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BUNG-CHUNG LEE

ABSTRACT

This thesis reports on a study of the entry angle in vortex flow

temperature separation based on experimental studies conducted for

the Office of Ordnance Research, United States Army. It gives the

performance characteristics of a vortex tube with respect to a wide

range of "entrance" angles, from 900 (tangential flow) to 150 (near

axial flow). Heretofore, data of this nature have been entirely lacking

in the literature of the Ranque-Hilsch effect.

An experimental investigation was conducted on both the uniflow

and the counterflow type of vortex tube, with pressure, temperature

and velocity traverses taken at different stations along the length of

the tube. Data were taken for runs with entry angles of 900, 750,

600, 450, 300, and 150 respectively. An analytical study was made in

terms of the Helmholtz and Kelvin theorems on vorticity. Later a

"circulation" is considered to be induced from a vortex filament coin-

cident with the axis of the tube, but of variable strength along the tube.

The experimental data are then compared with those obtained from the

use of Biot-Savart law. This results in a simpler interpretation of

the data, especially in relation to viscous effects. The experimental

results show that the entry angle has a marked effect on the Hilsch

effect.
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specific heats at constant pressure and constant volume

body force (including gravity force)

components of body force along x-, y-, and z-directions

acceleration of gravity

total head

height

constant of irrotational flow

length vector; also vortex filament

unit normal vector

pressure

heat

velocity vector

velocity components along x-, y-, z-, and length directions

gas constant

position vector

surface area

entropy

absolute temperature

time

specific volume

viscous force vector per unit volume
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NOMENCLATURE (Cont.)

work done per unit mass and time against viscous

stresses at surface of an element of fluid

coordinate axes

ratio of specific heats at constant pressure and volume;

also limit of quotient of the circulation along the contour

of a mesh to the area of the mesh

circulation

eddy diffusivity

viscosity

density

normal stress

shear stress

fluid rotation

vorticity



I. INTRODUCTION

The vortex, or Ranque-Hilsch tube is a remarkably uncomplicated

device which simultaneously produces hot and cold streams from a single

source of compressed gas. The device has no moving parts, but merely

consists of a straight length of tubing with a tangential entry for the

supply air, and a smaller tube for tapping off the cold stream that is

produced (Figure 1), the hot stream leaving through the large tube.

 

 

 

\tangential entry hot steam

cold steam #D l ‘ P /

4———- throttle

1 , , m
 

Figure 1. Simple Counterflow Vortex Tube

By throttling the far end of the larger tube, various proportions

of hot and cold gas may be obtained with various degrees of temperature

difference.

As a phenomenon, relatively little is known concerning it, except

for its spectacular effect of producing hot and cold air simultaneously.

Despite various hypotheses advanced, there is to date, no general agree-

ment as to its theory of operation, and no way of predicting its per-

formance. This is because the standard analytical treatment invariably

leads to non-linear partial differential equations which are difficult to

solve and which do not give a very realistic account of the effect of



viscosity [7, 12, 13, 23].1 Added to this is the fact that very meager

experimental results are presently available to check the analytical

assumptions made in theoretical papers. Both Ranque's and Hilsch's

models were of small diameter (4 to 18 mm tubes with 2 to 7 mm

orifices) wherein fairly impressive effects were obtained with relatively

low or moderate supply pressures. Such small-size models, however,

are not suitable for any systematic experimental study of the vortex

phenomenon, since they do not lend themselves to any velocity, pressure

or temperature traverses. Recently, large models have been designed

[9, 20], but so far, none have incorporated a variable entry angle. The

work reported here attempts to determine the influence of the entry

angle by incorporating six different inlet angles in the design. This

is an extension of the study first presented at the 1958 annual and semi-

annual meetings of the A. S. M. E. [20]. The attention, however, is

focussed on the influence of the entry angle, since this aspect of the

vortex phenomenon has not yet been described in the literature.

 

1Numbers in brackets designate bibliography at the end of the

thesis.



EXPERIMENTAL PROGRAM

Apparatus: The goal of the test program is to study the influence of
 

entry angle in vortex flow temperature separation. In order to achieve

this purpose, the temperature and pressure must be measured inside

the vortex tube without causing major disturbances. Both Ranque's

and Hilsch's original size model (4 mm to 18 mm tubes with 2 mm to

7 mm orifices) are unsuitable for gathering such information, and large

size models must be considered. Recently large size models have

been designed and put into operation. This program is an extension of

the work that was first presented at the 1958 annual and semi-annual

meetings of the A.S. M. E. [20]. Thus, the same size (2 in. inside

diameter) lucite tube design (shown in Figure 2) was adopted in this

program. To study the influence of the entry angle on the performance

of the vortex tube, a series of center blocks were designed, incorporating

entrance angles of 900 (tangential), 750, 60°, 45°, 300 and 150(near axial).

The variation of the entry angle may be seen in Figure 3 which is a

preliminary version of the actual test installation. The full size entry

blocks for the test installation are shown in Figure 4. Corresponding

to each entry angle, a run was made using compressed air of the small

inlet pressure throughout, with pressure and temperature traverses

systematically taken at six stations (Figure 5) along the vortex tube.

An adjustable cone-shape valve (Figure 6) which can move in and out to

regulate the flow is installed at the end of the vortex tube. Both the uniflow

and counterflow types of vortex tubes were used (Figures 7 and 8) in this

program.
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Instrumentation: In this test program, the instrumentation has been
 

carefully designed to avoid causing major disturbances in the flow

field. It is described in the following:

Probe assembly (Figure 9): It can be inserted at any station along the

length of the vortex tube, and constructed in such a way that a hypodermic

needle probe may be raised, lowered, or completely revolved within

the flow field. The hypodermic needle probe is raised or lowered by

means of a Brown and Sharpe 605 depth gage and slider and bearing

assembly which is mounted on a stand. This stand is itself clamped by

means of adjusting screws to another stand, with the latter being glued

in place to the probe tube. Thus, the hypodermic needle is free to move

to any radial position within the vortex tube, and it may also be revolved

so as to be sensitive to direction as well as to magnitude of velocities.

Pressure probes: They consist of a static pressure probe, which is

simply a stainless steel hypodermic tubing (#18 gage) well polished and

open at the end, and of a total pressure probe. The static pressure

probe is always inserted in such a way that it is perpendicular to the

direction of flow. The total pressure probe is more elaborate, but

essentially, it consists of a stainless steel hypodermic tube of similar

size as the one for static pressure measurement, except that the open

end is soldered closed, square cut, and polished. Near the tip of this

hypodermic needle, a small hole is drilled. This opening, being always

in the direct line of flow (since the axis of the tube is perpendicular to the

line of flow) serves as an impact tube for the measurement of total pressure.
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Temperature probe: It consists of a stainless steel hypodermic tube

of similar size (#18 gage) as those used for the pressure probes;

however, with two dissimilar but insulated leads (copper and constantan)

inserted through it. The ends of the leads are fused together by an

acetylene torch, then pulled back close to the end of the tube to make

the assembly compact. Since all probes had to be kept as minute as

possible so as not to disturb the flow field, no further elaboration (such

as shielding for radiation, etc. ) was induced in the manufacture of the

probes.

The flow diagram of compressed air is shown in Figure 10.

Compressed air is supplied by the Mechanical Engineering Laboratory

Joy single cylinder air compressor to a storage tank, then passed

through an air strainer, pressure regulator and an orifice, and finally

transmitted by a simple flexible rubber hose into the vortex tube.

Pressure gage #1 is accompanied by a regulator to check the pipe

pressure; pressure gage #2 and thermometer are used to record the

pressure and temperature respectively at the entrance to the vortex

tube. A water or mercury manometer is connected before and after

the 1/2 in. diameter orifice plate to measure the air flow.

Experimental procedure: Since particular interest is focussed on the
 

influence of ”entry angle, " a certain reference datum is chosen in order

to make the comparison of the experimental results. This is done as

, 0

follows. First set up the counterflow vortex tube With a 90 entry angle
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center block, and adjust the inlet valve opening to the vortex tube to

the desired pressure. Second, the exit cone is turned all the way in,

then backed out fairly slowly until the maximum Ranque-Hilsch (cooling)

effect is obtained (in other words the lowest temperature attained inside

the 'cold tube). This position of the vortex tube exit cone must be kept

throughout the runs of the other center blocks with the same desired

pressure adjusted by the inlet valve. After the reference is established

the complete run can be accomplished in the following manner: (i) set

up the uniflow tube with 900 entry angle block and adjust the inlet valve

opening to the vortex tube to the desired pressure; (ii) keep the exit

cone at the reference position; (iii) after waiting until the steady con-

dition is reached, obtain the traverse readings of static pressure, total

pressure and total temperature by introducing the hypodermic probes

for static pressure, total pressure, and total temperature, one at a

time, into the vortex tube. Readings were taken every tenth of an inch

by the probe which can be moved along the radial direction by means of

the micrometer depth gage and slider assembly described in the section

on apparatus. The traverses of static pressure, total pressure and

total temperature were performed at each of the six stations (Spaced

6. 5 inches apart), with the inlet pressure maintained at a constant value

throughout the whole run; (iv) replace the center block with others of

various angles, one at a time, and repeat the procedure from (i) to (iii)

until every entry angle of both the counterflow and uniflow tube has been

tested.
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As pointed out previously in the procedure, for every station,

readings were recorded at every tenth of an inch, along the radius.

For each radial position of a probe, two readings were taken, one

corresponding to the probe above the tube center and the other corres-

ponding to the probe below the center. The average of two readings

is taken to be the value for the probe at the given radial position.

Test results: The measured quantities are the static pressures, total
 

pressures, and total temperatures. The computed quantities are the

velocities and static temperatures. The curves are plotted as total

pressure, static pressure, total temperature, static temperature and

velocity versus the radial distance from the center. Figures 11 to 16

show the velocity, pressure and temperature traverses for the uniflow

tube corresponding to entry angles of 900 and 300 respectively. The

traverses are for stations 2, 3 and 4 located in the mid-tube region

so that end effects are minimized. It can be seen that the velocity

has the characteristic of a ”forced" vortex or wheel flow lasting for

approximately eight diameters along the tube length, and that there-

after it is fairly uniform over the cross-section of the tube. The

pressure and temperature curves display the same general character-

istic for the two angles, but the curves for the 300 entry angle are

flatter.

Figures 17 and 19 give the vortex strength and the maximum

temperature separation for the uniflow tube corresponding to entry



l7

angles of 900 and 300. It can be seen that the circulation and the tem-

perature separation decrease with a decrease in entry angle. The

decrease, however, is more pronounced when the entry angle is less

than 450. Above 450, the vortex effect remains. Figures 18 and 20

show the variation of vortex strength and temperature separation in

relation to the length. It can be seen that beyond station 4 or slightly

more than nine diameters from the entrance, the vortex effect levels

off, and any further lengthening of the tube is unnecessary.

The above applies to the uniflow vortex tube. For the case of

the counterflow tube, Figures 21 to 26, give the velocity, pressure

and temperature traverses, while Figures 27 to 30 give the vortex

strength and temperature separation in relation to entry angle and

tube length. The data show the same general characteristics as those

for the uniflow tube. However, the counterflow tube gives larger

temperature separation than the uniflow tube. This is because in the

former, the cold and hot streams are allowed to separate immediately

rather than allowed to mix along the entire length of the tube.
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Entrance angle: 90°. Inlet pressure: 30 psig. Uniflow tube.
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Figure 15. Velocity, pressure, and temperature traverse. Station 3.

Entrance angle: 30°. Inlet pressure: 30 psig. Uniflow tube.
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Entrance angle: 30°. Inlet pressure: 30 psig. Uniflow tube.
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Entrance angle: 30°. Inlet pressure: 30 psig.

Counter-flow tube.
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ANALYTICAL DEVELOPMENT

Basic equations of fluid flow: The theory of inviscid fluid flow, both
 

incompressible and compressible, is based on the equations which follow:

Newton's equation: — =pF - grad p (1)

 

With viscosity present, these equations will later be generalized by the

inclusion of additional terms.

Equation of continuity: div (pa) = -%€ (2)

The above equations which express Newton's principle for the motion

of an inviscid fluid and are usually referred to as Euler's equations,

include one vector equation and one scalar equation, or four scalar

equations. There are, however, five unknowns: qx, q , qz,p, and p,

in these four equations. It follows that one more equation is needed in
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order that a solution of the system of equations be uniquely determined

for given ”boundary conditions. " Boundary conditions, in a general

sense, are equations involving the same variables, holding, however,

not in the four-dimensional x, y, z, t-space, but only in certain sub-spaces

as at some surface §(x, y, z) = 0, for all t (boundary conditions in the

narrower sense), or at some time t = to, for all x, y, 2 (initial conditions).

There exists no general physical principle which would supply

a fifth equation to hold in all cases of motion of an inviscid fluid, as do

equations (1) and (2). What can and must be added to (1) and (2) is some

assumption that specifies the particular type of motion under consideration.

This fifth equation will be called the specifying equation. Its general

form is

Flpapv§1X1Y:zat):o (3)

Where it is understood that derivatives of p,IO, and q may also enter F.

The Specifying equation used in this thesis is the equation of state pv 2 RT.

Since the entropy of a perfect gas is given by

R 1n P. +constant (4)

pt

a curve for isentropic flow may be plotted as shown in Figure 31.

 

 

Whenever the variation of p and [O is confined to a small range of values,

the relevant part of the curve can be approximated by a straight line to

give a linearized form of p -p relation to facilitate the solution of the

flow field.
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Figure 31. Isentropic Flow.

E . . _d_ <33 ____1div<p‘> -nergy equation. dt ( 2 + gh+ch)+ p - Q (5)

This equation is a mathematical consequence of Newton's equation and

the continuity equation. It does not depend upon the equation of state,

but is arrived at by taking the scalar product on both sides of Newton's

equation with q and transforming the scalar equation that results from

this operation.

Influence of viscosity: For an inviscid fluid the forces exerted on any
 

fluid element by surrounding masses are normal to the surface element

on which they act and have the same intensity p, whatever the orientation

of the surface element. The intensity p (force per unit area) is called

the hydraulic pressure at the point under consideration. If viscosity is

admitted, however, the stress vector on a surface element dB is no longer
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normal to d5. The stress can be resolved into a normal component 0‘

.and tangential or shearing component T. The general form of Newton's

equation, holding for any type of continuum, becomes

dEi
Fit-:IOF-gradp+\7 (6)

Where V is the resultant viscous force per unit volume. This equation,

just as the energy equation for an inviscid fluid, can be obtained from

the Newton's vector equation by scalar multiplication by ‘6'. The result is

2

5L 3_ ___<idiv(P’) 3?;
dt ( 2 +gh+cVT)+ p + (7)

Where the additional term represents work done per unit mass and time

against the viscous stresses at the surface of an element of fluid.

Helmholtz and Kelvin Vortex Theory:
 

Circulation: A kinematic motion useful in many problems of hydro-

dynamics is that of circulation, which may be defined as follows.

Consider a simple closed curve C in space together with a given sense

of description (shown in Figure 32 by an arrow). On (3, each element

of arc can then be considered as an infinitesimal vector dT, having the

direction of the tangent to C. As usual, 6’ denotes the instantaneous

"velocity at each point. If the scalar product of q” and dTis integrated

around the closed curve (3, the line integral

P: ch. d1 :fcqcos(q, dl)d1 = §6q1d1 (8)

is called the circulation around C.
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‘4

Figure 32. Circulation as Line Integral

The circulation is additive in the following sense. Suppose the closed

curve C is "bridged" by some path AB (Figure 33). Give the two new

closed curves ABDA and BAEB the same sense of description as G.

Then the circulations I"‘1 and P2 respectively, along the new closed

curves satisfy

P = P, + P, ‘91

K-C

D

Figure 33. Illustration of Additivity of Circulation

In fact, the definition (8) shows that l—‘1 is the integral of q dT along

the path ABDA, which can be broken up into AB plus BDA. Similarly,

F2 is the integral along the path BA plus AEB. In the sum F1 + (“2,

the integrals along AB and BA cancel, since 5: is the same, while dT

has opposite directions, along the two paths. Therefore the sum reduces
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to integrals along BDA and AEB, which is exactly the integral around (3,

i. e. I.“ . The equation (9) can be generalized. Suppose 0? is any open

two-sided surface spanning C, i. e. , having 6 as its rim. From one

side of Q , the sense of description of 6 appears counterclockwise, and

normals to 69 will always be drawn out from this side. On Q draw

two sets of curves forming a network, as in Figure 34. Each mesh

of the network is a closed curve, the sense of description being taken

counterclockwise as viewed from the normal to the surface, and has a

value of the circulation corresponding to it: I" . I" . . . etc.

 

Figure 34. Circulation as Surface Integral

By repeated application of equation (9) it is seen that

P:P+l—é+..o+r‘
(10)

1 n

Where n is number of meshes in the network. Now increase the number

of "bridges" in such a way that the network becomes more dense and all

meshes become smaller, while the number of terms in equation (10) in-

crease. Let a function y be defined at each pointP of W as the limit of

the quotient of the circulation along the contour of a mesh around P by

the area of the mesh; meshes about that point becoming steadily
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smaller in all directions. For the first mesh, the circulation P1 is

then approximately given by v1. dfl. where de is the area of the mesh

and V1 the value of y at some point in the mesh, the approximation

becoming better as dwl gets smaller; and similarly for the other

meshes. Thus, as the number of terms increases indefinitely, the

right-hand member of equation (10) yields the surface integral of y

F = Ardf? (11)

From the definition of y, it is obvious that the value of this function

over 02, or

at any point of a? depends upon the distribution of the velocity qin

neighborhood of this point. In computing this relationship choose curves

on E, which always cross at right angles. Then at any point P, set up

a regular coordinate system, taking the z-axis in the direction of the

normal to Q at Pand the x- and y-directions tangent to the two curves

through P so as to form a right-handed coordinate system. An

infinitesimal mesh starting at P is of the type illustrated in Figure 35.

 

   

Figure 35. Circulation around Infinite simal Mesh
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In computing the line integral equation (8) for this mesh, the path may

be broken up into four infinitesimal elements, and qldl evaluated for

each part. Along PPI the contribution is q dx, along P1P2 it is

x

69

[qy + ($351M dy,

(3C1

along P2P3 it is—~[qx + (5)3)dy] dx, and along P3P it is -qydy. The sum

of these terms gives the integral along the whole path, and the circulation

along the contour of this infinitesimal mesh is therefore

0 sqq

d11=(-5-)(l--O—y_x)dXdy (12)

Since dx_dy is the area of this mesh, the function y must have the value

sq aqx

—Y--:--— at P.

0x Cy

Now this quantity is exactly the z-component of the vector known as the

curl of 'c'f, defined by

qu sq 6C1 sq bq aq
+_ ___X X - Z ___X _—_X

curlq-(by Oz, E- ?Jx’ OX by (13)

 
 

It is to be noted that this definition of curl'qis valid in any rectangular

right-handed coordinate system. Since the z-direction is that of the

normal to the surface 08 , it appears that v has the value of the component

of curl Enormal to the surface

y = (curl q)n (14)
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Thus, equation (11) may be written as

P=[R(cur1q)nd€8 (15)

and this formula is independent of the coordinate system used. If a

vector (1? be introduced, having magnitude c162 and the direction of the

normal to the surface, equation (15) may also be written as

P:f(cur1q)° (if (15')

When the two equations (8) and (15') are combined, the result is

fa dT=f(curl q)- (1%

This vector formula is known as Stokes' theorem. When 21’ is the velocity

of flow, it states that the circulation along any closed curve is given by

the surface integral of curl a over any surface spanning the closed curve.

It is obvious that equations (15) and (15') can be applied only if it

is possible to find some surface that has the given closed curve as rim

and on which curl a is defined everywhere; For example, in the case of

a flow around an infinite cylindrical obstacle, no such surface can be

found for any closed curve which surrounds the cylinder. Even here

the theorem can be applied to give a somewhat different result. As

shown in Figure 36, two such closed curves 61 and CZ, can, by a bridge

AB, be combined in a single closed curve for which a suitable spanning

surface exists. Then the integral equation (15) extended over this

surface gives P1 - 1;, since (32 is given a reverse orientation and
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the contribution from AB cancel. In particular. if curl 'q' -=- 0 in the

domain of flow (irrotational flow), then F1 - P2 = 0 or Pl = IE:

the circulation is equal for all closed curves surrounding the obstacle.

Mean rotation: The vector curl a defined by equation (13) can be given
 

a simple kinematic interpretation. Let ;P be a point of the moving mass,

and let Q be a neighboring point. In rigid-body rotation with angular

velocity (1) about an axis through P, the curl of the velocity at Q is the

same, namely 20.), no matter where Q is situated. This is not so in

the case of a fluid or of any deformable mass.

Start by computing the angular velocity of PO about an arbitrary

given axis through P: Taking P as the origin, choose a right-handed

rectangular coordinate system such that the z-direction is that of the

axis. Let PQ = dr and Q' be the projection of Q onto the x, y-plane

(Figure 37), 9 the angle between the z-axis and PO and q: the angle

between the x-axis and PQ'. Then the distance from the z-axis to Q

is PQ' = sin 9dr, and the rectangular coordinates of Q, relative to P,

are given by dx = cos 6 sin 0dr, dy = sin 6 sin 0dr, and dz = cos 0dr.

 

 

  
Figure 36. Closed Curve Figure 37. Computation of Mean

Surrounding Obstacle Rotation
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Therefore, if the velocity at P is if, the velocity vector at Q (relative

to P) is .—

[g—gcoscpsin 0 +-%)%sin¢ sine + 33°” 9] dr.

The angular velocity of the segment PQ about the z-axis is obtained

by dividing the distance from the z-axis to Q, i. e. PQ',

into the component of the velocity at Q in the direction which is perpen-

dicular to PQ' and to the z-axis. The angles which this direction makes

with the x-, y- and z-axes are (pi-900, <1), and 900, respectively, and

the consines of these angles are ~sin ¢> , cos 4) , and 0. Thus the

required component is

 

bq bq bq bq

[E1 C0824) _ .33; 811124, _ (F3 “2%) sin 4; cos 4)] Sin 9dr

bq bq

+ [z—zzcos q: - 6: sin 4)] cos 0dr

Division by sin 0dr then gives the angular velocity of PO about the

z-axis. the value depending, in general, on the coordinates 0 and (p of Q.

Now, compute the average angular velocity for all points, Q

on the same circle of latitude 0 = constant. on the sphere dr = constant,

by first integrating with respect to 4: from 0 to Zn and then dividing by 217.

All integrals vanish except those of the first two terms, giving

9
O °q ° x 1 +-

(TXX --b—);')=E(Cur1Q)z (16)

q 211 q 211‘

.2177 Xxx coschdcp-S-g:E O sin2¢d¢ =

O

N
l
o
—
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This result being independent of 0 and dr, the same value is obtained

for the average or mean angular velocity about the z-axis of the whole

infinitesimal sphere at P. Also, the z-direction could be any direction,

so the above result shows that at any point P of the moving fluid, the

vector 7,:- curl 2';- represents the (instantaneous)mean angular velocity or

mean rotation for all segments PO within an infinitesimal sphere of

center P. It may be called as the mean rotation or mean angular

velocity of the fluid element around P. Excluding the case curl q 5-. 0.

equation (13) defines at each moment t at each point of the fluid a vector

curl E which is twice the mean angular velocity of the fluid element around

P. This vector is usually called the vortex vector. Any line within the

fluid which at each of its points has the same direction as curl q is

called a vortex line. All vortex lines passing through the points of a

closed curve C, not itself a vortex line, form a vortex tube. The lateral

surface of the tube is called its mantle. A vortex tube of infinitesimal

cross section is called a vortex.

For any closed curve, such as (S, in Figure 38, which lies on

the mantle of a vortex tube but. not encircling the tube, the circulation

must be zero. This follows from equation (15). Since a surface Q

spanning this closed curve can be taken on the mantle, where the normal

component of curl q'is everywhere zero. This is no longer true for a

close curve which encircles the tube, as C or (32 in Figure 38. Here

it follows from equation (15) that the circulation must have a common
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Figure 38. Vortex Tube with Various Closed Curves

value for all closed curves encircling the same tube. In fact , in

computing the circulation P2 along CZ one can choose for R2 the

surface consisting of the part of the mantle between CZ and 6 together

with any surface f spanning C. As above, the surface integral is

zero on the mantle, so that the integral over 692 has exactly the same

values as the integral over W, giving F2 = l" . This common value of

the circulation is also called the vorticity of the tube; it is a scalar

quantity, not to be confused with the magnitude of the vortex vector.

In the case of a vortex filament, the vorticity dr' is given by the product

of the length of the vortex vector by the normal cross section of the tube.

If a vortex tube be divided into several tubes of finite cross

section (or into an infinite number of vortex filaments), the vorticity

of the whole tube is the sum (integral) of the individual vorticities,

This follows from the additivity of circulation [or from equation (15)].

A vortex tube cannot begin or end in the interior of the fluid,

but must either be a closed tube (like a torus or doughnut) or else

(provided it does not meet a boundary) must extend indefinitely in either
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direction. For at an end, if there were one, a continuous tranSLtion would

be possible along the mantle from curves of type (31 to those of type (32,

which is inconsistent with the fact that F1 = 0 while P2 = constant 7! 0.

Kelvin's Theorem: The concepts of Circulation and mean rotation, as
 

well as the relation between them, are valid for any type of continuously

distributed material. Consider the case of an inviscid elastic. fluid. The

fluid particles lying on any closed curve at same moment W111 still form

a closed curve at a later time, for reasons of continuity no separation

of particles can occur; a preliminary question, and one which can be

given a very simple and deCisive answer, is the followmg: How does

the circulation change during this transition?

In Figure 39, the solid line represents a closed curve C, and the

dotted line the closed curve 6' formed by the same material particles after

time dt. The circulations along these two closed curves are given by

szq-dl'and p1 :ffi'idfl (17)

where the integrals are evaluated along

6 and C' respectively. Let P be the

position of an arbitrary particle of C

and O that of a particle of (3 at a distance

d1 away. and let P' and Q' be the positions

of these particles after time (it. Then  
Figure 39. Two Closed Curves

'dl)dt. for Same Particles

4
3
*

PP' = 6211: and (if)! 2 (6+

ga
ze
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Where b/bl denotes the directional derivative in the direction of the

tangent to (3 at P. The corresponding element of arc dI' on (35 can be

computed from the vector equation, PP' +P'Q' = PO + 66', giving

d1“ = P'Q' = 136 + 66' - PP' = dI+%%dldt (18)

while the value of q corresponding to P' is given by

1 C
L

.
0
9

(19)11

0
1

+

°
|
fl

0
.
H

Then, using equations (17), (18) and (19) and omitting a term of

highest order, it is found that

- Z .

. _ +98 84* 489317 2- 88 51.83.
I“ - r‘ ._ [q Xf dldt ‘1' dt Clldt + (1t O1d1(dt) —dt 5-1-(7)d1+dtd1 (20)

Where the integral is to be extended along C. Equation (20) is still true

for any continuously distributed mass. For an inviscid fluid, however,

4-

d

the value of the acceleration vector d—qt may be taken from the equation of

motion.

d" _.. 1

A: = F ’5 grad p

where f = -g grad h. Moreover, for an elastic fluid the notion of

pressure head P/g can be used, giving

[(1) grad p: grad P.
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d-.-

Thus the expression for 53t- takes the form

g
= -grad(gh+P)

(21)

dt

and d—q°dI= -grad(gh+P)-dT: —° (gh+P)dl
t 5T

When this is inserted in equation (20), there results

F'-[“=dt Eb-[Bi-gh-P]dl (22)

1 2

The quantity within the bracket is a single-valued function of position

and time. Thus, since at a given time the integral is extended around

the closed curve C, its value is zero. Thus, equation (22) gives

r" - r” = 0 or: In an inviscid elastic fluid, the circulation around any

closed curve does not change as the particles forming the closed curve

move along. This is Kelvin's theorem. The theorem depends essentially

on the fact that the equation of motion can be expressed in the form

equation (21), i. e. , on the fact that in an inviscid elastic fluid the

acceleration vector is a gradient, or (since the curl of a gradient vanished

identically) that the curl of the acceleration is zero.

Vortex theorems; Starting from Kelvin's theorem, it is easy to derive

two theorems on vortex motion which have been proved by Helmholtz...

ConSider a vortex tube J-fof infinitesimal cross section (Figure 40).

The particles ofjfafter time (it still form a tubejf', because no separation

v

of particles can occur; let it be determined whetherjf is still a vortex tube
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Figure 40. Vortex Filaments Formed by Same Particles

It was found that the circulation must vanish along any closed curve (31

lying on the mantle of a vortex tube, but not encircling it. From

Kelvin's theorem it follows that the circulation along the new position (3'l

of this closed curve must also vanish. Also, C1 lies on the surface of}(:.i

For an infinitesimal closed curve C'1 according to Stokes' theorem, the

circulation is the product of the area enclosed within the closed curve

by the component of the vortex vector normal to that area. Since this

product is zero, the vortex vector must be tangent to the area element

at C'l, and the closed curve C'1 must lie on the mantle of some vortex

tube. This is true for any infinitesimal closed curve (‘31 onJ-Cand the

corresponding C'1 on H', so that H. is also a vortex tube of infinitesimal

cross section. Thus, the following statement: Particles lying on a

vortex line at some moment move in such a way that they form a vortex

line at every moment. A shorter expression of this first vortex theorem

is: The vortex lines are material lines, in the sense that they always

consist of the same particles or material points.
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Each vortex tube has a certain vorticity, equal to the circulation

along any closed curve encircling the tube, such as C2 in Figure 40..

By Kelvin's theorem, the circulation has the same value along the

corresponding closed curve C'Z on Hf, so that the vorticity of the

vortex tube J—C' is the same as that of}(. This gives Helmholtz's second

theorem: The vorticity of a vortex tube does not change as its particles

move along.

It was seen that vortex tubes cannot come to an end in the interior

of the fluid, but must either meet a boundary, extend indefinitely, or

be closed. Tubes of the latter type can be observed in air as smoke

rings, produced by imparting a rotational motion to the smoke particles.

Actually, the smoke rings do not persist indefinitely, in apparent

contradiction of the vortex theorems. This is due to the presence of

viscosity effects, which are disregarded in the theory of inviscid fluids.

The vortex theorems follow from the fact that the acceleration vector

is a gradient (and therefore curl-free). To arrive at this staterrent

equation (21) it was necessary to neglect all stress components other

than the pressure p (all shearing stresses), and to assume the existence

of a relation between p andp in order to make possible the definition of P.

Mean rotation and the Bernoulli function: It is known that the total head
 

2

fl. +h+ an

28

P
H: —

8

is constant along each streamline during steady flow (Bernoulli equation).
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Consider the relation of the Bernoulli function H to the mean rotation of

the fluid or to curl ET Starting from the equation of motion for an

2

inviscid elastic fluid in the form equation (21),subtract grad %— from

both sides and use equation (23) to obtain

2

3% 1-grad (512—) = -grad (gH) - (2'4)

In order to interpret the vector on the left, compute the x-

. . . . 2 2 2 2

component: USing the Euler rule of differentiation and q = qx +q + qZ ,

Y

and denoting briefly curl qbyfi, it is seen that the x-component of

the left-hand side is

 

dq Z bq bq 0C1 bq 0C1

_>_<.__8_ a. - X X - z _ _1 __.>5
dt Ox (2)- 5t +qZ(bz 5x) qY(bx by

qu qu + g

= —Z>t + (£1qu - flz<1yl= —Z)_t_ + (nx 91X (25)

and from equation (25)

E + (curl 5x6) = -grad (gH) (26)

hi

This (vector) equation (which is a form of Newton's equation for

an inviscid fluid), includes the (scalar) Bernoulli equation and more.

In fact, for steady flow %% = 0, so that

1 .. a
grad H = -—(curl qxq) (27)

g
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Since a vector product is perpendicular to each of its factors

equation (27) shows that the vector grad H is perpendicular to 23'.

Hence the directional derivative of H along a streamline is zero, and

H must be constant along the streamline. Moreover, grad H has no

component in the direction of curl (T, the direction of the vortex lines.

Thus: In the steady flow of an inviscid elastic fluid the surfaces on

which the Bernoulli function has constant values are composed of

streamlines and vortex lines.

The most important consequence of equation (27) is the following:

If curl q vanishes at all points, then equation (27) shows that grad H E 0,

i. e. , the Bernoulli function has one and the same value everywhere

and therefore: In the steady irrotational flow of an inviscid elastic

fluid the Bernoulli function, or the total head, has the same value on

all streamlines. The converse is not true in general. It can happen

that the streamlines and vortex lines coincide, in which case the

vector product curl 9X31. vanishes and H is constant everywhere, although

the motion is not irrotational. This case, however, is a very particular

type of motion and cannot occur, for example, in a plane motion:

q2 = 0, D; = 0 where equation (13) shows that curl qis perpendicular to

the x, y-plane and therefore cannot coincide anywhere with if

In the case of a non-steady irrotational motion, equation (26)

leads to

021'
'7 = -8rad (8H) (28)
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Figure 41. Circulation about Vortex Tube

Vortex Tube: Consider the "circulation" about the vortex tube. Let a
 

portion of tube be as shown in Figure 41, with an imaginary contour

A-B-C-D running around and along it. The circulation is

365' d? z lA-Ba' d; ’ lie-DE. d? (29)

Stokes' theorem applied to the surface S leads to fq' d? = [JET (qu) dS,

so that equation (29) becomes

gffi- (VXE) dS :fA-Ba. d? _ fc-Da. (1?: QK'KdS
(30)

where .77.: qu is the vorticity. Since IT is a salenodiel field (the

divergence of a curl being zero), the last term on the right-hand side

of equation (30) is zero by Gauss' theorem, and therefore,

§A_Bq- dr - 3§C_Dq- dr = 0 (31)

01‘

F‘A_B = l—‘C-D (32)

Equation<32)states that the circulation about a vortex tube is constant about

the length ofthe tube_i_f_ the flowing medium is an inviscid fluid. But the flowing
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medium is not inviscid, and to account for this, the property of constancy

of circulation of the flow field is modified in the following manner:

instead of considering the vortex filament to be a line without beginning

or end in the fluid (Helmholtz's theorem), the filament is assumed to

begin in the entrance block (close to station 1) and to end at the exit of

the tube. This means that the strength P will be a maximum at the

entrance, and zero at the exit (the variation, however, is not linear,

but is in the manner of Figures 18 and 28). Knowing (“and its variation,

the next step is to calculate the velocity induced by the vortex filament.

This is easily done by means of the Biot-Savart law:

fi

 

 

d =----

q 47r 3 (33)

r

or numerically,

__r_‘_ sin 0

4n r2 (34)

where 6 is the angle made by the position vector and the element of

filament dl. . Equation (34) can be easily integrated to give the velocity

at any point within the vortex tube. Referring to Figure 42 and assuming

a rectilinear filament coincidement with the axis of the tube, it is seen

that sin 0 : R rd9 = d1 sin 0. Replacing r and d1 in terms of R, sin 0
r.

and d0 in equation (34) and integrating gives

1 .

| R (cos 1 cos ) (35)
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Figure 42. Velocity Induced by Vortex Filament

Equation (35) enables the local velocity to be calculated from the

local filament strength and vice versa. In the present case, the velocity

is known (from actual measurements) and the strength is calculated.

The result is the set of curves in Figures 18 and 28.

As for the viscosity, its influence is seen by writing the equation

for the shearing stress in turbulent circular flow:

d

T = ()1 + Dena-3 - 1}) (36)

Upon entrance into the tube, the velocity distribution is given by the

irrotational relation q- r = K, whereupon differentiation gives qdr+ rdq= 0

or 3% = -% = "-32-. Stability considerations, however, require that

.dfl : £1. —_- CA.) (37)

dr r

This was shown in two previous papers [17, 20] and is tantamount to

. 513 g . . . .
setting (dr - r) equal to zero. Equation (37) is the condition for

rotational or wheel flow (as confirmed by the experimental data). There

(1

is, however, another solution to the requirement -3- - E = O, and this

dr

is is = a = 0. Physically, it means that the velocity does not change

r
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much with respect to r or that it decreases to a negligible value. This

is basically what happens near the end of the tube so the analytical

treatment just presented does fit rather well with the actual events, in

addition to having the merit of mathematical simplicity.
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CONCLUSIONS

From the test results gathered over a wide range of entry angles,

and from the analytical treatment based on a circulation being induced

by a vortex filament coincident with the axis of the tube, the following

statement can be made:

The vortex effect decreases with the entry angle, but remains

a a o 0

Significant for entry angles above 45 .

The temperature, pressure, and velocity traverse curves at any

entry angle have the same general characteristic as those for

0 .
the 90 (tangential) entry angle.

The vortex effect is of small consequence beyond a tube length

of nine diameters.

The temperature separation depends on the entrance pressure and

angle, much less on the entrance temperature.

Viscosity first acts to change the flow field from irrotational to

rotational (this occurs shortly after inlet and corresponds to the

d

solution A = 3- = (1)),

(11' r

For the remainder of the tube, viscosity acts to alter the wheel

flow it first created. This occurs near the end of the tube and

dq q
corresponds to the solution -- = — = 0.

dr r
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