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ABSTRACT

THE QUASI-STATIC CONTACT PROBLEM FOR NEARLY-

INCOMPRESSIBLE AGRICULTURAL PRODUCTS

BY

Sharafeldin M. Sherif

The objective of this work was to implement the

finite element method for studying the mechanical behavior

of nearly-incompressible agricultural materials subjected

to a large deformation and a quasi-static loading. The

geometric nonlinearity was formulated using the Lagrangian

strain tensor and the resulting nonlinear equations were

solved using an incremental displacement procedure. The

properties for peaches, potatoes and apples were used in

the numerical model to calculate the stress components

and plot isostress lines for the two dimension plane

strain case of diametrical loading and the axisymmetric

case of a loading perpendicular to the axis of symmetry.

Flat plate loadings were analyzed in each case. The

material was considered to be elastic, isotrOpic, and

homogeneous.

Cylindrical samples of white potato and apple

flesh were compressed diametrically to failure. Inspec-

tion showed that the white potato samples split, with a



Sharafeldin M. Sherif

crack initiated at or near the center. The stress com-

ponents calculated using the finite element analysis

indicate this failure may be due to tension stress or a

combination of tension and maximum shear stress. The

apple samples were bruised in the vicinity of the contact

surface. The calculated stress components indicate that

this failure is probably a result of the maximum shear

stress.

Loading semispherical samples of white potato and

apple flesh to failure was performed. The failure crack

in the potato occurred at the center and the calculated

stress components indicate that this failure may be due

to tension stresses or a combination of tension and

maximum shear stresses. Inspection of the resulting

bruise shape which occurred in apples indicated a shape

which passes through the point of maximum shear stress.

The numerical results showed that the maximum shear

stress in peaches occurred on the axis of symmetry and

the bruise shape passes through that point which indicate

that the failure is probably a result of the maximum

shear stress.
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I . INTRODUCTION

Fruits and vegetables are subjected to different

types of mechanical treatments in harvesting that can

damage the product. Widespread mechanization has generated

a major concern about the effect mechanical harvesting and

handling has on the quality of the final product. In

order to prevent or minimize the mechanical damage to

mechanically harvested fruits and vegetables it is neces-

sary to determine the maximum permissible load that these

products can support before failing. Since the failure

is most likely related to the stresses in the material, it

is necessary to know the intensity and distribution of

the stresses in the fruit or vegetable for various loadings.

Many techniques used in the engineering sciences

to study the behavior of engineering materials have also

been used to obtain the stresses which occur in agri-

cultural products during a contact loading. For example,

‘Hamann (1967) considered the viscoelastic boundary value

€13 study the bruising of apples during impact. A defi-

r“ition of a failure criterion was attempted by Miles and

REJdkugler (1971) along the lines of the failure theories

de\Ieloped for non-biological materials.



A stress analysis of three dimensional bodies is

very difficult, particularly when the irregular shapes of

agricultural products are involved. The finite element

~method is a powerful tool for analyzing irregular shaped

bodies and for evaluating the stresses and displacements

in three dimensional bodies, provided computer facilities

are available. The finite element has been used to

analyze contact stress distribution in agricultural pro-

ducts for infinitesimal strains by Apaclla (1973), Rumsey

and Fridley (1974), and De Baerdemaeker (1975).

Contact loadings occur repeatedly during harvest-

ing and handling operations. Present design of cushion-

ing materials is based on the contact theory of elasticity.

This theory holds for small displacements and a Poisson's

ratio in the range of 0.3 - 0.4 but is not valid for

large deformation failures of nearly-incompressible

materials such as peaches or potatoes which have a

Poisson's ratio in the vicinity of 0.48 (Hughes and

Segerlind, 1972).

The overall objective of this study was to apply

the finite element technique to the study of nearly-

incompressible materials subjected to a quasi-static con-

‘tact loading. Specific objectives included:

1. To implement the finite element method for the

solution of problems involving incompressible and



nearly-incompressible materials which experience

either small or large displacements.

2. To study the stress distribution in semi-spherical

samples of potatoes and apples and semi-elliptical

samples of peaches.

3. To investigate the failure modes of white potatoes

and apples using a diametrically loaded cylin-

drical sample.

It is important to note that this work was based

on the assumption that the damaged fruit and vegetable

tissue can be considered homogeneous, isotropic and

elastic. Recent research has also approached the behavior

of the tissue by considering its basic composition as a

mixture of solids, liquids and gas (Brusewitz, 1969;

Akyurt, 1969; Gustafson, 1974).



II . LITERATURE REVIEW

The importance of the physical and mechanical

properties of agricultural products and the need for study

and research in this area was emphasized by Mohsenin

(1971). Some of this work relates to the material prop-

erties needed for the evaluation of stresses in fruits

and vegetables subjected to static and dynamic loads and

in the study of bruise susceptibility of the product.

2.1 Mechanical Damage
 

Mechanical harvesting, bulk storage and the han-

dling of fruit and vegetable products has indicated a

need for basic information on material properties.

Bruising and skinning of mechanically harvested potatoes,

distortion of onion bulbs at the bottom of storage piles,

and mechanical damage to fruits and vegetables by com-

pression, impact, and vibration have lowered the grade

Of these products, with a consequential loss to the

Eirower. Mechanical injury to agricultural commodities

F168 resulted from excessive stresses during mechanical

heirvesting and handling operations. As a result, many

irIvestigations have been conducted to determine the

me=<:hanica1 behavior of such agricultural products as

4



apples, onions, potatoes, peaches and grains when subjected

to various types of external forces.

Because of the increasing emphasis on the mechan-

ization of harvesting and handling of fruits and vege-

tables, it is even more essential to determine the

engineering and physical properties of these commodities

if bruising and mechanical damage are to be minimized

(Finney, 1967). Mattus 3E 21. (1960) showed that drOp

heights exceeding six inches on a hard surface produced

internal bruises in pears which developed into brown

spots. Mohsenin and G6hlich (1962) evaluated the resist-

ance of apples to injury by obtaining the yield and the

rupture parameters for apple fruit. They observed, for

example, that the force-deformation curve for an apple

was very similar to the stress-strain curve of steel;

that is, the force deformation relationship was approxi-

mately linear up to an apparent yield point after which

the force suddenly decreased and then continued to

increase up to some point of rupture. The yield point

in the apple fruit was significant in that it corresponded

to the point where the cells of the fruit were sufficiently

damaged to cause discoloration and deterioration of the

fruit. Unless the yield point was exhibited, no bruising

0f the fruit was indicated.

Zoerb (1958) indicated that the strain rate effect

fol: biological materials may be influenced by the moisture



content. He stated, for example, that the energy required

for shearing high moisture grain under impact loading was

greater than the static shearing energy; the reverse was

true for low moisture grain.

Lamp (1959) made an extensive study of the load

bearing capacity of the potato as influenced by climatic

conditions, variety, position of the tuber in the soil,

cultivated practices and storage. Variation of climate

from year to year influenced the resistance of the potatoes

to injury. Other significant factors were depth of

planting, soil and storage conditions.

Finney (1963) reported the influence of variety

and time on the potato's resistance to mechanical damage.

Park (1963) studied the effect of impact forces upon the

potato tuber and its resistance to mechanical damage.

The damage was evaluated in terms of the number of tubers

split and bruised.

2.2 Strength of Fruits and

Vegetables

 

 

The response of fruits and vegetables to a loading

can be used to define mechanical prOperties. The relation-

Ship between stress and strain indicates how a material

<ieforms under the load, and provides data related to yield

:EOrce, deformation at yield or failure and the modulus

of elasticity.
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Mohsenin and G5hlich (1962) and Mohsenin 2E.2l'

(1965) repeated data on the maximum allowable load for

several varieties of apples at harvest maturity. Resist-

ance to bruising under dead load and quasi-static loading

in terms of allowable surface pressure and deformation was

given. Fridley and Adrian (1966) reported data on the

resistance to mechanical injuries for apples, pears,

apricots and peaches by employing compression tests and

impact tests which were basically similar to those used

by Mohsenin and Géhlich. Pears can withstand large com-

pression forces before bruising and thus present little

problem when bulk handled in deep containers. On the

other hand, apricots bruise under a relatively small

compressive force and these fruits are more susceptible

to damage during bulk handling than pears (Fig. 2-1).

Nelson and Mohsenin (1968) reported that bruises

in apples caused by dynamic loads are considerably larger

than those caused by equivalent quasi-static loads.

However, Wright and Splinter (1968) found that lower

energy inputs are required to damage sweet potatoes under

impact than under quasi-static conditions.

Location of the bruise has suggested that the

Inaximum shear stress can be a possible failure parameter

CFridley and Adrian, 1966). Miles and Rehkugler (1971)

cOncluded that shear stress is the most significant

failure parameter in apples.
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Huff (1967) attempted to explain the mechanism

causing the cracking of potatoes in handling. Data was

obtained on tensile stress-strain prOperties of the

potato's skin and flesh. He found the tensile strength

of the potato varied throughout the potato tuber being

higher at the center than under the skin. The tensile

strength also varied from year to year. The failure

stress for the skin decreased after the storage. The

failure modulus was higher for specimens taken from the

center than when the specimen was obtained from flesh

immediately below the skin.

2.3 Contact Stresses
 

The general method for determining the distribution

of stresses in the zone of the contact area of two elastic

bodies was introduced by Hertz (1896). The common types

of contact stresses are caused by the pressure of two

bodies initially having a point contact: as two spheres,

or a sphere and a plane (Fig. 2-2), or a line contact: as

two cylinders, or a cylinder and a plane as shown in

Fig. 2-3. Contact stresses in biological products pro-

duces bruising in apples, and peaches and internal splitting

.in potatoes.

The solution of a problem of a concentrated force

Eic‘ting on the boundary of a semi-infinite body was solved

by Boussinesq (1885). Timoshenko and Goodier (1970) dis-

Cuass the application of the Boussinesq solution to determine
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Fig. 2-2 Pressure distribution on the contact

surface of a sphere loaded with a

flat plate.
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the relationship between a load distributed uniformly

over the area of a circular radius and the resulting

stresses. Finney (1963) suggested using a solution

derived by Boussinesq for analysis of a potato tuber sub-

jected to plunger loading. It is necessary to assume

homogeneity and isotropy and to also assume that a half-

space exists. However, it is realized that because of

the small radius of the curvature of certain products, the

latter assumption may not be completely valid.

The normal stress under a punch as shown by

Timoshenko and Goodier (1970) takes the form:

 

P
0' I =

zzzuo 2na/g2-r2

where the origin of the Z-direction, the surface of the

half-space and a closed form of the pressure distribution

are shown in Fig. 2-4. Finney (1963) reported a signifi-

cant difference existing between certain potato varieties

in their response to applied stresses of surface pressure.

Mohsenin and Gohlich (1962) applied the same technique

to apples, potatoes, pears and tomatoes concluding that

the compression test appeared to offer the most promise

(bf evaluation of mechanical behavior as related to

bruising.

Evaluation of the stress-strain relation for

CCnIvex bodies subjected to uniaxial compression by means
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of flat plates has also been investigated relative to its

application to agricultural products.

When a cylinder is compressed diametrically between

two flat plates, the conventional two-dimensional elas-

ticity theory predicts that the failure is initiated at

some point within the cylinder, with the exact position of

the critical zone dependent on the material under test.

This test is used to determine the failure under tensile

strength of such materials as rock, glass, and concrete,

and is an accepted standard test for brittle materials.

This test is occasionally called the Brazilian test.

Isenberge (1965) used this procedure to investigate the

effect of the amount of moisture content on the strength

of concrete. He concluded that failure occurs under lower

loads as the concrete becomes saturated. Brown and

Trollope (1967) stated that the failure in concrete was

initiated somewhere near the center of the disc and propa-

gated outwards to the loading point. ColbaCk (1966)

argued that the Brazilian test was valid for tensile

strength only if failure was initiated at the center of

the disc. Thaulow (1957) loaded a cylindrical specimen

to failure, summarizing that the tensile splitting strength

(appeared largely independent of the length and diameter

(bf the specimen. Durelli and Mulzet (1965) used photo-

elasticity to determine strain and stress distributions

irl a linear material subjected to large deformation. More
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detailed information for stress distribution between two

cylinders in contact are given by Radzimousky (1953),

DePater (1960), D6rr (1955), Poritsky (1950), and Smith

and Liu (1953).

The contact stresses in a sphere for the case of

infinitesimal strain can be examined in detail as given by

Hertz (1896), with later works consolidated by Love (1944)

and Timoshenko and Goodier (1970). Durelli and Chen

(1973) experimentally determined the displacements and

strains in a solid sphere diametrically loaded. Chen and

Durelli gave the stress distribution of the case described

above using the strain-energy function and the concept of

natural stress.

Fridley 33 31. (1968) applied the plunger and flat

plate tests on pears and peaches, concluding that the

theory of elasticity gives reasonable predictions of

stress distribution and bruising. The flat plate results

were more reliable and useable than the plunger test.

Comparison between the two tests are represented in

Fig. 2-5 as given by Fridley e: 31.

2.4 Stress Analysis in Fruits

and Vegetables

 

 

Limited work has been completed in analyzing

=3tresses in fruits and vegetables. Hamann (1970) solved

the contact problem involving a viscoelastic spherical

body falling onto another. In later studies, the finite
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Fig. 2-5 Comparison between using flat plate and

plunger test with different product.

(Fridley e§_§1. 1968)
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element method has been used to determine the stresses

in apples resulting from contact with a flat plate.

Apaclla (1973) assumed an elastic material. Rumsey and

Fridley (1974) used a material with a constant bulk

modulus and time dependent shear relaxation. De Baerde-

maeker (1975) used a material with time dependent bulk

modulus and shear modulus while studying the behavior of

a sphere in contact with a flat rigid plate to obtain the

creep deformation and the stress distribution. Gustafson

(1974) obtained a numerical solution to the axisymmetric

boundary value problem for the gas-solid-liquid medium.

2.5 Summary

The resistance of fruits and vegetables to the

applied forces is important in view of mechanical and

handling injuries to the product. Damage in the form of

skin removal, bruises or cuts may be increased during

digging, shaking, storage, grading and shipping. Knowledge

of the stress distribution in fruits and vegetables under

static and impact loads is limited because of the diffi-

culty involved in determining material properties and the

lack of analytical solutions valid for the irregular shapes

involved.

The finite element technique has potential when

analyzing agricultural products because of its ability to

handle irregular shapes. The stress distribution within a

product is required knowledge before failure criteria can
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be established. The finite element analysis of agricul-

tural products to obtain stress distributions has been

initiated but the final results are far from complete.



III . BASIC THEORY

The solution of problems in the classical theory

of elasticity are generally obtained by assuming infini-

tesimal deformation. The strain is evaluated by con-

sidering only the first order terms in the displacement

gradient; the second order terms are neglected. Both sets

of terms must be taken into consideration when calculating

the strains which occur during large deformation.

Sokolnikoff (1956) stated that many technically important

problems in elasticity call for consideration of finite

deformation; deformation in which the displacements

together with their derivatives are no longer small.

Numerous papers considering the large deformation

of elastic solids have been published by Rivlin (1948a,

1948b, 1956, 1960, 1970) and by Green and Adkins (1960).

Ericksen and Rivlin (1954) treated the case of large

elastic deformation of homogeneous anisotropic materials.

The behavior of most materials including metals,

rubber-like materials and biological products are not

linearly elastic, except within specified limits. The

stress analysis of rubber-like and biological materials

19
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possess two rather unique features as compared to the

analysis of more conventional structural materials:

(a) The materials are nearly-incompressible (i.e.,

their bulk moduli are much larger than their

shear moduli). The potato, for example, can be

placed in this range of nearly—incompressible

materials. Finney (1963) reported the bulk moduli

of potatoes as K = 7791 N/cmz, the shear moduli

as G = 124.8 N/cmz, and a Poisson's ratio of

u = 0.492.

(b) They are capable of experiencing large deformation

before any type of failure occurs.

3.1 Non-Linearities
 

The large change in geometry experienced by the

body as a load is applied produces a non-linearity, as

described by Durelli and Mulzet (1965). Because of these

changes:

(a) The higher order terms in the strain displacement

equation can no longer be neglected.

(b) The stress-strain relationship becomes considerably

more complicated.

(c) The resulting state of strain may depend on the

order of application of the load.

The non-linearities can be classified in three

categories, as defined by Desai and Abel (1972)

and Biot (1965).
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Material (physical) Non-Linearity: The stresses

are not linearly prOportional to the strain, though small

displacement and small strain are considered. Evans and

Pister (1966) developed a constitutive equation for elastic

solids sustaining deformation for which displacement

gradients were small and material non-linearity was per-

mitted.

Geometric Non-Linearity: Where linear stress—

strain equations are assumed to hold, the geometric non-

linearity arises both from a non-linear strain displace-

ment relation and from a finite change in the geometry of

a deformed medium. In other words, this category encom—

passes large displacement and large strains. This non—

linearity is introduced into the theory of elasticity

through the equilibrium equation and by inclusion in the

strain-displacement relation of higher order terms.

Material and Geometric Non-Linearities: The most

general category of non-linear problems is the combination

of the first two categories involving non-linear con-

stitutive behavior as well as large strain and finite

displacement.

3.2 Stress and Strain
 

The common definitions of strain in simple tension

or compression are:



(a)

(b)

(C)

22

Conventional Strain (Lagrangian): Commonly referred

to as the strain in the coordinate system of the

undeformed body.

= Total Change in Length _ 2f-Q'o

original length l

 

0

where 20 the original length

if = the final length

Natural Strain: Natural strain is introduced to

describe the large change in geometry due to the

behavior of material subjected to large strain and

defined as the integral of instantaneous or

increment change in length.

2

E—If%£

2
o

= 1n(1 + E)

or in another form:

 

R

E _ z Instantaneous change in length

2 Instantaneous length

Final Strain (Eulerian): Commonly associated with

a coordinate system of the deformed body.

Total change in length = 2f-£o

e = Final length if
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The final strain is related to the conventional

strain by

(d) Green Strain: The strain tensor, known as Green's

Strain (Finite Strain), is often referred to as

the strain relative to the undeformed body, and

is defined as:

(e) Eulerian Strain Tensor: The strain tensor related

to the deformed body and defined as

2 2

es = if ‘ £0 = 6 _ 152

2 2

22f

The general definition of Green's and Eulerian Strain

tensor are valid, whether small or large displacements

exist. The five definitions of strains, as given by

Parks and Durelli (1969), are shown in Fig. 3-1.

All these definitions give the same value of

strains for small deformations. Parks and Durelli (1969)

pointed out that with a large change in geometry, the

stress acting on a specific element area should be com-

puted taking into account the change in the size of that



24

 

LAGRANGIAN NATURAL. EULERIAN

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STRESS STRESS STRESS

(CONVENTIONAL) (TRUE)

L F — dF c F
0' I -— = —— l—

A; 0' Am 0' A1

I 2- I-2
LAGRANGIAN CH...“ ' 2'

STRAIN W 2 li

”ENSOR

coumutm) L

L- (“T—
e - 2: ol -I

T ‘ J1:
LAGRANGIAN

(CONVENTIONAL) "-0 II

(ENGINEERING) 1

————-LE . In (“t")

I 1%

NATURAL ,- . .n L

STRAIN '*

l

T- E
»————1< z-In (I-c)

T 91(-

EULERIAN (E. hm "_"L

STRAN 'I-0 'I

l 1‘

——{£[ a I " ‘20:"

T

EULemAN , ,

STRAIN a: : m h_—'_.

(TENSOR [,0 2 I

coueoururI ' '      
 

*Iumz (my; u-Jm new In: SAME SLOPE If ms untRIAL Is INCOWRESSIBLE.

Fig. 3-1 Relationship between several definitions

of stress and strain (Parks and Durelli, 1969)
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area to improve the linearity of the stress-strain rela-

tion for a large strain.

The actual (true) stress on the deformed body can

be expressed in the Eulerian definition of strain. The

stress-strain relation obtained using true stresses and

natural strain is, for some materials, more nearly linear

than the one obtained using conventional stress and

natural strain.

The three definitions of the stress in simple

compression or tension are:

(a) Conventional Stress

L _ Applied Load =

o T Original Cross-Sectional Area 3
"
"
!

O
(b) True Stress

E _ Applied Load

0 _ Final Cross-Sectional Area :
u
l
u
:

H
}

(c) Natural Stress

A

6=f
A

0

fee
A

where A0 and Af are the original and final areas, reSpec-

tively, and dF is the increase in the load acting on an

area, A.
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The stress-strain curve for a cylindrical section

of tissue removed from a white potato tuber, Fig. 3-2,

closely approximates a linear relationship. The modulus

of elasticity can thus be defined as:

EM u

(
w
e

where o is the uniaxial principal stress and s is the

associated principal strain.

3.3 Green's Strain Tensor
 

Green's strain tensor (finite strain tensor) in

Lagrangian coordinates (Xi' i = l, 2, 3) (Fung, 1965),

describes the deformation of a body relative to the unde-

formed state. The indicial form of this equation is:

_ 1 Bxk axk

Ei‘ "2‘ T T-Gi"
3 i j 3i

i

3
l

I

where the indices take values of l, 2, 3 and dij is the

Kroneker delta. Green's strain tensor is:

1 8Ui 3U. 3Uk BUk

when written in terms of the displacements (u, v, w) of

a rectangular cartesian coordinate system (X1 = X, X2 = Y,

X3 = Z). The strains in matrix form as given by Hughes

and Gaylord (1964) are:
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Fig. 3-2 Force-displacement curve of a cylindrical

specimen of potato under uniaxial

compression. (L = D = 25.4)
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The principal strain values are the unit relative

dI'LSE>1acements (normal strain) that occur in the principal

direction and are denoted by El, E2 and E3, and are given

by the determinatal equation:

IE..-E6..I=0 3.3
13 13

The roots of the characteristic cubic equation as given

by Eringen (1962) :

-E3 + IE2 - IIE + III = 0

where the three strain invariants I, II and III are:

kk 3.4—a

II 2[EiiEjj - EijEij] 3.4-b

III II

(
D

[
"
1

ijk E11 EjZ k3 3°4'C



29

The Latin indices take on values 1, 2 and 3, and eijk is

three dimensional permutation symbol.

For an incompressible material, the volume in

the deformed and undeformed state are equal and the con-

dition of incompressibility is:

III = l 3.4-d

3 - 4 Finite Plane Strain
 

An undeformed body loaded in the X1, X2 plane

undergoes deformation in this plane plus the body may be

subjected to a uniform extension parallel to the X3 axis

as shown in Fig. 3-3. Equation (3.1) yields the following

strain equations:

30 au 30 an
E = 1 a + B + Y Y 3 5-a

a8 7 5X 3X 5X 5X '

B o: B a

Ea3 = o 3.5-b

E = lIAZ - 1) = Constant 3 5-c
33 2 °

where the indices on, B, y take values of l, 2 and A is

the ratio of the thickness of the deformed to that unde-

formed state normal to the plane of deformation.

Oden (1967) stated that the problem of finite

Plane strain superimposed on uniform finite extension is

also encompassed by equation (3.5-a, 3-5-C) if: instead
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Fig. 3-3 Finite plane strain deformation of a small

element
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of setting E33 equal to zero, the strain normal to the

plane is computed by using equation (3.5-c).

Eringen (1962) described plane strain by having

itientical deformation in a family of parallel planes and

zero deformation in the direction of their normals.

Substitution of the strains from (3.5-a) into

(:3..3) yields the strain invariants for finite plane strain

problem which are :

I - E11 + E22 + A - Il + A 3.6 a

II ER BB +A2(E +E)=

ll 22 21 12 ll 22
3.6-b

2

12 + A II

ar1<fl

2

III = A 12 3.6-c

3-5 ‘Axisymmetric Strains

 

It is convenient to express the axisymmetric

prc>lblem in terms of cylindrical coordinates (R, 6, Z) as

SI1§J€J€33ted by Timoshenko and Goodier (1970) with corres-

pon<3ing displacement components (11, V. W) where u and V

are the radial and tangential direction and w is parallel

t" tithe Z-direction. The component v vanishes for axi-

sflqnnnertric bodies with axisymmetric loadings, and u, w are

lndeE>endent of angular (6) coordinates. All derivatives
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with respect to 6 vanish and the shear strain components

Yre' 726' and Yea are zero. The non-zero strains are

E E Y 'and E
66'

Equation (3.1) can be written for purely axi-

rr' zz' rz'

gsynmmetric deformation drawn from the theory of finite

eajuasticity, Green and Zerna (1968) and Green and Adkins

(.1960). Green's strain tensor can be expressed as a

function of displacement:

l aUn 3Um BUR. 3UP.

Enm=2f+§r+fif “‘3
m n n m

En3 = 0 3.7-b

_ l 2 _ _

E33 - —2-()\ 1) 3.7 C

where indices (n, m, IL) take the values of l and 2.

The function A = A (r, z) is the extension ratio

in the circumferential direction, i.e., A is the ratio of

t1r1€3 length of a circumferential fiber in the deformed

k3C3C1)' to its original length in the reference configuration,

and takes the value:

Equation (3.7-a) yields a set of strain equations

which can be used during the formulation of the finite

eleluent method. These equations are:
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2 2

_ Bu 1 Eu 3w _

Err—7+: K’SE) + ("5? 3-9a

~2
_u l u

_EGG—f+§- (E) 3.9b

2 2

_3w 1 au\ aw _

Ezz‘a'a+‘§ 5‘2/ *6?) ”C

The strain equations for the infinitesimal theory

of elasticity are obtained by neglecting the second order

terms in the strain-displacement relationship in (3.9-a)

through (3.9-d) .

The strain invariants for large deformation

Strain relative to Lagrangian coordinates are:
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and

u 2 ‘F Bu 3w
III=(1+E) ‘l+fi)<l+§§)+

- L 3.10-c

EB _3_w_ 2
32 Sr

For incompressible materials, III = l.

3 - 6 A General Formulation

For Elastic Bodies

The near-incompressibility of the material pre—

sents difficulties because analyses based upon the con-

ventional displacement formulation (Navier's equation of

equilibrium) may be greatly in error when Poisson's ratio

is equal to one half (mechanically incompressible material).

The usual displacement formulation is no longer valid,

Green and Zerna (1968). Glauz (1962) stated that when

Poisson's ratio approaches u = 0.5, the solution of these

equations by numerical techniques results in large errors.

It is desirable, therefore, to have a formulation in terms

of displacements valid for all admissible values of

Pc‘l.l-Sson's. ratio. The elastic field equation for an incom—

Pressible material as given by Herrmann and Toms (1964)

1‘3 Valid for any admissible value of Poisson's ratio

(0 i u i 0.5). This formulation starts by considering

N - .

av;er ' 3 equation:
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Tij = A Ekk 6ij + 26 Eij - (3A + 2G) 3.11

HAT 8..

3]

udncrv A and G are the lamé constant

a = thermal expansion

AT = temperature difference

u = Poisson's ratio

The mean effective pressure expressed in terms of

t:11<2 normal stresses is:

o=-1-T
3 kk

vvlfiLjLZLe it is

(3A + ZG)
O: 3 E
 

kk

Vtkleaun expressed in terms of the normal strains. Substituting

ZGH/(l - 2H)

13(31? A yields the mean effective pressure in terms of the

Shear modulus and Poisson's ratio

 

_ 2G(l + u)

- 3(1 ’2U) Ekk 3.12

11 ' . .

avler's equation, 3.11, can now be written as:
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Ban

I y = ——_—_— o o + o o .T1] (1 + u) 51] ZG E13 3 13

where the thermal effects have been dropped.

We now define a mean pressure parameter

T

_ 3o _ kk

H ’ 2(1 + u)G ‘ EM 3'14
 

which is a hydrostatic pressure. It is also referred to

as a Lagrangian multiplier in the case of incompressible

Inaterials.

Oden (1967) stated that, in general, the hydro-

231:atic pressure must be determined from an equilibrium

eaqzuation or a static boundary condition in the case of

jL11130mpressibility to satisfy (III = l) and to determine

t:11<e total stress.

With constant material preperties, the equation

can be rewritten as,

Tij = G[2Eij - Ekk Gij] + G H Si. 3.15

J

The total stress can be expressed in the form:

Tij = 2G Eij + 2p G H 6ij 3.16
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For incompressible material (i.e., u = 0.5) the

stress-strain relation is

II

N C [
"
1

+ QT.. .. 6..

13 1] 1]

while the condition of incompressibility is III

In matrix form,

{T} = [D] {E}

F“

T 1 l 0 0 0 0

XX

T 0 1 0 0 0

YY

Tzz 0 0 l 0 0

T = 26 0 0 0 k 0

XY

.Tyz 0 0 0 0 5

“r 0 0 0 0 0

X2

<3 1) u u u 0 0 
To accommodate geometric non-linearity and large

deflection, the Green strain tensor Eij is divided into

tszc> parts (a comma denotes a differentiation)

1 1

‘ 7 [Ui,j + Uj,i] + f (Uk,i Uk.j)

0 u

0 u

0 u

0 0

0 0

k 0

0 -u(1-2u)
 

3.17

— 1.

 

3.19

The first part is a linear strain tensor, the

S
o o

'

eCOnd part 15 non-linear or quadratic

3.20

3.18-b
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II

t
h

F
‘
I

c
:

+ c
:

L
-
J

e.. 3.21-a

1]

and

N
I
H

n.. = U ) 3.21-b

1] (Um m

where the indices take the value 1, 2 and 3.

3.7 A Variational Principle
 

In the theory of elasticity, variational principles

aare used as a means of deriving the governing differential

euguations and to obtain approximation solutions. These

trsiriational principles may be classified into three types

(Washizu, 1968):

l. The Theorem of Minimum Potential Energy (in terms

of displacements): i.e., among any possible dis-

placement fields satisfying the required displace-

ment boundary conditions, the actual one minimizes

the potential energy of the system.

2. The Theorem of Minimum Complimentary Energy (in

terms of stresses): i.e., among all possible

stress fields satisfying the stress boundary

conditions and the equilibrium equations, the

actual one minimizes the Complimentary Energy.

3. The Hellinger-Reissner Variational Theorem (in

terms of displacements and stresses). This theorem

can be derived from either the potential energy
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or the complimentary energy principle by applying

suitable constrain conditions.

In both the Theorem of Minimum Potential Energy

and the Theorem of Minimum Complimentary Energy, it is

difficult to satisfy the boundary conditions and the

equilibrium equations. Some numerical solutions, using

the finite element method, Melosh (1963), have been

developed incorporating the Theorem of Minimum Potential

Energy in conjunction with the Ritz procedure; these

solutions are inaccurate when applied to nearly-

incompressible materials and furthermore, are completely

LJIisatisfactory for incompressible materials, Hwang gt a1.

(1969) . The Hellinger-Reissner Variational Theorem,

£2<3clssner (1950), is more general and includes the previous

tzlleaorems as special cases. The large number of unknowns

lhjrnnits its application for approximate numerical solutions.

Finite element analysis of incompressible and

Ileeaixlybincompressible materials commenced with a paper by

IiEBJE‘rmann (1965). Herrmann presented a modification of

Reissner's Variational Principle for isotropic materials

based on the elastic field equation. This variational

Principle is



40

HH = f G [I2 - 2II + 2pHI - u(l — 2p) H2 -

v 3.22

{¢}T {2}] av - f {¢}T {T} asl

S

l

where the thermal effect has been eliminated.

The symbols I, II, ¢, H, F, T, G and u respectively,

denote the first and second invariants, displacement, mean

pressure parameter, body forces, applied surface forces,

.shear modulus and Poisson's ratio.

In rectangular cartesian coordinates, equation

(23.22) takes on the following form:

_ 2 2 2 1 2 2 2
HH - é G [Exx + Eyy + Ezz + 5 (ny + sz + sz) +

2
ZuH (Exx + EYY + Ezz) - u(l - Zu)H - 3.23

{¢}T {F}]dV - r {¢}T{T}dSl

S

1

It must be noted that there is an arithmetic error

21!) sequation (3.23) as given by Herrmann; the value of 8

appeared in print as a 2.

Taylor gt 21. (1968) extended the above equation

to Orthotropic materials. Reissner (1953) formulated a

variational principle for hyperelasticity. Both stress

and displacement are varied, and the principle yields both

the condition of equilibrium of forces and the stress-

3 - .
tra1n relation .
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Tong (1969) presented a variational principle,

based on the assumed stress hybrid method that was suitable

for incompressible and nearly-incompressible material

solids. Tong and Pian (1969) reformulated the variational

principle for the finite element method based in an

assumed stress distribution. Hughes and Allik (1969)

used Herrmann's work for the case of the plane strain.

Key (1969) derived a system of equations as a special

form of Reissner's variational principle which was suitable

:for anisotropic incompressible and nearly-incompressible

materials.



IV. FIN ITE ELEMENT FORMULATION

The finite element method is a numerical procedure

for solving differential equations and can be used in con-

junction with the variational formulation for an incom-

pressible body to calculate stresses in a body of arbi-

trary shape. The stiffness matrices used when solving

ea geometrically non-linear problem while employing the

finite element method are discussed by Martin (1966) ,

Oden (1969) and Sticklin e_t_ _a_1. (1971). Oden (1967) and

Oden and Sato (1967) investigated the large deformation

for non-linear elasticity problems and analyzed the large

(11 splacement and finite strain using Green's strain

tensor, assuming the hydrostatic pressure constant over

the element. Oden (1968) formulated the finite plane

strain problem for incompressible solids with the hydro-

static pressure appearing as a Lagrange multiplier to

Satisfy the condition of constraint (III = 1).

Oden and Key (1970, 1971) applied the finite

eleInent method to the problem of finite axisymmetric

deformations of incompressible elastic solids. Hibbitt

3 fl. (1970) formulated the finite element equations for

42
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large displacements and large strains with a particular

reference to the elastic-plastic behavior of solids.

Argyris gt gt. (1974) employed combined natural

strains with the finite element method. Difficulties

arose in the application of this formulation to incom-

pressible or nearly-incompressible materials. The results

were sensitive to the boundary conditions and to the ori-

entation of the elements. Solution for absolute incom-

pressibility, the equivalent of allowing the compressibility

inodulus to become infinite, did not converge to the true

ssolution as the element size was reduced. Iding gt gt.

(£1974) analyzed experimental data to characterize the

ssizress constitutive function for non-linear elastic solids

151:3 an inverse boundary value problem.

Many soil mechanics problems have been solved

ulsszing finite elements. Naylor (1974) analyzed porous

‘nmeaciia for both linear and non-linear materials by

sseez>arating the stiffness matrix into "effective" and "pore

fluid" components, allowing excess pore pressure to be

calculated explicitly. Yokoo gt fl° (1971) applied a

Variational principle equivalent to the governing equation

11" IBiot's Consolidation Theory assuming the soil to be

non“homogeneous, anisotropic, elastic, and saturated by

incOIhpressible water. The deformation of the soil was not

dependent on pore water pressure but on effective stress.

Thomas gt gt. (1972) assumed the soil homogeneous,
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isotropic and saturated and assumed plane strain to

evaluate the displacement and the pore pressure in soft

soils.

A detailed discussion of the general theory of

the finite element method is given in Zienkiewicz (1971),

Oden (1972), Desai and Abel (1972), Martin and Carey

(1973), Cook (1974) and Segerlind (1975). The region

under consideration is divided into small elements con-

nected at node points. The unknown displacements and

.hydrostatic pressure are approximated over each element by

Iqolynomials using three parameters at each node, two

(irisplacements and one hydrostatic pressure.

4 - 1 Plane Strain
 

The displacements in each subregion or element are

approximated by linear polynomials expressed in terms of

tLIIEB displacements of element nodal points (Zienkiewicz,

JLSB'7JJ.

u = [N] {U} 4.1

Where [N] is the matrix of shape functions (interpolation

functions) relating the element displacements, u and v, to

the nodal displacements {U}. An example for plane strain

elenient is given in Fig. 4-1. The horizontal displacement

u = a1 + a2X + d3Y

<

ll

81 + 82X + B3Y
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131g. 4.: Triangular element in plane strain and nodal

diSplacement.
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Solving the equations for the coefficients, using

the nodal values of the displacements allows u and v to be

written as

u = N. U . + N. U . + N

1 321-1 23-1 k UZk-l

< H Ni U2i + Nj U2j + Nk 02k

where the shape functions (interpolation functions) are

Ni = (ai + bix + CiY)/2AO

Nj = (aj + ij + CjY)/2AO

Nk = (ak + ka + CkY)/2AO

and

a1 = Xi Yk - Xk Yj

b1 = Yi — Yk

c1 = Xk - XJ

The other constants aj, bj, etc. are cyclic per-

nntrtations of subscripts and A0 is the area of the element

<ill the undeformed state.

The hydrostatic pressure (mean pressure), H, as

given in equation (3.14) can be written in terms of the

Shape functions as

h = [N] {H} 4.5-a
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where {H} is the vector of the nodal values of h .

{H}T = {Hi H. H

II

M Z[N] i N. N

The general formulation of Green's strain tensor

which is valid for either large or small strains, is

defined in equation (3.20) for two-dimensional plane

 

strain

E = e.. + n 4.6

1] 13 13

The infinitesimal strain in matrix form is

{e} = [BO] {g} 4.7

where

T _ T
{e} - {eXX yy ny} 4.8

PEN. 3N. 3N -

_i _l __15

3x 0 3x 0 3x 0

E BNi 3N. BNk

‘80] - 0 5;“ 0 5y; 0 5y_ 4.9

EN EN. EN EN. 8N 3N

__1L_ 1 _i __l ._k ___k_

LPY 3x 3y 8x 3y 3x   
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and

U}T
T _

{q} ‘ {UZi-l UZi U2j-1 U2j U2k-l 2k

The large displacement component for plane strain

as adapted from Zienkiewicz (1971) is

m

   

  

- .. 5E

Bu 3v

5i‘ 5; 0 0

’22
3x

1 Bu 3v

=_ 4.

fig

22 9.! 12 8_v 3y
L8y 3y 3x 8x

.._J

av

337

or in matrix form

— 1 4 12{n} — f [A] {e} .

The components of {6} can be written in terms of

the shape functions [N] and the nodal parameter {q} by

differentiating (4.3) which yields
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3Ni 0 SN. 0 BNk 0

5x x 5x

0 BNi 0 EN. 0 aNk

8x 3x 3x

{8} = {q} 4.13

BN1 0 SN. 0 aNk 0

3y 3y 3y

0 aNi 0 EN. 0 aNk

5y 5y 3y

L- .3

or

{e} = [G] {q} 4.14

when written in matrix form.

Substitution of (4.14) into (4.12) gives

{n} = % [A] [a] {q} = [BG] {q} 4.15

where

[36] = % [A] [G] 4.16

The subscript G is used to denote the geometric matrix

which is a function of the displacements.

Green's strain tensor in matrix form becomes

{E} = [BO] {q} + [BG] {q} 4.17

or by combining the infinitesimal and geometric parts

{E} = [B] {q} 4.18
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where

[B] = [Bo] + [86]

The variational H is for the region which is sub-

divided into a number of elements, therefore,

N

n = 2 1(9)

where N is the total number of elements. Equation (3.23)

for one element can be written in terms of displacements

and the mean-effective pressure as

(e) _ 2 2 t 2
H — £(e) G [EXX + Eyy + 2 ny + 2pH(EXX + Eyy)

2 T
u(1 - 2p) H ]dV - 1(e) [N] {F}dV -

V 4.19

T
t(e) [N] {T}ds

The above equation is valid for either large and small

displacements. The strain components can be expressed

in terms of the displacements as follows

33X + Eiy + % yiy = {q}T [BJT [I] [a] {q} 4.20—a

EXX + Eyy — {q} [B] {J} 4.20 b

and

h = [u] {H} 4.20-c



51

The diagonal matrix [I] and the vector {J} are

defined as

'1 o 6} /1

[I] = 0 1 o {J} 1

{90: o  

Substituting equations (4.18a, b, c) into Herrmann's

functional and obtaining its stationary value gives

_ an an _
5H - ETET {Sq} +‘5TET {6H} - 0 4.21

The governing finite element equations for a

single element take the form

[K] {¢} = {P} 4.22

which can be partitioned into

 

1 ‘1
[K11] ;[K12] {q} Q

—-— —f7 _._ — — — — — 4.23

LtKlz] '[K22{_ {H} o

 

where [K], {¢}, and {P} are the global stiffness matrix,

the column vector containing the unknown displacement and

hydrostatic pressures, and the force vector, respectively.

The submatrices in equation (4.23) are defined by

[K11] = 2G I [BJT [I] [B]dV 4.24

V
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[K12] = 215 £ [B]T {J} [NJdv = [K21] 4.25

[K22] = -2uo(1 - 2p) i [u]T [NJdV 4.26

and the element force matrix

Q = f [n1T {F}dV + f [u]T {T}dSl 4.27

V 81.

The global matrices are assembled using standard techniques

(Segerlind, 1975).

4.2 The Axisymmetric
 

The axisymmetric element is quite similar to the

two-dimensional plane strain element. Using the same

formulation for displacements and the same shape functions,

the variable x is replaced by r, and the variable y is

replaced by 2. An example of an axisymmetric element is

presented in Fig. 4-2. The strain displacement relation-

ship, which is valid for small and large displacement, is

given in equation (3.9). The strain can be divided into

two parts: one representing the small (infinitesimal)

strain and the other for second order terms. This can be

written in the form:
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--B.

 
  

Fig. 4-2 Triangular axisymmetric element and

nodal deformations.
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The infinitesimal part is

 

{e} = [C0] {q} 4.28

where

T _ T
{e} — {err e66 ezz er} 4.29

3Ni 0 3N. 0 3Nk 0

3r 3r 3r

N_i 0 51 0 .NJ: 0
- r r r

[Co] — 4.30

0 3Ni 0 3N. 0 3Nk

32 32 32

3N. 3N. 3N. 3N. 3N 3N

_}_ __1. i J k __k
32 3r 32 3r 32 3r__  

and {q} is defined by the equation (4.10).

The second order terms in the strain can be

treated in the same manner as in the plane strain case,

Producing :

{n} = % [D] {8}

\

   

9.9.
l. .. 3r

3u 3w

4'; 51: ° ° 0 23—;

{n} =1 0 0 g 0 E 431r .

3u 3W

0 ° 0 32 3—2 3u

3_2'

32 3! 0 32. 3w 3w

32 32 3r E k32—
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The components of {8} can be related to the shape

functions by differentiating the displacement equations

  

giving

7' _.

1 3Ni 0 3N. 0 3Nk 0

3r 3r 3r

0 3Ni 0 3N. 0 3Nk

3r 3r 3r

{0} = E; 0 El 0 it o {q} 4.32

r r

3Nl 0 3N. 0 3Nk 0

32 32 32

0 3Ni 0 3N 0 3Nk

__ 32 z 32_t

01:

{e} = [L] {g}

Substitution into the equation for n yields

{n} = § [D] [L1 {4} = [CG] {q}

and the strain tensor can be written as

{E} [CO] {q} + [CG] {q} 4.34

{E} [C] {q} 4.35
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where [C] is the sum of the infinitesimal and geometric

matrices

[C] = [C0] + [CG] 4.36

The hydrostatic pressure can be defined in terms

of each nodal value by

h = [N] {H}

[N] is the shape function as defined in equation (4.5-c)

aiud {H} is a vector of the nodal values of {h}, as defined

iri equation (4.5-b).

The incompressibility condition III = 1, must hold

{at: every point in continuum. This means that

I (III - 1)dVO = 0 4.37-a

V

O

Oden and Key (1970, 1971) suggested a procedure for

1“Handling the incompressibility condition suitable for

ftiriite element formulation. They compared the volume of

tile: element in the undeformed (V0) and undeformed (Vf)

Shapes as:

4.37-bII
I

<

I

< I) oh

in which
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V =21rRA Vf=21T(R-{-U)Af

_ 1 ‘ _ i

’ 3(R1 + Rj + Rk) U ' 3‘021-1 + UZj-l + UZk-l)

”
I

In the above, E is the radial distance to the

centroid of the undeformed triangular (cross-section)

area A0, 6 is the average radial displacements of the

j and k and Af is the cross-sectional

area of the element after deformation. Either the incom-

element nodes i,

Lxressibility condition (4.37) or (III = 1) can be used,

though (4.37) is more convenient in deriving the stiffness

realation of the element. Equation (4.37-a) was not used

explicitly. The incompressibility condition is satisfied

When the variational formulation is a minimum.

The variational equation for the axisymmetrical

Problem is given below.

n‘e) = [(e)G [{q}T [C]T [I] [C] {q} +

V

26m] {11} {J}T [g] [c] - 4.38

u(1 - 2n) [an {H}T {J} [N]]dV -

T T
£(e)[N] {F}dV - £(e)[N] {T}ds
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The minimizing of H reduces this to

4n‘e’ = c 1(e)([c]T [I] [c] {q} + “[c1T {a} [u] {a}
V

+ p[N]T {J}T [c] {g} + u(l - 2U) [u]T [N]

T T
{H})dv - e)[N] {F}dv - t(e)[N] {T}f

v(

d5 = 0

where the diagonal matrix [I]and the vector {J} take the

fomnu

[1 o o 6] 1

o 1 0 o! 1

[I]: ‘, {J}:

0 0 1 05 1

0 0 0 %| 0 

The submatrices for the element stiffness matrix

and the element force vector take the form

26 x [ch [I] [C]dv 4.39

V

[K11]

[K12] = 2G0 i [c1T {J} [NJdv = [K21]

aljél

[K22]: -2u(1 - 2u)G f [n]T [N]dv 4.41

V

firkle element force vector is the same as defined in

E2(Juation (4.27).
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4.3 Element Stresses
 

The stresses in each element can be calculated

from the stress-strain relationship

{T} = 2G [I] {E} + 2 u G h {J} 4.42

This equation can be written in terms of the computed

nodal displacements {q} and the nodal hydrostatic pressures

{H} giving

{T} = 2G [I] [E] {q} + 2pG [N] {H} {J} 4.43

For the axisymmetric the matrix [C] replaces

matrix [B] in equation (4.43).

4..4 Nodal Stresses
 

Nodal values of the stress components are needed

.iri order to plot isostress lines. The nodal values can be

<3krtained from the element stresses using the conjugate

Stress idea developed by Oden and Brauchli (1971) and

discussed by Gallagher (1975) . An existing two-dimension

cOmputer program was used to calculate the nodal stress

Components for plane strain. This program was modified

£131: the axisymmetric case and used to calculate the nodal

values in the axisymmetric bodies analyzed.

4 - 5 Other Finite Element

Formulations

Many unsuccessful attempts were made to program

‘zlle large displacement problem for incompressible and
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nearly-incompressible, homogeneous, isotropic, other

formulations which were tried and rejected are discussed

in this section.

Rivlin (1948a) proposed a potential energy equation

using a simplex triangle element with two unknown param—

eters at each node. This equation was

 

U = % i [(A + 2G) (Exx + Eyy + E22)2 +

G(Y:y + Viz + Yiz) _ 4G (Eny22 + EzzExx

EXXEyy)]dv

ivtmere

G = EM A = uEM

771:3T (1+u)(1-2u)

3Fc>xran incompressible material, the equation reduces to

_EM 2 2 2
U - g— £ [(YXY + sz + sz) 4(Enyzz

E E + E E )]dv
22 xx xx yy

The hydrostatic pressure does not enter into the formu-

lation. It can take an arbitrary value. The results

Obtained using this formulation gave unsatisfactory values

‘Vthen.a specimen (of dimensions 5 x 4 x 1 cm) was compressed

‘1rliaxially up to 10 percent; a negative displacement

(DCZCurred perpendicular to the load.
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Martin and Carey (1973) introduced a modified

strain energy expressed in terms of Green's strain tensor

as

+ 2C

_ 1

U ‘ 2 £ (Cijkl ek1 eij ijkl ekl nij +

Cijkl ”k1 “ij’dv

where eij and nij are as defined in equation (3.21) and

Cijkl is a fourth-order tensor. An approximation to the

displacement field obtained by dropping the last part of

the strain energy and solving for the displacement as

suggested by Martin and Carey (1973), gave unsatisfactory

results for geometric non-linearity. Carey (1974) stated

that dropping the last term in the potential energy

induced an error and must be taken into consideration for

obtaining accurate results.

Herrmann's modified equation was formulated using

the linear displacement triangle and a constant mean

effective pressure function (H). Each node has two dis-

placements. The hydrostatic pressure is evaluated at the

centroid of the triangle. The question arose as to which

was a more desirable approach, a linear displacement and

constant mean pressure model, or linear displacement and

linear mean pressure model. The linear displacement and

{Constant hydrostatic pressure could be described as a

JJDgical and consistent assumption, but the linear
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displacement and linear hydrostatic pressure model allows

a more logical program development because it greatly

decreases the band width of the final system of equations.

Two programs based on equation (3.23) were devel-

oped and compared for small and large displacements using

Poisson's ratios up to 0.5. The displacements and mean

pressure values obtained using the linear displacement and

constant hydrostatic pressure model were the same as those

obtained using the linear displacement and linear hydro-

static pressure model. This was true for both small

displacements and large displacements. A cylinder

(L = D = 25.4 mm) was compressed uniaxially (25 percent)

using both models to verify the axisymmetric formulation.

Also a specimen (dimensions 5 x 4 x 1 cm) was compressed

up to 20 percent to verify the formulation of the two

dimensional problem.

4.6 Summary

A finite element method was formulated for nearly-

incompressible materials using a simplex triangle element.

This numerical technique is now available for calculating

the displacements and stresses for either small or large

displacements and any shaped body which satisfies the

conditions of two-dimensional plane strain or axisymmetry.



V. COMPUTER IMPLEMENTATION

The solution of geometrically non-linear problems

resulting from large deformation was considered by Argyris

(1965). He used a procedure to account for non—linear

effects when the displacement became large. Incremental

stiffness relations were discussed by Oden (1969) for

quasi-static behavior of a compressible material with no

memory. Oden and Key (1970) considered general incremental

forms of the equations of motion for both compressible and

incompressible finite elements subjected to finite defor-

mations. They suggested that such incremental forms are

particularly useful in problems of static and dynamic

stability and static and quasi-static behavior of elastic

solids. Stricklin gt gt. (1971) concluded that the

solution of the geometrically non-linear problem as an

initial value problem is inferior to either the modified

Newton-Raphson or the modified incremental stiffness

approach.

The two generally accepted techniques for solving

geometric non-linearity finite element problems are

(a) Iterative solution

(b) Incremental application of a load or a displacement.

63
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5.1 Iterative Procedures
 

The iterative method for large displacement is

relatively simple. The total load is applied and the

calculated displacements are used to revise the coor-

dinates of the nodal points after each iteration (Desai

and Abel, 1972). The new geometry is used to recompute

the stiffness matrix and the nodal loads or displacements.

The solution is obtained for the total load and only one

load vector (displacement vector) may be considered at a

time. The stiffness matrix [K] is updated after each

iteration and the new and old displacements compared until

there is no significant change. The flow diagram for this

procedure is given in Fig. 5-1. The iterational procedure

in symbolic notation is

Step Stiffness Matrix Déigézgzgggts

1 [Ko(0) + KG(0)] U1 - o = U1

2 [KO(U1) + KG(U1)] 02 - Ul = AU

N [KO(UN_1) + KG(UN_1)] UN - UN_l s o

where [K0] is the stiffness matrix related to eij and [KG]

is the geometric stiffness matrix related to nij' It

should be noted that [KG(0)] = 0 since the geometrical

stiffness matrix is proportional to the nodal displace-

ments which are zero at the start of Step 1.
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The iterative method is similar to the Newton-

Raphson method of solving non-linear equations.

5.2 Incremental Procedure
 

The incremental procedure is the preferred approach

if a solution is needed at different load or displacement

values. The load or specified displacement acting on the

deformable body is considered to be applied in increments,

AP or AU. These increments are taken sufficiently small

so that a linear response occurs during each increment.

At the end of each load or displacement increment, a new

updated stiffness relation is calculated and another

increment of load (or displacement) is applied. The cal-

culated displacements must be added to the preceding

results before the new stiffness matrices are calculated

for the next step. The flow diagram for this procedure

is given in Fig. 5-2.

The incremental step procedure, in a symbolic

notation, is given by Przemieniecki (1968):

Step Stiffness Matrix DiggIzgzgzzt

1 [Ko(0) + KG(0)] AUl

2 [KO(U1) + KG(Ul)] AU2

N [KO(UN_1) + KG(UN_1)] AUN
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Calculate second order displacement terms
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I
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END

 
 

  

 

Fig. 5-2.--Flow chart for Finite Element computer

program for incremental procedures.
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The total displacement

The variables [K0] and [KG] are the same as those

defined in the previous section.

5.3 Solution of the Contact

Problem

 

The solution of the contact problem using finite

elements requires special care in determining which nodes

are in contact with the flat plate. The flat plate loading

was perpendicular to the axis of symmetry and each incre-

ment of loading was determined such that there was a node

at the end of the contact region as shown in Fig. 5-3.

The calculation of the resultant contact force

between the flat plate and the specimen also required

knowledge of which nodes were in contact with the flat

plate. They determined over which elements the stress

had to be integrated to obtain the resultant contact

force. The integration was done by multiplying the element

stress 022 by the surface area of those elements in contact

with the plate.

An extremely fine grid in the region of the flat

plate was not attainable in this study because of the

storage limitations of the computer. The large deformation

analysis requires the storage of several displacement
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*1

Fig. 5-3 Spherical sample in contact with rigid.f1at plate:

Prescribed displacement of the contact nodes
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vectors. There were also three unknowns at a node instead

of the usual two encountered when the material has a lower

value for Poisson's ratio.

The results obtained using the two procedures

differ for the nodes in contact with the flat plate. As

an example the node on the axis of symmetry in contact with

a flat plate has a stress value of -155 N/cm2 for the

iterative procedure and -l60 N/cm2 for incremental dis-

placement method when considering a cylindrical potato

sample compressed diametrically. The stress (eyy) along

the axis of symmetry were different in a range 10 N/cmz.

The iterative procedure had higher values. The results

at the center differ completely -181 N/cm2 for iterative

and -106 N/cm2 for incremental displacement.

The results given in Chapter VIII are based on

the displacement incremental procedure. The iterative

procedure required more time for high values of Poisson's

ratio because the diagonal value of the hydrostatic

pressure parameter approaches 0 as u approaches 0.5 and

the convergence to AU 5 0 is slower. For an example it

took 16 iterations for the system of equations to become

in equilibrium required 552 seconds on M.S.U. computer

CDC 6500 while 9 displacement increments required 212

seconds for the same amount of the deformation using the

same semi-spherical grid.



VI. VERIFICATION OF THE FINITE

ELEMENT MODEL

A finite element formulation for the solution of

the boundary value problem for incompressible and nearly-

incompressible materials was presented in Chapters III and

IV. Geometrical non-linearity can be formulated in two

different coordinates, Lagrangian coordinates, where the

stresses are calculated over the original area as sug-

gested by Oden (1969) and Oden and Key (1971), or in

Eulerian coordinates where the stresses are calculated

over the final area as suggested by Chen and Durelli

(1973). A question arose as to which approach would give

the most agreeable results when using the finite element

method. This chapter is devoted to a discussion comparing

the results obtained by using both definitions of strain.

6.1 Experimental and Finite

Element Results

 

 

Cylindrical samples with a diameter of 25.4 mm

were cut by driving a corkborer into a white potato tuber

from different positions of the potato tuber, as shown

in Fig. 6-1. The samples were then placed into a hole

of a plexiglass plate of 25.4 mm thickness and the ends

73
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Fir. 6-1 Sample preparation

 

Fig. 6-2 Sample cuttinp machine
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were cut parallel to the plate using a sectioning machine

(Fig. 6-2). The final length of the specimen was measured

to a tenth of a millimeter. Two cylindrical samples were

cut from each potato, one for the determination of a

uniaxial test and the other to determine the failure load

of a sample compressed diametrically as shown in Fig. 6-3.

The elastic modulus (EM) was determined from the

force-deformation curve of a uniaxially compressed sample.

The elastic modulus was calculated by using

where F = compression force

L = length of the sample

A = cross-sectional area

a = deformation

The average value of 22 samples was 306 N/cm2 ranging from

259 to 346 N/cmz.

An alternate method for calculating the elastic

modulus as given by Sherif et al. (1976) is to compress

a cylinder diametrically. The elastic modulus is given by

 

2 2
EM=8(l-U)FZ 6.2

_ nD

where u = Poisson's ratio

D = diameter of the sample

F = compression force
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Fig. 6-3 Cylindrical sample compressed diametrically

be+ween two flat plates
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and the parameter Z is obtained by solving

a/D = —£§ [1n 2Z + %]‘ 6.3

2Z

where a is the total deformation.

The values of Z for various a/D are given in

Appendix 1. The average value of elastic modulus based

on 22 samples was 310 N/emz.

A finite element grid for one-fourth of a

cylindrical sample with a 12.7 mm radius and a length of

25.4 mm is shown in Fig. 6-4. The strains in the unde-

formed coordinate system (Lagrangian) and deformed coor-

dinate system (Eulerian), are defined as

L 2

E = 3w 1 3w

E SW 1 3w 2

E22 = 55 ' 2 (52> 6-4‘b

The finite element values for a cylinder subjected to a

displacement level of 25 percent are shown in Fig. 6-5.

A value of 0.49 was used for Poisson's ratio and the

elastic modulus was 310 N/cmz. The analytical values

were calculated by evaluating 6.4-a and b for the various

strain levels and multiplying them by the elastic

modulus.
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Fig. 6-4 Finite Element Grid of

one fourth of a cylindrical sample.
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for/U>= 0.49 for cylindrical sample.
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The finite element values and results calculated

using 6.4-a differ after 15 percent deformation. The

normal stress calculated using c = F/A, where F is the force

obtained experimentally from uniaxial test and A is the

original area, agree with the finite element values until

approximately 20 percent deformation. The finite element

values and the values calculated using 6.4-b (Eulerian

coordinates) are higher in value than those formulated in

Lagrangian coordinates.

The equation for 022 given by Rivlin (1948a) for

a completely incompressible material in simple extension

is

022 = g5 (A2 - %) 6.5

where A is the extension ratio and its value A = /l—:_2E:z.

The finite element stress values given by this equation

agree with the finite element results until the deformation

approaches 15 percent, Fig. 6-6. They disagree by approxi-

mately 5 percent for 25 percent deformation. The finite

element stresses calculated using u = 0.49 and u = 0.5

differed in the second decimal place.

The finite element hydrostatic pressure was

linearly proportional to displacement (Fig. 6-7) and

equal to one-third the stress. This agrees with the

theoretical solution 022/3.
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Fig. 6-7 Hydrostatic pressure as a function of

displacement for cylindrical sample.
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The values of oz calculated by using the finite
2

element method are compared with the stresses calculated

from two experimental force deformation curves obtained at

deformation rates of 25.4 mm/min and 12.7 mm/min, Fig. 6-8.

The lower strain rate agrees more closely with the

theoretical solutions because it more closely satisfies

the quasi-static loading assumption.

Calculations were made to determine the effect of

changes in Poisson's ratio on the normal stress in an

axially loaded cylinder when the elastic modulus was held

constant. The difference in the values between u = 0.49

and u = 0.3 is 1.325 N/cm2 for the maximum deformation of

25 percent. The change of the elastic modulus values,

keeping the Poisson's ratio constant, produces noticeable

changes in the resultant value of the stresses, Fig. 6-9.

This is in agreement with 6.5 as expected. Since the

elastic modulus is affected by temperature (Finney, 1963),

variety, storage (Huff, 1967) and stage of maturity, it

is an important factor when considering failure loads.

6.2 Summary

Experimental loading of a cylindrical sample of a

white potato compressed uniaxially up to 25 percent was

conducted. An evaluation of the effect of the loading

rate, the change in Poisson's ratio and elastic modulus

were studied. Comparison between the theoretical formula-

tion in two coordinates, Lagrangian and Eulerian, for the



2
N
O
R
M
A
L

S
T
R
E
S
S
,

6
;
z
,

N
/
c
m

84

 

 
 

90 ~ D----Dihflerian

+ ........+ Lagrangian ID

80 —- Fm—‘Finite Element ,’,0

O—--O 0': F/A Strain rate // /‘

70 __ 25.4 mm/m'in / I! ‘

.—. g: m ,n _/ ,,..+
Stain rate / O/

60 — 12.7 mm/min / / ,"

/ N

50,—

#0 ~

30 —

20 —

10 —

0 l I I l l

0 5 10 15 20 25

PERCENT DEFORMATION

Fig. 6-8 Effect of strain rate on the resultant stress

compared with different formulation for

cylindrical sample.



N
O
R
M
A
L

s
'
m
s
s
s
'
,

0
'
2
2
,

N
/
c
m
2

90—

80——

70—

60-

ao~

30r-

20L-

 
Fig.

85

._....-. 13m = 310 N/cm2

+—-—+F.‘M = 350 N/cmz .4-

o—Osm = 400 N/cm2 ./

 
l l l l l

5 10 15 20 25

PERC ENT DEFORMATION

6-9 The effect of elastic modulus on 6'22 with

constant Poisson's ratio (ILL: 0.1+9)



86

finite element method were performed. The formulation of

the finite element method in terms of Lagrangian coor-

dinates gives more acceptable results.



VII. APPLICATION TO AGRICULTURAL PRODUCTS

A finite element analysis of cylindrical samples

of white potatoes and apples compressed diametrically by

a flat plate was performed. The behavior of spherical

specimens of white potatoes and apples in contact with a

rigid flat plate was also investigated, as was the contact

problem for whole peaches. This chapter contains a dis-

cussion of the numerical results of these analyses and

how they relate to tissue failure reported in the litera-

ture.

7.1 Two-Dimensional Analysis—-

Brazilian Test

 

 

7.1.1 Potato

Twenty four potato samples were loaded dia-

metrically till failure to examine failure under tension.

The diameter and the length of the specimen equaled 25.4

mm. The elastic modulus and Poisson's ratio were 310 N/

cm2 and 0.49, respectively. The average failure load was

366 N, and the total displacement 7.41316 mm (29.185

percent). The failure, a crack, initiated at or near the

87
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center of the cylinder and then propagating outwards,

as shown in Fig. 7-1 through 7-4.

Nine displacement increments were applied to the

finite element grid shown in Fig. 7-5. The total defor-

mation was 7.41316 mm. Elastic modulus of 310 N/cm2 and

a Poisson's ratio of 0.49 were used in the calculations.

The final volume decreased by 1.3 percent from the initial

volume of 12.84 cm3 and the radius along the X-axis

increased by 21.1 percent. The final deformed shape is

shown in Fig. 7-6.

The stress components along the Y and X axes of

symmetry in the deformed shape are shown in Fig. 7-7.

The isostress lines are shown in Fig. 7—8 through 7-12.

The stresses in the Y-direction and the minimum principal

stress appeared largest under the initial point of con-

tact (-l60 N/cmz) and decreased with increasing distance

from the contact point. The stresses in the x-direction

and the maximum principal stress had a largest negative

value under the initial point of contact (-111 N/cmz)

and maximum positive value near the center (+73.6 N/cmz).

The maximum shear stress, +88.3 N/cm2 occurred at the

same point as the maximum oxx’ The applied stresses

on a small element at the center subjected to compressive

and tensile stress is shown in Fig. 7-13.

The maximum tensile strength for potato flesh, as

reported by Huff (1967), found a mean value of 73 N/cm2
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Fig. 7-1 Crack just initiated at the center of a

potato sample

 
“in. 7—2 Crack hrojavated outwards of a potato sample
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Fig. 7- 3 Crack propagated outwards of a potato

sample

 

Fig. 7—4 Crack propagated outwards of a potato

sample
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Fig. 7-5.--Finite element grid of a spherical shape.
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diametrically.
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the center of the cylindrical shape

compressed diametrically.
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with a range of 22 N/cm2 to 184 N/cmz. The calculated

results indicate that the potato sample fails under

tension or under a combination of both tension and maximum

shear stress since both maximum values occurred at the

same point, 0.4 mm from the center.

7.1.2 Apples

Ten cylindrical apple samples were loaded dia-

metrically till failure. The diameter and length of the

samples equaled to 25.4 mm. The elastic modulus and

Poisson's ratio were determined as 350 N/cm2 and 0.3,

respectively. The specimens failed under an average load

of 60 N with a total deformation of 2.413 mm (9.5 percent).

Three displacement increments were applied to the

finite element grid shown in Fig. 7-5. The total

deformation 2.413 mm or 9.5 percent. An elastic modulus

of 350 N/cm2 and a Poisson's ratio of 0.3 were used in

the calculations. The final volume decreased by 1.076

percent from the initial volume 12.84 cm3. This change

in volume compares with a 0.06 percent change when the

2 and Poisson's ratio 0.49.elastic modulus is 310 N/cm

The final deformed shape is shown in Fig. 7-14.

Stresses along Y and X axes of symmetry in the

deformed shape are shown in Fig. 7-15. These values are

in agreement with the elastic contact theory described

by Timoshenko and Goodier (1970). The isostress lines

are shown in Fig. 7-16 through 7-20. The stresses in
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]?5143. 7-14.--A deformed shape of apple sample compressed

diametrically.



99

3o 20 10 o -10 -20 -30 410 -5o -60

1 I l
 

’Cmax

   
STRESSES ALONG I-AXIS

29 10 o -10 -20 -30

I I I j

030:

max (7&y

 

’E

 

 

STRESSES ALONG X-AXIS

Fig. 7-15 Stresses along the axes of symmetry in the

deformed shape (apple).



100

 ~55

-10

.+5

+8

 

:‘2‘8//

 +9

Fig. 7-16 Lines of constant stress in

X-direction of a cylindrical

apple sample compresssd

diametrically in N/cm

 

 
Figs 7‘17

Lines of constant stress in

Y-direction of a cylindrical

apple :sample compressed

diametrically in N/cm2 .



101

 

-52

~40/

~20

~10

+5

+8

 
+9

Fig. 7—18 Lines of constant maximum

principal stress of a cylindrical

apple sample compressed diametrically

in N/cm .

 

~60

-5o_,,/////

-uo '

-30

-25 '

~20 ~1 0 I

Fig. 7-19 Lines of constant minimum

principal stress of a cylindrical

apple sample compressed diametrically

in N/cm2.

 

 



102

 

10

15

23.1b

23

20

17

 
 

Fig. 7-20 Lines of constant maximum shear

stress of a cylindrical apple

sample compressed diametrically

in N/cmz.



103

the Y-direction and the minimum principal stress appeared

largest under the initial point of contact (-57.6 N/cmz)

and decreased with increasing the distance from the contact

point. The stresses in the X-direction and the maximum

principal stress had a largest negative value under the

initial point of contact (-55 N/cmz). The maximum shear

stress occurred at a distance of 8.55 mm from the center

(at a distance 0.6 of half the contact width in the

deformed shape) with a maximum value of 23.1 N/cmz.

Miles and Rehkugler (1971) indicate that the

shear stress is the most significant failure parameter

and the average value of the shear stress is 26 N/cm2

of the apple flesh at failure for a uniaxial stress of a

cylindrical specimen. This value agrees with the finite

element results of 23.1 N/cmz.

7.2 Spherical Shapes

7.2.1 Potato

Twenty four semispherical potato specimens, with

a diameter 35.56 mm, were removed from white potatoes.

{These samples were used to determine the failure mode of a

spherical potato flesh in contact with a flat rigid

[plate. The elastic modulus was calculated from a uniaxial

compression of a cylindrical specimen of diameter and

length equaling 25.4 mm and value equal to 310 N/cmz.

Thee average failure load equaled 458 N and the
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displacement was 6.3764 mm (35.863 percent) for the semi-

sphere. The crack initiated at the center or near center

and propagating outwards are pictured in Fig. 7-21.

Nine displacement increments were applied to the

finite element grid shown in Fig. 7-22. The total

deformation was 6.3764 mm. The elastic modulus of 310 N/

cm2 and a Poisson's ratio of 0.48 were used in the calcula-

tions. The final volume decreased from the initial volume

by 1.921 percent for Poisson's ratio 0.49, and 2.1 and

2.25 percent for Poisson's ratio 0.48 and 0.47, respec-

tively. The deformed shape is illustrated in Fig. 7-23

for u = 0.48. The radius of the semi-sphere increased by

7.49 percent in the R-axis.

The results for Poisson's ratio 0.48 are shown in

Fig. 7-24 through 7-28. The stresses in the Z-direction

and the minimum principal stress have the largest value

at the initial point of contact and decreases with

increasing distance from the contact area. The maximum

2
values of 022 are -237, —221, and -215 N/cm for Poisson's

ratio 0.49, 0.48 and 0.47 respectively. The maximum shear

stress had a maximum value of 63.2, 62.5 and 61.8 N/cm2

.for Poisson's ratio 0.49, 0.48 and 0.47, respectively,

aand occurred near the farthest end of the contact point.

(Wther large values of the maximum shear stress were 61.5,

59.6 and 58.8 N/cmz, for three respective values of
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Fig. '7-2‘3 Crack propagation in a semispherical

potato sample
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Poisson's ratio. These values occur on the axis of sym-

metry. The maximum for u = 0.48 occurred 5.25 mm from the

center of the sphere (0.41 of half the contact width of

the deformed shape). The maximum shear stress at the

center was 55.6, 55.5, and 55.2 N/cm2 for u = 0.49, 0.48,

and 0.47, respectively. The maximum principal stresses

have their largest negative value under the initial point

(of contact with values of -204, -187 and -180 N/cm2 for

11 = 0.49, 0.48 and 0.47, respectively. The maximum

Ipositive values at the center were 38, 29 and 26.5 N/cm2

for u = 0.49, 0.48 and 0.47 respectively. The stresses

Eilong the Z and R axis of symmetry in the deformed shape

Eire shown in Fig. 7-29. The applied stresses on a small

eelement at the center for u = 0.48 of a semispherical

shape is shown in Fig. 7-30.

'7 - 2. 2 Apples

Ten semispherical apple specimens with a diameter

<31? 35.56 mm were removed from golden delicious. These

£3aunples were loaded to failure which occurred at an average

lead of 39 N and a displacement of 1.892 m (10.64 per—

<=enat).

Two displacement increments were applied to the

finite element grid shown in Fig. 7-1. The elastic

mlOdulus of 350 N/cm2 and a Poisson's ratio of 0.3 were

used in calculations. The final volume decreased from

the initial volume by 0.5 percent. The dimensions of
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the deformed shape is shown in Fig. 7-31. The radius of

the semispherical shape increased by 0.72 percent along

the R axes. The isostress lines are shown in Fig. 7-32

through 7-35. The stresses in the Z-direction and the

minimum principal stress had a largest value under the

initial point of contact (-82 N/cmz) and decreased with

increasing distance from the contact area. The maximum

principal stress had its largest absolute magnitude under

the load (-63 N/cmz) and smallest absolute magnitude

(3 N/cmz) at the center. The maximum shear stress was

largest near the contact point farthest from the axis

of symmetry. A value of 34.5 N/cm2 was obtained. The

other largest value occurs on the axis of symmetry and

its value of 28.3 N/cm2 at a distance 12.63 mm from the

center (at a distance 0.41 of half the contact width in

the deformed shape). The stresses along the Y—axis of the

deformed shape is shown in Fig. 7-36. The radial tensile

stress at the circular boundary of the surface of con-

tact is +13.6 N/cmz.

7.2.3 Peaches

The shape of the peach was determined averaging

the dimensions of fifteen peaches. The final shape is

shown in Fig. 7-37. Fifteen whole peaches were subjected

‘to a flat plate load to failure. An average failure load

<>f 73.4 N and total displacement of 9.92 mm (19.1 percent)

was observed .
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Eight displacement increments were applied on a

finite element grid (Fig. 7-38). The elastic modulus was

taken as 100 N/cm2 (Fridley 32 31., 1968) for the flesh

and assumed 2500 N/cm2 for the pit. The Poisson's ratio

of the flesh is 0.485 and 0.3 for the pit. The final

shape is shown in Fig. 7-39. The isostress lines are

shown in Fig. 7-40 through 7-43. The stresses in the

Z-direction and the minimum principal stress reached a

maximum value (—112 N/cmz) under the initial point of

contact and decreased with increasing distance from the

contact point. The largest value of the principal stress

was -101 N/cm2 under the initial point of contact. The

maximum shear stress had its maximum value of 20 N/cm2

along the axis of symmetry, at a distance 16.23 mm from

the center (at a distance 0.363 of half the contact width

in the deformed shape). The radial tensile stress at the

circular boundary of the surface of contact is +18.7 N/cmz.

Fridley at 31. (1968) reported that the maximum

shear stress at failure, calculated using contact theory,

2 2
to 40 N/cmranged from 20 N/cm (T = 0.27 oz for

max 2

u = 0.49) considering the whole peach as one material.

frhe final diameter of contact is between 7.6 mm to 12.7

rum, and the bruises were observed at depths of 1.5 mm to

12.54 mm (about 0.4 times the half contact width).

Iiorsfield 35 31. (1972) reported that the range of values

lior the maximum shear stress during an impact test
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depended on the variety. For example, a bruise occurred

in the Klampt variety at a maximum shear stress between

7 to 21 N/cm2 while it occurred between 14 and 24 N/cm2

for the Gaume variety.

7.3 Summary

Cylindrical samples of the white potato and apple

flesh were compressed diametrically to failure. Inspection

showed that the white potato samples split, with the crack

initiated at or near the center. The stress components

calculated using the finite element analysis indicate

this failure may be due to tension stresses or a com-

bination of tension and maximum shear stress. The apple

samples bruised in the vicinity of the contact surface.

The calculated stress components indicate that this

failure is probably a result of the maximum shear stress.

The loading of semispherical samples of white

potato and apple flesh to failure was performed. The

failure crack in the white potato occurred at the center.

The calculated results indicate this crack may be due to

tension stresses or a combination of tension and maximum

shear stresses. Inspection of the resulting bruise shape

which occurred in apples indicated a shape which passes

through the points of maximum shear stress.

The numerical results showed that maximum shear

stress in peaches occurred on the axis of symmetry and

the bruise shape passes through that point indicating
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the failure is probably a result of the maximum shear

stress .



VIII. SUMMARY AND CONCLUSIONS

A numerical analysis technique, the finite element

method, was used to calculate the stresses in selected

fruits and vegetables. Two-dimensional and axisymmetric

computer programs valid for all admissible values of

Poisson's ratio and for small and large displacements were

developed. These programs were used to calculate the

stress components in fruits and vegetables under quasi-

static loading. The displacement increment method was

used to solve the resulting nonlinear equations. The

following conclusions can be drawn from this study:

1. White potatoes and peaches do not fail until

large displacements have occurred.

2. The formulation of the finite element model in

Lagrangian coordinates gives more acceptable

results than the formulation in Eulerian coor-

dinates.

3. Solutions for elastic nearly-incompressible and

incompressible materials may be used to evaluate

the probable stress-strain behavior related to

bruise or crack problems in some agricultural

products.
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A tensile stress exists at the circular boundary

of the contact region and the maximum shear

stress exists near the end of the contact region

for semispherical apple and potato samples sub-

jected to a flat plate loading. A high value of

the maximum shear stress also exists on the axis

of symmetry.

White potato splits at or near the center. This

may be due to maximum tensile stress or a com-

bination of both tensile and shear stresses.

Bruises in peaches may occur due to the maximum

shear stress which occurs on the axis of symmetry

less than a quarter of the contact width below the

surface.



IX. SUGGESTIONS FOR FUTURE STUDY

The research reported in this dissertation is a

part of Michigan's contribution in the development of

failure criteria related to harvesting and handling of

fruits and vegetables (NE - 93). This dissertation is a

step focusing on the determination of the stress compon-

ent within incompressible and nearly-incompressible

materials when subjected to static loads.

1. This numerical method can be expanded by intro-

ducing the special "crack elements" as described

by Cook (1974) to study further details of the

shape of bruises. This method can be modeled by

disconnecting nodes along element boundaries to

be separated by a crack, to evaluate the critical

stresses at that point.

2. Expanding the finite element programs for incom-

pressible and nearly-incompressible materials

for impact loading and comparing the results with

quasi—static loading. Different conclusions may

be reached to explain some of the modes of failure

of agricultural products.
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More research is needed to study the variation of

the elastic modulus in different locations of the

same fruit or vegetable as reported by Huff (1967)

for the potato. This variation in mechanical

properties may give additional information about

the location and values of maximum tensile and

shear stress components. The magnitude of the

elastic modulus is affected by maturity, storage,

and temperature. These changes will affect the

resultant stresses for static and impact loading.

The maximum shear theory and the maximum stress

theory should be investigated relative to the

application for predicting the failure of peaches,

apples and potatoes.
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Table A-l.--Values of 2 at different values of a/D in the

equation a/D = 1/222[1n 22 + %].

 

z d/D z a/D z a/D

 

.500000 1.000000 1.350000 .409671 2-200000 .204711

.550000 .983983 1.400000 .390209 2.250000 .197933

.600000 .947668 1.450000 .372107 2.300000 .191498

.650000 .902206 1.500000 .355247 2.350000 .185383

.700000 .853543 1.550000 .339521 2.400000 .179567

.750000 .804857 1.600000 .324834 2.450000 .174030

.800000 .757815 1.650000 .311096 2.500000 .168755

.850000 .713237 1.700000 .298231 2.550000 .163724

.900000 .671473 1.750000 .286165 2.600000 .158924

.950000 .632606 1.800000 .274835 2.650000 .154340

1.000000 .596573 1.850000 .264183 2.700000 .149958

1.050000 .563236 1.900000 .254155 2.750000 .145768

1.100000 .532420 1.950000 .244704 2.800000 .141758

1.150000 .503935 2.000000 .235786 2.850000 .137917

1.200000 .477593 2.050000 .227363 2.900000 .134236

1.250000 .453213 2.100000 .219397 2.950000 .130706

1.300000 .430624 2.150000 .211856 3.000000 .127319
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Table A-1.--Continued.

 

Z d/D Z a/D Z a/D

 

3.050000 .124068 4.050000 .079008 5.050000 .055142

3.100000 .120944 4.100000 .077457 5.100000 .054255

3.150000 .117941 4.150000 .075954 5.150000 .053391

3.200000 .115053 4.182550 .075000 5.200000 .052548

3.250000 .112274 4.200000 .074496 5.250000 .051725

3.300000 .109599 4.250000 .073081 5.300000 .050922

3.350000 .107021 4.300000 .071708 5.350000 .050139

3.400000 .104538 4.350000 .070374 5.359040 .050000

3.450000 .102143 4.400000 .069079 5.400000 .049374

3.496320 .100000 4.450000 .067821 5.450000 .048628

3.500000 .099833 4.497160 .066666 5.500000 .047899

3.550000 .097603 4.500000 .066598 5.550000 .047186

3.600000 .095450 4.550000 .065409 5.600000 .046490

3.650000 .093371 4.600000 .064253 5.650000 .045810

3.700000 .091361 4.650000 .063129 5.700000 .045146

3.750000 .089418 4.678580 .062500 5.750000 .044496

3.800000 .087539 4.700000 .062035 5.800000 .043861

3.801070 .087500 4.750000 .060970 5.850000 .043240

3.850000 .085721 4.800000 .059934 5.900000 .042632

3.900000 .083961 4.850000 .058924 5.950000 .042038

3.918260 .083333 4.900000 .057942 6.000000 .041457

3.950000 .082258 4.950000 .056984 6.050000 .040887

4.000000 .080607 5.000000 .056051 6.100000 .040331
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Table A-l.--Continued.

 

Z a/D Z d/D Z a/D

 

6.150000 .039785 7.200000 .030548 8.300000 .024019

6.200000 .039252 7.250000 .030194 8.350000 .023775

6.250000 .038729 7.300000 .029846 8.400000 .023535

6.300000 .038217 7.350000 .029504 8.450000 .023299

6.350000 .037715 7.400000 .029169 8.500000 .023067

6.371850 .037500 7.450000 .028839 8.550000 .022838

6.400000 .037224 7.500000 .028516 8.600000 .022612

6.450000 .036743 7.550000 .028197 8.650000 .022391

6.500000 .036271 7.600000 .027885 8.700000 .022172

6.550000 .035809 7.650000 .027577 8.750000 .021957

6.600000 .035356 7.700000 .027275 8.800000 .021745

6.650000 .034911 7.750000 .026978 8.850000 .021536

6.700000 .034475 7.800000 .026686 8.900000 .021330

6.750000 .034048 7.850000 .026399 8.950000 .021127

6.800000 .033629 7.900000 .026117 9.000000 .020928

6.835940 .033333 7.950000 .025840 9.050000 ..020731

6.850000 .033218 8.000000 .025567 9.100000 .020537

6.900000 .032815 8.050000 .025298 9.150000 .020346

6.950000 .032419 8.100000 .025034 9.200000 .020158

7.000000 .032031 8.106550 .025000 9.250000 .019972

7.050000 .031650 8.150000 .024774 9.300000 .019789

7.100000 .031275 8.200000 .024518 9.350000 .019608

7.150000 .030908 8.250000 .024267 9.400000 .019431
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Table A-l.--Continued.

 

 

Z a/D Z a/D Z a/D

9.450000 .019255 10.550000 .015944 11.700000 .013341

9.500000 .019082 10.600000 .015815 11.750000 .013244

9.550000 .018912 10.650000 .015687 11.800000 .013147

9.600000 .018744 10.700000 .015562 11.850000 .013051

9.650000 .018578 10.750000 .015437 11.900000 .012957

9.700000 .018414 10.800000 .015315 11.950000 .012863

9.750000 .018253 10.850000 .015193 12.000000 .012771

9.800000 .018094 10.900000 .015074 12.050000 .012679

9.850000 .017937 10.950000 .014955 12.100000 .012589

9.900000 .017782 11.000000 .014839 12.149830 .012500

9.950000 .017629 11.050000 .014723 12.150000 .012499'

10.000000 .017478 11.100000 .014609 12.200000 .012411

10.050000 .017329 11.150000 .014496 12.250000 .012323

10.100000 .017183 11.200000 .014385 12.300000 .012237

10.150000 .017038 11.250000 .014275 12.350000 .012151

10.200000 .016895 11.300000 .014166 12.400000 .012066

10.250000 .016753 11.350000 .014059 12.450000 .011983

10.281240 .016666 11.400000 .013953 12.500000 .011900

10.300000 .016614 11.450000 .013848 12.550000 .011818

10.350000 .016477 11.500000 .013744 12.600000 .011737

10.400000 .016341 11.550000 .013642 12.650000 .011657

10.450000 .016207 11.600000 .013540 12.700000 .011577

10.500000 .016074 11.650000 .013440 12.750000 .011499
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Table A-l.--Continued.

 

 

Z o/D Z a/D Z o/D

12.800000 .011421 14.200000 .009537 16.500000 .007339

12.850000 .011344 14.300000 .009421 16.600000 .007262

12.900000 .011268 14.400000 .009308 16.700000 .007186

12.950000 .011193 14.500000 .009196 16.800000 .007111

13.000000 .011118 14.600000 .009087 16.900000 .007038

13.050000 .011044 14.700000 .008980 17.000000 .006966

13.100000 .010971 14.800000 .008874 17.100000 .006894

13.150000 .010899 14.900000 .008771 17.200000 .006824

13.200000 .010828 15.000000 .008669 17.300000 .006755

13.250000 .010757 15.100000 .008569 17.400000 .006687

13.300000 .010687 15.200000 .008471 17.500000 .006620

13.350000 .010617 15.300000 .008374 17.600000 .006555

13.400000 .010549 15.400000 .008280 17.700000 .006490

13.450000 .010481 15.500000 .008187 17.800000 .006426

13.500000 .010413 15.600000 .008095 17.900000 .006363

13.550000 .010347 15.700000 .008006 18.000000 .006301

13.600000 .010281 15.800000 .007917 18.100000 .006240

13.650000 .010215 15.900000 .007830 18.200000 .006180

13.700000 .010151 16.000000 .007745 18.300000 .006121

13.800000 .010023 16.100000 .007661 18.400000 .006063

13.900000 .009898 16.200000 .007579 18.500000 .006005

14.000000 .009776 16.300000 .007498 18.600000 .005949

14.100000 .009655 16.400000 .007418 18.700000 .005893
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Table A-l.--Continued.

 

Z o/D Z a/D Z a/D

 

18.800000 .005838 21.500000 .004609 25.000000 .003529

18.900000 .005784 22.000000 .004425 25.500000 .003407

19.000000 .005730 22.500000 .004253 26.000000 .003292

19.500000 .005474 23.000000 .004091 26.500000 .003182

20.000000 .005236 23.500000 .003938 27.000000 .003078

20.500000 .005013 24.000000 .003794

21.000000 .004804 24.500000 .003658

 


