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SHANTILAL CHATURBHAI PATEL ABSTRACT

A knowledge of the energy distribution characteristics

of the Joints is important for an analysis of indeterminate

framed structures with deep-short members. This dissertation

determines the characteristics of cross-shaped joints

(internal Joints of the framed structure) subjected to

flexural action. The members of the frame are of rectangular

cross section and the stress distribution is assumed to be

plane.

The Airy's stress function ¢ inside the cross-shaped

region is determined by solving the biharmonic differential

equation by the numerical finite difference method. The

stresses and the elastic energy per unit beam length are

determined. The equivalent depth distribution is calculated,

i.e., the depth distribution which when used in the eval-

uation of the energy by the conventional beam theory formulas

will give the true elastic energy. The effects, of the

fillets at the Joint, of the dimensions of the cross shape,

and of the variations in the Poisson's ratio, on the equiva-

lent depth are studied.

The column portion of the cross shape is also analyzed

with an assumed linear bending stress distribution and a

uniform shear stress distribution at the beam to column

Junction. The analysis is made by taking the stress function

in the form of a series. The comparison of equivalent depth

curves, inside the column portion, calculated by the finite
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difference method and by the series method shows a fair

agreement as far as the shape of the equivalent depth curve

is concerned. The series method is also used to investigate

the effect of the different proportions of the cross shape

on the equivalent depth inside the column.

It is concluded that the exact value of the equivalent

depth depends upon the proportions of the cross shape, the

type of the loading, and the radius of the fillet. For

practical use, an approximate equivalent depth line is sug-

gested, which can be used for any kind of loading and any

proportions of the cross shape. In an example, worked out

with the suggested approximation and the beam theory formulas,

the total energy of the Joint differs from the energy calcu-

lated by the finite difference method by less than 11%.

This is a much smaller error than that which results from

using either of the assumptions commonly made: that the

equivalent depth at any section inside the Joint is the

same as the depth at the face of the Joint or alternatively

that the moment of inertia at any section inside the Joint

is infinity. Either of these assumptions leads to errors

of about 100% in the total energy of the Joint.
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CHAPTER I

INTRODUCTION

Developments in concrete technology and connection

methods in metal structures have created confidence among

engineers in the validity of the assumption of rigidity of

Joints in frame structures. Hence, engineers design them

in accordance with this assumption. Rigid frame structures

are those which have beams and columns as the principal

resisting members with the Joints providing continuity.

This dissertation describes the interaction between struc-

tural members rigidly connected at their Joints. It is

limited to frame structures in which the cross section of

the members is rectangular and does not vary abruptly,

except thatthere may be small fillets at the Joints. The

intersection angle is 90 degrees. This dissertation is

further limited to frame structures in which the flexural

deformation is the primary distortion. Shear and axial are

secondary deformations. Procedures for the analysis of a

frame structure which is of indeterminate nature have been

known for many years. However, the flexural action of

Joints is not clearly understood even today. This disser-

tation presents a study of the flexural interaction at the

Joint of members rigidly connected. For this study, the

structure has been assumed in state of plane stress.



For many years the bending deformation character-

istics of beams has been understood. Theoretically the

relative rotation of the end faces of the small segment

£58 of the structural member of uniform cross section

subJected to pure bending moment M is equal to M(AS/EI).

This relative rotation is often interpreted in terms of

curvature, since M/EI is equal to curvature. The bending

energy can be written as (M)(rotation)/2. Hence the bending

energy reduces to Mzcfixs/EEIA In.practice there will be

few structures in which the beam is under a pure bending

moment condition, i.e. in which the bending moment is

constant along the span of the beam. Hence, shear energy

will form part of the total energy. Also, axial energy

will be a part of the total. Usually the shear energy

and the axial energy will be insignificant compared with

the bending energy. Hence, the last two factors are

neglected for computing the total energy. So bending

energy is usually taken as the total energy for practical

purposes. Whatever method may be used to study the defor-

mation characteristic of the structure necessary to analyze

the indeterminate structure, the evaluation of the energy

is a required step directly or indirectly.

For the evaluation of the total energy of members,

the above discussed bending energy relationship has been

used in the clear span zone by engineers. In the region

of the Joint two procedures are being used. The first



considers that the depth, i.e. the moment of inertia, at

any point in the Joint, to be used for evaluating total

energy, is the same as at the face of the column. The

second procedure uses the depth of the column as the effec-

tive depth from the face of the column through the Joint,

or in frames, since the column height is considerably larger

than the depth of the beam, infinity is used as the value

for the moment of inertia.

A review of engineering literature indicates that

since 1900 many investigations have been conducted on rigid

frames, Joints, and knees. These investigations are

focused on the validity of the assumptions of structural

behavior as calculated by the elastic theory. The effect

of various sizes and types of fillets on the distribution

of the stresses in the Joint and its effect on the other

part of the frame have been studied. In concrete structures,

factors such as the amount of reinforcement and its distri-

bution have been studied. In steel structures, Joint

conditions and buckling properties have been taken into

account. However, very little has been learned about the

interaction of the column and the beam in the Joint zone.

Inge Lyse and w. E. Blackl have calculated the

angular change of the knee faces from the observed principal

 

lInge Lyse and W. E. Black, "An Investigation of

Steel Rigid Frames," Transactions of American Society of

Civil Engineers, 107 (I942), pp. 143-144.

 

 



stress distribution. This angular change agreed closely

with the one calculated from the information of the observed

shear forces. They have also calculated the theoretical

bending deformation on the assumption that the moment of

inertia at any point in the knee zone is the same as that

at the face. This calculated deformation is twice that

of the one calculated from the observed principal stress

distribution. These two authors have concluded that if,

however, the effect of the shear is neglected through the

frame (as would be done in the design) the large bending

deformation assigned to the knee tends to offset the neglect

of shear deformation in the frame as a whole.

This conclusion explains the reasons for the use of

the first procedure. This matter of compensation is Justi-

fied in frames in which the span length of the member is

very large compared with the depth of the member, so that

the effect of the shear is small. Does this compensation

idea give the correct results for the frame analysis where

the spans are very small? In other words is the contri-

bution of the knee significant in such a case? Since it

is known that the knee contributes very little to the

bending deformation of the frame as a whole the application

of the second procedure seems to be the natural choice.

This will necessitate the need for taking into account the

shear energy in the evaluation of total energy. However,



U
1

most engineers usually neglect shear energy thereby

increasing the error in the total energy.

The second procedure was suggested by L. T. Evans.2

In setting up the column coefficients for the slope-

deflection he mentioned that if the beam is deep with

respect to the height of the column, then it is evident

that the column cannot bend in the knee zone. And this

assumption is equivalent to assuming an infinite moment

of inertia in the knee zone. Evans and others have pre-

pared many tables and graphs charting different functions

such as stiffness factors, carry-over factors and fixed-end

moments for different loading conditions. Evans' assumption

means that the moment of inertia increases abruptly at the

face of the column.

Can there by any sudden change in the moment of

inertia at the face of the knee? A similar question has

been raised by Ralph E. Spaulding.3 Discussing the article,

"An Analysis of Stepped-Column Mill Bents," by Daniel S.

Ling, he pointed out that the effective moment of inertia

does not change suddenly when the cross section changes

 

2L. T. Evans, "The Modified Slope Deflection Equations,"

Proceedings of American Concrete Institute, 28 (September

1931--Apr11 1932): p. 118.

 

3Ralph E. Spaulding, Discussion on "An Analysis of

Stepped-Column Mill Bents," by Daniel S. Ling, Transactions

ongmerican Society of Civil Engineers, 113 (1948), p. 1099.

 

 



suddenly. The effective cross section for M/EI analysis

has been sketched by him. He did not furnish a compu-

tational analysis for this, but mentioned that the photo-

elastic and the strain gauge analysis revealed that there

are dead areas in the corner of the wider part.

Joseph A. Wiseu analyzed the inverted U-frame in

which he assumed that the moment of inertia at any point

in the knee is the moment of inertia at the face multiplied

by the third power of the ratio of half the width of the

column to the distance of the point under consideration from

the center line of the column. He indicated the need for

further investigation of frames with wide members.

This literature indicated that the followers of both

procedures are in general agreement that the bending defor-

mation of the knee is very small. Hence they neglect the

knee or the Joint entirely as far as the bending energy is

concerned. The follower of the first procedure compensates

for the shear energy of the frame while the follower of the

second procedure will take the shear energy separately if

it is of significant magnitude compared with the total.

The questions remaining unanswered about the Joint are:

What is the shape of the moment of inertia curve within the

Joint? Will the neutral axis curvature within the Joint

 

“Joseph A. Wise, "Corner Effects in Rigid Frames,"

Proceedings of American Concrete Institute, 35 (September

1938r-June 1939f. pp. 190-191.

 



zone represent the true effective moment of inertia to be

used in the deformation analysis of the structure? If not,

what is the true representation? What are the factors that

affect the true effective moment of inertia? The answers

to these questions are important when the spans are short.

The aim of this dissertation is to bring forth answers by

studying the interaction of the column to the beam subJected

to pure bending moment conditions and variable bending

moment conditions. The investigation made in this study is

limited to cross-shaped Joints although it is possible from

the results to infer something about the behavior of "T"

shaped and "L" shaped Joints.

In Chapter II the principles involved in the analysis

of indeterminate structures are discussed. It is concluded

that the energy variation should be studied for analysis

of indeterminate structures,which in turn reduces the prob—

lem to the evaluation of stresses. The problem has been

specifically outlined for the evaluation of stresses by

elasticity theory. Chapter III discusses the experimental

method used to investigate the limits of the interaction

zone of the cross-shaped Joint. From photoelastic analysis

it has been concluded that in the beam and in the column

the limit extends a distance equal to half the column width

and half the beam depth respectively from the faces of the

Joint. A numerical method for the evaluation of stresses



is discussed in Chapter IV. Using these stresses the

internal energy has been calculated at various sections.

The equivalent depth is defined as the one which if used

in the evaluation of the energy by the conventional beam

theory formulas would give the true elastic energy. The

equivalent depth increases toward the center of the column

up t021maximum of 1.40 times the beam depth for pure bending

loading and up to 1.59 times the beam depth if shear forces

and bending moment are transmitted across the Joint.

Chapter V discusses the Fourier series application to

evaluate stresses and energy in the column zone. This

method is used to compare the results with the numerical

method and also to study the effect on the equivalent depth

of changing the ratio of the beam depth to the column width.

Chapter VI summarizes the results and conclusions of the

study.



CHAPTER II

PRINCIPLES

For the analysis of indeterminate structures the only

basic understanding required by the engineer is how to

determine the deflection, linear or rotational, at any

point. The determination of deflections generally reduces

to the problem of computing the internal elastic energy

of the structure. ‘Because of the importance of the energy

it will be appropriate to look into principles and the

assumptions involved in the commonly used expressions for

the energy. The bending energy of a small segment is

M2 (A S/2EI) as mentioned in Chapter I. This expression of

energy has been derived by using the following assumptions:

(1) Hooke's Law is valid and the elastic limit is not

exceeded during distortion. (2) Sections are plane after

bending, i.e. the strain varies linearly across the cross

section. The firSt assumption is valid since the most

commonly used materials obey Hooke's Law and the analysis

considered here applies to structures in which the elastic

limit is not exceeded. The second one, although sufficiently

accurate in most cases, is certainly not valid for sections

within a Joint.



l V}

Even in beams where the top and the bottom fibers

deviate only a little from parallel, the distribution of

the stresses as determined by the ordinary beam theory is

not true as was shown by William R. Osgood.1 He has derived

the stress formulas for the beam with non-parallel surfaces

by the application of the wedge theory. The use of the

ordinary beam theory will not cause a large error in the

stresses as long as the angle between the two non-parallel

sides does not exceed 13 degrees. In the frame structure

the beam from the face of the column inwards could be con-

sidered as a beam having a wedge angle of 183 degrees formed

by the top and the bottom non-parallel surfaces. Therefore,

the stress distribution determined by the ordinary beam

theory will not be valid. Beginning at the face of the

column the stresses will be distributed fan-like through

the Joint. This will result in the non-linearity of

stresses in the Joint zone.

Since the assumption of linearity is not satisfied,

the ordinary formula for bending energy should not be used.

This also indicates that the concept of geometric moment of

inertia should not be used to evaluate the total energy.

Also the conventional energy equation is often written in

 

1William R. Osgood, "A Theory of Flexure for Beams

with Non-Parallel Extreme Fibers," Transactions of American

Society of Mechanical Engineers, 61 (1939), Journal of

Applied Mechanics, pp. A-122--A-l26.
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terms of the neutral axis curvature. Many engineers

evaluate the energy by using the neutral axis curvature and

the external moment M irrespective of the stress distri-

bution. The implication of this practice is illustrated

by the assumed linear and non-linear stress distribution

produced by the same moment M as shown in Figure 2.1. The

angle of relative rotation at the neutral axis will not

be equal in the two cases. Applying the conventional

formulas the bending energy of the segment shown in

Figure 2.1b will be evaluated as M02. The error involved

in evaluating the energy by this approach is enormous.

Hence, it is incorrect to think that the bending energy

can always be computed in terms of neutral axis curvature.

In the beam of variable section, i.e. non-parallel

surfaces, there will be shear stresses even in the case

of pure bending moment, as shown by William R. Osgood.2

Accordingly, there will be shear energy in the pure bending

moment case, which should be taken into account to evaluate

total energy. Its significance will not be considered at

this stage. The 180 degrees wedge analogy discussed above

suggests that there will be shear stresses in the column

zone of the frame structure subJected to pure bending.

Also in beams subJected to variable moment along the span

 

2Ibid., p. A-125.
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there will be shear stresses. Due t6_non-1inearity of

bending stresses in the column zone the shear stresses will

not be distributed in the parabolic shape even when the

cross section is a rectangle. Hence, the shear energy if

taken into account should not be evaluated by the conven-

tional formula 1.2 V2/2GA.

If the stresses are not distributed as assumed in

beam theory, then the total energy at any cross section

can be evaluated by the integration of the strain energy

density along the depth or by the summation of the strain

energy of the small volume elements. The strain energy dU

of the small volume element shown in Figure 2.2 can be

written as follows:

. gm 3 15033:, + '9“! +59 +tx1yxy + '9;sz

+ 2'2! sz )dx.dy.¢lz.

( 2.1 )

'where (x: (y, (2 are the normal Stresses, rxy, Tyz, ZZX

are shear stresses, ck, ey, :2 are unit extensions and

ny’ sz’ yzx are shear strains. By using the stress-

strain relationship the strain energy equation can be

written in terms of stress as follows:

J— r" 2' " -/“(¢'d'+ a—dUr—EzsCx-WWG) ? x y Unix-"962)
‘ .

+2.2 C‘Cx‘y +z;8 + tzxfldx’dY'dz' (2.2)

 

3Chi-Teh Wang, Applied_E1asticity (New York: McGraw-

Hill Book Company, 1953}, p. 37.
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where E is Young's modulus, G is the shear modulus, and

jfl'is Poisson's ratio. A

When the width of the beam is small compared with the

depth, the beam may be regarded as being an example of plane

1;

stress. In such a case the energy of the small segment

per unit width will be reduced to

dugE'i-ECQz-rqz—Zflofx‘y)+2.1‘rxainX-JY- (2.3)

\

It is to be noted that by taking 4% and ‘IRy as zero and

assuming the linear bending stress condition for .a?, the

conventional bending energy formula in terms of moment and

the moment of inertia results from the plane stress formu-

lation after integration over the depth. By the use of the

strain energy formula of the plane stress condition the

variation of the energy in the Joint zone of the frame can

be evaluated provided the actual stress condition can be

determined at various points by some means. Information on

the energy variation in the Joint will be enough to deter-

mine the contribution of the various sections of the column

to the deformation of the rest of the frame. Knowing the

energy at any section in the Joint zone and also the

moment and the shear force, one can evaluate the equivalent

moment of inertia or an equivalent depth. With this equiva- '

lent depth information the conventional formulas can be used to

 

“Ibid., p. 46.
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evaluate the deflection, or the functions related to it,

necessary for the analysis of an indeterminate structure.

It is to be understood that the interpretation in terms of

equivalent depth is a matter of convenience to explain the

behavior in the conventional form.

The essential problem for evaluating the energy by

the elasticity theory reduces to the determination of

stresses in the structure. This can be done experimentally

or theoretically. In either case it would be essential to

investigate the boundary conditions which have to be imposed

in order to produce the desired distortion in the structure.

For the investigation of the interaction Of columns with

beams in the frame structures or specifically for the study

of the energy variation in the internal Joint subJected to

flexural action, it will be enough to study the cross-shaped

structure subJected to flexural action as shown in Figure

2.3. The (x stresses on ends are distributed so as to

produce zero bending moment. The distribution of boundary

stresses a'x, 6;” and txy will be discussed in Chapter

III. Due to the nature of the imposed boundary conditions

as shown in Figure 2.3 the column part of the frame will

act as part of the horizontal beam, 1. e. there would not

be any bending of the center line of the column itself.

Referring to Figure 2.3, it is implied that there will not

be any bending moment on horizontal cross sections of the

column. The difference between the usual knee study which



is more a study of arch action and the study of the Joint

subJected to flexural action should be clearly noted.

Even though the geometric shape of frames in the two studies

appears to be the same the boundary conditions will be

entirely different. The boundary forces shown in Figure

2.3 are the arbitrarily-imposed conditions used in this

study.

In order to determine the state of the stress in an

elastic body by the Theory of Elasticity it is necessary to

solve the equations of equilibrium expressed in terms of

stresses5 together with Beltrami-Michell compatibility

equations6 subJected to proper boundary conditions. The

alternative approach is to solve the equations of equilib-

rium expressed in terms of displacement7 subJect to proper

boundary conditions. Considering the case of plane stress

and the plane strain condition in the X and Y directions

and introducing the Airy's stress function such that the

6'33" 6’ ‘3‘ 2' =-3"i (2.11)
X 5%1' : 7 5;; 3 X7 3x.3y

compatibility equations will be reduced to the biharmonic

 

R

JWang, op. cit., p. 6.

6Ibid., p. 33.

7lbid., p. 34.



equation. This biharmonic equation is written as

4

V96 =0 (2

where ‘fi72 is Laplace's operator. The equations of equi-

)\
n

librium are satisfied identically. Hence, the problem of

determining stresses in the elastic body reduces to finding

the solution of the biharmonic equation satisfying the

boundary conditions of the elastic body.
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CHAPTER III

EXPERIMENTAL ANALYSIS

As discussed in Chapter II, the interaction of the

column with the beam at an internal Joint can be studied

by analyzing the cross-shaped structure. This analysis

requires basically the determination of stress distribution.

This could be done experimentally by measuring strains or

displacements, by determining stresses by optical methods

such as photoelasticity, or theoretically by evaluating

Airy's stress function Z'Or computing displacements u and v.

In either case it is essential to investigate the limit of

the interaction in the cross-shaped Joint, i.e. the point

beyond which the conventional (beam theory) mode of stress

distribution is valid. Hence, the aim of this experiment

is to investigate the limit. As the aim of the experiment

is of qualitative nature, the-photoelastic method has been

selected for the purpose.

Photoelastic Method
 

The photoelastic method was developed by David Brewster

in 1812. He discovered that an optically isotropic trans-

parent solid becomes optically aniSotropic upon faéced de-

.formation. It has been shown that in the plane stress

condition the difference between the principal indices of



refraction is proportional to the difference between the

principal stresses in the deformed material and that the

optical axes of the deformed material coincide with the

principal stress directions. To apply this principle, two

optical systems are used in the photoelastic method. In

one system a circular polariscope with monochromatic light

is used to determine the lines of constant relative retard—

ation, i.e. isochromatic lines, which are the lines of

constant principal stress difference or lines of constant

maximum shear stress in the photoelastic model. The second

system consists of a cross polarizer and analyzer and uses

white light which is suitable for the determination of

isoclinic lines, 1. e. the lines of constant inclination

of principal stresses.

Equipment ~—
 

The optical system known as a photoelastic polariscope

consists of a polarizer, two quarter wave plates, model,

analyzer, and the camera. It also includes an attachment

for loading specimens. The arrangement of all parts has

been standarized and presented in many books.1 In this

study a commercial polariscope, Chapman 5" Photoelastic

Polariscope, as shown in Figure 3.1 is used. The loading

 

1See for example, George Harmor Lee, An Introduction

to Experimental Stresstnalysis (New York: John Wiley and

Sons, Inc., 19557, p. 163.
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frame with the model mounted in it is shown in Figure 3.2.

The loading frame was designed in such a way that the span

of the beam of the cross-shaped frame could be varied.

This feature was kept so as to investigate the effects of

the span length.

Material of the Model
 

For determination of isochromatic fringes of the cross-

shaped model, CR-39 was selected due to the following

favorable properties:

1.

2.

\
n

It has polished surfaces.

It does not develop machining stresses even under

relatively high cutting speeds. Also the machin-

ability is fair.

Aging effect is small.

Elastic properties are good. Modulus of elasticity

is 300,003 psi. Stress-strain curve is linear up

to 3,000 psi. Ultimate strength is 6,000 psi.

Photoelastic constant is 84 psi. per fringe per

inch of thickness. Hence for a 1/4" thick specimen

the first order of the fringe will develop at a

stress of 336 psi. and linearity will hold good

up to a fringe order of 9.

The effect of temperature on physical and optical

properties is very small.
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Model Form
 

The model dimensions are shown in Figure 3.3. As

shown in the figure, the horizontal part will act as the

beam and the vertical portion will act as the column. The

top and bottom parts of the column are unequal for equip-

ment convenience. But as the lengths of the top column and

the bottom column are large compared with the depth of the

beam, the inequality will not affect the experiment. The

small fillets of r = 1/16" were provided to relax the

stress concentration. Dimensions were selected in the model

to make the maximum use of the space and the loading

capacity of the Chapman Polariscope. The loads are applied

through points P, Figure 3.3, by means of a loading frame,

and resisted at points Q. Figure 3.2 is a photograph of

the set-up. It is to be noted that when the applied loads

P are resisted only by loads Q there will not be any shear

forces in the BC portion of the structure and the system

is under pure bending moment in zone BC. When the shear

forces are desired in the system, a pin is introduced in

the hole made in the lower part of the column,which is

rigidly connected to the loading frame. This will produce

an axial force in the column and hence shear forces in

the portion BC of the system.e—The system in such a case

Will not be symmetrical about the horizontal axis due to

unsymmetrical axial forces in the column.



Procedure
 

As discussed previously, for determination of isochro-

matic lines, a circular polariscope is used which contains

a polarizer, analyzer, and two quarter wave (mica) plates.

In the Chapman polariscope all parts are housed in the

optical barrel. As illustrated in Figure 3.1, the optical

barrel is arranged so that the loading frame with model

will be between the mica plates. Spans L1 and L2 are 2.5"

and 1", respectively. In the case of pure bending moment

in portion BC, the load P is 41.25 lbs. A photograph taken

of the isochromatic fringes with this loading condition is

given in Figure 3.4. Span L was varied to investigate the

2

effect of it on the distribution of stresses. It was found

that the use of a span L2 greater than 1" did not change

the mode of stress distribution from the one obtained in

Figure 3.4. In the second case the shear forces were intro-

duced in the portion BC of the system by introducing the

pin in the column so that the applied loads P are resisted

by supporting forces Q and an axial force through the pin.

Spans L1 and Leiwnnakept the same and the load P was 55 lbs.

The photograph of the isochromatic fringes is given in

Figure 3.5.

Discussion and Conclusion
 

In Figure 3.4 for pure bending moment loading, the

order for isochromatic fringes increases linearly from the
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neutral axis at the beam section located 1/4” from the face

of the column, i.e. at a section located away from the

column face a distance equal to half the width of the

column. This means, from the definition of isochromatic

fringes, that (5’1 - 0’2)/2 varies linearly. ( 0’1 and 6’2

are the principal stresses.) At a beam section far away

from the face of the column one cannot expect to find shear

stresses or vertical normal stresses because this portion

will behave like a beam of uniform section under pure

bending moment. Since the isochromatic fringes at the

section 1/4" from the face of the column appear identical

to the ones far away from the face of the column, i.e. to

the case of the uniform beam subJected to pure bending

moment, it is to be concluded that there are no shear

stresses or vertical normal stresses on the section 1/4"

from the face of the column. Hence, 6’1 will be equal to

6:, and 6'2 will be equal to Q. Since the stress 0';

is zero, ary varies linearly, and the stress distribution

on this section is of conventional form. "

In the column zone at the horizontal sections 1/4"

'above or below the faces of the beam the order of isochro-

matic fringes is zero. This means that the section is

Stress free and that the flexural action of the beam is

not carried into the column beyond a section located half

the depth of the beam from the top or bottOm of the beam.
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From the linearity of the bending stresses beyond the

section 1/4" from the face of the column it is deduced that

when a shear force does exist there, then the shear stresses

vary in a parabolic manner. Hence, the isochromatic fringes

in this region should be the same as those of a beam

similarly loaded but of constant cross section (not inter-

rupted by an integrally-attached column). This is verified

by comparing Figure 3.5 with results for the conventional

case as given by Frocht.2 The two agree outside the section

1/4" from the column face. In the lower column the order

of the isochromatic fringes is constant except for some

slight disturbance due to machining stresses. At the cross

.section 1/4" from the face of the Joint it was found that in

the pure bending moment case there were no bending stresses.

It is to be expected there will not be any shear stresses

at any cross section in the column beyond this line. It

means that the horizontal section is a principal plane.

Hence, 0’1 and 5’2 will be equal to a; and 53,. (2

will be zero since 5"), is zero. Therefore, the same order

of the fringe along the horizontal cross section, which

6’1-6’2
.___§____

distributed uniformly.

means that ( ) is constant, implies that (x is

2Max Mark Frocht, Photoelasticity (New York: John

Wiley and Sons, Inc., 1941), p. 148.
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From the above experimental investigation and discus-

sion it is concluded that the interaction of the column

with the beam extends to the vertical cross section half

the width of column from the face of the column, and the

interaction of the beam with the column extends into the

column to the horizontal cross section half the beam depth

from the face of the beam. Hence, the conventional theories

of stress distribution hold beyond this interaction zone.



FIGURE 3.1 Polariscope set-up.
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FIGURE 3.2 Model mounted in loading frame.
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CHAPTER IV

NUMERICAL METHOD

The general solution of the biharmonic differential

equation, as discussed in Chapter II, satisfying the

boundary conditions, is usually quite difficult. Some prob-

lems of practical interest can be solved by an inverse

method, making some assumptions regarding the stress dis-

tribution. This will lead to an expression for Airy's

stress function 0 with some undetermined coefficients.

Another method often used is to assume the stress function

in terms of a series with undetermined coefficients. These

undetermined coefficients are determined from the boundary

conditions of the elastic body, which sometimes can be

expanded in Fourier series.

In the absence of any notion of the stress function,

the solution of the fundamental biharmonic boundary value

problem can be made to depend upon a certain general repre-

sentation of the biharmonic function by means of two

analytic functions of a complex variable.1 The original

presentation of this method was made by E. Goursat in 1898.

 

1I. S. Sokolnikoff, Mathematical Theory of Elasticity

(New York: McGraw-Hill Bock Co.,*Inc., 1956), p. 262.
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While this method will present calculation difficulties for

certain types of boundaries, general formulas have been

written for the case when the boundary of the region is a

circle.2 It is possible to apply the formulas, derived for

the case of a circular region, for any simply-connected

region by introducing the mapping function which maps the

particular region of complex Z-plane conformally onto the

unit circle. An attempt to evaluate the mapping function

for the cross shape is discussed in Appendix A. This method

was abandoned because of convergence difficulties with the

:hfinite series representation of the mapping function.

Because of the difficulty of the analytical solution

for the elasticity problem, approximate numerical methods

were used. The method of finite difference, which was

first applied in elasticity problemsby C. Rung in 1908,

is a numerical method widely used in recent years. The wide

use of this approach is due to the development of computers

for the solution of simultaneous equations and the develop-

ment of the relaxation method, which is used in the absence

of computer facilities. In the method of finite differences

one replaces the partial differential equation and the

equation defining the boundary conditions by finite differ-

ence equations. Then the problem reduces to the solution

of simultaneous linear algebraic equations.

 

2Ibid., p. 145. 3Wang, op. cit., p. 106.



In elasticity problems the boundary conditions are

expressed in terms of either the stresses or the displace-

ments or a combination of both. For the plane stress con-

dition the governing differential equation solved is

‘7“ fl = 0, where Z is Airy's stress function. Hence, it

will be necessary to express the boundary conditions in

terms of Airy's stress function. This can be done by

application of relations of Airy's stress function with

the stresses,“ and the relatidns of the stresses to strains,5

6
and the strains to displacements. The cross-shaped region

will be studied with two loading conditions. In part I of

this chapter the boundary conditions are of such a nature

that the entire structure is under a pure bending moment

condition. In this part there is also given considerable

detail on the numerical procedure. In part II, the boundary

conditions are of such a nature that there will be external

shear forces at any cross section of the beam. For each

loading condition, the cross shape will be analyzed both

with and without fillets at the re-entrant angles. The

pure bending case will be analyzed for two different ratios

of beam depth to column width. In part III, results are

summarized and their interpretation is discussed.

 

“Ibid., p. 43. 51bid., p. 33.

6Ibid., p. 17.
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I. PURE BENDING MOMENT CONDITION

The cross shape to be studied in this case is shown

in Figure 4.1. The clear spans of the beam and the columns

are taken equal to the width of the column inasmuch as it

was concluded in Chapter III that the interaction range

extends, at the most, approximately half the width of the

column into the beam as well as into the column. Hence,

on the boundary AB of the cross shape subJected to pure

bending moment, the bending stress will vary linearly.

Also the ratio of the beam depth to the column width will

affect the interaction. For thewpresent the ratio is taken

as unity, and the effect of different ratios will be dis-

cussed later on. In many structures, specifically concrete

structures, there will be construction fillets at the re-

entrant angles formed by the Junction of the beam and the

column. These construction fillets will relieve the stress

concentrations at the re-entrant angles, but will not have

any radical effect upon the distribution of the stresses in

the beam or the column far from the Junction. The cross

shape having the ratio of beam depth to column width as

one and the ratio of the radius of the fillet to the half

depth of the beam as 1/3 has been analyzed at this point.

The effect of the removal of the fillet on the interaction

will be studied later on.



AL Cross Shape Having 96 = 2.0, h/b = 3.0, d/b = 1.0 and

r/d = 1/3

Boundary conditions. Because of the loading conditions,
 

the Airy's stress function 2 in the cross shape is anti—

symmetrical about the Y-axis and symmetrical about the

.X—axis. Therefore, it will only be necessary to study one-

quarter of the entire region as shown in Figure 4.1b. The

region has been divided as shown in the figure for setting

up the finite difference equations. The boundary conditions

can be summarized as follows:

On 0A, :3 = 0.

0n BCDEF the normal stress and the shear stresses are zero.

On such a traction-free boundary, the partial derivatives

g; and 2% of the stress function are constant. Since

the stress function is in any case only determined up to an

arbitrary additional linear function of x and y, it was

possible without loss of generality to set the boundary

conditions in such a way that 22 = gf = 0 on

13X Y

BCDEF.7 Then replacing the stresses by their expressions

 

7S. Timoshenko and J. N. Goodier Theory of Elasticity

(New York: McGraw-Hill Book Co., 1951), pp. nan-455.
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in terms of Airy's stress function by Equation (2.4) and

maintaining the continuity of all functions, such as Airy‘s

function and its derivatives, on the boundary ABCDEF, the

boundary condition can be reduced as follows:

On AB, Z = K1 x3/6 ‘Kl x d2/2, Normal derivative is

Zero.

0n BCDEF O = -Kld3/3, Normal derivative is zero.

0n 0A,‘¢ = C)

0n 0F, Normal derivative is zero.

The implication of zero normal derivative in terms of finite

difference equations can be explained by the following

example:

25!) :=(3

3‘1 "5

(¢..4-¢..z)/2-Av =0

-~ ¢4345='4EJL. (4 1)

The subscript 6,3 used here identifies the node which

is located at X = 6 and Y = 3 mesh units. The number before

the comma represents the value of X and the number after the

comma represents the value of Y. The same notation is used

through the text.

From Figure 4.1b it can be seen that the 0 value of

point 4,4 can be evaluated by any of the normal derivative

conditions at 3,4; 4,3 and n. In this solution it has been



  

J
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evaluated by taking the average of the slope written in

terms of forward difference and backward difference at point

n and equating this average to zero, which is the normal

derivative condition at n.

Biharmonic differential equation. The finite differ-
 

ence equation of the Biharmonic differential equation for

a typical interior node 2,2 as shown in Figure 4.1b can be

written as follows:

( var!) 2,2 = a

[20 Gé,2 - 8 (13,2 + 12,3 + 11,2 + 12,1)

+ 2 (13,3 + 73,1 + Al,l + 21,3)

+ (111,2 + 532,11 + 130,2 + 12,9.” =13 (4.23

Similar equations can be set up for each interior node of

the region shown in Figure 4.1b. At first these equations

will have many unknowns of the nodes which are outside the

region. By the application of the boundary conditions

discussed above and the known functional values on the

boundary all equations can be stated in terms of unknown

functions at interior nodes only. Hence, there will be 37

equations with 37 unknowns. These equations have been

solved by using the L2 program9 in the MISTIC digital

 

8Wang, op. cit., p. 111.

9Mistic Library, L2 Program (East Lansing: Computer

Laboratory, Michigan StateFUhiversity, 1958).
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<:omputer at Michigan State University. The results of

‘bhese equations are given in Table 4.1.

Bending stress and bending moment. From the O values

the bending stress 6:, at any point can be calculated by

 

its relationship expressed in the finite difference form.10

a

634;. (6’) 1: (E221)

y 2,: 3’“ 2|
I

= (Tm '2¢z.i + ¢I,I)

CAXY' (4.3)

'Ihe results for the bending stress are recorded in Table 4.2.

iIts distribution on each section is given in graphical form

111 Figure 4.2. From the bending stress distribution the

loending moment at any section can be calculated. Since

tune stress distribution is available in graphical form,

tnae bending moment has been calculated by the graphical

nuethod. The X-axis of the stress distribution curves in

Ifiigure 4.2 has been divided intdwtenths of an inch. The

benading moment at any section was calculated by the summation

OI? products of the stress area of the one-tenth inch

OIRiinate by the moment arm measured from the Y-axis to the

‘mixidle of the stress segment. The results for the resisting

loWang, op. cit., p. 110.



bending moments at various cross sections calculated by the

described method are given in Table 4.3. Also the applied

moments are given. The percentage errors compared with

applied moment at various sections have been evaluated.

From Table 4.3 it appears that the errors at the

face of the column and at the section where the fillet

starts are the greatest. This indicates that there is con-

siderable error in the stress distribution in the vicinity

of the Junction of the beam and the column. Due to the

sudden change in the cross section at the Junction the stress

function will vary sharply. Hence, in order to determine

the stress function more precisely it will be necessary to

have a finer network for setting up the finite difference

equations. It is to be expected that the stresses calculated

will be considerably in error only in the vicinity of the

fillet. Hence, the stress distribution obtained using a

finer network throughout the region would not be much dif-

ferent from the one obtained by finer grading only in the

vicinity of the fillet.

Graded net. The solution of simultaneous equations
 

is done by MISTIC computer L2 program which is limited to

a.maximum of 39 equations. The finer grading around the

fillet for the cross shape shown in Figure 4.1b would

exceed the limit for MISTIC. Consequently it was necessary

to make some modifications in the dimensions of the cross



41

shape shown in Figure 4.1. From Figure 4.2 it seems that

at beam sections #6, #7, and #8 the dr& stress distribu-

tion is very close to a straight line. Also in the column

beyond the cross section parallel to Y-axis at 6 there are

practically no stresses. This agrees with the photoelastic

study in Chapter III. Hence, it will be appropriate to

take the cross shape as shown in Figure 4.3 for the inter-

action study. The graded net around the fillet is shown

in Figure 4.3b.. While setting up the finite difference

Equation like Equation 4.2 for points such as 3,23,ll there

will be many nodes like 34,2 which are not considered as

unknowns. Hence, it will be necessary either to guess the

value of such nodes or relate such nodes with neighboring

unknown nodes. These means are possible only if some

assumption is made. This difficulty can be avoided by re-

placing the operator ‘77 by ( <72)( <72) and setting up

the finite difference operators separately for each ‘72.

The net size used for setting up the ‘72 operators need

not be the same for different nodes or even for the two

successive operators at the same node. This procedure was

 

' llNode 3,23 is identified as the one which is located

at X = 3 units and Y = 2.5 units, i.e. located halfway

'between Y = 2 and Y = 3 units. The same notation applies

'when two numbers are before the comma. This notation is

14sed throughout the text to identify the nodes which are

between regular nodes.
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1

first used by Allen and Dennis. 2 As an example the finite

difference equation for point 23,23 shown in Figure 4.3b

has been derived in Appendix B and is written as follows:

3.2 A2323 ' 22 533,3 ' 11 23,2 ' 10 82,2 ‘ 11 $523

+ 4 3334.3 + L‘ 553.23 + 4 7123.3 + 4 7(3.34 + 74,2 + 83.1 + 82.1

+ fil,2 + ¢1,3 + fie,“ = D
(14.4)

In a similar way the finite difference equation can be set

up at each point where Equation 4.2 is not applicable. The

boundary condition and its implication in terms of finite

difference form is the same as that of the ungraded net

except for point 34,34 which is evaluated in Appendix B.

The finite difference equations for the graded region shown

in Figure 4.3b were solved by the MISTIC computer. The

values of the 0 obtained are given in Table 4.4.

From the stress function values the stresses were

calculated by the finite difference Equation 4.3 and from

this information the bending moments at various cross sec-

tions were calculated by a graphical method. The results

are given in Table 4.6.

 

120. N. De. 0. Allen and s. c. R. Dennis, "Graded

Nets in Harmonic and Biharmonic Relaxation," Quart. Journal

IMech. and Applied Maths., Vol. IV, Pt. 4 (1951), pp. 439-

443.
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Effect of graded net on bending moments. With the

understanding that the distribution of the stresses in the

region shown in Figure 4.3b will not be materially differ-

ent from that of the region shown in Figure 4.1b the bending

moment evaluations of Tables 4.3 and 4.6 can be compared to

study the effect of the graded net. At beam sections #5,

#6, and #7 the error has been increased at the most by

0.30%. At beam sections #3 and #4 the error is reduced by

5.49% and 10.20%, respectively. At beam section #2 the

error is increased by 0.78%. The slight increase or de-

crease in the percentage error at sections #2, #5, #6, and

#7 from Table 4.3 to Table 4.6 is not significant. The

bending moments were calculated by a graphical method in

which the stress values are read from the graph. Hence,

any slight errors in the stresses when multiplied by the

lever arm for evaluation of the moment may be responsible,

but they are not significant. But from comparison of the

results at sections #3 and #4 it can be concluded that the

graded net improves the results considerably.

Higher order differences. Further improvement can be
 

made in the finite difference approximation by taking a

finer net. This will increase the number of simultaneous

equations. An alternative approach in which higher order

finite difference approximation formulas are used was
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13 The finite difference equation, set upsuggested by Fox.

by considering the higher order finite difference approxi-

mation for the biharmonic equation could be used for

evaluation of stress functions. This would involve consid-

erable labor in setting up the equations. In general, by

using the standard first order difference formulas, the

accuracy in the stress function obtained is always better

than in the derivatives of the function. Hence, even if

the stress functions are obtained by standard first order

formulas, the improvement in the results will be considerable

with little extra labor if the derivatives are calculated

by higher order differences and used for evaluation of

stress.

For bending stress 03, thefinite difference formula

using the higher order difference is as follows:

e°g° (7753“ ==(%;EiZzl

.. l 4 c

-57)‘[V272J "Li V424 +35 v¢3d ''''''' (4 . 5)

The first term of the formula is the contribution of the

standard first order difference application. The first

 

l3L. Fox, "Some improvements in the use of relaxation

methods for the solution of ordinary and partial differen-
H

tial Equations Proceedings, Royal Society (London), A,

Vol. 190 (19473, pp. 31-59.
 

l”Wang, op. cit., p. 125.
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factor has already been evaluated in Table 4.5. ’The second

term is evaluated separately using the stress functions

given in Table 4.4. Only the first two terms are taken in

the formula (4.5) as the terms beyond this will be insig-

nificant. The results of the bending stress evaluated by

the formula (4.5) are given in Table 4.7. These results

have been plotted in Figure 4.4. The bending moments have

been calculated graphically using Figure 4.4. The compar-

ison of the results is given in Table 4.8.

The effect of application of higher order difference

in the stress distribution can be studied by looking into

results of the percentage error in the calculated resisting

moments given in Tables 4.6 and 4.8. There is practically

no improvement in the result at beam section #3. Inside

the column, 1. e. at beam sections #0, #1, #2 the errors

have been reduced almost to zero. The change in the errors

at sections #4, #5, #6, and #7 is not important as far as

the interaction of the column and beam is concerned. Looking

into the values of the stresses in Table 4.5 and Table 4.7

it can be summarized that there is significant difference

only at the node point of the maximum stress on a section.

Inside the column zone there is quite a difference percen-

tage-wise at the nodes close to the top boundary, but as

far as the area of the stress diagram is concerned this

will not be of any importance. Hence, in conclusion the

only way to improve the error in the stresses near the
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fillet is to have a very fine net around the fillet. This

vvill increase considerably the number of equations. As the

problem involves the Joint region as a whole and the error

in the stresses near the fillet will not greatly change the

results, it will not be Justifiable to Spend more time for

the solution of more simultaneous equations. In the subse-

quent calculations the values cry are calculated by higher

order differences, while the normal stress 07x and the

shearing stress 2." are calculated by the standard first
xy

order difference .

 

 

 

Normal stress (X and shearing stress rxv' The

finite difference formulas for (X and rxy stresses for

the typical node 2,2 as shown in Figure 4.30 can be written

as follows:15’l6

at _. ._
(“702,2 -(§1)2.2 "' (¢z.3 2%.: + ¢2.!)

(4w)Z

a.

' 3*” 2.2 4.AX.AY. (“-6)

Using the Formula 4.6 the (x and rxy stresses are cal-

Culated with the help of the stre—SS function ,1 given in

Table 4.4. The results of these are given in Table 4.9.

 

 

151bid., p. 110.

16F. 8. Shaw, An Introduction to Relaxation Methods

(New York: Dover Publications, Inc., 19537, p. 35.
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Energ . Knowing the stress distribution at various

sections the energy can be evaluated by the formula dis-

cussed in Chapter II. The energy formula for a segment of

unit length in the Y-direction is

u =fE.zLE(g;f +672—2/nqo'y) +5'z-r3'yjdx. (4.7)

'Ifiae integral along the entire depth in the X-direction can

‘tme evaluated by summation of the energy of small segments

irl the X-direction or by integration of the energy function

irl X—direction. As the stress information is available in

ritunerical form it will be convenient to evaluate the energy

layr a graphical method. For this purpose gr2, cri, -t§y

snare plotted, and the summation of the area between each

CLLrve and X-axis was carried out with a Planimeter. Figure

4m.5 shows, for example, the curves of crg at sections #0,

1%1., #2, #3 and the areas Obtained. With the application

CDf‘ this area information to the Formula 4.7 the energy can

‘b63 evaluated. The results of the computation are shown in

Tkihde 4.10. The value of Poissons ratio ,u is used as 0.30

‘tkrroughout the text. The effect of ,4; on equivalent depth

W1.211 be discussed later. Knowing the energy the equivalent

depth can be calculated.

Equivalent depth. The equivalent depth at any section
 

155 defined as the one which, when used in the evaluation of

tfile energy by the conventional beam theory formula will give



48

the actual energy. This can be illustrated in the following

manner.

- In the conventional energy formula, if the segment of

the structure is under pure bending moment M, then the

energy of the segment per unit length is given by M2/2EI.

The energy of the segment of rectangular cross section of

unit length and of unit width and depth D will be owe/393.

According to the definition of equivalent depth, the

following equation can be written for any section,

 

2

9-4—- = true energy at any section (Table 4.10),

Ed;

2

6M

e.g. for section #3, Ed? = 0.403109 Klgd3

e 2E

Note that de is the equivalent depth at the section while

d is the half depth of the actual beam. M is the bending

moment at the section. In this case M = 0.66667 Kld3 and

the equation yields

de3 = 5.333313
0.403139

Let R represent the ratio of equivalent depth to actual

 

depth,

R = 32 = Equivalent depth

2d Depth of beam

For section #3, R3: M = 1.6538.
0 . 403109
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The results for R at various sections are given in Table

4. 11. The graphical representation of the equivalent depth

is given in Figure 4.6. The results indicate that there is

a gradual increase in equivalent depth or moment of inertia

and at the face the fillet is not fully effective as far as

the energy evaluation by conventional beam theory is con-

cerned. The equivalent depth, from Section #4 onwards,

approaches 1.0 as expected.

B. Equivalent Depth Related to Ratio of d/b of Cross Shape

As mentioned earlier the ratio of the beam depth to

the column width will affect the interaction of the column

and the beam. In other words, the equivalent depth diagram

will be affected by the ratio d/b. This can be viewed from

two angles: (1) the effect of the ratio on the stress dis-

tribution curve at the face of the column, and (2) the

effect of the ratio on the stress distribution inside the

column even though the stress distribution on the face of

the column is the same. The stress distribution on the

face of the column will affect the equivalent depth at the

face and also inside the column where the stress distribu-

tion is not that of the conventional theory even though

the stress distribution on the face is linear. At this

Stage the primary interest will be in studying the effect

of the ratio on the equivalent depth at the face of the

CTOILumn. How the stress distribution curve on the face of



true column will affect the equivalent depth inside the column

vmill.be discussed later. The stress distribution on the

fkace depends upon the intensity of stress concentration near

tile corner. The effect of dimension changes on the stress

ccancentration has been studied by several investigators and

vvill be referred to below. The second effect will be

Eitudied in Chapter V under the reasonable assumption that

fkor a given applied moment and beam depth the variations in

fshe other dimensions which do not change the stress concen-

txration factor also leave unchanged the stress distribution

can the face of the column.

Stress concentration. In the neighborhood of the

Joint the stress concentration will be a function of the

:radius of the fillet, the clear height of the column, the

clear span length of the beam, the depth of the beam, and

the column width. According to the photoelasticity study

:in Chapter III, the stress distribution in the beam at a dis-

‘tance from the face of the column greater than half the

lvidth of the column coincides with the elementary beam

‘theory distribution. This indicates that the same stress

ciistribution in and around the Joint would be obtained for

zany clear span length of the beam greater than half the

column width. Hence, it is concluded that the stress con—

centration factor will be independent of the clear span

length when the ratio of clear span length to half the
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(Malumn width exceedsOne, which covers all practical cases.

iLt has been shown that with a given ratio of beam depth to

column width, when the ratio of radius of fillet to the

depth of the beam is greater than 0.10, i.e. r/d >0..20,

the stress concentration factor is independent of the ratio

of‘clear height of the column to the radius of the fillet.l7

'Phis covers the case analyzed in the previous pages and also

all practical cases. Hence, for practical purposes it can

be concluded that the stress concentration factor is inde-

pendent of the clear height of the column and the ratio of

the height of the column to the radius of the fillet. So

for a given r/d ratio the only parameter affecting the

stress concentration factor is the ratio, d/b, of the depth

of the beam to column width. The following paragraph will

show that the stress concentration factor is independent

of d/b when this ratio is less than about 0.30 for r/d = 1/3.

In most cases of frame structures with short beams, this

condition is not satisfied and it is necessary to study the

effect of varying d/b.

The ratio d/b is equal to d/h - h/b where 2h is the

total height of the column. In the range where the stress

concentration factor is independent of d/h and h/b, it will

 

l7S. Timoshenko, Strength of Materials, Part II (New

York: D. Van Nostrand Co., Inc., 1956), p. 327.
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be: independent of d/b. It has been shown18 that for d/h =

l¢/2 and h/b smaller than 1/2, the stress concentration is

ilidependent of h/b for values of r/d ranging from 0.30 to

22.0. The same investigation19 showed that the stress con-

cuentration factor is almost independent of d/h (within 6%)

vnqen this ratio is smaller than 3/5 and h/b is smaller

ishan 1/2 with r/d varying from 0:3 to 2.0. Hence, for d/h

(equal to or smaller than 3/5 and h/b equal to or smaller

'than 1/2, the stress concentration factor is independent

of'd/b. Since in all cases of practical interest d/h is

(equal to or smaller than 3/5, the stress concentration

:factor is independent of d/b when d/b is smaller than 3/10.

For r/d = 1/3 and d/h = 3/7, the stress concentration

:factors for d/b = 1.0, 1.5 and 2.0 are 1.54, 1.50 and 1.47,

respectively . 20 The equivalent depth analysis for the case

c>f d/b = 1.0 is given in part IA. To show how the stress

cxoncentration factor affects the equivalent depth, another

<2ase is analyzed with d/b = 1.5.

 

18J. B. Hartman and M. M. Leven, "Factors of stress.

ccnacentration for the bending case of fillets in flat bars

arni shafts with central enlarged section," Proceedings of

tfue Society for Experimental Stress Analysis, IX, No. 1

(1951h p.57.

 

 

19Ibid., p. 58.

20R. E. Peterson, Stress Concentration Design Factors

(IVEew York: John Wiley and Sons, Inc., 19557, p. 71.

 



Cross shape having the ratio L/b = 2.5, h/b = 3.5,

d/fla = 1.5, and r/d = 1/3. The cross shape shown in Figure

11.7 was analyzed. The boundary conditions are the same as

cxf the case shown in Figure 4.3. The same procedure was

Ikallowed for the analysis. The resulting stress functions

auad stresses have been summarized in Tables 4.12 and 4.13.

13y the application of the numerical procedure explained

”befOre, the energy at various sections is calculated. Com-

;nitations are given in Table 4.14. The equivalent depth

information is in Table 4.15 and is presented graphically

in.Figure 4.8. Comparing the ratio at the face of the

(column of Table 4.15 (Section #2) to the one of Table 4.11

(Section #3), it is found that R has decreased from 1.1826

tn: 1.1388. It indicates that as d/b increases the R—value

(decreases. Interpretation of this fact will be discussed

111 Part III of this chapter.

Also a comparison of Figure 4.8 with Figure 4.6 indi-

<2ates that the equivalent depth increases more slowly

iiiside the column for the case of d/b = 1.5 than the case

cxf d/b = 1.0. It means that the ratio of d/b affects the

Sinape of the curve inside the column, i.e. even for the

ESame d and the same mode of stress distribution on the face

<DI’ the column, the alteration in the width of column will

Change the mode of distribution inside the column. This

143 the second effect as mentioned earlier in Part 1B of this
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chapter. The effect of various d/b ratios will be discussed

in Chapter V.

0. Cross Shape Having L/b = 1.333, h/b = 2.333, de = 1.0,

and r/d = O
 

To study the effect of the removal of the fillet, an

analysis was made of the cross shape as shown in Figure 4.3

with the fillet replaced by a corner. From the similarity

of the boundary conditions it could be noted that the

equations set up for the cross shape with fillet shown in

Figure 4.3 can be used for the cross shape with a square

corner. Due to elimination of the fillet, the 0 values of

the nodes 34,3; 3,3; and 3,34 are knOwn now. Also the

expression for 34,34 in terms of internal nodes will be

changed as the boundary conditions which relate 34,34 are

changed. Hence, after making these alterations the equations

were solved. The results for the stress functions are given

in Table 4.16. The resulting stresses, energy, and equiv-

alent depth information are given in Tables 4.17, 4.18, and

4.19, respectively. The equivalent depth is presented

graphically in Figure 4.9.

Calculation of the equivalent depth was carried out

only as far as section #4 because Figure 4.6 indicates that,

from section #4 on, the equivalent depth does not differ

significantly from the actual depth. Comparison of results

for equivalent depth from Table 4.19 with Table 4.11



indicates that the equivalent depth at the face has de-

creased. The reason is that in the case of a square corner

the contact area at the face is smaller than the contact

area in the case of fillet. Hence, for the same external

moment at the section, the area between the graph of (y?

and the X-axis will be greater, which will yield more energy

and consequently less equivalent depth. The stress distri-

bution of' legron the face of the column in the case with

a fillet is flatter than in the case without a fillet, and

this effect will be carried inside the column. The flatter

the curve of the stress cry is, the less will be the energy.

Hence, the energy due to ¢r& at any section in the case

of the fillet is less compared with the energy at the cor-

responding section in the case of the square corner. This

indicates why the equivalent depth in the case of the fillet

is greater for any section than it is at the same section

in the square corner case.

D. Effect of Poisson's Ratio on Equivalent Depth
 

Poisson's ratio depends upon the kind of material.

For steel it is between 1/2 and 1/3. For concrete it lies

between 0.10 and 0.30. The most common value for concrete

is between 0.15 to 0.20. As the elastic energy depends

upon Poisson's ratio, another analysis is made with the

value of Poisson's ratio of 0.15. The calculations are

carried out with the information from Table 4.10. The



results are tabulated in Table 4.20. Comparison of equiva-

lent depth of Table 4.20 with that of Table 4.11 indicates

that the equivalent depth has increased inside the column

by decreasing the value of Poisson‘s ratio. But this

change is not significant Compared with the value of the

equivalent depth. Hence, for the pure bending case it is

concluded that the equivalent depth is not sensitive to

variations in Poisson‘s ratio.

II. VARIABLE BENDING MOMENT CONDITION

(SHEAR-LOADING CASE)

A. Cross Shape Having L/b = 1.333, h/b = 2,333, d/b = 1.0

and r/d = 1/3

The cross shape shown in Figure 4.3 is taken for this

 

analysis. As it was concluded that the grading shown in

Figure 4.3 gives good results, the same grading is used in

this case. According to the conclusion regarding the extent

of the interaction zone drawn from the photoelasticity

study, the conventional beam theory stress distributions

will act on the boundaries of the cross shape shown in

Figure 4.3. The boundary forces are shown in Figure 4.10.

Boundary-conditions. Because of the loading condi-
 

tions, the Airy's stress function 0 in the cross shape is

anti-symmetrical about the Y-axis and symmetrical about

the X-axis. Therefore, only one-quarter of the region
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shown in Figure 4.10 has been analyzed. All grading and

notations are as in Figure 4.3b. As all the boundary

forces will be distributed in the conventional beam theory

form, the boundary condition can be summarized as follows:

_ 2 2 . _
0n AB, rxy—‘Kg (d -x ), a' -0

0n BCDE, Normal and shear stresses are zero.

On EF, (X = 2K2d2/3; z-Xy = 0

0n 0A, 6;, = 0

0n OF, th = 0

where K2 is a constant. These boundary conditions can be

expressed in terms of Airy's stress function as follows:

On. AB, = 0; 22: K (d2 - 3/)
8 3y 2 X X 3

On BC, 2 = 2/3(K2d3y) - 14/9 (K260; g2
x

On CD, a = -2/9 (Kedz‘l) Sin (x, r) - 2/9((Kgdu);

22: 0; __ =(2/3(K2.d3)

z i av

0n DE, 0 =- -8/9 (K2du); 25E: 2/3((K2d3 )

3V

2 2 4
On EF, $21 = 1/3 (K2d y ) - 11/9 (K2d ); §= 0

where the angle (x,r) is the‘angle of inclination of the

fillet radius drawn to the point in question measured from

the X direction. All these boundary conditions are trans-

formed into the finite difference form by the same method

as in the case of pure bending moment with graded net.



Stress function 1 and“stresses. The finite difference
 

equation of the biharmonic differential equation was set up

for all interior nodes, and by use of the above boundary

conditions the equations were transformed to contain only

unknowns at interior nodes. These equations were solved by

the L2 Program in the MISTIC computer. The results are

given in Table 4.21. From the 0 values the stresses 63,

53v. 'Zky are calculated by using the finite difference

forms. Results are recorded in Table 4.22. From the stress

values, resisting moments and forces My, VX, and Nx were

calculated graphically at various sections; they are com-

pared in Table 4.23 with the values of M Vx: and Nx cal-y,

culated by statics from the applied loads. The comparison

shows that results are in fair agreement except for VX at

section #4. This discrepancy may be due to an incorrect

value of stress 'Zky at 3,4, since the value given in

Table 4.22 is inconsistent with the boundary conditions.

But the error in. 'Zky,at node 3,4 and other evident errors

in cry and 2;”, at 4,3 will not significantly affect the

accuracy of the energy study inside the Joint. The errors

in maximum stress values at any section or errors in boundary

stress values will not introduce significant errors into

the energy calculation, because when the square of the

stress is plotted as in Figure 4.5 the area change caused

by the error in the stresses is very small compared with the

total area between the curve and X-axis.
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Energy and equivalent depth. The energy at various
 

sections has been calculated from the results of the stress

distribution by the formula and the method discussed before.

The results are tabulated in Table 4.24. In the case Of

shear-loading also, the equivalent depth is defined as

before, i.e. the one which if used in the conventional beam

theOry energy formula will give the true energy at the sec-

tion. For a beam of uniform section subJected to variable

moment the energy per unit length is written as,

2 2 .

M / 2EI + 1.2 v /2GA.

where M and V are bending moment and shear force at the

section, I and A are moment Of inertia and area of the

cross section, and G is the shear modulus. According to

the definition of equivalent depth, for a rectangular cross

section,

2

6M / Ed: + 1.2 V2 /2Gde = True energy at the section,

e.g. for section 3,

6M2/ Ed; + 1.2 V2 /2Gde 5.809534 K: d5/2E (from

'Table

4.24)

From the known M and V at aEy section, the ratio of equiva-

lent depth de to the depth 2d of the beam has been calcu-

lated and recorded in Table 4.25 and presented graphically

in Figure 4.11. Comparison of Figure 4.11 with Figure 4.6

indicates that equivalent depth at the face is smaller in
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the shear-loading case than in the pure bending moment case,

but that the equivalent depth increases more rapidly with

distance inside the column than it does in the pure bending

.case so that the maximum attained is greater in the shear-

loading case by about 15%. Hence, it can be concluded that

the shear energy due to shear force is dissipated more

rapidly than the bending energy. As the bending energy in

the shear-loading case depends upon the span length of the

beam, the equivalent depth will be affected by it. This

phase will be discussed in Part III and Chapter V.

B. Cross Shape Having L/b = 1.333, h/b = 2.333, d/b = 1.0,
 

and T/d = O
 

The fillet was removed to study the effect of the

fillet on the equivalent depth. The boundary conditions in

this case are identical to those of Figure 4.10. Following

the same approach, 0 functions at all interior nodes have

been evaluated and are given in Table 4.26. Stresses,

energy, and equivalent depth are given in Tables 4.27, 4.28,

and 4.29. The equivalent depth has been plotted in Figure

4.12. Comparison of results of Table 4.29 with 4.25 indi-

cates that the equivalent depth at a section is smaller in

case of a square corner than in the case with a fillet.

This can be explained with the same reasoning as in the

case of pure bending moment (Part I, C).
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C. Effect of Poisson's Ratio on Equivalent Depth
 

It was concluded in the case of the pure bending

moment that variations in Poisson's ratio do not affect

greatly the equivalent depth. This was due to the fact

that in that case elastic energy was principally contri—

buted by bending stresses. In the case of shear-loading,

the shear energy will be a significant part of the total

energy. Hence, it was decided to analyze the case of shear—

loading for equivalent depth with Poisson's ratio as 0.15.

The calculations are carried out with the information of

Table 4.24. The results of the equivalent depth are

recorded in Table 4.30. Comparison of Table 4.30 with

Table 4.25 indicates that the noticable differences are

at beam sections #4“ #3,#2, and #1. But these differences

are not significant compared with the equivalent depth.

The change in POiSSOH‘S ratio also affects, in approxié

mately the same degree, the evaluation of the energy by

the conventional beam formula. Hence, it is concluded

that for all practical purposes the exact value of Poisson's

ratio is unimportant for calculation of the equivalent

depth in the case of shear-loading also.

111. INTERPRETATION OF RESULTS

A. Equivalent Depth Ratio R at the Face of the Column'
 

Pure bending case. It was concluded in Part I--B that
 

the stress concentration factor depends on d/b when d/b is
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greater than 0.30 for ratio r/d = 1/3 and h/d greater than

5/3. For investigation of the effect of different stress

concentration factors on R (the ratio of equivalent depth

to the depth of beam at the face of column) at the face,

two cases Of d/b were analyzed in Part I. The value of

R at the face of the column with r/d = 1/3 and d/b = 1.0

was found to be 1.1826 (Table 4.1l)compared with 1.1388

(Table 4.15) for d/b equal to 1.5. This decrease in R at

the face can be attributed directly to the stress concen-

tration factor which is decreased as mentioned earlier.

Looking at the computation of energy in Tables 4.10 and

4.14 for section #3 and section #2 (vertical sections at

the face) or #4 and #3, it can be concluded that the energy

due to the bending stress 0’y is most of the total energy.

So for analysis of the stress concentration effect, it

can be considered that the equivalent depth ratio R is a

function of the stress <f§ alone. With this in mind, the

a’y stresses are examined in both cases. The stress con-

centration factor at section #3 for d/b = 1.5 is 1.3804

(Table 4.13) compared with 1.4933 at section #4 for d/b =

1.0 (Table 4.7). The effect of stress concentration on

the equivalent depth may be seen from the following consid-

eration. The effect of different stress concentration

factors on the distribution of the stress 03, with the

same resultant moment at the section is shown qualitatively

in Figure 4.13. It can be shown that the area between the
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(3,2 curve and the X-axis decreases as the stress concen-

‘tration factor increases. Since the equivalent depth is a

function primarily of the energy due to a?” the equiva-

lent depth ratio R will increase as the stress concentration

factor is increased. Hence, if d/b is increased, the ratio

13 will decrease.

Two different values of d/b have been considered here

ggiving values of R equal to 1.1826 and 1.1388. It is

rwacommended that for all values of d/b less than 2.0, and

Iy/d equal to 1/3, the value of R be taken as 1.16.

In the case of the cross-shaped Joint without fillets,

i..e., r/d = 0, theoretically there will be stresses of

iilfinite magnitude at the re-entrant angle. This fact has

ruat been observed in the calculated results because of the

Ilse cfi‘the finite difference method. But this will not

HEU<€ any significant error in the application of the results

inasmuch as the practical limit for 0:, is determined by

true strength of the structural material and this strength

is far from infinite. For the case r/d = 0, no calculations

kmrve been made except for d/b = 1. It seems reasonable to

asssume that the dependence of R on d/b is no greater in the

Cause of r/d = 0 than it was for r/d = 1/3, namely, a vari-

aixion of about 4% for d/b less than 2.0.

Summarizing the results of R for the two cases, one

1W1th.r/d = 0 and another with r/d = 1/3, it is concluded
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that the value of R for any value of d/b smaller than 2.0

and r/d between 0 and 1/3 will lie between about 1.10 and

1.16.

Variable bending moment case. In the case of shear-

loading the ratio R at the face of the column for the Joint

with the fillet is 1.0689 (Table 4.25) compared with 1.1826

(Table 4.11) for the case of pure bending. As the span

of the beam increases conditions at the Joint approach the

pure bending state as far as the total energy evaluation

is concerned. That is, the shear energy due to shear force

becomes less and less important compared with the bending

energy. The same effect will be observed inside the Joint,

which will be studied in Chapter V. If one desires to

obtain the ratio R at the face for different span lengths

of the beam, 1. e. L/d greater than 1.3333 with available

calculation information it can be done by superimposing

the results. In the cross shape of Figure 4.14, L/d is

greater than 1.3333 and the height of the column is such

that h/d is 2.3333. The stresses in the shaded area can

be determined by analyzing the shaded cross'shape. This

can be done by superimposing the stress system due to

IVIOrnent M = VL3 (calculated with the use of pure bending

moment stress information) on the stress system due to

Shear force on section AB. After superposition of the

StI‘esses, the energy can be evaluated and hence the ratio



R at the face. A similar approach could be followed for

the Joint without fillets and the ratio R which will vary

from 0.9242 (Table 4.29) to 1.1010 (Table 4.19) for various

span lengths can be determined.

In practice there will not be any cases of pure

bending moment. Of course, the Joint with a very long

beam will approximate the pure bending moment case. But

the determination of equivalent depth is important only

for short spans inasmuch as the contribution of the Joint

to the total behavior of the beam becomes less important

as spans increase. Hence, one will be interested in the

equivalent depth information for the shear case. In this

study actual values of R at the face of column for various

values of L/d are not determined.

Also when d/b is greater than 1.0, the value of R

will decrease due to reasons discussed for the pure bending

moment case. In the case of pure bending moment this

decrease was about 5%. With the thinking that the decrease

'11’1 the shear case will not be too far from 5%, an analysis

\
H

was not made in the shear case for d/b = l. Summarizing

the results of two cases of shear loading, one with r/d = O

and another with r/d = 1/3, the value of R for L/d = 1.3333

and r/d between 0 and 1/3 will lie between 0.9242 and

1.0689.



1%. Contribution of Shear Stresses to the Total Energy

In most problems the shear energy is neglected. This

cannot be done when the spans are small. From Table 4.24

:it can be seen that at the face of the column the shear

(energy is even greater than the bending energy, and also

iiiside the Joint the contribution is significant. The same

fYact is observed in the results of Table 4.28. In short

txeams the assumption of infinite moment of inertia implies

zearo bending energy, which is not true as can be seen from

tflae results. By taking infinite moment of inertia in the

J<>int and also neglecting the shear energy two errors will

hue introduced, which do not compensate in any way. In the

<2aise of the Joint subJected topure bending moment there

adre shear stresses. The energy due to these shear stresses

iriside the Joint is in some cases as high as 25% of the

ccarresponding bending energy. In beam theory there is no

vvaqy to find these shear stresses. In this case it was

iricrluded because it was significant.

g;;___Stresses on the Face of the Column

The bending stress at the face of a column at a Joint

W1thsquare corners subJected to pure bending moment (beam

Seacrtion #3 in Table 4.17) is plotted in Figure 4.15. The

Stlrwess concentration factor is obviously not correct, since

15b should be infinity. But in studying the general mode

01‘ stxess distribution, it is to be noted that the stress
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distribution is fairly linear in almost 3/4 of the depth.

The effect of such distribution on the energy can be

observed with the help of Figure 4.13. Also the magnitude

of shear energy on the face of the column is small compared

with the total energy. Hence, it can be considered that

as far as total energy evaluation is concerned, the actual

stress distribution on the face of the column which includes

57y and Txy can be replaced by a linear distribution of

GI! attaining the maximum value FKld shown as dotted in

Figure 4.15. The correction factor F is to be selected in

such a way that energy due to the linear distribution with

maximum value FKld on the face will be equal to true total

energy. This suggests that for the study of energy vari-

ations inside the Joint subJected to pure bending moment M,

the stresses on the column face can be replaced by linear

stress distribution of 6’y attaining maximum FKld. In

Chapter V the stresses inside the column for such an assumed

linear distribution on the face are calculated by series

method. Comparison of results presented in that Chapter

Shows that if the correction factor is selected to make the

two equivalent depths agree at the face of the column, then

the equivalent depth diagrams agree Closely inside the

Column. The value of F in the case of a cross shape with

Square corner comes to 0.87. It is to be noted that the

above modification of stress distribution is only for energy

evaluations to calculate equivalent depth. When this
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equivalent depth is used in the conventional beam theory

formula, the moment used should be M and not FM. This is

an arbitrary way to determine the mode of energy distri-

bution inside the Joint by the linear distribution of

stress on the boundary.

The shear stress distribution on the face of the

column also will be different from the conventional

parabolic distribution. Even in the case of pure bending

moment the shear stresses were found. Hence, in the case

of the Joint subJected to shear force, to find the distri-

bution of the shear stress due to shear force V, it will

be necessary to separate the effect of the corresponding

moment from the total shear stress. Applying the principle

of superposition, the separation can be done by using the

results of the pure bending case. The shear stresses

corresponding to the bending moment are evaluated at the

face of the column. This shear stress is subtracted from

the total shear stress obtained when the Joint was sub-

Jected to external shear force. The remaining shear stress

distribution is plotted in Figure 4.16. Again, as far as

the magnitude is concerned, the net shear stress might not

be correct at least in the stress concentration zone; the

magnitude of the shear stress is certainly not correct at

the re-entrant point in the case of a Joint without fillets.

But in general it appears that in almost 2/3 of the beam

depth the shear stress is approximately a uniform
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ciistribution. This fact has been observed by Neuber.21 He

analyzed a bar which has a deep notch subJected to shear

:force. On the section passing through the notch the

sshearing stress approaches uniformity except near the notch

‘wrere there is stress concentration effect. Neglecting

‘tke effect of the area of the curve in the zone near the

riotch, with little error in the energy, the shearing stress

ciistribution on the face of the column can be assumed as

Luaiform. The uniform shear stress assumption will be con-

ssiderably better than a parabolic distribution would be.

21N. Neuber, Theory of Notch Stresses (Ann Arbor,

Michigan: J. N. Edwards,194b), p. 44.



TABLE 4.1

3 VALUES FOR THE CROSS SHAPE HAVING L/b = 2.3,

h/b = 3.3, d/b = 1.3, AND r/d = 1/3 SUBJECTED

T0 PURE BENDING MOMENT

Following values are to be multiplied by -K1d3/8l.

 

Node ‘ 1

12.912334

12.812339

12.685156

12.432335

11.898325

11.332313

13.163345

9.556325

9.341692

22.873239

22.764693

22.646323

22.375432

21.683133

23.235799

18.761616

17.734676

.373282

25.899469

24.518384

23.492986

23.125733

26.968565

26.539573

26.339274

27.364523

27.473239

27.478157

27.297142

27.543226

27.623471

27.154556

27.335881

27.434686

27.348332

27.116757

27.144883
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TABLE 4.2

BENDING STRESS 6’ FOR THE CROSS SHAPE HAVING d/b = 1.0

AND r/d = 1/3 SUBJECTED T0 PURE BENDING MOMENT

Following values are to be multiplied by Kld.

 

 

 

.17394

.31646

.3674; M.

.22825

.35148

.33836

.33436

.00650

.31067

Node of), Node 6:,

1,8 3.32826 1,1 3.15334

2,8 3.64758 2,1 3.26893

3,8 3.91772 3,1 3.33463

1,7 3.31775 4,1 3.22813

2.7 3.63527 5,1 3.39930

3.? 3.94133 6,1 3.33381

1,7 0.302721 7,1 3.33131

2,6 3.62299 8,1 -0.31138

3:6 3-96755 9:1 -O.33732

1,5 3.27723 1,3 3.14557

2,5 3.58336 2,3 3.25274

3.5 1.32769 3,3 3.28543

3,4 3.23517 4,3 3.22385

2,4 3.49576 5,3 3.11373

3,4 3.96254 6,3 3.34345

1,3 3.23313 7,0 3.03456

2,3 3.39335 8,3 -3 31288

3,3 3.53731 9.3 -3.31639

1,2 3

2,2 3

3,2 3

4,2 3

5 3 2 :’

6,2 3

7,2 3

8,2 3

9.2 3
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TABLE 4.3

COMPARTSON OP RESISTING AND APPLIED MOMENTS M. FOR THE

CROSS SHAPE HAVING d/b = 1.3 and r/d = {/3

SUBJECTED TO PURE BENDING MOMENT

 

 

 

Moments are to be multiplied by KldB.

lBeam-Section Resisting My Applied My Pegggggage

#8* 3.6163 0.6667 - 7.60

#7 3.6343 3.6667 - 4.93

#6 3.6343 3.6667 - 4.93

#5 3.6523 3.6667 - 2.23

#4 3.5663 3.6667 -15.10

#3 3.5772 3.6667 -13.42

#2 3.6856 0.6667 + 2.83

#1 3.7394 3.6667 + 6.43

#3 3.6864 0.6667 + 2.95

 

 

*Note: The beam section #8 identifies the cross

section parallel to X-axis and located at Y=8 mesh units,

vflqich means beam section #3‘passes through the X-axis. The

53ame notation is used throughout the text.



TMflElh4

3 VALUES FOR THE CROSS SHAPE WITH CPADED NET

HAVING L/b = 1.333, h/b = 2.333, d/b = 1.3,

AND r/a = 1/3 SUBJECTED TO PURE BENDING MOMENT

Following values are to be multiplied by -Kld3/81.

 

 

Node Z
 

12.893613

12.695936

12.279552

11.373442

13.339911

9.598513

9.335747

.859918

22.677387

22.233973

23.752872

18.959368

17.692393

17.249545

.751881

25.538223

‘.952344

24.133923

23,23 23.133176

‘ .988954

26.259797

..337323

24.463326

23.186521

22.743936

27.117369

26.413133

26.838571

.466177

25.896843

25.666549

.966356

27.333923

26.887627

26.821642

27.358373

27.369865

27.364627
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TMflElLS

IEENDING STRESS 4’ FOR THE CROSS SHAPE HAVING d/b =

1..3 AND r/d = 1/3 SUBJECTED TO PURE BENDINU MOMENT

(CRADED NET)

Following values are to be multiplied by Kld.

 

 

Z 0 (
L

(
D

‘3'

.3333

.6666

.8888

.3246

.6477

.9233

.3316

.6288

.9636

.2583

.5765

.7922

.3263

.2239

.4336

.5285

.5829

.4233

.3523*

.1912

.3465

.3883

.1631

.3537

.3125

.3133

.1672

.2889

.3393

.1911

.0898

.0283

.0155

.1583

.2688

.2857

.1963

.1313

.0337

-0.0144

*ane value should be zero according to boundary conditions.
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COMPARISON OF RESISTING

CROSS SHAPE HAVIN3 d/b

TMflElL6

1.3 AND r/d =

TO PURE BENDING MOMENT (GRADED NET)

 

Moments are to be multiplied by Kld3.

AND APPLIED MOMENTS M FOR A

1/3 SUEJECTED

 

 

Beam-Section Resisting My Applied My Pegggggage

#7 3.6322 3.6667 - 5.17

#6 3.6332 0.6667 - 5.32

#5 3.6533 0.6667 2.53

#4 3.6343 0.6667 - 4.93

#3 3.7196 3.6667 + 7.93

#2 3.6426 3.6667 - 3.61

#1 3.6813 3.6667 + 2.14

#3 3.6496 3.6667 - 2.56

 



TMflEih7

BENDING STRESS FOR A CROSS SHAPE HAVING d/b =6'

1.3 AND r/d = 1/3 gUBJECTED TO PURE BENDING MOMENT

(HIGHER ORDER DIFFERENCE FORMULA, GRADED NET)

Following values are to be multiplied by Kld.

 

 

 

‘Node (y Node :3, Node a'y

11,7 0.3333 1,3 0.2218 2,1 0.2973

2,7’ 0.6574 2,3 3.4389 3,1 0.3209

3,7 0.9259 3,3 0.5992 4,1 0.1897

1.,6 0.3247 4,3 3.4513 5.1 0.3865

2,63 3.6519 1,2 0.1942 6,1 0.3265

13,6 0.9654 2,2 3.3559 7,1 -0.3228

1,5 3.2995 3,2 0.4105 1,3 0.1619

2,5 0.6284 4,2 3.1627 2,3 0.2766

3,5 1.0150 5,2 0.3489 3,3 3.2946

1,4. 0.2533 6,2 0.0112 4,0 0.1968

2,4. 0.5706 7,2 -0.0172 5,0 0.0993

3,4. 1.4933 1,1 0.1710 6,3 3.0321

7,3 -3.0224

 H
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TMKELLS

COMPARISON OF PESISTINO AND APPLIED MOMENTSM FOP A

CROSS SHAPE HAVINO d/b = 1.3 AND r/d = 1/3 SUEJECTED

TO PURE BENDINO MOMENT (HIGHER ORDER DIFFERENCE

FORMULA, ORADED NET)

'2

Moments are to be multiplied by Kld“

 

 

, Percentage

Beam-Section Resisting My Applied My Error

#7 3.6392 0.6667 - 4.12

#6 3.6482 0.6667 - 2.77

5 3.6498 3.6667 - 2.53

#4 3.6366 3.6667 - 4.51

#3 3.7184 3.6667 + 7.75

#2 3.6682 3.6667 + 3.23

#1 3.6732 3.6667 + 3.52

#3 3.6698 3.6667 + 3.46

 
 



TABLE 4.9

NORMAL STRESS 6.x AND SHEARING STRESS T FOR THE

CROSS SHAPE HAVING d/b = 1. 0 AND r/a = 1/3XSUBJECTED

T0 PURE BENDINGMOMENT (GRADED NET)

Following values are to be multiplied by Kld.

 

 

Node 6?, Node Irxy

1,7 0.02431 0,6 .3 01689

2,7 3.33113 1,6 3.03896

1,6 0.03948 2,6 -3.00845

2,6 3.33472 0,5 3.33395

1,5 3.02463 '1,5 3.01738

2,5 3.02899 2,5 -3.01697

1,4 3.05474 0,4 3.07364

2,4 3.11533 1,4 3.05346

23,4 3.13983 2,4 -0 01625

3,4 0.00491* 23,4 -3.09877

1,3 0.31349 3,4 -3.27089*

2,3 0.03474 0,3 3.10776

23,3 0.06562 1,3 3.09097

3,3 0.09926 2,3 3.31667

34,3 3.19291 3,3 -3.09656

4,3 3.04245 34,3 -3.16558

5,3 --0.00087 4,3 -3.13888*

6,3 -3.01295 3,2 3.39844

1,2 -0.33212 1,2 3.38531

2,2 -0.05857 2,2 3.33615

3,2 -O.l9998 3,2 -O.05437

4,2 3.33395 4,2 -3.08225

5,2 0.01336 5,2 -3.03258

6,2 0.00521 6,2 -3.00313

1,1 -0.05318 0,1 3.05579

2,1 -0.09154 1,1 0.04749

3,1 -0.09232 2,1 3.01978

4,1 -0.03747 3,1 -3.02527

5,1 -0.00559 4,1 -3.04261

6,1 0.00186 5,1 -0.02239

1,3 -0.05839 6,1 -0.00506

2,3 -0.39841

3,0 ~0.09835

4,0 -0.05117

5,3 -0.01466

6,0 -0.00116

 

*The value should be zero according to boundary conditions.
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TABLE 4.10

COMPUTATION OF THE ENERGY FOR THE CROSS SHAPE HAVING

d/b = 1.0 AND r/a = 1/3 SUBJECTED T0 PURE BENDING

MOMENT (POISSON'S RATIO = 3.33)

2

Following values are to be multiplied by Kld3/2E.

4‘

_:

 

  

 

 

h h h 2Chnflmk
Beam 2. 2. Energy =

Section f‘rY'J" :1}; "‘3‘ 'z/‘f‘i'rrd’ (Itixfidx) 1+2+3+4
‘h 1 ‘g ‘h 3 h .4

#7 0.621860 0.331237 -0.012544 0.033300 0.610553

#6 0.595200 3.333149 -0 002432 3.333583 0.593533

#5 0.595233 3.331388 -3.311233 3.332138 0.587196

#4 0.653403 3.314537 .-0.046208 3.334667 3.646365

#3 0.354140 3.316343 -O.332192 3.365118 0.403139

#2 0.237223 3.322237 .3.039296 3.342987 3.341743

#1 0.177366 3.314421 3.329824 3.343546 0.261857

#3 0.160000 3.319329 3.332256 3.333330 0.211285

 

TABLE 4.11

RATIO R, THE EQUIVALENT DEPTH de TO THE DEPTH 23 OF

THE BEAM, FOR THE CROSS SHAPE HAVING L/b = 1.333,

n/b = 2.333, d/b = 1.3 AND r/a = 1/3 SUBJECTED T0

PURE BENDING MOMENT (POISSON'S RATIO = 0.33)

 

 

Beam Section Ratio R = de/2d

#7 1.0298

#6 1.0395

#5 1.0432

#4 1.0104

#3 1.1826

#2 1.2495

#1 1.3654

#3 1.4667

 

 



TABLE.4.12

3 VALUES FOR THE CROSS SHAPE HAVING L/b = 2.5, n/t =

3.5, d/b = 1.5 AND r/d = 1/3 SUBJECTED T0 PURE BENDING

MOMENT

Following values are to be multiplied by -Kld3/Bl.

 

 

 

Node '3

1,6 12.915553

1,5 12.816863

1,4 12.673738

1,3 12.323294

1,2 11.557676

1,1 10.827834

1,0 10.541963

12,23 17.257934

2,6 22.874733

2,5 22.775483

2,4 22.653433

2,3 22.278537

2,23 21.716453

2,2 20.983497

2,1 19.683635

2,3 19.182924

23,34 25.751823

23,3 25.534736

23,23 25.046649

23,2 24.282369

23,12 23.491438

3,23 26.957334

3,2 26.344213

3,12 25.627511

3,1 25.353343

3,3 24.561632

34,2 27.119253

34,12 26.667933

34,1 26.253732

34,31 — 25.983491

' 4,12 26.924957

4,1 26.735318

4,3 26.616489

4 2 27.0331783,1

5,1 27.081935

5,3 27.111707

6,1 27.062633

6,0 27.092927
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TABLE 4.13

STRESS VALUES FOR THE CROSS SHAPE HAVING d/b = 1.5

AND r/d = 1/3 SUBJECTED T0 PURE BENDING MOMENT

Following values are to be multiplied by Kld.

 

 

NOde (y U Node q Node txy

1,6 0.32850 1,6 0.03158 3,6 0.01017

2,6 0.64833 2,6 -3.33289 1,6 0.30624

3,6 0.96151 1,5 0.00527 2,6 -0.00509

1,5 0.31742 2,5 0.00287 3,5 0.01360

2,5 0.64509 1,4 0.02236 1,5 0.03623

3,5 0.98936 2,4 0.32746 2,5 -0.03680

_1,4 0.29670 1,3 0.04647 3,4 0.02742

2,4 0.62437 2,3 0.10256 1,4 3.01380

3,4 1.02343 23,3 0.12344 2,4 -3.01371

1,3 0.25851 3,3 0.31909** 3,3 3.06183

2,3 0.56908 1,2 -0.33397 1,3 0.04630

23,3 0.79598* 2,2 0.03354 2,3 -3 01273

3,3 1,38341 23,2 0.31184 23,3 -3.07834

1,2 0.23857 3.2 0.34617 3,3 -0.24794**

2,2 0.46367 34,2 0.12999 3,2 0.08308

23,2 0.54979* 4,2 0.05888 1,2 0.37208

3,2 0.58829 5,2 -0 01821 2,2 0.31253

34,2 0.42051 6,2 -0 01392 23,2 -0.00593

4,2 -0.05300** 1,1 -0.04933 3.2 -0.09630

1,1 0.22336 2,1 -0.08879 34,2 -3.14773

2,1 0.39949 3,1 -0.08880 4,2 —0.06780**

3,1 0.43344 4,1 —0.01627 3,1 3.05643

4,1 0.13548 5,1 0.00580 1,1 0.05001

5,1 0.03471 6,1 0.30359 2,1 3.02130

6,1 0.00338 1,3 -0.36353 3,1 -0.03936

7,1 —0.01704 2.3 -0.11127 4,1 -3.35262

1,3 0.21622 3,3 -0 10927 5,1 -0.01323

2,3 0.37451 4,3 -0.02634 6,1 -0.00310

3,3 0.38621 5,3 0.30662

4,3 0.16664 6,3 0.00673

5,3 0.05150

6,0 3.00657

7,3 -0.02546

 

*Calculated by the application of standard difference

formulas. '

**The value Should be zero according to boundary conditions.



TABLE 4.14

COMPUTATION OF THE ENERGY FOR THE CROSS SHAPE HAVING

d/b 1.5 AND r/o = 1/3 SUBJECTED T0 PURE BENDING

MOMENT (POISSON'S RATIO 3.33)

2

Following values are to be multiplied by Kld3/2E.
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 .——‘

 

 

h h . h ‘z(+vn1
Beam 3 . 9 _ Energy =

Section £091" £6; cl): 2&«Lc’1'ryd’ (ftxzydx) l+2+3+4

1 2 3 ’ At

#6 3.621866 3.333333 0.033330 3.333211 3.622077

#5 3.628266 3.333333 -3.331633 3.333316 0.626982

#4 3.612266 3.331333 -3.313563 3.331425 0.604134

#3 3.654934 3.311264 -3.041344 3.324688 3.649542

#2 3.417283 0.338386 -0.019328 3.345372 0.451409

#1 3.276354 0.312937 3.337233 3.316196 3.342336

#3 3.238934 0.319712 0.343832 3.333333 0.299478

TABLE 4.15

RATIO R, THE

THE BEAM FOR THE CROSS SHAPE HAPING L/b

3.5, d/b = 1.5 and r/d

2.5, n/b

 

 

 

MOMENT (POISSON‘S RATIO = 3.33)

Beam Section Ratio R = de/2d

#6 1.0233

'5 1.3237

#4 1.3334

#3 1.3387

#2 1.1388

#1 1.2488

#3 1.3125

 

 

EQUIVALENT DEPTH d TO THE DEPTH 2d OF

1/3 SUBJECTED TO PURE BENDING



TABLE 4.16

Z'VALUES FOR THE CROSS SHAPE HAVING L/b = 1.333,

n/b = 2 333, d/b = 1.3 AND r/o = 3 SUBJECTED TO

PURE BENDING MOMENT

-Following values are to be multiplied by -Kld3/81.

I:

Node ‘3
 

12.894170

12.723336

12.390653

11.676058

10.709995

9.963409

9.691901

22,860477

22.698227

22.361995

21.334047

19.610856

18.304426

17.838595

25.741312

25.654421

25.459267

24.918531

26.168627

25.153184

23.807441

23.339476

26.976441

27.008374

26.701685

26.246298

26.044825

26.994946

27.077141

27.035479

26.995728

27.072446

27.107700

27.112256

3 23.986184
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TABLE 4.17

STRESSES FOR THE CROSS SHAPE HAVING d/b = 1.0 AND

r/d = 0 SUBJECTED T0 PURE BENDING MOMENT

Following values are to be multiplied by Kld.

 

I?

 

Node a’y Node ‘rx Node xy

1,4 0.26423 1,4 .04243 0,4 0.05818

2,4 0.58307 2,4 .07686 1,4 0.03789

3,4 0.86526* 3,4 .04812 2,4 -0.02909

3,4 1.25120 1,3 .02794 0,3 0.09337

1,3 0.22465 2,3 .07725 1,3 0.07642

2,3 0.44634 23,3 .17405 2,3 0.00461

3,3 0.66488 3,3 .36950 3.3 -0 06096

3,3 1.02362 34,3 .35809 3,3 0.24780

1,2 0.20345 4,3 .00744 0.2 0.09515

2,2 0.38163 45,3 .03449 1,2 0.08416

3,2 0.47576 5.3 .01714 2,2 0.04111

4,2 0.11156 6,3 .01610 3,2 -0.06322

5,2 0.03779 1.2 .02439 4,2 -0.08967

6,2 0.00660 2,2 .04631 5,2 —0.02393

7,2 -0.02004 3,2 .05567 6,2 0.00098

1,1 0.18403 4,2 .01745 0,1 0.05656

2,1 0.32449 5,2 .01320 1,1 0.04923

3,1 0.35565 6,2 .00413 2,1 0.02210

4,1 0.17884 1,1 .05279 3,1 -0.03098

5,1 0.07660 2,1 .09340 4,1 -0.04812

6,1 0.01869 3,1 .09753 5,1 -0.01935

7,1 -0.03125 4,1 .02821 6,1 -0.00226

1,0 0.17581 5,1 .00021

2,0 0.30278 6,1 .00341

3,0 0.32164 1,3 .06033

4,0 0.19382 2,0 .10352

5,0 0.08980 3,0 .10399

6,0 0.02401 4,0 .04477

7,0 -0.03334 5,0 .00883

6,3 0.00051

*

 

*Calculated by the application of standard difference

formulas.
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TABLE 4.18

COMPUTATION OF THE ENERGY FOR THE CROSS SHAPE

HAVING d/b = 1.3 AND r/o = 0 SUBJECTED T0 PURE

BENDING MOMENT (POISSON'S RATIO = 0 30)

Following values are to be multiplied by Kld3/2E.

 

 

Beam 2,2. :24 [2’ 2. ”21“). Energy =

Section -h 7"" ‘h x' x 'Zfl’h r'y-JX (fray-d!) l+2+3+4

;_ 2 3 ”h ‘4 -

#4 0.667733 0.335313 -0.028608 3.336739 0.650877

#3 0.419200 0.113707 -0.068352 0.334944 0.499499

#2 0.282453 0.334352 0.329028 3.343236 3.350959

#1 0.212907 0.315383 0.032963 3.313978 0.274928

#3 0.187733 0.319179 0.034243 3.333333 0.241152

 

TABLE 4 . 19

RATIO R, THE EQUIVALENT DEPTH de TO THE DEPTH 26

OF THE BEAM FOR THE CROSS SHAPE HAVING L/b = 1.333,

n/b = 2.333, d/b = 1.0 AND r/d = 3 SUBJECTED T0

PURE BENDING MOMENT (POISSON'S RATIO = 3.30)

 

 

Beam Section Ratio R = de/2d

 

#4 1.0080

#3 1.1013

#2 1.2385

#1 1.3435

#3 1.4055

 

 



86

TABLE 4.23

RATIO R, THE EQUIVALENT DEPTH d TO THE DEPTH 2d OF

THE BEAM, FOR THE CROSS SHAPE HAVING L/b = 1.333,

n/b = 2.333, d/b = 1.3 AND r/d = 1/3 SUBJECTED T0

PURE BENDING MOMENT (POISSON‘S RATIO = 3.15)

 

Beam Section Ratio R = de/2d

 

 

 

#7 1.3262

#6 1.3388

5 1.3433

#4 0.9956

#3 1.1743

#2 1.2812

#1 1.4314

#3 1.5361

TABLE 4.21

3 VALUES FOR THE CROSS SHAPE HAVING L/b = 1.333,

n/b = 2.333, d/b = 1.3 AND r/d = 1/3 SUBJECTED T0

VARIABLE BENDING MOMENT

Following values are to be multiplied by -K2du/27.

 

 

Node ‘3 Value Node ‘3 Value Node ‘3 Value

1,6 2.836040 2,3 18.933481 34,23 25.380255

1,5 5,531027 23,45 14.351914 4,23 26.324080

1,4 7.841399 23,4 16.858783 4,2 27.862889

1,3 9.130839 23,34 18.800852 4,1 29.589936

1,2 9.744581 23,3 20.158745 4,3 30.095707

1,1 9.977754 23,23 21.105676 45.23 26.707999

1,0 13.033637 3.34 23.477396 5,2 28.831883

2,6 5.067647 3,3 22.353146 5,1 31.388433

2,5 10.015973 3,23 23.661692 5,3 32.180314

2,4 14.487830 3,2 24.543491 6,2 29.034005

2,3 17.055711 3,1 25.502783 6,1 31.954697

2,2 18.298496 3,3 25.770193 6,3 32.904771

2,1 18.803364 34,3 23.543537

 



TABLE 4.22
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STRESS VALUES FOR THE CROSS SHAPE HAVING o/b = 1.0

AND r/o =

2

Following values are to be multiplied by Kgd .

1/3 SUBJECTED TO VARIABLE BENDING MOMENT

 

 

Node cry Node (x Node rxy

1,6 0.19897 1,7 0.03525 3,7 -0.962 6

2,6 0.43668 2,7 0.32898 1,7 -0.851 5

3,6 0.62229 1,6 0.04702 2,7 -0.51852

1,5 0.33734 2,6 0.33964 3,6 -0.92184

2,5 0.83330 1,5 0.13720 1,6 -0.83466

3,5 1.40419 2,5 0.15882 2,6 -0.53908

1,4 0.35589 1,4 0.32229 3,5 -0.82973

2,4 1.00250 2,4 0.63464 1,5 -0 78418

23,4 1.63965* 23,4 0.75306 2,5 —0.58289

3,4 3.27706 3,4 0.69681** 3,4 -0 59997

1,3 3.39592 1,3 0.23423 1,4 —0.58664

2,3 0.88821 2,3 0.44170 2,4 -0.56253

23,3 1.21551* 23,3 0.54795 23,4 -0.64580

3,3 1.41426 3.3 0.74827 3.4 -0.65906**

34,3 0.98257* 34,3 -1 23839 3,3 -0.32173

4,3 0.60617** 4,3 1.83245 1,3 -0.31755

1,2 0.39890 45,3 0.77867 2,3 -0.38444

2,2 0.78357 5.3 0.77875 3.3 —O.76580

3,2 1.00834 6,3 0.64400 34,3 -0.93857

4,2 0.81148 1,2 0.12686 4,3 -0.46592**

5,2 0.22637 2,2 0.24597 3,2 -0.14115

6,2 0.07244 3,2 0.41135 1,2 -3.10356

7,2 -0.03959 4,2 0.71195 2,2 -0.19214

1,1 0.38899 5,2 0.75844 3,2 -0.32019

2,1 0 72236 6,2 0.73444 4,2 —0.35298

3,1 0.89324 1,1 0.35913 5,2 -0.19706

4,1- 0.78324 2,1 0.12492 6,2 -0.05096

5,1 0.40116 3,1 0.23062 3,1 -3.00931

6,1 0.16585 4,1 0.40709 1,1 -0.05291

7,1 0.00629 5,1 0.58822 2,1 -0.07814

1,0 0.38361 6,1 0.65687 3,1 -0.18637

2,3 0.70108 1,0 0.03725 4,1 -0.17681

3,0 0.85702 2,3 3.08674 5,1 -3.13649

4,3 0.76393 3,3 3.17827 6,1 -0.05430

5,0 0.44922 4,3 0.33718

6,3 0.20164 5,3 0.52792

7,3 0.00736 6,3 0.63338

 

*Calculated by the application of standard difference formulas.

**The value should be zero according to boundary conditions.
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TABLE 4.23

COMPARISON OF APPLIED AND RESISTING FORCES FOR THE

CROSS SHAPE HAVING L/b = 1.333, h/b = 2.333, d/b =

 

 

 

 

 

 

1.3 AND r/d = 1/3 SUBJECTED TO VARIABLE BENDING

MOMENT

Moment M and shear VX are to be multiplied by Kedu and K d3

respectively. 2

Percentage

Type of Beam Error Com-

Fopce Section Applied Resisting Difference pared t0

the applied

one

#6 0.44444 0.41813 3.32634 5.92

#5 3.88889 3.85108 0.33781 4.25

#4 1.33333 1.30736 3.32627 1.97

Moment #3 1.77778 1.67638 3.13143 5.70

My #2 2.14815 2.14216 3.33599 0.28

#1 2.37337 2.36273 3.33763 0.32

#0 2.44444 2 41188 3.33256 1.33

#7 1.33333 1.27147 3.36186 4.64

#6 1.33333 1.25867 3.37466 5.60

#5 1.33333 1.23337 3.13326 7.52

Shear #4 1.33333 1.16937 3.16426 12.32

VX #3 1.33333 1.35253 3.31923 1.55

#2 3.88889 3.85763 3.33129 3.52

#1 0.44444 3.45653 3.31189 2.67

Normal force NX is to be multiplied by K2d3.

_— , Percentage Error

822%?23 Appéiec Resisting Difference Compared to Applied

X x NX

#6* 1.33333 1.33987 0.02346 1.76

#5 1.33333 1.34433 3.31367 3.80

#4 1.33333 1.35253 0.01920 1.43

#3 1.33333 1.23733 0.09600 7.20

#2 1.13580 1.13367 0.03514 3.45

#1 0.64197 0.61867 0.32333 3.63

 

*The column section #6 identifies the cross section parallel

to Y-axis and located to at X = 6 mesh units, which means

that #3 passes through Y-axis.



TABLE 4.24

CCHflI’UTATION OF THE ENERGY FOR THE CROSS SHAPE HAVING

d//b> = 1.0 AND n/d = 1/3 SUBJECTED T0 VAIRABLE BENDING

MOMENT (POISSON'S RATIO = 0.33)

T?ollowing values are to be multiplied by K22d5/2E.

 

 

h 2 Han)

 

BeEUW1 h z 1 h Ener =

1 2 ‘3 ¢+

#77 0.000003 3.333333 0.030033 2.496333 2.496300

##63 0.273933 3.335333 -3.314383 2.468266 2.729732

##55 1.134933 3.334133 -0.079360 2.268565 3.358271

fiti+ 3.287958 3.531233 -0 684342 1.874773 5.309589

#533 1.958403 2.641136 —0.842240 2.352268 5.839534

##22 1.683123 1.395233 -3.587523 3.557433 3.048203

-#51. 1.529630 3.857633 -0.391680 3.177492 2.173012

#5:) 1.461334 0.716833 -3.345600 3.333333 1.832534

  

 

 

TABLE 4.25

RATIO R, THE EQUIVALENT DEPTH de TO THE DEPTH 2d OF

THE BEAM, FOR THE CROSS SHAPE HAVING L/b = 1.333,

h/b = 2.333, d/b = 1.3 AND r/d = 1/3 SUBJECTED T0

VARIABLE BENDING MOMENT (POISSON'S RATIO = 3.30)

 

 

Beam Section Ratio R = de/2d

 

#7 0.9259

#6 3.9636

#5 1.0273

#4 3.9962

#3 1.3689

#2 1.4273

#1 1.6136

#3 1.6974

 

 



TABLE 4.26

25 \JALUES FOR THE CROSS”SHAPE HAVING I/b = 1.333,

lq/fb =.2333, d/b = 1.3 AND r/d = 0 SUBJECTED T0

VARIABLE BENDING MOMENT

IROllowing values are to be multiplied by -K2du/27.

 

 

 

Node 3

1,6 2.828842

1,5 5.546709

1,4 7.982591

1,3 9.741781

1,2 13.486299

1,1 10.692423

1,3 13.722905

2,6 5.352453

2,5 13.335813

2,4 14.651891

2,3 18.263531

2,2 19.611338

2,1 19.986317

2,3 23.351587

23,45 14.249657

23,4 17.348596

23,34 19.744479

23,3 21.783731

23,23 22.873326

3,23 25.345289

3,2 25.919802

3,1 26.645798

3,0 26.839549

34,23 26.392136

4,23 26.566125

4,2 28.155549

4,1 33.101899

4,3 33.668689

45,23 26.639651

5,2 28.876454

5,1 31.548696

5,3 32.389839

6,2 29.029805

6,1 31.980731

6,3 32.946813
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TABLE 4.27

STRESSES FOR THE CROSS SHAPE HAVING d/b = 1.3 AND

r/a = O SUBJECTED TO VARIABLE BENDING MOMENT

Following values are to be multiplied by K2d2.

 

 

Node (y Node 07x Node rm,

1 , 4 0.41847 1,4 0.22556 3,4 -0.69918

2, 4 1.06909 2,4 0.34481 1,4 —0.68814

23, 1+ 1.9668: 23,4 0.03435 2,4 -0.65041

3 , 4 2.63874 1,3 0.33822 23,4 -0.52667

1 , 3 0.39739 2,3 0.75462 3,4 —0.10961**

2, 3 0.89633 23,3 1.26613 3.3 -3.41728

23 , 3 1.71273 3.3 2.23628 1,3 -3.41328

3, 3 3.30273 34,3 2.04638 2,3 -3.45l34

1 , 2 0.45115 4,3 1.15700 23,3 . -O.65843

2, 2 0.94437 45.3 0.96093 3.3 —l.06333

3, 2 1.46353 5,3 0.74903 3.2 -0.15844

4, 2 0.46021 6,3 0.64608 1,2 -0.l4354

5 , 2 0.17355 1,2 0.17947 2,2 -0.l4l26

6, 2 0.05712 2,2 0.32436 3,2 -0.36495

7 , 2 -0.03336 3,2 0.39793 4,2 -0.40866

1 , 1 0.47082 4,2 0.73640 5.2 -0.l5657

2, 1 0.89641 5,2 0.73440 6,2 -0.03752

3, 1 1.11693 6,2 0.69296 3,1 -3.03943

4 , 1 0.66377 1,1 0. 5854 1,1 -0.03669

5, 1 0.32818 2,1 0.10305 2,1 -0.05693

6, 1 0 13082 3,1 0.17741 3,1 -3.17274

'7 , 1 - .00789 4,1 0.45985 4,1 «3.21613

1 , :3 0.47162 5,1 0.60838 5,1 -O.ll699

2, :3 3.86714 6,1 3.66161 6,1 -3.34055

3, 3 1.02152 1,3 0.32032

4, :3 3.73526 2,3 3.34371

5, :3 0.38016 3,3 0.12917

6, 3 0.16064 4,3 0.37786

7, :3 0.01362 5,3 0.56007

6,3 0.64435

#

** The value should be zero according to boundary conditions.



92

TABLE 4.28

COMPUTATION OF THE ENERGY FOR THE CROSS SHAPE HAVING

d/b = 1.0 AND r/d = 0 SUBJECTED T0 VARIABLE BENDING

MOMENT (POISSON'S RATIO = 3.33)

Following values are to be multiplied by K22d5/2E.

 

2.I+/fll

 

h h h

Beam 2 2 2 Ener =

Section 4‘7"." .{fi'dx 724.467.077‘ ({er'dx) l+2+§i4

1 2 3 ‘4

#4 3.329333 3.399233 -3.168320 2.343946 5.004149

#3 2.922667 5.162667 -1 248030 1.442132 8.279466

#2 2.396667 1.448533 —0.584960 3.731653 3.961893

#1 1.911447 3.864333 -0.368333 3.166433 2.573847

#3 1.802667 3.742433 -0.309760 3.333330 2.235337

  

TABLE 4 . 29

RATIO R, THE EQUIVALENT DEPTH de TO THE DEPTH 2d OF

THE BEAM, FOR THE CROSS SHAPE HAVING L/b = 1.333,

h/b = 2.333, d/b = 1.0 AND r/d = 0 SUBJECTED T0

VARIABLE BENDING MOMENT (POISSON'S RATIO = 3.33)

 

 

 L I

Beam Section Ratio R = de/2d

 

#4 3.9684

#3 0.9242

#2 1.2911

#1 1.5184

#3 1.5877

 



TABLE 4 . 33

RATIO R, THE EQUIVALENT DEPTH de TO THE DEPTH 2d OF

THE BEAM, FOR THE CROSS SHAPE HAVING L/b = 1.333,

n/b = 2.333, d/b = 1.3 AND r/d = 1/3 SUBJECTED TO

VARIABLE BENDING MOMENT (POISSON‘S RATIO = 3.15)

 

 

Beam Section Ratio R = de/2d

#6 0.9637

#5 1.3265

#4 3.9389

#3 1.0403

#2 1.3756

#1 1.5632

#0 1.7093
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CHAPTER V

SERIES SOLUTION

An analytical solution of the cross shape as a whole

is cumbersome, but as the principal interest is to deter-

mine the stress distribution—within the column, it will be

appropriate to look for some analytical solution which can

furnish the stress information in the column zone. It is

possible to analyze the column zone separately if the

stresses on the column face can be known by other means.

In part I of this chapter, a general series solution is

discussed for the stress function g'in a column subjected

to moment and shear forces due to a beam connection. The

formulas for energy, displacement, slope, and curvature are

derived. In part II, the problem is solved for the pure

bending moment case. In part III, the problem is solved

for the variable bending moment case. In parts II and III

the effect of different proportions of the cross shape on

the equivalent depth is discussed. In part IV, the method

to be used for combination of numerical method and series

method results is discussed. In part V, the approximate

equivalent depth curve, which is to be used for practical

purposes, is discussed.



5.3-
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I. GENERAL SOLUTION

Boundary Conditions

The loading conditions for the column are illustrated

in Figure 5.1. It is assumed that the stress function fl

is symmetrical about the X-axis and anti-symmetrical about

the Y-axis. The moment M is imposed on the boundary by

some mode of stress distribution of' a? on the area x = O

to x = :.d. Also shearing stress zrky are distributed in

some form with the resultant shear force V. The mode of

distribution of’ 53,and 2;y is not specified at this

stage except for the assumed symmetry conditions. There

will be some a’x stresses on the top and the bottom edges

of the column to resist the downward forces V. If h 2 2d,

as is usually the case in frame structures, it will be

reasonable to assume that (X will be distributed uniformly

on the top and the bottom. This was also Justified by the

photoelasticity study. Also, in order to get a symmetrical

problem it is assumed that the magnitudes of cf; on x =.i h

are the same. It would be easy to superpose a uniform

state of uniaxial 6} stress on the results obtained, to

get case where the two values are not equal.

Evaluation of Stress Functiongg

To solve the elasticity problem for the determination

of stresses in the structure, assuming a state of plane
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stress to exist, one has to determine the stress function g

which satisfies the biharmonic differential equation

a

v ¢=O (5.1)

and the boundary conditions. As the stress is discontinuous

on the boundaries y 5 i b, the stress function is assumed

in the form of a trignometric series in x1. The stress

function

2 .

sF’x F (”.5611 m1! J .2¢ 32.! + g1”: TX (5 )

will satisfy the Equation 5.1. Here m is an integer and

each fm(y) is a function of y only. Substitution of Equa-

tion 5.2 into Equation 5.1, using the notation m 7T/h =a(m,

reduces Equation 5.1 to

~_ I:

413.4») 443,537) + chv) =0, (5.3)

which is to be solved for fm(y). The general solution of

this differential equation is

FMCY) 9’ CI?” COS", ‘(my 4" C2,” s‘nb ‘NY

+C3my Cosh «my + C4,”)! Sn’nh 4,”. (5.4)

 

1The series methodsused in this chapter follow the

procedures given in S. Timoshenko and J. N. Goodier, Theory

of Elasticity (New York: McGraw-Hill Book Company, Inc.,

19517, pp. EE-SO.
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Substituting Equation 5.4 into Equation 5.2,

2. &

qb='§%gl. 'f 2:[3:"n(135h‘xu01 ‘?<:zyn€5hfln‘“iy

‘mu

+cmy Cosh 4.9, + cm», 5m». ("fl Sin dmx . (5 . 5)

As the stress function is symmetrical about X-axis and

anti-symmetrical about Y-axis, 02m and C3m should be zero.

Hence, the stress function will be as follows:

00

2 [Elm C05“ “(my 4' 0477: Y 351151 4,93 5m(fix,

2

¢ =2“! +

2 ‘msl

(5.6)

Evaluation of Constants
 

In Equation 5.6, the constants PO, C1m and C4m are to

be determined from boundary conditions of the structure.

As the stress distribution on the boundaries y =.i b is

discontinuous, it will be convenient to express the given

stress distribution in terms of Fourier series. The moments

on faces y = i'b are produced by some form of (y distri-

bution which is anti-symmetrical about the Y—axis, and the

shearing stress 75' are distributed symmetrically about
xy

the Y-axis in some form on the boundaries y :1: b with the

resultant shear force V. Therefore, a'y and ‘C' on
xy’

the boundaries can be expressed in terms of Fourier series

as follows:

a .

0; == :ElBhn.EfirldfinX

“'“ (5.7)
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d!

Txy-tfle 1- EAmcas4mx (5.8)

2 1nd

where

h

Bm=JngCx15m4mxax (5.9)
4.

h

Am-fifGCx) Cos‘mxdx (5.10)

-h

h

A. =-';; GCxl-dx (5.11)
4.

F(x) and C(x) are given functions prescribing the distri-

bution of 63 and 'Z'y, respectively, on boundaries y = b
x

along x = - h to h. In Equation 5.8, the plus signs apply

to y = + b, and minus signs to y = - b. At this stage it

will be considered that Bm, Am and A0 are evaluated from

the known stress distribution on the boundary. The stress

components corresponding to the stress function, Equation

5.6, are as follows:

2. O a

3 ..a; . 5%, - Bx fiEECm <m cut. «my + 2c“, (“Cosh 4,9,

+C4m¢yssnho<myjsm4,x (5.12)

CD

(78%;: "' "' 2&1» ‘1!!! C°’h ‘(mY “' C4»: ‘CIY 5'.“ “"fl.
ms!

~E$in4mx1 (5.13)

'ch "" 2&5)?""" -§[c,,,,
‘(m Smh 4.7 +C4m‘Cm5mh4my

1“"

+ C4». ‘2‘! CMHm‘flCos4M -E. y. (5 .110
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By substituting y = i b in Equations 5.13 and 5.1a and

comparing with Equations 5.7 and 5.8, Clm and Cam can be

evaluated as follows:

Cm . §a E An“... sin b 4...!» —8,,,Csmh 4.5 +b-(mCosh 4mm]

V" C 2b4m + Sink Zimb) )

can ,3 3. [3,“ sent. «(,5 -A,.,cosh 4...!)

"' ( 21:4,“ + Smh 2.4,,b) ’

;\
Raw-.3 . 5.15ab ( )

When Clm’ Cam and P0 are known the stress function O is

completely known. From J the stresses, energy, displace-

ments, slope, and curvature can be evaluated.

Evaluation of Energy, Displacement, Slope and Curvature

Formulas
 

The energy of a small segment of Figure 5.1 per unit

length in the Y direction and unit length in Z direction

can be written according to Equation 2.3 as

I " Z 2

Energy =53 hlZa; +0; -2/n-°;¢’y)

" z
+2cu+/n) rxyjdx. (5.16)

Substituting Equations 5.12, 5.13, and 5.14 into Equation

5.16 and simplifying after integration, will reduce Equa—

tion 5.16 to
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.L 2? h ‘° 2.
Energy "-' 25H -’-3- 4' h 2(Crm4mcosh (my + 2‘34me Cosh (my

ml

C4”‘24my Sink4my)z

fl

2

Nil

"pd-“y Sink ‘my)(-1):}

+{hi(cm.<f,, Cosh-(my +c4;,“ysmhx1,,y) 2}

2. z m

-4,“”{fim 4m cask-(my + c4," «(my Shah «(my)g___(-I7)rh'f

‘m

—b.zZCc,,,,-<,,, Cosh (my + 2C4m‘m Cosh 4,7

2M3!

+ c4," «(any Sink «mchm 4‘mCosh4my + c4," 2,1smh 4,,y)}

+ 2 01591415,”202,," 4,, 5nd.me + c4my4; Cosh (my

' 2

C4m‘m 50°01'14"") ‘1" Zazyzffl (5.17)

From the energy formula the equivalent depth can be eval-

uated. The displacement, slope, and curvature can be

evaluated by expressing the displacement derivatives in

terms of stresses as follows:

3“ .. a1! .. L! 3" \

l

ex*":(°'a:-/""v : eY’ECW'f'i)’ ’3‘)” 4%“Y' (5°19)

After substitution of Equations 5.12, 5.13, and 5.14 into

Equation 5.19, proper integrations are carried out to

evaluate u and v. The results are written as,
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O

u gléti—gz— ZCCfludm Cash‘my + 2C4", Cosh (my

“I!

+ C4,“(my'Si'nh (,7) C93 '(mx

C

-/l ZCCm"m 5““ "m‘l + C41” ‘1“ 5"” h 4.7)“; 4...):
mal

—aY2(2+/n) + a]
‘2' 2 :

d

“V: J'E" ‘chrmdm Sinh‘(my + €41»me Cosh‘my

flsl

-C4m Sink dfly)Sin 4m"

c0

'7“ a x), —/n zam .(m 3.3,». «(my «I» 2 C4", Smhdmy

1n“

+ C4101 ‘my Cosh "m‘l"-C4m'Srnthy)3fn¢(mX + “J

I

§_(_L_ = —E-ZCC.mz‘(m Su'nh‘my + 2C4mdm Sinh‘my

. 11m

+c4m4m 5w. «my + c4," ‘fny Cosh 4my)Cosde

a

7n 2.02"" 4?, 3w. 4,,y + CW" 4,, Sink «my

us

+04” .(fny Cosh Kmy)Co.s-(mx "' F3 C2907] ,

S—y-z = E- - ZACCM, '(m Cosh «my +4C4m‘mC93h4mY
1r

3

+04”, (my Shah Km‘l) C05 ‘1'.“

no

‘7" ZCCI‘M ‘31“ Cuh‘m‘l + 2'C4m‘fn C°“"<"‘y

1m: .
3 _

+ C4”, ‘m‘l Shah 4,,y)Cos-(mx -%(2+/"_)],

' (5 - 20)
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where al and a2 are constants. The center line deflection

u, its slope 35%;- and curvature €399:- can be evaluated from

Equation 5.20 by substituting x = 0.

All results discussed above are in terms of C1m and

Cum and PO, which in turn depend on A0, Am, Bm, i.e. on

the boundary conditions of the structure. In the following

pages the problem will be discussed with specific boundary

conditions. As in the previous chapter, the analysis of

'the column zone will be made with two sets of boundary con-

ditions. One is the case of pure bending moment, and the

second one will be of such a nature that there will be

external shear forces.

II. PURE BENDING MOMENT CONDITION

BoundaryConditions
 

In view of the discussion, in Chapter IV, of the true

bending stress distribution and the effect of modifying it

to the linear stress distribution, the bending stress ‘3

on the face of the column is assumed as linear function in

the present case, i. e. on y =.i b from x = O to:x :.i d

53,: le. The boundary conditions can be summarized

as follows: l__

On y = i b, le from x n <
3 8 x M

1
+ 5
"

II + (
L

(
'
7
'

0 >
4 H= 0 from X .i h, and

= 0 from x = O to x =

:2
"
.
3

«
A

H
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Onx=ih, 532:2" =Dfromy=3toy b.

xy

Substitution of the boundary conditions of y = i b. into

n

l
+

Equations 5.9, 5.13, and 5.11 for the Fourier coefficients

yields the results that constants A0 and Am are equal to

zero, and

em =.- £5,» 5m «mxax

2J< .
=. F21?"(Snw<md “d‘mc°"<m4) (5 - 21)

Now that A3, Am, and Bm are known the constants of Equation

5.15 can be evaluated. P3 will be zero in this case.

Equation 5.12 yields 0; equal to zero on X = i h. There

are'shearing stresses txy on x = i h, which are numerically

insignificant.

Evaluated Results
 

As the stress function has been assumed in the form

of an infinite series, all functions related to it will be

infinite series. In practice one takes enough terms of

the series to give reasonable results. With discontinuous

values of 03, and 22w assumed, the coefficients Am and

Bm will be of the order 1/.(m. The coefficients Clm and

Cum will be of the order ('/.<f,,)(e"("5’, The coefficients of

the trignometric functions in the series for the stresses

will be of order e-(b-IYI)“". Hence, convergence is

assured for all interior points (where [y] is less than b).
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The convergence on the face y = b is known for the series

{kn' a} and zrxy because these series reduce to the

boundary expansions, and the 53 term partial sum represents

quite accurately the given boundary stress distribution, as

shown by Figure 5.2. The series for the displacement com-

ponents and the series for the energy are more rapidly con-

vergent and converge also on y = b, while the series for

the slope g; is of the same order as that for the

stresses. The coefficients in the series for the curvature

- -ll

3‘“ are of the order -<,we Cb VX? giving slower

5;;

convergence in the interior and not converging at all on

the face. In view of the above discussion, all calculations

in this chapter have been carried out with at most m = 50.

Due to repetition of the arithmetic process for all

functions, all computations in this chapter were carried

out with the MISTIC computer. Various programs were pre-

pared in the floating decimal form. The programs were

designed in such a way thatfithe dimensions of the cross

shape are variable parameters. The program for the eval—

uation of the energy is given in Appendix C as an example.

In the case of the pure bending moment loading,

according to the conclusions in Chapter II, the stresses

on the face of the column will be independent of the beam

span L2 (Figure 3.3), and the height of the column for L/b

.and h/d greater than 1.3 and 2.0, respectively. Hence,

for the analysis of the mode of the stress distribution in
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the column portion of the Joint the only variables are

b, d, and h. Two independent dimensionless parameters

can be formed from these variables, say b/h and d/b. As

an example, for b = d = 3.42856h all quantities discussed

above are evaluated. Stresses are recorded in Table 5.1

and bending stress <73 is plotted in Figure 5.2. The

energy and the equivalent depth results are given in Table

5.2. The displacement u, slope 32‘; , and curvature €591;

for the beam center line (Y-axis) are recorded in Table 5.3

and presented graphically in Figure 5.3. Equivalent depth

based on center line curvature is calculated by M = E13512...

This equivalent depth is recorded in the last column of

Table 5.3. The two equivalent depth curves calculated on

the energy and center line curvature concepts are plotted

in Figure 5.4. Figure 5.4 indicates that the equivalent

depth based on the curvature is nowhere near that based on

the elastic energy. Hence, an energy calculation derived

from the equivalent depth based on center line curvature

would be greatly in error. To study the effect of the

various ratios of the b and d dimensions of the cross

shape on the equivalent depth inside the column, equivalent

depths are evaluated for different proportions of b and d

and are presented in Table 5.4 and in Figures 5.5 and 5.6

Discussion of Results
 

The deflection u at the face of the column can be

made zero by selecting the constant a2 in the deflection
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Equation 5.23 as 3.233733. Comparison of the deflection

and the slope diagrams indicates that the deflection is

fairly constant in the central half of the column. Hence,

the slope in that region is almost zero compared with the

slope in the vicinity of the face of the column.

The equivalent depth diagrams inside the column

calculated by the numerical method of Chapter IV and one

calculated by the series method of the chapter (Table 5.2)

are plotted in Figure 5.7 for comparison. From a study

of Figure 5.7a it is concluded that the shape of the

equivalent depth diagram for the case with the fillet agrees

closely with the one calculated by series application in

the middle 2/3 width of the column. But the value of the

equivalent depth does not agree. These two curves can be

made to coincide (within 7%) by adding a constant amount

to all of the ordinates of the series method curve, raising

or lowering it enough to make the two curves agree at one

point. This suggests that the shape of the stress distri—

bution in that region at various sections is not altered by

replacing the true stress distribution on the face of the

column of the cross shape by a linear stress distribution

of o'y on the face of the column. The equivalent depth

diagram in the outer 1/3 portion of the column does not

agree because in the case of the cross shape with the

fillet the stress is distributed over more than the depth

of the beam. Hence, the contact area for transferring the
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stresses from the beam to the column is not the same in two

cases. Also in Figure 5.7b there is agreement in the

shapes of the curves in the middle half of the column.

Comparison of the results of Figures 5.7a and 5.7b indi-

cates that the portion of the column in which there is dis-

agreement is the same in both cases. Hence, it is concluded

that even though the R value (the ratio of the equivalent

depth de to the actual depth 2d of the beam), is different

at the face of the column in the two cases of Figures 5.7a

and 5.7b due to difference in stress concentration, the

stress concentration factor does not disturb the mode of

stress distribution inside the column away from the face

of the column. In otherwords, the local stress concen-

tration effect does not extend to the entire width of the

column.

The suggested identity of stress distributions, based

on the agreement in the shape of the equivalent depth

diagrams in the middle 2/3 portion of the column can be

checked by comparing the stress distributions in that

region calculated by the numerical method and by the series

method. As the CV
y

only <1§ stresses are compared. Comparison of Figure 4.4

stress contributes most of the energy,

with Figure 5.2 shows the agreement of the mode of stress

distribution in the middle 2/3 of the column.

The shape of the equivalent depth diagram calculated

by the numerical method for a cross shape without fillets
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agrees closely with that calculated by the series method

throughout the column width as can be seen from Figure 5.7.

This again supports the argument presented in Chapter IV

that the true stress distribution existing at the face of

the column of the cross shape subjected to pure bending

moment loading condition can be replaced by a linear stress

distribution without altering the mode of stress distri-

bution throughout the width of the column. The application

of series results in combination with the numerical method

will be discussed in Part IV.

Comparison of results in Table 5.4 for b = d = 0.42856h

withthose for b = d = 3.2h indicates that when the ratio

d/b remains constant, the height of the column does not

have any effect upon R. Indirectly this supports the

conclusion of interaction limit in the column given in

Chapter III. Of course, this lack of dependence on the

height of the column has some limitation. This can be seen

by taking d = h. The ratio R at all sections inside the

column will be 1.3 as is shown by the conventional beam

theory and not the one calculated in Table 5.4. With

the help of the conclusion in Chapter III, about the inter-

action limit in the column it can be concluded that when

d is greater than 3.5h, then the equivalent depth infor-

mation in Table 5.4 cannot be used. The lack of dependence

of R on the height of the column can be observed by comparing
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the results of b = 0.42856h, d = 0.3h (d/b = 0.73) with the

results for b = O.3h, d = 0.2h (d/b = 0.667). or course,

the results for the ratio R in the two cases do not agree

closely because d/b ratios aré”a little different in the

two cases, but the trend is apparent. Here also there will

be a limit to the lack of dependence on the height. In

general for any d/b ratio if d exceeds 0.5h, then the ratio

R will no longer be independent of the height. As d varies

from 0.5h to h the ratio R will approach the value 1.0.

In Figure 5.5 the depth d of the beams is kept con-

stant and equal to 3.2h and the column width is varied.

As the width of the column is increased the equivalent

depth curve becomes steeper attaining different maximum

equivalent depths. This is due to the fact that as the

column becomes wider there is more transition zone available

and consequently the stress distribution curve at any

particular beam section becomes flatter. It is to be noted

that all the curves coincide near the face of the column.

They spread out as they approach the center line of the

column. In Figure 5.6 the width of the column is kept

constant and the depth of the beam is decreased. The same

characteristics are observed as in Figure 5.5.
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III. VARIABLE BENDING MOMENT CONDITION

(SHEAR-LOADING CASE)

A cross shape subjected to shear loading by a shear

force V having a parabolic distribution on the ends of the

beam and a uniform normal stress distribution on the top

and the bottom ends of the column as shown in Figure 4.14

will be replaced by a column acted upon by the shear force

V on the face of the column and the bending moment M = VL

as shown in Figure 5.1, where L is the span length of the

beam. Since it was concluded in Chapter IV that on the

face of the column the assumption of uniform shear stress

distribution due to shear force V will be better than the

assumption of a parabolic distribution, a uniform stress

distribution is assumed in the following analysis. The

bending stress distribution is assumed to be linear. This

assumption will not alter significantly the mode of stress

distribution inside the column. The analysis of this case

can be done by the application of results derived in Part

I. For this the constants A3, A and Bm are to be eval-
m,

uated by using the boundary conditions.

Boundary Conditions
 

If the shear stress Yrky is given by -K2(d2 - x2)

on the end of the beam, then the moment M acting on the

face of the column is equal to (4/3) K2d3L. The boundary

conditions are summarized as follows:
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Ony=ib, 6§=2K2Ixfromx=0tox=idand cry=0

from x = i d to x'= i h.

7=ky = (2/3) K2d2 from x = 3 to x = i d and

z:xy = 0 from x3: i d to x = i h.

On x = + h, xy = 0 and a; = (2/3) K2d /b from y = O to

y = i b.

0nx=-h, Txy=0and O’;(=-(2/3) K2d3/b fromy :0 to

y = i b.

By using these boundary conditions in the Formulas 5.9, 5.10

and 5.11 for Fourier coefficients, A0, A and Bm are eval-
m:

uated. Hence, the constants Clm and C4m are known, and

the stress function is known.

Evaluated Results
 

It is to be noted that the parameters in the stress

function 0 will be b, d, L, and h. All these parameters

will affect the energy. The equivalent depth as defined in

Part III of Chapter IV is calculated with various ratios

of b, d, and L to h. In Table 5.5 the results are recorded

for the case in which I is kept constant at the value

0.57143h, and b and d are variables. In Table 5.6 the

results are recorded for the case in which b and d are

kept constant at 0.42856h and L is a variable. In Figure

5.8 the equivalent depth calculated for the case of b = d =

0.42856h and L = 0.57143h is plotted. Also in this figure
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are plotted the results of equivalent depth calculated by

the numerical method for shear-loaded Joints both with and

without fillets. In Figures 5.9 and 5.10 part of the

results from Table 5.5 are plotted. Figure 5.11 represents

the results of Table 5.6.

Discussion of Results
 

Figure 5.8 indicates that for Joints with fillets

the shape of the equivalent depth curve as calculated by

the series method agrees closely in the middle 2/3 of the

column with that determined by the numerical method. Hence,

the true mode of stress distribution at various sections

inside the column is not altered by replacing the true

stress distribution at the face of the column by the linear

distribution of’ ‘63 and uniform distribution of 1rky.

The difference due to contact area on the face of the

column brings out the disagreement near the face.

In the case of the Joint without fillets the shape

of the equivalent-depth curve as calculated by the numerical

method agrees only in the middle half of the column width

with that calculated by the series method. The agreement

in the shear loading case is not as good as in the case of

pure bending. This means that in the case without fillets

the shear stress distribution due to shear force V is dif-

ferent from the assumed uniform one.
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Figure 5.9 shows the curves of equivalent depth in

which d and L of the cross shape are kept the same and b

is varied. The behavior is the same as in the case of the

pure bending moment. The reasoning given for this behavior

in the case of pure bending moment applies here too.

Figure 5.10 shows the curves in which b and I are kept con-

stant and d is varied. The effect is the same as in Figure

5.9. Comparison of Figures 5.5 and 5.9 indicates that for

b = d = 0.2h the curves for the pure bending moment case

and the shear loading case are almost the same, and the

variation with b/d is similar in the two cases. Although

the agreement is not so close for larger values of b/d as

it is for b/d = 1.3. Figures 5.6 and 5.13 indicate that

for b = d = 0.42856h, the curves are not the same for the

two cases of loading. The curve in the shear-loading case

is steeper, and it is expected that the disagreement would

even be greater for larger values of b/d. Concluding, as

d increases with respect to h, the pure bending moment and

shear-loading case curves spread apart. This conclusion

can also be drawn from Tables 5.4 and 5.5. The agreement

of the equivalent depth curves in the case of pure bending

moment and the case of shear loading for d = 0.2h can be

explained as follows: The relatively high loss of energy

in the case of shear loading is offset by the energy due

to uniform normal stress <7; existing in the column. For

long columns (small d/h) this energy in the column due to
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(x will be a significant part of the total whereas it

will not be so significant for short columns.

The equivalent depth de is found by solving the

equation M2/2EI + 1.2 V2/2GA = Elastic energy, in which I

and A are expressed in terms of de. In the case of shear

loading the bending moment on a section is a linear function

of the beam span length. As the beam span length becomes

larger, the effect of shear becomes smaller and the equiva-

lent depth as calculated in the shear case will approach

the one for the case of pure bending moment. This fact

is observed by noticing the trend of the equivalent-depth

curve as L increases, Figure 5.11. Comparing the results

of the equivalent depth for the case of b = d = 0.42856h

and L = 9.14288h from Table 5.6 with the one of the pure

bending moment case with b = d = 0.42856h shows that the

equivalent depth values for these two cases differ by

less than 2.0%. Similar behavior is to be expected also

for other ratios of b/h and d/%, so that the results

given in Table 5.5 approach those in Table 5.4 as L in-

creases. It was shown previously that for d = 0.2h the

equivalent depth curves in pure bending and shear loading

case are almost the same. Hence, for that particular d/h

ratio, L is not important, but as d/h increases, L will be

significant as far as agreement between pure bending and

shear loading is concerned.
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IV. INTERPRETATION OF RESULTS OF SERIES METHOD

AND NUMERICAL METHOD

A. Pure Bending Moment
 

It was noted in Part III of Chapter IV that the true

stress distribution on the face of the column can be

replaced by a linear stress distribution having a maximum

stress FKld, where F is a correction factor. It was also

noted that the series-method solution with assumed linear

distribution having maximum <3; stress equal to Kld results

in a shape of the equivalent depth diagram similar to that

obtained from the numerical solution in most of the column.

Hence, the value of the correction factor F is to be selected

in such a way that equivalent depths at the column face as

calculated by the numerical method and the series method

are the same. Concluding, as far as the shape of the

equivalent depth curve is concerned the equivalent depth

as calculated by the series method can be used for all pur-

poses. Hence, the equivalent depth curve inside the column

can be plotted by selecting the proper curve of the series

method and locating this curve by raising or lowering it

enough to have at the face of the column the proper value

of the ratio R as calculated by the numerical method.(l.l6

in case of r/d = 1/3 and 1.10 in case of r/d = 0). These

values of the ratio R of equivalent depth to the actual

depth are discussed in Part III of Chapter IV.
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'B. Variable Bending Moment (Shear—Loading Case)

As in the case of pure bending moment, the series

method results in the shear case also can be used in com-

bination with the results of the numerical method. In the

shear-loading case the R value at the face of the column

will depend upon the proportional contribution of the shear

energy due to shear force to the total energy. According

to the type of the loading, the R value will depend upon

the beam span length as discussed in Chapter IV. By

selecting the proper R value at the face of the column and

combining it with the proper curve of the series mentod,

depending upon d, b, and L values, the equivalent depth

diagram can be constructed.

V. APPROXIMATION OF RESULTS IN FORM CONVENIENT

FOR USE IN DESIGN

The correct equivalent depth diagram inside the

column can be constructed for any d, b, and L proportions

of the Joint by the approach discussed in the preceding

pages. The results indicate that the equivalent depth

diagram depends upon the loading condition and proportions

of the Joint. Hence, for precise calculations an extensive

set of curves must be prepared which can be used by the

designer. This can be done by constructing the various

sets of curves for different proportions of the Joint and
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different types of loading, by the series method, and com-

bining these results properly with the values of R at the

face of the column evaluated by the numerical method. For

practical purposes, however, an approximate equivalent

depth diagram has been constructed as explained in the

following paragraph which can be used for all proportions

and any kind of loading without introducing any serious

error.

First the selection of the R value at the face of the

column will be considered. For pure bending-moment loading

it was concluded in Chapter IV that for practical purposes

the R value at the face of the column could be taken as

1.16 for d/b less than 2.0 and r/d = 1/3. In the case of

the shear loading for r/d = 1/3 and d/b = 1.0,

the R value was found to be 1.07. As the span becomes

larger, the R value at the face of the column approaches

the value for the case of the pure bending moment. For

r/d = O, R at the face is 1.10 in the case of the pure

bending moment and 0.9242 in the case of shear loading.

In all these cases the ratio of the span length L to the

beam depth 2d was 0.667. Infiall practical problems this

ratio is greater than 2.0. Hence, for values of L/2d

greater than 2 the R value at the face of the column in

the case of shear loading will be between 1.07 and 1.16

for r/d = 1/3 and between 0.9242 and 1.10 for r/d = 0. In

view of the previous discussion it is suggested that if the
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R value at the face of the column is taken as 1.0 for

r/d = 0 and as 1.10 for r/d = 1/3, for any kind of loading

and any Joint proportions, it will not introduce any sig-

nificant error, keeping in mind the many uncertainties in

design practice.

The equivalent-depth curves calculated by the series

method are approximated by dashed straight lines in Figures

5.5, 5.6, 5.9, and 5.10. The angles which these lines make

with the horizontal line are noted. In the case of pure

bending for d = 0.2h, as the column width b increases from

0.2h to 0.42856h the angle Q 'which the approximating line

makes with the horizontal line increases from 20 degrees

to 31 degrees. In the case of the shear loading for

d = 0.2h it varies from 22 degrees to 35 degrees. In

Figures 5.5 and 5.9 the ratio of the beam span length L to

the beam depth 2d is 1.428. Almost all practical problems

will have this ratio greater than 2.0. As the ratio L/2d

increases the approximate equivalent depth lines in the

case of the shear loading will approach to the pure bending

moment case. This behavior has been discussed before. In

view of the results of Figures 5.5 and 5.9 it can be

generalized that for any kind of loading and beam span

length the approximate equivalent depth line will be at an

angle B varying from 20 to 35 degrees for the ratio of

d/b = 1.3 to d/b = 3.4667.
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For b = d = 0.42856h, which might be the most extreme

case, angle a varies from 20 degrees for the pure bending

-moment case to 30 degrees for the shear-loading case. In

reality b will not be greater than 0.42856h. It can be

inferred from Figures 5.5 and 5.9 that for b smaller than

0.42856h and d = 0.42856h, 9. will be smaller than 20

degrees for the pure bending case and smaller than 30

degrees for the shear loading case. Concluding, it is

suggested that the angle 9 be taken as 30 degrees for any

kind of loading and practical proportions of the cross-

shaped Joint of the frame structure.

The error involved in the suggested approximate

equivalent depth line is examined by comparing the total

energy inside the Joint, which is evaluated by the true

and approximated equivalent depth curves for the cross shape

having b = d = 0.42856h, (The true energy is evaluated

from the results of Chapter IV.) For the pure bending

moment case these errors are 10.8% and 5.6% for the case

of r/d = 1/3 and r/d = 0, respectively. For the shear-

loading case these are 8.75% and 5.32%, respectively. It

is of interest to contrast this small error introduced

by the approximation with much larger error introduced by

the two assumptions in common practice. As was pointed

out in Chapter I, the two assumptions that have been made

are either (1) that the effective depth in the column is

equal to the depth at the face of the Joint or (2) that
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the moment of inertia is infinite in the column zone. For

b = d = 0.42856h and r/d = 0, the true total energy inside

the Joint isCDQ§i3K§ du/2E or 3.75 Kg d6/2E for pure bending

moment or shear-loading cases, respectively. The total

energy, calculated by assuming that the equivalent depth

at any section inside the Joint is the same as that at the

face, is 0.6667 Ki du/2E or 8.12 K: d6/2E, for pure bending

moment or shear-loading cases, respectively. The total

energy calculated by assuming infinite moment of inertia

inside the Joint is zero in both cases. The error involved

in either of the present practices is about 100%. It is

to be noted again that this error will be significant for

frame structures only when the spans of the beams are small.
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TABLE 5.1

STRESSES FOR A COLUMN HAVING b = d = 3.42856h

SUBJECTED TO PURE BENDING MOMENT

Stress values are to be multiplied by th.

 

 

 

 

y x

b d a? 0;. 1:xy

3 0 3.33333 3.33333 0.03003

2/8 3.08626 -0.02962 0.00003

4 8 3.14975 -0.35052 0.00000

/8 0.17138 -0.05392 0.00000

7/8 3.16442 -0.34789 0.00303

1 3.14773 -3.33784 0.30000

10/8 3.39925 -0.31372 0.00300

12/8 3.05374 0.33372 3.00000

14 8 0.32438 0.33984 3.00003

1 /8 3.33879 0.33791 0.03003

7/3 3.33333 0.33033 0.03003

2/8 0 3.33333 0.03333 0.02981

. 2/8 0.39334 -3.32643 0.02609

2/8 0.15862 -0.34646 3.01357

/8 3.18233 -0.35363 3.03711

7/8 3.17283 -3 34427 -3.0l738

1 3.15188 -3.33329 -3.02362

10/8 3.09531 -0.03816 -3.32235

12/8 3.34773 0.03689 -3 01057

14 8 3.32321 3.31326 -3.33364

1 /8 0.33738 3.33733 0.33453

7/3 3.33333 3.33033 3.30642

4/8 0 3.33333 0.30030 3.35081

2/8 3.39987 -3.31263 3.34629

4 8 3.18272 --0.32713 3.02793

/8 3.21677 -0.33577 -3.01252

7/8 0.20135 -0.33341 -0.03618

1 0.16434 -0.31710 -3.05147

10/8 3.37786 3.33847 -0.04l34

12/8 3.02995 0.31216 -0.01411

14 8 3.01368 0.33791 0.00231

1 /8 3.33329 3.30393 0.00877

7/3 3.33333 0.03330 0.01100
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X X

E 'd 63’ d}; 'zky

6/8 0 3.33333 0.33333 3.34739

2/8 3.13694 3.32131 3.04621

4 8 3.20863 3.33291 3.03754

/8 0.28396 3.01963 -0.003l0

7/8 3.26874 3.30958 -3.34955

1 3.18499 3.32094 -0.08767

10/8 3.33471 0.02438 -3.03852

12/8 3.33761 3.33355 -0.03414

14 8 3.33235 -0.03687 3.33636

1 /8 3.33045 -0.33583 0.00950

7/3 3.33333 3.03333 0.01029

7/8 0 3.33333 3.33333 3.03077

2/8 3.13748 3.34669 3.03046

4 8 3.21431 3.38837 3.02949

/8 3.31331 3.13326 0.01235

7/8 3.33381 0.37197 -0.33123

1 3.19847 0.05768 -O.11015

13/8 3.33822 3.03352 -0 01587

12/8 3.33131 -0.32l89 3.33187

14 8 3.33333 -0.32113 0.00563

1 /8 3.33332 -0.01325 0.00645

7/3 3.33333 0.30333 0.00654

1 3 3.33333 3.33333 3.00003

2/8 3.13326 3.37325 0.30000

4 8 3.21787 3.15851 3.33300

/8 3.32533 0.25384 0.30333

7/8 3.38284 3.3355 0.03333

1 3.21141 3.13424 3.33000

10/8 -3.33356 -3.37334 0.03000

12/8 -3.33283 -3.35739 0.00033

14 8 3.33237 -0.33629 0.00000

1 /8 -3.33358 -0.02219 0.30000

7/3 0.33333 0.33333 0.00000
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TABLE 5.2

ENERGY AND RATIO R FOR A COLUMN HAVING

b = d = 0.42856h SUBJECTED TO PURE

BENDING MOMENT

 

 

 

% Energy Ratio R = de/2d

0.0 0.025299 1.2756

0.1 3.325689 1.2687

0.2 0.026852 1.2513

0.3333 0.029535 1.2117

0.4 0.031403 1.1867

0.5 0.034345 1.1517

0.6 0.037616 1.1172

0.6667 0.039762 1.0969

0.8 0.043730 1.0627

0.9 0.047361 1.0347

1.0 0.061145 0.9503

 b..—

I
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TABLE 5.3

CENTER LINE DEFLECTION u, SLOPE 3“ CURVATURE

:5; ; AND RATIO R BASED ON EURVATURE*

3N‘

y Deflection Slope Curvature Ratio R

b Bu. 324’: Based on

“- 5:, 57‘ Curvature

3.0 0.029031 3.033000 -0.l75401 1.7855

3.1 0.028868 -0.337766 -0.193022 .l.7303

0.2 0.028342 -0.017082 -0.247946 1.5917

3.3333 0.026898 —0.334842 -0.387464 1.3716

3.4 0.025731 -3.047328 -0.493688 1.2679

3.5 0.023195 -3.372503 -0.694452 1.1292

0.6 0.019373 -0.l07267 -0.963117 1.0127

3.6667 0.015872 -0.138319 -1.l79628 0.9464

3.8 0.005776 -0.219948 -l.693661 0.8389

0.9 -0.005336 -3.331710 -2.l23542 0.7780

1.0 -0.020373 -0.4l0173

 

*Deflection, slope, and curvature are to be multiplied by

thE/E, th/E, and Kl/E, respectively.
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CHAPTER VI

SUMMARY AND CONCLUSION

For the analysis of indeterminate frame structures

in which the flexural deformation is the primary one, the

energy variation in the beam including the Joint subJected

to flexural action is the essential information required

to be known. Basically this reduces the problem to the

determination of the stress distribution. Except in and

around the Joint the stress distribution is that of the

conventional beam theory. Inside the Joint the stress

distribution can be determined by analytical or experimental

methods. Photoelasticity investigations of the cross shape

subJected to flexural action were carried out to determine

the limits beyond which the stress distribution is that of

conventional beam theory. It was concluded that the limit

extends into the beam and the column portion of the cross

shape a distance equal to half the column width and half

the beam depth, respectively, from the face of the Joint.

Using this information the stress distribution in and

around the Joint subJected to flexural action is determined

by the numerical finite difference method. From the stress

distribution information the elastic energy per unit beam

span length was calculated at the various beam sections.
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From this was calculated an equivalent depth, which if used

in the conventional beam theory energy formula would give

the true elastic energy at the section. The cross shape

was analyzed with two loading conditions. In one case

the Joint was subJected to pure bending moment. In the

second case the Joint was subJected to variable bending

moment (shear loading). The effect of small fillets was

also studied. A series method was used to determine the

effect of different proportions of the cross shape on the

shape of the equivalent depth curve inside the Joint. An

approximate equivalent depth line was suggested, which is

to be used for practical purposes.

The following conclusions can be summarized from the

analysis:

1. The knowledge of the energy variations in and

around the Joint of the frame structure subJected

to flexural action is required for

the analysis of the frame structures in which

the flexural deformation is the primary one.

2. Under pure bending moment condition, the equiva-

lent depth at the face of the column or the Joint

depends upon the fillet radius, beam depth,

column width, and column height. Under variable

bending moment condition (shear loading), the

equivalent depth at the face of the column depends

upon these things and in addition on beam span

length.
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3. The shape of the curve inside the Joint depends

upon the loading conditions and the proportions

of the cross shape.

4. For exact analysis a series of equivalent depth

curves must be prepared with different loading

conditions and different proportions of the

cross shape.

5. For practical purposes, the equivalent depth

is not sensitive to variations in Poisson's ratio.

6. For practical purposes, an approximate equivalent

depth line, as suggested in Part V of Chapter V,

can be used for any loading condition and any

proportions of the cross shape.

The analysis was limited to the cross shape with

symmetry about the beam and column center lines. The tee

shaped Joint in which the symmetry is about one axis and

the knee Joint in which there is no symmetry can be analyzed

for the equivalent depth information by following the pro-

cedure of this analysis. It is to be expected that in the

tee shape and the knee shape Joints subJected to flexural

action the equivalent depth will be smaller than the

corresponding beam section in the cross shape.



APPENDIX A

CONFORMAL MAPPING OF A CROSS—SHAPED POLYGON

For the region bounded by rectilinear polygon of n

sides, such as the cross Shape, the mapping function that

maps the interior of the polygon onto the unit circle has

the form*

(4-I) (4,-|) («n-I)

z-wcz)=-P[[<e— 2,) cr- 2) ..........(z—znljdrira

where the fin. are the points on the boundary of the unit

circle in the Z’—plane, corresponding to the vertices of

the polygon in the z-plane, and the numbers 7T4; are the

interior angles at the vertices of the polygon. P and Q

1 are constants. This formula is known as the Schwarz-

Christoffel transformation. Applying the formula to the

symmetrical cross shape as shown in Figure A.l the mapping

function reduces to

-1
‘/

z= Pfccz--a.)"cz-‘12)CY-as)(vial/zChance-v53). 2.

"/2. V2 __ __ ’9. ..

(«c-m.) mm.) (2+ a.)ZCz-a,)’zs-a,)(g-a,)141; m.

The cross shape region is symmetrical about X and Y axis.

Due to symmetry on the unit circle 51 = l/gl,2é = l/a2,

 

*

Sokolnikoff, op. cit., p. 57.
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‘3 = l/a3. Hence, the mapping function reduces to

7 3 'V2 ‘ ‘Iz ’- - "I ‘l ‘4’

z -1:ch g.) (kg-£1 o- Emacs—6231 d-t’hbzo-r‘ab-‘AH a
l g 3

The mapping function as shown is an elliptical integral.

This makes it difficult to use in the stress formulas of

the Muskehelishvili method.* Each factor of the integrand

can be expanded by an infinite series. These

series are multiplied together and the result integrated

term by term to obtain the mapping function in the form

‘9 w

z = Z cn‘q where the Cn are the constants de-

ma!

pending upon a1, a2, To evaluate the series one musta3.

take a finite number of the terms in the series. This

certain number has to be decided in such a way that the

mapping function obtained by this limitation should map

the region of the circle onto the desired shape with

reasonable accuracy.

Computer Program
 

The multiplication of six binomial series is very

cumbersom by long hand because of the large number of terms

required. A program was therefore prepared so that the

tedious computations could be done by the MISTIC computer.

The program for the mapping function was prepared in the

floating decimal form for use with the MISTIC digital

 

*-

Ibid., pp. 262-280.
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computer located at Michigan State University. The program

was prepared in such a way that the odd coefficients for

the mapping function were calculated uptx>the 49th power

for any given set values of a1, a2, a3. This allows one

to evaluate the different mapping functions for different

dimensions of the cross shape with the same program. A

second program was made, which calculated the value of Z

corresponding to any point on the unit circle for a partic—

ular cross shape. The data necessary for the second program

are the 24 values of 9 (2: i9 ) and the coefficients

evaluated by the first program for the series of the mapping

function for the particular value of a1, a2, a3. The pro-

gram was made in such a way that the Z value will be calu-

lated for the same point for powers of n up to n = 21,

n = 33, or n = 49. Comparison of the three results gives

some idea of the convergence of the series.

Results

The values for the mapping function for the three

different proportions are given in Table A.l. Since

a2 = e ' , the cross shape is symmetrical about the

45 degree line of the quadrant. Hence, the Z values are

evaluated for various values of 9 from O to 1&5 degrees

( 2' = e16), which are given in Tables A.2, A.3, and A.4.

The transfommxishapes tol/Bth of the circle to corresponding

part of the cross shapes are shown in Figure A.2, A.3, and

A.4.
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Discussion of Results
 

From the mapped figures it appears that the corners

are too far off from the actual conditions. Also the rate

of the improvement in the mapped shape by taking more terms

of the series is very slow. By taking more terms in the

series one could hope to get a sufficiently accurate

explicit solution of the mapping function in the polynomial

form. But it is to be noted that in the method* for the

solution of the biharmonic equation with the help of con-

formal mapping one has to solve a number of simultaneous

equations of the same magnitude as the degree of the poly-

nomial of the mapping function. The capability for the

solution of the simultaneous equations in a practicable

time will restrict the usefulness of the method even though

theoretically there is a solution by this method. The

MISTIC computer is limited to 39 equations at the present.

Since it appeared that more than 39 equations would be

needed, this approach was abandoned. It is remarked also

that there is a possibility that the mapping series will

not converge at all at some boundary points, although the

calculations seem to show a slow convergence.

 

*Ibid., pp. 278-279.
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TABLE A.l

COEFFICIENTS OF THE SERIES OF THE MAPPING FUNCTION

 

 

 

 

Power Cn = Coefficients of Z”

n

Case 1 Case 2 Case 3

1 1.0000 00 1.0000 00 1.0000 00

5 0.2618 03 0.2902 11 0.2996 05

9 0.0845 86 0.1341 44 0.1520 11

13 0.0240 38 0.0843 09 0.1094 60

17 -0.0116 96 0.0492 78 0.0807 94

21 -0.0227 44 0.0294 33 0.0660 83

25 -O.0232 51 0.0135 60 0.0540 57

29 -0.0148 76 0.0035 80 0.0465 22

33 -0.0052 21 -0.0041 57 0.0398 50

37 +0.0038 01 -0.0085 30 0.0352 01

41 +0.0085 91 -0.0113 46 0.0309 07

45 +0.0095 84 -0.0120 25 0.0277 08

49 +0.0067 78 -0.0117 15 0.0246 79

i -

.L r _L

Coefficients Cn in cases 1, 2, and 3 are for cross

shapes defined by the following positions of a1, a2,

a3.

. O. O 0",

Case 1. a1 = eonW/z , a2 = e sir/2. , a3 = e° I /2. 3

0.05 It/z o- 50' 1'72. 0.957772-

Case 2. al = e , a2 = e , a3 = e ;

0. hr 0. Hr 0.9 1172.

Case 3. al=e a: /2 , a2=e5 I2. , a3=e q l.
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APPENDIX B

FINITE DIFFERENCE EQUATIONS

I. Finite Difference Equation for the Biharmonic Differ-
 

ential Equation for an Irregular Node
 

In finer grading of a region in which the biharmonic

differential equation is to be solved by the finite differ-

ence method, a problem arises in applying the standard

finite difference formula, Equation 4.2, for a node in the

intermediate region such as 23,23 in Figure u.3b. This

difficulty is resolved if the procedure which was discussed

and referred to in Chapter IV is followed as suggested by

Allen and Dennis. This procedure is illustrated below in

setting up the finite difference equation for the biharmonic

differential equation for the node 23,23 of Figure 4.3b.

The biharmonic differential equation for the node

23,23 is as follows:

( <74¢)23,23 =‘3-

The finite difference equation can be derived as follows:

( V2) ( v2g)23’23 = 0

(v2) <¢3,3 + 2&2 + 25,2 + yam - u¢23,23>/<s/m2=o

(g34,3 +lfi3’23 + gé3’3 +.¢3’34 ‘ 4¢3,3L/(s/2)2

+ “114,2 + {53,1 + 552,2 + gr3,3 ' u¢3,2)/(S)2

+ (¢3’2 + fié,l + yi’2 + fié’B - ufié’ei/(S)2
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+ (¢3,3 + gz’z + g1,3 + 352,4 “Eugg’3)/(S)2

-4 ($333 + $532 + Q’2,2 + ¢2,3 - 4¢23’23)/(s”§)2

= 0

where s = ungraded mesh size.

This will reduce to

32512333 - 22x13,3 - 11¢3’2 - 10¢2’2 - 11¢ 14¢

a3+ 3&3

+ u¢3:23 + u¢2333 + u¢313u + guy2 + ¢311 + ¢2,1 + ¢l,2 + ¢2,l4

+¢L3=O

It is to be noticed that the mesh size is not the same

throughout the derivation. The mesh size taken at any

stage of derivation is one suitable for setting up the

finite difference equation for the Laplace operator at the

node without introducing new intermediate points. Also

net directions are chosen as suitable for the node.

II. Approach for Evaluation of ¢34134 (Refer Figure 4.3)
 

The ¢ value for the node 3&,34 can be expressed in

terms of fié’34 or in terms ofl¢3u’3 by evaluating the

finite difference equations for;the boundary conditions at

m and n, respectively. In reality the singularity of

‘¢34,34 is to be observed. In the present analysis ¢34,34

has been taken as the average of the two values of ¢34’34

evaluated by satisfying the boundary conditions at m and n,
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respectively. For that, first ¢ is expanded in terms of

Taylor series in the X or Y direction, respectively, at

points m or n. In the Taylor series, the boundary condi-

tions are substituted. Then the value of ¢34,3M can be

evaluated. The discussed procedure is illustrated as

follows:

Applying the Taylor series formula,

1¢3u,3u = fit + (X34,34 - Xm)<¢g> + (1/2)(X3u,3u- Xm)2(¢g)

+

Also,

¢3,34 . g5 + (X3,3u - xm)<¢g> + (1/2)(X3,3u- Xm>2 <z%>

+

H

where Z; and ER are first and second partial derivatives of

1 with respect to X, evaluated at m. By substituting the

values of flg, j; and the difference of X coordinates, the

required value of ¢34,34 can be evaluated in terms of ¢3,3u

from the above relations. In a similar manner by expanding

lfi in a series in the Y direction ¢34 34 can be evaluated

in terms of fléu’3. Then the average is taken of the two

¢34’3u values .



APPENDIX C

MISTIC COMPUTER PROGRAM FOR EVALUATION OF TOTAL

ELASTIC ENERGY ALONG THE BEAM SECTION OF THE

COLUMN SUBJECTED TO PURE BENDING MOMENT

ACCORDING TO THE SERIES SOLUTION

Problem Outline
 

For a column subjected to pure bending moment condi-

tion, the total energy across the beam section per unit

length in the Y direction is given by the Equation 5.17 in

which the constants P3, Clm and Cum are evaluated according

to boundary conditions mentioned in Part II of Chapter V.

In the formula for such a case the variable parameters

are dimensions d and b; and the Poisson's ratio/AC, m the

number of terms for a series and the value of y. The

variables d, b, and y are expressed as follows:

d = th,

b = Kbh,

y = FyKbh’

where F will vary from 3 to 1.

y

Data and Answer Form
 

In the following program the data to be supplied is

to be in the sequence of 77 , Kd, Kb,/¢ and eleven values

of Fy. The answers will be printed out in the sequence of

h h h h"
2. 2. 2.

aydx , —_{o§-dx ,iog.ry-¢lx ,‘L‘ny-dx ,



and total energy (in terms of 2E where E is modulus of

elasticity) for each value of Fy. Eleven sets of such

values will be printed out in the order in which F values
y

are fed in the machine. This program manipulates the num-

bers in the floating decimal form,* i.e. the numbers

represented in the form of A(lO)p, where l ZAZl/IO and

EflLJ>13 22-64. Hence, the numbers to be fed in the data

should bein the floating decimal form. The answers will

be printed out in the floating decimal form.

Master Program
 

The master program, i.e. complete program, is composed

partly of various subroutines. The order pairs of these

subroutines are not written in the following program, as all

these subroutines are available in the MISTIC library.**

Hence, only the designation and the title as used in the

library is given wherever these subroutines are used. The

program is prepared for eleven values of Fy and the maximum

value of m as 50. But a little modification in the following

program will allow one to change the number of values of Fy

and the maximum value of m. The value of m as 50 is used

for the reasons set forth in the discussion of the conver-

gence of series in Part II of Chapter V.

 

*u I!

Illiac Programming, Digital Computer Laboratory

(Urbana, Illinois: University of Illinois, 1955), pp. 4-9.

**MISTIC Library is located at Computer Laboratory,

Michigan State University, East Lansing, Michigan.
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Subroutine Designation Notes

Subroutine XI 218 Decimal order Input (25)

33 BK Directive

33F 339F Locations 9 and 13 are floating

Accumulators

33F 3311F

33F DDlBDF

33F 33213F

33F 332ADF

33F 3326DF

33 11K Directive

Subroutine Al 63 Floating decimal arithmetic

routine (168)

33 183K Directive

Subroutine A3 125 [Convert a number from floating

decimal representation to

normal machine form (27)

33 213K Directive

Subroutine 8A2 127 Exponential Auxiliary for

floating decimal (16)

33 243K Directive

Subroutine SA2-M Hyperbolic sine and cosine

floating point Auxiliary (18;

30 263K Directive

Subroutine TAl 126 Sine Auxiliary for floating

decimal (26)
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00 305K Directive

Location Orders Notes

3 22L Transfer control to R.H. of L.

53L Standard subroutine entry.

1 26 SA

88F Bring the number from the data tape into

Acc.

2 8S 293F Store contents of Acc. into 293F.

OK 2F Set the loop for Box 3 by setting

g3 = 3 and C3 = -2.

3 88 F Bring the number from the data tape

into Acc.

OS 291F Store the contents of Acc. into

designated location.

14 O3 3L If (cO +i1)£;2h transfer control to

L.H. of 3L.

3K 2F Set the loop for Box 3 by setting

g3 = 3 and c3 = - 2.

5 35 291F Bring contents of designated location

into Acc.

87 293F Multiply contents of Acc. by 7T.

6 OS 291F Store contents of Acc.at designated

location.

O3 5L If (Cg + l)£iO, transfer control to

L.H. of 5L.

7 8K 2F Put 2 into Acc.

8S 293F Store number 2 at 293F.

8 8K F Put number 0 into Acc.

8S 29AF Store number O at 294F.

9 8S 295F Store number 0 at 295F.

8S 296F Store number 3 at 296F.

13 OK 53F Set the loop for Box 3 by setting

g = O and c9 = -53.

85 29AF BrIng contents of 294F into Acc.

11 8A 291F Add contents of 291F to contents of Acc.

8S 294F Store contents of Ace. at 29AF.

l2 8J S8 Enter Sine subroutine. ‘

83 297F Store contents of Acc (Sine value) at

297E.
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Location Orders Notes

13 85 29OF Bring 1r into Acc.

86 293F 7772 into Acc.

1A 84 294F Add contents of 29AF to the Ace.

8J S8 Enter Sine subroutine.

15 87 294F Multiply contents of 29AF by that of

Acc. '

88 298F Store contents of Acc. at 298F.

16 85 297F Bring contents of 297F into Acc.

8O 298F Subtract contents of 298F from that of

Acc.

17 88 297F Store contents of Acc. at 297F.

85 296F Bring contents of 296F into Acc.

18 8A 293F Add contents of 293F to the Acc.

88 296F Store contents of Acc. at 296F.

19 85 297F Bring contents of 297F into Acc.

87 293F Multiply contents of 293F by that of

Acc.

23 86 296F Divide contents of Acc. by that of 296F.

86 296F Divide_contents of Acc. by that of 296F.

21 88 297F Store evaluated value of Bm at 297F.

85 295F Bring contents of 295F into Acc.

22 84 292F' Add contents of 292F to the Ace.

88 295F Store contents of Ace. at 295F.

23 88 295F Store order. Waste order.

8J 24L Transfer control to L.H. of 2AL.

2A 22 24L Transfer control to P.H. of 24L.

53 2AL Standard subroutine entry.

25 26 87 Enter Hyperbolic Sine and Cosine sub-

routine.

53 25L Standard subroutine entry.

26 26 84 Re—enter A1 subroutine.

85 1487 Bring Hyperbolic sine function into Acc.
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Location Orders Notes

27 88 298F Store contents of Ace. at 298F.

85 1537 Bring Hyperbolic cosine function into

Acc.

28 87 295F Multiply contents of Acc. by that of

295F.

84 298F Add contents of 298F to the Acc.

29 88 299F Store contents of Ace. at 299F.

85 295F Bring contents of 295F into Acc.

33 87 293F Multiply contents of Acc. by that of

293F.

88 333F Store contents of Acc. at 333F.

31 8S 303F Store order. Waste order.

8J 32L Transfer control to L.H. of 32L.

32 22 32L Transfer control to B.H. of 32L.

53 32L Standard subroutine entry.

33 26 87 Enter Hyperbolic sine and cosine sub-

routine.

53 33L Standard subroutine entry.

34 26 8A Reenter Al routine

85 1487 Bring hyperbolic sine function into Acc.

35 8A 333F Add contents of 333F to the Ace.

88 333F Store contents of Acc. at 330F.

36 81 299F Bring negative contents of 299F into

Acc.

87 297F Multiply contents of 297F by that of

Acc. -—

37 86 333F Divide contents of Acc. by that of 3OOF.

87 293F . Multiply contents of Acc. by that of

293F.

38 OS 353F Store Clm starting from 353F.

85 298F Bring contents of 298F into Acc.

39 87 297F Multiply contents of 297F by that of

Acc.

87 293F Multiply contents of 293F by that of

Ace.
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Location Orders Notes

43 8 O F Divide contents of Acc. b that of 03F.

Cg gt58F Storecgm starting from A5UF. 3

Al 02 13L If (co +-1) £32m transfer control to

R.H. of lOL.

8J 42L Transfer control to L.H. of 42L.

M2 26 6OOF Transfer control to L.H. of 633F.

OF F Stop order.

03 633K Directive

3 22 L Transfer control to R.H. of L.

5 L Standard subroutine entry.

1 26 84 Reenter A1 subroutine.

3K 12F Set the loop for Box 3 by setting

553:3 and CO: " 12.

2 88 F Bring the number from the tape.

OS 699F Store contents of Acc. at designated

location.

3 O3 2L If (c. +1) 5&0, transfer control to L.

H. 0 2L.

OK 11F Set the loop for Box 3 by setting

$3 = O and CO: '11.

A 1K 50F Set the loop for Box 1 by setting

E1 = 3 and c = -53,

2K 5F Set the loop for Box 2 by setting

g2 = 3 and c2 = -5.

5 8K F Put 3 into Acc.

28 715F Store number 3 from 715F onwards.

6 22 5L If (c2 + l)_é'O, transfer control to

R.H. of BL.

O5 703F Bring Fy into Acc.

7 87 292F Multiply contents of 292F by that of

Acc.

88 72OF Store contents of Ace. at 72OF.

8 85 715F Bring contents of 715F into Acc.

8A 72OF Add contents of 72OF to that of Acc.
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Location Orders Notes

9 8S 715F Store contents of Acc. at 715F.

8J IOL Transfer control to L.H. of 13L.

13 22 13L Transfer control to R.H. of 13L.

5O 13L Standard subroutine entry.

11 26 87 Enter hyperbolic sine and cosine sub-

routine

5O 11L Standard subroutine entry.

12 26 84 Reenter subroutine Al.

85 1587 Bring hyperbolic function into Acc.

13 17 353F Multiply contents of designated

location by that of Acc.

88 721F Store contents of Acc. at 721F.

14 85 1487 Bring hyperbolic sine function into Acc.

17 453F Multiply contents of designated location

by that of Acc.

15 88 722E Store contents of Acc. at 722F.

87 715F Multiply contents of Acc. by that of

715F.

16 88 723F Store contents of Acc. at 723F.

85 1587 Bring hyperbolic function into Acc.

17 17 453F Multiply contents of Acc. by that of

designated location.

88 72AF Store content of Acc. at 72AF.

18 87 715F Multiply contents of 715F by that of

Acc.

88 725F Store contents of Acc. at 725F.

19 85 1487 Bring hyperbolic sine function into Acc.

17 353F Multiply contents of Acc. by that of

designated location.

23 88 726F Store contents of Acc. at 726F.

85 721F Bring contents of 721F into Acc.

21 8A 723F Add contents of 723F to that of Ace.

88 727F Store contents of Acc. at 727F.

22 87 727F Multiply contents of 727F by that of Acc.

88 728F Store contents of Acc. at 728F.
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Location Orders Notes

23 32 72ZF Bring contents of 27F into Acc.

2 F Add contents of 72 F to that of Acc.

24 84 72AF Add contents of 72AF to that of Ace.

8S 729F Store contents of Acc. at 729F.

25 87 729F Multiply contents of 729F by that of

Acc.

8S 733F Store contents of Ace. at 733F.

26 85 726F Bring conténts of 726F into Acc.

8A 725F Add contents of 725F to that of Acc.

27 8A 722F Add contents of 722F to that of Acc.

88 731F Store contents of Acc. at 731F.

28 87 731F Multiply contents of 731F by that of

Acc.

88 732F Store contents of Acc. at 732F.

29 81 727F Bring negative contents of 727F into

ACC.

87 729F Multiply contents of 729F by that of

Acc.

33 8S 733F Store contents of Acc. at 733F.

5 716F Bring contents of 716F into Acc.

31 84 728F Add contents of 728F to that of Acc. z

88 716F Store contents of Acc. at 716F. ZIUQIJX-

32 85 717F Bring contents of 717 F into Acc.

8A 73OF Add contents of 733F to that of Ace.

33 88 717F Store contents of Ace. at 717F. ZICUEI)-JX-

85 718F Bring contents of 718F into Acc.

3A 8A 733F Add contents of 733F to that of Acc.

8s 718F Store contents of Acc. at 718F. zfcqudx

35 5 719F Bring contents of 719F into Acc.

8A 732F Add contents of 732F to that of Ace.

z

36 8s 719F Store contents of Acc. at 719F.2[(Z’x,).dx.

13 BL If (c1 +-1)£§O, transfer control

to L. H. of 8L.
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Location Orders Notes

37 8F 1F Give a carriage return and line feed.

3K 4F Set the loop for Box 3 by setting

g3=3andc3==-4.

38 35 716F Bring contents of designated location

into Acc.

89 9F Print contents of Acc.

39 33 38L If (c3 + 1 £3 3, transfer control to

L.H. Of 3 L.

81 718F Bring contents of 718F into Acc.

43 87 293F Multiply contents of Acc. by 2.

87 699F Multiply contents of Acc. by that of

699F.

41 88 718F Store contents of Acc. at 718F.

8K 1F Put number 1 into Acc.

42 84 699F Add contents of 699F to Acc.

87 293F Multiply contents of Acc. by 2.

43 87 719F Multiply contents of 719F by that of

Acc.

84 718F Add contents of 718F to Acc.

44 84 717F Add contents of 717F to Acc.

84 716F Add contents of 716F to Acc.

45 89 9F Print out the number from Acc. (Energy)-

'(2E).

8F 1F Give a carriage return and line feed.

46 33 4L If (Ca +1 6 3, transfer control to

L.H. of L.

8J 47L Transfer control to L.H. of 47L.

47 OF F Stop order.

OF F Stop order.

24 305N When the program is read in the.machine

and it comes to symbol N, the machine

will be ready to execute the order

24 335F. Hence, after starting with

START switch control will be trans-

ferred to L.H. of 335F.
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Operation of Program
 

The program is read into the machine. When the pro-

gram is read in, the machine will stop at 24 335F. Then

the program tape is removed and the data tape is put into

the reader. Then START switch is put on. It will take the

data in and will do the calculations. Machine will go on

until eleven sets of answers are printed out.

Calculation Time
 

It takes about 6 minutes for calculation of energy

and its components for eleven sets of Fy values. This

time includes the time for reading in the program and data

tape and printing out answers.
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