1 j=1 3 13
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where we have for uij the expression

 

 

(C-lS)

1 ° 2 (' )(j )I J 2 |.. _ _ i-a3 _ a2 i-a3 -a5 '-a5

U13 alexp (1'32) {( an auas (as )}

a74-a3j

The energy is along the i—axis and the recoil mass is

along the j-axis. The last terms a, and as are for the

background. These terms were first fit by looking at

projections (along the recoil axis) of regions around the

peaks of interest. The improved statistics from these

projections reduced the fluctuations of the background and

made for a better fit to it. These parameters were also fit

using the method of maximum likelihood and, once obtained,

were not changed during the BGD fit.

As one can see from Equation C-15, this background was

constant along the energy axis and linearly-varying along

the recoil axis. In the fit of the bivariate Gaussian

distribution several alternative forms for the background

were tested (e.g., constant along the recoil axis and

different a7 and a8 values), none of which had much effect

on the centroids.

The coefficients a2, a“ and a6 (the correlation

parameter, the energy width and the recoil width) were

obtained from the 4089 keV 25Si peak. These were then not

allowed to vary when fitting the 5402 keV 2SSi group and the

2"Si group. In addition, for the 2"Si peak, the recoil
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centroid a5 was determined from the mass scale, previously

defined by the 21Mg and the 2581 lines. Fixing a5 for the

2"Si peak reduced any errors because of statistical

fluctuations and background effects.

These two-dimensional fits were superior to simple

projections of the data, both in an improvement of the

energy resolution and in the reduction of the bias which may

occur when choosing the width of the mass band to be

projected.

The fitting program used was a modification of a

grid-search non-linear least-squares program from Bevington

(Be69). This program originally was designed to find the

minimum of the x2 in a multiparameter space. By taking the

negative of the log-likelihood function, the maximum became

a minimum and the same algorithm applied.

To obtain the errors using the maximum likelihood

formalism, there are three accepted approaches. Two of

these involve a weighted integration of the likelihood

function: these are discussed in references (Me75) and

(Or58). A more straightforward approach, also discussed in

the above references, is to obtain the confidence interval

for the fitting parameters. This is given as

Cz

I(c)dc

C1

C

max (c_16)

. I(c)dc

min

Pr(CISCSC2) +

C



152

which is the probability that the interval between the

estimates c1 and c2 includes the "true" value of the

parameter c. The limits cm and c . are where the value

ax min

of fie) is effectively zero (Zfic < cmin) = me > cmax) = 8).

and c1 = c . unit probability is 1, hence,If c2 = c
minmax

dividing by the integral over the entire range of possible

values of c just normalizes the probability to 1.

We recall that for a normalized Gaussian distribution

the area enclosed by one standard deviation is 0.68269 of

the total area of 1.0. By choosing the limits of the

integration such that we enclosed 68.269% of the total area,

we can obtain an estimate of the error in the value of our

parameter.

C0+A

f i(c)dc

C +13

.68269 = ° 1

cmax (C'17)

j: ;:(c)dc

min

 

In practice we integrate from co + A2 or C0 - A1

fco+A2 fco

Co or C )°0'41

separately (i.e.,

When the likelihood function is symmetric we have

A1 = A2 = A and the usual result of co + A.

When integrating multiparameter likelihood functions

1(c1,c2, . . .,cn), it is necessary to keep 1(c1, . . ,cn)

at a local maximum. As the likelihood function is
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numerically integrated, that is, for each step made in the

integration variable (e.g., c1), the other parameters

(ci;i¢l) are changed until we are at a maximum. This

ensures that the error in the parameter is not

underestimated.
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