


oo

This is to certify that the

dissertation entitled

ON THE STRUCTURE OF
GERM-FIELD MARKOV
PROCESSES ON FINITE INTERVALS

presented by
Einollah Pasha

has been accepted towards fulfillment
of the requirements for

Ph.D Statistics

degree in

czzé:ﬁtuunwu:CLQngnj:___

Major professor

Date 4/9/82

MSU is an Affirmative Action/Equal Opportunity Institution 0-12



MSU

LIBRARIES
A—e—

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.




ON THE STRUCTURE OF
GERM-FIELD MARKOV
PROCESSES ON FINITE INTERVALS

By
Einollah Pasha

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Statistics and Probability

1982



ABSTRACT

In a general case of Hilbert space valued Gaussian processes
we derived a representation for the processes having Germ Field Markov
Property (GFMP) [9] on finite intervals. Aslo we studied the case where
the Germ Field is generated by a family of independent Gaussian random
variables. In the case where the generating family is finite, these
processes is said to be N-ple reciprocal processes and we gave an ex-
plicit representation of them in terms of N-ple Markov processes. In
a special case these processes conincides with the reciprocal processes

introduced by Jamison [5].
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INTRODUCTION

This work studies stochastic processes having Markov properties
on the family of finite-intervals for Hilbert-space-valued Gaussian
processes. In view of the example in [9], these processes need not
have Markov property on semi infinite intervals. We show how these
processes are related to processes with Markov property on semi-infinite
intervals. This allows us to obtain a structural characterization of
such processes. This characterization for example allows us to say
when the solution of a stochastic differential equation having white
noise input with linearly independent boundary conditions is Markov
giving the main result of [14]. This is derived from the result on
finite-order Markov property introduced here. Under the assumption
of existence of (N-1) quadratic mean derivatives, one can show that
these are precisely the N-ple Markov processes introduced by Doob [2].
Our representations are motivated from the previous work in [7], [8]
and have similar form. This work also constitute an alternative attack
on reciprocal processes introduced by Jamison [5]. In fact, our work
gives an explicit representation for what one may call "N-ple reciprocal
processes" (N = 1 being Jamison's case). Thus this work extends the
work in [5]. In addition, we also study g-variate case (q < ®),

Here the techniques used are from ([7], [8]). This part of the work
solves complete generality the question raised by Jamison [5]. In
the stationary case, the result of Jamison [5] can be derived. Finally,

we study infinite-order Markov processes. Here our work is in some



sense incomplete. However, this part of the study raises some questions
about the relationship of these processes to so called T-positive
processes. This part will be subject of continuing investigation.

For the convenience of the reader we now describe the results according
to chapters.

In Chapter 1, after a brief review of conditional independence,
Germ field Markov properly (GFMP) and Markov property [MP] operator
valued stochastic processes are studied in detail and a representation
for reciprocal processes is given, Theorem (1.5.14). In the special
case of differentiable reciprocal processes it is shown that these are
the only solution of a linear differential equation of certain type
with boundary values, Theorem (1.5.21). Finally in this chapter the
form of covariance functions of stationary real valued reciprocal
Gaussian processes are obtained.

In Chapter 2, the notion of (Generalized) N-ple Markov processes
and N-ple reciprocal processes are introduced and a representation for
N-ple Markov processes in the general form of Hilbert-Schmidt operator
(HSO)-valued processes is given, Theorems (2.1.4), (2.3.3). The relation
between N-ple Markov processes and N-ple reciprocal processes is given
in Theorems (2.2.5) and (2.3.7).

The notion of infinite order Markov processes is introduced in
Chapter 3. Some properties of this kind of processes have been discussed.
A representation for infinite order Markov processes and their T-pos-

itivity is of interest.



CHAPTER 1
MARKOV PROPERTY

Let (2,F,p) be a probability space and X = {Xy» t € T} be
a stochastic process on (Q,F,p), where T 1is a topological space.
In order to give a definition of Markov property we need the idea of
conditional independence and some of its basic consequences.

1.1. Conditional independence [6], [9].

Let Fl,F2 and G be sub-o-fields of F. We denote by
F1 i F2|G the conditional independence of F1 and F2 given G, and
it means that P(A1A2[G) = P(A1|G)P(A2|G) for all F, measurable sets
Ai’ i = 1,2. We have the following basic results of conditional inde-

pendence:

1.1.1 Lemma [9]. If F, u F2|G then;

(a) For every A satisfying G<AcGYV F2, we have

(b) For every B satisfying B< GV F2, we have F1 IB]| G.
1.2. Markov property.

Let A be a subset of T with closure A and boundary 3A.
Let :




FA = c{Xt: t € A} "past"
Fp=olX,: t¢R "future"
rA = o{Xt: t € %A} "present".

1.2.1. Definition. We say that X = {Xt’ t € T} has Markov property
(M.P.) on A if

AHF+

F AIFA’

The classical Markov processes are the one with T = R and
having Markov property on the sets of the form At = (-=,t] and the
present is given by o{Xt}, teR.

In the following we discuss a generalization of this definition.

1.3 Germ field Markov property [9].

As above let (q,F,p) be the probability space and
X = {Xt, t € T} be the stochastic process with T a topological space.

Let C be a closed subset of T and define

.= N Fy. For an open set 0, ], = Fy = ofX,,t € 0}.
c<s0 0 open

1.3.1. Definition. We say that X = {Xt: t € T} has Germ field

Markov property (GFMP) on Ac T if } uj} |}
A CA A

Germ field Markov property is a weaker condition than Markov
property in the sense that if a process has Markov property on a set

A then it has GFMP on A, but the converse may not be t e [9].



In this direction, a stochastic process may have GFMP(M.P.)
on some particular subsets of T, such as open sets, but not on a larger
class of subsets of T. The question is when can we deduce GFMP(M.P.)
on some larger class by having GFMP(M.P.) on an smaller one? We have
the following answer to this question.
1.3.2. Proposition [9]. (a) If X has GFMP(M.P.) on disjoint open

sets Oi, i=1,..., then it has GFMP(M.P.) on the union U Oi’
i=1

(b) If T is locally convex and X has GFMP(M.P.) on convex open
sets then it has GFMP(M.P.) on all open sets.

(¢) X has GFMP(M.P.) on all sets if it has GFMP(M.P.) on all open
sets.

1.3.3. Remark. As a result of this proposition we get that the classical
Markov processes have M.P. on all the sets. To see this by (1.3.2)

it suffices to show that it has M.P. on all bounded open intervals in
addition to the intervals of type (-=»,t], t€ R. Let S <t and
A=o{X;: ugs}, B=o{XK: u>t) G=ofX: s <u<t} Bythe

assumption and (1.1.1.) we have:
A 1Glo{XS,X ), B UG[o(X,X, ) and A 1 Blo(X,X,).

We want to show that A v B I Glo{xs,xt}. A typical generating element
of Av B 1is of the form ANB where A€ A and B € B. So we want
to show that:

P(A N B N CIX,X,) = P(A N BIX X )P(CXG,X,),

for all A€ A, Be B, C € G. But:



P(A N B NCIX.X,) = E(Lyplo|X X))

= E[ICE(IA‘les’Xt’IC) IXS’Xt)J

E[I\CE(‘JAnBIXS’Xt)Ixs’xt]

E(Ipng | Xgs X JE(T[XX,)

P(A N BIX, X )P(CIX X))

1.3.4. Remark. If we have M.P. on bounded open intervals, then we
have M.P. on all bounded open sets and obviously vice-versa. This is
the case because any bounded open set on the real line is a countable
union of disjoint bounded open intervals.

Having M.P. on bounded open intervals, in general will not
imply the Markov property on all open sets (and consequently, having
a classical Markov process). But under some condition on P and the
triviality of the tail o-field of the process, NGOC & ROYER [11] proved
that the Markov property on all bounded open intervals imply that X
is a Markov process. The processes having Markov property on bounded
intervals were studied in [5] under the name "Reciprocal processes".
In the next section we consider some representation for these processes

under very general setting.

1.4. Operator-valued processes.

In [5] Jamison studied reciprocal processes taking values in
R and asked whether his result are extendable to the case of processes
taking values in R" at least in Gaussian case. Given a Gaussian process

{Xt’ t € T} taking values in R", we can consider the following (finite



dimension) operator-valuded process:

n

X (a) = X aeR", ter,

t "2
where - is the inner product in R". Here for each t €T, Xt: Rp-+L2(Q,F,p)
with (Q,F,p) being the probability space on which.the

original process was defined. In case of a Gaussian process Xt taking
values in a Hilbert space, it is well known that E”Xtﬂﬁ < o for each

t € T. Thus the operator-valued process lt associated to Xt given

by x%(h) = (xt’h)H’ h € H has the additional property:

y S 2 _ 2
% E|X.(e;)]" = E % | (X0 )€ = EIX S < o,

where {ei} is an orthonormal basis in H. Therefore lt is a Hilbert-
Schmidt operator on H into LZ(Q,F,p). As the problems studied here
are second-order depending on the Hilbertian properties of H and
LZ(Q,F,p) we study them as problem involving two Hilbert spaces.
Motivated from this we define Hilbert-Schmidt operator-valued processes.
Let H and K_ be two separable Hilbert spaces with inner
products (-,-)H and ("°)K and norms "'“H and "'“K; respectively.
The set of all linear bounded operator on H into K is denoted by
B(H,K), and the dual spaces of H and K 1is denoted by H* and K*;

respectively. Before giving a definition of Hilbert-Schmidt operators

we need the following lemma:

1.4.1. Lemma ([1], p. 256): Let H and K be two separable Hilbert

spaces and A in B(H,K). If the series

©o

2
T Iae



converges for an orthogonal basis {en} in H, then

Re 2= T fAey® = <he fr 52 = T fA'f
R M

- 2
= ngm |(Aen,fm)l ,

no matter what orthonormal bases {eA} of H, {fn} in K and
* *
{fn} of K are chosen.
Now we are in a position to give the definition of a Hilbert-

Schmidt operator:

1.4.2 Definition. An element A of B(H,K) 1is called a Hilbert-
Schmidt-operator (HSO) if

©o

iy = 1 line 42

converges for at least one orthonomal basis {en} of H. The set of
all HSO,s on H into K 1is denoted by HS(H,K) and it can be con-
sidered as a Hilbert space with the inner product given by:
%* %*
(A,B)ye =tr BA= ] |(BAe,,e.)|, A,B, in HS(H,K),
HS i3 i’
%*
where {ei} is an orthonormal basis in H and B 1is the conjugate

of B.

1.4.3. Remark. The space HS(H,K) is a module of operators over
B(H,H), and in this view a subspace M of HS(H,K) is a subset of

HS(H,K) which is a left module of operators over B(H,H); that is,



(i) M is a (sub) Hilbert space,
(ii) for each B in B(H,H) and A in M, AB is in M.
For the subspace M of HS(H,K) we denote by M the subspace of K

generated by the images of the elements of M:
M=75sp {A(h): he€H, A€ M}.

Let M be a subspace of K, and A in HS(H,K), consider the

following operator B on H into K given by:
B(h) = PMA(h) h in H,

where Pé is the orthogonal projection onto M. For an orthonormal

basis {ei} of H and the properties of projections we have:
2 _ 2 o2 2
§ IBelI” = % IPyhesll® < § 1Pl “liAe. |
<1 lll‘\e,-ll2 < @3

that is, B is an HSO on H into M. Thus in this way we have
associated to each A in HS(H,K) an element B in HS(H,M), more

precisely we have the following map P:
P: HS(H,K) —— HS(H,M)
given by
P(A)(h) = PMA(h), for each A € HS(H,K), h € H.

We observe that P has the properties of a projection operator:

2:

P is linear and P P.

For the linearity of P, let A,B € HS(H,K) and wu, Vv € B(H,H),
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then

P(Au +Bv )(h)

Py(Au + By)(h) (h € H)

Py Au(h) + Bv(h)

Py Au(h) + Py Bv(h)

P(A)(u(h) + P(B)(v(h)).

P(A)u(h) + P(B)v(h)

so P(Au + Bv) = P(A)u + P(B)v.

To see the other property, let A € HS(H,K), we have:

P2(A)(h) = P(P(S))(h) (h € H)
PA(h)
-p, ) 2 p i P (M) < p(A)(h).

A(h)

We note that for A in HS(H,M), P(A)(h) = PM

= A(h),
for each h in H; thus P(A) = A.

Motivated from these properties we have the following definition:

1.4.4. Definition (Payen, [13]). Let M be a subspace of HS(H,K)
and M be the subspace of K generated by the images of the elements
of M. For A in HS(H,K) the projection (A|M) of A onto M is
the HSO in HS(H,M) given by:

(A[M)(h) = PMA(h) for each h in H.
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If Nc HS(H,K), (N|M) = {(A|M): A € N}.
The following is a collection of basic properties of the pro-
jections, indeed we show that it is an orthogonal projection. Let us

first give a definition of orthogonality.

1.4.5. Definition. Let A and B be in HS(H,K). We say A and
B are orthogonal (A L B) if

*
(A,B)HS =trBA=0.

We say two subsets M and N of HS(H,K) are orthogonal (M . N)
if ALB forall A in M and B 1in N. From the definition we
note that A L B if and only if B*A = 0.

1.4.6. Properties of projections: Let M be a subspace of HS(H,K),
then we have:
(a) (Au|M) = (A|M)u A € HS(H,K), u € B(H,H),
(b) (A[M) =A A€M,
(c) If N is a subspace of HS(H,K) containing M, then
((A[M)[N) = ((A[N)[M) = (A[M), A € HS(H,K),
(d) If N and M are two closed orthogonal subspace of
HS(H,K) then,
(A|M @ N) = (A|M) + (A|N)

and consequently
(AlM e M) = (AM)-(A[M")

for M' a closed subspace of M,

(e) A- (A|M) L M.
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Proof. (a)-(e) are direct consequence of the definition and the properties
of the orthogonal projections on the subspaces of K. We give a precise
proof for (e).

Let Ce M and h € H, then:

c*(A-B)(h) = C*(A(h)-B(h))

C*(A(n)-Ph(M))

where M as usual is the subspace of K generated by the images of
the elements of M. In order to show that C*(A(h)-Pa(h)) as an element

of H is 0 we show that it is orthogonal to all the elements x of H:
*
(x,C*(A(n)-PA(M) = (cx, A(h)-PA(N)),
but A(h)-Pa(h) is orthogonal to M, in particular to Cx, thus
(x,C*(A(h)-Pa(h)))H =0 for all x in H,

This implies that C*(A-B)(h) = 0, for all h 1in H; therefore A-B L C.
The interesting subspaces are the one generated by a family of
the operators in HS(H,K). Let {Xt}tel’ (I an index set), be a family

of HSO's. Denote by M, the closure of the set { ] X.B.,, J a finite
ted

subset of I, Bt € B(H,H)} under the norm |- Let M, be the

”HS‘ X
subspace of K generated by the images of the elements of the family

{X Now we have the following:

tlter

1.4.7. Theorem [1l1]: HS(H,MX) = Mx, where M, and M, are as above.

X X

Proof [11]. Let Z ¢ HS(H,MX) and {e;} bea complete orthonormal
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basis in H. Since ZuZeiuz < =, for a given € > 0 there exists an

integer N such that:

(1.4.8) ) ||z.31.u2 <£.

N+1
Let ZN =1 PN,'where PN is the projection onto the subspace of H
generated by €1s.-0 €y Clearly ZN € HS(H,MX), therefore [by (2)

page 335 [131] there are Ai € B(H,H),i = 1,...,k, such that
N k 2 ¢
(1.4.9) 121 ||(j§1 XJ.AJ.)ei - I, eiu_ <3

Let Bj = Aj Py» then from (1.4.9) we get:

ne-1=2

(1.4.10) II(EXB)e-Z e.f? < &
S MYV 0 Rt B T 2 °

i

Thus by (1.4.8) and (1.4.10) we get:

8

K 2 K 2
“jgl Xij -Zj" = izl ”(jzl ijj)ei - Zei"

N k 2 ®
21 n(jgl X;Bjley - Zeg)i® + ]

5 2
= i=N+1 "(jgl XJBj)ei - Zeyll
N k ) . ,
izl "(jzl X:ij)E_i - ZNei” + i§N+1 ”Zei"

A
oM
<.-
rojm
]
m

Therefore HS(H,MX) < Mx. It is clear that MX‘: HS(H,MX), thus
HS(H,MX) = My, and the proof is complete.

1.4.11. Remark. In particular case of a finite family {Xl""xn}

of the elements of HS(H,K) we may wish to have:
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(Y[M) =

X.B. for some Bi in B(H,H),i = 1,...,n.
i

l'l'l

nHes-1S

But, in general, this is not true. All we can have is the following:
n
(YIMX) = ] ext(XiBi), B; some linear, not necessarily bounded,
i=1
mapping in H.

where ext(A) = A** is the extention of A. For example let M be
generated by {XI’XZ}’ where X1 L X2’ then by definition of the pro-

jections onto M we have

X

Y
(Y[M) =P = Px
R{X;sX,} ~ "RIX } @ R{Y, - (X, [M

)}
X,

Y Y
= P= + P=
R{Xl} R(XZ)
where R(X) 1is the closure of the range of X in K. By Lemma 1.4

[11] we have:
(Y|M) = ext(chl) + eXt(XZCZ)’

for some linear map Cl,C2 in H.
In the sequel we make an assumption similar to [2.9 [11]] in

order to have bounded Bi's.

1.4.12. Definition. Let T be a Borel subset of R (usually
T=R or T=T[a,b]l] for some real numbers a < b) and for each t in

T let X, be in HS(H,K), then {Xt, t € T} is called an HSO-valued

t
stochastic process. In the special case of K = LZ(Q,F,P) and

H= R", {Xt, t € T} is a second order multivariate stochastic process.
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Associated with the process {Xt’ t € T} are defined:
r(s,t) = X: Xs, the covarianse of the process,

MX = G{Xt} over B(H,H), where G denotes the closed subspace generated
t

by Xt.
M (x)= G{X_: T <t} over B(H,H) t in T,

t

M:(g) = 6{X_: T4 (uv)} over B(HH), u<v in T,
= + X _ -

Mo = W Mu£5)’ M 2 Mt(x)’

M(X) = G(X_: t >t} over B(HH) and M, =N k().
T - © t t

For simplicity we will write "G{...}" instead of "G{...} over
" = + - + 2
B(H,H)", and Mt’ Mu,v""’ for Mt(x), Mu’v(x),..., unless otherwise
stated.
Having the remark (1.4.11) in mind, in the sequel we make the

following assumption:

1.4.13. Assumption. R(r(s,t)) s R(r(t,t)), where r(s,t) is the
covariance of the process given by r(s,t) = X:XS.

Under this assumption we will have:

n
(xsle{xtl,...xtn}) . ig Xy B;sBs€ B(H,H).

17
To see this let us first prove it for n = 2:

X

}) = Pet

(X |G{X RUX

X
t,’t Ky}
1 72 tt

X
= P—-S —
R{th} @ R{xz'(leG{xl})}
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xS xS
p=S. . + P
RIX;} T TR{Xp= (X, [6(X)3)

(X [6LX}3) + (X [GTXy= (X, |GLX 1)),
By [1.4. [11]] and assumption (1.4.13) we get:
(X 161X{3) = X A
(Xg1G{X,=(X,|G{X 1)) = (X5=(X,|G{X{}))A,
(X5]6{X{}) = X,A5,

for some Al’AZ’A3 in B(H,H). Therefore:

(xs|G{xt,xt2}) X1A; + (X5=X,A5)A,

= Xl(Al-A3A2) + XZAZ'

For n > 2 we note that:

(X_[GEX, 5eeenX, 3) = (X_|GIX, ,...nX, }) +
i t, T th 1

(X_|G{X -(X_|G{X, ,...,X, 1)}),
T I t_1

now by induction we get the result.

1.5. Reciprocal processes.

As stated before, Jamison [5] introduced the notion of reciprocal
processes which were called Markov-like processes by Slepian [15].
In the following we give a representation of an HSO-valued reciprocal

processes in terms of HSO-valued Markov processes and under further
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conditions in terms of HSO-valued martingales. The notations are the

same as in (1.4.4) and 1.4.12).

1.5.1. Definition. ([11]) An HSO-valued process {Xeo t€TY is called
a

(i) Martingale, if (thM;) =X, forall t>s in T,

(i) Markov process, if (X |M_) = (X |My ) forall t>s in T,
t's t XS -

ooy . . + _
(iii) reciprocal process, if (xthu,v) = (XtIG{Xu,Xv}), u<t<ov.

It is clear that (i) implies (ii). In fact, under some con-
ditions there is a very close tie between the martingales and markov
processes. In [11] it is shown that if r (s,s)r(s,t) 1is one-to-one

for all s < t, then

Xt = Ut o(t)

where Ut is a martingale and ¢(t) is in B(H,H), moreover this
representation is unique and it is a necessary and sufficient condition
for {Xt, t € T} to be a markov process.

Before discussing the relations between (ii) and (iii) of
definition (1.5.1) let us give some expected elementary properties of

HSO-valued Markov processes.

1.5.2. Theorem: Let X = {Xt’ t € T} be an HSO-valued stochastic
process, then:

(a) X 1is Markov if and only if for each Nc M:, t>s

(NJMD) = (N|My )
S
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. +
(b) If X 1is Markov, then (thMv) = (thMXv), t <v.
Proof. (a) 1is obvious from the definition of a Markov process.

(b) By definition of the projection for t < v we have:

(x, M) = Pit = Pit _ _
t'"v/ T "R{X : u>v} "R{X }e[R(X:u>v)eR(X,)]
TR v TR v
= Pit + P..x_t —
R{X,} R{X,* u > v} e R{X,I1.

Let XS 1 Xv for some s > v, then by Markov property of X we have
- xs
(1.5.3) (XsIMv) = (XSIMXV) = PﬁTXV} = 0.
X
: R Ry - _S = Q-

Since R{Xt}<: R{Xu. u<vl and (1.5.3) we get PR{Xt} 0; that

is XS is orthogonal to Xt. So XS is orthogonal to all the generator
0,

— = At _ .
elements of R{X : u > v} e R{X}, thus PR{Xu: u > v}e RiX,}

and we get
+
(R [H}) = (xg Iy )-
Now we return to the definition (1.5.1) and prove (ii) implies
(ii1).

1.5.4 Theorem: If {Xt’ t € T} is a Markov process, then it has

reciprocal property.

Proof: Let u<t«<v and M; = G{X;: t >V}, then we have:

+

M
usv

- + -
Mu ® (Mu,v e Mu)

Mo (M o M)
v Uu,v v
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so we have:
+ _ - + -
(XtIMu,v) = (Xt|Mu ® (Mu,v e Mu))
- + -
(1.5.5) = (X [M,) + (xthu,v e M,)

+
= gl )+ XD o ).

On the other hand we have:

+ _ + + +
(xthu,v) - (xthv) * (thMu,v ° Mv)

= (Xl )+ (X 14,y @ W)

u
+
(comparing the two values of (thMu, ))(thqu)-(thMx ) =

+ + - + - +
we note that Mu,v e Mvc M and Mu,v ) Muc Mv‘ Also we have

+ + + - .
(thMu,v e Mv)'(xthu,v ) Mu). But by lemma 1.4 of [11] there exists
A,B € B(H,H) such that

(XtIMx ) = X, A

u
(1.5.6)

(K lMy ) = X, B.

so we get

_ + + +
XA - KB = (XM e W)= (X [ | o W)

Now by projecting the above equality on M: we get:

+ + -
(X IM)A-X B = ~(X[M, , o M)
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[the projection of the first term on M: is 0 and since

+

Mu v ° M;‘: M: the second term will remain the same].

Again using Lemma (1.4) of [11] we get:
+ -
(1.5.7) XV(CA-B) = -[XtIMu,v e Mu]
Now, by (1.5.5), (1.5.6) and (1.5.7) we get
+
(1.5.8) (thMu’v) = XuA - XV(CA-B).
Therefore by (1.4.4)(c) and (1.5.6) we get

+
(Xg|G0GX,)) = (XM, 60X, X, D)

(X A-X,, ((A-B) [GLX ,X, 1)

X A-X,(CA-B),

and by (1.5.8) this is equal to (thM: v). Therefore
(thM:’v) = (XtIG{Xu,Xv}), u<t<v. This completes the proof.
In general (iii) of (1.5.1) does not imply (ii):

1.5.9. EXAMPLE: Let T

R and
X if t=0
Y if t#0

where X and Y are two HSO's in HS(H,K) such that X(H) 1 Y(H)
and none of them are constant, i.e. X(H) # 0 and Y(H) # 0. Then

Xt is reciprocal but not Markov.
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Now the question is under what conditions reciprocal property
will imply Markov property. As it is stated in Remark [1.3.4] ROYER

and NGOC [12] studied this question and gave the following answer:

1.5.10 Theorem (ROYER and NGOC [12]). Let T=R and X = {X,, t € T}

t’
be an E-valued (E any state space) stochastic process such that:
(i) X has Markov property on each open bounded intervals
(a,b),

(ii) either N o{Xu, u>ti=1{g,0} or No{X : u<t}={P,Q},
t - t U -

(iii) for each t' <t < t" in T there are three finite measures

t’ t"
of Xt"xt’xt“ is absolutely continous with respect to the
direct product Ver @ Vo @V

vt,,ﬁ v such that the joint distribution IR

of vt,,v and v

t" t tll’

then X 1is a Markov process.

1.5.11. Remark (i). In the case of non degenerated Gaussian processes
condition (iii) of (1.5.10) is valid automatically, i suffices to take

and v to be the distribution of X_,,X, and Xt"; respectively.

vtl’vt tll t.’ t
(ii) In case of T = [a,b], (1.5.10)(ii) implies that either Xa or

X, is constant, in this case we have the result of (1.5.10) even without

b
the condition (1.5.10)(iii) [61].

A theorem similar to (1.5.10) for the general case of HSO-valued
processes is of interest. But in the following we consider non degenerated

Hilbert-space valued Gaussian processes.

1.5.12 Theorem: Let X = {Xt’ t € R} be a non degenerated Hilbert
space valued reciprocal Gaussian processes and either M_ or M = {0},

then X 1is a Markov process.
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Proof. Assume M__ = {0}. A similar proof can be given if M__ = {0}.
Let s <t<n, where s,t in T and n is an integer.

Now,

- + N
MS v G{Xn,xn+1""}‘: Ms,n implies

- + -
(Xy [M VXK yseend) = ((Xp Mg () IMG VLXK sens)

By reciprocal property this equals ((XtIG{XS,Xn})IM; v G{Xn’xn+1"°‘})'
and by (1.4.6)(b) this is equal to (XtIG{Xs,Xn}). Again using reciprocal
property we get:

(thG{xs’xn}) = (thG{XS} ) G{Xn’xn+l”"})'
Therefore we have the following equality:
(1.5.13) (XtIMS v G{xn,xn+],...}) = (thst v G{Xn,Xn+],...}).
Now by the assumption on the process and [12 ] we get

G{Xs} v G{Xn,X 1 G{XS}

n+1’°

as n »+ =, Therefore by the properties of the projections we get:

(XtIMS v G{Xn,X 1) - (XtIXS) as n + o

ntl1’°"°

Now by projecting both side of the above equality on M;

we get
(X M) = (X, IX),

and this completes the proof.
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1.5.14. Remark. In the case of finite interval T = [a,b],M+°° = {0}
is equivalent to Xb = 0, and in this case the Theorem can be stated

even for the general case of HSO-valued processes and proved very easily:
(X [MQ) = (X MV GLX, 1),

by reciprocal property this equals to (XtIG{XS} v G{Xb}) which is
equal to (thG{Xs}).
What follows is the main theorem of this chapter, it gives a

representation of reciprocal processes. We recall that we assume (1.4.13).

1.5.14. Representation theorem. A non degenerate Gaussian Hilbert-
space-valued process {Xt, t € T} is a reciprocal process if and only

if it has the following representation:

Xt = Yt + Zt

where

(i) {Yt, t € T} 1is a Markov process and orthogonal to {Z
with M) = q03,

£}

(i1) Zt is in M_ for all t in T.

Moreover this representation is unique in the sense that if

X, = Yé]) + zi‘), where vg‘) and ,zﬁl) satisfying (i) and (ii) instead

. ; (1) . (1)
of Yt and Zt’ respectively, then Yt Yt and Zt = Zt‘
Proof: Let Zt = (thMm) and Yt = Xt - Zt‘ It is clear that Z

is orthogonal to Z

t

is in M°° and Y A1l we have to show is the

t t’
Markov property of Yt' To show this we prove that Yt has reciprocal

property and MI = {0}, then by Theorem (1.5.12) we get the Markov
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property of Yt' We note that:

MES;) = G{Y,: t ¢ (u,v)}

This equality gives that
4
u,

which implies that

MQ = I ® Mw,

therefore MY = {0}.

-]

G{Xy - Z,: t ¢ (u,v)}

G{X_:

+

M

u,

¢

+
YA

ot +
DR AVRE At

t ¢ (uv)} e G(Z,:

t ¢ (u,v)}

To see the reciprocal property of {Yt}, let u<v and té¢ (u,v),

then

+ +
(YtIMusx)) = (Ythu,v)

4
(xthu,v) - 1,

and by reciprocal property of {Xt} we get:

+
(Y g

(X, 164X, }) - Z

t

= qu + XVB - Zt

for some A,B in B(H,H)(A,B depend on u,v,t).

Now by substituting for Xu and Xv in terms of Y and Z we get:
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qu + va YuA + YVB + ZuA + ZVB

YArY B+ (XA+XBIM)

4
YA Y B (XM ) IM)

YAt YVB + (thMm).
so we get

(YIH () = YA+ Y8+ (K ) = (Xg]H)

YA+ YB.
u v

Therefore {Yt} is a reciprocal process with trivial tails, so it

is a Markov process.

Conversely: Let Xt be represented in the form given in the Theorem
and let t € (u,v), for u<v in T, then we have:

(X MG ) = (Y + (X M) (M)
= (YIH )+ (kM)
= (Y (V) @ W (Z) ) + (X IM).

u,v u,v

Since Y, 1 M+(Z) we get

t u,v

+ +
(Kl ) = I N+ (xfu).

By reciprocal property of {Yt} we get:

+
(XM ) = (Y 180V 1) + (X IM,)
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YA+ Y B (X M)
(*)

XA+ X B-(X A+ X BIM) + (X [M).

(A,B are in B(H,H) and depend on t,u,v).

On the other hand we have:
+ _ +
(XtIMu,v) = (th(Mu,v =) Mw) ® Mm)
+
(R) = (XglMy y @ M)+ (X M)

Comparing the two values of (thM: v) and noting that
XuA + XVB-(XuA + XvBlM“) is orthogonal to M_ and the uniqueness of

the representation of the form (*) we get
+
(thMu,v e Mm) = XuA + XVB-(XUA + XVB|MQ).
This implies that
(X, M~ ) = XA+ XB
tI u,v u v’

i.e. {Xt} is reciprocal.

Uniqueness: Since MI = {0} and Y 1 ME we get

u= Ml = w2l

] © -]

SO
(xthw) = (Yt + Zthw) = Zt
(xgI) = (i 20y = 2{1)

therefore Zt = Zél) and Y, = Y£1) for all t in T.

t
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In the case of a finite interval T = [a,b] we observe that in

the above argument:

M = G{Xa,Xb},

SO
Z, = (XM)
= AA(t)tX B(t) A(t),B(t) in B(H,H)
Thus we get
Xp = Yy + X A(t) + X B(t), teT.

In the following we consider a special choice of H and derive a

representation for the vector valued stochastic processes.

1.5.16. Special case. Let H be the set of real or complex numbers,
and A be a linear, bounded operator on H into a Hilbert space K.
For each r in H we have A(r) = rA(1), this will lead us to the
fact that we can identify K with HS(H,K) in the sense that there

is a one-to-one norm preserving correspondence ¢ on K onto HS(H,K).

For each k in K, ¢ at k is given by Py where
@k(r) = rk r in H.

We note that if o(k) = ¢(k'), then for each r in H we have rk = rk',
which gives k = k', so ¢ 1is one-to-one. The linearity of ¢ is

obvious by its definition. Also ¢ 1is onto and its inverse is given by

?‘](A) = A1) for A in HS(H,K)
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Finally ¢ is norm preserving

floll = sup o (r)fl = sup_ firkil = fikil-

r|<l rls

Now let K be a gq-dimensional Gaussian space, and X = {Xt; te T}
be a q-variate Gassian stochastic process, then by (1.5.15) and (1.5.16)

we have the following:

1.5.17. Corollary. Let {Xt, t € T} be a g-variate Gaussiah stochastic
process, then it has reciprocal property if and only if it has the

following representation:

Xt = Yt + Zt teT

where Yt is a g-variate Markov process with trivial tails and Zt

is independent of Y_ and measurable with respect to the tail of X

t
In the case of T = [a,b] we have:

¢

X, = Yt + A(t)Xa + B(t)Xb

t
where Yt is the same as before and A(t), B(t) are some q x q matrix.

In this representation if we know that Y_ is continous in

t

quadratic mean and R(t,s) = E YtY; is nonsingular for all s,t in T,

then by [11] we have the following representation:

Y, = o(t)u(t)

where ¢(t) 1is a nonsingular q x q matrix and U(t) is a g-variate
martingale. The two conditions on {Yt, t€ T} will be satisfied if
we assume that {Xt. t € T} 1is continous in quadratic mean, and Yt 20

for all t in T. By Corrollary (1.5.17) the cotinuity of X, implies

t
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the continuity of {Yt} and {Zt}. It remains to show that R(t,s)
is nonsingular. By Markov property of {Yt} and for each s <t' <t

we have
(1.5.18) R(t,s) = R(t,t")R™T(t',t")R(t",s).

Let s = Sg S <5 =t be such that Isi-éi_ll <€, 1=1,...,k,
for a given € > 0, then by (1.5.18) we get

k
-1 _ ’ -1
R(t,s)R "(s,s) n R(sj,sj_l)R (55_1255.1)>

j=1

therefore

det R(t,s)det R°1(S,s) =

= s

-1
det R(sj,sj_l)det R (Sj-l’sj-l)

Jj=1

(det A is the determinant of matrix A). Now if we have det R(s,t) = 0,

we get
(1.5.19) det R(s;,s; ;) = 0 for some i

Let € -0 and u be an accumulation point of collection {Si} satisfying
(1.5.19), then by continuity of the covariance and its determinant we

get

0 = 1im det R(Si’si- = det R(u,u),

1)
but by assumption det R(u,u) # O, hence det R(s,t) # 0 for all s

and t in T. Thus we have the following:

1.5.20. Corollary. Let Xt be a centered continuous in quadratic

mean and Gaussian reciprocal process such that in the representation
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(1.5.17) Yt # 0 for all t, then it has the following representation:

X, = o(t)u(t) + Z(t)
where Z(t) is as in (1.5.17) and ¢(t) 1is a nonsingular q x q matrix
and U(t) 1s a g-variate martingale.

Under the assumption of Corollary (1.5.20) we have the following

result concerning differentiable reciprocal process which extends a

result of ([71):

1.5.21. Theorem. Let {Xt’ t € [0,T]} be a centered differentiable
Gaussian process, then it is reciprocal if and only if it is the solution
of stochastic differentical equation of the following form with boundary

values Xa,Xb:

X

t _ b(t),, c(t)y,
(1.5.22) dizhey) = du, + Y(a—&)y) dt + Z(E{-t-}) dt
where Ut is a martingale independent of Y and Z, and U0 = UT =0,
a(t), b(t), and c(t) are some real functions, and X0 =Y, XT = Z.

Proof. Let Xt be reciprocal, then by Corollary (1.5.20) it has the

following representation:
Xt = a(t)Ut + b(t)X0 + c(t)XT with a(t) # 0
therefore

X
t - b(t t
T Ut K (ED + (S

and by differentiating we get (1.5.22).
Conversely, if Xt satisfies (1.5.22), then by integrating both sides
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from 0 upto t we get:

3%€7_ = u(t) - u(0) + Y(B(t)) + Z(C(t))

where U(0) = 0 and B(t) and C(t) are the integerals of (g)'

and (%)', respectively. From here we get:

Xt = a(t)u(t) + Y a(t)B(t) + Z a(t)C(t),

therefore by Corollary (1.5.17) X, 1is reciprocal. Imposing the

t
boundary conditions we get that a(t), b(t) and c(t) are satisfying

the following relations:
a(0)B(0) = 1, a(T)c(T) = 1, c(0) = B(T) = 0.

In the next section we consider the Gaussian stationary reciprocal
process and derive Jamison's result [5] by using the representation of

the process.

1.6 Gaussian stationary reciprocal processes.

Let X = {Xt, t € [(0,T]}, T >0 be a real continous stationary
reciprocal Gaussian process. Here by stationarity on a bounded interval
[(0,T] we mean that there is a stationary process on R such that on
[0,T1 it coincides with X. We are assuming that EX_ = 0 and EX: = 1,
for each t in [0,T]. By (1.5.17) we have the following representation

for Xt:

xt = Yt + A(t)x0 + B(t)xT.

Let r(t) be the covariance function of the process X, then we have
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r(t) = EX X A(t) + B(t)EXTX

0 0

A(t) + B(t)r(T), t € [0,TI.

Now we consider the following cases:

(1) A(t)x0 + B(t)xT = 0, for all t in [0,T], i.e. the process is
independent of the two boundary random variables Xa’xb' In this case
X(t) = Y(t) 1is a real Gaussian stationary Markov process, so its co-

variance functions is of the form:

r(t) = e3¢ in [0,71, a > O.

(11) Y(t) = 0, for al1 t in [O0,T], and XO,XT are independent.

Let us first assume that |r(t)| < 1. We have:

1=r(0) = EXX, = A2(t) + B2(t),

therefore A(t) and B(t) are of the following forms:
A(t) = cos(p(t))
B(t) = sin(e(t))

for some real functions ¢ on [0,T]. On the other hand for t and

t+h in [0,T] we have:

r(h) = Extxt+h E(A(t)X0 + B(t)XT)(A(t + h)X0 + B(t + h)XT)

A(t)A(t + h) + B(t)B(t + h)

cos(p(t)cos(p(t + h)) + sin(e(t))sin(p(t + h))

cos(p(t + h) - o(t)).
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A

Therefore for each s <t in [0,T] we have:

r(t-s) = cos(p(t) - o(s))

cos(p(t))cos(p(s)) + sin(p(t)sin(e(s))

2
PRACINC)

where fl(t) = cos(e(t)), fz(t) = sin(ep(t)) and gi(s) = fi(s), i=1,2.

Here we show the following two facts about {fl,fz} and {gl.gz}:

(i) 9, and g, are linearly independent as elements of Lz(o,c)

for each ¢ in (0,T)

<t, in (0,T).

1 2

(ii) det(fi(tj)) #0 i,j=1,2 t
To see (i), let ag](s) + Bgz(s) =0 for s < c, then by the continuity
of the process we get that 9 and g, are continuous, so b} letting

s -0 we get
a cos(p(0)) +8sin(p(0)) = 0,

but cos(e(0)) =1 and sin(p(0) = 0, therefore o = 0 and B sin(e(s) = 0,
for each s < c. But sin(e(s))# 0 on (0,T) (if sin(w(so)) =0,

then cos(¢(so)) =+ 1 and this implies that |r(so)| = 1), thus

8 = 0, this proves (i).

For (ii) we note that

cos(p(ty))  cos(e(t,))
sin(e(t))) sin(e(t,))

det(fi(tj))

sin(o(t,) - o(ty)).
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Now if sin(¢(t2) - ¢(t]) = 3 then cos(¢(t2) - ¢(t])) =t 1]

which implies that Ir(t2 - tl)l = 1, this proves (ii).

Therefore all the conditions of lemma [II. 1. [3]] are satisfied, so
fi's are the fundamental solution of a differential equation of
order 2 and constant coefficient. Since fi's are real trigonometic
functions, the only possibility is that fl(t) = cos(at). Hence in this
case r(t) = cos(p(t)) = cos(at) for some o > 0. The case |r(t)| =1

will be discussed after the case (III).

(III) In this case all parts of the representation are present, and

we are assuming that r(T) = EX0 1° -1. Since A(t)X0 + B(t)XT - X

is orthogonal to X0 and XT (A(t)X0 + B(t)xT is the orthogonal

t

projection of Xt on the space generated by {XO,XT}) we have:
E(A(t)X0 + B(t)XT - Xt)X0 =0
E(A(t)X0 + B(t)XT - Xt)xT =0

which gives us:

A(t) - B(t) = r(t)

-A(t) + B(t) = r(T-t)
Therefore by adding these two equation we get
r(t) + r(T-t) = 0.

One of the solution of this equation is

—|ro

r(t) =1 - a(t) with a=
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Now we return to the case Ir(to)l = 1, for some t, in (0,T).
1 for all t in

In this case, as it is shown in [5] we have r(t)
at

(0,T) which is an special case of e~ with o = 0.



CHAPTER 2
N-PLE MARKOV PROCESSES
AND
N-PLE RECIPROCAL PROCESSES

2.1. N-Ple Markov Processes
Let {Xt’ t € R} be a real valued Gaussian process with mean
zero and continous in quadratic mean, and having GFMP on the sets of the

form (--,t), t € R; i.e.

ofXg: s>t} Lo{X;: s < t}|rt,

where Ty is the Germ Field and given by:

- . 1
= o{XS. It-S' < F}'

r
t n

By [10] this property is equivialent to the following:
- +
Lyl ITy

where

NofX: s<t+iy
n S n

[ e ]
0
1]

=1 o{X_: S>t-l}.
n S n

(]
o+ +
]

If the process is N-1 times continuously differentiable and the Germ

Field ry is generated by X(t), X'(t),...,X(N'l)(t), the process has

36
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N-ple Markov property in the sense of Doob [2]. Here it is understood

that X(t),...,X(N°1)(t) are linearly indpendent as elements of

LZ(Q,gtP), where g, =N o{X_: |t-s| < %&. The following is a general-
n

ization of this notion.

2.1.1. Definition. A process X = {xt, t € T} 1is called a Generalized
N-ple Markov process with respect to the processes {Yi(t), te T}i=1
if:

..»N

(i) for each t in T, Yl(t),...,YN(t) are linearly independent as

elements of LZ(Q,gt,P), where Cy = Nno{X_: |t-s| < 14,
n s n

.. + -
(i) Xt I Zt lrt where;

+

= 1 ofX: u>t-eg}
zt €>0 u
Pe= N olXr u<t+el

€>0

lar ]
]

. c{vl(t),...,YN(t)},

and Ty is the Germ Field at t.
We have the following immediate result concerning the process

Z(t) = (Yl(t),...,YN(t))* (* means the transopose of a matrix).

2.1.2. Theorem. If {Xt’ t € T} 1is a generalized N-ple Markov process
*
with respect to {Yi(t)}i=1 N> then the process Z(t) = (Yl(t),...,YN(t))

is a Markov process.
Proof: By assumption we have

(2.1.3) o{Xu: u>s} nc{Xu: u < sto(Z(s)),
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where A I B|G means that given G, A and B are conditionally independent.

For each € > 0 we have:

o{Z : u

u s}

1v

s+ €} G{Xu: u

"\

and

o{Z : u

" s - €},

1A

S - €} o{Xu: u

1A

therefore by (2.1.3) we have:

1A

o{Z : u>s+eg}l o{Zu: u<s -€}o{Z(u)}

u

SO

V o{Z : u>s+e€rt V o{Z : u
€>0 u - €>0 u

- €}Y|o{Z(u)},

1A
(7

thus

ofZ: u>stu ofZ: u < s}o(Z(u)).
Finally by (1.1.1)(b) we get

ofZ: u>s}uo{Z;: uc<sio(Z(u)),

and this completes the proof.
This simple fact leads us to a Goursat type ([(8], p. 74) re-

presentation of Generalized N-ple Markov processes.

2.1.4. Theorem: Let {Xt’ t € T} be a Gaussian Generalized N-ple
Markov process with respect to the Gaussian processes

{Yi(t), t € T}i=1 If the covariance matrix r(t,s) = E(Z(t)Z*(s))

N
*

of Z(t) = (Yl(t),...,YN(t)) is nonsingular, then:
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| N
(2.1.5) Xy = .Z] v; (t)uy(t)
1=

where wi(t), i=1,...,N, are N real functions and U(t) =

(Ul(t),...,UN(t)) is an N-variate martingale [ J.

Proof. From (2.1.2), Z(t) 1is an N-variate Gaussian Markov process.

Therefore by (3.1 [7]) it has the following representation:
Z(t) = o(t)U(t)

where ¢(t) is an NxN non-singular matrix and U(t) 1is an N-variate

martingale. On the other hand by the Markov property of {Xt} we have:

X

¢ E(thxu: u<t)

E(X,]Z(t))

A(t)z(t)

where A(t) is a IXN matrix, so we have:

><
]

A(t)e(t)u(t)
N

p(E)U(L) = T w(thu(t)
i=1

where 4(t) = (b1(£)s-- sy (t)) = A()0(), and U(t) = (U;(t),...,Uy(t)".
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This completes the proof.

2.2. N-Ple Reciprocal processes.

In this section we are giving a definition for an N-ple reciprocal
process and study its relation with the Generalized N-ple Markov process.
Here again all the processes are Gaussian with mean zero and continous
in quadratic mean on some probability space (Q,F,P). We are also
assuming that all the o-fields involved contain all sets of measure zero.

In the following 94 is the same as in (2.1.1).

2.2.1. Definition. A process X = {Xt’ t € T} 1is called an N-ple
reciprocal process with respect to the processes {Yi(t)}, i=1,...,N,
if:
(i) for each t, Yl(t),...,YN(t) are linearly independent in

2

l— (Q’thP)’

. + -
(i) Zu,v it Zu,vlru,v for all u < v, where:

Vo= n ofX,: te (u-€,v+e€))
u,v €>0 t

Z- = N ofX,: t¢ (u+t+e, v-e€)}
u,v €>0 t

Fu,v = o{Yl(u),...,YN(u); Yl(v),...,YN(v)}.

Parallel to the Generalized N-ple Markov processes, Theorem
(2.1.2), we have the following. Its proof is essentially the same as

the one in (2.1.2):
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2.2.2 Theorem: If {Xt’ t € T} 1is an N-ple reciprocal process with
= (v v (t))" i
respect to {Yi(t)}i=1,...,N’ then Z(t) = ( l(t)”"’ N(t)) is a

reciprocal process.
Proof: By the assumption we have

ofXy: t € [u,vIll ofXy: té Cusv1}|o{Z(u),Z(v)}
Therefore for each € > 0 we have:

o{Z,:

g0 tE(u+t€v-€)) rofZ: t ¢ (U -€,v+€eltolZ(u),Z(v)}

) V o{Z,: te (u+e,v-€)tu Vv o{Z,: t ¢ [u - €,v+ €l|alZ(u),Z(v)},
€>0 €>0

thus ofZ,: te (uv)b o ofZy: t ¢ (u,v)}|o{Z(u),Z(v)},

and this completes the proof.
In the following we give a representation for the N-ple reciprocal
processes. For this we need a similar result to [ROY & NGOC 1] for

the N-ple reciprocal processes. We will use the following notations:

Fu,v =ofX: t ¢ (u,v)}, Fu = o{Xt: t < u}
+
F°° = N F , F o = No{X,; t <ul}, F o = No{X,: t>ul,
ucy WV u t - + u t -

as well as the notations in definition (2.1.1) and (2.2.1).

2.2.3 Lemma. Let {Xt’ t € R} be a Gaussian N-ple reciprocal process
with respect to the process {Yi(t), i=1,...,N}, if either F _(Y)
or i (Y) is trivial, then {Xt’ t € R} is an N-ple Markov process

with respect to {Yi(t), i=1,...,N}.
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Proof. Let Z(t) = (Y;(t),...,Yy(t))", then by (2.2.2) {Z(t), t € R}
is a reciprocal process with trivial tail, therefore from ROYER & NGOC

[12] we get:

(2.2.4) lim c{Zt} v o{Zn,Z

N>

NPT L Tv

Therefore for f bounded and measurable function with respect to

o{X,:

¢ t € (u,v)} and an integer n with u <v <n we have:

E(FI27(X)) = E(f]Z,,Z,) (by reciprocal property)
U,n

(2.2.5)

E(Flo{Z,} V 0{Z,,2 15+ 1)

The last equality is because of the reciprocal property and the fact that
o{Z»Z 410+ Y= ofXr t > ul as we showed in the proof of the Theorems
(2.1.2) and (2.2.2).

Therefore by Martingale theorem, (2.2.4) and (2.2.5) we get

Tim E(F|° (X)) = E(flo(Z,)),
N->e u,n

taking conditional expection with respect to F;(X) and use dominated

convergence theorem for conditional expection we get
E(flzu) = E(leu).

This completes the proof.
For the case of T = [a,b] the proof being similar is omitted.
Now we are in a position to give a representation for the N-ple

reciprocal processes.
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2.2.6. Theorem: Let X = {X_, t € T} be a Gaussian N-ple reciprocal

t)
process, then it has the following representation:

Xt = Ut + vt
where Ut is at most an N-ple Markov process and independent of Vt.

FE = {p,a} and V, 1is measurable with respect to Ff.

Proof:

Xt
Let Ut = Xt - PH

where H_= N EE{Xt: |t| > u}. It is clear that Ut is orthogonal
X u>0
to V, = P,t. We note that
t H,
_ — X
N sp{U,: [t] >u}=n sp{Xy: [t| > u} e N sp{P,": [t] > u}
u u u -

H e H_= {0}

-]

This implies that FU

=N ofly: |t] > u} = {P,}. Now we show that
u

Ut is at most an N-ple reciprocal process. lLet u <t < v, and

H(X) = EE{XS: s ¢ (u,v)}:
U,V

Uy U Ut
E(Utlvs. S ¢ (U,V)) = PH(U) = PH(X) o H = PH(X)
u,v u,v - e TR,
X X H °?
Hu,v Hu,v ®

by reciprocal property of Xt we get:

Xt
E(Ut|US: s ¢ (u,v)) = P=—= X( - Py
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where Y(u) = {Yl(u),...,YN(u)} is the process that X, 1is N-ple

t
reciprocal with respect to that. So we have:

X
E(U Ug: s ¢ (u,v)) = A Y(u) +BY(v) Pt

[~ ]

Also we have

Pt o oppitop pit o pY(uA+ Y(V)B
H,, y(X) TH, T TH O THX H,
u,v (u,v)

therefore we get

A Y(u) + B Y(v) - pA X(u) + B Y(v)

E(Utlus: s ¢ (u,v))

AY(w) - PEY)) + B(r(v) - pEY)).

This equation shows that Ut( ;s at most N-ple reciprocal with respect
Y. (u
to the process {Yi(u) - PH1 }

@

i=1,...N.

Since we are assuming that the involved processes are Gaussian
and for the Gaussian processes the conditional expectations are orthogonal
projections on some sub-Hilbert spaces we could write the definitions
(2.1.1) and (2.2.1) in terms of projections instead of conditional

expectations as follows:

P,P_=P_P_ =P (Markov property)
H H H H t
t t t t
where
H:=n SPIX: u>t-el
€>0 u }
H. = N ﬁ{xu u<t+el
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and
ry = sp{Yl(t),...,YN(t)}

where sp{...} 1is the linear span closure of {...} under the norm

of LZ(Q,F,P). For the reciprocal property we have

P, P _ =P _ P, = Prou,
Hiuv) Hlu,v) H(u,v) Hiu,v) Flusv)
with

H{ n Spix,:

t. tG(U-G,V+€)}
€>0

u,v)

qu v) = eno Ei{xt: té¢ (u-€,v+e)l
’ >

r(U,V) = E_F).{Yl(u)a'-',YN(u); Yl(v)v--’YN(V)}o

This is the motivation for giving the definition of N-ple Markov and
N-ple reciprocal properties in the case of HSO-valued processes in the

next section.

2.3. HSO-valued N-ple Markov and H-ple Reciprocal Processes.

Let H and K be two separable Hilbert spaces and X = {Xt, teT}
be an HSO-valued process on H into K as introduced in section (1.4).

Also we assume (1.4.13).

2.3.1. Definition: Let Y = {Yi(t), te T} i=1,...,N, be N Tlinearly

independent HSO-valued processes in N G{X_: [t-s| < %}. We say
n
with respect to Y, X 1is an:
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(i) N-ple Markov process if

p,Pp =P P, =P , teT
+ 0 - -+ T
Gt Gt Gt Gt t
(ii) N-ple reciprocal process if
P P =P P =P
+ - - + T
) S(uv) Sy S(uy) (V)

where
+ -
G, = N G{X: u>t-€},6_= N G{X: u<t+e},
t €>0 u - t €>0 u -
+ -
G = N G{X,: t¢ (u-e€,v+e€)}, G = N G{X,: te (u+e,
(u,v) >0 t ¢ (u,v) €>0 t

v - E)},

Py = GO(E) Yy (63 Ty Ly = GOV () Yy ()5 Yo (v) e Yy (V)

Now we are going to establish results similar to (2.1.2),

(2.1.4), (2.2.2), (2.2.3) and finally (2.2.6) for HSO-valued processes.

2.3.2. Theorem. Let X = {Xt: t € T} be an N-ple HSO-valued Markov
process with respect to Y = {Yl(t),...,YN(t)}, then the process

(Yl(t),...,YN(t)) is a Markov process.

Proof: Let t > s be two points in T, since Yl(u) € G; and

G:, i=1,...,N, u € T, we have:

(Y, () [M(N)) = (¥, (8)]6])]ulY)),
S S

but by Markov property of X we get:
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(v, (£)]67) = (V;(t)]r,),

therefore:

(Y, () M (V) = (Y (£)[r ) M (1))

(Y;(t)|rg)

(Y, (£)[6(Y,(s)s. ..,V (5)),

this completes the proof.
Next is a representation for N-ple HSO-valued Markov processes.

We recall that we are making the assumption (1.4.13).

2.3.3. Theorem: Let X = {Xt’ t € T} be an N-ple HSO-valued Markov
process with respect to Y = {Yl(t),...,YN(t), t € T} and the covariance
functions ri(t,s) of Y,, i =1,...N, have the property that
r;(s,s)ri(t,s) is one-to-one on ﬁlri(t,t)} onto ﬁkri(s,s)},i =1,...N,

and for all s < t, then X has the following representation:
N
Xp = Ioug(thuy(t),
i=1
where {ui(t), teT}, i=1,...N are HSO-valued Martingales, and

wi(t), i=1,...,N, are in B(H,H).

Proof: As a result of Theorem (2.3.2) we get that each {Yi(t), teT}
is a Markov process, therefore by the assumption on the covariance of

{Yi(t)} and (Theorem 2.11 [11]) we have

(2.3.4) Yi(t) = ui(t)¢.(t),

1

where ui(t)'sare HSO-valued Martingales and ¢i(tYS are in B(H,H).
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On the other hand by N-ple Markov property of X we have:
Xp = (XgIME) = (X 160V (8),0 u¥y (D)),
thus by assumption (1.4.13) we have
Xy = ) Yi(t)Ai(t)

for some Ai(t) in B(H,H). Now we substitute for Yi(s) from (2.3.4)

we get

><
]

N .
t igl ui(t)¢i(t)Ai(t)

u
[ =
—
“
~
<
—
t
~—

where wi(t) = oi(t)Ai(t) is in B(H,H), i = 1,...,N.
Now we study HSO-valued reciprocal processes and give a repre-

sentation for them.

(2.3.5). Theorem. Let X = {Xt:

ciprocal process with respect to {Yi(t), teT), i=1,...,N, then

t € T} be an N-ple HSO-valued re-

(Yl(t),...,YN(t)) is a reciprocal process.
Proof: Let u<v and t € (u,v), then for each i = 1,...,N;

‘Yi(t"M:fz)’ - (<Yi<t>!Gﬁ,v)l“:fz)>'

therefore by reciprocal property of X we get

(Y5 () W5 (V)

+
Y. (t M (Y
S (Y58 [Ty o)) ufv))

(Y. (t)|r

1

)

u,v
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= (Y (£)[6{Y (u)sunnsYy(u)s Yo(v),.nnsYy(v)})

and this completes the proof.
For the next theorem we need the following lemma which states

under some conditions we get the Markov property of a reciprocal process.

2.3.6. Lemma. Let X = {X,: t € T} be Gaussian Hilbert-space valued

¢
reciprocal process with respect to {Yl(t),...,YN(t)} and
MI = N MI v > {0}, then {Xt: t € T} is an N-ple Markov process with

u<v
respect to {Yl(t),...,YN(t)}.

Proof: First we show the following:
G{Yl(u),...,YN(u)} v G{Yl(n),...,YN(n); Yl(n+1),...,YN(n+1),...

converges to G{Yl(u),...,YN(u)} as n > =,

Let
M= G{Y,(u),...,Yy(u)} and
M= G{Yl(n),...,YN(n); Yl(n+1),...,YN(n+1),...} V M.
we have:
Mn =Meo (Mn e M).

we note that M e Mc G{Yl(n),...,YN(n); Yl(n+1),...,YN(n+1),...}
which converges to {0} as n -+ 0. So we get:
n Mn =Me ? (Mn e M) = M.

Now let u < t < n, then by reciprocal property of X we have:
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(XtIM:’n) = (X 6LV (u)sn e, Yy (U], Y (n),en Yy (M)D)

(Xt|G{Y1(u),...,YN(u); Yl(n),...,YN(n); Yl(n+1),...,YN(n+1),...})

(X, M)

Now let n -

8

we get:
. + _
:Il:' (xthu,n) = (XtIG{Yl(u)’“.’YN(u)})’

by projecting this equation on M; we get:

(4, 1) = (X 160V, (u), ..., ¥y ()},

and this completes the proof.

Finally we have the following representation theorem.

2.3.7. (Representation Theorem). Let {Xy» t € T} be an N-ple Gaussian
Hilber-spece valued reciprocal process with respect to {Yl(u),...,Yq(u)},

then Xt has the following representation:

Xt = Ut + Vt

where Ut is an at most N-ple Markov process and orthogonal to the

process Vt which lies in Mi.

Proof: Let V. = (X M) and U, = X.-V,. The only thing that we have

t Tt
to show is that Ut is at most an N-ple reciprocal process and then in
view of Lemma (2.3.6) it suffices to show that Mg = {0}.

Let u < v, then |

G(U) = n GU.: t ¢ (u+te, v-e€)
(u,v) €>0
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N GIX, - Vs té (U+e, v-€))
€>0

N GX;: t¢ (U+re, v-€llo N GIV: t¢ (U+e, v-e)l
€>0 €>0

G (X) oG (V),
(u,v) (u,v)

therefore for u < t < v, we have:

(U8 (1) ) = (U8 () ) - (U6 (V)

u,v) (u,v)

U, |G (X
Wyl (5,3)

X, |G (X -V
(X, | (6’3)) t

therefore by reciprocal property of X we get:

(Utlezﬁ?z)) (Xt|G{Yi(")’ Yo(v), 1= 1,...,N}) - V,

N

"
Wt~ =

Yi(u)Ai +

. i Yi(v)Bi -V

i 1 t’
for some Ai’Bi in B(H,H) (these are functions of u,v,t). On the

other hand

VO = (001670 )4

(X J60Y4(u), Yi(v), 1= 1,.. N [M0)

N N X
IO AT

N . N
LG OIA +

X
by 2w,

1
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Hence:

=

X, -
(utie:l(:g )= T D¥(u) - (V0] IA, +

i=1

N X

) [Yi(v) - (Yi(V)IMw]Bi‘

i=1

This relation shows that {Ut, t € T} has reciprocal property with
respect to the process {Yi(t) - (Yi(t)lMi)}i=1 - Since these
N processes may not be linearly independent we will not get exactly

N-ple reciprocal process. Now we show that Mg = {0}. Indeed:

W= 0 oGU: te (uv)) =

u<v t

N G{X;: t4g (uv)le N G{V,: t ¢ (u,v)}
u<v u<v

= Mo M = (0,

and this completes the proof.



CHAPTER 3
3.1. INFINITE ORDER MARKOV PROCESSES

Let X = {Xt, t € T} be a Gaussian processes with mean 0
and continous in quadratic mean. For each u € R, let {Yu(t), te T}
be another Gaussian process with mean 0 and jointly continous in
(u,t). Saying the family {Ygt);...,Ygt)} of n stochastic processes

is linearly independent is equivalent to the fact that if for each t

[ Y, (t) G (du) = 0,
R

then G = 0, where G 1is a finite Borel measure with supp G= {1,2,...,n}.

Motivated from this we have the following definition.

3.1.1. Definition. We say that the process {Yu(t), te€ T}, ueRr

is "Free" if for each finite Borel measure G
f Yu(t) G (du) =0

implies that G = 0. [We note that G might not be a positive measure].
Now we have the following definition of infinite order Markov

processes.

3.1.2. Definition. Let X = {Xt’ t € T} be a Gaussian process of
mean 0 and continous in the mean. We say that X has infinite order

Markov property with respect to the process {Yu(t), u€ER, teT}, if,

53
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(i) for each t €T, {Yu(t), u € R} is a free mean zero Gaussian
process in LZ(Q,gt,p), where 9y = n o{Xs: |t-s| < %&. Also

n
{Yu(t), u€ R, te T} is jointly continous in (u,t).

‘s - +
(i) Iy ufilr,

where,
Jo= N o{X_: s <t+ e}
t o S
5i= N ooix: s> t-el
€>0
Ty = o{Yu(t), u € R}.

If the process is infinitely many defferentiable and all
derivatives form a splilling field, then {Xin), n € N} can serve as
an example for {Yu(t), u € R}.

Since in the case of Gaussian processes the conditional expecta-

tions are orthogonal projections, we note that for each t > s, we have:

- xt
H
s
where H; = N EE{XU: u<s+e€} Having infinite Markov property
€>0
gives that
- xt
E(Xt12¢) = Py(s)
where

H(s) = EF{YU(S), u € R}.

Now we observe that:
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(3.1.3) EE{Yu(s), u€Rl={f Yu(s) G (du): G a finite Borel measure}.

It is obvious that the right hand side is a subset of left hand side,

to see the other way around, we note that:
Yu(s) = [ Yv(s) Gu (dv)

where
Gu(dv) =

So we have (3.1.3).
Using (3.1.3) the definition 3.1.2 (ii) can be written in the

form:
(3.1.4) E(X 1Zg) = [ Y,(s) 6 (t,s,du),
and also,

(3.1.5) E(Y,(t)Irg) = [ ¥ (s) g, (t,s,dv),

for some finite Borel measures G and g. By putting t=s in (3.1.4)
and (3.1.5) and using the assumption on {Yu(t), u € R}, then for all
t€T we get:

(3.1.6) X, = [ ¥, (t) 6 (t,t,du),

and

gu(t,t,dV) =
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Next we prove that {Yu(t), t € T, u € R} has Markov property.

More explicitly:

3.1.7. Theorem. Let X = {Xt, t € T} be an infinite order Markov

process with respect to {Yu(t), u€eR, teT}, then
o{Yu(s): u€R,s <t} uoff (s): ueR,s>tr,.
Proof. For each € > 0 we have:

off (s): u€R, s<t-€lcolX(s): s<t)
3.1.8
o{Yu(s): UER, s>t+€rc of{X(s): s > t}.

By assumption we have:
o{X(s): s <t} umo{X(s): s > t}]rt.
Therefore by (3,1.8) for each € > 0 we have:
off (s): u€R,s<t-€} noff(s): u€eR,s>t+e}r,
or
v o{Yu(s): UER, s<t-¢€} 1V o{Yu(s): Uu€ER,s>t+ e}[rt,
€>0 €>0
and finally:

off (s): u€R, s <thuoff (s): u€R,s>tir,.

This completes the proof.
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By this Theorem we have:

E(Y,(6)]¥,(x), v € Ry © < 5) = EQY (8)[Y,(s), v € R)

[Y,(s) g, (t.s,dv),
for some finite Borel measure g.

Remark (1). For the Markov processes and N-ple Markov processes a
representation is given, [7], [8] and Theorem (2.1.4). Here a represen-

tation of infinite order Markov processes is under consideration.

Remark (2). A generalization to the simple stationary Markov processes
is the notion of T-positivity [4]. By definition a process X = {Xt, t € R}
is called T-positive if for the times reflection operator T on

sp{X,, t € R} given by
T1=1 and TX(t) = X(-t), t € R
we have the following T-positivity property:
(*) P, TP, > 0.

where P_ is the projection onto EBIXS: s > 0}. In the stationary
Gaussian case (*) is equivialent to:

ies aa, r(t,t) >0,
where I is any finite index set and r(-) is the covariance function
of the processes. For the infinite order stationary Markov process
X = {Xt’ t € R} under certain conditions on {Yu(t), u€ R, teR}

we have the T-positivity of X.
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