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SHANTILAL CHATURBHAI PATEL ABSTRACT

A knowledge of the energy distribution characteristics
of the Joints is important for an analysis of indeterminate
framed structures with deep-short members. Thils dissertation
determines the characteristics of cross-shaped Jjoints
(internal Joints of the framed structure) subjected to
flexural action. The members of the frame are of rectangular
cross sectlion and the stress distribution 1s assumed to be
plane.

The Alry's stress function ¢ inside the cross-shaped
region 1s determined by solving the bilharmonic differential
equation by the numerical finite difference method. The
stresses and the elastic energy per unit beam length are
determined. The equlvalent depth distribution 1s calculated,
i1.e., the depth distribution which when used in the eval-
uation of the energy by the conventional beam theory formulas
will give the true elastic energy. The effects, of the
fillets at the Jolnt, of the dimensions of the cross shape,
and of the variations in the Polsson's ratio, on the equlva-
lent depth are studied.

The column portion of the cross shape 1s also analyzed
with an assumed linear bending stress distribution and a
uniform shear stress distribution at the beam to column
Junction. The analysls 1s made by taking the stress function
in the form of a seriles. The comparison of equivalent depth

curves, inside the column portion, calculated by the finlte
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difference method and by the series method shows a fair
agreement as far as the shape of the equlivalent depth curve
is concerned. The series method 1is also used to investigate
the effect of the different proportions of the cross shape
on the equivalent depth inside the column.

It 1s concludecd that the exact value of the equivalent
depth depends upon the proportions of the cross shape, the
type of the loadlng, and the radius of the fillet. For
practical use, an approximate equivalent depth line 1s sug-
gested, which can be used for any kind of loading and any
proportions of the cross shape. In an example, worked out
with the suggested approximation and the beam theory formulas,
the total energy of the Joint differs from the energy calcu-
lated by the finite difference method by less than 11%.

This 1s a much smaller error than that which results from
using either of the assumptlons commonly made: that the
equivalent depth at any section 1nside the Joint 1s the
same as the depth at the face of the Joint or alternatively
that the moment of inertia at any sectlon inside the Joint
is infinity. Either of these assumptions leads to errors

of about 100% in the total energy of the Joint.
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NOTATION
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CHAPTER I

INTRODUCTION

Developments 1n concrete technology and connection
methods in metal structures have created confidence among
engineers in the validity of the assumption of rigidity of
Joints in frame structures. Hence, engineers design them
in accordance with this assumption. Rigild frame structures
are those which have beams and columns as the principal
resisting members with the Joints providing continulty.
This dlssertatlion describes the interaction between struc-
tural members rigidly'connected at thelr jolnts. It is
limited to frame structures in which the cross section of
the members 1s rectangular and does not vary abruptly,
except that there may be small fillets at the Joints. The
intersection angle is 90 degrees. This dissertation 1s
further limited to frame structures in which the flexural
deformation 1s the primary distortion. Shear and axial are
secondary deformations. Procedures for the analysis of a
frame structure which 1s of indeterminate nature have been
known for many years. However, the flexural action of
Joints 1s not clearly understood even today. This disser-
tation presents a study of the flexural interaction at the
Joint of members rigidly connected. For this study, the

structure has been assumed 1n state of plane stress.



For many years the bending deformation character-
istics of beams has bLeen understood. Theoretically the
relatlive rotation of the end faces of the small segment

AS of the structural membter of uniform cross section
subJected to pure bending moment M is equal to M (AS/EI)
Thils relative rotation 1s often interpreted in terms of
curvature, since M/EI 1s equal to curvature. The bending
eneréy can be written as (I1){(rotation)/2. Hence the bending
energy reduces to M26C;S/23ﬂ. In practice there will be
few structures 1n which the team is under a pure bending
moment condltion, 1.e. 1n which the bendling moment 1is
constant along the span of the beam. Hence, shear energy
wlll form part of the total energy. Also, axlal energy
will be a part of the total. Usually the shear energy
and the axial energy will be inslgnificant compared with
the bending energy. Hence, the last two factors are
neglected for computing the total energy. So btending
energy 1s usually taken as the total energy for practical
purposes. Whatever method may be used to study the defor-
mation characteristic of the structure necessary to analyze
the incdeterminate structure, the evaluation of the energy
1s a requlred step directly or indirectly.

For the evaluation of the total energy of members,
the above discussed tending energy relationship has been
used 1n the clear span zone by engineers. 1In the reglion

of the Jolnt two procedures are belng used. The first



considers that the depth, i.e. the moment of inertia, at

any point 1in the Joint, to be used for evaluating total
energy, 1ls the same as at the face of the column. The
second procedure uses the depth of the column as the effec-
tive depth from the face of the column through the Joint;

or in frames, since the column helght 1s considerably larger
than the depth of the team, infinity 1s used as the value
for the moment of inertia.

A review of engineering literature incdlcates that
since 1900 many investigations have been conducted on rigic
frames, jolnts, and knees. These 1investigations are
focused on the validity of the assumptlions of structural
behavior as calculated by the elastic theory. The effect
of various slzes and types of flllets on the distribution
of the stresses 1in the Jjoint and 1its effect on the other
part of the frame have been studled. In concrete structures,
factors such as the amount of reinforcement and 1its distri-
bution have been studled. 1In steel structures, Jjoint
conditlions and buckling properties have been taken into
account. However, very little has been learned about the
Interaction of the column and the beam in the Joint zone.

Inge Lyse and W. E. Blackl have calculated the

angular change of the knee faces from the observed principal

linge Lyse and W. E. Black, "An Investigation of
Steel Rigld Frames," Transactions of American Society of
Clvil Engineers, 107 -(1942), pp. 143-144,




stress distribution. Thls angular change agreed closely
with the one calculated from the information of the observed
shear forces. They have also calculated the theoretical
bending deformation on the assumption that the moment of
inertia at any polnt iIn the knee zone 1s the same as that

at the face. Thls calculated deformation 1s twice that

of the one calculated from the observed principal stress
distriktution. These two authors have concluded that 1if,
however, the effect of the shear 1s neglected through the
frame (as would be done 1n the design) the large bending
cdeformation assigned to the knee tends to offset the neglect
of shear deformatlion 1n the frame as a whole.

This concluslion explains the reasons for the use of
the first procedure. Thils matter of compensation is Justi-
fied In frames in which the span length of the member 1s
very large compared wlith the depth of the membter, so that
the effect of the shear 1s small. Does thls compensation
l1dea glve the correct results for the frame analysls where
the spans are very small? In other words 1s the contri-
bution of the knee signiflcant in such a case? Since 1t
Is known that the knee contributes very little to the
tending deformation of the frame as a whole the application
of the second procecdure seems to be the natural choice.
This willl necessitate the need for taking into account the

shear energy in the evaluation of total energy. However,



n

most engineers usually neglect shear energy thereby
increasing the error 1n the total energy.
The second procecdure was suggested by L. T. Evans.2
In setting up the column coefficients for the slope-
deflection he mentioned that i1f the team 1s deep with
respect to the height of the column, then 1t 1s evident
that the column cannot bend in the knee zone. And this
assumption 1s equivalent to assuming an infinite moment
of inertia in the knee zone. Evans and others have pre-
pared many tables and graphs charting different functilons
such as stiffness factors, carry-over factors and fixed-end
moments for different loading conditions. Evans' assumption
means that the moment of lnertia 1lncreases abruptly at the
face of the column.

Can there by any sudden change in the moment of
lnertia at the face of the knee? A simlilar question has

been ralsed by Ralph E. Spaulding.3

Discussing the article,
"An Analysis of Stepped-Column Mill Bents," by Daniel S.
Ling, he pointed out that the effective moment of inertia

does not change suddenly when the cross section changes

er. . Evans, "The Modified Slope Deflection Equations,"
Proceedings of American Concrete Institute, 28 (September
1931--April 1932), p. 11l0.

3Ralph E. Spaulding, Discussion on "An Analysis of
Stepped-Column Mill Bents," by Daniel 3. Ling, Transactions
of American Society of Civil Engineers, 113 {19487, p. 1099




suddenly. The effective cross section for M/EI analysis
has been sketched by him. He did not furnish a compu-
tatlonal analysls for thls, but mentioned that the photo-
elastic and the strailn gauge analysis revealed that there
are dead areas 1In the corner of the wider part.

Joseph A. W1seu analyzed the inverted U-frame in
which he assumed that the moment of inertia at any point
In the knee 1s the moment of lnertia at the face multiplied
by the third power of the ratio of half the width of the
column to the distance of the polnt under consideration from
the center line of the column. He 1ndlcated the need for
further 1investligation of frames with wide members.

This literature 1ndlcated that the followers of both
procedures are 1n general agreement that the bendlng defor-
mation of the knee 1is very small. Hence they neglect the
knee or the Jjolnt entirely as far as the bending energy is
concerned. The follower of the first procedure compensates
for the shear energy of the frame while the follower of the
second procedure will take the shear energy separately if
1t 1s of slgnificant magnitude compared with the total.

The questlons remalning unanswered éggut the Joint are:

What 1s the shape of the moment of 1lnertia curve within the

Joint? W1ill the neutral axls curvature within the Jjoint

uJoseph A. Wise, "Corner Effects in Rigid Frames,"
Proceedings of American Concrete Institute, 35 (September
1936--dJune 1939), pp. 190-191.




zone represent the true effective moment of inertia to be
used In the deformation analysls of the structure? If not,
what 1s the true representation? What are the factors that
affect the true effective moment of>1nertia? The answers
to these questions are important when the spans are short.
The aim of thils dissertation 1is to btring forth answers by
studylng the 1interaction of the column to the team subjected
to pure bending moment conditions and variaktle tending
moment conditions. The investigatlon made 1in this study 1is
limlted to cross-shaped Jjolnts although 1t 1s possible from
the results to infer something about the tehavior of "T"
shaped and "L" shaped Jjoints.

In Chapter II the principles 1involved in the analysis
of 1indeterminate structures are discussed. It 1s concluded
that the energy variation should be studied for analysis
of indeterminate structures,which 1n turn reduces the prob-
lem to the evaluation of stresses. The protlem has been
specifically outlined for the evaluation of stresses by
elasticity theory. Chapter III discusses the experimental
method used to investigate the limits of the interaction
zone of the cross-shaped Jjoint. From photoelastic analysis
1t has been concluded that in the beam and in the column
the 1limit extends a distance equal to half the column width
and half the beam depth respectively from the faces of“the

Joint. A numerical method for the evaluatlion of stresses



1s discussed 1n Chapter IV. Using these stresses the
Internal energy has teen calculated at various sections.

The equivalent depth 1s defined as the one which if used

in the evaluation of the energy by the conventional bteam
theory formulas would give the true elastic energy. The
equlvalent depth increases toward the center of the column
up to a maximum of 1.40 times the beam depth for pure bending
loading and up to 1.59 times the beam depth i1f shear forces
and bendlng moment are transmitted across the Jjoint.

Chapter V discusses the Fourier serles application to
evaluate stresses and energy in the column zone. This
method 1s used to compare the results with the numerical
method and also to study the effect on the equivalent depth
of changing the ratio of the beam depth to the column width.
Chapter VI summarizes the results and conclusions of the

study.



CHAPTER II
PRINCIPLES

For the analysls of Indeterminate structures the only
basic understanding required by the engineer 1s how to
determine the deflectlon, linear or rotational, at any
polnt. The determination of deflectlons generally reduces
to the problem of computing the Internal elastic energy
of the structure. ‘Because of the Importance of the energy
i1t will be appropriate to look 1into principles and the
assumptions 1nvolved in the commonly used expressions for
the energy. The bending energy of a small segment 1s
M@ CA S/2EI) as mentioned in Chapter I. This expression of
energy has been derived by using the following assumptions:
(1), Hooke's Law 1s valid and the elastic limit 1s not
exceeded during distortion. (2) Sections are plane after
bending, 1.e. the straln varles linearly across the cross
section. The first assumption 1s valld since the most
commonly used materials obey Hooke's Law ancd the analysis
considered here applies to structures in which the elastic
1imilt 1s not exceeded. The second one, although sufficlently
accurate in most cases, 1s certalnly not valid for sectlons

withln a Joint.



Even in beams where the top and the tottom fibers
devliate only a little from parallel, the distribution of
the stresses as determined by the ordinary team theory 1s
not true as was shown by William R. Osgood.1 He has derived
the stress formulas for the beam with non-parallel surfaces
ty the application of the wedge theory. The use of the
oréinary beam theory wlll not cause a large error in the
stresses as long as the angle tetween the two non-parallel
sides does not exceed 1) degrees. In the frame structure
the beam from the face of the column inwards could be con-
sidered as a beam having a wedge angle of 18) degrees formed
by the top and the bottom non-parallel surfaces. Therefore,
the stress distribution determined by the ordlinary beam
theory will not bte valid. Beglnning at the face of the
column the stresses will be distributed fan-1like through
the Joint. This wlll result in the non-linearity of
stresses in the Jolint zone.

Since the assumption of linearity 1s not satisfied,
the ordinary formula for btending energy should not be used.
This also indicates that the concept of geometric moment of
inertia should not be used to evaluate the total energy.

Also the conventional energy equation 1s often written in

ly1111am R. Osgood, "A Theory of Flexure for Beams
with Non-Parallel Extreme Fibers," Transactions of American
Society of Mechanical Engineers, 61 (1939), Journal of
Applied Mechanics, pp. A-122--A-126.
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terms of the neutral axis curvature. Many engineers
evaluate the energy ty uslng the neutral axis curvature anc
the external moment M 1rrespectlve of the stress distri-
bution. The 1implication of thils practice 1is 1illustrated
bty the assumed linear and non-linear stress distribution
produced by thé same moment M as shown In Figure 2.1. The
angle of relative rotation 2at the neutral axls will not
be equal in the two cases. Applylng the conventional
formulas the bending energy of the segment shown in
Figure 2.1b will be evaluated as Me,. The error involved
in evaluating the energy by this approach 1s enormous.
Hence, 1t 1is incorrect to think that the bending energy
can always be computed 1n terms of neutral axls curvature.
In the beam of variable section, i.e. non-parallel
surfaces, there will bte shear stresses even 1in the case
of pure bending moment, as shown by Willlam R. Osgood.2
Accordingly, there will be shear energy in the pure bending
moment case, which should te taken into account to evaluate
total energy. Its signiflicance will not be considered at
this stage. The 180 degrees wedge analogy discussed above
suggests that there will be shear stresses iIn the column
zone of the frame structure subjected to pure bending.

Also In beams subJected to variable moment along the span

°Ip1d., p. A-125.
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there will be shear stresses. Due t57non-11near1ty of
bending stresses in the column zone the shear stresses will
not be distributed 1n the parabolic shape even when the
cross section 1s a rectangle. Hence, the shear energy if
taken into account should not be evaluated ty the conven-
tlonal formula 1.2 V2/2GA.

If the stresses are not distributed as assumed in
beam theory, then the total energy at any cross section
can ke evaluated by the integration of the strain energy
density along the cepth or by the summation of the strain
energy of the small volume elements. The strain energy 4uU
of the small volume element shown 1n Flgure 2.2 can be

written as follows:

. dU = _é.(o; €x + TSy +%7€; 4T, Y, tTyzlyz

+ TzxYpx)dx.dy.dz.
(2.1)

‘where &%, oy, oz are the normal stresses, Txy, Cyz, Czx
are shear stresses, [ ey, e, are unit extensions and
ka’ YyZ’ yzx are shear strains. By using the stress-

strain relatlonship the straln energy equation can be

written 1n terms of stress as follows:
2 &
du=CpCor+o7+9) ~4CR% +q o +oy03)

. |
+ CTly +Tyz + Tzx)|dx.dy.dz. (2.2)

3Chi-Teh Wang, Applied Elasticity (New York: McGraw-
H111 Book Company, 19537, p. 37.
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where E 1s Young's modulus, G 1is the shear modulus, and
/M 1s Polsson's ratioc. o

When the width of the beam 1s small compared with the
depth, the beam may be regarded as being an example of plane

4
stress. In such a case the energy of the small segment

per unit width will be reduced to
| 2 _a [ 2 |
dU=[%e (s +0y —Z/t.o'xfy)*'-z-g'fxv_]dx-dy. (2.3)

\
It is to be noted that by taking o and z;y as zero and

assuming the linear bending stress condition for oy, the
conventional bending energy formula in terms of moment and
the moment of inertia results from the plane stress formu-
lation after integration over the depth. By the use of the
strain energy formula of the plane stress condition the
variation of the energy in the Jjolnt zone of the frame can
be evaluated provided the actual stress condition can be
determined at various points by some means. Information on
the energy varlation in the Joint will be enough to deter-
mine the contribution of the various sections of the column
to the deformation of the rest of the frame. Knowing the
energy at any section in the Joint zone and also the

moment and the shear force, one can evaluate the equivalent
moment of inertia or an equivalen: <¢epth. With this equiva-

lent depth information the conventional formulas can be used to

b1b1d., p. 46.
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evaluate the deflection, or the functions related to 1it,
necessary for the analysls of an indeterminate structure.
It 1s to be understood that the 1lnterpretation in terms of
equlvalent depth 1s a matter of convenlence to explain the
behavior in the conventlonal form.

The essentlal problem for evaluating the energy by
ﬁhe elasticlity theory recduces to the determination of
stresses in the structure. This can be done experimentally
or theoretically. 1In either case 1t would be essential to
Investigate the boundary conditions which have to be 1imposed
in order to produce the desired distortion in the structure.
For the 1investigation of the interaction of columns with
beams 1n the frame structures or specifically for the study
of the energy varlation 1in the internal Joint subjJected to
flexural action, 1t will be enough to study the cross-shaped
structure subJected to flexural actlion as shown 1n Figure
2.3. The Q1x stresses on ends are distributed so as to
produce zero bending moment. The distribution of boundary
stresses x> 53, and z'xy will be discussed 1n Chapter
III. Due to the nature of the imposed toundary conditions
as shown in Figure 2.3 the column part of the frame will
act as part of the horlzontal beam, 1. e. there would not
be any bending of the center llne of the column 1itself.
Referring to Figure 2.3, 1t 1s implied that there will not
be any bending moment on horizental cross sections of the

column. The difference between the usual knee study which



is more a study of arch action and the study of the Jjoint
subJected to flexural action should be clearly noted.

Even though the geometric shape of frames in the two studiles
appears to be the same the boundary conditions will be
entirely different. The boundary forces shown in Figure

2.3 are the arbiltrarily-imposed conditions used 1in this
study.

In order to determine the state of the stress in an
elastic body by the Theory of Elasticlty 1t is necessary to
solve the eguations of equllibrium expressed 1n terms of
stresses5 together with Beltrami-Michell compatibility
equations6 subjected to proper boundary condltions. The
alternative approach 1s to solve the equations of equllib-
rium expressed in terms of displacement7 subject to proper
boundary conditions. Considering the case of plane stress
and the plane strain condition in the X and Y directions
and introducing the Aliry's stress function such that the

oo = O = Txve— (2.4)
x S%t’ y S';(tt’ xy s

compatibility equations will be reduced to the bilharmonic

5Wang, op. cit., p. 6.

6Ibid., p. 33.

Tip1d., p. 34.

e——p——



equation. This bilharmonic equation 1s written as

4
Ve =0 (2

where t72 is Laplace's operator. The equations of equi-

)

n

librium are satisfied i1dentically. Hence, the problem of
determining stresses 1n the elastic body reduces to finding
the solution of the bilharmonic equation satisfying the

boundary conditions of the elastic body.
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CHAPTER III
EXPERIMENTAL ANALYSIS

As discussed in Chapter II, the interaction of the
column with the beam at an internal Joint can be studiled
by analyzing the cross-shaped structure. This analysis
requires basically the determinatlion of stress distribution.
This could be done experimentally by measuring strains or
displacements, by cdetermining stresses by optical methods
such as photoelasticity, or theoretically by evaluating
Airy's stress function Z or computing displacements u and v.
In elther case 1t 1s essential to investigate the limit of
the interaction in the cross-shaped Jjoint, 1.e. the point
beyond which the conventional (beam theory) moce of stress
distribution is valid. Hence, the aim of this experiment
1s to investigate the 1limit. As the aim of the experiment
is of qualitative nature, the photoelastic method has been

selected for the purpose.

Photoelastic Method

The photoelastic method was developed bty David Brewster
in 1812. He discovered that an optical ly isotroplc trans-
parent solld becomes optically anisotropic upon farced de-
formation. It has been shown that in the plane stress

condition the difference between the principal indices of



refraction 1s proportional to the difference between the
principal stresses in the deformed material and that the
optical axes of the deformed material coincide with the
principal stress directions. To apply this principle, two
optical systems are used 1n the photoelastic method. In
one system a circular polariscope with monochromatic light
1s used to determine the 1lines of constant relative retard-
ation, 1.e. isochromatic lines, which are the lines of
constant principal stress difference or lines of constant
maximum shear stress in the photoelastic model. The second
system consists of a cross polarizer and analyzer and uses
white light which 1s sultable for the cetermination of
isoclinic lines, 1. e. the lines of constant inclination

of principal stresses.

Equipment -

The optical system known as a photoelastic polariscope
consists of a polarizer, two quarter wave plates, model,
analyzer, and the camera. It also includes an attachment
for loading specimens. The arrangement of all parts has

1 1n this

been standarlized and presented in many books.
study a commercial polariscope, Chapman £" Photoelastic

Polariscope, as shown in Figure 3.1 1s used. The loading

lSee for example, George Harmor Lee, An Introduction
to Experimental Stress Analysis (New York: ~John Wiley and
Sons, Inc., 1950), p. 163.
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frame with the model mounted in it 1s shown in Figure 3.2.

The loading frame was desligned in such a way that the span

of the team of the cross-shaped frame could be varied.

This feature was kept so as to investigate the effects of

the span length.

Materlial of the Model

For determination of isochromatic fringes of the cross-

shaped model, CR-39 was selected due to the following

favorable propérties:

1.
2.

\n

It has polished surfaces.

It does not develop machining stresses even under
relatively high cuttling speecds. Also the machin-
ability 1s fair.

Aging effect is small.

Elastic properties are good. Modulus of elasticity
is 300,000 psi. Stress-strain curve 1s linear up
to 3,000 psil. Ultimate strength is 6,200 psi.
Photoelastic constant is 84 psi. per fringe per
inch of thickness. Hence for a 1/4" thick specimen
the first order of the fringe will develop at a
stress of 336 psi. and linearity will hold good

up to a fringe order of 9.

The effect of temperature on physical and optical

properties 1is very small.
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Model Form

The model dimensions are shown in Figure 3.3. As
shown ih the figure, the horizontal part will act as the
beam and the vertical portion will act as the column. The
top and bottom parts of the column are unequal for eguip-
ment convenience. But as the lengths of the top column and
the bottom column are large compared wilith the depth of the
beam, the 1inequality will not affect the experiment. The
small fillets of r = 1/16" were provided to relax the
stress concentration. Dimensions were selected in the model
to make the maximum use of the space and the loading
capaclty of the Chapman Polariscope. The loads are applied
through points P, Figure 3.3, by means of a loading frame,
and resisted at points Q. Figure 3.2 i1s a photograph of
the set-up. It 1s to bte noted that when the appllied loads
P are resisted only by loads Q there will not be any shear
forces in the BC portion of the structure and the system
1s under pure bending moment in zone BC. When the shear
forces are desired in the system, a pin 1s introduced in
the hole made in the lower part of the column,which 1s
rigidly connected to the loading frame. Thils will produce
an axial force 1n the column ané hence shear forces 1n
the portion BC of the system. -The system iIn such a case
will not be symmetrical about the horizontal axis due to

unsymmetrical axlal forces in the column.



Procedure

As discussed previously, for determination of isochro-
matic lines, a circular polariscope 1s used which contains
a polarizer, analyzer, and two quarter wave (mica) plates.
In the Chapman polariscope all parts aré housed 1n the
optical barrel. As 1llustrated in Figure 3.1, the optical
barrel 1is arranged so that the loading frame with model
will be between the mica plates. Spans Lj and L, are 2.5"
and 1", respectively. In the case of pure bending moment
in portion BC, the load P is 41.25 lbs. A photograph taken
of the isochromatic fringes with this loading condition is

given in Figure 3.4. Span L, was varied to investigate the

2
effect of 1t on the distribution of stresses. It was found
that the use of a span L, greater than 1" did not change

the mode of stress distribution from the one obtained in
Figure 3.4. 1In the second case the shear forces were intro-
duced in the portion BC of the system by introducing the

pin i1n the column so that the applied loads P are resisted
by supporting forces Q and an axial force through the pin.
Spans L; and L2~werekept the same and the load P was 55 1lbs.
The photograph of the 1sochromatic fringes is given in

Figure 3.5.

Discussion and Conclusion

In Figure 3.4 for pure bending moment loading, the

order for i1sochromatic fringes increases linearly from the
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neutral axls at the beam section located 1/4" from the face
of the column, 1l.e. at a section located away from the
column face a distance equal to half the width of the
column. Thils means, from the definition of isochromatic
fringes, that (e&y - a-‘e)/E varies linearly. ( €7 and &%
are the principal stresses.) At a beam section far away
from the face of the column one cannot expect to find shear
stresses or vertical normal st?gsses because this portion
will tehave like a beam of uniform section uncder pure
tending moment. Since the 1sochromatic fringes at the
section 1/4" from the face of the column appear identical
to the ones far away from the face of the column, 1.e. to
the case of the uniform team subjected to pure bending
moment, it 1is to be concluded that there are no shear
stresses or vertical normal stresses on the section 1/4"
from the face of the column. Hence, cri will be equal to

6; and @, will be equal to a%. Since the stress @7
is zero, oy varies linearly, and the stress distribution
on thils section 1s of conventional form.

In the column zone at the horizontal sections 1/4"
above or below the faces of the beam the order of isochro-
matic fringes 1s zero. This means that the section 1is
stress free and that the flexural action of the beam 1s
not carried Into the column beyond a section located half

the depth of the beam from the top or bottom of the beam.
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From the linearity of the bending stresses beyond the
section 1/4" from the face of the column it 1s deduced that
when a shear force does exist there, then the shear stresses
vary in a parabolic manner. Hence, the isochromatic fringes
in this region should be the same as those of a beam
similarly loaded but of constant cross section (not inter-
rupted by an integrally-attached column). This 1is verified
by comparing Figure 3.5 with results for the conventional
case as glven by Frocht.2 The two agree outsice the sectilion
1/4" from the column face. In the lower column the order
of the i1sochromatic fringes i§ constant except for some
slight disturbance due to machlning stresses. At the cross
.section 1/4" from the face of the Joint 1t was found that in
the pure bending moment case there were no bending stresses.
It 1s to be expected there wlll not be any shear stresses
at any cross sectlon in the column beyond this line. It
means that the horilzontal section 1s a principal plane.
Hence, @71 and 5’2 will be equal to &% and oy. (2
will be zero since 53,13 zero. Therefore, the same order

of the fringe along the horizontal cross section, which
61 —92

—
distributed uniformly.

means that ( ) is constant, implies that &% 1s

2Max Mark Frocht, Photoelasticity (New York: John
Wiley and Sons, Inc., 1941), p. 148.
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From the above experimental investigation and discus-
sion it 1is concluded that the interaction of the column
wilth the beam extends to the vertical cross sectlon half
the width of column from the face of the column, and the
Interaction of the beam wilth the column extends into the
column to the horizontal cross section half the team depth
from the face of the kteam. Hence, the conventlional theories

of stress distribution hold beyond thils interaction zone.



27

FIGURE 3.1 Polariscope set-up.



FIGURE 3.2 Model mounted in loading frame.
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CHAPTER IV
NUMERICAL METHOD

The general solution of the blharmonic differential
equation, as discussed 1n Chapter II, satlisfyling the
boundary conditions, 1s usually quilte difficult. Some prob-
lems of practical Interest can be solved by an inverse
method, maklng some assumptionsb;egarding the stress dis-
tribution. This wlll lead to an expression for Alry's
stress function ¢ with some undetermined coefficlents.
Another method often used 1s to assume the stress functlon
in terms of a series wlth undetermined coefficlents. These
undetermined coefficients are determined from the boundary
conditions of the elastic body, whlch sometimes can be
expanded 1n Fourler seriles.

In the absence of any notion of the stress functilon,
the solution of the fundamental blharmonic boundary value
problgm can be made to depend upon a certaln general repre-
sentation of the biharmonic function by means of two
analytic functlons of a complex variable.l The original

presentation of this method was made by E. Goursat in 1898.

1I. S. Sokolnikoff, Mathematlical Theory of Elastlclty
(New York: McGraw-H111 Book Co., Inc., 1956), p. 262.
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While this method will present calculation difficulties for
certaln types of boundaries, general formulas have been
written for the case when the boundary of the region is a

circle.2

It is possible to apply the formulas, derived for
the case of a circular region, for any simply-connected
reglon by introducing the mapping function which maps the
particular region of complex Z-plane conformally onto the
unit clircle. An attempt to evaluate the mapping function
for the cross shape 1s discussed 1In Appendix A. This method
was abandoned because of convergence difficulties with the
hfinite series representation of the mapping function.
Because of the difficulty of the analytical solution
for the elasticity protlem, approximate numerical methods
were used. The method of finite difference, which was
first applied in elasticity problemsby C. Rung in 1908,
is a numerical method widely used in recent years. The wide
use of this approach is due to the development of computers
for the solution of simultaneous equations and the develop-
ment of the relaxation method, which 1s used in the absence
of computer facilities. 1In the method of finite differences
one replaces the partial differential equation and the
equation defining the boundary conditions by finite differ-
ence equations. Then the problem reduces to the solution

of simultaneous linear algebralc equations.3

2Tpid., p. 1L5. 3wang, op. cit., p. 106.



In elastlicity problems the boundary conditions are
expressed 1n terms of elther the stresses or the displace-
ments or a combination of both. For the plane stress con-
ditlon the governing cdifferential eguatlon solved 1is

(7“ ﬁ = 0, where Z 1s Alry's stress function. Hence, 1t
wlll be necessary to express the boundary conditions in
terms of Alry's stress function. This can be cdone by
application of relations of Alry's stress functlion with
the stresses,u and the relations of the stresses to strains,5

6

and the strains to displacements. The cross-shaped region
wlll be stucdied with two loading conditlons. In part I of
this chapter the boundary conditions are of such a nature
that the entire structure 1s under a pure bending moment
condltion. 1In this part there 1s also given considerable
detail on the numerical procedure. 1In part II, the boundary
conditions are of such a nature that there will be external
sﬁear forces at any cross section of the team. For each
loading conditlion, the cross shape wlll te analyzed both
with and without fillets at the re-entrant angles. The
pure bending case will te analyzed for two different ratios

of beam depth to column width. In part IIT, results are

summarlized and thelr interpretation is discussed.

b1b1d., p. 43. 51bid., p. 32.

6Ibid., p. 17.
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I. PURE BENDING MOMENT CONDITION

The cross shape to be studied 1n this case 1s shown
in Figure 4.1. The clear spans of the beam and the columns
are taken equal to the width of the column inasmuch as it
was concluded 1n Chapter III that the interaction range
extends, at the most, approximately half the width of the
column into the beam as well as into the column. Hence,
on the boundary AB of the cross shape subJjected to pure
bending moment, the bending stress wlll vary linearly.

Also the ratio of the beam depth to the column width will
affect the interaction. For thempresent the ratio 1s taken
as unity, and the effect of different ratios will be dis-
cussed later on. In many structures, specifically concrete
structures, there will be construction fillets at the re-
entrant angles formed by the Junction of the beam and the
column. These construction filllets will relieve the stress
concentrations at the re-entrant angles, but will not have
any radlcal effect upon the distribution of the stresses in
the beam or the column far from the Junction. The cross
shape having the ratio of beam depth to column width as

one and the ratlio of the radius of the fillet to the half
depth of the beam as 1/3 has been analyzed at thls point.
The effect of the removal of the fillet on the interaction

willl be studled later on.
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A. Cross Shape Having /b = 2.0, h/b = 3.9, ¢/b = 1.0 and

r/d =1/3

Boundary conditions. Because of the loadlng condltions,

the Airy's stress function % in the cross shape 1s anti-
symmetrical about the Y-axis and symmetrical about the
X-ax1ls. Therefore, it will only be necessary to study one-
quarter of the entire region as shown in Figure 4.1b. The
region has been divided as shown in the figure for setting
up the finite difference equations. The boundary condltions

can ke summarized as follows:

On AB, @5 =

le
On OA, c& = 0.
2.

on OF, Tyy =

On BCDEF the normal stress and the shear stresses are zero.
On such a tractlion-free boundary, the partial derivatlves
;L:, and _:_; of the stress function are constant. Since
the stress function 1s in any case only determined up to an
arbitrary additional linear function of x and y, 1t was
possible without loss of generality to set the boundary
conditions in such a way that g‘_: = 35% = 0 on

BCDEF.7 Then replacing the stresses by thelr expressilons

7S. Timoshenko and J. N. Goodler, Theory of Elasticlty
(New York: McGraw-Hill Book Co., 19515, pp. 484-4E5.
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in terms of Airy's stress function by Equation (2.4) and
maintaining the continuity of all functions, such as Airy's
function and its derivatives, on the boundary ABCDEF, the

boundary condition can be reduced as follows:

On AB, 7 = Kq x3/6 -K; x d2/2, Normal derivative 1is
zero.
On BCDEF ¢ = -K1d3/3, Normal derivative 1s zero.

On OA, & = O

On OF, Normal derivative 1is zero.

The implication of zero normal derivative in terms of finite
difference equations can be explained by the following
example:

Eﬁt) =0
Ngs

oo (Pe, 44— 96,2)/2.8Y =0

<. ¢&;4ﬁ= P2 . (4.1)

The subscript 6,3 used here identifies the node which
1s located at X = 6 and Y = 3 mesh units. The number before
the comma represents the value of X and the number after the
comma representslthe value of Y. The same notation 1is used
through the text.

From Figure 4.1b 1t can be seen that the Z value of
point 4,4 can be evaluated by any of the normal derivative

conditions at 3,4; 4,3 and n. In this solution it has been
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evaluated by taking the average of the slope written in
terms of forward difference and backward céifference at point
n and equating thils average to zero, which is the normal

derivative conditlion at n.

Biharmonic differential equation. The finlte differ-

ence equation of the Bilharmonic differential equation for
a typical interior node 2,2 as shown in Figure 4.1b can be

written as follows:

( 7' 2,2 = 0
[20 75,5 -8 (F3,2 + 75, 5 + 11’2 + ]2’1)
+2 (73,3 + Z3,1 + Z1,1 + 71,3)
+ By o+ Pou +Py,0+ 72,001 =0 (4.2

Similar equations can be set up for each 1interior node of
the region shown in Figure 4.1b. At first these equations
will have many unknowns of the nodes whilch are outside the
reglion. By the application of the boundary conditions
discussed above and the known functional values on the
boundary all equations can be stated 1In terms of unknown
functions at interior nocdes only. Hence, there will be 37
equations with 37 unknowns. These equatlons have been

solved by using the L2 program9 in the MISTIC digital

8Wang, op. cit., p. 111.

Mistic Library, L2 Program (East Lansing: Computer
Laboratory, Michigan State University, 1958).
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computer at Michigan State University. The results of

these equations are given in Table 4.1.

Bending stress and bending moment. From the g values

the bending stress o’y at any point can be calculated by

1ts relationship expressed in the finite difference form.lo
2
e.g. ()0 = (3_2)
Co5)2, sxt
= C¢;,| "2¢z.a + ¢|,|)
(ax)? (4.3)

The results for the bending stress are recorded in Table 4.2.
T ts distribution on each section is given in graphical form
in Figure 4.2. From the bending stress distribution the
bending moment at any section can be calculated. Silnce

the stress distribution is availlable in graphical form,

the bending moment has been calculated by the graphical
method. The X-axis of the stress distributlon curves in
Filgure 4.2 has been divided into tenths of an inch. The
bending moment at any section was calculated by the summation
of products of the stress area of the one-tenth inch
ordinate by the moment arm measured from the Y-axis to the

middle of the stress segment. The results for the resisting

10Wang, op. cit., p. 110.



bending moments at various cross sections calculated by the
described method are given in Table 4.3. Also the applied
moments are glven. The percentage errors compared wlth
applied moment at various sections have been evaluated.

From Table 4.3 1t appears that the errors at the
face of the column and at the section where the fillet
starts are the greatest. This 1ndicates that there 1s con-
siderable error in the stress distribution in the vicinlty
of the Junction of the beam and the column. Due to the
sudden change 1in the cross section at the Junctlon the stress
function will vary sharply. Hence, in order to determine
the stress function more precisely it will be necessary to
have a finer network for setting up the finite difference
equations. It 1s to be expected that the stresses calculated
will be considerably 1n error only 1n the vicinity of the
fillet. Hence, the stress distribution obtained using a
finer network throughout the region would not be much dif-
ferent from the one obtained by finer grading only in the

vicinity of the fillet.

Graded net. The solutlon of simultaneous equations
is done by MISTIC computer L2 program which 1s 1limited to
a maximum of 39 equations. The finer gradling around the
fillet for the cross shape shown 1n Figure 4.1b would
exceed the limit for MISTIC. Consequently 1t was necessary

to make some modifications ;n the dimensions of the cross
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shape shown in Figure 4.1. From Flgure 4.2 it seems that
at beam sections #6, #7, and #8 the cr& stress distribu-
tion 1s very close to a straight line. Also in the column
beyond the cross section parallel to Y-axis at 6 there are
practically no stresses. This agrees wlth the photoelastic
studédy in Chapper III. Hence, 1t will be appropriate to
take the cross shape as shown in Figure 4.3 for the inter-
action study. The graded net around the fillet is shown

in Figure 4.3b.. While setting up the finite difference
Equation like Equation 4.2 for points such as 3,23,ll there
will be many nodes like 34,2 which are not considered as
unknowns. Hence, it willl be necessary either to guess the
value of such nodes or relate such nodes with nelghboring
unknown nodes. These means are possible only 1f some
assumption 1s made. This difficulty can be avolded by re-
placing the operator 17“ by ( 2)( @2) and setting up
the finite difference operators separately for each §72.
The net size used for setting up the <72 operators need
not be the same for different nodes or even for the two

successive operators at the same node. This procedure was

' llNode 3,23 1s 1dentifiled as the one which 1s located

at X = 3 units and Y = 2.5 units, 1l.e. located halfway
between Y = 2 and Y = 3 units. The same notation applies
when two numbers are before the comma. This notation is
used throughout the text to 1dentify the nodes which are
between regular nodes.
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first used by Allen and Dennis.12 As an example the finite
difference equation for point 23,23 shown in Figure 4.3b

has been derived in Appendlx B and 1s written as follows:

32 #23,03 - 22 93,3 - 11 73 5 - 100, 5 - 11 F5 3
+ P33+ WP 03+ o33 Wy Ay o+ P+
+ M2+ 81,3+ 8,4 =2 (4.4)

In a similar way the finite difference equation can be set
up at each‘point where Equation 4.2 1s not applicable. The
boundary condltion and 1its implicatlion in terms of finlte
difference form 1s the same as that of the ungraded net
except for point 34,34 which 1s evaluated in Appendix B.
The finlte difference equations for the graded region shown
in Figure 4.3b were solved by the MISTIC computer. The
values of the ¢ obtained are given in Table 4.4,

Fromfthe stress function values the stresses were
calculated by the finite difference Equation 4.3 and from
this informatlion the bending moments ét various cross sec-
tions were calculated by a graphical method. The results

are given 1n Table 4.6.

12, N. De. G. Allen and S. C. R. Dennis, "Graded
Nets in Harmonic and Biharmonic Relaxation," Quart. Journal

Mech. and Applied Maths., Vol. IV, Pt. 4 (1951), pp. L30-
Pivisc o
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Effect of gracded net on bending moments. With the

understanding that the distributlion of the stresses 1n the
region shown in Figure 4.3b will not be materially differ-
ent from that of the region shown in Figure 4.1b the bending
moment evaluations of Tables 4.3 and 4.6 can be compared to
study the effect of the graded net. At beam sections #5,
#6, and #7 the error has been increased at the most by
0.30%. At beam sections #3 and #4 the error is reduced by
5.49% and 10.20%, respectively. At beam sectlon #2 the
error is increased by 0.78%. The slight increase or de-
crease in the percentage error at sections #2, #5, #6, and
#7 from Table 4.3 to Table 4.6 1s not significant. The
bending moments were calculated by a graphlcal method 1n
which the stress values are read from tﬁe graph. Hence,
any slight errors in the stresses when multiplied by the
lever arm for evaluation of the moment may be responsible,
but they are not significant. But from comparison of the
results at sections #3 and #4 it can be concluded that the

graded net 1improves the results considerably.

Higher order differences. Further improvement can be

made 1in the filnite difference approximation by taking a
finer net. This willl increase the number of simultaneous
equations. An alternative approach in which higher order

finlte difference approximation formulas are used was
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suggested by Fox.13

The finite difference equation, set up
by considering the higher order finlte difference approxi-
mation for the blharmonic equation could be used for
evaluation of stress functions. Thils would 1nvolve consid-
erable labor in setting up the eguations. In general, by
using the standard first order difference formulas, the
accuracy in the stress function obtained 1s always better
than in the derivatives of the function. Hence, even 1f
the stress functions are obtalned by standard first order
formulas, the improvement 1in the results will be consideratble
with 1little extra labor if the derivatives are calculated
bty higher order differences and used for evaluation of
stress.

For bending stress cf& the filnlte difference formula

1
using the higher order difference 1s as follows:
e.g. (cykh.'=(fft )

ax/a

- |
'-6557‘[j‘7%§n1"ﬁi‘7€¥za'*!ﬁb‘7?ﬁtd """"" (4.5)

The first term of the formula 1s the contribution of the

standard first order difference application. The first

13 Fox, "Some improvements in the use of relaxation
methods for the solutlon of ordinary and partial differen-
tial Equations," Proceedings, Royal Soclety (London), A,
Vol. 190 (1947§, . 31-%9.

yang, op. clt., p. 125.
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factor has already been evaluated in Table 4.5. The second
term 1s evaluated separately using the stress functilons
given in Table 4.4. Only the first two terms are taken in
the formula (M.S) as the terms beyond this willl be 1insig-
nificant. The results of the bending stress evaluated by
the formula (4.5) are given in Table 4.7. These results
have been plotted in Figure 4.4, The bending moments have
been calculated»gréphically using Figure 4.4. The compar-
ison of the results is given in Table 4.8.

The effect of application of higher orcer difference
In the stress distribution can bte studied by looking into
results of the percentage error in the calculated resisting
moments given in Tables 4.6 and 4.8. There 1s practically
no improvement in the result at beam section #3. Inside
the column, 1. e. at beam sections #J, #1, #2 the errors
have been reduced almost to zero. The change in the errors
at sectlions #4, #5, #6, and #7 1s not important as far as
the {pteraction of the column and beam 1s concerned. Looking
into the values of the stresses in Table 4.5 and Table 4.7
1t can be summarized that there 1s significant difference
only at the node point of the maximum stress on a section.
Inside the column zone there 1s qulite a difference percen-
tage-wise at the nodes close to the top boundary, but as
far as the area of the stress dlagram 1is concerned this
will not be of any 1lmportance. Hence, in conclusion the

only way to improve the error in the stresses near the
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fillet is fo have a very fine net around the fillet. This
will increase considerably the number of equations. As the
problem involves the jolnt region as a whole and the error
in the stresses near the fillet will not greatly change the
results, 1t will not be Justiflable to spend more time for
£ he solution of more simultaneous equations. In the subse-
qgquent calculations the values o'y are calculated by higher
order differences, whlile the normal stress o—x and the

s hearing stress T. are calculated by the standard first

Xy
order difference.

Normal stress @ 4 and shearing stress T,y The
finite difference formulas for o5 and rxy stresses for
the typical node 2,2 as shown in Figure 4.3b can be written

15,16

as follows:

(32,2 '(%%g)z.z = (Pe3 —28;,2 + P$2,1)

(AY)Z
- azg ] (¢,- . +(¢,- [
@iyl —(3x.37)z,z ‘; = :?;),‘,Ay' ¢ 2"ﬂ‘(u.a)

Us1ing the Formula 4.6 the o and Z‘Xy Stresses are cal-
culated with the help of the stress function 2 given in
Table 4.4. The results of these are given in Table 4.9,

151p1d., p. 110.

16F. S. Shaw, An Introduction to Relaxation Methods
(New York: Dover Publications, Inc., 1953), p. 36.
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Energy. Knowlng the stress distribution at varilous
se ctions the energy can be evaluated by the formula dis-
c ussed in Chapter II. The energy formula for a segment of

it length in the Y-direction is
2
U =[TL (s + 55 -2ma0y) +4g Tiy]dx. (4.7)

The integral along the entire depth 1n the X-direction can
be evaluated by summation of the energy of small segments

in the X-dlirection or by integration of the energy function
in X-dlrection. As the stress information 1s available in
numerical form it wlll be convenlent to evaluate the energy

by a graphical method. For this purpose (2, 4)2(, -:2

X
were plotted, and the summation of the area between each !
curve and X-axls was carried out with a Planimeter. Figure
4 .5 shows, for example, the curves of ‘52; at sections #0,
#1, #2, #3 and the areas obtained. With the application
Oof this area information to the Formula 4.7 the energy can
be evaluated. The results of the computation are shown in
Table 4.10. The value of Poisson's ratio M 1s used as 0.30
throughout the text. The effect of # on equivalent depth
W11l be discussed later. Knowing the energy the equivalent

depth can be calculated.

Equlvalent depth. The equivalent depth at any section

1s defined as the one which, when used in the evaluation of

the energy by the conventional beam theory formula will glve
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£t he actual energy. This can be 1llustrated in the following
manner.

. In the conventional energy formula, if the segment of
the structure 1s under pure bending moment M, then the
energy of the segment per unit length 1s given by M2/2EI.
The energy of the segment of rectangular cross section of
unilt length and of unit width and depth D will be 6M2/ED3.
According to the definition of equilvalent depth, the

ffollowing equation can be written for any section,

2
eMe = true energy at any section (Tatle 4.10),
Ed3
2
M
e.g. for section #3, a3 = 0.403109 K12d3 .
e 2E

Note that de is the equivalent depth at the section while
d 1is the hal‘f‘ cepth of the actual beam. M 1is the bending
moment at the section. In this case M = 0.66667 Kld3 and
the equation yields

a3 = 5.333303
0.403109 .

Let R represent the ratio of equivalent depth to actual

depth,
R = % = Equivalent depth
24 Depth of beam
For section #3, R3= 0.66667  _ 1.6538.

0.403129
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The results for R at various sections are given in Table
4 .11. The graphical representation of the equivalent depth
i1s given 1in Figure 4.6. The results indicate that there 1is
a gradual Increase in equilvalent depth or