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ABSTRACT

ON A PROBLEM OF SCHINZEL CONCERNING

PRINCIPAL DIVISORS IN ARITHMETIC PROGRESSIONS

BY

Charles J. Parry

The following problem was proposed by A. Schinzel at

the A. M. S. Number Theory Summer Institute held at Stony

Brook in July 1969: "Let f(x) be a primitive polynomial

and k an algebraicnumber field. Do there exist infinitely

many integers x such that f(x) factors into principal

ideals in k? (unknown even for f linear)."

I have solved this problem in the affirmative when f

is linear. My proof uses Frobenius and Artin symbols in

certain extensions of the Hilbert class field of k.
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CHAPTER I

INTRODUCTION

1. STATEMENT OF PROBLEM

The following problem was proposed by Andrzej Schinzel

at the A. M. S. Number Theory Summer Institute held at

Stony Brook, New York during July, 1969:

Question I: "Let f(x) be a primitive polynomial

and K an algebraic number field. Do there exist

infinitely many integers x such that f(x) fac-

torizes in K into principal ideals? (unknown

even for f linear)."

In this paper I shall prove the answer is yes when f

is linear. It has been noted [1] for polynomials of higher

degree that the following additional assumptions on f(x)

are necessary:

(i) The content of any factor of f(x) in K is

principal (MacCluer).

(ii) Each fixed divisor of f(x) is principal

(Schinzel).

In the linear case, i.e. when f(x) = mx + b, it seems

reasonable to ask the slightly stronger



Question II: Do there exist infinitely many primes

of the form mx + b which have principal prime

factors in K?

Although the answer to question II can be seen to be

no by an example, this question is worth examining more

closely as it suggests an approach to the first question.

First, however, I shall present some basic definitions and

theorems of algebraic number theory and class field theory

which are not readily available in the literature.

2. SOME HILBERT THEORY.

Throughout this section let K be a finite galois

extension of the number field k with galois group G of

order n. Let R and S denote the rings of algebraic

integers in k’ and K respectively. Suppose B is a

prime of K.

Definition A: Z($) = {Old 6 G, 0(fi) = B} is called

the decomposition group of 3.

Definition B: T($) = [olo(x) E x mod n for all x E S}

is called the inertial group of m. The subfield

I of K corresponding to T is called the inertial

field of T.



It is easy to verify that Z($) is a subgroup of G

and that T($) is a normal subgroup of Z($). Furthermore

suppose p = $ 0 k and p = (Tlfiz...$g)e in K where

$1 = T. Then since G acts transitively on the primes

$I°"$g it follows that the index (G=Z) = 9 and SO Z($)

has order n/g.

Definition C: The sequence of groups

G a Z 2 T 2 l

is called the (short) Hilbert sequence of 3 over k.

 
The importance of the Hilbert sequence is due to the

following:

Result I: For each prime $ of K

2(s) / T(s)

is naturally isomorphic to

G(s/$ I R/p).

the galois group of S/T over R/p.

Result II: p is totally ramified over its inertial

field I($). Moreover, $1 = 3 n I is unramified

over k and (Tzl) = (K:I) e, the ramification

index of T over k.

For proofs of these results we refer the reader to

Weiss [2].



Now suppose

and

D is unramified over k, so T($) = l

2(a) e G(S/$ | R/p).

But R/p =GF(|InHk) and S/‘B=GF(H:>H]f) where Hka is

the absolute norm of p. Thus G(S/® l R/p) is cyclic

and generated by the map

 

HDHk rm—L

xF——)x .

Hence we can choose a generator 0 of Z($) so that

0(x) a x mod T

This unique element of Z($) is called f~§for all x 6 S.  
the Frobenius Automorphism of 3 over k. The symbol

[591”
is called the Ergbeniug Symbol,of n over k.

Remark I:

factors of

PROOF: Note that

so that

Hence

The Frobenius automorphisms of the prime

p are all conjugate under G.

forTEGoXES

-1X)npnk :quka
E (T ) mod T

Hka

(x) E x mod (T11).

5A]: ”’ -1
— T [ 3 J T



The conjugacy class to which the Frobenius symbols of

the factors of p belong is called the Artin Symbol of p
 

and is denoted by C 5&3 D . If G is abelian then the Artin

Symbol becomes a unique element of G.

Now assume that k C L C K and let P = n m L.

Remark II: If P is of degree f over k then

[ KZL ] = [ ng If

:3 ‘13 J

PROOF: Let L I—(‘é‘k‘ ] = O

H Hf

Then of(x) E x p k mod n for all x E S. But MPH: = HPUL.

Remark III: If L/k is galois then

Herve];-

PROOF: Obvious.

I now consider the Artin Symbol in the case that K

is a cyclotomic extension of k, i.e. K = k(§) where Q is

a primitive mth root of unity. In this case all elements

of the galois group G(k(g)/k) can be obtained by a substi-

tution of the form

g r——->ga

for some a with (a,m) = l.



Remark IE: Suppose oa(§) =
 

((a,m) = 1, then

ga is in G(k(g)/k)

1215.11.15) _ =
<‘ p :> — Ga e Hka — a mod m.

PROOF: Note

C (x) E x mod p
a

for all integers x of k(§). In particular

HpH

oa<c> = ta 2 g k mod p.

a _ b . .

However Q = Q mod p implies

ga(1 - gb'a) 2 0 mod p

and hence

l - Qb-a E 0 mod p.

Now if b-a ¥ 0 mod m then

m—l .

m = n (1 - g3) a 0 mod p

i=1

contradicting that (p,m) = 1. Thus

b - a E 0 mod m.

Substituting Hka for b we get

“ka E a mod m.

From Result II we obtain some properties of inertial

fields. First,

Lemma I: If k C k’ C K and T’

group of P over k’, then

G’ = G(K/k’) .

T’ = G n T where

is the inertial

and



PROOF: Clear from the definition.

Corollary A: (Maximal Property) If n n k’
 

is unramified over k then k’ C I(n).

PROOF: Let I’ be the inertial field of n over k’.

Then G(K/I’) = T’= T 0 G’, hence I C I’. But n O I’

is unramified over k’ and hence over k. Thus I = I’

and k’ CI’ = I.

Corollary B: If a prime p of k is unramified

in k’, then it is unramified in the galois closure

k7 of k’.

.ggggg: Note that p is unramified in each conjugate field

of k’ since it has a factorization there identical to that

in k. If B is any factor of p in k7 then the inertial

field I($) contains k’ and all its conjugates by

Corollary A. Thus I = k7:

3. THE CEBOTAREV DENSITY THEOREM

In this section I state the theorem.which is the key to

most results of this paper. But first,

Definition: Let H be a set of prime ideals

of k. The limit



am) = ii? 2‘ who”: 2 mun:

p6“ pék

(if it exists) is called the Dedekind density

of H.

Result: The set of primes p in k of degree

greater than 1 over Q has Dedekind density 0.

 

PROOF: As 3 4 1+

‘1 “'1

l 1 S s (k=Q) Z #55 = 0(1)

degree ”DHk PEQ p

p>l

Cebotarev Densitnyheorem: If G 6 G(K/k), then

the Dedekind density of all primes p of k with

(5612) = flow)

is

IRG(O)| / (G:l).

(36(0) denotes the conjugacy class of o in G

and IRG(0)| denotes the order of this class).

Corollary: The set of primes n of K with

[.Kéh J = 0 has Dedekind density l/(G:l)-

Recall the Dedekind zeta function QK(s) of a number

field K is defined to be the series

cK<s) =1 l/HAHf’<

AQK



where A runs through all integral ideals of K. It is

easy to see for Re 3 > 1

gK(s) = g<1 - l/HPHi)

where the product is over all prime ideals of K. Now for

any number field K, §K(s) can be shown by analytic

continuation to have a simple pole at s = 1. Now

—s -

log gK(s) = log H <1 - HPHK )
P

= - Z 109 (l - HPHIZS)

P

‘ ' -s \‘ “ -'s

=2HNK+LJ2WMJ

P P j=2

_ 2 HPHK + 0(1).

P

Since Qk(s) has a simple pole at s = l we have

lim (s-l) §k(s) = c for some c > O.

sal

Hence for s > 1,

log QK(s) = - log (5—1) + 0(1)

+

and so as s 4 l ,

log §K(s) ~:-1og (3—1).

This gives the important

Result: For any two number fields K and L, as

s 4 1+,

1NW§~2¢NN:~-Mgedy

PEK PEL

Now I prove
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Lemma II: A finite extension K of the number

field k is galois over k if and only if almost

every prime P of k that has one linear factor

in K splits completely in K.

.PRQQF: If K/k is galois, then the condition follows

easily from Kummer's Theorem. Conversely assume the con—

dition holds. Let U be the set of primes of k which splits

completely in K. Since a prime splits completely in K

if and only if it splits completely in K, the galois

closure of K, it follows easily that

em) = 1/<E=k).

However

Z yup”; = Z'l/HPH:+ 0(1)

PEK PeK

I

where E: indicates summation over all primes P of K

which are linear and unramified over k.

But )j l/HPIl: = (Km): l/HnH:+O(l).

PEK pen

So

1 = (sz) am) = (K:k)/(_K:k)

Hence K = R.

gy, RESULTS FROM CLASS FIELD THEORY.

By the class field CF(k) of the number field k

I mean the Hilbert class field of k, that is, the maximal

abelian unramified extension of k. Most of the properties



ll

of the Hilbert class field can be summarized in the

Artin Reciprocity Theorem: The homomorphism defined

by linearly extending the map

pI——«)(M1; k)

to all of I, the group of fractional ideals of k,

is surjective and has kernel H, the group of

principal ideals of k. Thus the galois group of CF(k)/k

is canonically isomorphic to the ideal class group

of k.

I now prove the useful

Lemma III: If K/k is galois then CF(K)/k is
 

galois.

PROOF: Suppose B is a prime of K that is linear over

k. If p = 3 n k then p has a linear factor P = B n K

in K and since K/k is galois, p splits completely in K.

However P is principal by Artin reciprocity and since

K/k is galois all conjugate factors P’ of P in K are

principal. So again by Artin reciprocity each conjugate

factor P’ gains degree 1 in CF(K). Hence p must

split completely and by Lemma II, CF(K)/k is galois.
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CHAPTER II

PRELIMINARY RESULTS

1. AN EXAMPLE

The following example (MacCluer) shows that the answer

to question II is no. (A. Schinzel has informed me that a

similar counterexample was found earlier by J. Tate.)

The number field Q(\/1'C_)) has class number h = 2

and Hilbert class field

CF(Q(\/T5)) = OVER/'5‘)-

According to Artin reciprocity, a rational prime p # 2, 5

has non-principal divisors in Q(¢52D if and only if p

splits in Q(\/IO) into two distinct prime divisors, each

of which remains prime in Q(\/2,\/§) . In Legendre symbols

this is equivalent to

($1 = C >= -1

which obtains if and only if P 3 $3, $13 (mod 40). Thus

fi
l
m

for instance, no prime of the form p = 40x + 3 has principal

divisors in Q(/I6).

2. SPECIAL CASES

Now question II is worthy of closer examination as it

suggests an approach to the first question and is of some
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interest in itself. Specifically I shall prove:

Theorem I: Let k be a number field galois
 

over Q, CF(k) the class field of k, and C

a primitive m-th root of unity. If CF(k) n k(§) = k

and if k n Q(§) = Q, then for each (a,m) = 1

there are infinitely many primes p E a(mod m) ’4”

which split principally and completely in k. (I

will say a rational prime p splits principally

in k if each prime factor of p in k is

 

principal in k.)

PROOF: We have the following Artin diagram

CFLkHQ)

///////////

k(C)///

\

A prime p of k with Artin Symbol (pklélZE-j = Ua’

where Ua(§) = Qa, has absolute norm HnHk E a mod m.

Thus if in addition p is linear over Q then Hka = p E a mod m.

It now only remains to produce infinitely many such principal



l4

primes p, i.e., with Artin symbol <_§EJ§lZ£-) = 1.

But by hypothesis the galois group

G(CF(k)(§)/k) a G(CF(k)/k)xG(k(§)/k).

Thus by the Cebotarev density theorem l/h m(m) of the primes

\

of k have C CF(k;(£)/k ) = l x Ga, where h is the

class number of k.

But this means

(lg-Ellis) = 0a and (W) = 1.

Since almost all primes of k are linear over Q, we need

only consider such primes p of k. But this means

Hka = p E a mod m. Also p principal and k/Q galois

implies p splits principally in k. Thus at least

l/h-m(m)-(k:Q) of the rational primes p split principally

and completely in k and satisfy

p a a mod m.

Corollary I: Let k be a number field (not neces-

sarily galois over Q) and A be the discriminant

of k. Suppose (m,A) = 1, then there are infinitely

many primes p E a (mod m) which split principally

and completely in k.

2399:: Since (A,m) = 1, every prime divisor of m is

unramified in k and hence unramified in the galois closure

k of k. However, the primes which ramify in Q(§) are

exactly the divisors of m and so Q(§) n k = Q. From this

it follows that

[CF(E) n i<§> E] = [(CF(E) n E(g)) n Q(€)=Q]-
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Now because (A,m) = 1, no prime can ramify in the exten-

sion (CF(k) fl k(§) fl Q(Q))/Q and so this extension is of

degree 1, hence CF(k) fl k(§) = k. We can thus apply

Theorem I to get infinitely many primes p E a mod m

which split principally and completely in k and hence also

split principally and completely in k.

Remark: It is worth noting that there are always

infinitely many positive rational primes p E 1 mod m

(for any m) which split principally and completely

in any number field k.

PROOF: By the Cebotarev density theorem the set of primes

which split completely in CF(k)(g) has positive density.

Also under certain hypothesis question II is true for

all modulii m. I now prove

Theorem_II: Suppose the number field k is

galois over the rational numbers Q and has

class number h. Let n = (k:Q) and take m > 1

and a to be any integers with (a,m) = 1. If

(n,h) = 1, then there are infinitely many rational

primes p with

p E a mod m

which factor into principal ideals in k.



16

23992: Let CF(k) be the Hilbert class field of k and

let G and H denote the galois groups G(CF(k)/Q) and

G(CF(k)/k) respectively. Then H has order h and is a

normal subgroup of G. Also (GzH) = (k:Q) = n. Since

(n,h) = l, the Schur—Zassenhaus Lemma [3] applies to

give a subgroup A of G for which G is semi-direct

product of A and H. Let L be the subfield of CF(k)

with galois group G(CF(k)/L) = A. Note that CF(k) = kL

and that k n L = Q.

I now show that if a prime B of CF(k) has its

Frobenius automorphism [.QElngQ 1 in A, then p = B O Q

splits into principal prime ideals in k. We need only note

that the restriction map

0!
 Mlk

gives an isomorphism of G(CF(k)/L) and G(k/Q). Also

[4119“: 15:21::

 

Thus if [.inngQ 1 is in A then p = B fltQ gains the

same degree in both R and CF(k). Since k/Q is normal,

p splits into principal prime ideals in k.

Next we note that L D Q(Q) = Q where Q is an m-th

root of unity. Suppose some rational prime q has ramifi-

cation index e’ in L n Q(§). Then e’ divides (LzQ) = h.

On the other hand e’ must divide the ramification index

e of q in CF(k). But e divides n so e’ also

divides n. Hence e’ = l and L 0 Q(Q) = Q. Therefore

the substitution determined by

Oa(C) = £3 (a,m) =1
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is in G(L(§)/L). By the Cebotarev density theorem, the

set of primes P of L with Artin Symbol

<M§1Q>_
— o

P a

has positive density. Since almost all primes of L are

of degree 1 over Q, we need only consider such primes

P. Now (gig-ML): Ga and P linear over Q implies

p = HPHL E a mod m.

Now let m be a divisor of P in CF(k). Since P is

linear over Q ‘we have that [.QfilngQ is in A and

as was shown above, p = B Q Q must split into principal

prime ideals in k. This gives the desired result.
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CHAPTER III

RESOLUTION OF THE LINEAR CASE

As we have just seen, there are infinitely many primes

p E a mod m that split principally in k provided the

modulus m contains no primes that ramify in k. On the

other hand we have seen that there are no primes p e 3 mod 40

that split principally in (QQ/IO), a field in which both

2 and 5 ramify. We shall soon see that the non-existence

of such primes is not solely because of the ramification of

the factors 2 or 5 of m = 40, but because m = 40 has

at least two distinct prime faCtors, both of which are

ramified. For

Theorem III: Let k/Q be galois, z be prime,

(a,L) = l, and (m’,L) = 1. Then for any n 2 1

there are infinitely many positive rational primes

p which split principally in k with

p E a mod Ln

and

p E 1 mod m’.

Once that we have proved Theorem III we have an immedi-

ate solution to Question I for k/Q galois. That is:
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Theorem IV: If k/Q is galois and (a,m) = l,
 

then there are infinitely many rational integers

x E a mod m

all of whose prime factors split principally in k.

Later I will show that the assumption of normality on

k/Q can be deleted. But now I prove Theorem III via two

lemmas.

Lemma IV: Let M/L and N/L be finite extensions

of the number field L. Suppose M/L and MN/L

are galois and M n N = L. Let n be a prime of

MN such that the degree of TN = B n N over L

equals 1. Let p = T O M. Then the order of

['fléé J is precisely the order of [ Mglfl ].

PROOF: We first note that we have an isomorphism between

the galois groups G(MN/N) and G(M/L) and that the

isomorphism is given by the restriction map

OF———)OIM .

Let [ flflég ] = G. Since the degree of 3N over L is 1,

it follows that [ MgAN ] = [ Mfléé ] = o and so 0 E G(MN/N).

Thus the order of 0 equals the order of GI . But from
M

the definition of the Frobenius symbol

O|M=iM€Ll'
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Lemma V: Let k/Q be a finite galois extension

and L a rational prime. Let Q be a prime divisor

of z in the class field CF(k) of k with inertial

field I = I(8) over Q. Finally let p be a prime

of CF(k) unramified over Q.

If the degree of the prime TI 2 n O I is 1

over Q, (or even over k D I), then the prime

p=$nk

is principal in k. Moreover the rational prime

p = P 0 Q

splits principally in k.

PROOF: We have the following diagram

CF(k)

E

i
I

Q

Recall that CF(k)/Q is galois.

Note that an is the inertial field

Q and, since CF(k)/k is unramified,

[CF(k):I] = [k:(kflI)].

Since k/(kflI) is normal it follows that

By Lemma IV it follows that the order

equals the order of [ EAL§Q1)] equals f,

of Bflk over

CF(k) = kI.

of [going]

say. Now
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since the degree of BI over k D I is 1, the degree of

3 over Q is f. But the degree of p over k D I is

also f so p must gain degree 1 in the extension

CF(k)/k. Thus n is principal in k and since k is

normal, p must split principally in k.

PROOF OF THEOREM III: We let g be a primitive Ln—th root

of unity, C’ a primitive m’-th root of unity. We have

CF(
k)

I(
g’)

/

up)
,

fi’

I”
””
””

””
”’
/

\\
\\

///
/

~//
//’

/’Q
(C)

//
//
//
//
//

Q
’4
‘,

wh
er
e

I is as in Le
mm
a

v. No
w I(Q

’) fl Q(Q
) = Q Si

nc
e

L is totally ramified in Q(§) yet has an unramified prime

factor in I(§’). Hence

G(Q(C)/Q) 2' G(I(§.§’)/I(§’)).

Thus the substitution Oa(§) = Qa is an automorphism of

I(§,Q’)/I(§’). By the Cebotarev density theorem, the set

of primes p of I(§’) with Artin Symbol

('Iigifi’3/I(Q’lj> = Ca

has positive density. Since almost all primes of I(Q’) are

of degree 1 over Q, we need only consider such linear primes.

However, if p is such a prime then

p = Hp“ E a mod Ln
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and

p a 1 mod m’.

Let pl = p n I, then the degree of pI over Q is 1.

So by Lemma V , p must split principally in k which

proves Theorem III.

I will now show that the assumption of normality on

k/Q can be deleted.

Lemma VI: Let k be an arbitrary number field and

k be the galois closure of k. Suppose I is a

rational prime and 9 is a prime factor of L in

CF(k). Take I = 1(8) to be the inertial field of

9 over Q and T = T(B) the inertial group. Then

T n G(CF(k)/CF(k)) = T n G(CF(k)/k)

2399:: Let I’ and I” be the inertial fields of 9 over

k and CF(k) respectively. Since CF(k)/k is unramified,

it follows that CF(k) C I’, and so I’ = I . However,

G(CF(E)/I'> T n G(CF(k)/k)

and

G(CF(R)/I”) T n G(CF(k)/CF(k))

With the same notation we now have

Lemma VII: If ‘13 is any prime of CF (k) such that

[ EELgLZQ J E T then p = T O k is principal in k.
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PROOF: We have the following diagram

CF (1'2)

/ l \.

.\\ /

k I

CF(k)

1
0
—
3

- '1

Say [ EElgllg J = O and that the degree of p over Q

is fl then

f

[W120 1 ee<cF(iZ)/k>nrr.

Hence

f ’ \

o 1 e G C CF(k)/CF(k) ) n T

by Lemma VI. Thus p = T O k gains degree 1 in CF(k)/k.

r _

Corollary II: If L.Q§i%1£Q J 6 T then p = 3 O Q

splits principally in k.

3399:: In the preceding proof we can replace k by any of

its conjugate fields G(k) and CF(k) by CF(O(k)) and get

that p0 = m 0 G(k) is principal. Say p0 = 0(a). Then

0-1(50) = a is principal in k. But O—1(®) lies above

0-1(p0) and since the galois group acts transitively on the

primes of CF(k) dividing p, it follows that all prime

factors of p are principal in k.
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And so finally we have

 
Theorem V: If k is an arbitrary number field and

(a,m) = 1, then there are infinitely many rational

integers

x a a mod m

all of whose prime factors split principally in k.

PROOF: Using the result of the preceding corollary we can

now retrace the proof of Theorem III and the desired result

follows.

It is now possible to slightly strengthen Corollary I

of the previous chapter. Specifically I shall prove

Theorem VI: Let k be a number field with discri-
 

minant A. If m is a positive integer with

(m,A) = in where z is prime, then for each

a with (a,m) 1 there are infinitely many primes

p a a mod m

which split principally in k.

PROOF: Let Q be a prime factor of z in CF(k) and

I = 1(9) to be the inertial field of Q. If f is
\J

m-th root of unity then

Q(C) n I = Q.

the substitution
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, a

Oa' €t————)€

is in G(I(§)/I). Now the set of linear primes P of

with

has positive density. But

p = HPHI E a mod m

and by Corollary II, p splits principally in k.
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