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ABSTRACT

ON A PROBLEM OF SCHINZEL CONCERNING
PRINCIPAL DIVISORS IN ARITHMETIC PROGRESSIONS

BY

Charles J. Parry

The following problem was proposed by A. Schinzel at
the A. M. S. Number Theory Summer Institute held at Stony
Brook in July 1969: "Let f£f(x) be a primitive polynomial
and k an algebraic number field. Do there exist infinitely
many integers x such that f£(x) factors into principal
ideals in k? (unknown even for f 1linear)."

I have solved this problem in the affirmative when f
is linear. My proof uses Frobenius and Artin symbols in

certain extensions of the Hilbert class field of k.
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CHAPTER I

INTRODUCTION

l. STATEMENT OF PROBLEM

The following problem was proposed by Andrzej Schinzel
at the A. M. S. Number Theory Summer Institute held at

Stony Brook, New York during July, 1969:

Question I: "Let f(x) Dbe a primitive polynomial

and K an algebraic number field. Do there exist
infinitely many integers x such that f£(x) fac-
torizes in K into principal ideals? (unknown

even for f 1linear)."

In this paper I shall prove the answer is yes when f
is linear. It has been noted [1] for polynomials of higher
degree that the following additional assumptions on f(Xx)
are necessary:

(i) The content of any factor of f£f(x) in K is
principal (MacCluer).
(ii) Each fixed divisor of f(x) is principal
(Schinzel).
In the linear case, i.e. when f(x) = mx + b, it seems

reasonable to ask the slightly stronger



Question II: Do there exist infinitely many primes

of the form mx + b which have principal prime

factors in K?

Although the answer to question II can be seen to be
no by an example, this question is worth examining more
closely as it suggests an approach to the first question.
First, however, I shall present some basic definitions and
theorems of algebraic number theory and class field theory

which are not readily available in the literature.

2. SOME HILBERT THEORY.

Throughout this section let K be a finite galois
extension of the number field k with galois group G of
order n. Let R and S denote the rings of algebraic
integers in k and K respectively. Suppose P 1is a

prime of K.

Definition A: 2 (p) = (o|lo € G, o(p) = P} 1is called

the decomposition group of .

Definition B: T(P) = {o|o(x) = x mod P for all x € S)

is called the inertial group of . The subfield

I of K corresponding to T 1is called the inertial

field of .



It is easy to verify that 2Z(P) is a subgroup of G
and that T(P) 1is a normal subgroup of Z(P). Furthermore
e .
suppose p = PNk and p = ($l$2...$g) in K where
P, = P Then since G acts transitively on the primes
$l"3$g it follows that the index (G:Z2) = g and so 2Z(p)

has order n/qg.

Definition C: The sequence of groups

G2Z2T021

is called the (short) Hilbert sequence of P over Kk.

The importance of the Hilbert sequence is due to the

following:

Result I: For each prime P of K
z(p) / T(P)

is naturally isomorphic to
G(s/p | R/p),

the galois group of S/P over R/p.

Result II: P is totally ramified over its inertial
field I(P). Moreover, %I =P NI is unramified

over k and (T:1) = (K:I)

Il

e, the ramification

index of P over k.

For proofs of these results we refer the reader to

Weiss [2].



Now suppose P is unramified over Xk, so T(P) =1
and
z(p) = G(S/p | R/v).

But R/p = GF(lloll,) and s/ =cF(lpl,H where [pll, is

the absolute norm of p. Thus G(S/B | R/p) is cyclic
and generated by the map
Il
X X .

Hence we can choose a generator ¢ of Z(P) so that

lp

o(x) = mod B

for all x € S. This unique element of Z(P) 1is called

the Frobenius Automorphism of P over k. The symbol
[ K/k ] _
o = 0

is called the Frobenius Symbol of P over k.

Remark I: The Frobenius automorphisms of the prime

factors of p are all conjugate under G.

PROOF: Note that for 1t € G, x € S

N Y S A

QqQ
—
-3
»x
~
m

) mod 9P

so that

-1 prHk

T O T (Xx) = mod (TP).

Hence

(][]




The conjugacy class to which the Frobenius symbols of

the factors of p Dbelong is called the Artin Symbol of

and is denoted by ( th ) . If G 1is abelian then the Artin
Symbol becomes a unique element of G.

Now assume that k © L © K and let P = P N L.

Remark II: If P is of degree f over k then
[K[L:]:[K[k 2f
D p

PROOF: Let L 5‘% ] =0

llp Il £
Then of(x) = x Pk mod P for all x € S. But Hpﬂi = HPHL.

Remark III: If L/k 1is galois then

[ 1-0% ),

PROOF: Obvious.

I now consider the Artin Symbol in the case that K
is a cyclotomic extension of k, i.e. K = k() where ( 1is

a primitive mth root of unity. 1In this case all elements
of the galois group G(k(C)/k) can be obtained by a substi-
tution of the form

¢ b—¢?

for some a with (a,m) = 1.



Remark IV: Suppose Ga(C) = Qa is in G (k(C)/k)

(p ,m) =1, then

( 5&%}15)> =0, = Hka =a mod m.

PROOF': Note

el
Ga(x) =X mod p
for all integers x of k(). 1In particular
lipl
Ga(Q) = (% = ¢ K mod p.

However Qa = gb mod p implies
@1 - ¢®@) =0 mod p
and hence

1 - gb-a

W

O mod p.
Now if b-a $§ O mod m then

m-1
m= I

J

1-¢%) =0 mod

1

contradicting that (p,m) = 1. Thus
b-a=0 mod m.

Substituting Hp“k for b we get

“ka = a mod m.

From Result II we obtain some properties of inertial

fields. First,

Lemma I: If k ck’/’ c K and T’ 1is the inertial

group of P over k’, then T’ =G N T where

G’ = G(K/kX').

and



PROOF: Clear from the definition.

Corollary A: (Maximal Property) If o n k’

is unramified over k then k'’ < I(p).
PROOF: Let I’ be the inertial field of P over k’.
Then G(K/I’) = T'= T NG’, hence I I’. But B N I’
is unramified over k’ and hence over k. Thus I = I’

and k’/ c 1’ = I.

Corollary B: If a prime p of k 1is unramified

in k’, then it is unramified in the galois closure

k" of k'.
PROOF: Note that yp is unramified in each conjugate field
of k'’ since it has a factorization there identical to that
in k. If P is any factor of p in k’ then the inertial
field I(P) contains k’ and all its conjugates by
Corollary A. Thus I = kx’.

3.

THE CEBOTAREV DENSITY THEOREM

In this section I state the theorem which is the key to

most results of this paper.

Definition: Let I

of k. The limit

But first,

be a set of prime ideals



am = 1im_ ) 1/lE /) 1/l
s+1 pell pek

(if it exists) 1is called the Dedekind density

of .

Result: The set of primes p in k of degree

greater than 1 over Q has Dedekind density O.

PROOF: As s =+ 1

o - ma T - ow
peg P

degree ”ka
p>1

Cebotarev Density Theorem: If o € G(K/k), then

the Dedekind density of all primes p of k with
X/k y 2
(52 ) =850
is
IRG(o)l / (G:1).

(RG(G) denotes the conjugacy class of o in G

and |RG(0)| denotes the order of this class).

Corollary: The set of primes P of K with
[ Eék ] = 0 has Dedekind density 1/(G:1).

Recall the Dedekind zeta function QK(s) of a number

field K is defined to be the series

Ce(s) =) 1/1IalS
A€K



where A runs through all integral ideals of K. It is

easy to see for Re s > 1

Cg(s) = 1@ - 1/ll2lIR)

where the product is over all prime ideals of K. Now for

any number field K, (_(s) can be shown by analytic
K

continuation to have a simple pole at s = 1. Now
log Cy(s) = log I (1 - |P||.°)
P
= - ) log (L - llpll:®
P
O elzs + )Y pelizde
K L K
P P j=2
' -s
= ) IIPIES + o(1).
P
Since Qk(s) has a simple pole at s = 1 we have
lim (s-1) Qk(s) = ¢ for some c > O.
sa1
Hence for s > 1,
log QK(s) = - log (s-1) + 0O(1l)

+
and so as s =+ 1,

log QK(S) ~ -log (s-1).

This gives the important

Result: For any two number fields K and L, as
S - l+,

/(IS ~) 1/lPIS ~ - log (s-1).
PzK PeL

Now I prove
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Lemma II: A finite extension K of the number
field k 1is galois over k if and only if almost
every prime P of k that has one linear factor

in K splits completely in K.

PROOF: If K/k 1is galois, then the condition follows
easily from Kummer's Theorem. Conversely assume the con-
dition holds. Let 1[I be the set of primes of k which splits
completely in K. Since a prime splits completely in K
if and only if it splits completely in E, the galois
closure of K, it follows easily that
d(l) = 1/(K:k).

However

L VIRl = J1/lelg + o
P€eK PeK

’
where E: indicates summation over all primes P of K

which are linear and unramified over k.

But X l/HPH; = (K:Kk) z l/HbHi + 0(1).

So

1 = (K:k) d(0) = (K:k)/(K:k)

Il
=

Hence K

4. RESULTS FROM CLASS FIELD THEORY.

By the class field CF(k) of the number field k
I mean the Hilbert class field of k, that is, the maximal

abelian unramified extension of k. Most of the properties
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of the Hilbert class field can be summarized in the

Artin Reciprocity Theorem: The homomorphism defined

by linearly extending the map
pl———%( CE (k) /k : k )
to all of I, the group of fractional ideals of k,
is surjective and has kernel H, the group of
principal ideals of k. Thus the galois group of CF (k)/k
is canonically isomorphic to the ideal class group

of k.
I now prove the useful

Lemma III: If K/k 1is galois then CF(K)/k is

galois.

PROOF: Suppose B 1is a prime of K that is linear over

k. If p=9Nk then p has a linear factor P = P N K

in K and since K/k is galois, p splits completely in K.
However P 1is principal by Artin reciprocity and since

K/k 1is galois all conjugate factors P’ of P in K are
principal. So again by Artin reciprocity each conjugate
factor P’ gains degree 1 in CF(K). Hence p must

split completely and by Lemma II, CF(K)/k 1is galois.
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CHAPTER II

PRELIMINARY RESULTS

l. AN EXAMPLE

The following example (MacCluer) shows that the answer
to question II is no. (A. Schinzel has informed me that a
similar counterexample was found earlier by J. Tate.)
The number field Q(v/ﬁ5) has class number h = 2
and Hilbert class field
CF(Q(/10)) = Q(/2,/5).
According to Artin reciprocity, a rational prime p + 2, 5
has non-principal divisors in Q(V/Ia) if and only if p
splits in QQ/Ig) into two distinct prime divisors, each
of which remains prime in QQ/EM/gd. In Legendre symbols
this is equivalent to
(30 = (0=
which obtains if and only if P = %3, 113 (mod 40). Thus
for instance, no prime of the form p = 40x + 3 has principal

divisors in Q(vfia).

2. SPECIAL CASES

Now question II is worthy of closer examination as it

suggests an approach to the first question and is of some
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interest in itself. Specifically I shall prove:

Theorem I: Let k be a number field galois

over Q, CF(k) the class field of Xk, and ¢

a primitive m-th root of unity. If CF(k) n k() = k
and if k n Q(¢) = Q, then for each (a,m) =1

there are infinitely many primes p = a(mod m)

which split principally and completely in k. (I

will say a rational prime p splits principally

in k if each prime factor of p in k 1is

principal in k.)

PROOF: We have the following Artin diagram

CF (k) ()
,///////////
k(Q)’//

. . . k() /k N\ _
A prime p of k with Artin Symbol ( b )= 04
where oa(C) = ga, has absolute norm “bnk = a mod m.
Thus if in addition p is linear over Q then Hka = p T a mod m,

It now only remains to produce infinitely many such principal
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\‘

primes p, i.e., with Artin symbol ( in%lék )= 1.
But by hypothesis the galois group
G (CF (k) (C) /k) = G (CF(k)/k)xG (k(C)/k).

Thus by the Cebotarev density theorem 1/h o(m) of the primes
N\
of k have ( CF kp k j = 1 x O where h 1is the

class number of k.
But this means

( k(pg)gk )= o

a

and (‘w) —

\ )
Since almost all primes of k are linear over Q, we need
only consider such primes p of k. But this means
Hka =p =a mod m. Also p principal and k/Q galois
implies p splits principally in k. Thus at least
1/h.p(m)* (k:Q) of the rational primes p split principally
and completely in k and satisfy

P = a mod m,

Corollary I: Let k Dbe a number field (not neces-

sarily galois over Q) and A Dbe the discriminant
of k. Suppose (m,A) = 1, then there are infinitely
many primes p = a (mod m) which split principally

and completely in k.

PROOF: Since (A,m) =1, every prime divisor of m is
unramified in k and hence unramified in the galois closure
k of k. However, the primes which ramify in Q({) are
exactly the divisors of m and so Q(C() n k = Q. From this

it follows that

[cF(k) n k(C):k] = [(cF(k) n k(C)) n Q(C):Q].
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Now because (A,m) = 1, no prime can ramify in the exten-
sion (CF(k) N k(¢) N Q({))/Q and so this extension is of
degree 1, hence CF(k) N k(() = k. We can thus apply
Theorem I to get infinitely many primes p = a mod m
which split principally and completely in k and hence also

split principally and completely in k.

Remark: It is worth noting that there are always
infinitely many positive rational primes p =1 mod m
(for any m) which split principally and completely

in any number field k.

PROOF: By the Cebotarev density theorem the set of primes

which split completely in CF(E)(Q) has positive density.

Also under certain hypothesis question II is true for

all modulii m. I now prove

Theorem II: Suppose the number field k 1is

galois over the rational numbers Q and has
class number h. Let n = (k:Q) and take m > 1
and a to be any integers with (a,m) = 1. 1If
(n,h) = 1, then there are infinitely many rational
primes p with

P =a modm

which factor into principal ideals in k.



le

PROOF: Let CF(k) be the Hilbert class field of k and
let G and H denote the galois groups G(CF(k)/Q) and
G(CF(k)/k) respectively. Then H has order h and is a
normal subgroup of G. Also (G:H) = (k:Q) = n. Since
(n,h) =1, the Schur-Zassenhaus Lemma [3] applies to
give a subgroup A of G for which G 1is semi-direct
product of A and H. Let L Dbe the subfield of CF (k)
with galois group G(CF(k)/L) = A. Note that CF(k) = kL
and that k N L = Q.

I now show that if a prime P of CF(k) has its
Frobenius automorphism [ QEL%lZQ 1 in A, then p=73N4Q
splits into principal prime ideals in k. We need only note

that the restriction map

o

Yol

gives an isomorphism of G(CF(k)/L) and G(k/Q). Also

(e ]| - (5

Thus if { QEL%lZQ j is in A then p = P N Q gains the
same degree in both k and CF(k). Since k/Q 1is normal,
p splits into principal prime ideals in k.

Next we note that L N Q(() = Q where ( 1is an m-th
root of unity. Suppose some rational prime q has ramifi-
cation index e’ in L N Q((). Then e’ divides (L:Q) = h.
On the other hand e’ must divide the ramification index
e of g in CF(k). But e divides n so e’ also

divides n. Hence e’ =1 and L N Q(C) = Q. Therefore

the substitution determined by

0, (C) = ¢a (a,m) =1
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is in G(L({)/L). By the Cebotarev density theorem, the
set of primes P of L with Artin Symbol
(L(S.).Z.L) -
= 0
P a
has positive density. Since almost all primes of L are

of degree 1 over Q, we need only consider such primes

P. Now ( Li%llé > =0 and P linear over (Q implies

p = HPHL a mod m.

Now let P be a divisor of P in CF(k). Since P 1is
linear over Q we have that [.QEL%lZQ J is in A and
as was shown above, p = P9 N Q must split into principal

prime ideals in k. This gives the desired result.
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CHAPTER III

RESOLUTION OF THE LINEAR CASE

As we have just seen, there are infinitely many primes
P =a mod m that split principally in k provided the
modulus m contains no primes that ramify in k. On the
other hand we have seen that there are no primes p = 3 mod 40
that split principally in QQ/TB), a field in which both
2 and 5 ramify. We shall soon see that the non-existence
of such primes is not solely because of the ramification of
the factors 2 or 5 of m = 40, but because m = 40 has
at least two distinct prime factors, both of which are

ramified. For

Theorem III: Let k/Q be galois, g4 be prime,

(a,2) =1, and (m’,g) = 1. Then for any n =2 1
there are infinitely many positive rational primes
p which split principally in k with

P = a mod Ln
and

P=1 mod m’.

Once that we have proved Theorem III we have an immedi-

ate solution to Question I for k/Q galois. That is:
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Theorem IV: If k/Q 1is galois and (a,m) = 1,

then there are infinitely many rational integers
X a modm

all of whose prime factors split principally in k.

Later I will show that the assumption of normality on
k/Q can be deleted. But now I prove Theorem III via two

lemmas.

Lemma IV: Let M/L and N/L be finite extensions
of the number field L. Suppose M/L and MN/L
are galois and M N N=L. Let P¢ be a prime of
MN such that the degree of Py =T NN over L

equals 1. Let p = P N M. Then the order of
[ ﬂéé ] is precisely the order of [ M%ZH ].

PROOF: We first note that we have an isomorphism between
the galois groups G (MN/N) and G (M/L) and that the

isomorphism is given by the restriction map

OF———)O!M .
Let { ME%L ] = ¢g. Since the degree of $N over L 1is 1,
it follows that [ M%LH ] = L MH%L ] = o0 and so 0 € G (MN/N).
Thus the order of ¢ equals the order of 0|M. But from

the definition of the Frobenius symbol

O|M=[M6L}'
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Lemma V: Let k/Q be a finite galois extension
and ¢4 a rational prime. Let @ be a prime divisor
of g 1in the class field CF(k) of Xk with inertial
field I = I(8) over Q. Finally let P be a prime
of CF(k) unramified over Q.
If the degree of the prime P;=PN I is 1

over Q, (or even over k N I), then the prime

p =D Nk
is principal in k. Moreover the rational prime

p =P NQ
splits principally in k.

PROOF: We have the following diagram
CF (k)

k I

Nt

%
|
Q
Recall that CF(k)/Q 1is galois.
Note that kNI is the inertial field of 2Nk over
Q and, since CF(k)/k 1is unramified,
[CF(k):1] = [k:(kNI)].
Since k/(kNI) is normal it follows that CF(k) = kI.
By Lemma IV it follows that the order of [ QEL§XAL J
equals the order of [ Eligﬂl)] equals f, say. Now
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since the degree of QI over k NI 1is 1, the degree of
B over Q 1is f. But the degree of p over k N I 1is
also f so p must gain degree 1 in the extension
CF(k)/k. Thus p 1is principal in k and since k is

normal, p must split principally in X.

PROOF OF THEOREM III: We let ( be a primitive g"-th root

of unity, (’ a primitive m’-th root of unity. We have

CF (k)

/ I1(6,C7)
; I(C')’/

/

X I /
e
\ / . ,,,/
Q' —"

where I 1is as in Lemma V. Now I(C’) N Q(C) = Q since

4 1is totally ramified in Q({) yet has an unramified prime

factor in I(C’). Hence
G(Q(C)/Q) = G(I(5,C")/1(C")).
Thus the substitution oa(g) = Qa is an automorphism of

I(C,C’)/I(C’). By the Cebotarev density theorem, the set

of primes p of I({’) with Artin Symbol

( I(gig';/uc') ) = o,

has positive density. Since almost all primes of I(C’) are
of degree 1 over Q, we need only consider such linear primes.
However, if p 1is such a prime then

p=|p]| =a mod Pk
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and

P =1 mod m’.
Let pr = P N I, then the degree of P over Q 1is 1.
So by Lemma VvV , p must split principally in k which

proves Theorem III.

I will now show that the assumption of normality on

k/Q can be deleted.

Lemma VI: Let k be an arbitrary number field and
k be the galois closure of k. Suppose g 1is a
rational prime and Q@ is a prime factor of £ 1in
CF(E). Take I = I(Q) to be the inertial field of
§ over Q and T = T(Q) the inertial group. Then

T n G(CF(k)/CF (k)) T N G(CF (k) /k)

"

PROOF: Let I’ and I be the inertial fields of @ over
k and CF(k) respectively. Since CF(k)/k 1is unramified,
it follows that CF(k) € I/, and so I’ = 1”“. However,

G(cF(k)/1’') = T n G(CF(k)/k)

and

G(CF(k)/1") = T n G(cF(k)/CF (k))

With the same notation we now have

Lemma VII: If P is any prime of CF(k) such that

{ = ; J € T then p =193 Nk is principal in k.
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PROOF: We have the following diagram

CF (k)

N
\k/ \Tcn/l
\\ /

k I

CF (k)

O ——— D

k B
Say [ QEL%lZQ J = 0 and that the degree of p over Q

is fl then
- f . ~
[Qm(;likj]:clec;(cmi)/k)n'r.

Hence

3 - \
s leca ( cr(k)/cF(k) )N T

by Lemma VI. Thus p = B N k gains degree 1 in CF(k)/k.

Corollary II: If [ QEL%lLQ ] € T then p=7NQ

splits principally in k.

PROOF: 1In the preceding proof we can replace k by any of
its conjugate fields o(k) and CF(k) by CF(o(k)) and get

that Py =P N o(k) 1is principal. Say = 0(a). Then

Po

c-l(bd) = o is principal in k. But o—l(m) lies above

G-l(pg) and since the galois group acts transitively on the
primes of CF (k) dividing p, it follows that all prime

factors of p are principal in k.
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And so finally we have

Theorem V: If k 1is an arbitrary number field and
(a,m) = 1, then there are infinitely many rational
integers

X = a modm

all of whose prime factors split principally in k.
PROOF: Using the result of the preceding corollary we can
now retrace the proof of Theorem III and the desired result

follows.

It is now possible to slightly strengthen Corollary I

of the previous chapter. Specifically I shall prove

Theorem VI: Let k be a number field with discri-

minant A. If m 1is a positive integer with
(m,pA) = zn where 4 1is prime, then for each

a with (a,m) 1 there are infinitely many primes

P =a modm

which split principally in k.

PROOF: Let @ be a prime factor of ¢ in CF(k) and
take I = I(Q) to be the inertial field of ¢. If ( is
an m-th root of unity then

Q(C) NI =qQ.

Hence the substitution



is in G(I({)/I). Now the set of linear primes

with

has positive density. But
p = HPHI =a mod m

and by Corollary II, p splits principally in

P

of



[1]

(2]

(3]

MacCluer,
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