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ABSTRACT

OPTIMAL CONTROL OF LINEAR DISCRETE MACRO-ECONOMIC SYSTEMS

By

Kioumars Paryani

This dissertation presents the results of research directed

at the formulation and application of optimal control theory in a

dynamic model of the U.S. national economy. This dynamic macro-

economic model consists of a set of difference equations. The

model incorporates aggregated variables generally considered by

economists to be fundamental in determining the dynamic monetary

and fiscal characteristics of the U.S. economy. The effects of

stochastic environmental influences are provided by adding a noise

variable to each behavioral equation.

Analysis and classification of the parameters of the model

and its stability properties are considered in this work. The

eigenvalues suggest that the natural response of the system is

inherently stable. Step perturbations in the control variables

are analyzed to determine what weightings of these variables yield

the most significant impact on the model output (GNP).

The macro-economic model is reformulated in state-space

format as a prerequisite to the application of modern optimal con-

trol theory. A quadratic social welfare functional with penalty

factors on the system's error and on the activity of the control

vector is used. The optimal control policy is derived using dynamic
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programming and the principle of Optimality. Numerical computa-

tions for the minimization of the quadratic performance index are

included. Moreover, a sensitivity analysis of the penalty co—

efficients and weighting factors on the components of the control

vector is performed. It is shown that the Optimal control policy

changes significantly with penalty and weighting values as well as

with the length of the planning horizon.

The Optimal control variables differ from the actual values

of these variables during the period 1954-1963, suggesting the use

of more flexible control policies by the decision-makers. During

this time, application of optimal economic control policies results

in a ten-to one-hundred-fold improvement over the actual performance,

with respect to the specific assumptions made in the criterion func-

tional of the study. It also yields a smoothly increasing path for

the output (GNP), which implies stable levels of employment and

prices.
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INTRODUCTION

OPTIMAL CONTROL OF LINEAR DISCRETE MACRO-ECONOMIC SYSTEMS

During the past two decades, optimization models have played

an extremely important role in all areas of engineering and science.

In this connection, there arises the question of finding the very

best (in one sense or another) or, as is said, the optimal control

of the process. For example, one can Speak about optimality in the

sense of rapidity of action, i.e., about achieving the aim of the

process in the shortest time; about achieving this aim with a

minimum expenditure of energy or cost, etc. Mathematically formulated,

these are problems in the calculus of variations, which in fact owes

its origin to these problems. However, solution of a whole range

of variational problems which are important in contemporary science

and technology lies outside the classical calculus of variations.

These problems can be approached by the means of Pontryagin's

Minimum (Maximum) Principle or Dynamic Programming, the two most

important techniques of dynamic Optimization procedures.

In economic theory there has been an extensive discussion

of aggregate models of capital accumulation, much of it directed

toward the determination of investment plans Optimal under some

specified criterion, starting with the pioneering work of Ramsey

(Ref. R-2), see also Refs. C-1, C-2, C-3, C-4, C-5, K-8, and 8-5.

In these problems classical calculus, calculus of variations, and



later, modern control theory, Pontryagin's Minimum Principle and

Dynamic Programming, have been of great help. To give some idea

of the importance of the application of optimal control theory in

economic systems one can refer to Refs. A-2, A-5, B-l, B-2, B-lO,

B-l4, B-15, B-l6, C-1, C-2, C-13, D-2, D-3, D-4, F-4, H-6, H-7, I-l,

I-2, K-lO, L-2, M-1, M-2, P-l, R-l, 8-2, 8-3, 8-6, S-7, 8-9, 8-10,

8-11, S-12, 8-13, 8-14, and T-lO. However, almost all of these

studies have been involved with the theoretical aspects of the

subject.

In recent years, a few engineers have studied the actual

application of Optimal control theory to macro-economic systems

(or micro-economic systems in some cases) and have obtained numerical

results (Refs. A-2, B-14, B-lS, H-7, and P-l). Also, the economist

Tingergen (Ref. T-7) has treated these problems with little emphasis

on quantitative description.

The purpose of this thesis is to apply some of the new

developments in the variational calculus, Optimal control theory, to

models of the U.S. national economy and thus derive new insights

for economic decision~making. A discrete linear dynamic macro-

economic system is utilized in this study. The importance of

applying control theory and optimal growth theory resides not only

in investigating whether real world experiences are near-Optimal,

but also in studying the basic issues in capital theory and economic

decision-making. It may be emphasized that the model considered

here contains a considerable degree of realism and usefulness.

The dissertation problem was motivated in part by a desire

to test empirically some of the prOpositions given by economists.



For example, there are two propositions which have been closely,

but not exclusively, associated with Milton Friedman in recent years.

The first is the hypothesis that certain control variables that can

be either totally or partially manipulated by a decisiondmaker are

ineffective in stabilizing some target variables, e.g., gross

national product. The implications are that policy changes may be

detrimental as often as they are beneficial, viewed from the stand

point of economic stabilization. Furthermore, the most effective

strategy might be either no policy at all or adherence to some

simple rule, e.g., a three to four percent increase in a control

variable, e.g., money supply, per year (Ref. K-8). The second

hypothesis is that the money supply is a more significant and

important determinant of consumption and income than are autonomous

government expenditures (Ref. K-8).

The outline of this thesis is as follows. In Chapter One

some general properties of economic systems, their complexities,

and an introduction to the dynamic optimization techniques are pre-

sented. Chapter Two contains the application of the minimum principle

and dynamic programming in a simple optimal planning model for the

illustration of the use of the general theory. Chapter Three des-

cribes general systems modeling, the Kmenta/Smith (K/S) model in

econometric format, and dynamic analysis and stability of the model.

Chapter Four presents a state Space formulation of the K/S model and

a quadratic social welfare cost functional. Chapter Five illustrates

the derivation of the optimizing algorithm using dynamic programming

and the principle of optimality. In Chapter Six numerical solutions

of the optimal control policy for various penalty and weighting factors



are analyzed. Finally, in Chapter Seven a summary of conclusions

and some recommendations for further future research are presented.



CHAPTER ONE

SYSTEMS ANALYSIS AND CONTROL THEORY IN SOCIO-ECONOMIC

SYSTEMS - BACKGROUND INFORMATION

Systems analysis in general and control theory in particular

are relatively new additions to the methodological repertoire of

social scientists, especially where research and theory development

in new areas are concerned. Whether these techniques are as good

as some would have them or as bad as others are eager to assert,

there are certain types of research problems for which they are

appropriate. This chapter is intended to introduce some basic con-

cepts of economic systems and to demonstrate the most important

and well known dynamic optimization techniques.

1.1 Some Basic PrOperties of Economic Processes

In general, economic processes have three important char-

acteristics. The first and the most obvious characteristic of

these systems is that they change over time. Both policy makers

and researchers strive to understand these processes, often with

the hope of accurately predicting the state of the systems at some

future point in time.

Second, economic systems are characterized by complex and

often unknown relationships among their constituent components

(or variables). Often, the net effect of such complexities and

variations among the variables is to inhibit the comprehension



and prediction of the effects of changes in key variables.

Finally, feedback plays a control role in many of these

systems. Feedback in economic systems may be viewed as the partial

return or revision of the effects of a given process to its source,

or to some preceeding stage, so as to reinforce or modify that

prior definition. In general, the processes and effects associated

with feedback are little understood by decision (policy)-makers.

Hopefully as the understanding of economic systems increases, a

control system can be designed which can monitor the system and

guide it to some desired future state.

From the reasoning given above, there is apparently a

strong need for research tools which will take into consideration

the time-varying nature of these socio-economic systems, the fre-

quently complex relationships among them, and the effect of feed-

back on the future states of the system. Systems analysis and

control offer a methodology which explicitly accounts for these

main characteristics of these processes. Such research tools are

vital to the social scientist interested in developing, modeling,

and testing theories of socio-economic processes. Furthermore,

such tools are vital to the policy planner faced with the problems

of selecting an optimum strategy from among the options available

to him for solution of a particular socio-economic system. It

should be mentioned that any specific problem does not necessarily

have a unique solution; indeed, it often may have infinite number

of solutions. If the various solutions are judged on the basis of

a specific payoff function each possible solution is characterized,

as a rule, by a different value of this function. A solution



associated with the optimum value is referred to as an optimum

solution.

1.2 Calculus of Variations

The calculus of variations is concerned primarily with the

Study of maxima and minima of a real-valued function f of a

variable x on a space S. The variable x may represent a point,

a curve, or a surface in an Euclidean space. It may represent a

point in a Hilbert space or more general spaces.

The general theory for the problem began with the study of

path of least time. Methods of variational calculus are in a basic

sense extensions of the techniques of point Optimization of dif-

ferentiable functions in differential calculus into the function

space, in which the problem is to determine under certain conditions

an optimum function rather than an optimum point. Intertemporal

optimization problems are usually problems of variational calculus

with or without some modifications. The modifications introduced

by control theory are the classification of variables into states

and controls that may be subject to various types of equality and

or inequality constraints (Ref. S-12). Since the overall perfor-

mance of an optimal system can be visualized as one in which dis-

tinct stages may be recognized such that decisions at later stages

do not affect performance in the earlier ones, the control theory

approach has a very close similarity to the technique of dynamic

programming and its associated computational algorithms.

One type of problem that may be approached by variational

calculus is:



t

1

min 1 = I F(§(t), g(t), t)dt (1.5.1)

25(t) to

where g(t) = g: §(t) with x(t0) = x0 and 5(t1) = 51 fixed,

and F(°), a scalar function of vectors, is convex and differen-

tiable in x, i, and continuous in t. This problem is the simplest

problem in the area since explicit constraints on 5' and g, are

not imposed.

An Optimal path, g(t), is found by showing that certain

necessary conditions must be satisfied for every t E [t0,t1].

This is just the opposite from the dynamic programming approach,

where the Optimal path is developed in a stagewise manner.

Since the variational method will not be used in the sequel,

details are not included here and instead readers are referred to

Refs. B-12, G-l, G-2, and H-2.

1.3 Discrete Minimum (Maximum) Principle

The Maximum Principle originally developed in 1956 by

Pontryagin and his associates (Ref. P-6), provides an elegant

method of obtaining an optimal path solution for very general

dynamic systems. An excellent comprehensive treatment of the

essential problems in the theory of Optimal control, together with

which are the use and proof of the maximum principle, is given by

Rozonoér (Ref. R-4). The first attempt to extend the principle

to the optimization of multistage processes was made by Rozonoér

(Ref. R-4, III) in 1959, for systems linear in state variables.

In 1960, Chang (Ref. C-6), presented the discrete version of the

principle for nonlinear systems, which was further explored in



his subsequent papers and a book (Refs. C-6, C-7, C-8, and C-9).

An algorithm essentially identical to Chang's version,

but different in notation, was independently deveIOped by Katz

(Refs. K-2 and K-3). Following the procedure used by Katz in the

derivation of the discrete maximum principle, Fan and Wang (Refs.

F-l, F-2, and F-3), found that the same algorithm can be extended

with some modifications to solve optimization problems of more

complex systems.

Discrete Dynamic System

In the dissertation a system S possessing the following

properties is called a "discrete dynamic system":

(i) A set of states {53 = I = RP called the state Space,

where RF is an n-dimensional Euclidean vector space.

(ii) A set of inputs or controls {2} = u C E” called the

input Space.

(iii) An ordered subset T of the set of positive integers,

called the time set, i.e., T = {t} = {0,1,2,...,N} with N pre-

sepcified (time horizon).

(iv) A set of outputs {y} = U = E; called the output space,

with an algebraic equation y(t) = ht(x(t),‘g(t)), t = 0,1,...,N,

relating the output vector 1(t) at t to the state vector x(t)

and control vector ‘g(t) and where ht(x(t), g(t)) is a vector

valued function mapping 1 X u a u.

(v) A difference equation describing the evolution of the

state of the system in time, i.e.,

£(t + 1) = _f__t(§(t): 2(t)) 9 t O”°°’N-1
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where xflt),,g(t) are the values of the state vector and the con-

trol vector at time t respectively, and ft(§(t), g(t)) is a

vector valued function mapping I X u- I. For every fixed

u(t) 6 u, £t(') is twice continuously differentiable with respect

to xfit). Moreover, ft(') and all its first and second derivatives

with reSpect to x(t) are assumed to be bounded over X x U for

as.” .
any bounded sets X CZI, U<: u, and the matrix 6 = SEZET— is

assumed to be non-singular on I X u. The difference equation in

(v) above, is a rule enabling one to compute the state of the

system at time (t+1) from the knowledge of both the state and the

control at time t.

Statement of the Optimal Control Problem

Let 5(t) be the vector of variables describing the state

of a discrete dynamic system at time t. The dynamic behavior of

xfit) is given by:

50: + 1) = —f-t(’i(t)’ 3(0), t = 0,1,...,N-1 (1.6.1)

where 3(t) is the vector of control (policy) variables.

In addition, the initial state 50 E I for t = 0, i.e.,

5(0) = 50 and a Specified terminal (target) set I C I which is

a smooth N-k dimensional manifold of the form

I = {x_: gt(x(t)) = 0; t = 1,2,...,k s N} (1.6.2)

where the functions g1(§),...,gk(x) are given twice continuously

differentiable mapping from I into R} such that for every

x_€ I the vectors g;'gt(x); t 1,...,k are linearly independent

are given.
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Then, the optimal control problem is to determine the

optimal control sequence

{Q(:); t = 0,1,...,N-1} (1.6.3)

and the correSponding Optimal state path (trajectory)

{3(t); t = 0,1,....N} (1.6.4)

such that

31t+1) = £t(3(t), §(t)) , t = 0.1,. .N-1

3(0) = x

‘0 (1.6.5)

9(t) E U , c = 0,1,. .,N-1

ifiN) E I

and moreover, among all sequences {3(t)} and {x(t)} satisfying

the above conditions, the cost functional

N-l

IN({g(t)}) = 2 Lt(_>g(t), 30.)) (1.6.6)
t=0

attains its minimum value at {3(t)} = {§(t)}, and

{zflt>} = {3(t)l-

Necessary Conditions for Optimality - the Mimimum Principle

Given the control problem formulated as above and satisfying

the aforementioned assumptions, the following theorem can be proved

(Ref. H-l).

Theorem: (Minimum Principle for Discrete Systems)

Let {3(t); t = 0,1,...,N}, 3,6 I, be the state trajectory

of system (1.6.1) correSponding to the sequence of controls {g(t)},
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§_E u, originating at 3(0) = and terminating at fiflN) E T,E0

I defined by (1.6.2). Then, in order that Ig(t)} minimize the

cost functional (social welfare functional in economics), (1.6.6),

it is necessary that there exist a sequence of vectors

{§(t); t = 0,1,...,N}, {p(t)} =19 = RP, called the costates (shadow

prices in economics), such that:

(i) The scalar function:

H(5‘_<(t). ‘2(t+1), g(t)) = Lt(2“<_(t), 2(0) + <fo_(t+1), £43m. g<t>>>

(1.6.7)#

called the Hamiltonian has an absolute minimum as a function of

2(t) over u at u(t) = g(t), V t = 0,1,...,N-l, i.e.,

min H(R_(c) ,§(t+1) ,g(t)) = H(5‘_c(t),f1(t+l),§_(t)) (1.6.8)*

203611

or, equivalently

H(g(t).i(t+1).‘g(t)) {- H(3(t),i‘g(t+1).y_(t)) v g E u (1.6.8a)

(ii) If 3(t) is the corresponding trajectory to Q(t),

then the evoluation of 3(t) and §(t) in time are determined

by the canonical system of difference equations:

30:) = h; (Rm ,“E<t+1).§.<t>> = nanny.»

for all t = 0,1,...,N satisfying the initial condition 3(t0) = 50,

 

#

n

<xjy? representing the inner (dot) product = 2 xi-y. for 5,1 6 En,

1=1 1

*The vector ‘p(t) in this study and in Ref. A-6 is the negative

of the costate vector considered in the maximum principle of Pontryagin.

Thus (1.6.8) is eXpressed as a minimum rather than a maximum and the

principle is called "minimum principle".
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and

fi(t+1) = (3(t) .fi(t+1),fi_(t))

H

5.503)

for all t = 0,1,...,N-1 satisfying the final condition given below.

(iii) Transversality Condition

There exist real numbers r1,...,rt such that

A

2(N) =

t

"
M
W

1rt i); At (300).

that is, fiflN) is normal to T at gflN), i.e., §f(N)3(N) = 0.

Remarks: (1) If k = N then I is a point in RP and

nothing may be said apriori as to the value of §(N). (2) If

k=0 then T=gn and fiCN)=Q.

1.4 Dynamic Programming

The founder and the most important propagator of this

method is Bellman (Refs. B-4, B-S, B-6, B-7, B-8, and B-9). Dynamic

programming applies primarily to a situation in which many decisions

have to be made to optimize the overall performance of a system,

but the system is one in which distinct stages may be recognized

and decisions at the later stages do not affect the performance of

the earlier ones. Dynamic programming works best when the number

of decisions at any stage is not too large and above all when the

effect of these decisions can be represented in only a few variables.

Since a continuous process can always be regarded as the limit of

an infinite number of infinitesimal stages, it is not surprising

to find that dynamic programming is an excellent way of approaching

problems that are in the domain of the calculus of variations.
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While the optimal control problem itself is a two-point boundary

value problem, the principle of optimality (P0) in dynamic programming

reduces it to an initial-value problem and a multi-stage decision

process.

Principle of Optimality

An optimal control (sequence of decisions) has the property

that whatever the initial state and initial control (decision) are,

the remaining control must constitute an optimal one with respect

to the state which results from the initial control. For a proof

see Meditch (M-S, pp. 331-332). More precisely, a policy which is

optimal over the interval 1 S t S‘N, i.e., for t E [1,N], is

necessarily optimal over any sub-interval v S t S N, where

1 S v S N.

This principle has proven to be a powerful result for use

in the solution of Optimal control problems. In discrete-time

(sampled-data) systems, it is used to reduce the problem from

determining an entire control sequence at once to determining the

elements of the sequence singly and recursively. In continuous

time problems, its application reduces a calculus of variations

problem to one of solving a particular type of partial differential

equation.

Statement of the Dynamic Programming Problem and Derivation

of the Algorithm

A cascaded (serially connected) multi-stage deciSion process

is one where a number of single-stage processes are connected in

series so that the output of one stage is the input to the succeeding

stage.
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Fi(x(i),u(i)) FN(X(N),U(N))

Li(x(i),u(i)) LN(x(N),U(N))

Fig. (1.7.1). A cascaded multi-stage decision process

 

 

In Fig. (1.7.1), variables x(t), t = 0,1,...,N+l give

all the relevant information about inputs to the boxes and are

called state variables; u(t), t = 0,1,...,N are called decision

(control) variables. Associated with each control (policy) vari-

able, u(t), and each state variable, x(t), is an output (state

variable), x(t+l), which is related to the input and control via

a stage transformation function Ft(x(t),u(t)), i.e.,

x(t+l) = Ft(x(t),u(t)) for every t = 0,1,...,N.

Finally there is a criterion (objective) function, or cost

function Lt(x(t),u(t)), t 0,1,...,N that measures the effective-

ness of the decisions made and the outputs arising from these

decisions. A policy which minimizes the criterion (cost) function

N

IN = E Lt(x(t),u(t)) is said to be an optimal policy.

t=O

Considering the implication of the principle of optimality

as a multi-stage decision process, it is desired to minimize the

N-stage objective function which is given as the sum of the indi-

vidual sta es' costs i.e.
, 3
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N

min IN = min 2 Lt(X(t),U(t))

{u(t)} {u(t)} t=O

= min [L0(x(0),u(0)) +...+ LN(x(N),u(N))]

[u(O),...,u(N)}

subject to

x(t+l) = ft(x(t),u(t)) , t = 0,1,...,N .

Let the minimum value of I dependent only upon the
N,

initial state, x(O), and the number of stages, N, be denoted by

fN[x(0)], i.e.,

fN[x(0)] = the total N-stage cost Obtained starting in

state x(O) using an optimal policy for each

stage.

The principle of Optimality States that regardless of the

initial decision u(O), for N Z 1, the summation

L0(x(0).u<0)> +[L1(x<1>,u(1>>'+...+ 1N(x(N>,u(N>)1 =

L0(x(0),u(0)) +'fN_1[FO(X(0),U(0))]-

Note that x(1) = F0(x(0),u(0)). Since this summation holds for

all initial decisions u(O), the minimum cost fN[x(0)] must be

minimized over u(0). That is, the basic function equation

fN[x(0)] = :23){L0(x(0),u(0)) + fN_1[x(l)]}, N 2 1

in which

f0[x(0)] = min L0(x(0),u(0))

u(O)

is obtained.
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Alternatively, this can be derived as follows:

min I = min min I

{u(o>.u<1>.....u<N>} N u(o> {u(l)....,u<N>} N

S.T. x(t+l) = Ft(x(t),u(t)), t = 0,1,...,N .

Hence

fN[x(0)] = min -[L0(x(0),u(0)) +...+ LN(x(N),u(N))]

{u(O),...,u(N)j

= min min [LO(X(0) .U(0)) +...+ LN(XCN).U(N))]

u(O) {u(l),...,u(N)}

= min {L0(x(0),u(0)) + min [L1(x(N),u(N)) +...]}

u(0) [u(l),...,u(N)}

= min {L (x(O),u(O)) + f [x(l)]} .

u(O) O N-1



CHAPTER TWO

APPLICATION OF MINIMUM PRINCIPLE AND DYNAMIC PROGRAMMING

IN A SIMPLE OPTIMAL PLANNING MODEL

In Chapter One two important methods of dynamic optimiza-

tion techniques, i.e., Pontryagin's Minimum (Maximum) Principle

and Dynamic Programming, were discussed and derived. In the pre-

sent chapter these methods are applied to a simple Optimal planning

model in economics in order to illustrate the use of the general

theory. The optimal controls are determined analytically in order

to Show the difficulties which arise with Pontryagin's method.

One difficulty is that the use of Pontryagin's Principle introduces

costate variables, which doubles the dimensionality of the problem

to be solved. Furthermore, solving these examples will be helpful

in understanding the succeeding chapters, where a more complicated

system is studied.

2.1 Example 1

Consider the following elementary model of the dynamics of

a macro-economic model of the Samuelson-Hicks type:

y(t) = C(t) + I(t) + G(t) (2.1.1)

C(t) = C1y(t-l) + C2y(t-2) (2.1.2)

I(t) = 00(y(t-1) - y(t-2)) (2.1.3)

where

18
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C(t) = consumer spending

I(t) = gross private investment

C(t) = government purchases of goods and services

including federal, state, and local

t = argument, representing time in quarter or year

c1 + c2 = c, O < c < l and CO > 0

and all variables are real.

Substituting (2.1.2) and (2.1.3) into (2.1.1) and collecting

terms yields:

y(t) - b1y(t-l) - b2y(t-2) = G(t) (2.1.4)

where

Equation (2.1.4) is a difference equation in y(t) of the

second order with the forcing (input) function C(t). This equa-

tion can be represented, as shown in Fig. (2.1.1), in the form of

a block diagram with input, C(t), and output, y(t).

The solution of the system represented by (2.1.4) consists

of two parts, a homogeneous part (yh(t)) and a particular solu-

tion (yp(t)), i.e.,

 

y(t) = yh(t) + yp(t) (2.1-5)

where

t t

yh(t) = alt, + 6212 (2.1.6)

- C(t) = Git)
Yp(t) — 1'(°1+°2) 1_C (2.1.7)
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C(t)

 

 —1T-—--l-' y(t)

 

 

 

 
 

   
Delay t I

y(t-l) H (t)
     

Fig. (2.1.1). Block diagram for Samuelson-Hicks multiplier-

accelerator model, Eq. (2.1.4).

and 11 and 12 are the eigenvalues of the system, with OI, a2

depending on the initial conditions y(O), y(l).

Adding Equations (2.1.6) and (2.1.7) yields the equation:

(c)= t+ it+ 1'1 218)y 0111 “2 2 (C- ). C(t) ( - -

which is the total solution to the system (2.1.4) given y(O)

and y(l).

Notice that since ii, i = 1,2 satisfy the quadratic equa-

tion

x2 - blx - b2 = 0 (2.1.9)

2
+61 _\’b1 + 462

11. 1.2 = 2 . (2.1.10)

then
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To have real roots, the following condition must hold

2

b1 2 -4b2

or

+ )2 4< - ) (2 1 11)(c1 c0 2 c0 c2 . . .

Now, considering the solution (2.1.8), if I) and
II

IA2I < 1 then

lim 1: a x: = 0 and y(t) 4 (c-l)-1G(t) .

t—oco

If however, either -le\ or IA2I or both should be > 1,

then y(t), national income, will either eXponentially explode,

or oscillate violently. If 11, 12 are complex with unit modulus,

national income, y(t), will oscillate steadily about its main value.

A number of optimal control problems now spring to mind.

How should G(t) be chosen to control the fluctuations of the

economy when in a potentially unstable Situation? How should G(t)

be chosen in order to obtain a maximum or preassigned rate of growth

to the national income at some future time? Doubtless the constants

(c1, c2, Co) are affected by G(t), since this must be derived

from taxes which in turn affect the prOpensitieS to consume,

c = c1 + c2, and to invest, c0'

To consider the problem of stabilization, the above example

is studied with a quadratic cost functional (social disutility

functional) in the following example.

2.2 Example 2

Suppose in the above model
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G(t) = b0g(t-1) (2.1.12)

Where, g(t) is the policy variable, planned government spending

at time t.

Suppose further that government planners (decision-makers)

wish, by assumption, to set the value of g(t) such that:

N 2 2
min IN = z {a1(t)(yd(c) - ya(t)) + a2(t)(g(t-1) - gd(t-1)) }
g(t) t=1

(2.1.13)

subject to

y(t+l) - b1y(t) - b2y(t-l) = b0g(t), c = 1,...,N (2.1.14)

y(O)

y(l)

y

0 (2.1.15)

y1

System (2.1.14) is the same model used in Example I, logged

forward by one t and G(t) replaced by b0g(t-l). In the criterion

functional, Equation (2.1.13), a1(t) and a2(t) are given positive

numbers for t = 2,3,...,N. Also, yd(t) and gd(t) are the desired

(target) values for y(t) = ya(t) (actual y(t)) and g(t)

respectively. The target values are assumed to be known for all t.

To make the problem formulation compatible with that of

optimal control theory, let:

y1(t) = y(t-l)

and y2(t) = y1(t+l) = y(t).

 

For a discussion of the reasons for using a quadratic (dis)utility

functional in planning models, see Sec. 4.3.
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Then

y1(t+1) y(t)

and y2(t+1) y1(t+2) = y(t+l) = b1y2(t) + b2y1(t) + b0g(t)

from Equation (2.1.14).

Hence

y1(t+1) 0 1 y1(y) 0

= + g(t), t = 1:°°°:N-1 (2°1°16)

b

is the state model of the system with the output of the system

being

y1(t)

y(t) = [O 1 '+ [0] g(t), t = 1,...,N-l . (2.1.6a)

3 y2(t)

The variables y1(t) and y2(t) are the outputs of the

delay elements in Fig. (2.1.1) and they represent the state of the

system. The Equations (2.1.16) and (2.1.l6a) are in the general

form

x(t+l) = A 1“) + P. g(t)

y(t) = 2,21t) + d g(t)

where

0 1 0

A = , ‘b = , .g = [0 1], d = 0

b2 b1 b0

y1(t)

and y(t) = . In Fig. (2.1.2) a simulation diagram for

y2(t)

this system is shown.



 
 

 

 
 

y(t)

 

     
Fig. (2.2.2). Simulation diagram for the above system.

Before continuing with the rest of the problem, it is

important that the terms state and state space be clarified. A

state of a dynamic system is the smallest collection of numbers

which must be Specified at time t = t0 in order to be able to

predict uniquely the behavior of the system for any time t 2 t0

given any input belonging to the specified input set (space). Such

numbers are called state variables. The input Space (set) is de-

fined as the Space (set) of all possible inputs that can be applied

to the system. The state of a system at time t is uniquely

determined by the state at time t and the known input for t 2 t

0

and is independent of values of the state and input before to.

Suppose that at least n state variables x1,x2,...,x

O,

n

are needed to describe completely the behavior of a given dynamical

system. The set of n state variables can be considered as n

components of a vector 5, Such a vector x_ is called a state

vector. A state space is defined as an n-dimensional (tuple) Space
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in which x1,...,xn are coordinates. The state at time t of

a system defined by n first-order difference (differential) equa-

tions can be represented by a point in an n-dimensional state Space.

It may be noted that the state space approach of analysis and

synthesis of control systems usually deals with a set of n first-

order difference (differential) equations rather than a single nth-

order difference (differential) equation.

The two Equations (2.1.L6) and (2.1.168) together represent

the state Space representation of the model with y(t) = (y1(t) y2(t))'

being the state vector and y(t) the output of the model.

Since the problem here is concerned with the short-term

problems of economic stabilization rather than growth, it can be

assumed that yd(t) and gd(t) are fixed constants for all t

and, since they are purely translation factors, there is no loss of

generality in assuming them identically equal to zero (Ref. F-4,

pp. 218).

Under these conditions, the problem reduces to:

N

min I E {a1(t)y§(t) + 82(t>82(t-1>}

g(t) t=l

N 2
= 2: {1'(t)Q(t)x(t) + a2(t)g (t-1)} (2.1.17)

t=l

N

= 2 L(X(t)s g(t))

t=l

S.T. y_(t+l) = A y(t) + 2 g(t) (2.1.18)

where given 1(0) = yo, g(t) unconstrained,
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L(°,°) equals {-,-} in Equation (2.1.17),

0 O 0 l 0 Y1(C)

and Q(t) = , A = , b = . x(t) =

0 a1(t) b2 b b y2(t)

Solution

(1) Pontryagin's Principle Approach

Consider the Hamiltonian equation for this problem

H(y_(t). g(t). g(t)) = L(x(t). g(t)) + <20). x(t+1)>

or

H(y_(t). g(t). g(t)) = 81(t)y§(t) + a2(t)gz(t-1) + p1(t)y2(t)

+ p2(t)(b2y1(t) + b2y2(t) + b0g(t)). (2.1.19)

The necessary conditions for optimality imply:

.. aH__._ =

t = 1,2,...,N-1 (2.1.20)

H

Y2(t+1) = 2:27;)- = b2y1(t) + b2y2(t) + b0g(t)

with the initial conditions y1(0), y2(0) given, and

H -

P1(t"1) 3 ay1(t) - b2p2(t)

t = 2,...,N-l (2.1.21)

- a all—— t

The transveraality conditions are:

le'l)

and p2(N-l)

0 (2.1.22)

2a1(N)y2(N) . (2.1.23)

Since a1(t) and a2(t) are given positive numbers for
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each t, H(-) is a convex function of g(t) for fixed 41(t),

H(-) is differentiable, and the values of g(t), the control

variable, are not constrained, it follows that the minimum of

H(-) will occur at its stationary point; that is,

afli;i = =
88(t) 0 2a2(t)g(t) + b0p2(t) (2.1.24)

which implies

b

. =___0_ = ,
g(t) 2a2(t) p2(t) for t 1,...,N 1 (2.1.25)

Equation (2.1.25) defines the optimal contrél for this

planning model. The path of g(t) is determined after the co-

state variable p2(t) is specified. To find the function p2(t),

the following procedure is used:

Equation (2.1.20) implies:

b2

_ 0
y2(t+l) - b1y2(t) + b2y2(t-1) - 282(t) p2(t), (2.1.26)

after substituting for y1(t) and g(t) from Equations (2.1.20)

and (2.1.25) respectively. Starting from the last time period,

t = N-l, and using Equations (2.1.21), (2.1.22), (2.1.23) and

(2.1.26), successive Substitution yields:

p2(t) = k1(t)y2(t) + k2(t)y2(t-1) + k3(t) c = 1,...,N-l

(2.1.27)

where the coefficient functions ki(t)’ i = 1,2,3 are independent

of y(t) and are defined recursively by:
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k1(t) = h4(t+1) (b1h1(t+l) + h2(t+l)) ,

k2(t) = b2h4(t+l)h1(t+l) ,

k = h4(t+l)h3(t+l) ,

3

kIGN) a k2(N) E k3(N) E 0; k1(N+l) a k2(N+l) a k3(N+l) E 0

and

h1(t+l) = 2a1(t+l) + b1k1(t+1) + b2k2(t+2)

2

b0
+ b2k1(t+2) [b1 - (W)kl(t+l)]

b

h2(c+1) = b1k2(t+1) + b2k1(t+2) [b2 - (W)k2(t+lil

b2

h3(t+l) = b1k3(t+1) + b2k3(t+2) - b2k1(t+2)(-2—a-2(—(t:+-1-)-)k3(t+l)

b2 -1

h4(t+1) =[1 + h1(t+1)(—-Q—282(t))] .

Given the initial conditions y(0) = y0 and y(1) = y1,

the optimal control, g(t), may be calculated using Equations

(2.1.25) and (2.1.27).

Thus, Pontryagin's Principle increases the dimensionality

of the problem to be solved (i.e., because of the costate variables).

As the problem gets more complicated, it becomes almost impossible

to tackle the problem analytically. For this kind of problem

dynamic programming is a more appropriate solution algorithm.

(ii) Dynamic Programming

For relatively simple systems, the generation of the optimum

control policy can be accomplished by incorporating a filtering

device or an active network. In the case of complicated situations,
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a digital computer is usually advantageous in generating an optimum

control policy. Since problems of Optimum digital control may be

viewed as a type of multistage decision process (as was discussed

in Chapter One), the determination of an Optimum control law (policy)

is best carried out by means of the dynamic programming technique.

Recall the problem:

N

min IN = )3 (y'(t)Q (t)y_(t) + g'(t-1)a2(t)g(t-1)) (2.1.16a)

g(t) t=1

S.T.

x(t+l) = A y(t) + b_g(t) (2.1.17a)

1(0) = x0 -

Let the minimum value of IN, which depends only upon the initial

stage 2(0) and the number Of stages N over which it is desired

to minimize the disutility functional, be denoted by fN[y(O)];

that is,

N

£N[xfi0)] = min IN = min { E [23(t)Q(t)xfit) + g'(t-1)a(t-1)g(t-1>l}

g(t) g(t) t=1

(2.1.28)

where fN[y(O)] = the total cost of taking the system from initial

state 1(0) through N stages where an optimal

policy is pursued at each stage.

More generally, Equation (2.1.28) may be rewritten as:

fN «[100] min 1N__k

g(t)

N

min { E [1'(t)Q(t)1(t) + g'<t-1)a2<t-l>g<t-1>1}
g(t) t=kfi1

k = 0,1,2,...,N-l . (2.1.29)
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When k = 0, Equation (2.1.29) reduces to Equation (2.1.28), and

it is apparent that f0 = 0.

Now, assuming that the return from the first (k-l) stages

is optimum, then the cost of the remaining (N-k) stages is equal

to the cost from the k-th stage plus the optimum cost from the

remaining N - (k+l) stages, which can be expressed as:

{l'(k+l)Q (k+l)y(k+1) + g'(k)a2(k)g(k) + fN_(k+1)[y_(k+1)]} .

The principle of Optimality implies

fN_k[y_(k)] = min {Y'<1c+1>Q(1c+1)2(k+1) + g'<k>a2<k>g(k>

g(k)

+ fN_(k+1)[y(k+l)]} . (2.1.30)

Since the functional f is quadratic in y, it may be assumed

that

fN_k[YKk)] = Yf(k)n(N-k)xflk) (2.1.31)

with 0(N-k) being a square matrix to be defined later and

fN_(k+1)[l(k+1)] = 2'(1¢t1)O(N-(k+l))x(k+1). (2-1-32)

This assumption can readily be justified by mathematical induction.

The matrices n in.Equations (2.1.31) and (2.1.32) are positive

definite and symmetric. Substituting Equations (2.1.31) and (2.1.32)

into (2.1.30) yields:

x' (k)fl(N 401(k)

min) {y_'(k+1)[Q(1c+1) + fl(N-(k+1))]y(k+l) + g'(k)a2(k)g(k)}

g(k

m%§){yf(k+l)H(N-(k+1))y(k*l) + g'(k)a2(k)g(k)} (2.1.33)

S
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where

H(N-(k+l)) = Q(k+l) +-0(N-(k+l)) . (2.1.34)

Let

JN_k = {Xf(k+1)H(N-(k+1))1(k+1) + g'(k)a2(k)g(k)} (2.1.35)

In view of the system model (constraint equation) Equa-

tion (2.1 .l7a) ,

JN_k = {[A 100 + t g(k>]'H<N-<k+1)>[A y_<k> + _b_ g(k)]

+ g'(k>a2(k>g(k>}

= 2'(k)<bAA(N-(k+1))y_(k) + g'(k)[tpp,l(N-(k+1)) + 32(k)]g(k)

+ xf(k)mAEIN-(k+1))g(k) + g'(k)§gfi(N-(k+1))xflk) (2.1.36)

where

eAA(N-(k+1)) = A'H(N-(k+1))A a 2 x 2 matrix (2.1.37)

TbbCN-(HD) = yum-(Rune a scalar (2.1.38)

ggb(N-(k+1)) = A'H(N-(k+1))§, a column vector (2.1.39)

gbA(N-(k+1)) = g}H(N-(k+1))A a row vector (2.1.40)

and furthermore,

QLACN'(k+1)) = QAb(N'(k+1)) . (2.1.41)

Now the minimization procedure may be readily carried out

through ordinary differentiation, since the N-stage decision pro-

cess has been reduced to a sequence of single-Stage decision pro-

cesses. Differentiating Equation (2.1.36) with respect to g(k)
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yields:

d JN-k

d___g(k) = 0 = 2 SgbA(N-(1c+1))y_(k) + Roam-(HID + 82(k)]g(k)

(2.1.42)

Thus, the Optimum control policy is:

g(k) = q(N-k)y_(k) , k = 0,1,...,N-l (2.1.43)

where the feedback matrix (in this simple problem it is a vector)

3. is given by:

g_(N-k) = -[(pbb(N-(k+1)) + a2(k)j’1,9bA(N-(k+1)) . (2.1.44)

As Equation (2.1.43) shows, the optimum control policy is

a function of the state vector of the system. Since the feedback

matrix q_ involves the unknown matrix a, the optimum control

policy is still undefined. A recursive relationship between

matrices n and q_ may be found from Equations (2.1.33) and

(2.1.43). This recursive relationship together with Equation

(2.1.44) provides a computational algorithm for the evaluation

of the feedback matrix g(N-k) so that g(k) is determined for

each k = 0,1,...,N-l.

Substituting Equation (2.1.43) into Equation (2.1.33) and

making use of Equation (2.1.36) yields the minimum value of I

N

as:
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y_' (km (N 401(k)

y_'<k)tAA(N-(k+1>>x<k> + [em-10x00] '[obbm-(kfln

+ 82(k)][SL(N-k)y_(k)] + 1'(k)_cQAbCN-(1¢+1))[gL(N-k)y_(k)]

+ [aw-102(k)] 'sebA(N-(k+1))x(k)

1'(k)<I?AA(N-(k+1))1(k) + Y'(k)91'(N-k)[cp,2,l(N-(k+1))

+ ak(k)]g_CN-k)x(k) + 2'(k)s2Ag(N‘(k+1>)SL(N'k)X(k)

+ y_'(k)q'(N-k)g£A(N-(k+1))x(k) . (2.1.45)

Using Equation (2.1.44), the above equation reduces to:

1'(k)O(N-k)1(k) = x'(k)[@AA(N-(k+1)) + MAP-(N-(HIDflN-kflylk) (2-1-46)

Comparing both Sides of the above equation yields:

{I(N-k) = QAAW-(HID + QAEm-(k‘tlflflN-k) (2-1-47)

Starting with 0(0) = 0 for k = N-l, Equation (2.1.44)

gives:

_ _ _ -1

3(1) - [mhg(0) + a2(N 1)] mPA(O) (2.1.48)

and Equation (2.1.47) gives the value of 0(1) as:

0(1) = eAA(0) + §%b(0)flfll) (2.1.49)

where

(0) A'Q(N)A (2.1.50)

992(0) RfQ(N)9_ (2.1.51)
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gAEm) = A'Q(N)b (2.1.52)

For k = N-2, Equation (2.1.44) gives 9(2) and Equation (2.1.47)

determines 0(2). In like manner, 9(3), 0(3); 9(4), 0(4);

can be successively evaluated. Hence Equations (2.1.44) and (2.1.47)

provide the necessary recursive relationships for the determination

of the optimum control policy. These two recurrence relationships

illustrate that, even though the process to be controlled is

stationary, the over-all control system is a time-varying system

since the feedback vector g(N-k) varies with time.

Even though the computational procedure showed here may

look complicated, it is actually much simpler than that involved

using of Pontryagin's Principle. The methods of dynamic programming

have proved themselves both powerful and versatile in a number of

branches of economics, management, and engineering. It is of

interest how naturally they utilize the capabilities of modern

high-speed digital computers. Dynamic programming is a simple but

very useful concept which finds applications in solving multistage

decision problems, as shown in the above example and will be

illustrated further in Chapter Five.



CHAPTER THREE

KMENTA/SMITH DYNAMIC MODEL OF THE U.S. NATIONAL ECONOMY

IN ECONOMETRIC FORMAT

3.1 Systems Modeling

In dealing with modern control theory it is always assumed

that a system (model) is given in the state Space formulation. In

other words, the analysis of a system (physical or socio-economic)

begins with the postulation of a model. This was illustrated in

Chapter Two using the simple Samuelson-Hicks optimal planning model.

Before proceeding to a more complex model of the U.S. national

economy, some general remarks on modeling seem apprOpriate.

A model is an abstraction of a particular set of pro-

perties of a system, knowledge of which suffices for the prediction

of the behavior of the system under certain Operating conditions.

In recent years the word model has been misused to describe almost

any attempt at Specifying a system under study. There are dif-

ferences of Opinion about what kinds of Specification are permitted

to constitute a model in the scientific sense. By a model is meant

a specification of the inter-relationships of the parts of a system,

in verbal or generally in mathematical terms, sufficiently explicit

to enable one to study its behavior under a variety of circumstances.

In particular, it is desired to control and observe it, and to pre-

dict its path over time.

35
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To analyze the system quantitatively, it is necessary to

construct a mathematical representation of it. In practice, neither

the model nor its mathematical representation is unique and the

final choice is usually made on the basis of convenience.

Formal techniques for the modeling of almost all physical

components and systems (processes) have been sufficiently developed

to permit the construction of reliable predictive mathematical

models for them. However, there has not been much work conducted

in the modeling of socio-economic systems and generally acceptable

component models and modeling procedures for these kinds of systems

are now being develOped. It is important to realize that in the

synthesis of mathematical models, tradeoffs must always be made be-

tween the complexity of the model and its ability to represent the

characteristics of the system it introduces.

The objective of the present chapter is to study a macro-

economic model which incorporates those variables generally con-

sidered fundamental to the dynamics of the U.S. national economy

and yet which is mathematically tractable in terms of modern Optimal

control theory.

Due to recent developments in modern control theory, it is

now possible to handle more complex and comprehensive multi-dimen-

Sional systems than previously. Therefore, in terms of complexity,

the model considered in this work lies somewhere between such

analytical macro-economic models as those considered in Refs. H-S,

P-3, P-4,1FJIL and V-l, and the recent elaborate econometric models

used for prediction and simulation, such as Refs. D-5 and K-4.
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In modeling a system a number of assumptions are made to

reduce the complexity and Simplify the subsequent mathematical

develOpment. These assumptions may be stated in the following

notation. Suppose that to each element of a set A there is

assigned a unique element of a set 3; the collection, f, of such

assignments is called a function (or mapping) from A into B

and is written f: A a B or A 4 B. In other words, a function

is said to be an Operator which associates with each of the in-

dependent variable a single value for the dependent variable. That

is, a function is defined as a set of single-valued ordered pairs

given by:

f = {(a1,b1), (a2,b2), (a3,b3),...} (3.1.1)

where {-} denotes a set and (-,-) an ordered pair of elements.

Similarly a system S, such as the U.S. national economy, may be

characterized as a mathematical Operator which maps an input signal

in input space X into an output Signal in output space Y, i.e.,

S = S = {(a, 17)} (3.1.2)

where x_6 X is the input vector, and 1.6 Y is the output vector.

In constructing the system S while considering the nature

of the system, the following assumptions are made:

(i) Linearity, which states,

if: (x1,y1) E S

and: (x2,y2) E S

then: ((orxl + 9x2). (cry1 + By2)) E S V 01 and B E R

where E’ is the set of the real numbers, i.e., a and 8 here

are scalar constants.
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(ii) Time invariance, that is,

if: (X19371) E S

and: x2(t1) = x1(t1

and: y2(t2) = y1(t2 + T),

+ T),

(3.1.3)

then: (x2,y2) G S

where T is an arbitrary time constant such that, t + T and

1

t2 + T represent arbitrary shifts in time.

(iii) Deterministic, that is,

S = {(xk,yk)} for all k = 1,2,... (3.1.4)

where the right hand side of (3.1.4) represents a single-valued

set of ordered pairs of signals. This says that in a deterministic

system, a unique output Signal is produced for each input signal

as Opposed to a stochastic (probabiliStic) system for which several

output signals may be realized for a given input Signal. Note,

however, that stochastic (non-deterministic) influences are here

considered exogeneous to the basic equations of the model and are

treated as external Stochastic forcing functions representing

environmental noise (disturbances). That is, some of the input

signals are allowed to be stochastic, but the system S is assumed

to be deterministic.

3.2 The Kmenta/Smith (K/S) Economic Model

The dynamic macro-economic model considered in this thesis

is a model of the U.S. national economy develOped and estimated by
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Kmenta/Smith (Ref. K-6).# The model, which represents a dynamic

macro-economic system, is expressed in terms of a set of difference

equations exhibiting those economic characteristics generally

thought to be most important. Yet, it is not too complex to handle.

The model is an eight equation system which includes a monetary

sector. It is a quarterly model, i.e., the data used in designing

the model and estimating its parameters are quarterly, deflated by

the implicit price index, seasonally adjusted, and cover the period

from 1954 through 1963. The model is characterized by the extensive

use of distributed lags and trend factors, both of which enrich its

dynamic characteristics. The monetary variables have been deflated

by the implicit price index for consumption expenditures. The co-

efficients of the model were estimated by the two-stage-least-squares

(ZSLS) method. As a general Simplified description of the U.S.

economy, the estimated relationships seem quite plausible. Provision

for incorporating the effects of stochastic influences from the

system's environment is made via noise variables in all behavioral

equations.

The model consists of the following set of equations:

Behavioral Equations:

C(t) = 00 + a1y(t) + a2(L(t) - a3L(t-l)) + a3C(t-1) + u1(t), (3.2.1)

Id(t) = so + Blr(t) + 32(S(t-1) - S(t-2)) + BBt + 341d(t-1) + u2(t),

(3.2.2)

 

#

Dr. J. Kmenta is Professor of Economic, Dept. of Economics,

Michigan State University, E. Lansing, Michigan, and Dr. P.E. Smith

is Professor of Economics, Dept. of Economics, University of

Missouri, Columbia, Missouri.
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Ir<t) 60 + 61r(t) + 62(sct-1> - S(t-2>> + 63C + 6,Ir(c-1) + u3(t).

(3.2.3)

11(r) = 10 + 11r<t> + 12<S(t-1> - S(t-2>> + A3t + 1411(t-1) + u4(t),

(3.2.4)

r(t) = v0 + y1y(t) + y2M(t) + y3M(t-l) + u5(t) , (3.2.5)

Identities:

y(t) e C(t) + Id(t) + Ir(t) + Ii(t) + G(t) , (3.2.6)

S(t) a y(t) - Ii(t) , (3.2.7)

L(t) e M(t) + R(t) , (3.2.8)

C ... consumption expenditures in billions of dollars,

I ... investment in producer's outlays on durable plant and

equipment in billions of dollars,

I ... investment in construction in billions of dollars,

I ... investment in inventories in billions of dollars,

r ... yield on all corporate bonds in percentage,

y ... gross national product (GNP) in billions of dollars,

S ... final Sales of goods and services in billions of dollars,

L ... money supply plus time deposits in commercial banks in

billions of dollars,

R ... time deposits in commercial banks in billions of dollars,

M ... money supply, i.e., demand deposits plus currency outside

banks in billions of dollars,

G ... government purchases of goods and services plus net foreign

investments in billions of dollars,
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t ... time in quarters (first quarter of 1954 is zero).

The variables are dated by the argument t. In a flow variable,

such as consumption C(t) measures the total aggregate consumption

expenditure during the period [t, t+l], which is viewed, however,

as occurring at time t. This notation applies similarly for all

other flow variables. In the case of stock variables (M(t), L(t),

and R(t)), the argument refers to the first day of the quarter.

The variables G, L, M, and t are exogeneous and ui(t) (i = 1,...,5)

are independent stochastic disturbances (environmental disturbances)

which are assumed to be normally distributed with zero means, con-

stant variances, and non-autocorrelated (Ref. K-6, p.4).

The consumption function is of the form suggested in Ref.

z-1

P 1:

C(t) = k y (t) + a(L(t) - L (t+1)) + g(t) (3.2.9)

* P

L (t+1) = T] y (t) (3.2.10)

P _ P P

y (t) - y (t-l) + b(y(t) - y (t-1)) (3.2-11)

where yP(t) is permanent income, L*(t+l) denotes desired level

of liquid assets for the end of the t-th period, and g(t) is a

stochastic disturbance. Equation (3.2.11) shows how permanent

income is estimated from an adaptive expectations model. Sub-

stituting (3.2.10) into (3.2.9) yields:

C(t) = (k - aTDyP(t) + a L(t) + g(t) (3.2.12)

Equation (3.2.11) is recursive, which implies:
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yP(t) = b y(t) + b(l-b)y(t-l) +-b(l-b)2y(t-2) +...

+ b(l-b)ny(t-n) +... (3.2.13)

Now, letting Equation (3.2.12) lag by one time period, multiplying

both sides of this equation by (l-b), substituting the final re-

sult from Equation (3.2.12), and substituting for yP(t) and

yP(t-l) using (3.2.13) the following equation is obtained:

C(t) = b(k - an)y(t) + a[L(t) - (1-b)L(t-1)] + (l-b)C(tt-l)

+ (g(t) - (l-b)e(t-l)) (3.2.14)

By simplifying the notation, allowing for a non-zero constant term;

and assuming that g(t) follows a first-order autoregressive

scheme with the coefficient of autoregression being equal to (l-b),

Equation (3.2.1) results.

All three investment equations are based on the preposition

that the desired level of investment depends on the rate of interest,

r(t), the immediately preceding change in Sales, (S(t-l) - S(t-2)),

and time, t, i.e.,

1*(t) = + a1r(t) + a2(S(t-l) - S(t-2)) +.a t + 61(t) (3.2.15)
80 3

The accelerator term involve final sales rather than GNP on the

grounds that a large portion of inventory changes may be unintended

so that producers are more apt to base the change in their desired

stock of capital upon final sales than upon total output. The trend

variable, t, is included to take account of automatically induced

changes in investment. Further, it is assumed that:
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I(t) - I(t-l) = v(1*(t) - I(t-l)) + 32(t) (3.2.16)

A

Substitution for I (t) from (3.2.15) into (3.2.16) and rearrang-

ing terms leads to#

I(t) = aoy + sly r(t) + a2y(S(t-l) - S(t-2)) + a3v t

+ (l-v)I(t-l) +-(ye1(t) + 32(t)) (3.2.17)

which is of the form used in Equations (3.2.2) - (3.2.4).

The money demand equation, Equation (3.2.5), represents a

fairly standard formulation and is discussed elsewhere (Refs. C-11

and T-9). It involves the proposition that households and firms

are unable to adjust their actual money holdings to the desired

level immediately. Since M(t) is considered to be exogenous,

r(t) is specified to be the "dependent variable" in the equation

as suggested by Chow (Ref. C-11, pp. 10-11). The conventional

definition of money is used, i.e., it includes only currency out-

side of banks and demand deposits. This seems to be the most

appropriate monetary policy variable since, as argumed by Laidler

(Ref. L-l), the decision maker(s) may be able to control demand

deposits, but not the quantities of other financial intermediary

liabilities. A different argument for the exclusion of time deposits

*

from the definition of money is presented by Pesek (Ref. P-2).

 

Notice that the combined disturbance term, is assumed to be non-

autoregressive and normally distributed with zero mean and a constant

variance.

However, it Should be emphasized that time deposits are included

in the definition of the liquid asset variable in the consumption

function, Equation (3.2.1).
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The coefficients in the model were estimated using the three-

stage-least-squares method (3SLS) except for the adaptive expecta-

tions coefficient in the consumption function which was estimated

using non-linear two-stage-least-squares (ZSLS). For more details

on the design and estimation of the model see Ref. K-6. The results

together with the estimated standard errors and the coefficients of

determination, are given in Ref. K-6 as follows:

Behavioral Equations:

C(t) = -1.7951 + .1731 y(t) + .O421(L(t) - .7275 L(t-l)) + .7275 C(t-l),

(.7803) (.0131) (.0277) (.0665) (.0665)

R2 = .9968;

Id(t) = 2.5624 - .4411 r(t) + .01381(S(t-1)-S(t-2))+.0237 t+.89l7 Id(t-l),

(1.0759) (.1891) (.0501) (.0110) (.0700)

R2 = .8961;

Ir(t) = 3.6083-.5127 r(t)+.1267(S(t-1)-S(t-2))+.0218 t+.6483 Ir(t-l),

(.5779)(.1133) (.0335) (.0059) (.0668)

R2 = .8394;

Ii(t) = 3.0782-.8934 r(t)+.37l3(S(t-l)-S(t-2))+.0450 t+.3178 Ii(t-l),

(1.3610)(.4089) (.1301) (.0208) (.1181)

R2 = .5341;

2(t) = 13.8928 + .0261 y(t) - .1501 M(t) + .0588 M(t-l),

(1.8702) (.0042) (.0335) (.0338)

R = .8538;

Identities:

y(t) a C(t) + Id(t) + Ir(t) + Ii(t) + G(t),

S(t) a y(t) - I‘m.

L(t) a M(t) + R(t).

A block diagram of the open-loop system, i.e., Equations

(3.2.1) - (3.2.7) is shown in Fig. (3.2.1). This figure shows the
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channels of the open-loop system is quite involved. The Fig. (3.2.1)

Shows how the systems' variable are interrelated and also shows

the input output relationships.

3.3 Dynamic Analysis and Stability of the Model

Using the estimated structural equations and expressing

current endogenous variables in terms of exogenous and lagged

endogenous variables, derived reduced formiequations are obtained.

The coefficients of these equations, which measure the immediate

effects of predetermined variables on the current values of the

endogenous variables, are called "impact multipliers" (Ref. K-6,

p. 10).

The reduced form solution presents a clear picture of the

immediate responses of GNP to changes in the predetermined variables

and allows to estimate the effects of the exogenous variables

given the immediate past history of all endogenous variables.

For an analysis of the past, however, the impact multipliers

alone are not very illuminating. Considering the reduced form

equations only, it may be found that the main influence on the

current values of GNP is its immediate history, and the question

of the relative importance of fiscal, monetary and other exogenous

variables would remain unresolved. For this problem, the relevant

solution is obviously one which determines the time path of GNP

in reaponse to autonomous forces alone. Such a solution involves

the determination of current GNP in terms of its own lagged values

and of current and lagged values of the exogenous variables. The

resulting equation may be termed the "fundamental dynamic equation"
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(Ref. K-6, pp. lO-ll). For the model studied here, this is given by:

y(t) + a4y(t-1) + a3y(t-2) + a2y(t-3) + a1y(t-4) + a0y(t-5)

= + 2153“) + g'aw(t-l) + g3'_W_(t-7-) + 2580-3)

'+ aiw(t-4) + 363(t-5) + EEE + C0 + error (3.3.1)

where

a4 = -3.0716,

a3 = 3.6561,

a2 = -2.0850,

a1 = .5585,

a0 = -.0535,

y(t) = (G(t) M(t) L(t))

a; = (1.1427 .3168 .0481)

' = - - -24 ( 2.5300 .7499 .1065)

25 = (1.3779 .6253 .0580)

£5 = (.5853 -.2000 .0246)

ai = (-.7463 .0082 -.03l4)

' =
20 (.1784 .0046 .0075)

E' = (t t-1 t-2 t-3 t-4)

k' = (.1034 -.2050 .1267 -.0192 -.0032)

CO = -05113 0

The coefficients of Equation (3.3.1) may be classified

according to the source of their effects on model dynamics:

1. income effect

BC(t)/BY(C) = ol

n1“(t) , Arit) = m ,n .—

aI (t)/oy(t) - ar(t) oy(t> 1 Y1
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n n

51 (t) _ 51 (t) . aS(t-l) = m .1

oy(t-1) ’ as(t-1) 5y(t-1) 2

EfifiLeaIrlitL.a§_I§_-_Zl=m.1

0Y(t-1) 83(t-2) ay(t-2) 2

where n, m1, and 1112 are replaced by n = d, r, 1; m1 = 81,61,113

m2 = 82,62,12 respectively,

azitl =

ay(t) Y1

2. interest effect

£121-, 81:21., £121.,
ar(t) l ’ ar(t) - l ’ 3r(t) 1

3. stock effect

a§i_1 = EQI£1__ e -

3L(t) O‘2 ’ aL(t-l) OZ2°‘3 ’

afiitl=aflflal.a£1£l=m.
3M(t) ar(t) aM(t) 1 Y2

alngt) =paIngt) . argt) = m ,

aM(t-l) ar(t) aM(t-l) 2 Y3

where n, m1, and 1112 are as above,

8£l_l.= E£I£1__ =

aM(t) y2 ’ aM(t-l) Y3

4. trend effect

aId(t)/at = 53 , aIr(t)/at = 63 , aIi(t)/at = A3

5. inertia effect
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aC(t)/aC(t-l) = a3, aId(t)/aId(t-1) = 84, 31r(t)/51r(t-1) = 64,

aIi<t)/ali<c-l> = 1, .

Model parameters are influencing coefficients among the

model variables, i.e., they measure the effect of variations in

one variable upon the value of other variable(s). In other words,

these elements correspond to the channels of influence represented

in Fig. (3.2.1) and in Equations (3.2.1) - (3.2.5). For example,

a rise in y(t) will lead to a positive income effect on the

aggregate consumption but this will be partially offset by a negative

stock effect in Equation (3.2.1). In Equations (3.2.2) - ((3.2.4)

a rise in y(t) will lead to a negative interest effect, because

the interest rate has a positive income effect in Equation (3.2.5)

whereas the Equations (3.2.2) - (3.2.4) have negative interest effect.

Equations (3.2.2) - (3.2.4) have positive trend effects and as the

consumption and investments (different kinds) rise, a positive

inertia effect will influence them with a delay. In Equation (3.2.5)

the stock effect (money supply) has a negative effect in the current

period and a positive effect in the preceding period and, therefore,

partially offsetting each other's effect. Thus, the values of these

parameters which depend upon the design of the model and estimation

procedures are fundamental to the dynamic behavior of the GNP model

system, which includes its stability, response time constants# and

 

#
The time constant of a system response mode is the total elapsed

time between application of a step perturbation and the instant

the reSponse attains approximately 63% of its steady state value.

Time constants are measure of the rapidity of a system's reSponse.



50

steady state gains.

The fundamental dynamic equation, Equation (3.3.1), de-

termines whether the system is or is not dynamically Stable, and

it also provides the basis for evaluating the relative importance

of individual exogenous variables. The question of dynamic stability

can be settled by reference to the auxiliary equation which is

obtained from Equation (3.3.1), by transferring all terms involving

y(-) to the left-hand side and equating to zero. The eigenvalues

(roots of the auxiliary equations) for the system are:

A1 = .2081

12 = .8475 +'i .0809

i .080913 = .8475

14 = .5843 + i .1156

15 = .5843 i .1156

Fig. (3.3.1) illustrates the plot of these roots in the imaginary

x-plane and their position in the unit circle.

Each eigenvalue characterizes an independent response mode

of the Open loop system. Eigenvalues falling within the unit

circle of the x-plane represent stable response modes. Fig. (3.3.1)

suggests that all response modes of the Open-loop economy are stable.

Stable eigenvalues closest to the unit circle dominate transient

system dynamics. That is, the closer a root is to the unit circle

the larger its reSponse time constant. The complex conjugate pair(s)

indicates a damped sinusoidal response mode.

 

Steady state gain is the ratio of output to input at steady state

conditions. Steady state gains are analogous to the static multipliers

of Keynesian economic theory.
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Fig. (3.3.1). x-plot of the system's eigenvalues with the

corresponding responses for the system.

Therefore, the basic homogenous solution for the time path

of y(t), apart from the influence of exogenous variables and of

initial conditions, is one of dammed oscillatory motion, since both

the largest real root and the modulus of the conjugate complex roots

are less than unity in absolute magnitude (Ref. K-7). It hence

appears that the system is inherently stable and that the sources

of instability have to be sought in the stimuli from the exogenous

variables (including trends) and the random disturbances (Ref. K-6).



CHAPTER FOUR

DERIVATION OF THE OPTIMAL CONTROL MODEL

FROM THE KMENTA/SMITH DYNAMIC MODEL

4.1 State Space Equations of Systems Described by Difference

Equations

Dynamic systems in which one or more variables can change

only at discrete instants of time are called discrete-time systems.

The behavior of discrete-time systems can be described in terms of

difference equations. By using a set of state variables, higher-

order differences may be avoided with a description in the con-

venient form of vector matrix first order difference equations.

In order to solve differential equations by means of a digital com-

puter, differential equations are reduced to difference equations.

This class of equations can be treated with algebraic techniques.

Consider the state space representation of the following

nth-order difference equation:

y(t+n) + an_1(t)y(t+(n-l)) +...+ a0(t)y(t)

= bn(t>u(t+n) + bn_1<t)u(t+(n-1)) +...+ b1(t)u<c+1)

+ b0(t)u(t) (4.1.1)

where u(t+i), y(t+i); i = 0,1,...,n are scalar (single) input

and output respectively, with aj(t), bi(t); j = 0,1,...,n-l;

i = 0,1,...,n as the time-varying coefficients of the system.

Since 2n initial conditions, namely, y(O),y(l),...,y(n-l) and

52
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u(O),u(l),...,u(n-l) must be known in order to obtain the solution

of the difference equation (4.1.1), the following approach is used

to determine the state vector: Let g(t) be an n-vector with com-

ponents zl(t),zz(t),...,zn(t) which are given by

21(t) = y(t) ' c0(t)U(t)

22(t) = y(t+1) - c0(t+l)u(t+l) - c1(t)u(t)

23(t) = y(t+2) - c0(t+2)u(t+2) - c1(t+l)u(t+l) - c0(t)u(t) (4.1.2)

znu) y(t+(n-1)) - c0(c+(n-1>>u<c+<n-1)> - c1<c+<n-2>>u(c+<n-2>> -

..- cn_1(t)u(t)

where c0(t),c1(t),...,cn(t) are n parameters whose values are

still to be determined. Equation (4.1.2) may be written in the

form:

i-l #

z.(t) = y(t+(i-l)) - 2 u(t+k)c, (t+k), i = 1,2,...,n. (4.1.3)

1 k=0 1-k+l

It is time now to determine the difference equations which

the zi(t) satisfy. Observe from Equations (4.1.2) that

21(t+l) y(t+1) - c0(t+l)u(t+l) (4.1.4)

22(t) + c1(t)u(t) (4.1.5)

This deduction is based upon lagging forward the equation defining

zl(t) and upon substitution of the result in the equation defining

22(t). In a completely analogous way, it may be deduced that, for

 

4 Consider that u(t+0) = u(t), c(t+0) = C(t).
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i-l

zl(t+l) = y(t+i) - kEou(t+k+l)ci_k+1(t+k+l) (4.1.6)

= zi+1(t) + ci(t)u(t) (4.1.7)

1

since zi+1(t) = y(t+i) - kEOU(t+k)Ci-k(t+k)

i

= y(t+i) - ci(t)u(t) = Z u(t+k)ci_k(t+k). (4.1.8)

k=l

As for zn(t+l), it is noted that lagging Equation (4.1.3)

forward once for i = n yields

n

z (t+1) = y(t+n) - 2 u(t+k)c (t+k) . (4.1.9)

“ k=1 “‘k

However, the system of difference equation, (4.1.1), gives the

relation

n-1 n-1

y(t+n) = - E ai(t)y(t+i) + bn(t)u(t+n) + 2 bk(t)u(t+k)

i=0 k=l

-+ b0(t)u(t) (4.1.10)

It follows from Equation (4.1.8) that

n-1 n-1 n-1 i

120 ai(t)y(t+i) = :0 ai(t)zi+1(t) + 120 ai(t) [k21u(t+k)Ci-k(t+k)]

n-l

+ u(t) z ai(t)ci(t) (4.1.11)

i=0

and hence, using Equations (4.1.9), (4.1.10), and (4.1.11) yields

n-1 n-1

zn(t+1) = -120 ai(t)zi+1(t) + bn(t)u(t+n) + kgl bk(t)u(t+k) + b0(t)u(t)

n n-l i

- E u(t+k)c (t+k) - 2 a.(t) z u(t+k)c, (t+k)

k=1 n-k i=0 1 [k=l i-k ]

n-l

- u(t) z a.(t)c.(t) . (4.1.12)

i=0 1 1
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However, using direct computation yields:

n-l i n—l n-k-l

2 a.(t) 2 u(t+k)c, (t+k) = 2 u(t+k) 2 c,(t+k)a, (t)

i=0 1 [k=l 1-k ] k=l [ i=0 1 1+k ]

(4.1.13)

0

where E u(t+k)c, (t+k) E 0 is assumed.

k=l 1-k

Upon substitution in Equation (4.1.12) and collecting terms, the

following relation is obtained:

n-l

zn(t+1) = - 1: a,(t)zi+1(c) + (bum - c0(c+n>>u(t+n>
i=0

n-l n-k-l

+ Z {bk(t) - cn_k(t+k) - z Ci(t+k)ai+k(t}

k=l i=0

n-l

+ u(t) {}0(t) - Z a.(t)c.(ti} . (4.1.14)

. 1 1
1=0

The coefficients in Equation (4.1.14) are selected such

that. zn(t+l) is independent of all the lagged values of u(t).

This implies

co(t+n) = bn(t) (4.1.15)

n-k-l

cn_k(t+k) = bk(t) - .2 Ci(t+k)ai+k(t) for k = 1,2,...,n-l.

i=0

Substituting in Equation (4.1.14) yields

n-l

zn(t+l) = - 2 ai(t)zi+1(t) + cn(t)u(t) (4.1.16)

i=0

n-l

where cn(t) = b0(t) - z ai(t)ci(t) . (4.1.17)

i=0

Thus, the difference equations satisfied by the zi(t) have been

determined; they may be written in the vector form as
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Ftl(c+1) 1 ' O 1 0

22(t+l) 0 O 1

zn_1(t+l) 0 0 0

bzn(t-+l) J b-a0(t) -al(t) -a2(t) ...

or, more succinctly, as

where the matrix A

 

s<t+1> = A g(t) + g u(t)

 

and the vector '5 are

1 0 0 I

0 l 0

O 0 ... l

-a (t) -a (t) -a (t) ... -a (t)

. 0 1 2 ' n-l J

I
n

F”25102) 1

22(t)

z (t)

n-l

   zn(t)

c2(t)

(t)C

n-l

Cn(t) 
It is noticed also that the computation of the coefficients

"c103 l

 b J

u(t)

  

(4 .1 .19)

.(4.1.20)

c1(t), i - 0,1,...,n, is not particularly difficult since Equations

(4.1.15)

co(t)

c1(t)

c2(t)

cn(t)

and the

are of the form

bn(t-n)

- bn_1(t-(n-1)) - c0(t)an_1(t-(n-l))

- bn_2(t-(n-2)) - co(t)an_2(t-(n-2)) - c1(t)an_1(t-(n-l))

bo(t)

Ci(t) a 1

(4.1.21)

- c0(t)ao(t) - c1(t)a1(t) -...- cn_1(t)an-1(t)

- 0,1,...,n, can be found by successive substitution.
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It is readily verified that the vector z(t) qualifies as

a state variable for the system of Equation (4.1.1), since knowledge

of .§(t0) and completely determines the solution of theu

(tO’t]

difference equation (4.1.19) on the interval (t0,t] (that is,

z ). Moreover, since the output y(t) is given by

-(to.t]

y(t) = zl(t) + c0(t)u(t), (4.1.22)

it is clear that y is indeed determined by z(t ) and

(t0,t] — 0

u . This equation may be written as

y(t) = _I§(t) +-c0(t)u(t) (4.1.22a)

where

g =[1 0 0]

Equations (4.1.19) and (4.1.22a) together constitute the

state Space formulation of the difference equation (4.1.1).

Figure (4.1.1) illustrates the Simulation of the vector

difference equation (4.1.18) on a digital computer.

4.2 State Space Representation of the Kmenta/Smith Model

After some rather long and tedious algebriac manipulation

the K/S econometric model becomes

y(t+5) + a4y(t+4) + 33y(t+3) + a2y(t+2) + aly(t+l) + a0y(t)

= I +5 + I I I I I
35310 ) saga-I4) + §3w(t+3) + £2w(t+2) + 313(t+1) + 303(t)

+ K}; + c0 + disturbances (4.2.1)

where
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= - . - = 3. 5 ; = -2. ; = . ; = -- 53a4 3 0716, a3 6 61 a2 0850 a1 5585 so 0 5

2} = (G(t). M(t). L(t))

a; = (1.1427 .3168 .0481)

a; = (-2.5300 -.7499 -.1065

25 = (1.3779 .6253 .0580)

g; = (.5853 -.2000 .0246)

ii = (-.7463 .0082 -.0314)

' =90 (.1784 .0046 .0075)

'5' = (t+5, t+4, t+3, t+2, t+1, t)

5' = (.1034 -.2050 .1267 -.0192 -.0032 0)

CO = -.5113

and disturbances consist of environmental noises ui(t), ui(t+l),

ui(t+2), ui(t+3), and ui(t+4), i = 1,...,5.

Applying the results presented in Sec. 4.1 to the 5th-

order difference equation (4.2.1) results in the state space re-

presentation Of the model as follows:

  

        

F r r r -
y1(t+1fl 0 1 0 0 0'1 y1(t)1 611 612 b13

y2(t+1) o 0 1 0 0 y2(t) b21 b22 b23 IC(t)I

y3(t+l) = O 0 0 1 0 y3(t) + b31 b32 b33 M(t)

y4(t+1) 0 0 0 0 1 y4(t) b41 b42 b43 L”L(t)-J

y (t+1) -a -a -a -a -a y (t) b b b

b 5 J L 0 1 2 3 44 L 5 J _ 51 52 53‘

P r ‘1 r w
c1? c11 d11 d12 d13 r114 d1; Eula)

C2 d2 d21 d22 d23 d24 d25 ”z(t)

.2.2
+' C3 + d3 5 + d31 d32 d33 d34 d35 ”3(t) (4 )

C4 d4 d41 d42 d43 d44 d45 ”4(5)

b 3 _ 5, _ 51 52 d53 dss d55J __”5(t{,        
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and y(t) = y1(t) + bdw(t) +cO +'d t +'d6 g(t) (4.2.3)

0

where the state variables yi, i = 1,...,5 are defined by:

y1(t+1) = y2(t) + biw(t) + c + d t + giu(t)
1 1

y2(t+1) = y3(t) +‘2£!Kt) + c, + dzt + figsflt)

y3(t+l) = y4(t) + 253(t) + c3 + d3t + 5153“)

y4(t+l) = y5(t) + saga) + C4 + d4t + gig“) (4.2.4)

y5(t+1) = -aoy1(t) - 81y2(t) - 82y3(t) - a3y4(t) - 84y5(t)

+ 25'3“) + C5 + d t + 515.3103) .

5

I:
'=

The vectors 9i (bil b12 bi3)’ 1 1,2,...,5, and

‘g; = (d d d d = 1,2,...,5 are the rows of the
i1 12 i3 i4 diS)’ i

coefficient matrices of the control vector gi(t) = (G(t) M(t) L(t))

and disturbance vector g}(t) = (u1(t) u2(t) u3(t) u4(t) u5(t))

respectively, in the system (4.2.2).

The state space formulation of the K/S model, Equations

(4.2.2) and (4.2.3) are of the form:

y(t+1) = A1y(t) + A23“) + £3 + £4t + A5g(t) (4.2.5)

= 3 ' ,r + '

y(t) _e_ y(t) + 130 g(t) + co dot + _c_l_0 u(t) (4.2.6)

where g} = [1 0 0 0 O], 26 = (1.1427 .3168 .0481). Figure

(4.2.1) illustrates the computer simulation (block diagram) of the

vector difference equation (4.2.2) and the output equation (4.2.3).

Furthermore, applying the results given in Section 4.1, Equations

(4.1.21) implies:
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96 = (1.1427 .3168 .0481)

‘21 = (.979917 .223183 .041244)

bé = (.209988 .152577 .008827)

b5 = (.030154 .113205 .001210)

9; (-.016487 .086489 -.000825)

0
‘ II (-.030812 .066788 -.001552)

—5

d0 = .1034; (11 = .112603; (12 = .094530; (13 = .075059;

d4 = .058768; d5 = .045527

and

c0 = -.5113; c1 = -l.570509; c2 = -2.954611;

c3 = -4.399506; c4 = -5.700119; c5 = -6.734040.

The initial conditions are derived by taking the expected

value of the equations (4.2.4) with reSpect to the disturbances

as follows:

y1<0> = y(O) - 9511(0) - c0

y2(0) = y(l) - 263(1) - EIMKO) - c1 ~ c0 - dO

y3(0) = y(2) - 252(2) - Qigfil) - hég(0) - c2 - c1 - c0 - d1 - 2d

y4(°) = Y(3) ' 262(3) ' EIEKZ> - 252(1) - 952(0) - c3 - c2 - c1

- c0 - d2 - 2d1 - 3dO

y,((» = y(4) - 231(4) - tire) 252(2) - 253(1) - 943(0) - c4

- c3 c2 - c1 - c0 - d3 - 2d2 - 3d1 - 4dO

where the c's and the d's are specified in above and

y(O) 100.70 GNP at 1954-1

y(l) 100.50 GNP at 1954-2
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y(2) = 101.80 GNP at 1954-3

y(3) = 103.90 GNP at 1954-4

y(4) = 107.00 GNP at 1955-1

w'(0) = (24.10 144.10 187.60)

w'(l) = (23.30 143.40 187.80)

w'(2) = (22.90 145.10 191.60)

w'(3) = (22.60 146.30 194.50)

w'(4) = (22.70 147.10 195.60)

all expressed in billions of dollars. Using these data the initial

condition vector becomes:

xf(0) = (y1(0) y2(0) y3(0) y4(0) y5(0)) = (20.45 -40.45 -62.27 -82.60 -91.31).

Substituting for the coefficient matrices in the state

model equation (4.2.5), while combining the two column vectors

3 a d S ' 8 i lds:._3 n _4 into one vector _3 y e

  

 

" 0 1 0 0 (1 7

0 0 1 0 0

A1 = 0 0 0 1 0 ,

0 0 0 0 1

.0535 -.5585 2.0850 -3.6561 3.0716
b d

E .979917 .223183 .041244‘

.209988 .152577 .008827

A2 = .030154 .113205 .001210

-.016487 .086487 -.000825

_7.030812 .066788 -.001552
J 
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23 = g3 + a, = [-1.570509 + .112603t; -2.954611 + .0945430t;

-4.399506 + .075059t; -5.700119 + .058768t;

-6.73404O + .045527t] .

That is, the state space formulation of the K/S model,

Equations (4.2.5) and (4.2.6) are of the form:

y(t+1) = A1y_(t) + 117-g(t) + g3 + ASE-(t) (4.2.5a)

y(t) = g'y(t) + 263(t) + co + dot (4.2.6a)

4.3 Criterion Functional

Governmental actions aimed at improving the stability and

growth of the economy pose difficult decision problems. Economic

policy recommendations for stabilization have usually been dis-

cussed in the literature (Refs. A-3 and T-7) on the basis of the

multiplier-accelerator type economic models in its different versions.

Using the principles of servomechanism and conventional control

system theory, Phillips (Refs. P-3 and P-4) first showed that the

stability of the time path of the control variable, e.g., government

expenditures, differs for different types of economic policy and the

certain types of economic policy may themselves give rise to un-

desired fluctuations or instability. In Phillips' approach the

types of stabilization policy operated by the government have the

objectives of offsetting a downward shift in demand and of reducing

the oscillation in aggregate output. Generally, this involves the

addition or subtraction of an official demand to the normal flow of

aggregate consumption and investment demands of the economy. How-

ever, the recent advances in the theory of control systems have
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emphasized that the stability alone, which may be a necessary con-

dition of a system design and for which the stability criteria of

Hurwitz, Routh and Nyquist have been applied in servo design theory

(Ref. 8-8), does not necessarily guarantee a suitable and optimum

design. In modern control theory, it has been increasingly

emphasized that an admissible control must have an optimizing pro-

perty in some sense, e.g., minimizing the error of the system under

control or satisfying certain specifications of accuracy and speed

of performance of the system under control (Ref. S-ll). Frequently,

a criterion function is defined, which is otherwise called a per-

formance measure (index) or social welfare function and the Optimal

character of a control is defined by minimization (or maximization

as the case may be) of the performance index. Thus, in evaluation

of control system designs in general, optimality is considered

(Ref. 8-6) to be a characteristic that is equally if not more im-

portant than the property of stability.

The selection of appropriate performance indices, or objective

functions is not a trivial step. They may have more than one factor

for the decision rule and they may be completely independent of

one another. In this study, the performance measure is a functional

which involves the eXpected value (with respect to the environmental

disturbances, g(t)) of a quadratic form in the state and control

variables over a fixed interval of time (horizon). The choice of

the quadratic performances index is of course not the only choice

to be made. This is selected here, because apart from Simplicity

and the fact that it has been most widely used in adaptive control

theory (Ref. S-8), it gives a quadratic criterion function in the
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integrand and specifies one simple measure of relative fluctuations.

The quadratic functional which is otherwise called a quadratic

social disutility function in the economic literature on optimum

resourse allocation over time has been used quite extensively

(Ref. S-ll). Such a quadratic social disutility function has also

been used as a performance index (Ref. H-5) in considering alternative

policies for economic stabilization under a multiplier-type economic

model. In the control theory (Refs. A-5, B-9, G-2, K-l, K-S, K-9,

L-3, M-5, S-l), information theory (Ref. A-l), production, employ-

ment and inventory scheduling (Refs. H-3, H-4, and 8-14) and

statistical quality theory (Ref. B-3) quadratic performance index

which is to be optimized by a given type of control, has been fre-

quently used as a generalized measure of the system performance.

The resulting problem, i.e., Optimizing a quadratic performance

index subject to the linear system model, for either discrete-time

or continuous-time systems, is called the Stochastic linear regulator

problem (Ref. M-5).

Based on the above discussion, the specific criterion func-

tional that is employed in this work is a quadratic social welfare

functional of the form:

2

IN = {u[yd(t) - ya(t)]2 + n v_v'(t-1)R w(t-l)} (4.3.1)

1

"
M

t

where

ya(t) ... actual output (actual GNP),

yd(t) ... potential (desired) output,

u, D ... weighting factors which may be chosen as functions

of t, i.e., in a sense may be viewed as time



67

discounting of the (finputed) cost of the system's

error, e = yd(t) - ya(t), and the cost of the

activity of the control vector, g(t), respeCtively,

R ... a symmetric positive definite matrix,

g(t) ... control vector,

N ... total number of quarters within the Optimization

interval (planning horizon).

The time horizon t, t E {0,1,...,N} where N is a positive

integer, defined as above, need not be fixed or finite. The case

of a large N (N a m), however, can be taken into account by

certain regularity assumptions regarding the boundedness of the

performance index. Since in this study short term stabilization

policies are considered, N is assumed to be fixed and finite

(N = 40).

In utilizing Equation (4.3.1) as performance index, it is

assumed that the decision-maker wants to manipulate fiscal and

monetary policies (controls) in such a way as to achieve a per-

formance as close as possible to full employment and price stability

(minimum inflation) over the planning horizon. The performance

index is therefore, designed to measure the social disutility

associated with deviations from these goals. The performance

measure is composed of two terms, namely uEyd(t) - ya(t)]2 and

n w'(t-1)R y(t-l). The first term reflects the social disutility

over the planning horizon, resulting from the deviations of actual

output from potential output which implies periods of inflation

or unemployment. That is, if ya(t) exceeds yd(t), inflation



68

of the demand-pull type results, and if ya(t) stays below yd(t)

it leads to unemployment. Thus the desired output, yd(t), may be

specified as the value of output that the economy can achieve in

any period of time at full employment without inflation. Full

employment may be defined to include frictional unemployment in

the neighborhood of 4% of the labor force, i.e., full employment

labor input is equal to the labor force minus frictional unemploy-

ment. It is also assumed that there is no autonomous wage-push

or profit-push inflation (Ref. B-l4). On the other hand, in addi-

tion to the primary cost, a realistic performance index must also

include a cost associated with applying controls to the system.

If there were no penalty on the activity of the control vector,

then the Optimal problem would have the trivial solution of setting

G, M, and L at each quarter Such that the error is always zero.

The disutility component which arises from the activity of the

control function, i.e., fl wf(t-1)R g(t-l) = cost of control (t),

has been included in the functional as well (Ref. K-l, K-9, M-5,

and T-8). In the case of the U.S. national economy, control costs

would be those associated with the synthesis and implementation

of Optimal economic control policies. Notice that the cost of

control at quarter t is a function of the choice of the control

policy at quarter (t-l), t E {1,2,...,N}.

Klein and Goldberger's aggregate production function (Ref.

K-4) is frequently used in dynamic macro models in order to de-

termine potential output (Ref. B-14 and B-15) as:

yd(t) = a0‘+ al E(t-1) +’aé K(t-1) (4.3.2)

ai 2 O , i = 0,1,2
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where E(t-l) and K(t-l) are the employment and capital input

at (t-l) respectively.

However, two points have to be mentioned here. First, the

Kmenta/Smith model does not contain employment and capital input

variables in it. Secondly, the above formula expresses yd(t) as

a function of the system state variables. Now, when applying feed

back control, the system state is a function of the control vector,

g(t), and therefore, both ya(t) and yd(t) are affected by the

choice of the control. Thus, an optimal control based on the

equations (4.3.1) when n E 0 and (4.3.2) may be such that the

path (trajectory) of yd(t) is altered along the path of ya(t)

in minimizing that performance measure. Since the objective of

this effort is to choose fiscal and monetary policies which when

implemented will cause the economy to attain its potential output,

control policies which result in yd(t) to deviate from some

desired annual growth rate are unacceptable. That is, by using

equation (4.3.2) for potential output, unacceptable or meaningless

Optimal control policies may result under certain circumstances.

An alternative expression for yd(t) is suggested by the

works of Okun (Ref. O-2). It is a simple function of time (first

order difference equation in yd(t)) with a 3.5% annual growth

trend. That is,

yd(t) = g yd(t-1) (4.3.3)

with g a constant parameter representing the quarterly growth

rate equivalent to a 3.5% annual growth rate. With such a defini-

tion for yd(t), only ya(t) would be a function of g(t) so
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that optimal control policies would have no influence upon the

yd(t) trajectory.

In order to write the objective functional in terms of

the state model, equation (4.3.3) is incorporated into the state

model, Equation (4.2.5a), to yield

z(t-t1) = A _z_(t) + B g(t) + g + 1; g(t) (4.3.4)

given (4.3.5)

and the Output equation (4.2.6a) is

y(t) = E} g(t) + Eéflflt) + C0 + dot (4.3.6)

where

2'(t) = (y1(t) y2(t) y3(t) y4(t) y5(t) yd(t))

w'(t) = (G(t) M(t) L(t))

and ‘g'(t) = (u1(t) u2(t) u3(t) u4(t) u5(t)) represents the

environmental disturbances.

The matrices are given by:

A A

A = 1 a B = 2

0 0 0 0 0 1.00875 9

E3 A5 9..

.g = , D = , and g' =

0 0 0

Substituting for ya(t) from Equation (4.2.6a) in the

expression (ya(t) - yd(t))2 from Equation (4.3.1) yields:

(yde) - ya<c)>2 = no + siege) + ugume) + e'letu)

+ w'(t)R2§_(t) + w'(t)R3w(t)
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2 2 2

m0 - (:0 + ZCOdOt + dot

  

' = .+ t -2 +31(t) (2(cO d0) 0 0 0 0 (c0 dot))

' = . + . + .g2(t) 2(1 1427(eO dot) 3168(cO dot) 0481(c0+d0t))

F1 0 O 0 0 -2" 2.2854 0 0 0 0 -2.2854

0 0 0 0 R2= .6336 0 O 0 0 - .6336

R = 0 0 0 0

1 0 0 0 0 .0962 0 0 0 0 - .0962

0 0 0 o 0 0

L0 0 0 0 O U

"1.305763 .362007 .054964

R3 = .362007 .100362 .015238 a symmetric matrix.

L .054964 .015238 .002314 

The objective functional takes the form:

N

IN(§(0) .1100) = tEIUmO + g(tkjt) + 25(t)1(t) + §'(t)R1§(t)

+ w'(t)R25(t) + w'(t)R3fl(t) + n w'(t-l)Rw(t-l)} (4.3.7)

The output ya(t) is defined in Equation (4.3.6). The

problem now is in a suitable format for optimal control analysis.

In short, the problem is to minimize the expected value of (4.3.7)

subject to the state model constraint (4.3.4), given the initial

condition 5(0).

Figure (4.3.1) illustrates a computer simulation representa-

tion of the state Space model, Equations (4.3.4) and (4.3.6), in

vector difference equation.
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Fig. (4.3.1) Computer simulation (block diagram) representation

of the K/S model in state space formulation, Eqs.

(4.3.4) and (4.3.6).



CHAPTER FIVE

DERIVATION OF THE OPTIMIZING ALGORITHM

In Chapter Pour, the K/S model was used in expressing an

optimal control problem. The formulation was

N

min BUN} = min E )3 [m0 + mi(t)z(t) + _n_12'(t)w(t) +_z_'(t)R1_z_(t)

{z(t-1)} {EC-1)} i=1

+ _w_'(t)R2_z_(t) + w'(t)R3w(t)

+ n wf(t-1)R w(t-l)]:} (4.3.7)

such that

_z_(t+l) = A z(t) + B g(t) + g + D u(t) (4.3.4)

,z(0) = 20 given (4.3.5)

with the output equation

y(t) = _e_'_2_(t) + 263a) + cO + dot . (4.3.6)

In Equation (4.3.7), the expected value is taken with respect to

the environmental disturbances g(t), because IN is a function of

the state variables and control variables where the state vector

is a function of the disturbance vector g(t) via Equation (4.3.4).

An extensive literature exists for the linear constraint-quadratic

performance index class of Optimal control problems (the so-called

linear deterministic and/or stochastic regulator problems). Solution

techniques for this class of problems fall into one of the three

basic approaches to Optimal control problems discussed briefly in

73
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Chapter One:

(1) Classical variational calculus, or calculus of varia-

tions (Refs. B-12, G-1, and H-2).

(2) Pontryagin's maximum (minimum) principle, continuous

systems (Refs. A-6, G-2, L-3,()-l, and P-5) and discrete (sample-

data) systems (Refs. C-6, C-7, F-l, G-2, K-2, K-9, M-5, R-4, S-1,

and T-8).

(3) Dynamic programming and Bellman's principle of optimality

(Refs. B-5, B-6, 8-7, 8-8, B-9, G-2, K-l, K-9, M-5, S-1, and T-8).

In this work, dynamic programming and Bgllman's principle

of optimality is used, for two reasons. One is that since the

problem is formulated in terms of discrete time it is easily re-

expressed as a multistage decision-process. The second reason

is that the use of Pontryagin's maximum principle increases (mostly

doubles) the dimensionality of the problem by the addition of the

adjoint (costate) variables (see Chapter Two).

To solve the problem by dynamic programming, let the minimum

of the expected value of the performance index be defined by:

f z(O) = min EIN1- 1 {g(t-1)}{N}

N

= min E z ( + r_n_'(t)§_(t) + g'(t)y_(t)

{H(O) 2(1) . . ECN -1)} {(3.11 m0 1
2

+ £'(t)R1_z_(t) + 9_17'(t)R2§(t) + w'(t)R3w_(t) + T) w'(t-l)Rw(t-1)) .

(5.1.1)

Function fN{§(0)} represents the cost of taking the system from

initial state g(O) through N stages when an optimal policy is

pursued at every stage. The Operator E{-} represents the expected
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{o} with respect to the noise vector g(t). Notice that

the minimum of the expected value of the performance index depends

both on the initial state of the system, 5(0), and on the length

of time, N, over which the optimization process is defined.

To bring the problem into a suitable form for the applica-

tion of the principle of optimality, the criterion functional may

be subdivided as follows:

IN

N

= E [m + n'(t)§(t) + m'(t-1)M(t-1) + §'(t)R g(t)
t___1 0 1 2 1

+ w'(t-1)R2§(t-l) + g'(t-1)R3g(t-1) + m'(t-1)Rg(t-1)]

- 135(0)y_(0) + 22(N)M(N) - M'(0)R22(0) + g'(N)R2§(N)

- r'<o>R3E<o> + E'm)R3Em> . (5.1.2)

Writing Equation (5.1.1) in a general form (i.e., considering N-k,

k = 0,1,...,N-l) and substituting for IN-k. from Equation (5.1.2)

yield

fN-kI:

where

and

S:

z.(t)] min E{I

{z(t-1)} “‘1

N

min E{ 2“, [m + mi(t)£(t) + EQ'U'DEUZ'I)

R(k) t=k+l O

k=0,1,...,N-1

g'(t)R1§(t) + w'(t-1)R2§_(t-l) + g'(t-1)R51(t-1)]}

min E{m_£(0)w(0) + w'(O)R2§(0) +g'(O)R33(0)}

11(0)

min E{r_n_2'(N)y_(N) + g'(N)R2_z_(N) + w'(N)R3w(N)} (5.1.3)

H(N)

+ RW

U
‘
I

ll

7
0

L
0

b
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with R5 being a symmetric matrix because R3 and R are symmetric

matrices (see Chapter Four).

The terms minimized at 3(0) may be included within the

summation term by redefining the summation so that at t = 0 the

terms in min E{-} are subtracted from the other terms within the

3(0)

summation. The terms minimized at t = N give the boundary con-

dition on the process (i.e., on I) at t = N. That is, define

min {35(N)w_(N) + E'CN)R2_z_(N) + v_z'(N)R3g(N)} = 11(N) (5.1.4)

2100

Then the first order necessary condition (Ref. A-6) for a minimum

applies

51101)

33267 = 0 = 2289 + R2499 + 2.3.06

which gives an optimal control at t = N of

0(t) = - l R‘1(n (N) + R z(N)) (5 1 5)
- 2 3 -2 2- ° '

Substituting (5.1.5) into (5.1.4) gives the optimum value for the

performance index at time t = N:

u2'(N)R§1n2(N> - %Eém)R;1R2£(N)

b
l
r
—
d

1100 = -

I I ‘1

a (I‘DRZR3 R2500, (5.1.6)

b
l
p
—
I

which is a general quadratic function of the system's state vector.

Equation (5.1.6) represents the boundary condition for IN at

t = N. Rewriting the summation in Equation (5.1.3) as suggested

above and using Equation (5.1.6) as a boundary condition, Equation

(5.1.3) then reduces to the terms within the summation. In
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Equation (5.1.3) g(k) is the system's state vector at any arbitrary

k, k = 0,1,...,N-l, and when k = N it is apparent that

f0[§(N)] = I1(N) of Equation (5.1.6). The function fN-k[E(k)]

which is quadratic in g(k) represents the cost of taking state

5’ from g(k) through N-k (k = 0,1,...,N) stages using an optimal

control (policy) at each stage.

Now, assuming that the return from the first (k-l) stages

is optimum, the cost of the remaining N-k stages is equal to the

output from the k-th Stage plus the optimum cost from the remaining

(N - (k+l)) stages. That is, the process is now broken up into

N-single-stage processes by using the principle of optimality (Ref.

T-8):

= . I I
fN_k[§(k)] :::)E{m0 + m1(k+l)§(k+l) + 92(k)w(k) +

_z_'(k+l)Rl§_(k+1) + g'(k)R2§_(k) + 34300115300

+ £N_(k+1)[§(k+1)]} (5.1.7)

where it has been assumed that an optimal policy has been pursued

in bringing the system to state 15(k) and that an optimal policy

will be pursued from g(k) through the last N-(k+l) Stages.

From Equation (5.1.6), the boundary condition on IN at

t = N, it follows that the minimal cost at t = N has the general

quadratic form

f0[§(N)] = 0(0) + L'(0)§(N) + 5'(Nm{0)_Z_(N) - (5-1-68)

By induction from the last state, that is, by working backwards,

it may be shown that the cost of any arbitrary state, g(k), must
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have a similar form (Refs. K-9 and M-5); namely;

fN-1I£(k)l = 0(N-k) + LVN-10200 + 50000140500 (5.1.8)

where a(N-k) a scalar, L(N-k) a column vector, and QCN-k) is

a square matrix to be determined later in the chapter, k = 0,1,...,N-l.

Substituting (5.1.8) into (5.1.7) yields:

o(N-k) + L'(N-k)§_(k) + 5'(k)I1(N-k)§(k)

= min E I }

um{“*

= min EImO + 0(N-(k+1)) + @1081) + L'CN-(Hl))]_2_(k+1) + 2500100

g(k)

+ _z_'(k~+1)[R1 + n(N-(k+l))'jg(k+l) + w'(k)R2§(k) + w'(k)R5_w(k)}.

(5.1.9)

Substituting the system constraint equation (4.3.4) into the above

yields:

min I = min E{m + o(N-(k+1)) + h(N-(k+1))[A g(t) + B g(k)

an “k we 0

+e+Daen+aguum+awnuyn+

w'(k)R5w_(k) + [A g(k) + B g(k) + _c_ + D g(k)-j'

H(N-(k+1))[A g(k) + B g(k) + g_+ D g(k)]} (5.1.10)

where

h(N-(k+1)) = mi(k+1) + L}(N-(k+1)) a row vector (5.1.11)

and

H(N-(k+l)) = R1 + 0(N-(k+l)) a square matrix . (5.1.12)

For the purpose of the optimal control policy the environ-

mental noise, g(k), is assumed to be white, as was mentioned earlier.
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performing the expected value Operation on Equation (5.1.10)

eliminates all terms involving g(k) except the last term, since

g(k) is a zero mean process.

min I = <96<N-<k+1>> + cam-(181mm + momma-(181))

M(k) N'k

+ osm-(H1)>E(k) + E'(k)£93(N‘(k+1))

+ s'<k)iAA(N-0c+1>>a<k> + t'<k>iAB<N-<k+1))a(k>

+ E'(k)il(N-(1¢+1))a(k) + E'(k)e2(N-(k+1))v_v(k)

+ E{g'(k)6D

where

DCN-(kunacm

91(N'(k+1)) = B'H(N-(k+1))B + R2, a rectangular matrix

§2(N-(k+1)) = B'H(N-(k+l))B + RS, a square matrix

g§(N-(k+l)) = B'H(N-(k+l))g’ , a column vector

594(N-(k-I-l)) = I_1_(N-(k+l))A + _c_'H(N-(k+l))A, a row vector

595(N-(k+1)) = hCN-(k'HDB + m2'(k) + _C_'H(N-(k+1))B.

a row vector

(5

(5

(5

(5

(5

(5

cp6(N-(k+1)) = 1110 + 0(N-(k‘tl)) + g'H(N-(k_1))g + LI'CN-(Hlflg.

eAACN-(Hln

eABm-(Hm

smm'Ik’d”

and

QDD (N - (H1) )

a scalar

A'H(N-(k+l))A, a square matrix

A'H(N-(k+l))B, a rectangular matrix

A'HGN-(k+l))g, a column vector

D'H(N-(k+1))D, a square matrix .

Equation (5.1.13) gives the total cost of the performance

at any arbitrary State g(t), in terms of the state at t

(5

(5

(5

(5

Equation (5.1.10) then is reduced to:

.l.l3)

.1.14)

.1.15)

.l.l6)

.l.l7)

.l.18)

.1.19)

.1.20)

.1.21)

.1.22)

(5.1.23)
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g(k) and the control policy at t = k, g(k). The minimization

of IN-k’ Equation (5.1.9), therefore, has been reduced to selecting

a control policy, g(k), for N-k single-stage processes which will

minimize IN-k' The first order necessary condition (Ref. A-6) for

min I is:

R(k) N'k

BIN -k
'————- = O . 5.1.24

8 g(k) ( )

That is:

ago-0&1» + m3<N-0c+1>> + ago-(muse) +

elm-(muse) + 2 e2(N-(k+1)>g<k) = 0 .

This implies that the Optimal control policy is:

£100 = gun-(km) + Q(N-(k+1))£(k) (5.1.25)

where

3(N'(k+1)) = «um-(km) + um-mun'lem-(HID.

a column vector (5.1.26)

Q(N-(k+1)) = -(e2(N-(k+1)) + az'(N-(k+1)))'1e8m-<1cu>).

a rectangular matrix (5.1.27)

and

2§2(N-(k+1)) = §2(N-(k+1)) + 95(N-(k't1)) by Symmetry

52701-061»

98(N-(k't1))

g5(N-(k+l)) +'g%(N-(k+l)), a column vector (5.1.28)

QAB(N-(k+l)) + 61(N-(k+l)), a rectangular

matrix . (5.1.29)

It will be noticed from the Optimum control (policy), Equation

(5.1.25), that the Optimal policy is a function of the state

variables of the system. Since the feedback vector 3. and feedback
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gain matrix Q in Equation (5.1.25) involve the yet unknown variables

0, L, and n, the optimum control law is still undefined until q

and Q are determined. In order to find known expressions for

the variables 0, L, and n and, therefore, to find q. and Q,

Equation (5.1.15) is substituted into Equation (5.1.13) to give the

minimal cost of the performance index for an arbitrary state g(k):

"
D

“IN c<N-k> + I'm-loam + ammo-lose)

= o6<N-0c+1>> + Q4(N-(k+1))_z_(k) + e'cmaACm-(k-u»

+ e5<N-<1c+1>>[a<N-0c+1>> + Q<N-(k+1>>a(k>] +[a(N-(1<+1)>

+'Q(N-(k+l))§(k)]'gb(N-(k+l)) +'§f(k)§AA(N-(k+l))§(k)

+ e'<k>iAB<N-(1c+1)>ts1<N-0c+1>> + Q<N-<k+1>>a<k>1+tam-0c+1>>

+ Q(N-(k+1))z_(k)]'91(N-(k+1))§_(k) + [am-081)) + Q(N-(k+1))_z_(k)]'

tzm-Ocuntsm-(HID + oat-(mugs)

+ E{g'(k)oDD(N-(1c+1))g(k)} . (5.1.30)

Carrying out the indicated tranSposes and multiplications and re-

grouping terms gives:

i,,_, 9 o<N-0c+1)) + L'(N-(1¢+1))_Z_(k) + ammo-(mute)

= [06(N'(k+1)) + asm-(Icunam-(mn + s'm-<1c+1>)a3(N-0c+1>)

+ 51'(N-(k'+1))92(N-(k+1))q(N-(k+1))]

+ [gm-(t+1)) + egos-0m» + Q5(N-(k+1))Q(N-(k+1)) +

:2; (N-<1c+1>>Q(N-0c+1>)+ a'm-cmmgm-(mn +

g'm-(HIDQICN-(HID + 21(N-(ki’1))92(N-(k+1))Q(N-(H1))]§_(k)
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+ e'<k)tiM<Né-<k+1)> + iAB<N-<H1>>Q<N-0s+1>) +

«mammals-(Hun Q'(N-(H1))92(N-(k+1))QCN-(H1))]_Z_(k)

+ E{_u'(k)ODD(N-(lc+l))_u(k)} . (5.1.31)

According to the assumption that g(k) (disturbance vector)

is white, the separation principle (Refs. M-5, T-8) can be applied

to Equation (5.1.31) to eliminate the last term from the optimiza-

process. The separation principle allows a problem such as the above

to be separated into a deterministic and a stochastic protion with

the optimal control policy being based upon the deterministic portion

only. Since the problem is restricted to the optimization of a

quadratic cost functional subject to the known linear system dynamics

with environmental disturbances, it is possible to prove and utilize

the separation principle (theorem). This theorem specifically states

that, for linear systems with quadratic cost functionals subject to

additive white Gaussian noise inputs, the optimum stochastic controller

is realized by cascading an Optimal estimator with a deterministic

optimum controller. This decoupling of the problem into two parts

is due to the fact that random noises are white with zero mean and,

since they are completely unpredictable, need not be used in the

design of the optimal controller. The decoupling is also due to the

linearity of the problem. Thus, recursive relationships for 0,

lg, and a in the quadratic cost functional, Equation (5.1.31)

may now be determined from Equation (5.1.31) by simply equating like

terms across the equal Sign, obtaining:
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a(N-k) = o6(N-<1c+1>> + 525(N-(k’r1))g(N-(k+1))+ g_'(N-(1c+1))g3(N-(1c+1))

+ gi'(N-(H1))e2(N-(k+1))gi(N-(k+1)) (5.1.32)

110M) = ram-(HO) + egos-(Hm + use-(mnom-(k—u» +

£25 CN'(H1))QCN-(k+1))+ q'(N-(k+1))<iAB(N-(1c+1)) +

q' (N-(k’tl))i>1(N-(k+1)) + Zg'm-(k'tlflizm-(HIDQ (N-(k+1))

(5.1.33)

Q(N-k) = @AA(N-(k+1)) + PAB(N-(k+1))Q(N-(1¢+1))+ Q'CN-(ktl))@1(N-(k+1))

+Q'(N-(H1))ez(N-(k+1))Q(N-(kHD . (5.1.34)

The recursive relationships, Equations (5.1.32), (5.1.33),

and (5.1.34) are used to generate the components of a(N-k), L(N-k),

and G(N-k), k = N-l,N-2,...,1,0, i.e., over the time horizon.

These in turn are used to generate the optimal feedback gain

vector g(N-k) and matrix Q(N-k). Hence, the Optimal control

policy g(k) in Equation (5.1.25) is obtained. The initial con-

ditions for o, L, and n, i.e., when k = N are given by Equa-

tion (5.1.6) as follows:

em) = - ingmmgl 111200 (5.1.35)

2,’ (0) = - %5n_2'(N)R;1 R2 (5.1.36)

0(0) = - 1R' R'1 R (5 1 37)
4 2 3 2 ° - -

To summarize, this chapter derives the optimal control

policy, Equation (5.1.25), for the control problem stated at the

beginning of the chapter, i.e., minimizing (4.3.7) subject to the

Equations (4.3.4) and (4.3.5). Dynamic programming and Bellman's
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principle of optimality were utilized for the derivation of the

Optimal control algorithm, which is shown in the following flow

charts. In the computer flow diagram Fig. (5.1.1) going backwards

in time the feedback gain vector 9_ and matrix Q are derived

and stored in the computer. In Fig. (5.1.2) going forward in time

the performance index is computed using the information stored in

the computer from the first flow chart in order to compute the

control and state vectors given the initial condition g(O).
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CHAPTER SIX

NUMERICAL SOLUTION OF THE OPTIMAL CONTROL POLICY

6.1 General Discussion

In Chapter Four the optimal control problem for the

minimization of the expected value of Equation (4.3.5) subject to

the constraints Of the system dynamics as given in Equation (4.3.4)

was defined. In Chapter Five the optimal control policy for this

problem, derived using dynamic programming, is of the form

“y(t) = g(N-t) +Q(N-t)3(t), c = 1,2,...,N-1 (5.1.25)

where the components of the matrix Q(N-t) are the Optimal feed-

back gains from the system state z, to Optimal control Q, Since

the control vector has three components, G, M, and L, and since

the state vector has six components, the Optimal gain matrix,

Q(N-t), has three rows and six columns. Also note that the Optimal

gain matrix is a function of the number of quarters in the future

over which the problem is to be Optimized, N-t, which is called

time-to-go in many studies (Ref. B-lS). Thus a solution to the

Optimal control Problem is Obtained when the vector qu-t) and the

Optimal gain matrix, Q(N-t), are determined for time-to-go from

N-k = l to N-k = 40. This chapter presents the results Of the

numerical solution Of the Matrix€Ricatti equations, Equations

(5.1.32), (5.1.33), and (5.1.34), with their initial conditions
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given by Equations (5.1.35), (5.1.36), and (5.1.37), for o, L,

and n. The results are used to Obtain qflN-t) and Q(N-t) by

Equations (5.1.11), (5.1.12), (5.1.14) through (5.1.22) and (5.1.25).

Equation (5.1.25) suggests that the contributions to the components

of the control vector from the Optimal feedback gain matrix multiplied

by the components Of the state vector are

c“; .= ,N-k , '= 1,...,6 6.1.16 /ayJ q1,J( ) J ( )

afi/ayj = q2 ch-k) , j = 1,...,6 (6.1.2)

1. .= .N-k , °= 1,...,6 6.1.3B /ayJ q3,J( ) J ( )

' = ’ =

where §_(t) (y1(t) y2(t) --- y5(t) y6(t)) With y6(t) yd(t)

and q1 j(N-k), (i = 1,2,3, j = 1,...,6), are the elements of the

feedback gain matrix, Q(N-t), in the i-th row and j-th column

position. Specifically, the optimal control policy vector is

r'. '1 1 * . 1
cm Fqlm-t) 519- (N-k) . . . ‘39— (N-t)

“y(t) = Wt) = qzm-t) + 33;: CN-t) . . . 33‘6“” g(t). (6.1.4)

      
“ _ 5.1;. -t , . . aL. ..
L(t) tq3<N DJ (N ) ay (N t)

b. .1

Equation (6.1.4) states that the Optimum economic policies

are functions of the state variables Of the entire system including

those entering the performance index. The state variables are

yi(t), i = 1,...,6, with yd(t) = y6(t), as Specified in Chapter

Four. The matrix equation (5.1.25) yields the appropriate decision

policies with respect to the control variables G(t), M(t), and

L(t) assuming the Objective functional Of the system is to be
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minimized over a time horizon Of N-t (t = 0,1,...,N-1) quarters.

This information takes into account the dynamics of the system model

as well as the stochastic environmental disturbances.

In Chapter Four the Objective functional was derived as

Equation (4.3.5) with a penalty function for control activity.

Since no data could be found for estimating the penalty function

for control activity, some sensitivity analysis is performed using

the assumed form of the penalty function as

Frll O O ‘1

P = “R = n o r22 0 (6.1.5)

0 O r

a 3%J  

where n is a scalar and R is a symmetric positive definite

matrix. The effect Of the level of the penalty function is studied

numerically in this chapter by considering values Of the scalar

/fl (penalty factor) and by altering the weighting ratios

/r

r11 r22’

and

r11/r33’ r22 33'

6.2 Open Loop Results

An Open-loop system is one which is unforced. In the present

case the deterministic portion of equation (4.3.4), i.e., the state

model of the system, without feedback control comprises the Open-

loop system. A digital simulation Of the Open-loop system was

constructed utilizing the given input data to generate ys(t),

simulated Output, shown in Fig. (6.2.1). In this figure the actual

path of gross national product (GNP), ya(t), and the potential

(desired) output, yd(t), during 1954-1963 are also shown. The
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result of this simulated path of the output (ys(t)) is a curve

that varies from time to time about the actual path for the output,

ya(t). This oscillatory behavior may be caused by an imperfect

correlation of the unemployment or inflation rate with under or

over used potential output. As it will be seen in the coming

section (Sec. 6.4) using Optimal control policies yields a smooth

Optimal path for the output.

Potential gross national product, yd(t), may be defined as

that level of output in any quarter (of a year) under conditions Of

full employment and minimum inflation (price stability), see Sec.

4.3. The work Of Phillips (Ref. P-5), among others, suggests that

full employment and price stability, as defined in Sec. 4.3, can

be simultaneously obtained. Thus, yd(t) may be considered to lie

within a feasible set Of ya(t) values. If the actual national

output, ya(t), exceeds potential Output, yd(t), inflation Of the

demand-pull type results. When ya(t) falls below yd(t), unemploy-

ment in excess of four per cent Of the total labor force results.

Performance index (4.3.1), being quadratic in the variation between

yd(t) and ya(t), penalizes both Of these disutilities.

Okun (Ref.()-2) has considered the problem of estimating

potential gross national product in some detail. Based on his

study, he suggests the following simple relationship for estimating

potential output,

yd(t) = ya(t)[1 + .032(u(t) - 4)] (6.2.1)

where u(t) is the unemployment rate at quarter t measured in

percent Of total labor force. When the unemployment rate is
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four percent, potential GNP is estimated as equal to actual; at a

five percent rate of unemployment, the estimated "gap" is 3.2 per-

cent Of GNP. In the periods from which this relationship has been

Obtained the unemployment rate varied from about 3 to 7% percent;

the relation is not meant to be extrapolated outside this range.

This model and the actual output are both plotted as discrete-

time functions in Fig. (6.2.2), using the given data for the system

under this study. The dashed line in the figure shows the implied

time-series of potential GNP derived by applying the 3.2 coefficient

to excess unemployment for the period 1954-1963. The result is a

curve that varies from quarter to quarter, even dipping at times.

Okun raises the question whether these variations should be taken

seriously as indications Of irregular or cyclical patterns in the

growth of productive capacity or whether they should be attributed

to an imperfect correlation of the unemployment rate with unused

potential output. In the former case, the irregular path upward

shown by the dashed line would be the estimated series of potential

GNP. In the latter case, some smoothing of that irregular path

would be in order. One way Of smoothing which eliminates all the

ripples is to substitute a simple exponential curve that corresponds

with the trend and level of the varying series. This leads to the

second model for yd(t) suggested by the work of Okun (Ref. 0-2),

which is a simple function of time with a 3.5% annual growth trend

(see Sec. 4.3) that is,

yd(t) = g yd(t-1) . (4.3.3)

Such a benchmark trend is Obtained by a line that goes through the
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actual output, ya(t), in mid-1955 (where u(t) = 4%) and moves up-

ward at'a 3% percent annual growth rate. The trend (time) measure

of potential is shown as the solid line in Figs. (6.2.1)-(6.2.3).

A comparison between ya(t) and both of these yd(t)

[i.e., based on Equation (4.3.3) and Equation (6.2.1)] show that

unemployment in excess of 4% exists for almost all Optimization

periods except for mid 1955. This is consistent with the unemploy-

ment figures available for the period 1954-1963, which are shown in

Fig. (6.2.3). This figure shows that unemployment rate is between

4 to 7.2 percent; therefore, the estimated potential GNP model,

Equation (6.2.1), can be applied for this study. As it was said

earlier (Sec. 4.3) and because of the difficulties involved in

using yd(t) based on Equation (6.2.1) which were discussed above,

the trend measure of the potential, i.e., Equation (4.3.3) has

been used for generating yd(t).

6.3 Optimal Control Policy Mix

Optimal control policies for various combinations of the

components Of the control vector, i.e., G(t), M(t), and L(t) may

be generated by changing the relative weightings between them in

the cost of control term, Equation (4.3.1). Let the cost of contrOl

matrix R be given by

F' '1
r11 0 O

R = O r22 0 .
(6.3.1)

L0 0 r3?‘

  

Then by altering the ratios between the r's, the relative magnitudes



94

  

  

160 -+

CD

p
m
...4

'3 P tential GNP
a 140 ._ 0

<1) \

m

ON

...4

H—l

O

U)

c

,2 120 .2

:1 CAP

"-1

m

Actual GNP

100 _' r r I I t I 1 fl 1 1—

1954 1956 1958 1960 1962 1964

81

Unemployment Rate (Seasonally Adjusted)

1

6 -

4 4... .__n__ .__..__u__u__u_..__.__.__H._u_m

U

c

(D

U .1

L4

O

a.

2.4

O r I ' T I f I T I I 1

1954 1956 1958 1960 1962 1964

Fig. (6.2.3). Relationship Between the "gap" and the Unemployment

Rate.



95

Of G, M, and L may be varied within the Optimal control policies.

The effect of the level of the penalty function (on the cost of

the control vector activity and hence on the cost functional) was

studied computationally by considering values of the scalar fl

(weighting factor). That is, while the matrix R will change the

relative magnitudes of the control variables, the penalty factor

n will change the overall effect of the control vector activity

on the cost functional Of the system. Since there does not exist

any theoretical or practical information as to how the components

of the matrix R and/or scalar fl should be chosen, a series of

simulation runs with different ratios of r and different values

for n were conducted in this study.

When ru/r22 = rll/r33 = r22/r33 = 1 Optimal control

policies over the entire range of n consist of relatively low

magnitudes on L and N with G >1fi >»L. The larger the value

Of fl (that is the higher the cost of control), the higher is the

value of the performance index. These optimal values are mathe-

matically reasonable but the fact that E is greater than L

indicates negative time deposits (R = L - 8). These negative values

of time deposits specified in the Optimal control policies are the

result of using an unconstrained control and using equal weighting

factors among the different components Of the control vector.

In Sec. 3.3 dynamic and stability analyses Of the Open-loop

system were discussed. One important feature of the Open-loop

system is that using the estimated structural equations (eXpressed

at the end of Sec. 3.2) and expressing current endogenous variables

in terms Of exogenous and lagged endogenous variables, reduced form
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equations are obtained. The coefficients of these equations were

called impact multipliers in Chapter Three. Focusing attention on

the endogenous variable y (t), i.e., GNP, the derived reduced form
a

is

ya(t) -20.807O + 1.1427 G(t) + .3168 M(t) + .0481 L(t)

.1242 M(t-l) - .0350 L(t-l) + .1035 t + .8313 C(t-l)

+ .7270 (S(t-l) - S(t-2)) + 1.0190 Id(t-1) + .7409 Ir(t-1)

+ .3631 11(r-1) + error . (6.3.2)

Based on the model's estimate, the impact effect (or multiplier
 

effect)# of a $1 billion increase in G(t) is to increase ya(t)

$1.1427 billion, while the impact effect Of a $1 billion increase

in money supply yield a $.3649 billion increase. Therefore, it is

reasonable that an Optimal control policy based on equal cost Of

control for G, M, and L would heavily favor the use of G over

M and L and M over L. In order to obtain control policies

/rWlth a more balanced policy mix, r11/r22, r11/r33, and r22

were varied for different fi's, thus, different weighting was

33

given to the activity Of each component of the control vector and

with penalty on the system's error u = 1 and 1/2 in Equation

(4.3.1). The ratio rll/r22 was varied over the range %,1,5,10,

 

Recalling here that the coefficients attached tO the exogenous

variables in Equation (3.3.1) are called dynamic multipliers. These

multipliers measure the change in y (t) corresponding to a unit

change in the value Of an exogenous variable occurring in any specific

present or past period. TO note that the dynamic multipliers attached

to the current values Of exogenous variables are the same as the

corresponding impact multipliers, compare the underlined coefficients

in Equation (6.3.2) with the coefficient vector 8' in Equation

(3.3.1). '5
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in Figs. (6.3.1)-(6.3.3) for initial conditions at the first quarter

of 1954. The actual levels of each control variable during 1954-

1963 are also shown as discrete-time functions.

Figures (6.3.1)-(6.3.3) clearly show the time relationships

between actual and Optimal monetary and fiscal policies during 1954-

1963. The optimal control variables trajectories represent the

paths which minimize the value of the performance index IN with

/rn = -01 and = 2,8,10; r /r = 60,240,500, r22/r33 = 30,
r11 11 33

40,50, respectively. The very high starting values Of the control

22

variables are the transient phenomena required to bring ya(t),

which initially is 10 tO 20 billion dollars below potential output,

up to yd(t). The Optimal levels for M suggested by this study

stay below the actual levels while those for G and L do not.

As the ratio rll/r22 decreases, the Optimal levels for G in-

crease, while those for M and L decrease (see Figs. (6.3.1)-

/r(6.3.3)). As the ratio approaches one and continues tor11

decrease, the optimal trajectory for M becomes fairly flat whereas

22

the Optimum trajectories for G and L preserve their previous

shapes with their magnitudes changing. Figures (6.3.4) and (6.3.5)

illustrate the above for the case when r11/r22 = l, rll/r33 =

r22/r33 = 100 and n = .01. Figures (6.3.2) and (6.3.5) suggest

that the Optimal path for the money supply during 1954-1963 in this

study is almost constant. Subsequent numerical results in Sec. 6.4

are based on r11/r22 = 8, r11/r33 = 240, and r22/r33 = 40 because

these ratios lie in the range of "Optimal" policy mix ratios and

the resulting Optimal control policies are reasonable in terms of

relative magnitudes of G, M, and L.
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Figures (6.3.6)-(6.3.8) show the Optimal control policies

when the weighting factor u on the system's error term is 1/2

for the same weighting factors on the control components shown in

Figs. (6.3.1)-(6.3.5). A close look at the Figs. (6.3.6)-(6.3.8)

shows that the optimal control paths are flatter than those in

Figs. (6.3.1)-(6.3.4) and hence closer to the actual paths for the

control variables. On the other hand, the paths are still of the

same shape but with different magnitudes. These observations lead

to the following results. First, the fact that the optimal paths

for the control variables are not the same as the actual paths

indicate that decision~maker(s) should consider more flexible

control variables in order to achieve a stabilized economy. Secondly,

Friedman's hypotheses do not receive support from this work. To

recall, the first hypothesis is that policy changes may be detri-

mental as often as they are beneficial from the standpoint of

stabilization policy. Therefore, the most effective strategy might

be either no policy at all or adherence to some simple rule, e.g.,

a three to four percent increase in a control variable, e.g., money

supply, per year. The second hypothesis is that the money supply

is a more significant and important determinant of consumption and

income than are autonomous expenditures (Refs. F-S and K-8). How-

ever, from the analysis of the Optimal control policies and the

simulation runs made, these hypotheses do not receive a strong

support from the model for the period under investigation. With

respect to the stabilization question all three control variables

are effective. The control variable M (money supply) is not a

more significant and important determinant of income than C, simply
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because it is not as sensitive as G and its optimal path always

stays below the actual path for M, see Figs. (6.3.2), (6.3.5),

and (6.3.7). Finally, it is important to notice that the controls

in this study are not constrained. Therefore, the specific high

values for the control variables and the large deviations between

the optimal and actual paths for control variables are due to the

fact that they are free to vary in their space. Obviously further

research needs to be done when the controls and/or states are con-

strained.

6.4 Optimal GNP (ya(t)) Trajectory

The optimal trajectories for gross national product from

1954-1963 based on the quadratic disutility functional Equation

(4.3.7) with various penalties on the cost of control term are

shown in Fig. (6.4.1). Based on this study the figure shows that

the optimal output ya(t) reaches its steady state trend line

within about one year. Due to the large initial deviation between

yd(t) and ya(t), §a(t) overshoots yd(t) for the first few

quarters after the control has been applied when the penalty on

cost of control (fl) is relatively low. This underdamped response

simply indicates that for the initial start of the output, large

initial controls should be applied to rapidly close the gap between

yd(t) and 98(t) followed by a backing off on the controls to limit

the resulting overshoots. This point is clearly seen from the

optimal paths for the control variables in Figs. (6.3.1)-(6.3.3),

since this is indeed the form of the optimal control policy.
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As the cost of control increases, the initial reSponse of

ya(t) slows and the steady state deviation between yd(t) and

ya(t) increases. After the overshoots the Optimal path of the out-

put (ya(t)) increases steadily and, for the low cost of the control,

ya(t) crosses yd(t) and stays above it for the rest of the

optimization period. Figure (6.4.2) shows the same result with a

higher level of desired (potential) output (yd(t)). In this case

the optimal path for the output (ya(t)) stays below yd(t). The

steady state deviation between yd(t) and ya(t) represents an

equilibrium point at which the cost associated with incremental

changes in g(t) (optimal control policy) is just offset by the

payoffs resulting from these incremental changes. Perhaps a more

realistic form for the cost of control term would be, as was said

earlier (Sec. 6.3), one which is a function of the deviation be-

tween yd(t) and ya(t)° Thus, as e = (yd(t) - ya(t)) decreases

the cost associated with reducing 6 also would further decrease.

On the other hand, cost of control should never go to zero since

there is always a certain level of uncertainty (noise) with respect

to the exact state of yd(t) and ya(t) at any point in time.

Figure (6.4.1) further shows the cost (value) of the per-

formance index for different values of penalties on the cost of

control term in the performance index.

6.5 Optimal Feedback Gains

Recall that the Optimal control policy, Equation (5.1.25),

has the form

“301) = SLCN-t) + QCN-t)_z_(t) t = 1,...,N-1 (5.1.25)
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where the components Of the matrix Q are the Optimal feedback

gains from the system state a to the optimal control Q. The

optimal feedback gains were briefly discussed in Sec. 6.1. In

this section the Optimal feedback gains for n = .001 and fl = .l

are compared in Figs. (6.5.l)-(6.5.6) for the Optimization interval

/1954-1963, where /r = 2,r11 22 = 60, and = 30.
r11/r33 r22 r33

In general, the shapes of the Optimal feedback gains do not

appreciably change with n (penalty on the cost of control in

the performance index) although their magnitudes do. The feedback

gains are plotted on a scale of time-to-go, N-k (N = 40 quarters,

k = 0,1,...,39). Thus, feedback gains at stage N-k on the time-

to-go scale refer to gains which should be applied at the k-th

stage of a N-stage process. The feedback gains given in the Figs.

(6.5.l)-(6.5.6) are sufficient to generate the optimal control

policies for any length Of optimization interval up to 40-quarters

and for any arbitrary initial conditions on the state variables.

For example, if it is wished to consider the Optimal control policies

for a three year period, N is set to 12 quarters and feedback

gains for N-k, k = O,l,2,...,ll are used with 5(0) being chosen

arbitrarily.

Some general comments concerning the Optimal feedback gains,

Figs. (6.5.l)-(6.5.6) are of interest. First, the Optimal feedback

gains for the control variables G and L are of the same sign

whereas those for the control variable M are Opposite except for

the first and the last ones. Second, the optimal feedback gain

matrix Q in Equation (6.1.4) is of the form
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Faé/ayl < O 50/3y2 < O aC/ay3 > O aC/aya < O ae/gys > 0 afi/Ay6 > 0'1

Q = afi/ayl < 0 afi/ayz > 0 aM/ay3 < 0 afi/ayh > O Afi/ays < 0 Bfi/OY6 > 0

  L_al‘./ay1 < O aL/ayz < 0 AL/ay3 > O aL/ay4 < O Ai/OYS > 0 Bi/OY6 > O_J

(6.5.1)

The optimal feedback gains from state variables y1, y2, and y4

on both C and L are negative while those associated with y3, y5,

and Y6 are positive. Thus an increase in state variables y1, y2,

and y3 in one quarter tends to reduce C and L in the following

quarter while the opposite is true of the Other state variables.

For the other control variable, M, an increase in y1, y3, and y5

in one quarter tends to reduce M in the following quarter. These

points can be clearly seen from the Optimal path for control variables,

Figs. (6.3.1)-(6.3.3). Since the state model of the system is

derived in terms Of the output and control variables, it is difficult

to associate these feedback gains and their effects to the flow and

stock variables in the system. Finally, in this study no optimal

feedback gains changed its algebraic sign as a function of N-k,

i.e., all the gains stayed on either one side or the other of the

thme axis for the whole optimizing period (1954-1963).



CHAPTER SEVEN

CONCLUSIONS AND RESEARCH RECOMMENDATIONS

7.1 Conclusions

The research of this thesis has demonstrated the primary

conclusion that Optimal control theory is applicable to the analysis

of complex economic systems and very useful in the formulation of

Optimal fiscal and monetary control policies for a national economy.

Conventional automatic control theory, e.g., stability,

is inadequate to dexcribe completely many problems in macro-economic

systems. The advancement of high-speed digital computers and modern

control theory including Optimization results such as dynamic pro-

gramming and the maximum principle make possible more complete studies

Of fiscal and monetary decision-making. This dissertation utilizes

these advances as well as the progress made by economists in dynamic

modeling of macro-economic systems. The Optimal economic policies

which are derived in the simulations documented in Chapter Six

provide several insights: (1) that greater flexibility in the

allowed variations of control variables are needed to achieve con-

sistently low levels of unemployment and stable prices; (2) some

existing economic hypotheses such as the two stated by Friedman

and discussed in the thesis need reconsideration; (3) smoothly in-

creasing paths for the output (GNP) which result from Optimal policies

also yield up tO a one-hundred-fold improvement in the quadratic

120
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performance index as compared with the actually observed output.

The dynamic econometric model of this study, consisting of

a system of eight difference equations, replicates the time tra~

jectories Of the basic aggregated variables Of the U.S. economy to

within some percentage errors during the period 1954-1963. From

the analysis of the Optimal control policies and the simulation

runs made, the Friedman-Meiselman hypothesis does not receive

strong support from the model for the period under investigation.

This point was clearly investigated by making some sensitivity

simulation analyses of the model with respect to the cost Of con-

trol and different weightings of G and M. The results suggest

that G is more sensitive than M and the Optimal path Of M is

fairly constant, Figs. (6.3.4) and (6.3.5)

The eigenvalues Of the Open-loop econometric model formulated

in state-space suggest that the natural reSponse modes of the model

are stable. It hence appears that the system is inherently stable

and that the sources of instability have to be sought in the stimuli

from the exogenous factors (including trend) and the random dis-

turbances.

An analysis of the model's parameters and their classifica-

tion based on their effects on the model's variables and output

(GNP) are studied. Model parameters influence model variables in

that they measure the effect Of changes in one variable upon the

value of another variable(s). Therefore, their values are funda-

mental to the dynamic behavior of the GNP model system. That is,

they are important for determining stability, reSponse time con-

stants, and steady-state gains. The model's parameters must be
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designed and estimated prOperly in order to have a valid dynamic

description.

The performance index of this study is based on minimizing

the difference between model-predicted GNP (ya(t)) and the

theoretical potential output Of the economy, yd(t). A model of

yd(t) studied here is yd(t) = f(nt). As a standard, yd(t) should

not deviate from an approximate 35% annual growth trend. This

research indicates that yd(t) = f(nt) preserves the above char-

acteristics and is not influenced by the Optimal control policy.

The Optimal output path, ya(t), stays in a small neighborhood of

yd(t)-

When the weighting ratios among G, M, and L in the cost

of control term are between the ranges given in Chapter Six, the

resulting Optimal control policies give lower values Of the per-

formance index (less cost of control) than do neighboring Optimal

control policies with different combinations of G, M, and L.

Application of these optimal economic control policies re-

sults in optimal gross national product trajectories which closely

track potential output, yd(t). Optimal control policies for 1954-

1963 represent, for low values of cost of control, considerable

improvement, in terms Of the performance index of this study, over

the actual performance of the U.S. national economy during 1954-

1963 (see Figs. (6.2.1) and (6.4.1)).

The comparison between the Optimal control paths and actual

control paths indicate the necessity of a change in the fiscal and

monetary decision policies made by the government. That is, this

study in agreement with other studies made previously (Refs. B-l4
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and B-15) urges the consideration Of more flexible control policies

than currently exist.

7.2 Recommendations for Further Research

Further research should be directed at improving the model

of the potential national output, yd(t), in order to more accurately

characterize this variable endogenously. Also, to treat more com-

plex economic models such as the Brookings and Klein/Goldberger

models (Refs. D-5 and K-4), refined procedures for Obtaining a

state space form are needed. This form is essential for effective

utilization of dynamic Optimization techniques.

Additional research is needed to Obtain from economic theory

and available economic data, realistic values for the weighting

factor on cost of control as well as the relative weights applicable

to control variables. Use of some new cost of control term based

on the changes in control variables rather than their absolute

mangitudes should also be investigated.

The problem considered here had a finite time horizon.

This allows one to re-examine the performance index or the decision

rule from time to time. The study of the system for different time

intervals (N) and the effect of this on the Optimal policies also

need further research.

The macro-economic model used in this dissertation was

chosen to be complex enough to account for the basic performance of

an economy like that of the U.S. national economy but simple enough

to be mathematically tractable. It appears that future research

should be conducted in the direction of optimal control using more



124

complex and comprehensive models. To correlate with the more com-

plex models, multi-level control theory appears to provide a useful

framework for research.

Further work should be conducted to improve the estimate of

the econometric model parameters since the Optimal control policy

has been shown to be singificantly dependent on these parameters

(see Sec. 3.3). Furthermore, in order to reasonably design any

control system a mathematical model of the stochastic characteristics

Of the parameters is required. Such a noise model does not exist

to the author's knowledge at this time.
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