
ABSTRACT

ELECTROMAGNETIC SCATTERING FROM A

PLASMAPCOATED CYLINDER

BY

Chen Yi Lee

The present study deals with the problem of electromagnetic

scattering from a plasma-coated object. An infinite cylinder of a

finite radius is covered by a layer of inhomogeneous, lossy and hot

Plasma. This plasma-coated cylinder is assumed to be illuminated by

a plane wave with either TE or TH polarization. when the temperature

effect of the plasma is considered, an electroacoustic wave in

addition to the electromagnetic wave is excited in the plasma layer.

The effects of this electroacoustic wave on the electromagnetic

scattering are studied. It is found that if the plasma-coated

cylinder is illuminated by a TM plane wave, no electroacoustic wave

can be excited in the plasma layer. To handle the wave propagation

in the inhomogeneous plasma medium, the stratification method is

applied.

In the analysis, the dipolar, quadrupolar and temperature

resonances have been feund to exist in the plasma layer. The effect

0f various parameters on the electromagnetic scattering are also

ItUdiCde

An experiment was conducted to verify the theory.
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CHAPTER 1

INTRODUCTION

The electromagnetic scattering of the object surrounded by or

immersed in a plasma medium has been a subject received a great deal

of attention from researchers in recent years. The interest was moti-

vated by the problems of electromagnetic wave propagation in the

ionosphere, the electromagnetic reflection from meteor trails and the

radar reflection from a re-entry vehicle.

This dissertation deals with the electromagnetic scattering

from a plasma-coated metallic cylinder and some other related subjects.

Similar problems have been considered by other researchers. In 1952,

Kaiser and Closs‘l) studied the electromagnetic reflections from

meteor trails. In 1955, Keitel (2) investigated the forward electro-

Vmagnetic scatterings by meteor trails. Later, a number of investi-

gators including Ohba, (3) Chen and Cheng (4) and Yeh and Busch, (5)

have studied the electromagnetic scattering from a plasma-coated

metallic cylinder. Many other workers have studied the related

problem and will be cited later. Most of previous workers, however,

assumed the plasma medium as a dielectric with an equivalent dielectric

constant or using so called cold plasma model. It is well known that

if the temperature effect of the plasma is not ignored, an electro-

acoustic wave in addition to an electromagnetic wave can be excited in

the plasma medium. This electroacoustic wave may have significant



effects on the electromagnetic scattering from a plasma-coated object.

Fer this reason, both the cold plasma and hot plasma models are used to

analyze the plasma surrounding the object.

Since the plasma layer which surrounds an object is usually

inhomogeneous, a certain density distribution is assumed for the plasma

medium in the analysis. To solve the problem of propogation of waves

in an inhomogeneous medium, the stratification method is used. The

plasma layer is divided into a number of thin sublayers and a step

function approximation is used to describe the density distribution of

the plasma medium. In the course of applying the stratification method

a difficulty was encountered which led to a series of numerical singula-

rities. These singularities or "mathematical resonances" bear no

physical meanings and were carefully handled in the analysis.

Throughout this study, the macroscopic approach which uses the

hydrodynamic equations instead of the Boltzmannequation is used to

describe the dynamic behaviors of the plasma. The problem was solved

based on the hydrodynamic equations and Maxwell's equations.

In Chapter 2, the electromagnetic scattering from a plasma-

coated cylinder illuminated by a plane wave with the E’field perpen-

dicular to the cylinder is studied based on the cold plasma model. The

plasma layer surrounding the cylinder is assumed to be inhomogeneous.

The same problem is treated in Chapter 3, but based on a much

more complicated hot plasma model. Effects of the electroacoustic wave

are studied.

In Chapter 4, the same plasma-coated cylinder is assumed to be

illuminated by a plane wave with the E field in parallel with the



cylinder. Under this illumination, it is shown that no electro-

acoustic wave can be excited in the plasma layer.

An experimental study on the subject is described in Chapter 5.

Experimental results agree qualitatively with the theoretical results

obtained in Chapters 2, 3, and 4.



CHAPTER 2

SCATTERING FROM A METALLIC CYLINDER SURROUNDED BY A LAYER

OF LOSSY, COLD PLASMA ILLUMINATED BY A TE HAVE

2.1 Introduction
 

The scattering of an electromagnetic wave by a plasma-coated

metallic cylinder when it is illuminated by a normally incident plane

wave with its N field parallel to the cylinder axis is studied in this

chapter. In the analysis, the plasma is assumed to be cold and non-

uniform. Also an equivalent permittivity and a collision frequency

are assigned to describe the characteristics of the plasma.

A number of workers have studied this problem. Tang(6) studied

the backseattering from an infinite cylindrical obstacle coated by a

homogeneous dielectric. In treating the reflection from.meteor trails

(1)
Kaiser and Close considered a meteor trail as a plasma cylinder

(3)
which was then treated as a lossless dielectric column. Ohba and

(4)
Chen studied the scattering from an anisotropic and uniform cylinder

and considered the plasma as a medium with an equivalent tensor

permittivity in the presence of a steady magnetic field. Vandenplas(7)

also studied the same problem but treated the plasma as a medium with

a equivalent complex permittivity taking into account of the collision

loss in the plasma. Yeh and Rusch (5) studied the scattering from an

inhomogeneous plasma cylinder with a differential equation method.

(8)
Pong calculated briefly the radar cross section of a plasma-coated

 



metallic cylinder by the stratification method.

In this chapter the temperature effect of the plasma is

neglected. Due to the existence of a static potential on the metallic

cylinder and other boundaries the density distribution of the plasma is

assumed to be inhomogeneous. The stratification method is used in the

analysis. The inhomogeneous plasma layer is subdivided into a number

of concentric sublayers of sufficiently small thickness compared with

the electromagnetic wave length. The plasma density is assumed to be

constant in each sublayer so that a step function approximation for the

density profile is adopted. The wave equation is, then, solved in each

sublayer resulting in two cylindrical waves with unknown magnitudes and

propagating in opposite directions. The magnitudes of waves are deter-

mined by matching the boundary conditions at the interface of two

ajacent sublayers. This boundary matching process will lead to the

final determination of the scattered fields in space.

To compare with experimental results, a glass wall is assumed to

surround the plasma in theoretical model.

2.2 Geometry of the Problem

An infinitely long metallic cylinder with a radius a and covered

by a layerof non-uniform cold plasma is confined in a glass tube with

inner radius b and outer radius c. This plasma-coated cylinder is

placed along the z axis and is illuminated normally by a plane electro-

magnetic wave with its E’field perpendicular to the z axis and E field

parallel to the z axis (TE wave). The layerof noel-uniform cold plasma

is subdivided into a number of sublayers as shown in Fig 2.1 for the

analysis. These sublayers are counted from outmost sublayer and

 



  
 

 

 
Incident wave

Region 1: free space

Region 11: glass wall

Region III: cold plasma

Region IV : metallic cylinder

Fig. 2.1.0) A plasma-coated metallic cylinder

illuminated by a TE wave from the

left. (cold plasma model)



inwardly. For example,the first sublayer is located immediately inside

the glass wall and the last sublayer is located immediately outside the

metallic cylinder. The radius between two adjacent mth and (m+1)th

sublayers is denoted as rm. In the mth sublayer, we assume that the

plasma density is 9o,m’ the collision frequency is uh, the propagation

constant is ke m

The cylinder is assumed to be infinitely long in the analysis so

and the equivalent complex permittivity is gm.

that there is no field variation along the z direction. The angle 9 in

the cylindrical coordinates starts from the x axis and increases in the

counter clockwise direction. The time dependence of exp(jwt) is assumed

and the field of incident plane wave are given by(9)

Ho: . e jkox ' e jkorcosO

a, n

a “50606-9 cos(n6) Jn(kor) (2.1)

i i

"or 3 I109 8 O (2.2)

i i

1ear 3 - 331;? 3% H02

. w n

. $3.07 .5506 om(«5) 11.111010) Jn(k°r) (2.3)

E1 - A i

oe (06° Br Hoz

a, n

- J§0n§o e .n“5) come) Jamar) (2.4)

1

£02 3 o . (ZeS)

In these expressions, the sumscript ”i” represents incident wave.

k0 is the propagation constant of free space and is defined as koew-Ju E .

o o

E is the Neumann factor defined as 6 I 1 when n-0 and 6 = 2

on on on



when niO. Jn(k°r) is Bessel function of the first kind with integer

order n and argument kor. Jn'(kor)is the first derivative of Jn(k°r).

go is the impedance of free space and is defined as £0 Il-EQ- - 120" olms.

o

”o and 6 o are permeability and permttivity of free space respectively.

2.3 Fields in Free Space Region

In the free space region the Maxwell's equations are

vxi‘; - -j.uofi; (2.6)

vxil: - 3.503: (2.7)

where E:, I: are the scattered electric and magnetic fields, and no, 6 o

are the permeability and permittivity of free space respectively. Due

to geometrical syuetry, all fields are synetrical with respect to the

0 I 0 axis.

From Eqs. (2.7) and (2.6) we obtain

VxVxE; I (0211060? . (2.8)

Due to TE polarization of incident electromagnetic plane wave and the

geometry of problem, E field does not have 2 component and is indepen-

dent of z. with these two conditions the lefthand side of Eq. (2.6)

reduces to a 2 component equation as

I

1 as

1: [58; (rt-2:0) - 23’] i - -jmu.o if; . (2.9) 

Equation (2.9) shows that a is allowed to have 2 component only.

Assuming that 36 I 110; 2, Eq. (2.8) reduces to

 

2 s s 2 s

a 1102 a H“ 3 no: 1:2 n' 0

31-5 + :31: + 1:2305 + ° °' . . (2.10)
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Equation (2.10) can be solved by the method of separation of variables.

He assume that

3
"oz I H(r) 11(0) (2.11)

where H(r) and R(0) are functions of r and 0 respectively. The substi-

tution Of Me (Zell) in Me (2.10) 128d! LO

im+amnzrz . n2 (2.12)

am n2 am a: °

4—32 "(9) . n2 . (2.13)

8(8) 38

Considering the symmetry of problem and the degeneracy of angle 6, the

solution for 3(0) is

H(6) I cos(n9) (2.14)

where n is an integer.

Equation (2.12) can be rearranged to

 

2 2

34(35)- +--1--3§-(£-)-— + (1- n 2) Mr) . o (2.15)

3(kor) (kr) 3(kor) (Rot)

which is a Bessel equation.

The solution to Eq. (2.15) is a Bessel function of order n with

an argument of kor. Because only an outgoing cylindrical wave is expected

to exist in the free space, the proper solution for Eq. (2.15) is the

second kind of the Hankel function such as

am - 11(2) (1. r) . (2.15)
n o

With Eqs. (2.14) and (2.16), the final solution for Rs; can be written as



11

s °° (2)
"oz I “£20 cos(n0) H n (kor) An (2.17)

where An is a constant to be determined by the boundary conditions.

The corresponding if: field can be found from

ESI 1 VIC? 

o jmeo o

l 1 3 no: . 1 a Hos: A
a 3:32-— (3:— T) r '-W (V) 9 (2.18)

o 0

or

s °° (2)
Eor :- (0601' “:20 nsin(n0) R n (kor) An (2.19)

s m (2).
1:06 - jgo n50 cos(n0) H n (kor) An (2.20)

n s

where go I’-€2 I 120" ohms and Hg) (kor) is the first derivative of

(2) °
N n (kor) with respect to (kor).

The total fields in the free space region can be obtained by

sunning the incident and scattered fields to be

no: - E0 cos(ne) [é on(-j)n Jn(kor) + 11‘? (kor) An] . (2.21)

not: . Hate . 0 (2.22)

a: - wear Ea nsin(n8) 5 015-1)“ Jn(kor) + 11‘? (Rot) An] (2.23)

E02 I jéo n23: cos(n8) [5 0n(-j)n J;(kor) + H(:)'(kor) An] (2.24)

at - 0 . (2.25)
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2.4 Fields in Glass Hall Region

In the glass wall region the Maxwell's equations are

V x E8 I -jmp.o MS (2.26)

V x is - jmeo Es E8 (2.27)

where 6 8 is the dielectric constant of glass.

If we allow an incoming and an outgoing (reflected) waves to exist

in the glass well region, the solution for as field can be expressed as

-° A
"a . "322 (2.28)

where

a

(1) (2)
"a: . “so cos(n0) [a n (1182:) an + a n (kgr) an] , (2.29)

In Eq. (2.29). Bn and C“ are the constants to be determined by the

boundary conditions and k8 is propagation constant of glass defined as

1‘s ' kale—s'

The corresponding Eg field has components given by

Egr I file—r 2 nsin(n0) E H(:)(k8r) 3n + R(:)(k8r) C11] (2.30)

o g nIo

5 o °° (1)' (2)'
E89 I 7% “ED cos(n0) [R n (ksr) Bn 4- H n (ksr) C11] (2.31)

3 0. (2032)E
gz

2.5 Fields in Plasma Region

As mentioned before, the plasma layer is subdivided into a

number of concentric sublayers of sufficiently small thickness. The

plasma density is then considered to be uniform within each sublayer,
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but it varies from sublayer to sublayer in radial direction. In the mth

sublayer the plasma medium is considered as a frequency and collision

dependent dielectric. The equivalent complex permittivity can be ex-

pressed as

wz. imz. 1.

s. - 6. <1--§‘7>--£2LT m
(1) +‘1ll (0(0) Wm)

where mp m is the plasma frequency associated with density no

0

mth sublayer and is given by

e n

.. ’42! .

mpsm M60 . (2 34)

e and M are the charge and mass of electrons respectively in Eq. (2.34).

in the

,m

Also um is the collision frequency in the mth sublayer.

The field in the mth sublayer of plasma medium can be obtained

from the Maxwell's equations,

V! Em I “50810 am (2.35)

Vx fin ',3‘”§n Em , (2.35)

The components of Em and En fields can be expressed as

, °° (1) (2)
n 2‘. co.(ne) H n (ke' r) 0 n + a n (he. r) rum] (2.37)
m: nIo m m, m

Hm 3 "no 3 0 (2e38)

&

1 (2)
ant I Ii? 2 nsin(n8) [H(n)(ke,mr) Dm,n + H n (hunt) PM; (2.39)

1130

a O I

p‘ (1) (2)

“'9 1 info cos(n0) [H n (hunt) Dm,'n + R m (kept) Fmm] (2'40)

3 3 0 (2 e31)

where Dm,n and Fm,“ are constants to be determined by boundary conditions
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and ke m is the propagation constant in the mth sublayer of the plasma

0

layer and is given by

ke,m II wfiiogb . (2.42)

If we denote ke,m as

k I B - ja (2043)

and after substituting g5 with Eq. (2.33), Be m and ae m can be

0 9

expressed as

 

2 2 4

Bo w m 2m m w m 5 %

Barf;- 1";'—i‘+[1'_2hT+'-2—25'—2‘] W“)
m +Vm m +vm w (w +vm)

\

2 2 4
Bo { m m [ 2m m m m ] ‘5 55

a -—J-l+-§J—5 + 1- + (2.45)

e" 2 0) +vm (n +v2 m (mzwi)

with

8o ' "’Foéo °
(2.1.6)

Up to this point, the fields in the mth sublayer have been solved.

Similarly, the solutions of the fields in the other sublayers will have

the same ferns as that in the mth sublayer with appropriate change in the

quantities of he, g, 110 and v etc.

2.6 Matching the Boundary Conditions at Interfaces

In the solutions for E; and 3; obtained in Sec. 2.5, there are

two unknown constants to be determined by boundary conditions. In order

to express the constants in one sublayer in terms of the constants of its

adjacent sublayer, it is necessary to have two boundary conditions at the
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interface of these two sublayers. Consider the boundary at r . rIn

between the mth and the (m+l)th-sub1ayers (refer to Fig. 2.1). The

boundary conditions at this interface are the continuity of tangential

components of if and '13 fields. In symbols,

Hm - “(HUI at r . rIll (2.67)

2'6 3 E(m+l)e at r . rm (2.&8)

01'

a

(1) . (2)“E0 °°““”[H n (he'll rm) Dunn + H n (ke'm rm) rum]

(2)

1‘11:) Dm-I-l,n + H n (ke,m+l I'.m)Fm+l,n]

(2 .49)

°° (1)
- 2 cosme) H (k
n l: n e,n+1

and

“'0 0° (1). (2).31%} 2 cos(n6)[fl n (he,m 1‘”) Drum + H n (ke'm rm) Pam]

two

"'0 m (1). (2).. 5E “:30 cos(as u n (Rem-H rm) 0M1,“ + a n (5M1 qnn-‘mflfla .

(2.50)

Due to the orthogonality of cos(n6) functions, Eqs. (2.49) and (2.50)

lead to the following matrix equation

(2) "-7
' , (1)

in n (Rem rm) H n (ke,m rm) m,n

1 (1). 1 (2).

LE H n (k8,!!! rm) E H n (kem rug-J Flinn     
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(1) (2) ‘ F "

H n (ke,m+lrm) H n (ke,m+lrm) I)m-O-lm

E1 (1)' :1 (2).

+1 H n (hem-firm) gm+1 H n (ke,m+lrm) Fm-i-l,n '

Equation (2.51) gives

-1

(1) (2)

Dllfll H n (ke,mrm) H n (ke,mrm)

- 0 I

1 (1) 1 (2)

Fllfil E H n (ke,mrm) j§Cm H n (ke,mrm)

P (1) (2) _ ' -

H n “hm-urn) H n (ke,m+lrm) DIa-o’l,n

! 13: (1)' E1 (2).

1 H n (Rem-arm) 1 H n (Items-Iris) LEM-1mJ '

" _ (2.52)

We can write Eq. (2.52) as

f- "7 "' '-

”m,n DIM-1m

-l

' [Lnotemrmfl En‘kem-I-lrmil (2'53)

.FWL Lam”;

where

P (1) (2) _

H n (kg-rm) H n (ke,mrm)

[L“(k°"'r")] . ' . (2.54)

l (l) 1 (2)
LE 8 n (ke’mrm) E a n mental: .

Similarly at the interface of r I rm-I-l we have

l)m-i-l,n Dm+2,n

-1

F ~ " En‘kem-l-lrm-I-lfl E‘n‘kemn’mufl F (2'55)

lid-1,11 M2,“
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Thus, combining qu. (2.53) and (2.55), the constants D and F in
m,n m,n

the mth sublayer can be expressed in terms of the constants Dm+2 n and

3

Ffiz ,n in the (n+2 )th sublayer as

D

m,n

F ' [Ln(ke,m1‘In]1[n(ke,m+1rmil

m n _' FD

-1 M2,“

[Ln(ke,m+lrm+li| E‘n‘kem-o-Zrm-t-lil ' (2'56)

I"m+2,n

  

By carrying out the successive operation of Eq. (2.56) to cover

all the interfaces, the constants of the outmost sublayer can be expressed

in terms of that of the inmost sublayer as follows:

l,n

F ' [Ln(ke,lrl)]11' ke,21.1)] [Ln,(ke21‘2]IE'nO‘e, 3r2] H

l,n

Ds,n

”,E'n(ke.-1‘.-1]1En°‘.,.’s-1] F (2.57)

s,n

where the sth sublayer is the inmost sublayer. Equation (2.57) can be

expressed in shorthand as

. (2.58)

F1 ,n Mn(2,1) Mn(2 ,2) is ,n

0

where Mn(i, j) s are the entries of the matrix which is the product of

those [Ln] matrices in Eq. (2.57).

Let's now consider the interface between free space and glass wall

at r I c. The tangential components of E and ii. fields are continuous
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at this interface. This leads to

H I H at r I c (2.59)

oz g2

12" . .06 I Ege at r c (2 60)

where q:; and 3;; are given in Eqs. (2.21) and (2.24) respectively and

H82 and £89 are given in Eqs. (2.29) and (2.31) respectively.

With Eqs. (2.21), (2.24), (2.29) and (2.31), Eqs. (2.59) and (2.60) lead

to

- H(:)(k°c) An + 112%?) an + H(:)(k8c) on - €°n(-j)an(koc) (2.51)

1

8

I O

(1) 1 (2)
H n (ksc) an + —— H n (kgc) cn

F?
n I

- 6mm) Jnaoc). (2.62)

(2)' .
- H'n (hoe) An +

we consider next the interface between the glass wall and the

first sublayer of plasma at r I b. The continuity of the tangential

components of f and if fields leads to

_ (1) _ (2) (1) (2)
H n (1:81)) B“ H n (1:81)) Cu + H n (k b) D + H n (he’lb) F

e,l l,n l,n

. o
(2.63)

_ 1 (1)' _ 1 (2). E: (1).-——j_€_8 n n (1.81)) ”:1 “f5: 11 n (ksb) 0,, + j; H n 02,1") ”1,11

’50 (2;
'l' T; H n (ke,1b) F1,“ ' 0. (2.611)

Expressing D1,“,

and (2.64) lead to

F in terms of D , F

l,n a,“ 8

n by Ego (2058), Eqs. (2o63)
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(1) (2) ..
- H n (kgb) an - H n (ksb) cn +[Rn(l)] 11$,n +[Rn(2)] 1:8,“ — o

(2.65)

and

- 1 11(1).“ b) n - 1 H(2).(k b) c +[R (3)]1) +[R(A)]F
7?; n g n 7?: n g n n s,n n s,n

3 0 (2.66)

where

Rn(l) = H(!1‘)(ke,1b) Mn(1,1) + H(:)(ke’1b) Mn(2,1) (2.67)

g (1) (2)
Rn(2) H n (ke,1b) Mn(1,2) + H n (he'lb) Mn(2,2) (2.68)

o (1)' 66 (2)'
Rn(3) = l-é—Z H n (ke'lb) Mn(1,l) +E H n (He’lb) Mn(2,1) (2.69)

_ 0 (1). o (2).
an“) E H n (he'lb) Mn(l,2) +E H n (ke’lb) Mn(2,2) , (2.70)

Finally, we consider the interface on the metallic cylinder

surface at r I a. If the cylinder is assumed to be a perfect conductor,

the tangential component of the E field at its surface vanishes. That is

E I O at r I a . (2.71)
36

This leads to

(1)' (2 )'
H n (ke,sa) Ds,n +'H n (ke,sa) Fs,n I 0 . (2.72)

Equations (2.61), (2.62), (2.65), (2.66) and (2.72) can be represented in

a matrix equation as
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Fqnun) Qn(1,2) Qn(l,3) o o 7 ”A“ ' Rama)"

Qn(2,l) Qn(2,2) Qn(2,3) o 0 En Qn(2,6)

o Qn(3.2) one.» (253.4) (1.53.5) cn - o

0 Qn(4.2) Qn(4.3) Qn(4s") Qn(4".5)L D8,!) 0

_ o o o Qn(5,4) 0155,53“ 88m 0 J

h (2.73)

where

(2)
Qn(1,1) ’- ‘Hn “(00) (2074)

Qn(1.2) = H(:)(kgc) (2.75)

3 (2)
Qn(1.3) H n (kgc) (2.76)

n

Qn(1.6) = Eon(-j)Jn(koc) . (2.77)

(2)'
Q“(Zsl) " " "n (ROG) (2078)

_ 1 (1)'
Qn(2.2) 58 H n (kgc) (2.79)

g 1 (2)'
Qn(2'3) 68 H n (kgc) (2.80)

n ' '
Qn(2,6) = 60n(-j) JnOtoc) (2.81)

(1)
Qn(3,2) 2: - Hn (keb) (2.82)

Qn(3,3) a - “(121)(kgb) (2.83)

011(3).) . 1193(22'18) Mn(1,l) + H(:)(ke,1b) Mn(2,1) (2.84)

Qn(3,5) - $302,111) Mn(l,2) + H(:)(ke’1b) Mn(2,2) (2.85)



05(4.2)

Qn(4,3)

Qfi(4.4)

Qn(4.5)

Qn(5.4)

Qn(5.5)

”(1)1

8 68 n (Rab)

_ __ 1 (2)

H H " (k‘b)

6. (1)' 66 (2)'. IT; a n (He'lb) Mn(1,1) +5} H n (keflb) Mn(2.1)

_ e. (1)' 66 (2)'
E H n (He’lb) Mn(1,2) +E H n (ke'lb) Mn(2,2)

, (1)'
H n (ke,8a)

(2)'
3 H n (he'sa) o

21

2.7 Scattered Field in Free Space Region

The constant An is of main interest and can be obtained from

Eq. (2.73) by Cramer's Rule as

'- An1

n

A
n

 

Two determinants,An and Anl’ are given as

An.

and

Qn(1.1) Qn(1.2)

Qn(2,1) Qn(2,2)

 

0 Qn(3,2)

o Qn(4,2)

o o

Qn(1,3) O 0

Qn(2,3) O 0

Qn(3.3) Qn(3.4) Qn(3.5)

0154.3) Qnaom Qn(4.5)

 

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)
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Qn(1.6) Qn(1.2) Qn(1.3) o o

Qn(2.6) Qn(2.2) Qn(2.3) o o

- o (3.2) (3.3) (3.4) (3.5) (2.94)
Am Qn Q. Qn Q.

o Qn(4.2) Qn(4.3) anam Qn(4.5)

o o o oncsus) Qn(5.5) .  
Finally, the scattered fields in free space region are obtained as

00

s (2)

H02 I Z cos(n6) H n (kor) An (2.95)

nIo

s ._ s 8
H6: - H69 0 (2.96)

N

s 3' . (2)
or = w r 2 nsm(n6) H n (kor) An (2.97)

() nIo

s °° (2).
£09 = Jgo 2 cos(n6) H n (kor) An (2.98)

nIo

s —

Eoz - 0 (2.99)

with An expressed as Eq. (2.92).

For the scattered fields observed at a large distance, Hankel

function can be expressed in its asymptotic form as

-J'(k°r - ‘1’"! - i‘rr)

 

(2) / 2
H n (kor) s: ”‘0‘ e . (2.100)

And the scattered fields at a large distance are then obtained as

8 2 -j(k0r ' h) °° 5551111

H02 I r e 2 cos(n6) e An (2.101)

O n-o

s s

”or 3 806 ' O (2o102)

E8 j 2 1 -j(k0r ' 5:") °° J'lfin‘"

'3 —— e Z nsin(n6) e A
01‘ nicer wéor “.0 n

i o (2.103)
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’j(k r -‘1(n+1)w - 5m)

= jéo (171;:r 20 cos(na) [- e o 

 

-. - 1 -

n J(kor 1m 3301

+--—-e A

k r n

o

g 2 ‘j(kol‘ " 2:") 2 53111111 ( )

N / e cos(n6) e A 2.104

O “or n” n

after neglecting the r 2 term

gs g o (2 105)

oz ' '

To derive Eq. (2.104) the relation of

(2). H(2 ) H(2)n

H n (kor) I Mn+l(kr) +—“O n (kor) (2.106)

is USEdo

2.8 Some Special Cases

In section 2.6 we have developed a theory and a set of five

simultaneous linear equations with five unknowns which can be solved to

determine the scattering from a plasma-coated metallic cylinder. we will

show that with a slight modification this theory can be used to determine

the scatterings by a plain plasma cylinder and by a plasma-coated dielec-

tric cylinder.

2.8.1 The Scattered Field from a Plain Plasma Cylinder

For this case the plasma fills the whole glass tube in the

absence of metallic cylinder. If we let the inmost sublayer be the

plasma cylinder with an extremely small radius and located along the z

axis, the whole plasma cylinder is subdivided into an extremely thin
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plasma cylinder at the center and a number of concentric sublayers

extended from radius r I 0 to radius r I b up to the glass wall (Refer

to Fig. 2.1). Since the Bessel function of the second kind, Yh(ke,8r),

has a singularity at r I 0, the proper solution for the fields in the

inmost sublayer or the thin cylinder at the center is the Bessel function

of the first kind, Jn(ke 8r),only. This condition can be achieved by

9

setting the constants D and F to be equal, because

s,n s,n

1 (1) (2)Jn(ke,8r) . 7|}; n (kefir) + H n mafia] . (2.107)

Thus for a plain plasma cylinder, the simultaneous equations are Eqs.

(2.61), (2.62), (2.65), (2.66) and the following equation:

With this set of equations An can be solved and consequently the

scattered field.

2.8.2 The Scattered Field from a Plasma-Coated Dielectric Cylinder

In this case a dielectric cylinder instead of a metallic

cylinder is located in the center of the plasma column. The tangential

component of E field will not vanish on the surface of the dielectric

cylinder. Due to the singularity of the Bessel function of the second

kind, the proper solution for the 8 field in the dielectric cylinder is

.. a

"d I H i I ‘2 cos(n0) Jn(kdr) Gn 2 (2.109)

n-o

where subscript d implies the dielectric regon. CD is a constant to be

determined by boundary conditions. k is the propagation constant of the
d

dielectric cylinder and is given by
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kd 3 0).] “.06 0 Ed (2o110)

where E'd is the dielectric constant of the dielectric cylinder.

The corresponding § field can be obtained from a Maxwell's

equation,

a jweoed .

to yield the following components

 

N

E = ——-l—— )3 nsin(n9) J (k r) c; (2.112)
dr wEOEdr “-0 n d n

j€5o “’ '
Ede - .jE—E' nEocos(n0) Jn(kdr) Gn (2.113)

E 3 0 o (2.114)

dz

The boundary conditions at the interface between the plasma region

and dielectric cylinder are the continuity of the tangential components

of E and H fields. These boundary conditions lead to

_ (1) _ (2) ..
H n (Ra'sa) 0 H n (ke — o (2.115)

s,n a) Fs,n + ‘Jn(k,s e,da) G11

and

9

Go (1) o (2) 1 '

Jr; H n 0‘...“ Ds,n “Jr; H n 0‘...“ Fs,n we": Jn(ke,da) ch

= 0 s (2s116)

With this modification, Eqs. (2.61), (2.62), (2.65), (2.66), (2.115) and

(2.116) form a set of six simultaneous linear equations with six un-

knowns which can be solved to determine the scattered fields.
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2.9 Numerical Results
 

The back scattered E fields from a plasma-coated metallic cylinder,

a plain plasma cylinder and a plasma-coated dielectric cylinder have been

calculated as a function of (mp/m)2. Although in the deveIOpment of

theory the collision frequency v is treated as a variable, in our numeri-

cal calculation 0 is assumed to be a constant for all sublayers for

simplicity. For a laboratory plasma the ionization degree is very low

and the electron-neutral particle collision usually is the predominant

effect. Even though the electron density of the plasma may be non-uniform,

the density of neutral particles can be uniform in the plasma. Thus the

assumption of a constant collision frequency in a non-uniform plasma may

bereasonable. The series solution is produced by summing up the first

four terms only (up to nI3). The accuracy of the numerical results based

on four-term summation is quite satisfactory since these results deviate

less than one percent from the numerical results based on ten-term summa-

tion. The scattered fields are calculated at a distance from the z axiswith

kor I 10 for convenience. Andthese fields are plotted in figures with

its normalized value, Ezlfii where E: and E: are the scattered and incident

fields respectively. From Fig. 2.2 through Fig. 2.6, the dimensions for

the glass tube, plasma layer and central cylindrical conductor are based on

the actual dimensions of the experimental model. Those dimensions, dielec-

tric constant of glass and the operating frequency are given in Table 2.1.

 

 

Operating frequency a(mm) b (m) c (mm) 68 l

5f I 2.3 GHz 2.158 7 8

      

Table 2.1 Physical dimensions of plasma tube, dielectric

constant of glass and operating frequency.
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Figure 2.2 shows the back scattered B field in the direction of

0 I 1800 as a function of (wp/w)2 for various collision frequencies for

the case of a uniform density distribution in the plasma region (barge).

The main resonance occured at (mp/w)2 I 2.58 is the so called the

dipolar resonance which corresponds to the resonance due to the n I 1

term of the series solution. The sharp peak at the right main resonance

(10'7) The hexapolar resonance or nI3is the quadrupolar resonance.

resonance does not appear in the figure although the resonance does

occur at a higher value of (wp/w)2. It is observed in Fig. 2.2 that

when collision frequency is increased to a value of the order of v/w I 0.5

no resonance appears any longer. Also the quadrupolar resonance seems

to be damped out by the collision more strongly than the dipolar

resonance.

Figure 2.3 is a plot of the determinant An given by Eq. (2.93)

for various values of n as a function of (wp/w)2. Because of rapid

convergence of the series, the terms with n 24 are neglected. The

real and imaginary parts of the determinant are calculated separately.

The determinant is plotted for the region of l <:(wp/w)25; 5 only to

show the locations of resonances. Figure 2.3.1 shows the smooth

behavior of the n-O term of the series. In Fig. 2.3.2, the point of

rapid sign change of the real part of the determinant fer nIl occurs

at (wp/w)2 I 2.58 and it corresponds to the dipolar resonance. A

similar behavior of rapid sign change of the determinant for nI2 case

is shown in Fig. 2.3.3 and this point of rapid sign change corresponds

to the quadrupolar resonance. In Fig. 2.3.4 although the hexapolar

(nI3) resonance is clearly seen, due to an extremely small value of
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A3 compared with A0, A1

not detectable in the scattered field as shown in Fig. 2.2.

and A2, the effect of hexapolar resonance is

Figure 2.4 shows the effect of the dielectric constant of the

glass tube. Three curves of back scattered B field are plotted for the

glass tube with dielectric constants of Gig I l, 2.5 and 5. The case

of € 8 I 1 is equivalent to the absence of the glass tube. It is

observed that as the dielectric constant of glass tube is increased the

location of the dipolar resonance shifts to a higher value of (mp/w)2

and the separation between the dipolar and quadrupolar resonances

becomes greater. These three curves are plotted with an assumption of

a collision frequency of v/m I 0.001 and an operating frequency of

2.3 GHz.

Figures 2.5 and 2.6 show the back scattered B field from a

metallic cylinder covered by a layer of non-uniform plasma as a function

of (mp/w):ve. which corresponds to the average plasma density. The

density distribution of the plasma layer is assumed to be given by

no,r I no,c[1 - aéggf] (2.117)

where no,c is the plasma density at r ..2§2., and a and p are constants

which are used to adjust the density distribution. The formula (2.117)

gives a similar parabolic density profile adopted by Vandenplas<11>

and Killian (12) in their studies for a plain plasma column. In our

calculation we assign the values of p I 2 and a I 0.6. The layer of

non-uniform plasma is then subdivided into 3, 7 or 13 sublayers with a

constant density assigned in each sublayer. This gives a step function

type of density distribution. The numerical calculations based on this

scheme are shown in Figures 2.5 and 2.6. In these two figures, it is
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observed that the general shapes of curves and the locations of the

dipolar and quadrupolar resonances remain quite unchanged as the number

of sublayers in numerical calculation is varied. However, a series of

small peaks appears to the left hand side of the main (dipolar)

resonance. The number of these small peaks increases as the number of

sublayer is increased. Obviously, these small peaks can not be physical

since they are created in the process of subdividing the plasma layer.

In the paper by Shohet and Batch (13) in solving eigenvalues of a

microwave cavity filled with a plasma of variable radial density, a

stratification method similar to our method has been used, and they

observed the number of the eigenvalues increases as the number of

sublayers is increased. They attributed this phenomenon to the

mathematical process involved in the stratification method. Any

resonance associated with the stratification method in a non-uniform

plasma should be termed as a mathematical resonance which has no

physical meaning what so ever. In our analysis, we have found that

each mathematical resonance occurs when the density of a sublayer

approaches toa value when its (up/w is approximately equal to l. The

location of main (dipolar) resonance tends to approach to a value of

(mp/w)2 I 2.8 as the number of sublayers is increased. Nhile the

location of quadrupolar resonance converges to a value of (mp/w)2 I 3.6

as the number of sublayer is increased. The values of (mp/w):v where

e

both physical and mathematical resonances occur is listed in Table 2.2

for the case of collision frequency of vlw I 0.001 and for various

stratifications.
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Model Mathematical Resonance Dipolar Quadrupolar

2 2 2

(mp/(1))”,e o (mp/w)ave s (mp/w)ave o

Uniform None 2.57 3.25

3 sublayers .8839, 1.089 2.631 3.37

5 CablIyera o8282, 1005M, 1o2726 2o757 3o47

1.387

.8212, .8813, .9814:

13 sublayers l .1417 , 1 .2218, 1 .4421 . 2.804 3.60

1.6024   
Table 2.2 Locations of resonances in a plasma layer

coating a metallic cylinder.

Figure 2.7 is a plot of the back scattered B field from a plasma-

coated metallic cylinder as a function of (mp/w):v with various dimen-

e

sions of plasma layer and glass wall but with a fixed conductor radius

of a I 2.158 mm and a fixed operating frequency of 2.3 GHz. The density

distribution is assumed to be expressed by Eq. (2.117) withcz I 0.6 and

p I 2. The calculation was made based on a l3-sublayer model and those

mathematical resonances are ignored inthe figure. Theoretical calcula-

tion shows that the location of the main (dipolar) resonance shifts to

a larger value of (mp/m):ve. as the thickness of the plasma layer is

increased. 0n the other hand, the location of the quadrupolar resonance

shifts to a lower value of (mp/m):ve. as the thickness of the plasma is

increased.

Figure 2.8 shows the plot of the back scattered B field from a

plasma-coated metallic cylinder as a function of (mp/<11):ve with various

0

radii of metallic cylinder while the dimension of glass wall is kept



31

constant with b I 7 mm and c I 8 mm. The density distribution is assumed

to be expressed by Eq. (2.117) with a I 0.6 and p I 2. It is observed

that the amplitude of main (dipolar) resonance remains approximately the

same while the location of the main (dipolar) resonance tends to move

to a smaller value of (mp/m)ive. as the radius of the metallic cylinder

is increased. In the calculation, the l3-sub1ayer model is again used

and the mathematical resonances are ignored in the figure.

Figure 2.9 shows the back scattered B field from a plasma-coated

metallic cylinder with the dimensions given in Table 2.1 as a function of

(mp/m)ive. with various plasma density profiles. Again the 13 - sublayer

model is used and the mathematical resonances are neglected in the figure.

Three different density profiles are assumed for the plasma layer in the

calculation. The first density profile as shown in curve (1) in Fig. 2.9

is a distribution with plasma density increasing linearly from glass wall

(r I b) to the metallic cylinder (r I a) and can be expressed mathemati-

cally by

2r-b-a
no“. I now [1 - 0.4(T)] (2.118)

where nb.c is the plasma density at r ..2;1 .

The second density profile as shown in curve (2) has a density distribu-

tion linearly decreasing from r I b to r I a and can be expressed by

2r-b-a‘

no“ no,c [l + 0.4(—g:;—)] . (2.119)

The third density profile as shown in curve (3) has a combined distribu-

tions of the first and the second profiles. Its density distribution in

the region of baraggg-obeys Eq. (2.118) and for the region of Eggzrza
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it follows Eq. (2.119). All curves in the figure are plotted with a

constant collision frequency of vlw I 0.01 and the operating frequency

of 2.3 CH2. It is ovserved in Fig. 2.9 that the density profile of the

plasma layer has little effect on the behavior of the back scattered B

field from a plasma-coated metallic cylinder.

Figure 2.10 shows the back scattered B field from a plain plasma

cylinder which has been discussed in section 2.7 as a special case.

The curve is plotted for a plasma cylinder with the dimension of

b I 7 mm and c I 8 mm. The operating frequency again is 2.3 CH2. A

l3-sub1syer model with a density profile given by (11)

n - n [1—0 «if-)2] (2 120)
olr 0pc . b

O

is used in the calculation..The behavior of the back scattered B field

from a plain plasma cylinder is similar to that from a plasma-coated

metallic cylinder. However, the locations of dipolar and quadrupolar

resonances of former cylinder tend to move to a larger value of

(wplm)ive. . Not included in Fig. 2.10, the calculations based on 3,

5 or 7-sublayer model were made and the locations of mathematical,

dipolar and quadrupolar resonances obtained based on different sublayer

models are shown in Table 2.3.

Figure 2.11 is a plot of theoretical back scattered B field from

a plasma-coated glass cylinder which was used in the experiment conducted

by Vandenplas .0) The dimensions of the experimental plasma tube are

a I 1.10 mm, b I 3.97 mm and c I 5.25 mm. The dielectric constant of

the glass is assumed to be 68 I 4.3 and the operating frequency is

fixed at 2.7 GHZ. A uniform density distribution and a collision
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frequency of vim I 0.005 are assumed in the numerical calculation. The

results shown in Fig. 2.11 agree well with the experimental and

theoretical results of Vandenplas. The main difference between the

numerical results of our theory and that of Vandenplas' theory, which

was based on quasi-static approximation, is that our theory predicts

finite resonance peaks and a quadrupolar resonance while Vandenplas'

theory yields infinite resonance peaks and total absence of quadrupolar

 

 

 

 

 

 

     

resonance.

Model Mathematical Resonance Dipolar Quadrupolar

2 2 2

(mp/w)3ve o (mp“Dave s (mp“Dave o

Uniform None 2.9 3.3

3 sublayers .788, 1.061 3.01 3.727

5 sublayers .791, .932, 1.228 3.06 3.954

7 sublayers '8015’ '9 ’ 1'05' 3.07 4.0

1.336 _ A_

0813, 0885, .911.

l3sublayers .995, 1.1074,l.2616. 3.08 4.0

1.5

Table 2.3 Locations of resonances in a plain plasma

cylinder.
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CHAPTER 3

SCATTERING FROM A METALLIC CYLINDER SURROUNDED BY A LAYER

OF LOSSY, HOT PLASMA ILLUMINATED BY A TE WAVE

3.1 Introduction
 

In the previous chapter, using a cold plasma approximation we

have developed a theory for the scattering of an electromagnetic wave

from a plasma-coated metallic cylinder when it is illuminated by a

normally incident plane wave with its H field parallel to the cylinder

axis. In this chapter, the surrounding plasma medium is assumed to be

hot and the temperature effect or the excitation of an electroacoustic

wave will be considered. Also the plasma medium will be assumed to be

non-uniform.

This temperature resonance, also known as Tonks-Dattner's

resonance, has received attention from a number of investigators. (14' 15’

16) Some problems related to the present one have also been investi-

gated. Crawford and Kino(l7) studied the mechanism of Tonks-Dattner's

resonances excited in a plain plasma discharge tube. Hait(18) studied

the scattering of an electromagnetic wave by a cylindrical object in an

infinite hot plasma. Fejer(19) studied the scattering of an electro-

magnetic wave by a plain plasma cylinder using a differential equation

(11)

method. Vandenplas and Messian studied the scattering of an

electromagnetic wave from a plasma cylinder using a quasi-static approxi-

mation. There are other investigators who studied similar problems.
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However, to our best knowledge, the problem of the electromagnetic

scattering from a metallic cylinder covered by a layer of non-uniform,

hot plasma has not been treated elsewhere.

In the development of theory, the collision loss, the excitation

of an electroacoustic wave and the inhomogeneity of the surrounding

plamma layer are all considered. The stratification method is used in

the analysis. The plasma layer is subdivided into a number of concen-

tric sublayers of sufficiently small thickness compared with the

electromagnetic wave length. The plasma density is, then, assumed to

be a constant within each sublayer so that a step function approximation

of density profile is adopted. In each sublayer of plasma, one can

find two electromagnetic and two electroacoustic cylindrical waves with

unknown magnitudes propagating in opposite directions. These electro-

magnetic and electroacoustic waves are coupled at the interface of two

adjacent sublayers. The magnitudes of these waves are determined by

matching the boundary conditions at the interfaces. This boundary

matching process will lead to the final determination of the scatted

fields in free space.

In order to compare with experimental results, a glass wall is

assumed to surround the plasma in the theoretical model.

3.2 Geometry of the Problem

An infinitely long metallic cylinder with a radius a and covered

by a layer of noneuniform hot plasma is confined inia glass tube with

inner radius b and outer radius c. The plasma-coated metallic cylinder

is placed along the z axis and is illuminated normally by a plane

electromagnetic wave with its E field perpendicular to the z axis and
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 1—4

H

O I 1

Incident wave  

Region 1: free space

Region II: glass wall

Region 111: hot plasma

Region IV: metallic cylinder

Fig. 3.1.(a) A plasma-coated metallic cylinder

illuminated by a TB wave from the

left. (hot plasma model)



  

0,1
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Fig. 3.1.(b) Stratified hot plasma medium.
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H field parallel to the z axis (TE wave). The layer of non-uniform hot

plasma is subdivided into a number of concentric sublayers as shown in

Fig. 3.1 for the analysis. These sublayers are counted from outmost

sublayer and inwardly. For example, the first sublayer is located

immediately inside the glass wall and last sublayer is located immediately

outside the metallic cylinder. The radius between two adjacent mth and

(m+l)th sublayers is denoted as rm. In the mth sublayer, we assume that

the plasma density is no,m’ the collision frequency is uh, the propagation

constant of electromagnetic wave is ke , the propagation constant of

electroacoustic wave is kp m' and the equivalent complex permittivity

D

18 gne

The cylinder is assumed to be infinitely long in the analysis

so that there is no field variation along the z direction. The angle of

0 in cylindrical coordinates starts from x axis and increases in the

counter clockwise direction. The time dependence of exp(jwt) is assumed

and the fields of incident plane wave are the same as given in Chapter 2.

They are

i 'n n

Hoz I 2 €°n(-j) cos(ne) Jn(kor) (3-1)

nIo

Hi . H1 = o (3 2)
or 00 '

i a 1 ° (” n .
EOI‘ 3 .. (0%; 85 "OZ 3 3%? 2 Eon("j) 118111019) Jn(kor) (3.3)

o o nIo

E1 8 j a i 8 2° n ' 3 a
00 (060 E '52 jgo nIo €on(-j) cos(n0) Jn (kor) ( ° )

Bi . 0 . (3.5)
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In this expression the superscript ”i" represents the incident wave.

k0 is the propagation constant of free space. EEon is the Neumann

factor defined as Eon I 1 when nI0 and eon I 2 when nfio. Jn(kor) is

Bessel function of first kind with integer order n and argument kor.

J;(k°r) is the first derivative of Jn(k0r). 6 o is the permittivity of

free space. go is the impedance of free space and is defined as

go I /-€3 I 12011 ohms where 110 is the permealflity of free space.

0

3.3 Fields in the Regions of Free Space and Glass Wall
 

In these regions the Maxwell's equations are the same as those

in the cold plasma case (Chapter 2) and thus, fields in these regions

remain the same as that in Chapter 2. ApprOpriate solutions for the

fields in these regions are reproduced from Chapter 2 as follows:

The total fields in free space are

Ho: - “go cos(n0) [eon(-j)an(kor) + H(:)(kor) an] (3.6)

Hotr - Hate - o (3.7)

Ba: I 3:21:17 ninsifinfi) [e on(-j)an(kor) + H(:)(k°r) An] (3.8)

80‘; - jgo “:3: cos(n0) [6°n(-j)nJ:‘(kor) + H(r2‘).(kor) An] (3.9)

so: - o . (3.10)

The superscript ”t” represents the total fields (incident wave plus

0

reflected wave). H(:)(kor) is Hankel function of second kind. H(:(k0r)

is the first derivative of H(:)(kor). An is a constant to be deter-

mined by boundary conditions.
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The fields in the glass wall region are

°° (1) (2)
H82 - n50 cos(n0) [H n (ksr) 3n + H n (118:) en] (3.11)

Her :- H89 - o (3.12)

Egr :- Fla—17 2 nsin(n8) [H(:)(k8r) Bn + H(:)(k8r) On] (3.13)

o g nIo

o °° (1)' (2)'
£50 j/E—g “ED cos(n0) [H n (kgr) Bn + H n (ksr) Cu] (3.14)

£82 I O
(3e15)

where k8, the propagation constant of glass, is defined as k8: (‘yuoeoég

with 638 as the dielectric constant of glass. Bn and Cn are the constants

to be determined by boundary conditions.

3.4 Fields in Hot Plasma Regigg_

In the plasma region (bzrza) the plasma is considered as an one-

component electron fluid and the ions are neglected in the equations of

motion. The presence of ions is, however, required to neutralize

electrical charge in the plasma. The stratification method is used in

the analysis. The inhomogeneous plasma layer is subdivided into a number

of concentric sublayers with sufficiently small thickness. The plasma

density is then considered to be a constant within each sublayer but it

varies from sublayer to sublayer in the radial direction. In the mth

sublayer the plasma density is assumed to be no,m° The collision

frequency of a electron with neutral particles of gas is assumed to be

‘5' The density deviation of electrons from the mean no m is assumed to

9

be n1 m and the velocity of electrons induced by the fields is assumed

9

tobeV.
m
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It is assumed that the perturbation of plasma due to the fields

is sufficiently small that the linearized equations are applicable. No

static magnetic field is present in the analysis. The time dependence

of exp(jmt) is assumed and the Maxwell's equations in the mth sublayer

of plasma region are

V x an - - mo Hul (3.16)

V x H. ," «mom vm + jweo Em (3.17)

v '° ° 9° I - nun—l—
Em 6 (3.18)

o

V-‘Hm - o . (3.19)

The linearized continuity and force equations are

no’mV-vm +jm1’m .. 0 (3.20)

2

(\«h 4' 1w) Vm ' - 3'1- Em - fiVfll'm (3.21)

D

where e and M are the electron charge and mass respectively. V0 is the

r. m. s. velocity of electrons which is considered to be constant through-

out the plasma region and is defined as vO I kT/M where k is Boltzmann's

constant and T is the electron temperature. The last term in Eq. (3.21)

represents the force due to the pressure gradient, and voIJfikT7M' is valid

on the assumption of adiabatic pressure variation and one dimensional

compression.(20)

In our formulation of the problem there are four unknowns to be

solved. They are m’ “l,m’ Em and Vm . He will determine Em and "l,n
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first and then calculate E; and 7;.

From Eqs. (3.17) and (3.21), we obtain two expressions as

V x V x Hm = - eno,m V x Vm+ waon Em (3.22)

and

-o — - e -o

v X Vm - W VX Em . (3.23)

The substitution of Eq. (3.23) in Eq. (3.22) yields

2

en

I _ o m . I
v x vx Hm -[ 'T‘L‘HVmfi‘” + 30260 J v x 12m . (3.24)

Expressing )J’x E; in terms of H; as in Eq. (3.16), Eq. (3.24) can be

rewritten as

2
w

v x vx Hm a (011.060[1 + jwwmfiw :le (3.25)

where mp m is the plasma frequency defined as

9

w 3 ___‘lz.’.“. (3.26)

Equation (3.25) can be expressed as

8,111 m

vxvxg=

where ke m is the complex propagation constant of the electromagnetic

I

wave in the mth sublayer and is given by

k8,!“ 3 w lilo gm (3o28)

with gm, the equivalent complex permittivity, defined as
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“,2

I e (1 «- L) -M
(3.29)

{m cl: (02vm+2 01(0124N:) ]

If we express ke,m as

ke.m " Be,m " 3 “e...
(3.30)

Be,m and (1e m can be determined to be

9

2 a 8

5 .. 9.9. 1-m§zn+[1-_21_+—2£TmT (3.31)

e,m 5 n) «w «124-é mzwz-w )
m m

80222111211)" :5 3

.2... .1h... -__£u_.+___21____
a I 1 + + (3.32)

e’" 5 0124-0“ (02-1-0; w2(w2+()2) .

Be m and c1.e m are the wave number and the attenuation constant of the

electromagnetic wave in the mth sublayer of the plasma and so is the

wave number of free space defined as 30' I (DIED—é; .

In the mth sublayer both incoming and outgoing (reflected) waves

can exist. Before solving Eq. (3.27) the H fields of incoming and

reflected waves will be assumed to have 2 component only. This

assumption can be justified from Maxwell's equation and the symmetry

of geometry. Since the incident E field has no 2 component and the

symetry of geometry provides no variation along 2 direction such that

5% . 0, Eq. (3.16) can be reduced to

—e
as

1 8 «m a _

‘r'[€f “ Ema) '18-]2 " “5"“. "m ° “'33)

Equation (3.33) shows that Hm is allowed to have a z component only.



Thus, we assume that

-o a

an - Hmz . (3.34)

Equation (3.27) can now, be reduced to

2 2

a H a a H

—%£+%_$i+.lf—_%£+kimfimz 0 . (3.35)

Br Br r 66 '

Equation (3.35) can be solved by the method of separation of variables.

We assume that

Hm: . H(r) 11(9) (3.36)

where Hm(r) and 8mm) are functions of r and 9 respectively. The

substitution of Eq. (3.36) in Eq. (3.35) leads to

2

 

2 _

r 3 Hz“) + r BH(r) + k: m r2 .3 n2 (3.37)

H(r) 3r H(r) a: '

1 5214(9) 2
_....._...2_. n . (3.38)

8(9) 30

Considering the symnetry of the problem and the degeneracy of angle 6,

the solution for MS) is

8(6) - cos(n9) (3.39)

where n is an integer. Equation (3.37) can be rearranged to

2 2

mf+—-L—- M+(l--——Q—-§) H(r) o 0 (3.40)

3(ke'mr) (ke,mr) 3(ke'mr) (ke,mr)

which is a Bessel equation.

Since both incoming and outgoing waves are expected to exist the proper

solutions for H(r) are Hankel function of first kind and second kind.

Therefore, the final solution for Hmz can be written as
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. (1) (2)
Hm: “Ea cos(n9) [H n (ke.mr)nm,n + H n (ke,mr) Fm,n:l (3.41)

where hm and Eh n are constants in the mth sublayer and will be

9 3

determined by boundary conditions. It is noted that in the expressions

of QM,“ and Pi,“ the first subscript m specified the sublayer and the

second subcript n specifies the index of summation.

Up to this point, the magnetic field a; has been determined and

the next quantity to be solved is the density deviation, of

nl ,m'

electrons from the mean. Taking the divergence of Eq. (3.21), we obtain

2

v

0... 8 - as... 0.. — M 2(vm + jw)v V“l H V Em no v nl,m . (3.42)

From Eq. (3.20), V71Vm can be represented in terms of nl,m as

jwn

a... I - —-—-L'2V vIn n . (3.43)

o,m

Substituting the quantities, V‘ {13m and V'Em from Eqs. (3.43) and

(3.18). into Eq. (3.42), we obtain a homogeneous wave equation for n1 m

D

2

p,“ 111 'm 0 (3044)

2

V “l,n +k

where kp m is the complex propagation constant of the electroacoustic

0

wave and is expressed by

2 1 2 2 .
kp'm - :i-[Qo - wpm) - 3‘”va . (3.45)

0

If we ex ress k as

p Pom

kpom ‘ spam - jd$’m ' (3.46)
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B m and up,” can be determined to be

1 5;
Bp,m - fiv{m2-m n-1»2l:(m - .2)+ «)2 vi] F, (3.47)

O

is
_ l. _ _ 2 2 2 2 5

up,” fi' {2m + a): NEG» mp'm) + w vm] } (3.48)

o

 

 

where 8p m and up m are the wave number and the attenuation constant of

D 9

the electroacoustic wave in the mth sublayer of plasma medium respective-

IYe

With the symetry condition of «392- - 0, Eq. (3.44) can be reduced

to

2 2
3 n B n b n

--}2-12+-%--—-}-LE+-}2——;-L"—'+kzmn1m = o . (3.49)
at at 1‘ 59 Po 2

Equation (3.49) has the same form as Eq. (3.35). Following the same

procedures as we used in solving Eq. (3.35), the proper solution of

n1,m can be expressed as

n . z: sin(n0)[H(:)(k r) c + H(:)(kp'm r) 1mm] (3.50)
I'm an p.11! m,n

where Gm n and 1m n are constants to be determined by boundary conditions.

9 9

The density deviation of electron is completely determined. The

next quantities to be determined are the induced velocity of electrons,

V7”, and the electric field, Em . From Eq. (3.17), the E field can be

expressed in terms of Vx in and Vm as

"' om

sm- T150 Vxfim+-——l--vm . (3.51)

Substituting Eq. (3.51) in Eq. (3.21) and after rearrangement, it yields

VZE

--0

“vii“, 1.,qu Tm“w Vnm . (3.52)
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In Eq. (3.52), the quantities Em and n1 111 have been determined before.

0

Taking the curl of the magnetic field am as expressed in Eq. (3.41) and

using the symetry of geometry, Vx am can be obtained as

'— . _ 1L. °° (1) (2) .
V x Hm r {ninsin(n9)[ H n (ke,mr)Dm,n + H n (ke,mr)Fm,n] }r

so ' '

(1) (2) ... ke'm{ni:ocos(n9)[li n (ke,mr) Dm,n + H n (ke,mr)Fm,n]} 9

(3.53)

Similarly, the quantity an m can be derived from Eq. (3.50) as

9

°° (1)' (2)' .
“inch.” [11 n (kp'mr) cm,n + a n (kp,mr)lm’n]} r

vnl,m = kp,m{

+ -;-{ 2 ncos(n6)[H(r1‘)(kp, r) G + "(3)05 rnnmj} 8m m,n ,m
n-o

(3.54)

Substituting Eqs. (3.53) and (3.54) into Eq. (3.52), the induced velocity

CI.

of electrons ,Vm, can be obtained explicitly. The components of Vm vector

 

are

-je a. .

er - flvam-o-jwk ninsm(n0)[Rmm(ker, 0,10]

”(2550“ m co '

-W“)30sin(n0)[llm,n (kpr, G, 1)] (3.55)

V 9 - gig-7 Eocoflne) [11. (k r, D, 10]
m w I! vm+3w n-o m,n e

2

-Wn:’,3':ol'|<308(119)[Rm’n(kp‘r:, G, I) :l (3.56)

V 8 0 (3.57)
mz

where
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Rm’n(ket, D, F) ' H(:)(ke,mr) 0m,“ + H(§)(ke,mT) F5,“ (3058)

3;,n(kpr, c, I) - H(:).(kp,mr) cm,n + H(r2‘).(kp,mr) 1mm (3.59)

nL’nuer, 1), F) - a‘:)'(ke,mr) um,n + “(32%...” Fm,“ (3.60)

Rm'n(kpr, c, I) - H(:)(kp'mr) Gm,n + H(:)(kp’mr) Im,n . (3.61)

The last quantity to be determined is the electric field E; .

From Eqs. (3.51) and (3.21), the electric field E; can be expressed as

 

2

30"

1am - jmgm :xnm+m§m vn+jw vnlm . (3'62)

Substituting Eq8.(3.53) and (3.54), into Eq. (3.62), the components of

E; field can be obtained as

5‘

Em . din—r gouache) [Rm'n(ker,D.F)_-]

 

 

GVZR °°

+ j o p,m 2 sin(n9)[:R. (k r G 1)] (3.63)
w§h(§h+jw) “-0 m,n P ' '

11‘, m °° .

Emo - ‘(ioT‘L' 2 cos(n9)[Rm,n(ker, D, U]

n: n-o

2

w" .. (3 as)+ wngvmi'jm)!‘ “.230 ncos(n0)|:Rm’n(kpr, G, 1)] .

E B o (3065)

m2

I

where the expression for those [kn(k r):] s are given in Eqs. (3.58) to

(3.61). Up to this point, all the relevant quantities, Hi, nl,m’vm and Em,

have been explicitly determined. Those unknown constants associated with

these four quantities will be determined by matching boundary conditions

in the next section.
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3.5 Hatching Boundary Conditions at Interfaces

Four relevant field quantities in the mth sublayer of the plasma

medium are E;, EL, n1 and V; . Associated with these field quantities,

there are four unknown constants, D F . In applying
m,n’ m,n’ Gm,n' Im,n

the stratification method, the field quantities are matched at the

interface of two adjacent sublayers and the four unknown constants in a

sublayer are expressed in terms of the corresponding four unknown

constants in the adjacent sublayer. Since there are four unknown

constants to be determined, four independent boundary conditions are

needed at the interface. we will derive four independent boundary

conditions from four basic equations used in Section 3.4.

For the needed four boundary conditions, three of them are rather

conventional. They are the continuity of the tangential components of

electric field and magnetic field and the continuity of the particle

flux. The fourth boundary condition is not a trivial one and is not

uniquely known since various forms are used by various workers.(18'21'

22’ 23’ 7) In our study, the fourth boundary condition will be

directly derived from the force equation.

Let us consider the boundary condition at r - rm which is the

interface between the mth and (m+l)th sublayers. .

Equation (3.16) will readily lead to a boundary condition of

tangential component of E field is continuous.

In the present study, this implies that

no"
(n+1)e .t r - rm 0 (3e66)

Equation (3.17) can be used to derive a boundary condition of
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tangential component of if field is continuous

if no surface current is assumed on the interface. In the present study,

this condition gives

Hmz I H(m+1)z at r I rIn . (3.67)

The third boundary condition will be derived from the original form

of Eq. (3.20). The original equation for the continuity of particles is

q one

V-(ne v) + 'SE' - o (3.68)

where ne is the total electron density which is the sum of the average

electron density no and the density deviation n Integrating Eq. (3.68)1 0

over the pill box as shown in Fig. 3.2, we have

an

"" e

fV‘GleV) dV 4' f-SE- dV 3 0 e (3e69)

If we let the increment dr approach to zero,the

 limiting case will be

 lim J‘V-(neV-I.) drdA + 5% lim I nedrdA I O .

Fig. 3.2 The interface dr-o dt"0

at r I rn (3.70)

The last term of the above equation approaches zero, provided ne is

finite accross the boundary. Thus, using the divergence theorem, the

above equation can be written as

lim J‘ (navyfi ds . o (3.71)

dr~1>

where n is the unit vector pointing outward of the surface of pill box.

This equation then leads to

ne,m er - ne,m+l v(m+1)r 0 at r I rm (3.72)
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where subscripts m and m+l identify the sublayers and subscript r denotes

the radial component. Since the total electron density ne m is

D

he,m I “o,m + nl,m a “o,m , (3.73)

under the linearized assumption, Eq. (3.72) can be reduced to

“o,m Vin - no,m+l‘v(m+l)r O at r I rm . (3.74)

Equation (3.74) is the third boundary condition to be used in our analysis.

The fourth boundary condition will be derived from the original

form of the force equation. The force equation as expressed in Eq. (3.21)

is a linearized form containing only a.c. component. The original force

equation contains both a.c. and d.c. components and can be expressed as

a)? - e-° 1 e-° 1
at-O-vv '3 --i-Ft-B:EVP.3 "'fi'Et'njfivP (3.75)

where v is the collision frequency, P is the pressure and E; is the total

E field including both a.c. and d.c. components. Mathematically we write

Et . EdeCe +5 e (3s76)

The gradient of pressure can be shown in Appendix A to be

VP :- kT Vno + 3 kTan (3.77)

where the term .Vno, gives d.c. component and an gives a.c. component.

Substituting Eq. (3.77) in Eq. (3.75) and taking d.c. component out of,

Eq. (3.75) we have

= - .2.“ - fl.

0 M Iacne. noM V"‘o ' (3‘78)

Equation (3.78) implies that there exists a static E field if the
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stationary plasma is non-uniform. Physically, it means that the

stationary density variation is maintained by a static electric force

acting on the electrons. In our analysis using the stratification

method, step density discontinuities are assumed to approximate a

non-uniform density profile. Therefore, delta function type of static

E fields should exist theoretically at the points of step discontinuities

or the interfaces between sublayers. This phenomenon is explained

graphically in Fig. 3.3.

The a.c. component of Eq. (3.75) is

v2

. -* e -* o
(v + 3w) V I - F E - a: an (3.79)

for the exp(jwt) time dependence. Integrating Eq. (3.79) over the pill

box shown in Fig. 3.2, we obtain

J' <ij)ch . -—§— J‘Edv‘viffil'; andv. (3.80)

The limting case of Eq. (3.80) as dr approaching zero is

1m J‘(v+3w) V drdA . - lim 7} I E drdA - v: J‘ 31-an drdA.(3.81)

drIo drdo o

In Eq. (3.81) the first two terms approach zero since the volume goes to

zero and the quantities in the integrands, V'and E, are finite accross

the boundary. Thus Eq. (3.81) becomes

lim V: f a!" V111 drdA ' 0 e (3e82)

dr-m) 0

Since the step discontinuity of density is balanced out by the static

3 field and the density is constant within each sublayer, Eq. (3.82)

can be expressed as



deCe

 

63

  

 

deCe

 

 

 

 
(a) (b)

Fig. 3.3 Stationary electron density profiles

and associated static Ed.c. fields.
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1‘

lim J‘V-fil drdA - o . (3.83)

drIo o

This step is justified because the singular part of Vno has been taken

into account in Eq. (3.78). Applying the gradient theorem, we have at

the boundary of rI rm

n n

Blfl-.l:£_+l . o atrcrm . (3.84)

o,m no,m-+1

Up to this point, four independent boundary conditions have been

derived in Eqs. (3.66), (3.67), (3.74) and (3.84). Applying the boundary

condition of Eq. (3.67), we have

as Q

)3 cos(n8) Rm,n(kerm' D, F) I z: cos(n0) Rm+l,n(kerm' D, F) .

3'0 nIo

(3.85)

Due to the orthogonality of cos(n0) function. Eq. (3.85) leads to

(1) (2)

H n (ke,mrm) Dm,n + H n (ke,mrm) Fm,n

, (1) (2)

H n (Rem-urn) Dm-l‘l,n + H n (ke,m+lrm) Fm+1,n . (3'86)

The boundary condition of Eq. (3.66) can be used to derive an

expression such as

k 0 k C

e m (1) e m (2)

i H n (ke,mrm) I)m,n + E H n (ke,mrm) Fm,n

  

evgn “(1130);; mrm) evzn “(3|)(kpfll rm)

+ 1 G + I

§m(vm+jw) rm m,n {m(vm+jw) rm m,n

k ' k e

_ e m+l (l ) e m+l (2 )
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1)

inn“ (kp,m+lrm

5:+1(“h+1+5m) rm

(2
)G av: nH n)(kpjm+1rm)

m+l,n+

g...,1(vn+1+jw) I‘m

4'" I e

m+l,n

(3.87)

From the boundary condition of Eq. (3.74), we obtain

jen

°'"‘ 2 nsin(n9) R (k r , D, 10]

«gm M(vm+jw) rm nIo m,n e m

v25 k

+-2—-9—2-'— )3 sin(m)[:RInn(kprm’G' 1):]

§h(vm+jw) nIo

 

jen

o,m-+1

2 nsin(ne) (k r . D. F)
(”gm-*1 “(vm1+”) rm “-0 [RRm+l,n e m J

V26 k

0 op,m+l g sin(rfl)

gm+1("m+1+jw) n”

Due to the orthogonality of sin(tfl) function, it yields

+ (kpr , G, 1)] e (3.88)
Rm+l,n m

(1) . (2)
jenolmn H n (ke,mrm) D + JenoLn H (ke1mrm)

m,n
F

m,n
gnu) M(vm+jw) rm {mm M(vm+jw) rm

2 k H(1)(kr) 2 k H(2)(k r)
v v
oeomeH n p,mrm G + E+ o o p,m p,mrm

§m(vm+jw) m,n §m(vm+jw)

I

m,n

(1) (2)

0‘ o,m-I-ln H n (keLm-t-lrm)

§m+1w “(vmfl+31») rm

0,m+ln e ,mlrm) + jen

{1le M(vm+1+jw) rIll “1'“

jen

 

m+1 ,n

H(l)(k r ) :6
H(2)

p,m-i-lmG + okp,m+l Wn(p,m+lm

m+l,n

g‘n+1(vm+1+jw) §m+1(vm+1+jw)

(2,6 )
okpm-i-l

(3.89)

Earl-l,n '
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From the boundary condition of Eq. (3.84), we obtain

  

 

Hk(111)(lfl(2)(k

lerm G p,m an

no ,m m,n “o,m

”(Ink

. kp19+1rm +

no,m-t1 9H1“!!!

m,n

p,m+l m
 

no,m+l

m+l ,n

. (3.90)

Equation (3.86), (3.87), (3.89) and (3.90) can be written in a matrix

form and after rearrangement we obtain a matrix equation as

  

where

-1

I"'n(ke ,m’kp,m’rm)]

’—

 

and

Lm,n(1'1) Lm

Lm,n(2’1) Lm

Lh,n(3'1) Lm

I'm,n(l"1) Lm,n

'n(1.2)

,n(2.2)

,n<3.2)

(4,2)

[Ln(ke,m+1 'kp,m+l ’rm)]

Lm,n(1'3)

L ,n(2'3)

L ,n(3'3)

Lm'n(4,3)

I [Ln(ke,'m'p,m'r-m)]1[Ln(ke,m+l’kp,m+l’rm):l

Lm,n‘1'“>

Lm,n(2'“>

Pm,n<3'“)

Lm'n(4,4)-

 

 

m+l,n

m+l,n

m+l ,n

__ m+l ,nd 
(3.91)

(3.92)



with

 
Lm+l,n

Lm+l,n

L
m,n

Lm+l,n(1'1)

Lm+1,n(2’1)

(3.1)

(4.1)

(1.1)

Lm,n(1'2)

L ,n(1'3)

Lm,n<1'“)

Lm,n(2'1)

Lm,n(2’2)

Lm,n(2’3)

Lm’n(2,4)

Lm,n(3'1)

L ,n(3’2)

Lm+l,n

ym+l,n

(1.2)

(2.2)

Lm+1,n(3'2)

Lm+1,n(a’2)

H(1

H(2)(k

n e,m

k
e,m

§m

’(k

67

Lm+1,n
(1. 3)

Lm+1,n(2'3)

Lm+l,n

Lm+l,n

r)
e,mrm

H(:)(k , r

r )
m

emm

(3.3)

(4.3)

)

k 0

e m (2)

1- " n (ke,mrm)

ev2n H

O

ev2n H

o

jen

jen

n

(1)(k
r

p,m Ill

2§m(vm+jw) rm

n

(2)(k
p,m m

gm(vm+jw) rm

n H(1)(k:
e,mnmo,m

)

r )

r )

gmm M(vm+jw) rm

o,m

(2)
n H n (k r )

e,m m

gmw M( vm+jw) rIn

3
:
"

i
t
”

i
t
"

i
t
" 1“51.4)

,n(2.4)

,n<3.4)

'n(4.4)  

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)



h"n(3,3)

Lh,n(3'4)

9.,n‘“'1’

Lu'n(4,2)

Lh'n(4,3)

y..n<4.4)

I'm-i-l ,n

Lm-i-l ,n

(1,2)

Lm+l,n(1' 3)

I'm-O-l ,n

LII-0'1 ,n

LII'H. ,n

(1.4)

(2.1)

(2.2)
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vie 1:80)“ 1' )
o p,m n

(“(gi+rm)

2 n‘z’(k r)
oEokp,m n p,mrm

§m(unfiw)

1’“ fi

0

H(1)(k r )
p,m m

n
o,m

"(2)“ r )

p,m III

n
o,m

(1.1) - n‘;’(k r )
e,m-fl m

11(3)“ r )
9.11144. In

0

0

ke,m-1 H(1)(k r )

{n+1 n e,m+l m

-—!——-—k°“"1 H(2)(k i- )
91m n e,m+l m

(3.104)

(3.105)

(3.106)

(3.107)

(3.l08)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)



Lmet-l ,n

Lm+1,

Lm-i-l ,n(

I'm-tl,n(

I"111-l-l,n('

I"m-I-l ,n(

LIIH-l ,n

Lm-I-l,n

(2. 3)

n(2.4)

3,1)

3,2)

3, 3)

3.4)

(4.1)

(4. 2)

Lm+1,n(a’3)

L +l,n(a'4)

V060 p,m-r1 n

v06 0 p,m+l
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(1)(k r )

evoan p,m-I-lm

§m+1(
vm+1+30)) rm

H(2)(k r)
6V2

or1

§m+1

k1.p,m-l-lm

vm+l+jw) I.111

(1)

o,m-i-ln H n (keLmlrm)

§m+1w ”(Veal

jen

+Jw) rm

H(2)(k r )

jen e,m+l mo,m-+1

gmlw M(vm+

2 (1)
k H (kp,m+lrm)

1+3103) rm

n+1+51»)
5m+1“

H(2)
k(kp1m+1rm)

§m+1(“h+1+jw)

(1)

H n (kp,m+lrm)

no ,m+l

(2)

n (kpjm-I-lrm)

no ,m+l

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3 .124)

(3.125)
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Up to this point, it is possible to express four unknown constants of

the mth sublayer in terms of the corresponding four unknown constants

of the (m+l)th sublayer.

the interface of r I r

m+1

By applying the same boundary conditions at

between the (m+l)th sublayer and the (m+2)th

sublayer and following the same procedure, we can obtain a relation

between the unknown constants in the (m+l)th and the (m+2)th sublayers

 

Substituting Dm+

into Eq. (3.91), we can express Dm n’ F

0

D
m+2

 

P

P

I

L m,n

Dm+l,n

l=.11'n.-I-1l.,n

Qm+l,n

Im+l,n

D...)

F

m,n

G

m,n

 

-

 d

-1'

. [Ln(ke,m+1 'kp,m+l 'rm-i-l )] [Ln(ke ,m+2 ’kp,m+2 '1rm-l-l )]

l,n'

,n' Fm-i-Zm' Gm+2,n

-l

[Ln(ke,m+l ’ kp,m-I-l ' T:m-I-l )] [Ln(ke,m+2 'kp,m+2 ’1-m+l )]

§m+1,n’

and I

Qm+l,n

m+2,n

and 1

ms

m+l,n

n’ Gm

" 1

Dm+2,n

Em+2,n

Gm+2,n

_Im+2,n

(3.126)

  

as expressed in Eq.(3.126)

,1'1

and 1

m

in terms of

'3 [Ln(ke,m' kp,m' rm)]-1 [Ln(ke,m+l’ kp,m+l' 1‘.m)]

”D _

m+2,n

IPsi-152m

Gm+2,n

  
(3.127)
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Following the same procedure of matching the boundary conditions

at the interfaces of sublayers successively, it is possible to express the

  

  

unknown constants of Dl,n' Fl,n' Gl,n and Il,n 1n the first sublayer

in terms of the unknown constants of Ds,n' Pg,n, Gs,n and Is,n in the

last inmost sublayer as

F Dl,n

Fl,n _1

61 n . [Ln(ke,l’kp,1’r1)] [Ln(ke,2'kp,2’rl)]

9

-11,“-

-l
[Ln(ke’2,kp,2,r2)J [Ln(ke'3,kp’3,r2):l . . . .

"D _

s,n

Fs n
-1 '

° ° [Ln(ke,s-1’kp,s-l’rs-l)] [Ln(ke,s'kp,s’rs-l)] can

9

-Is,n J .

(3.128)

Equation (3.128) can be expressed in shorthand as

1'01,“ Hanan) Mn(l,2) Mn(l,3) Mn(1,4) fps,“

Fl,n Mn(2,l) Mn(2,2) Mn(2'3) Mn(2,4) Fs,n

- (3.129)
Gl,n Mn(3,l) Mn(3,2) Mn(3,3) Mn(3,4) Gs,n

_ 11m- _Mn(4,1) Mn(4,2) Mn(4,3) Mn(4,4)_ _15'n_      

where Mn(i,j)'s are the entries of the matrix which is the product of

those [LnJmatrices in Eq. (3.128).

Let's now consider the interface between free space and the
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glass wall at r I c. The continuity of the tangential components of E

and 3 fields leads to

02 8 H82 at r = c (3.130)

and

at = 1: at r = c (3.131)
09 89

t t . .

where H02 and E00 are given in Eqs. (3.6) and (3.9) and ng’ EgO are

given in Eqs. (3.11) and (3.14) respectively. The substitution of Hg;,

t . _

E00, H82 and 389 in Eqs. (3.130) and (3.131) leads to

H(:)(koc) An + H(:)(k8c) 8n + H(:)(kgc) Cn = 6'0n(-j)an(koC)

(3.132)

-H(2)(koc) An +—1H(1)(kgc) Bn +—1H(:)(kgc) Cn

13." F;

n 8

' 6 0710-1) J11 (11°C) e (3e133)

Next, we consider the interface between the glass wall and the

first sublayer of plasma at r I b. The continuity of the tangential

components of H and E fields lead to

”(2%k(1) H(2) (1)
- Hn (kgb) an - (k8b) on + a (ke,lb) Dl'n+ e.1b) Fl,n

3 O
(3e134)
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(1). _ §0H(2)"0H(1)

 

8 8

+ [uo H(2)'(ke H) evon

'§;H e,l +w§12v1+jw$b

evin Hm

+w§1(vl+jw)bH (kpp,lb) Il,n = 0

H(1)(kp
b) G

l,n

(3.135)

Two additional boundary conditions for the induced electron

velocity on the rigid surfaces of the glass wall and the metallic

cylinder can be used. Assuming that the surfaces of the glass wall

and the metallic cylinder are rigid, the normal component of the

induced electron velocity at those surfaces can be required to vanish.

(18, 24)

This boundary condition has been used by numerous workers.

Applying this boundary condition to the r component of induced electron

velocity, vr, at r I b and r I a and using Eq. (3.55), we obtain

JEE|H(1)(Rwa + j_r_1_ H(:)(kb) D
e,l 1,ne,1

+_2___£L1.H(1)(kp b) C

“0,1 n p,l l,n

and

b) Fl,n

o,l

JSE-H(1)(k a) D8n+ H(z)(ke a) F
wfla n e,s mMa e,s s,n

2 . 2
1! 63 k 1r 6; k

+ o o p,s H(1)(k b) C + o o p,s

no 5 n p,s s,n no 3

9 t

+ “(2:19.221 H'pc2)(k

n n

(2)
H n (k

p,s

1b) Il,n .

(3.136)

a) Is,n =

(3.137)

0
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Since the metallic cylinder is assumed to be perfectly conducting,

the tangential component of E field is required to vanish at its surface.

This boundary condition will lead to

k H(l)(k a) D +'K H(2)(k a) F
e,s n e,s s,n e,s n e,s s,n

+W H n (kpgs‘m +W"1103,1130s,n ' 0(3'138)

Seven boundary conditions as expressed in Eqs. (3.132) to (3.138)

contain eleven unknown constants, An, Bn' Cn, D1,“, Fl,n’ 61,“, 11'“:

Ds,n’ Fs,n' Gs,n' and Is,n . However, the constants, D1,“, Fl,n’ Gl,n

I can be expressed in terms of the constants, D , F , G , I

1:“ s,n s,n s,n s,n

in a manner as indicated by Eq. (3.129). With this substitution, we

obtain a set of seven independent equations with seven unknown constants,

, F , G and I . This set of simultaneous equation
An' Bn' cn’ Ds,n s,n s,n s,n

can be expressed in a matrix form as

r'An ‘ "Qn(1,8fl

Bn QnC2.8)

cn o

[an ”s,n ' 0 (3.139)

F o
s,n

as,“ o

I... Ispn .1 .. O J    
where [9n] is the matrix given by



O

[on] - o

0

O

O 
The matrix entries Qn(i,j)'s are expressed explicitly as follows:

Qn(1.1)

Qn(1.2)

Qn(1.3)

Qn(1.8)

Qn(2.1)

Qn(2,2)

Qn(2’3)

Qn(2.8)

Qn(3.2)

Qn(3.3)

0

0

0

7S

'hn(1,1) Qn(1,2) Qn(1,3) o

Qn(2.1) Qn(2.2) Qn(2.3) 0

Qn(3.2) Qn(3.3) Qn(3.4) Qn(3.5) Qn(3.6) Qn(3.7)

Qn(4,2) Qn(4,3) Qn(4,4) Qn(4,5) Qn(4,6) Qn(4,7)

o Qn(S,4) Qn(S,S) Qn(5,6) Qn(5,7)

0 Qn(6.4) Qn(6.5) Qn(6.6) Qn(6.7)

o Qn(7,4) Qn(7,S) Qn(7,6) Qn(7,7)

- H(:)(koc)

H(:)(k8c)

H(i)(kgc)

e moi)“ Juncoc)

-H(:;2koc)

1 <1f
-—- H n (kgc)

(zf
-— H n (kgc)

. n '

€°n(-J) JnOtoc)

(1)
-H n (kgb)

_H(2>
n (kgb)

 
(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)



Qn(3.4)

Qn(3,5)

Qn(3,6>

Qn(3,7)

Qn(4,2)

Qn(4,3)

Qn(4.4)

Qn(4,5)

Qn(4.6)
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(1)

H n (ke,lb)

(1) (2)
. H'n (ke,1b) Mn(l,4) + H n (ke'

- féf H(:)(k8b)

- 7%; H(i)(k8b)

8

“'0 (1). Fan(2).
'Enn(ke1r1',b)M(11)+ g1 (ke 1b)Mn(2.1)

ev2n H(1)(k

+ 0 11,1

w§1(vi+jw)b

b)

M (3,1) +

(1)
+ evon H “(131th1 )

Mn(3,2) +

w§1(vi+jw)b

ev2n H(1)(k
+ o n p,l

w§1(vi+jw)b

b)

M (3,3) +

(1) (2)
H n (ke,1b) Mn(1,1) + H n (ke,1

(2)
Mn(1,2) + H n (kc,

(1) (2)
H n (ke’lb) Mn(l,3) +'H a (Re,

evon H p111)

w§1(v1+jw)b

“‘o (1). [3811(2). j; a 11 (Ice 1b) Mn(1,2) + g1 (ke1b) Mn(2.2)

evan

o

evon H n leb

w§1(vl+jw)b

b) Mn(2,1)

1b) Mn(2,2)

1b) Mn(2,3)

1b) Mn(2,4)

(2>(k

(2>(k

(z>(k

Pp

w§1(v1+jw)b

8 “o (l). __<>_LL H(2)
fig-"nae1n,b)M(13)+ —§-1- m(k,b) Mn(2.3)

(3.151)

(3.152)

(3.153)

(3.154)

(3.155)

(3.156)

M (491)

(3.157)

M (4.2)

(3.158)

M (4.3)

(3.159)



Qn(4.7)

Qn(5.4)

Qn(5,5)

Qn(5,6)

Qn(5,7)
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M'0 H(1)(ke 1b) M“(1,4) 4.]: H(2)'e’(k 1b) M (29“)

€1511§1
n

(1)
(2)

av:n H (k b) ev2n H (k b)+ P11 M (3,4) 4. o n 2’1 Mn(4.4)

1051‘ $1310) b n w§1(“1+j'”) b

 
 

(3.160)

<1>(k
jen H b) 59“ H<2>(ke1b)
 
 e,1 Mn(1:1) + e, Mn(2'1)

wa
wa

v26 k H(1)(k
2 H(2)

009.1 11 ”1111) VOER (1)
o l

Mn(3.1) + plan p, Mnm'l)

 +

110,1
0,1

(3.161)

Jen H(1)(ke 1b) jen H<2)(k b)
  9’ Mn(1,2) + n e'1 Mn(2'2)

Mb . “Mb

.

I

k k b) V e k H (k b)
+ o o 9.1 n .p.1 Mn(3'2) + 0 0.211 n .911 uh(a,2)

n
0,1

(3.162)

(2)(k

n e,1

n

b) jen H b)

Mn(2.3)

v e k (k b) v e k H (k b)+ 0 01311“ P11Mn(3,3)+ O ”,1 n P’1 Mn(493)

n0,1
no'l

(3.163)

(1)(k b) jen H(:)(keb1b)
Mn(1’4) + 1 Mn(2,4)

wa
“Mb

jen H e,1

 

2 H(1)

+ VO 6 OkPLIHJ1

2 (2)
b) v k H b6.1 1153.4) + 05o p.1 11“.,1314(4 4)

n
n

0,1

(It

°'1 (3.164)
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jen H(1)(ke a)

046.4) = '3 (3.155)

wMa

 

jen H(2)(kesa)

 

 

(6,5) = (3.166)

Qn mfla

2 (1)
v E It I! (k a)

Qn(6,6) = ° ° PIS “ 9'3 (3.167)

11

0,5

2 k H(2)(k a)

 

 

 

, V060 P15 n P95
Qn(6.7) - (3.168)

no,s

Qn(7.4) . ke,s H(:)(ke,sa) (3.169)

QnC7,S) = ke's H(:)(ke,sa) (3.170)

evon H(1)(kpsa)

(211(796) = (30171)

(v§+jw) a

ev2n H(2)(kp a)
o s

Qn(797) 8 p, (30172)

(vg +jw) a .

In Eq. (3.139), the first two rows represent the continuity of Hz and

Be at r a c respectively, the third and the fourth rows represent the

continuity of Hz and Be at r c b respectively, the fifth and the sixth

rows indicate zero normal component of induced electron velocity at

r a b and r I a, respectively, and the seventh row represents zero
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tangential electric field at the conductor surface at r = a. The seven

linear simultaneous equations as expressed in Eq. (3.139) can be solved

numerically using a computer or by any other method.

3.6 Scattered Fields in Free Space Region

The quantities of main interest in this study are the scattered

fields in free space region. To calculate these quantities, the

constant An is solved from Eq. (3.139) by Cramer's Rule as

An1

An An 0

The two determinantslfin and [Kn1,are given as

 (3.173)

Qn(1,l) Qn(l,2) Qn(l,3) 0 0 0 0

Qn(2,l) Qn(2,2) Qn(2,3) 0 0 0 0

0 Qn(3,2) Qn(3,3) Qn(3,4) Qn(3,5) Qn(3,6) Qn(3,7)

[3.“ a 0 Qn(4,2) Qn(4,3) Qn(4,4) Qn(4,5) Qn(4,6) Qn(4,7)(3.174)

  

 

0 0 0 Qn(5,4) Qn(S,S) Qn(5,6) Qn(S,7)

0 0 0 Qn(6,4) Qn(6,5) Qn(6,6) Qn(6,7)

0 0 0 Qn(7,4) Qh(7,5) Qn(7,6) Qn(7,7)

and

Qn(l,8) Qn(1,2) Qn(1,3) 0 0 0 0

Qn(2,8) Qn(2,2) Qn(2.,3) 0 0 0 0

o Qn(3,2) Qn(3,3) Qn(3,4) Qn(3,5) Qn(3,6) Qn(3,7)

Axxu. .. 0 Qn(4,2) Qn(4,3) Qn(4,4) Qn(4,5) Qn(4,6) Qn(4,7) 3.175)

0 0 0 Qn(5.4) Qn(5’5) Qn(5,6) Qn(S,7

0 o 0 Qn(6,4) Qn(6,5) Qn(6,6) Qn(6,7)

0 0 0 (157.4) an7.5) Qn(7.6) 0110.7) 
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where the expressions for Qn(i,j)'s have been given in the previous

section.

After the constant An is determined, the scattered fields in

free space region are obtained as

s ‘n (2)
02 I 2 cos(n9) H n (kor) An (3.176)

n-o

s s 1
nor = Hoe = 0 (3.177)

. g (2)
Bot Felgfninsm(ne)nH (kor) An (3.178)

1:056 - jgo n2:”cos(n6) H(2)(kor) An (3.179)

53 g 0 (3 180)
oz '

where r is the distance between the observation point and the cylinder

axis. If the scattered fields are observed at a large distance, Hankel

function can be expressed in its asymptotic form as

-j(k r-%mr-%n)

H(§)(kor) as 11er e ° , (3.181)

0

and the scattered fields at a large distance are then obtained as

 

S 2 -j(k0r-h) fl j35m'f

H02 8 m: r e 2 cos(ne) e An (3.182)

0 n-o

s s

not 3 Hoe 3 0 (3.183)

8 F 1 -j(k°r-krr)”2 ( ) km

E. = j e nsin n0 e A
or nkor wear “-0 n

0 (3.184)
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co - j (k r-o‘5(n+1 )Tr-kfl)
s . / 2 0

£09 3 JQO --—--H E cos(n8) -e

" n-o

 

n -J'(kor-‘6m-’m)

4--——-e :] A

k r n

o

'J'Ckor-hr)” J'lzrm

at. Q / kzr e 2 cos(n9) e An (3.185)

0 "'0 n-o

-.£L
after neglecting the r 2 term.

E8 g 0 o (30186)

02

To derive Eq. (3.185) the relation of

(2)' (2) (2)n
H n (kor) - -Hfi+1 (kor) + E;;-H n (kor) (3.187)

has been used.

It is also observed that the only significant scattered fields

in the far zone of the plasma-coated cylinder are 8;;

ratio between these two fields is simply the impedance of free space £0.

and H s and the

02

3.7 Some Special Cases
 

There are two special cases, namely: a plain plasma cylinder and

~a plasma-coated dielectric cylinder which are quite interesting from a

practical viewpoint. These two cases can be solved by modifying the

procedure and solutions obtained in the previous section.

3.7.1 Scattered Fields by a Plain Plasma Cylinder
 

In this case, the whole cylinder is filled with a plasma in the

absence of a metallic cylinder. If we let the inmost sublayer be a

plasma cylinder with an extremely small radius and located along the z



82

axis, the whole plasma cylinder is subdivided into an extremely thin

plasma cylinder at the center and a number of concentric sublayers

extended from radius r I 0 to radius r = b up to glass wall (Refer to

Fig. 3.1). Since the Bessel functions of the second kind, Yn(ke,sr)

and Yfi(kp’sr), have a singularity at r = 0, the proper solutions in

the inmost sublayer are Bessel functions of the first kind. This

condition can be achieved by setting the constants Ds,n and Fs,n’ G

and Is n, to be equal respectively, because

'

Jn(ke,8r) = é-[n‘i’me'sm + H(:)(ke’sr)] (3.188)

and

_ 1 (1) (2)
Jn(kp’sr) - 1T [nth (kp,sr) + H n (kp,sr)] . (3.189)

Thus, the simultaneous equations which give solutions to the scattered

fields from a plain plasma cylinder are Eqs. (3.132), (3.133), (3.134),

(3.135), (3.136) and the following two equations

D - F = 0 (3.190)

G " I g 0 o (30191)

With the set of equations, An can be solved and consequently the

scattered field.

3.7.2 Scattered Fields by a Plasma-Coated Dielectric Cylinder

In this case a dielectric cylinder instead of a metallic

cylinder is located in the center of the plasma cylinder. The

tangential component of E'field will not vanish on the surface of
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the dielectric cylinder as it did in the metallic cylinder case. The

fields inside the dielectric cylinder are purely electromagnetic and

their amplitude remain finite. Because of the singularity of the

Bessel function of the second kind at r I 0, the preper solution inside

the dielectric cylinder is the Bessel function of the first kind. Thus,

one additional constant is introduced to describe the fields inside the

dielectric cylinder compared to the metallic cylinder case. However,

the continuity of tangential components of E and H fields provides two

boundary conditions at r I a. Using these two boundary conditions

instead of the boundary condition of zero tangential electric field at

r I a as previously used for the case of a metallic cylinder, we obtain

a set of eight simultaneous equations with eight unknown constants.

The scattered fields from a plasma-coated dielectric cylinder can then

be obtained by solving this set of equations.

3.8 Numerical Results
 

The back scattered 8 fields from a plasma-coated metallic cylinder

and from a plain plasma cylinder have been calculated as a function of

(mp/w)2. In the numerical calculation, the collision frequency v is

assumed to be constant for all sublayers for simplicity (Reason for this

assumption has been given in Sec. 2.9, Chapter 2). The series solutions

are produced by summing up the first four terms only because of the

rapid convergence of series. The scattered fields are calculated at

a distance from the z axis with kor = 10 for convenience. The asymptotic

from of Hankel function is used whenever the argument with real part or

imaginary part becomes greater than 10. The dimensions for the glass
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tube, plasma layer and central cylindrical conductor are based on the

actual dimensions of the experimental model. These dimensions and the

dielectric constant of glass and the operating frequency are given in

Table 301 e

 

Operating frequency a (mm) b (mm) [C (mm) 65]

 

    
f I 2.3 GHz 2.158 7 J 8 5 I

 

Table 3.1 Physical dimension of plasma tube, dielectric

constant of glass and operating frequency of

a plasma-coated metallic cylinder.

All the numerical results of the back scattered B field are

plotted with the normalized value, Ei/E: , where E: is the scattered

E field and E: is the incident wave as a function of (mp/w)2 .

Figure 3.4 shows the back scattered B field of a plasma-coated

metallic cylinder in the direction of e I 1800 as a function of (cop/w)2

for various collision frequencies and for the case of a uniform density

distribution in plasma region (bzrza). The ratio of the r.m.s. electron

velocity to the velocity of light in free space, vo/c, is assumed to be

0.01. This is equivalent to a electron temperature of approximately

equal to 200,0000 K. The main resonance, also known as the

dipolar resonance, occurs at the value of (mp/w)2 I 2.34. This

resonance corresponds to the resonance due to n=l term of series

solution. The sharp peak at the right of the main resonance is a

quadrupolar resonance corresponding to the resonance due to n=2 term in

series solution. Three small peaks occured in the region of 0<(mplw)%<1

are the so called temperature resonances due to an electroacoustic wave.



85

These resonances are set up when an electroacoustic wave sets up a

standing wave pattern between the metallic cylinder and the glass wall.

It is observed that when the collision frequency is increased to a

value in the order of vim I 0.5 all resonances disappear. Also the

quadrupolar resonance seems to be damped out by the collision more

strongly than the dipolar resonance.

Figure 3.5 is also a plot of the back scattered B field of a

plasma-coated metallic cylinder as a function of (mp/w)2 for various

collision frequencies. The plasma layer is assumed to have a uniform

density distribution. The ratio vO/c is assumed to be (4/3) x 10.-2

which is slightly greater than the value of vo/c in Fig. 3.4. It is

observed that the effect of collision frequency is to damp out the

resonances and the over all picture is approximately the same as that

in Fig. 3.4. Due to the change of V0 and consequently kp, the number

of temperature resonances reduces to two compared to three in Figure

3.4. The locations of main resonance and quadrupolar resonance in

Figs. 3.4 and 3.5 are slightly different.

Figure 3.6 is a plot of the propagation constant, ke, of an

electromagnetic wave as a function of (cop/w)2 . The expression of

ke is given by Eqs. (3.30), (3.31) and (3.32). The abrupt change of

real part Be and imaginary part ae in the neighborhood of (mp/w)2 = l

is clearly shown in the figure. The slopes of curves are greater for

the case of lower collision frequency.

Figure 3.7 is a plot of the propagation constant, kp, of an

electroacoustic wave as a function of (mp/w)2 with vole = 0,01 and

v/w I 0.001. The expression for kp is given by Eqs. (3.46), (3.47)
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and (3.48). It is observed that in the region near (mp/w)2 = 1 the

real part of kp changes from the order of 103 to the order of 1 while

the imaginary part changes from the order of l to the order of 103 .

The real part, Bp’ represents the wave number and it determines the

wave hngth of an electroacoustic wave. The imaginary part, up, represents

the attenuation constant and consequently it produces a cut off phenomenon

for an electroaccoustic wave when (mp/w)2 becomes greater than 1.

Figures 3.8 and 3.9 are the plots of the back scattered E fields

of a plasma-coated metallic cylinder with a uniform density distritution

as a function of (cop/w)2 . The collision frequency is assumed to be

v/w I 0.001. Various values of r.m.s. electron velocity are assumed.

It is observed that smaller value of volc will lead to more temperature

resonances appearing in the region of 0<<(wp/w)2<fl . This is resonable

since a smaller value of vO/c implies a larger value of kp or a shorter

wave length of an electroacoustic wave. Consequently, an electroacoustic

wave can set up more standing wave modes between a finite distance between

the boundaries. It is also shown that a higher value of vo/c produces

greater amplitudes for the temperature resonances.

Figures 3.10 and 3.11 are the plots of the back scattered B field

of a plasma-coated metallic cylinder with a non-uniform plasma density

distribution as a function of (mp/w):ve. which is the average value of

(wp/w)2 . The collision frequency is assumed to be v/w I 0.001. The

ratio of volc is assumed to be 0.01 and 0.0133 in Figs. 3.10 and 3.11,

respectively. The non-uniform plasma density distribution is assumed

to be the same as that used in the cold plasma case which is mathe-

matically expressed as
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n = n [l - 0 6(M)2] (3 192)
o,r o,c ' b+a °

. . b+a .

where no c 15 the plasma dens1ty at r "75' . It is noted that the

0

value of (mp/w)2 is directly proportional to the density “o,r under a

fixed operating frequency. The stratification method is used and a 3-

sublayer model is assumed. A great care has been taken when performing

the numerical calculation. Due to a great difference between the

magnitude of an electromagnetic wave and that of an electroacoustic

wave, the matrix:[Lfi]as expressed in Eqs. (3.92) and (3.93) becomes

nearly singular. In our calculation, the matrix inversion and multi-

plication have been performed by a double precision technique to avoid

run off error. Without this technique, a single precision method

-would have led to a complete false result. It is noted that there are

mathematical resonances inherently associated with the stratification

method being used (Details of mathematical resonances, refer to page 29,

Chapter 2). It is possible to identify the mathematical resonances

when Figs-3.10 and 3.11 are compared with the corresponding cold plasma

cases where no temperature resonances are possible. Since as we have

discussed in Chapter 2, mathematical resonances bear no physical meaning,

they are to be overlooked. For example, the peak located at the value

of (mp/w):ve. I 0.94 in Fig. 3.10 is a mathematical resonance. For the

cases of uniform plasma density distribution, the temperature resonances

are all shown to be located in the region where (mp/w)2 is less than 1.

HOwever, for a non-uniform.plasma density distribution, temperature

resonances can be set up in the plasma layer in the region where

(mp/waive is greater than 1. The reason is rather evident. Because

0
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even (mp/m):ve is greater than 1, there are regions of plasma near the

O

boundaries where the local (mp/0.1)2 is still smaller than 1. Thus, a

standing electroacoustic wave can be set up in these underdense plasma

regions. This mechanism has been discussed by Crawford. 17) The main

resonance of the 3-sublayer model of a non-uniform density distribution

is located at a slightly higher value of (mp/w):ve. compared with the

case of uniform density distribution. The S-sublayer model has also

been calculated. Unfortunately, the asymptotic form of Hankel function

gives a discontinuity in the region where mathematical resonances and

temperature resonances occur. This discontinuity causes the identifi-

cation of temperature resonances from mathematical resonances becoming

a very difficult task. This difficulty will be solved if a computer

subroutine for calculating Hankel functions with a large complex

argument becomes available.

Figure 3.12 is a plot of the back scattered B field of a plain

plasma cylinder with b I 7 mm and c = 8 mm as a function of (mp/w):ve. .

Both cases of uniform and non-uniform density distributions are shown

in Fig. 3.12. The 3-sublayer model is used for the non-uniform density

distribution with a density distribution of

'r 2

no,r a no“: [1 - 0.6(-5-) J (3.193)

being assumed. The resonance located at (mp/w):ve = 0.94 is a mathe-

matical resonance and should be ignored. The general behavior of a

plain plasma cylinder is similar to that of a plasma-coated metallic

cylinder. HOwever, the locations of temperature resonances are quite

different and also the dipolar and quadrupolar resonances are moved to



89

higher values of (wb/w):ve for the case of a plain plasma cylinder.

The numerical calculations are performed by a CDC 6500 computer.
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CHAPTER 4

SCATTERING FROM A METALLIC CYLINDER SURROUNDED BY A

LAYER OF LOSSY PLASMA ILLUMINATED BY A TH HAVE

4.1 Introduction

In the preceding chapters, the scattered field from a plasma-

coated metallic cylinder when illuminated by a TB wave at normal

incidence has been studied. In general, the incident plane wave may

have an arbitrary polarization. In order to study the scattered field

from a plasma-coated cylinder illuminated by a plane wave of arbitrary

polarization, it is necessary to consider the scattering from the same

cylinder when it is illuminated by a TM wave. A TM wave is defined as

a plane wave with its H field perpendicular to the cylinder axis and

its 3 field parallel to the cylinder axis. The superposition of a TI:

and a TM wave can yield a plane wave of arbitrary polarization.

The analysis in this chapter is similar to that of preceding two

chapters. The stratification method is again used. Also a glass wall

is assumed to surround the plasma in the theoretical model. The

surrounding plasma is assumed to be hot and non-uniform in the analysis.

It is shown in a later section that under the assumed geometry and

boundary conditions it is impossible to excite an electroacoustic wave

in the hot plasma. Thus, the solutions obtained for the case of a

cylinder covered by a cold plasma can also be applied to the hot plasma

case e
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4.2 Geometry of the Problem

The geometry of the problem and the notations of stratified

plasma medium are the same as that described in Sec. 3.2 of Chapter 3.

However, the incident fields are different from that of the previous

chapters. The indicent plane wave in this chapter is assumed to have

a E field paralled to the z axis and a‘H field perpendicular to the z

axis as shown in Fig. 4.1. The fields of the incident plane wave are

given by

i . -jk x a -jk rcose
302 e o e o

(n n
I 2 6 (-j) cos(n8) J (k r) (4.1)

“-0 on n o

i i
or . £06 - 0 (4e2)

i j ‘n n
”or I - “Nor n§o € on(-j) nsin(n8) Jn(k°r) (4.3)

Q

i n '

".6 - - J: “50 eonc-j) c08(n6) Jn(kor) (4.4)

i
“02 ' 0 e (4e5)

Mathematical symbols used in Eqs. (4.1) to (4.5) have been explained

in the preceding chapters.

4.3 Fields in Free space Region
 

In the free space region Maxwell's equations are

VXE: I -jw0;:
(4.6)

Is

Vx'fi: . jwéoEo (4.7)

where E: and H: are the scattered electric and magnetic fields.
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 Incident wave

Region 1: free space

Region II 3 glass wall

Region DE: plasma

Region IV: metallic cylinder

Fig. 4.1 A plasma-coated metallic cylinder

illuminated by a m wave from the

lEfte
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Due to geometrical symmetry, all fields are symmetrical with respect to

the 6 I 0 axis. Since the E field of the incident wave does not have a

2 component, it is reasonable to assume that the scattered B’field

possesses no 2 component and it is independent of 2 variable because of

geometry. Thus, the Eq. (4.7) yields

an”

317352- (r agar-£3]; - jweo if: - (4.8)

Equation (4.8) implies that E: is allowed to have a 2 component only.

we can assume that

E 3 E a a (409)

0

From Eqs. (4.6) and (4.7),we obtain a wave equation as

“5 2'8

V X W X £0 . kOEO e (4010)

Substituting Eq. (4.9) in (4.10), it yields

 

 

2 s. s ‘2 s

a E a E a E

as 1 oz 1 oz 2 s -

Equation (4.11) can be solved by the method of separation of variables.

Since Eq. (4.11) is the same equation as Eq. (2.10) in Chapter 2, the

solution of Eq. (4.11) can be written as

,°° (2) ‘
oz 2 008(n9) H’n (Rot) An (4.12)

n-o

E

where An is a constant to be determined by the boundary conditions. The

corresponding H: field can be found from Eq. (4.6) to have components

such as
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w

s (2)
nor . .. 331;? “250 nsin(n6) a n (Rot) An (4.13)

H8 - - :3. cos(ne) H(2).(R r) A (4 14)

09 g “-0 n o n °

s
H62 3 0 . (4.15)

The total fields in the free space region can be obtained by

summing the incident and the scattered fields to be

 

as

t n (2)
£02 - 2 cos(n6)[€°n(-j) Jn(kor) + H n (kor) An] (4.16)

n-o

t t

Ear . E09 ‘ O (4017)

N

t. a _ _ n (2)
or “—51%; “1.30 nsin(ne) [e on( j) Jn(k°r) + H n (Rot) An]

(4.18)

t _1_ ‘a n ' (2;
"06 = - go “i cos(n9) [E on(-:j) Jn(kor) + H n (Rot) An]

(4.19)

t

H02 3 0 e (4.20)

4.4 Fields in Glass Hall Region

In the glass wall region Maxwell's equations are

V x as - ’5‘”. as (4.21)

V x H8 - 50.6er as (4.22)

where 6 8 is the dielectric constant of glass.

If we allow an incoming and an outgoing (reflected) wave to exist

in the glass wall region, the solution for E; field can be expressed as

is - saz‘z‘ (4.23)
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where

E a 2 cos(n8) [H(:)(kgr) Bn + H(:)(k8r) Ca] . (4.24)

32 um

In Eq. (4 .24), B“ and Cu are the constants to be determined by the

boundary conditions and k8 is the propagation constant of the electro-

magnetic wave in the glass defined as k8 - Ito/E: . The corresponding

is field has components given by

so

81' B - 631;? nEo nsin(ne) [1193080 an «I» H(:)(k8r) Cu] (4.25)

J (6 w ' '
"so - - -———5 z; cos(n8) [u‘;’(x8r) an + H(:)(kgr) on] (4.26)

0 n-o

I O . (4.27)H
gz

4.5 Fields in Plasma 3323.".

In the analysis, the plasma is assumed to be hot. The possible

excitation of an electroacoustic wave is considered and the density of

plasma is assumed to vary in the radial direction only. As the result

of analysis, with the assumed geometry and the polarization of the

incident wave, it is shown that no electroacoustic wave can be excitated.

Thus, the hot plasma case reduces to the cold plasma case for this

particular polarization of the incident wave. As in the preceding

chapters, the stratification method is used and the same geometry as

that shown in Fig.3'.l'.(b)of Chapter 3 is adopted.

Maxwell's equations in the mth sublayer of plasma region are

n.

V x E‘ (4.28)3'

Vxfi \7'm o,m m + (4.29)I I
m :
3

L
a
.

6 m F
1
1
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." . -.._1.r;’!'. .V Em 6° (4 30)

V-i? - o . (4.31)

 

“o,m V'Vn*5"’1~,.. . o (4.32)

' 2

( + m)? - “-9-" v° (4 33)
‘5! j I 1! gm - n.. ‘S7ni,m '

o,m

where

31a“
v0 . T (4.34)

and all other mathematical symbols have been defined in the preceding

chapters.

From Eq . (4.28), we obtain

VxVx an - IjmuOVX an . (4.35)

The term, V x am, can be expressed in terms of fin and Em as given by

Eq. (4.29). Thus, Eq. (4.35) can be rewritten as

VxVxEm I jmuen V +kkit-2 . (4.36)
oo,mm

3
‘
“

From Eq. (4.33), the induced electron velocity,

explicitly as

m' can be written

 

2
v

'* e .. o

vm ‘ vm-I-jm MEm (vm+jw)n°'n vnlm . (“'37)

Substituting Eq. (4.37) in Eq. (4.36), we obtain

(”zozuev

2
m

‘ m ‘4

V xVx am I m20.06 1 +1wjvm+jm JEm ”(2m+1” anl,m o(4.38)
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Equation (4.38) can be expressed as

-o 2 -o

V x Vx Em ke,m Em + Rmv n1... (4.39)

In Eq. (4.39) the term, Rh, is defined as

2 2
m poevo

“a " W ‘“-’*°’

fer convenience. ke,m is the propagation constant of the electromagnetic

wave. in the plasma in the mth sublayer. Equation (4.39) can be

reduced to three coupled scalar equations. After that, effort will be

made to decouple the equations. In order to do this, we consider the

magnetic field, fim' first. The incident 3 field has no a component and

the plasma density is assumed to vary in r direction only. Thus, in the

mth sublayer of the plasma the magnetic field, 33“., will not have a 2

component. We can assume that

-s A A

“m I Hfir r + His 8 . (4.41)

Substituting Eq. (4.41) in Eq. (4.28), we have

--0 A 5

VxEm - -m°[umr+nuee] . (4.42)

Equation (4 .42) implies the vanishing of 2 component of vector quantity,

V x Em . Also, due to the geometry of the problem, no variation of

the fields along the z axis is assumed, i.s. 3?:— I 0. The vector quanti-

ty, v xVx Em, can then be expressed as

as 522 .

VxVxEm I -%[§:(r—£-z-)+%-—a-e¥;l]z . (4.43)
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with Eq. (4.43), Eq. (4.39) can be divided into three components to

yield three scalar equations as

  

R an

2 m l m

ke'm m + —r TL: ' 0 (4 04‘.)

R n

2 m l m

'2... m0 “E‘s-6" ° (“‘5’

2

32: as w a a

132+; .+-,-17 ”+kins - o . (4.46)

a: r a: r 88 ’ I

Equation (4 .46) is a homogeneous wave equation for the z consponent of Em

field and its solution is

Q

g .. )3 cos(ne) [32)“. mt) pm

0

(2)

III! I!” n n e, :1
g m "'11

where on n and Fm n are the constants to be determined by the boundary

0 9

conditions. For the components of Emr and 1::me’ they'are coupled with

electroacoustic term, “l,n' as shown in Eqs. (4.44) and (4 .45). Before

determining Emr and Em9 , we seek the solution for :11"I .

From Eq. (4.33), we have

-0 II. v2

(Vm'l’jW) V' Vm I - 19‘— v- Ell .. «5:2;‘72 n1,m o (4.48)

9

The substitution of the quantities V- V. and V - Em expressed in

Eqs. (4.32) and (4.30) in Eq. (4.48) gives a wave equation for n1 m as

9

V2 n +1.2 - o (4.49)
l ,m p,m n1 ,m

where kp m is the propagation constant of the electroacoustic wave and

9

its expression has been given in Chapter 3. The solution for Eq. (4 .49)

is
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_ °° (1) (2) cos(n6)
n “i [a n (kp'mr) c + a u (up 1') 1mm] (4.50)
1,m m,n ,m sin(n8)

where Gm,n and Im,n are constants to be determined by boundary conditions.

With Eqs. (4.50), (4.44) and (4.45), the r and 6 components of E; field

can be determined theoretically. Up to this point, E'field and n1 in

any sublayer can be written down explicitly with appropriate labeling

the quantities ke' hp, no, n1, v, etc. Before finding the final

solutions for the E and n1, let us consider the boundary conditons at

the inmost sublayer of the plasma layer, i.e. the sth sublayer. This

will lead to an interesting result and the solutions can be simplified

greatly. Since the metallic cylinder is assumed to be perfectly

conducting, the tangential components of‘E field at the surface of

cylinder vanish. This give,

Ese I 0 at r I a (4.51)

and

E82 3 0 at r . to (4052)

The 9 component of E; field in the sth sublayer can be expressed from

Eq. (ll .45) I8

 

a

a .. - 8 312‘. , (4.53)

89 k2 r 86

e,s

The substitution of Eq. (4.53) in the boundary condition, Eq. (4.51),

leads to

(1) (2)
H n (kp'sa) G + H n (kp a) I 3 0 e ((4054)

s,n ,s s,n
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This is one of the two equations which determine the constants G8 n and

9

I8 n . we now aim to find the other equation in order to completely

9

specify Gs n and I8 n . From Maxwell's equations in the sth sublayer,

0 l

we obtain

 

1 II. I»

jwp‘onVan en V +jm€ E . (4.55)

The r component of Eq. (4.55) is

- eno's Vs: + 3m 60 Her . o , (4.56)

since no r component can be obtained from V x V x is as explained in

Eq. (4.43). If E8r is expressed in terms of n according to Eq. (4.44),
1,3

the radial component of the induced velocity of electrons, vsr’ in the

sth sublayer can be expressed as

31060 Rs an1 s
I -————————-——-L-

V” en 1:2 r or . “’57)
e,s e,s

If the rigid boundary of metallic cylinder is assumed as before, it

requires the normal component of the induced velocity of electrons,

Var, to vanish at r I a. This leads to

"3EFE I 0 at r I a . (4.58)

Substituting Eq. (4.50) in Eq. (4.58), we have

I 0

(1) (2) ,
H‘n (kp’sa) Gs,n + H n (kp,3a) Is,n 0 . (4.59)

Equations (4.59) and (4.54) are the two simultaneous equations needed

to determine the constants, 08 n and Is n . These two equations yield

9 D

trivial solutions of
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G 3 I 3 0 (4.60)

with the exception that when the determinant ,

(1) (2)
H n (kmsa) H n (kp'sa)

A“ ' ()' ()' (4'61)1 2
H n (kp'sa) H n (kp'sa)

becomes zero .

The determinant expressed in Eq. (4.61) can be written as

(1) (2)' (2) (1)'
A . H n (kp'sa) H n (RP a) - H n (Rp'sa) H n (kp'sa) . (4.62)

sn ,s

Using the relation between Hankel function and its derivative such as

H(:)(z) - - 1132(2) + 1} H‘;)(z) (4.63)

and

H(:)(z) I - 11:33“) + -2- H(:)(z) , (4.64)

Eq. (4.62) can be rewritten as

, (2) (1) , (1) (2)
A H n (hp 8.) Hmlmp's.) H n (kmsa) H (kp'sa) (4.65)

an , n+1

which is a Hronskian and is equal ”(25)

A” - - (ii/«(13,511) 1‘ o . (4.66)

Since Eq. (4.66) implies that the determinant of Eq. (4 .61) is not equal

to zero, Eq. (4.60) are the only valid solutions for as n and I8 n .

D I
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Therefore, the electron density deviation,n1's.is zero everywhere within

the sth sublayer.

Next, we will dertermine the 111 in the other sublayers. Consider

the boundary at r I r”1 (refer to Fig. 3.14b))and using the same boundary

conditions as used in Chapter 3, such as

Thngential components of E and 3 fields are continuous (4.67)

“e,s-l V(._1)r - "e,s V.r I 0 at r I rs_1 (4.68)

n n

ALL]; .— .1112 I 0 at r I rB-l . (4.69)

“0,0-1 no.8

Since n1,s and vsr are zero as indicated in Eqs. (4.60) and (4.57).

Eqs. (be68) and (4.69) yield

H(1>( ”(2%k
) I . 0 (4.70)

p,s-1rs-l s-1,n p,3-1’3-1

and

”(1%k ”(2)0! r )1 - o (4.71)
) G p,s-l s-l s-l,np,s-lrs-l s-l,n

respectively. Eqs. (4.70) and (4.71) are similar to Eqs. (4.59) and

(4.54), thus, we have

(:91.n - 18-1,“ 0 . ' (4.72)

By successive matching of the boundary conditions at all other boundaries,

we can show the total vanishing of electroacoustic mode in the plasma

medium. Therefore, Maxwell's equations given in Eq. (4.28) to Eq. (4.31)

can be simplified for this particular case to the following equations:

Y7 x Em I ijuo Hm (4.73)
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Vac H. I jog“ Em (4.74)

V- am I o (4.75)

V- Hm I o . (4.76)

These equations are the some set of equations used in the cold plasma

case in Chapter 2. Physically, it implies that when a metallic cylinder

coated by a layer of hot, nonIuniform plasma is illuminated by a plane

wove of TH polarization, the hot plasma behaves as a cold plasma and no

electroacoustic wave is excited in the plasma layer. Only an electro-

magnetic wave exists in the plasma region. The electric field, E; ,

in the mth sublayer yields only a 2 component and is expressed as

Eq. (4.47). The corresponding fi’field has components given by

N

(1) (2)
"mr I - E13 “so nsin(n9)l:H n “e,m” ”m,n + H n “e,m” Fm'n]("~77)

” 0 0

' (1) (2)
"no - - j./;—E “so co.(ne)|:H n (ke'mr) pm“ + H n (ke'mr) rm'njlams)

Hm: ' Os (4079)

4.6 Matching of Boundary Conditions at Interfaces

Since only electromagnetic waves exist in the plasma layer and

other regions, the boundary conditions at interfaces are the same as

that described for the cold plasma case in Chapter 2. Similar matching

process as used in Sec. 2.6 of Chapter 2 can be employed here. However,

in this case, the polarization of the incident wove is different from

the case in Chapter 2, a different set of five simultaneous equations
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can be obtained from matching the boundary conditions.

can be represented in matrix form as

0

0

0 L

where

Qn(3,2)

4.54.2)

o

Qn(1.l)

45(1,2)

Qn(1.3)

Qn(1.6)

Qn(2,1)

Qh(2,2)

45(2.3)

qn(2.6>

qn(3,2)

Qn(3,3)

Qn(3.4)

"(41.1) onus) onus)

4.52.1) (452.2) Qn(2.3)

Qn(3.3)

Qn(4,3)

o

—

o o

o o

Qn(3,4) Qn(3,5)

0154.4) Qn(4.5)

  Qn(5.4) QH‘5'5234 r

(2)
-H n (koc)

(1)
H n “8‘”

(2)
H n (ksc)

ll

6 one-5) anacoc)

(2).
-H n (11°C)

(1).
’68 H n (Rae)

(2).
’68 H n (kgc)

n 0

E on(”31) Jn(kOC)

(l)
-H n (ksb)

(2)
-n n (ksb)

  

»_Qn(1.6fl

qn(2.6)

0

0

L 0

These equations

 
(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

H(:)(ke'1b) Mn(l,l) + H(:)(ke'1b) Mn(2,l) (4.91)
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qn(3,5) I H(:)(ke'1b) snug) + H(:)(ke'1b) Hn(2,2) (4.92)

0

(1)
05(4'2) I - fiE; H n (ksb) (4.93)

(2)'
Qn(4.3) - - lg; H n (ksb) (4.94)

§ ' 5
1 (1) 1 (2)

Qn(4,4) I jg; H n (Re. 11)) Mn,(11) +£1.11! (Re11)) Mn(2,1)

(4.95)

g1 (1)' f5“(2)
Qn(4,5) . j; H n (kb) Mn(1,2) + 60 (k.1,b) Mn(2,2)

(4.96)

(1)
one») - an (11”.) (4.97)

(2)
°n(5'5) I H n 0‘..." , (4.98)

The elements H(iJ)'s in Eqs. (4.91), (4.92), (4.95) and (4.96) are the

entries of the matrix obtained from the product of the following matrices:

Mn(l,l)H:(1,2)]

Mn(2,l) M (2.2)

[L[11(ke,lr1)]lD‘n(hearr1)] [Ln(he,2t.-.2)]1|:1‘n(ke,3r2)J

e e e [Ln(ke,8’1r3'1)]-IELn(ke,srs-1 ] (4e99)

with

(1)
(2)

H n (kemrm) H “01¢er

[44...46 = -(l) (2)

I; H n (ke,mrm) f— H n‘ke,mrm) '
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4.7 Scattered Field in Free Space Region

The constant An which is the coefficient of the scattered fields

in the free space region is of main interest and can be obtained from

Eq. (4.80) by Cramer's Rule as

 

  

Anl

A . o (2.101)

“ A111

The two determinants, A n and Anl’ are given as

Qu(l,l) Qn(l,2) Qn(l,3) o o

Qn(2,l) Qn(2,2) Qn(2,3) o o

A“ =- 0 Qn(3.2) Qn(3.3) Qn(3.4) (1.33.5) (2.102)

0 Qn(4.2) Qn(4.3) Qn(4.4) Qn(4.5)

o o o Qn(5,4) Qn(5,5)

and

Qn(1.6) Qn(1.2) Qn(1.3) 0 0

Qn(2.6) Qn(2.2) Qn(2'3) 0 0

Am I o Qn(3,2) Qn(3,3) Qn(3,4) Qn(3,5) (2.103)

0 Qn(4.2) Qn(4.3) Qn(4.4) Qn(4.5)

o o o Qn(5,4) Qn(5,5) .  
The expressions for Qn(i,j)'s are given in Sec. 4.6.

Finally, the scattered fields in free space region are obtained

IS

5’ I 2:. ( )H(2)(k A 2 104)
oz c” no 11 or) n ('

nIo

8 8

Ear I 300 I 0 (2.105)
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s °° (2)
Hot I - Hi; “75° nsin(n0) H n (tor) An (2.106)

g. 0

H00 i: a: cos(n0) H n (kor) An (2.107)

8

H02 . O (2.108)

with An expressed as Eq. (2.101).

4.8 Some Special Cases

The electromagnetic scatterings from a plain plasma cylinder and

a plasma-coated dielectric cylinder will be considered as two special

cases of the problem studied in this chapter. These two cases can be

solved by modifying the procedure and solutions obtained in the previous

section. Since these modifications are similar to that derived in

Sec. 2.8, only numerical results will be presented in the next section.

4.9 Numerical Results

The back scattered E fields from a plasma-coated metallic cylinder

and from a plain plasma cylinder have been calculated as a function of

(ob/m):ve. . In the numerical calculation, the collision frequency v

is assumed to be constant for all sublayers for simplicity (Reason for

this assumption has been given in Sec. 2.9, Chapter 2). The series

solutions are produced by summing up the first four terms only, because

of the rapid convergence of series. The scattered fields are calculated

at a distance from the z axis wdth kor I 10 for convenience. The

dimensions for the glass tube, the plasma layer and the central cylindrical

conductor are based on the actual dimensions of the experimental model.
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These dimensions and the dielectric constant of glass and the operating

frequency are given in Table 4.1.

 

Operating frequency] a (m) l b (m) c (an) e

 

U
l

    
f I 2.3 OH: I 2.158 L 7 a
 

Table 4.1 Physical dimensions of plasma tube, dielectric

constant of glass and operating frequency.

Numerical calculation shows that the inhomogeneity along radial

direction has little effect on the back scattered E fields. A 13-

sublayer model has been used to approximate the plasma density distri-

bution which is given by Eq. (3.192) in Chapter 3. The result obtained

for this l3-sublayer model is quite similar to that for a homogeneous

plasma layer. Also, the numerical result shows that collision frequency

has only a little effect on the back scattered E field. The results are

plotted with the normalised back_scattered E field,(E:IE: where E: is the

scattered E field and E: is the incident field) as a function of

2

(mp/w)ave s .

Figure 4.2 shows the back scattered E fields from plasma-coated

metallic cylinders of various radii illuminated by a TM plane wave, as

e.

fied plasma medium with a density distribution given by the Eq. (3.192)

a function of (mp/m):v . A l3-sublayer model is used for the strati-

in Chapter 3. The collision frequency is assumed to be v/w I 0.01.

It is observed that the scattered field increases only slightly as the

value of (mp/m):ve. is increased. It is also observed that a metallic

cylinder of smaller radius gives a smaller scattered field, but the

scattered field from a smaller metallic cylinder increases more rapidly
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as the plasma density is increased. For a uniform plasma layer, the

result is nearly the same as that of the non-uniform case and that is

not shown in the figure.

Figure 4.3 is a plot of the back scattered E field from a plain

plasma cylinder as a function of (mp/41):”. for two different collision

frequencies, uh: I 0.1 and who I 0.01. The assumed density distribution

of the plasma layer is expressed by Eq. (3.193) in Chapter 3. In the

figure, it is observed that the back scattered E field reaches a

minimum when the plasma density reaches at a value of (mp/w):ve. I 1.96.

This phenomenon disappears when the effect of glass wall is neglected.

For a smaller collision frequency the minimum in the back scattered E

field tends to become more outstanding. The effect of the collision

frequency on the other part of the curve is insignificant. In general,

the amplitude of the back scattered E field from a plain plasma cylinder

is smaller than that from a plasma coated metallic cylinder. Also, the

back scattered E field from a plain plasma cylinder with uniform density

distribution is nearly the same as that of a non-uniform density distri-

bution case.
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CHAPTER 5

EXPERIMENTAL INVESTIGATION OF THE SCATTERING FROM A PLASMA-COATED

METALLIC CYLINDER AND A PLAIN PLASMA CYLINDER

5.1 Introduction
 

The electromagnetic scatterings from a plasma-coated metallic

cylinder when illuminated by incident TE and TM waves have been

studied theoretically in the preceding chapters. Although there have

been a number of theoretical studies on the subject conducted by

researchers in this area, very few experimental studies have been

reported in the literature. Vandenplas(7) has conducted experiments

on the scatterings from a plain plasma cylinder and a plasma-coated

(26) areglass cylinder. However, to our best knowledge, Ho and Chen

the only researchers who have investigated experimentally the scatter-

ing from a plasma-coated metallic cylinder.

Our experiment on the scattering from a plasma-coated metallic

cylinder has been conducted inside of a waveguide While Ho and Chen

conducted their experiment in free space. Kerfiar and Heissglass(27)

performed the experiment using a similar technique we used but they

studied a plain plasma cylinder only.

The main task of this experimental investigation is to measure

the back scattered fields from a plasma-coated metallic cylinder as a

function of plasma density under a fixed operating frequency. This

experiment has been performed for the purpose of checking theoretical

121
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results developed in Chapters 2, 3 and 4. The resonance phenomenon and

general behavior of the scattered field predicted by the theory have

been qualitatively confirmed by the experiment.

5.2 Experimental Setup
 

The plasma-coated metallic cylinder was constructed by install-

ing a metallic cylinder in the center of a cylindrical mercuryIvapor

discharge tube.

Two long mercuryIvapor plasma tubes with outside and inside

diameters of 16 and 14 mm were constructed. Installed in the center

of one of the plasma tubes was a metallic cylinder of 4.316 mm diameter

and 120 mm length. The plasma density was varied by sweeping the

discharge current from zero to 600 mA which corresponded to a plasma

density of 3.4 x 1011/cm3. The pressure of plasma was about 1 u Hg.

In the experiment, the positive column parts of the plasma tubes

were inserted into a S band rectangular waveguide (l ll/32”x 2 27/32”)

through holes on the waveguide wall. Two different arrangements for

the plasma tube and the waveguide as shown in Figs. 5.1.1 and 5.1.2

have been considered in the experiment. In Fig. 5.1.1, the plasma tube

is inserted through the narrow walls of the waveguide. This arrange-

ment provides a situation of a plasma-coated metallic cylinder illumi-

nated by a TE wave when the waveguide is excited by a TE mode. In
10

Fig. 5.1.2, the plasma tube goes through the wide walls of the wave-

guide. For this case, the E field of the waveguide is in parallel with

the plasma tube, thus, provide the situation of a plasma-coated metallic

cylinder illuminated by a TM wave.
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The schematic diagram of the experimental setup to measure the

back scattered fields from a plasma-coated metallic cylinder and a

plain plasma cylinder is shown in Fig. 5.2.

The back scattered field is fed into Channel 1 of the dual-

vertical-input of an oscillosc0pe and the transmitted wave (incident

and forward scattered waves) is fed into Channel 2 of the vertical

input. The horizontal input of the oscilloscope is swept with a 60-

cycle voltage which is linearly proportional to the discharge current

of the plasma tube. Since the discharge current of the plasma tube

is approximately proportional to the plasma density, the intensities

of back scattered and transmitted waves can be plotted as functions

of the plasma density directly on the oscilloscope.

Figures 5.3.1, 5.3.2, 5.4.1, and 5.4.2 are photographs of the

experimental arrangements and setups.

5.3 Experimental Procedure
 

To minimize the error caused by unmatched loads, the following

preparations were made before the measurement.

(1) Remove the plasma tube from the waveguide and plug the

holes on the waveguide wall to maintain an unperturbed situation for

the waveguide.

(2) Turn the microwave oscillator to a desired operating

frequency (2.3 GR: in our experiment) with a l KHz square wave modu-

lation applied. Turn the horizontal sweep of the oscilloscope to

"internal sweep.” Two sets of square waves with different amplitudes

will appear on the oscilloscope. The reflected wave appears on

Channel 1 and the transmitted wave on Channel 2.
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Fig. 5.1.1 Cross sectional view of a rectangular waveguide with

an inserted plasma tube. (TE polarization)
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Fig. 5.1.2 Cross sectional view of a rectangular waveguide with

an inserted plasma tube. (TM polarization)
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Fig. 5.3.1 The plea-a discharge tube inserted

in the waveguide.

 

Fig. 5.3.2 The waveguide and directional coupler

with double-stub tuners at both ends.



 

Fig. 5.b.l Experilental set up for the measurement of

scattered field with a TB incident wave.

 

Fig. 5.4.2 Experiment set up for the measurement of

scattered field with a TM incident wave.
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(3) Adjust the double-stub tuner I to obtain a maximum

amplitude for the display on Channel 1. By this way a highest sensi-

tivity is obtained for the receiving system for the reflected wave.

(4) Adjust the double-stub tuner 2 to obtain a minimum

amplitude for the display on Channel 1. This implies that the

reflection from the waveguide system in the absence of the plasma

tube is minimized or the waveguide is terminated by a matched load.

(5) Thrn off 1 K82 square wave modulation while keep the

microwave oscillator on at the same frequency as in procedure (2).

(6) Insert the plasma tube back to the waveguide. Start

the plasma tube and connect the sweeping anode voltage to the horizon-

tal input of the oscilloscope.

Two curves appearing on the oscilloscope are the reflected

waves and the transmitted wave displayed as functions of discharge

current which is prOportional to the plasma density.

5.4 Experimental Results and Comparison with Theory

Experiment have been conducted with two plasma tubes. One is

a plasma-coated metallic cylinder and the other a plain plasma cylinder.

Their dimensions are given in Table 5.1.

 

 

 

Plasma-coated metallic cylinder Plain plasma cylinder

a (m) b (m) <2 (mm) b (min) c (M)

2.158 7 8 7 8        

Table 5.1 Physical dimensions of plasma tubes.
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The dielectric constant of glass wall is assumed to be 5 in the theo-

retical calculation. The operating frequency is fixed at 2.3 CH: and

the discharge current is varied in the experiment. Since the plasma

density is proportional to the discharge current and (mp/w)2 is

proportional to plasma density, the displays on the oscilloscope are

the plots of the intensities of the reflected and transmitted waves as

functions of (mp/w)2. Thus, these displays can be compared directly

with the theoretical results calculated in the preceding chapters.

5.4.1 Experimental and Theoretical Results

Figures 5.5 and 5.6 are experimental results of the reflected

waves (back scattered fields) from a plasma-coated metallic cylinder

when illuminated by a TE wave as functions of the discharge current or

the plasma density. The transmitted wave (incident and forward

scattered waves) is also shown in the lower part of Fig. 5.5.(a).

It is noted that the sensitivities of the oscilloscope for the trans-

mitted and reflected waves were adjusted separately to obtain symmetri-

cal displays. Double tracing of the displayed curves is due to

hysteresis phenomenon of the plasma. Figure 5.5.(b) shows the

reflected wave only.

To show the detailed behavior of the curve of the reflected

wave, the reflected wave was measured carefully at lower and higher

discharge currents separately. Figure 5.6.(a) shows the detailed

behavior of the reflected wave in the lower discharge current range.

Figure 5.6.(b) shows the same quantity for the higher discharge current

range. In these two figures, the dipolar resonance occurs at 210 mA
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of the discharge current and the quadrupolar resonance occurs at 275 mA.

The temperature resonances are shown in the left hand side of the

dipolar resonance in Fig. 5.6.(a) appearing as small ripples.

Figure 5.7 shows the theoretical result of back scattered E

field from a corresponding plasma-coated metallic cylinder when

illuminated by a TE wave. Two values of collision frequency are

assumed to be v/m - 0.001 and u/w = 0.01. Figure 5.7.(a) is obtained

based on a cold plasma theory and a l3-sublayer model. Figure 5.7.(b)

is obtained based on a hot plasma theory with a 3-sublayer model and the

vo/c ratio of 0.01 Both in Figs. 5.7.(a) and 5.7.(b), the non-uniform

plasma density distribution is assumed to be expressed by Eq. (3.192)

of Chapter 3.

Figure 5.8 shows the experimental results of the back scattered

E field from a plain plasma cylinder when illuminated by a TE wave. The

dipolar resonance is identified as the highest peak at the right of

Fig. 5.8.(a) while a number of temperature resonances appearing at the

left. The quadrupolar resonance is shown at the right of the dipolar

resonance in Fig. 5.8.(b).

Figure 5.9.(a) and 5.9.(b) are the theoretical results of the

back scattered E field from a plain plasma cylinder plotted as a

function of (mp/m):ve. based on a cold plasma theory and a hot plasma

theory, respectively. The ratio vO/c is assumed to be 0.0133 in the

hot plasma theory. In both theories a non-uniform plasma density

expressed by Eq. (3.193) of Chapter 3 is assumed.

Figure 5.10 shows the results of the back scattered B field

from a plasma-coated metallic cylinder when illuminated by a TM wave.
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Experimental result on the reflected wave is shown in Fig. S.lO.(a) as

a function of the discharge current. As we have discussed in Chapter 4,

for an incident TH wave, the cold and hot plasma theories both predict

the same solution for the scattered field. Therefore, the theoretical

back scattered E field shown in Fig. S.lO.(b) applies both for the cold

and hot plasma cases. The collision frequency is assumed to be vim

I 0.01 in the theoretical calculation. The non-uniform plasma density

distribution is assumed to be expressed by Eq. (3.192) of chapter and

a l3-sublayer model is used.

Figure 5.11 shows the results of the back scattered E field

from a plain plasma cylinder when illuminated by a TM wave. Experi-

mental results on the reflected and transmitted waves as functions of

the discharge current are shown in Fig. S.ll.(a). The theoretical

result on the reflected wave is shown in Fig. S.ll.(b). The non-

uniform plasma density is assumed to be expressed by Eq. (3.193) of

Chapter 3 and a.l3-sublayer model is used in theoretical calculation.

5.4.2 Comparison Between Experiment and Theory

For the case of the back scattered E field from a plasma-

coated metallic cylinder illuminated by a TE wave, the dipolar and

quadrupolar resonances are predicted both by the cold and hot plasma

theories. The temperature resonances are predicted only by the hot

plasma theory. All those dipolar, quadrupolar and temperature reso-

nances are observed in the experiment as shown in Figs. 5.5 and 5.6.

In the hot plasma theory, the theoretical value of (m

Poq

mp q and up d are the plasmm.frequencies corresponding to the quadru-

9 9

polar and dipolar resonances, is 1.27. With the cold plasma theory

Imp d)2, where

3
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the value of (ab q/mb d)2 is found to be 1.24. EXperimentally as in

I

Fig. 5.5.(b), the value of Tall where I and I are the discharge
(1’ q d

currents corresponding to the quadrupolar and dipolar resonances, is

observed to be 1.28. Thus, for the location of the dipolar and

quadrupolar resonances, experiment and theory come to a very good

agreement. As for the shape of the curve, the quadrupolar resonance

observed in the experiment is a rather smooth peak while the theory

predicts a sharp peak. The temperature resonances are seen to occur

to the left of the dipolar resonance. Those resonances occured at

plasma densities where the value of (eh/m)2 are less than 0.7 are not

detected in the experiment.

For the back scattered E field from a plain plasma cylinder

illuminated by a TE wave, the temperature resonances are observed

experimentally as shown in Fig. 5.8. The dipolar resonance occurs at

the extreme right of Fig. 5.8.(a). The quadrupolar resonance occurs

at a discharge current of I - 440 M in Fig. 5.8.(b). The magnitude

of quadrupolar resonance in this case appears to be larger than the

case of a plasma-coated metallic cylinder. The theoretical prediction

of the temperature resonances gives weaker amplitude than that observed

in the experiment. This discrepancy is probably due to the inaccuracy

in the theoretical analysis sincea computer subroutine for calculating

Hankel functions with a large complex argument is not available.

For the case of the back scatterings from a plasma-coated

metallic cylinder and a plain plasma cylinder when they are illuminated

by a TM wave, theory and experiment agrees very satisfactorily as

evidenced in Figs. 5.10 and 5.11. For both cases of a plasma-coated
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metallic cylinder and a plain plasma cylinder, no resonance is observed

experimentally or theoretically.

5.5 Discussion

The experimental investigation of the scattering from a plasma-

coated metallic cylinder when illuminated by a TE or a TM wave gives

satisfactory results which compare fairly closely with the theoretical

results based on the hot plasma theory. The cold plasma theory also

gives a fair agreement with experiment but it fails to predict the

temperature resonances.

The main difficulty encounted in the theoretical study is the

.mathematioal resonances associated with the stratification.method.

This has been discussed in Sec. 2.9 of Chapter 2. Th avoid the mathe-

matical resonances, it may be worthwhile to apply the differential

equation method‘2'5'7) to our problem if this study is to be

extended in the future.

Finally, the experiment in this research was conducted in a

waveguide while our theory assumed the free space situation. In spite

of these differences, theory and experiment agree quite satisfactory.

For a future extention, it may be suggested to conduct the experiment

in free space.
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APPENDIX A

THE DECOMPOSITION OF PRESSURE GRADIENT

INTO THE D.C. AND a.c. COMPONENTS

The pressure gradient,V7P, of Eq. (3.75) is considered and

decomposed into the d.c. and a.c. components as follows:

If a static pressure (d.c. case) is concerned, the pressure

is established by an isothermol process. That is, the temperature

of the gas is fixed to a constant value, and we have

P - nekT am)

where T is the fixed temperature of gas, ne is electron density of the

plasma and k is Boltzmann's constant.

If an external force disturbes ne in such a way that

ne(;,t) - nod-3 + n1(¥,t) ‘ (A.2)

and ne is a fast function of time, such as a high frequency dis-

turbance, then the temperature of gas is not fixed simply due to the

fact that not enough time is allowed to exchange energy in the gas to

keep the temperature constant. In such case, the adiabatic law is

used e that 13

Pt: I constant (A.3)

where l/ is the ratio of specific heat such that

C I

CV :11
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with m I degree of freedom of gas.

In a high frequency plasma oscillation, the motion of electron

is usually in one direction only. So that we can assume m I 1. This

leads to Y .. 3.

For the case of a small r.f. perturbation, as in Eq. (A.2),

the relationship between the pressure and the electron density is

Pnmy I P n"y I constant (A.S)

since initially P I P and n I n . Then
0 e o

n

.9. V
P . P°( n ) 0 (A06)

0

Pois the static pressure established by an isothemal process, so that

PO 3 nokT e (A07)

From Eq. (A.6), we have

vr- WAS-29’]
O

n n
eY eY

'(a:)VP°+POV(a-;) . (A.8)

The substitution of Eq. (Ad) in Eq. (A .8)‘1eads to

n n

VPI(l+a-E)YVP°+POV(1+;-l-)'Y

 

0

n1')’ “1 7-1
.(1+a:)kTVno+kmo[Y(l+-fi:)

nVn InVn
. o l 2 l o] (A.9)

o

01'
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n n n n

VP Ikr[( 1 +3-1- )T- 7( 1 +3-1- )Y'1-;1-]Vno +'YkT ( 1 +5-1- )y-Ian .

O O O 0

(£1.10)

If n1<<no , Eq. (A.10) yields

VP - kTVno + YkTan . (A.ll)

In the above expression, the terms, kT Vno and YkT an , are the

d.c. and a.c. components of the pressure gradient respectively.
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