
k’

MSU
LIBRARIES

.—:—.

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. flfl§§_w111

be charged if book is

returned after the date

stamped be10w.

INTERACTIVE CUSTOM FUNCTION DEFINITION

FOR THE ENPORT BOND-GRAPH PROCESSOR

By

Charles R. Sherman

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Mechanical Engineering

1987

Copyright by Charles Robert Sherman 1987

All Rights Reserved

ABSTRACT

INTERACTIVE CUSTOM FUNCTION DEFINITION

FOR THE ENPORT BOND-GRAPH PROCESSOR

By

Charles R. Sherman

The ability to design custom function definitions for bond-graph elements

to supplement the standard function library can make :1 bond-graph

processor much more versatile for the user. This thesis. presents an

enhancement to ENPORT, an existing bond-graph processor, and allows

multiple custom function definitions to be written interactively by the

user, without the need to leave the processor environment. The method

scans the function definition and builds a control stream (fl? commands

which is interpreted during the bond-graph solution.

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Ronald Rosenberg, for

his guidance and for his great patience during this work. The effort

extended over many more semesters and.masters research credits than either

of us imagined.

To Guy Allen for his help with the installation of this work into

ENPORT, and to Ace Sannier for his help in making source code listings

available, I extend thanks.

I also want to recognize the contributions of my former major

professor, Dr. M. G. Keeney, for his unflagging efforts to instill in us

some of the aspects of compiler design. Both he and my compiler partner,

Dr. Zane Mottler, might see similarities in the approach I have taken in

this work and the approach we used in the compiler series course. Dr.

Keeney is to be especially thanked for making available a grammar analyzer

which automated the process of developing a simple precedence grammar for

the parser. (I also have never again spelled grammar with an "e.")

Finally, I would like to thank my wife, Debbie, for her love and

proofreading. She has learned a lot about program execution, matrix

multiplication and developing patience.

iv

TABLE OF CONTENTS

LIST OF FIGURES .

Chapter

1. INTRODUCTION

1.1 Overview .

1.2 Menus

1.3 Features .

2. EXTERNAL FUNCTION DEFINITION

2.1 Lexical Analysis .

2.2 Parsing

2.3 Internal Code Generation .

3. EXTERNAL FUNCTION EVALUATION

3.1 Exchanging Values with ENPORT

3.2 Interpreter

4. INSTALLATION INTO ENPORT

4.1 Bond-Graph Setup .

4.2 Reading or Writing a Saved Problem .

4.3 Replacing an External Function .

5. MAINTENANCE .

5.1 Parameters .

5.2 Hidden Menu Options

5.3 Trace Option for Debug .

Page

. vii

12

15

15

16

18

18

19

20

21

21

22

22

6. SUMMARY AND RECOMMENDATIONS .

6.1 Expanded Error Messages

6.2 Improved Validity Checking .

6.3 Internal Code Optimization .

LIST OF REFERENCES

APPENDICES

A. USER DOCUMENTATION .

A1. Sample Create Session

A2. Sample Edit Session

A3. Sample Archive/Restore Session .

. LANGUAGE SYNTAX

. FSA DIAGRAM

. SIMPLE PRECEDENCE GRAMMAR

Dl. Granmar Rules

D2. Grammar Tokens .

INTERNAL CODE

. SUBPROGRAM CALLING TREE.

. SUBPROGRAM LIST

. SOURCE CODE

vi

25

25

27

28

30

31

33

36

42

48

53

55

56

58

59

62

65

67

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. FORTRAN Functions

2. Lexical Analysis of a User Input Line

3. Parsing of Grammar Tokens from Figure 2

LIST OF FIGURES

4. Symbol Table after Parse .

5. Trace Flags

Bl. External Function Syntax .

C1. FSA Diagram

Page

11

13

24

51

54

Chapter 1

INTRODUCTION

The goal of this thesis was to create a method for an ENPORT user

to write his own function definition for a bond-graph model node [1].

It is presumed that the reader is familiar with this modeling technique

as well as the ENPORT computer program [2], which can process the

bond-graph as input and provide the dynamic system response.

Prior to this work, a user selected functions from a: pre-defined

library and could only set various constants like amplitude, phase,

frequency, etc. Building a customized "external" function was done by

writing a new FORTRAN subprogram. This had to be compiled and linked with

the rest of ENPORT to make the new external function available for the

bond-graph solution. This compile—and-link process could only tn: done

by someone with knowledge of the particular hardware's compiler and

linker.

As a result of this work, the ENPORT user is now able to create his

own external function definition without the need to leave. the ENPORT

environment, (H' to write, compile and link a FORTRAN subprogrmn. The

external function is supported through the use of menus and prompts,

allowing easy definition of the function. Each definition is saved and

2

restored with the problem description and can be archived separately for

use in a different bond-graph model.

1.1 Overview

This enhancement affects ENPORT primarily in two areas: (1) during

formulation of the system equations and (2) during their solution.

(Detailed discussions of these two areas are in chapters two and three,

respectively.) In the first area, the program interacts directly with

the user to create an external function definition that becomes the system

equation for a bond-graph node. Once the function is properly defined,

the user moves on to specify the next node equation, which can also be

an external function. Up to ten external functions may be defined at one

time for a particular problem. This is not a constraint imposed by the

method, but rather a space consideration when allocating memory.

After specification of the system equations is complete, ENPORT can

solve the equations for the transient response. During the solution, each

system equation is repeatedly evaluated. Equation types from the standard

library have been compiled and linked with ENPORT and are in object code

form. External functions are not in object code form. They are reduced

to a series of operations at the level of an assembly language. This

transformation of tin: external function occurs during its definition.

The resulting series of assembler-like instructions is interpreted many

times during the solution, once at each time-step. The second area of

this work is an interpreter, which evaluates the function for the

bond-graph solution.

3

Due to the complexity of reducing user statements to assembler-like

instructions and the overhead of user dialog, the first area consumed much

more time and effort than the second area. This complexity is reflected

in the relative amount of source code written to implement each of these

areas. (Source code files are described in Appendix H.)

1.2 Menus

All interaction with the user is controlled through menus and

prompts. (See the sample sessions in Appendices A1, A2 and A3.) Two

menus are available, each providing a "Help" panel. The first presents

the main options for the external function.processor. Of the ten options

only two ever need to be used: (1) to create a new function definition

and (2) 11) exit the external function processor. However, two other

options can be useful with the function definition. One displays a

generic form of the node equation which shows the output bond variable

and the input bond variable(s). These variables must be used when writing

the external function definition. The other allows a current definition

to be edited. Selecting the edit option brings up the second menu used

in this work: the external function editor options. It contains seven

options, which include four kinds of line editing, a save of the edited

function and an exit from the editor. The remaining six options on the

external function processor menu, excluding help, deal with archived

functions. This work has provided a feature allowing an external function

definition created for one problem to be archived and then restored for

another problem. Since it is unlikely that the input and output variables

would be the same for two different problems, the restored function must

4

be edited. The editor is invoked. automatically' after :1 function is

restored from archive. This ability to preserve definitions between

problems and sessions of ENPORT can save tedious retyping and potential

errors when using the same function in several different bond—graph models

or when exercising alternate user-defined functions for the same node.

1.3 Features

In addition to the function archive ability described above, the work

has included the potential to define parameters, which may then be

referenced as constants in any function definition. The only parameter

currently defined this way is PI which is set to 3.14159. PI can be

referenced in the definition statements and the value 3.14159 will be used

during the solution. It is not expected that the user would make these

additions, but the ENPORT support programmer may add other such

parameters, if desired. The procedure to make additions is discussed

thoroughly in Chapter 5, Section 1.

A simple precedence grammar is used to parse FORTRAN-like definition

statements input by the user. The full grammar is described in Appendix

D1. Statements may begin in any column since no labels or continuation

statements are allowed. All of the FORTRAN algebraic operators (+, -,

‘, /, **, .) may be used, as well as any of the functions in Figure 1.

The double—precision versions of these functions are implemented by the

interpreter in order to be consistent with the precision maintained

elsewhere in ENPORT.

ABS LOG

ACOS LOGIO

AINT MAX

ANINT MIN

ASIN MOD

ATAN SIGN

ATANZ SIN

COS SINH

COSH SORT

DIM TAN

EXP TANH

Figure 1. FORTRAN Functions

Also available is the IF-THEN-ELSEIF-ELSE-ENDIF statement.

statement must start with IF, must have a THEN clause and must end with

ENDIF. The ELSEIF and ELSE clauses are optional. Logical operators

(.AND., .OR. and .NOT.) may be used with the relational operators (.EQ.,

.NE., .GT., .68., .LT. and .LE.) to build relational expressions for the

IF and ELSEIF clauses. A brief introduction to the syntax for entering

definition statements appears in Appendix A and a complete formal language

specification appears in Appendix B.

During lexical analysis of user input, an integer value is associated

with each input character. This integer identifies the input character

position if) the character set accepted by this work. Because machine

independency was desired, intrinsic FORTRAN functions, which would return

the character position in the system collating sequence, were not used.

These returned results may not be consistent between machine

architectures. Instead, a character string constant called COLATE (was

defined and used to establish an integer positional value for each

character in the character set. Use of the intrinsic function INDEX with

the string COLATE returns a positive value for every character accepted

6

by the work and zero for every character not accepted. This method

guarantees machine independence when identifying a positional integer

value for each input character.

Another feature required of this work was that a valid external

function be in place when the user leaves the external function processor

environment. That is, if the user requests an external function type but

fails to complete a successful definition, a default function definition

will be established. This was accomplished with a check for a valid

function after the user selects the exit option from the external function

processor menu. If a valid function is found, the exit proceeds, and

control returns to ENPORT. If no valid function is found, and the user

insists on exiting, a default function sets the output bond variable to

zero.

A special feature of this work and one which was of great value

during development is a trace option. Debug-aiding (output can be

generated and controlled through the use of trace flags. This feature

is intended for the ENPORT support programmer only. Extensive traces of

the lexical analysis and parsing operations can be written to a file for

review or comparison with previous traces after a major program

modification is made. Chapter 5, Section 3 presents a discussion of this

option and Figure 5 lists the available trace flags.

Chapter 2

EXTERNAL FUNCTION DEFINITION

As the user enters each line of input to define the external

function, the line is reduced to a streamlof assembler-like instructions.

There are three phases to this operation: (1) lexical analysis,

(2) parsing and (3) code generation.

2.1 Lexical Analysis

Lexical analysis is the process of scanning a line of input one

character at a time and identifying input tokens. An input token is a

single element of the definition statement. Four types of input tokens

exist: (1) operators, (2) variable names, (3) constants and (4) reserve

words. A finite-state automaton (FSA) is used to scan through the input

and accept or reject strings of characters as input tokens. The FSA (see

Figure C1) is implemented in the table-driven subprogram LEX.

LEX is able 1x) detect some user errors based on input character

sequence. These are errors like (1) two operators with no intervening

operand, (2) a variable name beginningwwith a digit or (3) any error that

can be detected by looking ahead at the next input character. LEX

contains many messages for display to the user if an error is encountered.

8

Any error in the input renders that line invalid, and the user is prompted

to correct the error and reenter the line.

If LEX finds that the next input token is a variable name or a

constant, the token is entered into a symbol table, which provides storage

for the value during function evaluation. LEX distinguishes between real

and integer constants, but the integers are converted to double-precision

values in the symbol table. All arithmetic is double precision for the

function evaluation. Once space is reserved in the symbol table, LEX

changes the input tokens for variable names and constants to VAR and CON,

respectively. These are "terminal" tokens used by the parsing grammar

to represent variable names and constants. Input tokens for operators

and reserve words are already terminal tokens in the grammar and are,

therefore, unchanged by LEX.

SQUARE = BASE * 8

(A) User Input Line

Call Input Token Terminal Token Symbol Table

Number Found Returned Pointer Returned

1 SQUARE VAR 1

2 = - None

3 BASE VAR 2

4 ' ‘ None

5 8 CON 3

(B) Result of Five Calls to LEX

Entry Entry Entry

Number Name Value

0001 SQUARE 0 0

0002 BASE 0.0

0003 8.0

(C) Symbol Table Entries Generated

Figure 2. Lexical Analysis of a User Input Line

9

Figure 2 shows the result of lexical analysis on a line of user

input. Five successive calls to LEX are needed to process the user input

line in Figure 2, Part A. At each call, LEX identifies the next input

token and returns a terminal token of the parsing grammar and, if

appropriate, a symbol table pointer. Figure 2, Part B shows these results

and Figure 2, Part C shows the three entries generated in the symbol

table.

2.2 Parsing

The series of terminal tokens identified by the lexical analysis is

passed on to the parser, which is implemented in the subprogram PARSER.

This work uses a "simple precedence" parsing grammar that defines new

tokens called "nonterminals." The gramar rules (Appendix DI) are used

to recognize a series of one or more "granmar tokens" (terminal and/or

nonterminal tokens as listed in Appendix D2) that can be replaced by a

single nonterminal. This replacement is called a "reduction," because

usually several grammar tokens are replaced by one nonterminal. A

precedence-relation table derived from the grammar defines one of the

relations (<<, >> or ==) to be associated with each pair of gramar

tokens. The table is only about half full, meaning that no relation

exists for many pairs. If grammar tokens having no precedence relation

ever appear together during the parsing of a user input line, indicative

of a user syntax error, PARSER sends an error message to the user, rejects

the input line, and prompts the user to correct the error and reenter the

line.

10

The grammar has many rules which seem to do nothing but reduce one

token to another. (See rules 44 and 45 in Appendix 01 for example.) These

are necessary to remove conflicts from the precedence-relation table and

make the grammar pairwise disjoint.

Figure 3 shows five steps in the parse of grammar tokens from the

user input line of Figure 2. Figure 3, Part A shows the first four

terminal tokens and the precedence relations between them. The symbol

<< at the far left is the relation between the bottom of the parsing stack

and any grammar token. The appearance of >> signals the parser that a

reduction can be made by applying the grammar rules to the series of

tokens between the right-most pair of << and >> relations. Figure 3, Part

B has the parse continuing after VAR is reduced to FACTOR and the last

terminal token CON is added. The relation >> appears after CON because

it represents the relation between any grammar token and the end of the

user input line. Figure 3, Part C shows the reduction on CON to CEXFAC.

The result of the next reduction, FACTOR == ‘ == CEXFAC to CXPR, is

shown in Figure 3, Part D. One more reduction is possible and the result

is shown in Figure 3, Part E. At this point a statement, represented by

the nonterminal SSTMT, has been successfully parsed. PARSER now prompts

the user for more input and the user may continue or end the external

function definition.

(A)

(B)

(C)

(D)

(E)

11

<< VAR == = << VAR >> ‘

The precedence relations and tokens are stacked until

a relation >> is encountered.

<< VAR =- 8 << FACTOR == ‘ << CON >>

The new token FACTOR derived from VAR is stacked and

followed by the rest of the input tokens.

<< VAR =- = << FACTOR == ‘ == CEXFAC >>

The new token CEXFAC derived from CON is stacked with

the appropriate precedence relations.

<< VAR =8 = == CXPR >>

FACTOR -- ‘ =2 CEXFAC is replaced by CXPR with

the appropriate precedence relations.

<< SSTMT

VAR -- - -- CEXPR has been recognized as a valid

statement and been replaced by SSTMT.

Figure 3. Parsing of Grammar Tokens from Figure 2

12

2.3 Internal Code Generation

The result of the external function definition is a series of

assembler-like instructions called "internal code,f which can be

interpreted during the bond-graph solution. The generation of this

internal code occurs simultaneously with the parsing described above in

Section 2. Each step of the parse is marked by a reduction, that is, the

application of one of the grammar rules to the tokens on the top of the

parser stack. Of the fifty-two simple precedence grammar rules used in

this work, thirty of those, when used in a reduction, also require

internal code generation. The internal code is written to an array, which

is made available to the interpreter for the bond-graph solution. Each

internal code instruction is an integer four-tuple, consisting of one

operator field followed by three operand fields. A list of all the

internal code instructions and their descriptions appears in Appendix E.

Two of the reductions in the user input example of Figure 3 generate

* ==internal code. The reduction in Figure 3, Part D of FACTOR =

CEXFAC to CXPR represents both the multiplication of two values from the

symbol table and the storage of the result in a third value. The internal

code generated is 0013 0002 0003 0004. The four-tuple shown is written

as four integers separated by blanks for readability. Internally, the

four-tuple is written as entry "i" in an array defined as OBJCOD(4,i).

The first field contains the operator 0013, which means multiplication.

The three operands 0002, 0003 and 0004 are pointers to symbol table

entries that were made by LEX. Figure 4 contains the symbol table

generated in Figure 2 by the calls to LEX.

13

Entry Entry Entry

Number Name Value

0001 SQUARE 0.0

0002 BASE 7.0

0003 8.0

0004 0.0

Figure 4. Symbol Table after Parse

One more entry for storage of an intermediate value has been added by

PARSER. Also, the user variable BASE has the value 7. This could be a

parameter or a value previously assigned in the external function

definition, or it might stand for a bond variable whose value is supplied

by ENPORT. User input tokens SQUARE, BASE and 8 were entered into the

symbol table by LEX at locations 0001, 0002 and 0003, respectively, and

the intermediate value was entered by PARSER at location 0004. This

multiply instruction then says to multiply the value stored at 0002 by

the value stored at 0003 and place the result into the value for entry

0004.

Reduction VAR == = == CEXPR to SSTMT shown in Figure 3, Part E

also generates internal code. The instruction generated is 0016 0004 0000

0001. Operator 0016 is the assignment operation and this instruction

assigns or copies the value of symbol table entry 0004 to the value for

entry 0001. The third field in this four-tuple (the second operand field)

is 0000. This operand is not used by the assignment operation 0016 and,

therefore, is set to 0000.

These two internal code instructions and the symbol table are all

that are needed by the interpreter to accomplish the operation specified

by the user in his input of Figure 2, Part A.

14

After processing all of the user input, the generated internal code

itself is "post-processed" to remove label instructions and to modify

branch and branch-on-condition instructions. These: three instruction

types are generated by the parser to implement the logic of the

IF-THEN-ELSEIF-ELSE—ENDIF structure. Blocks of statements must be

executed or jumped around depending on the result of evaluating a

relational expression. This post-processing of the internal code makes

the interpreter execute much more efficiently. If the internal code were

not modified, the interpreter would have to decode every operator, even

in the blocks to be skipped, in order to find the label instructions.

Instead, the first pass of the post-processor removes the label

instructions and retains locaticni pointers for the first executable

instruction after each label. During the second pass, the post-processor

modifies every branch and branch-on-condition, replacing its label

operand with the appropriate location pointer. Now, for the interpreter

to execute a branch, the location pointer is merely copied from the branch

operand into the interpreter's location counter.

Chapter 3

EXTERNAL FUNCTION EVALUATION

After completion of a successful external function definition, the

FORTRAN-like statements input by the user have been parsed and reduced

to a series of internal code instructions. This instruction set and the

accompanying symbol table are used during the ENPORT bond-graph solution

by an interpreter. The internal code is accepted an; input and each

instruction is performed by the interpreter implemented in subprogram

INTERP.

3.1 Exchanging Values with ENPORT

ENPORT has established a vector containing storage for the inputs

and outputs of all node equations in the bond-graph. The user references

the input bond variables when writing the external function to define the

equation output. As LEX identifies a valid bond-variable name in the user

input line, the variable name is converted by LEX to the form VBL(offset),

in which VBL is the ENPORT I/O vector and offset is the pointer into the

vector where the value of the bond variable is stored. The parser

generates the appropriate read-ENPORT or write-ENPORT instruction

(operator 0023 or 0024, respectively) and the interpreter uses the offset

to retrieve input values from the ENPORT I/O vector and to write output

15

16

values to it. These instructions carry the offset value as one of the

operands if! the instruction rather than a symbol table pointer. This

imitates an "immediate" instruction in assembler.

3.2 Interpreter

The INTERP subprogram is fairly short, only about 330 lines including

coments, and is completely self-contained. ENPORT calls INTERP to

evaluate the external function and INTERP processes all of the internal

code for the function without calling any other subprograms.

Because the bond-graph problem at hand may have more than one

external function definition, each function is "loaded" to an array called

MEMORY. Pointers to the start of the internal code for each function are

maintained, and the interpreter initializes its location counter for

MEMORY with this pointer. Symbol tables for each external function are

loaded tx> another array and pointers are maintained for each of them.

Logically, this is the same bookkeeping effort done by a system linker

for loading object code programs.

After its location counter and symbol table offset have been

initialized, INTERP evaluates the first internal code instruction. The

twenty-four operators are numbered one through twenty-four in order to

simplify use of a computed GO TO statement which implements operator

evaluation” ‘The appropriate action for each instruction is performed,

referencing values in the symbol table or values in the array used for

exchanging variables with ENPORT. Then the location counter is

l7

incremented by one, and the process continues with the next instruction

until a return (operator 0020) is found. One evaluation of the user’s

external function has now) been completed for one time-step in the

bond-graph solution, and control is returned to ENPORT.

The interpretive process described above involves a lot of computer

processing overhead and one might expect that solution times would be

extended when using an external function; however, initial comparisons

between a bond-graph.problem using a library function and the same problem

using an external function indicate little difference in solution times.

It is felt that the solution process as a whole is quite CPU intensive

and, therefore, the added overhead of the interpreter has little effect

on the total solution time. This might no longer be true in a problem

involving a large number of time-steps or using several external

functions. The task of evaluating solution times using external functions

lies outside the scope of this work.

Chapter 4

INSTALLATION INTO ENPORT

Initial installation efforts concentrated on transferring execution

from ENPORT to this work and modifying the external function routines to

use the standard ENPORT I/O handlers. This also made the ENPORT dialog

trace facility available for the remaining development. Installation was

completed by providing routines to (1) initialize a new bond-graph

problem, (2) read and write an external function definition for a saved

problem and (3) clear an external function.

Once this installation was complete, the value exchanges with tin:

ENPORT I/O vector, VBL, could now be fully tested. The external function

processor can recognize bond variables and correctly locate them in VBL.

Also, the variables T and TIME are recognized as read-only variables

containing the time value set by ENPORT during bond-graph solution.

4.1 Bond-Graph Setup

Whenever ENPORT initializes to restore an <1hi bond-graph problem

from a problem file or to create a new problem, certain areas within this

work. must also In; initialized. The routine CLREXT resets (1) MEMORY,

(2) the symbol table array TMPVAL, (3) the array TEXT which holds each

18

19

line of user input and (4) LOADPT which holds pointers for each external

function. This occurs once for each problem.

4.2 Reading or Writing a Saved Problem

Since ENPORT provides the ability to save a bond-graph problem

description, this enhancement had to support that feature also. ENPORT

optionally writes the node equations to a file, and if this option is

selected for a problem having an external function, saves the user input

lines. The subprogram EXTPTR returns the pointer to TEXT and the count

of user input lines stored there for any node equation having an external

function. Installation required a test for a function type of USERDEF,

a call to EXTPTR and the writing of TEXT lines to the problem file.

When ENPORT restores a bond-graph problem, all of the text lines must

be parsed again to generate internal code and the symbol table for the

interpreter. The installation required testing for function type

USERDEF, and loading user input lines defining the function into array

EARRAY and setting ECOUNT equal to the number of lines read. A call to

subprogram READEX causes lexical analysis and parse of all lines in

EARRAY. This process exercises the same subprograms LEX and PARSER that

are used during an interactive definition, but suppresses user dialog

except for error messages. Since these defining statements were

successfully accepted before they could be saved in the problem file, no

errors should occur.

20

These file read-and-write procedures are repeated for each external

function defined in a bond-graph problem.

4.3 Replacing an External Function

Once a node equation has been defined, the user has the option

available to change it. If the original definitnm1 used ani external

function, this definition must be "unloaded" to release space in MEMORY,

TEXT, the symbol table and LOADPT. This is done with one call tx> the

subprogram ULDEXT. The only argument passed to ULDEXT is the number

ENPORT assigned to the node. Each array is compressed after a definition

is unloaded in order to provide the maximum available space for another

external’ function. This work supports up to ten definitions

simultaneously for one bond-graph problem, but user function sizes Hwy

exceed MEMORY, TEXT or symbol table array limits. These limitations are

necessary.simply to define finite sizes for program data structures and

can be extended by the ENPORT support programmer.

Chapter 5

MAINTENANCE

The intent of this chapter is to provide enough information about

several areas of this work to facilitate future maintenance. Included

are details regarding parameter table expansion and two hidden main menu

options for the external function processor. One of these options

activates a trace facility, which has the capability to trace the lexical

analysis and parse operations. The trace output is written to a file.

5.1 Parameters

During the initialization performed for every new external function

definition, the symbol table is loaded with reserve words and the

parameter names and values. This table, in subprogram ANFANG, consists

of three data structures. The first, the integer NPARAM, is simply the

number of active parameters in the table. The other two data structures

are parallel one-dimensional arrays of length NPARAM. The first array,

NPARM, is of type CHARACTER'6 and contains the name of the parameters that

can be referenced within an external function. The second array, VPARM,

is of type DOUBLE PRECISION and contains the value of each parameter named

in NPARM. These three structures are local variables initialized with

DATA statements aux! are not referenced outside ANFANG. The table is

21

22

expanded by adding the parameter names and values to NPARM euxl VPARM,

respectively, and setting NPARAM to the new table size.

5.2 Hidden Menu Options

Two hidden options are available on the external function processor

menu: L and T. Option L is described in this section, while option T

is described in Section 3.

During the development and testing of this work, it was helpful to

separate the tasks of creating, editing and loading an external function

definition. Initially, the external function processor menu offered an

option for each of these three operations. After development was

complete, it proved more effective to automatically load after a

successful create or edit and this greatly smoothed the flow of operations

required of the user at the main menu. While the load procedure is

automatic, the load option (option L) is still accepted from the main menu

prompt. This could be useful during future maintenance of this work.

The separation of loading from editing and creating has been maintained

by keeping separate subprograms to support these options.

5.3 Trace Option for Debug

This trace option is not presented to the user because it is intended

only for the ENPORT support programmer and it can generate large amounts

of output. Therefore, the output is routed to a file rather than to the

23

screen. In order to evaluate the trace information after the ENPORT run,

this file can be browsed online or printed.

Entering the hidden option T at the external function processor main

menu calls subprogram DEBUG which controls the trace facility for this

work. DEBUG provides a toggle to enable or disable all trace printouts

and allows trace "flags" which control individual printouts to be turned

on. Trace flags can also be turned off and on during the function

definition by entering specially-coded comment statements. The trace

toggle and all trace flags are initialized off at every entry into the

external function processor from ENPORT. The special comment statements

have the form CSET# followed by sets of "+nn" and/or "~nn." (+nn means

to turn flag nn on and -nn means to turn it off.) Setting flag +00 will

turn all trace flags on and ~00 will turn them all off. The +nn and -nn

can be repeated allowing several flags to be set with one CSET# statement.

Figure 5 lists the trace flag numbers, the subprogram in which they

appear and a brief description of the trace output. The trace output file

is named DEBUGIT and is opened on unit five. If the file name already

exists the first time tracing is toggled on, the option to overwrite or

give another file name is presented.

Flag

Number

02

O4

05

O6

07

08

09

10

ll

12

13

14

15

16

17

18

19

24

Tracing

Subprogram Trace Description to Debug File

NEWFCT

LEX

LEX

PARSER

CODE

PUSH

PARSER

PUTINT

LEX

LEX

PUTSYM

PUTREL

NEWFCT

LEX

REDUCE

CODEGN

REDUCE

FAILRD

CODEGN

NEXT

PARSER

CODEGN

ULDEXT

Figure 5.

24

User input line after a good parse

FSA and user input pointers

Screen error messages

Parser stacks each time a token added

User input line before calling LEX

Integer constant symbol table entry

Building of integer constant

Building of real constant

Variable name symbol table entry

Real constant symbol table entry

Symbol table dump after function

definition completed

Building of comparison and relational

operators

Grammar rule reduction

Internal code generation

Screen error messages

Pointers to reset after user error

Dummy message when rule reduction

generates no internal code

Load areas and pointers before and

after function unload and at exit

from external function processor

Trace Flags

Chapter 6

SUMMARY AND RECOMMENDATIONS

The work presented in this thesis has addressed an ENPORT user's need

to write his own node equation definition and allows the definition to

be made without leaving ENPORT. Node equations are no longer limited to

the standard function library, but can now be fine tuned to more closely

model the real (nonlinear) world. Multiple custom function definitions

may be defined for a bond-graph problem and a definition can be archived

for use in another problem. This enhancement supports ENPORT's ability

to save complete problem descriptions to a problem file and to restore

the problem during another session.

A review'of the evolution of this work reveals some areas which could

benefit from further attention. Recommendations for further work appear

in the sections which follow and deal generally with user interface and

internal code optimization for the interpreter.

6.1 Expanded Error Messages

Writers of compilers and other language processors agree that errors

must be detected, but which action should be taken is the subject of much

debate. Some batch compilers try to make corrections II) recover' from

25

26

input stream errors [6,7]. In the case of this work the user is at the

console, and since only he knows what he meant to do, the approach taken

informs the user and lets him make the correction.

Extensive validity checking during lexical analysis and parsing of

user input means that all errors in syntax are detected and a message is

written to the console. Most error message texts include the element of

the user's input that was found to be in error. Almost all errors require

entry of a new (and hopefully correct) definition statement.

The error message to the user could be enhanced by echoing the input

line and underlining the error. Errors detected in LEX.must occur between

the two pointers TOPUI and PT2. TOPUI marks the start of the token and

PT2 is moved one character at a time to scan the input. Errors found by

PARSER result from (1) gramnar tokens that cannot appear together or

(2) a failure to find a match between the grammar rules and tokens on the

parser stack when PARSER tries to do a reduction. Delimiting the error

here will be more difficult. Another array parallel to the parsing stack

of tokens would have to be defined and it would contain pointers to the

start of each token in the user input. Then the message handler could

underline the area of the user input that contributed the tokens found

to be in error.

Error messages are also produced if some non-recoverable condition

occurs within the programs supporting this enhancement. The most likely

cause would be the filling of a data structure used to hold external

function definitions. In these cases, since some internal limit has been

27

exceeded already, there is no point asking the user to continue and so a

progrmn stop is executed. A stop should only happen in extreme cases

involving unusually large complex function definitions, but it is clearly

not a desirable action. Now that this work is complete, a comprehensive

solution could be devised to abort the current function definition and

return control to one of the function processor menus or in the extreme

case return to ENPORT and allow selection of a library function.

Most of the program stops are accomplished by calling the subprogram

STOPIT and can therefore be tracked down using the subprogram calling tree

in Appendix F.

6.2 Improved Validity Checking

All user references to bond-variable names are validated to ensure

that only inputs specified for the node are used as input and that only

the output variable can have a value assigned to it. Of course,

assignment can be made to intermediate variables.

Checks are not made to see if the function definition has referenced

all declared input variables. There is also no check to verify that a

value has been assigned to the output variable. Both of these checks

would have to be made after the user ended his input. One way to make

these checks would be to scan the internal code for the operators 0023

and 0024. These are Read-ENPORT and Write-ENPORT, respectively. Each

instruction contains the offset in ENPORT I/O vector VBL, which can then

be compared to the input and output list for the node. A user warning

28

message should be produced if the lists do not match. It would be up to

the user to determine if the function definition needs to be corrected.

6.3 Internal Code Optimization

Time studies can easily be done to compare the solution time of a

bond-graph problem using an external function and the same problem using

a compiled function. If these tests show that the interpreter is

significantly slower, steps can be taken to improve its performance.

Each internal code instruction contains three operands which are

"decoded" before the operator is evaluated. Not every instruction uses

all three operands, however. Six use two operands, two use only one and

one instruction does not use any. If the operands were decoded after the

operator evaluation, only those operands used by each operator would have

to be referenced.

This decoding really just assigns the contents of MEMORY to another

variable name (0P1, OP2 or UPS) in order to simplify the instruction

evaluatitni procedures. The interpreter could also be improved by

referencing MEMORY directly, eliminating operand decoding for any

instruction.

Another optimizing step would be a check for any "imbedded"

arithmetic, that is, arithmetic that could be performed in the internal

code prior to interpreter processing. For instance, if tin: user had

written AREA=2‘PI*RADIUS, and since PI is a constant parameter, the

29

multiplication 2*PI could be performed ahead of time. The result is

placed in the symbol table and the internal code modified to reference

it directly, and the multiply instruction is removed.

An extension of this same idea is to look for unnecessary temporary

variables in assignment statements. For example, if the user sets a

variable named TEMP1 equal to a constant, then references TEMP1 later in

his function, the assignment instruction can be removed and the internal

code modified to reference the constant directly from the symbol table.

Efficient programming by the user would eliminate imbedded

arithmetic and unnecessary temporary variables, but the cost to optimize

for these cases is small. Even so, it is only worth the effort if the

time studies show a need to increase interpreter efficiency.

LIST OF REFERENCES

LIST OF REFERENCES

1. Rosenberg, R. C. and Karnopp, D. C., SYSTEM DYNAMICS: A UNIFIED

APPROACH, John Wiley & Sons, New York, 1975.

2. Rosenberg, R. C., 'ENPORT-6 User's Manual,‘ Rosencode Associates Inc.,

Lansing, Michigan, 1986.

3. Barret, W. A. and Couch, J. D., COMPILER CONSTRUCTION: THEORY (UH)

PRACTICE, Science Research Associates, Inc., 1979.

4. Aho, A. V., and Johnson, S. C., LR Parsing, Computing Survey,

Volume 6, No. 2, June 1974, pp. 99-124.

5. AhO, A. V., and Ullman, J. D., THE THEORY OF PARSING, TRANSLATION AND

COMPILING, Volume 1, Prentice-Hall, Englewood Cliffs, New Jersey, 1972,

pp. 58-75.

6. Ripley, G. David, A Simple Recovery-Only Procedure For Simple

Precedence Parsers, Communications of the ACM, Volume 21, No. 11, November

1978, pp. 928-930.

7. Graham, Susan L. and Rhodes, Steven P., Practical Syntactic Error.

Recovery, Communications of the ACM, Volume 18, No. 11, November 1975,

pp. 639-649.

30

APPENDICES

APPENDIX A

USER DOCUMENTATION

This appendix provides an introduction to the syntax and statement

format used to enter custom external function definitions. Also following

are three sample sessions that trace the steps used to create, edit and

archive a function definition.

If you know FORTRAN, you should be able to write an external function

equation (without much trouble, since the syntax for the algebraic

expressions is based on FORTRAN. Normally, you will want to code some

expression using node inputs, FORTRAN library functions and. constants,

and then set this expression equal to the output variable for the node.

The following is an example (not from any real bond-graph problem) using

E.5 as input and E.5 as output:

+~ ENPORT prompt

+- enter in this area after the prompt

>> 1>>: E.5=(1/100.0)‘SIN((F.5“2)+2) - 1

>> 2>>: IF E.5 .LT. 0 THEN

>> 3>>: E.5=0.0

>> 4>>z ENDIF

Notice that your statements can begin in the first column. Another

difference from FORTRAN is that no GO TO's or labels are allowed. In

32

general, blanks are ignored in the input, so for more readability in that

first line, blanks could be added:

>> 1>>: E.5 = (1/100.0) * SIN((F.5"2) + 2) - 1

You may use all the normal algebraic operators (+, -, ‘, /, u) and

any of the following FORTRAN intrinsic functions:

ABS LOG

ACOS LOGlO

AINT MAX

ANINT MIN

ASIN MOD

ATAN SIGN

ATAN2 SIN

COS SINH

COSH SQRT

DIM TAN

EXP TANH

Also available is the IF-THEN-ELSEIF-ELSE-ENDIF statement. This

statement must start with IF, must have a THEN clause and must end with

ENDIF. The ELSEIF and ELSE clauses are optional.

Each line must contain a complete statement. Algebraic expressions

cannot continue over to the next line. If you must code long expressions,

use intermediate variables. The parts of the IF-THEN-ELSEIF—ELSE-ENDIF

construct that should stand alone on a single line are:

IF relational-expression THEN

ELSEIF relational-expression THEN

ELSE

ENDIF

Some variations on this are possible for the external function processor

to understand, but experiment at your own risk.

APPENDIX Al

SAMPLE CREATE SESSION

(From the ENPORT "Element equation options" menu, node equations

can be set or changed. Selecting either of these options

generates prompts for the element name, the function type and the

number and name(s) of the inputs.)

Element equation options

L: List the current equations

D: Details of current equations

C: Change selected equations

S: Specify all equations

U: set to Unit linear

A: Available function types

V: Vector definitions

H: Help

X: eXit from this menu (default)

Enter option (X): C

Ready to change selected equations

Enter the element name (QUIT): R

Enter the function type (GAIN): USERDEF

Enter number of inputs (1):

Enter input 1 (F.5):

(One of the function types available is USERDEF. If this type

is selected, specify the number and name(s) of the inputs, and

an "External function processor options" menu appears.)

33

34

External function processor Options

Q. show eQuation for this node

C: Create a new external function

E Edit the current function

D. show Directory of archived functions

8: show Source statements of an archived function

R: Restore an archived function

A: Archive the current function

P: Purge an archived function

H: Help

X: eXit from external function processor (default)

Enter option (X): 0

The node equation is: E.5 = USERDEF (F.5)

(Generally, when entering the external function processor, you

will want to create a new functional relationship of the input

variables to the output variable for this node. Option Q

displays a generic version of the node equation, showing the

output equal to a function of the inputs. Initially the name of

the function shown is USERDEF. This means an external function

type has been specified, but no external function has been created

and loaded. The variable names shown are the ones that are used

when writing the function definition statements.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): C

(Option C begins the creation of a new function definition.

Bypass use of a file as input. An input file would have to be

created before entering ENPORT.)

Do you want to define the function using a file as input? (N):

35

Processing begun for the current function

>>nn>>: <---- Enter up to 50 source statements of maximum length 72 -—->

>> l>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>: ' COMMENTS CAN ALSO BEGIN WITH AN "‘" IN COLUMN ONE

>> 3)): C

>> 4)): C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5)); C

>> 6>>: PARM'100.0

>> 7)): C

>> 8)): C OR THEY CAN HAVE LEADING BLANKS

>> 9)): C

>>10>>: E.5=F.5/PARM

>>11>>: C

>>12>>: C TERMINATE INPUT BY TYPING "END"

>>13>>: C OR JUST HIT <ENTER> AFTER A LINE PROMPT

>>14>>: E

(Processing the definition statements for the external function

has begun. Source statements are entered after the numbered

prompts. All normal algebraic expressions can be used to set a

value into the output variable. Comments are optional. Statements

may begin in column one or have leading blanks.)

Creation of a new current function successful.

The function will now be loaded to make it available for the problem

solution.

Hit <return> to continue...

The current function is successfully loaded.

The node equation is: E.5 = CUR.FCN (F.5)

(Extensive syntax checking is done for each source statement. A

particularly complicated expression may take several seconds to

process. After terminating the input, the message "Creation of

a new current function successful" should appear. The function

definition is then loaded and the new form of the generic node

equation is displayed. The name USERDEF is replaced by

"CUR FCN" to indicate that an external function is in place.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): X

(Option X allows an exit from the external function processor

and offers a chance to modify the equation definition for the

node.)

Modify the equation definition? (N):

APPENDIX A2

SAMPLE EDIT SESSION

(An external function type can always be replaced by one of the

standard library function types like GAIN. However, if

an external function type has already been defined and loaded

for the node, you may wish to edit it. To do this, select the

USERDEF type again to enter the external function processor.)

Element equation options

L: List the current equations

0: Details of current equations

C: Change selected equations

S: Specify all equations

U: set to Unit linear

A: Available function types

V: Vector definitions

H: Help

X: eXit from this menu (default)

Enter option (X): C

Ready to change selected equations ...

Enter the element name (QUIT): R

Enter the function type (USERDEF):

Enter number of inputs (1):

Enter input 1 (F.5):

36

External function processor options

Q. show eQuation for this node

C: Create a new external function

E Edit the current function

D. show Directory of archived functions

5: show Source statements of an archived function

R: Restore an archived function

A: Archive the current function

P: Purge an archived function

H: Help

X: eXit from external function processor (default)

Enter option (X): Q

(The name "CUR.FCN" shown by option Q indicates that an external

function is in place for this node.)

The node equation is: E.5 = CUR.FCN (F.5)

(Option E enters the editor, and its own menu, "External

function editor options" appears. The menu allows several

ways to edit the definition statements for the current function.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): E

External function editor options

L: List definition statements

R. Replace a line in the current function

D: Delete a line in the current function

1: Insert a line in the current function

5: Save edits to the current function

H: Help

X: eXit from the external function editor (default)

Enter option (X): L

(Option L shows a listing of the source statements for the

external function.)

38

Editor listing for the current function

>> 0>>: < ---------------------- TOP - OF - DATA ----------------------- >

>> l>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>: ’ COMMENTS CAN ALSO BEGIN WITH AN "‘" IN COLUMN ONE

>> 3)): C

>> 4>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5)): C

>> 6>>: PARM=100.0

>> 7)): C

>> 8>>: C OR THEY CAN HAVE LEADING BLANKS

>> 9>>; C

>>lO>>: E.5=F.5/PARM

>>11>>;

>>12>>:

>>13>>:

TERMINATE INPUT BY TYPING "END"

OR JUST HIT <ENTER> AFTER A LINE PROMPTn
o
n

(Use the line numbers shown in the source statement listing

to make edits. Option R allows a line to be replaced.)

List,Replace,Delete,Insert,Save,Help,eXit (full): R

What is the line number of the line you want to replace?: 6

>> 6>>: PARM=100.0

Okay to replace this line? (N): Y

Enter the replacement line.

>> 6>>: PARM=50.0

Line 6 is replaced.

(Another listing shows the line replaced.)

List,Replace,Delete,Insert,Save,Help,eXit (full): L

Editor listing for the current function

(This function must be SAVEd to retain your edits)

>> 0>>: < ---------------------- TOP - OF - DATA ----------------------- >

>> l>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>: ‘ COMMENTS CAN ALSO BEGIN WITH AN "‘" IN COLUMN ONE

>> 3>>; C

>> 4>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>; c

>> 6>>: PARM=50.0

>> 7>>; C

>> 8>>: C OR THEY CAN HAVE LEADING BLANKS

>> 9>>; C

>>lO>>: E.5=F.5/PARM

>>ll>>: C

>>12>>: C TERMINATE INPUT BY TYPING "END"

>>13>>: C OR JUST HIT <ENTER> AFTER A LINE PROMPT

39

(Option D allows a line to be deleted.)

List,Replace,Delete,Insert,Save,Help,eXit (full): D

What is the number Of the line you wish tO delete?: 13

>>13>>: C OR JUST HIT <ENTER> AFTER A LINE PROMPT

‘Okay to delete this line? (N): Y

Line 13 is deleted.

(Again, a listing shows the line deletion.)

List,Replace,Delete,Insert,Save,Help,eXit (full): L

Editor listing for the current function

(This function must be SAVEd tO retain your edits)

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

0>>:

l>>:

2>>:

3>>:

4>>:

5>>:

6>>:

7>>:

8>>:

9>>:

>>10>>;

>>11>>:

>>12>>:

< ---------------------- TOP - OF - DATA ----------------------- >

C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

‘ COMMENTS CAN ALSO BEGIN WITH AN "‘" IN COLUMN ONE

C

C DEFINITION STATEMENTS CAN START IN COLUMN ONE
C . .

PARM=50.0

C

C OR THEY CAN HAVE LEADING BLANKS

C

E.5=F.5/PARM

C

C TERMINATE INPUT BY TYPING "END"

(Option I allows lines to be inserted intO the source code.

Specify the line number after which the line(s) are to be

inserted. Unlike replace or delete, insert allows more than one

line tO be inserted at a time. Hit <enter> after a prompt to

terminate the insertions.)

_ List,Replace,Delete,Insert,Save,Help,eXit (full): I

After what line number would you like to insert?: 0

Enter insertion(s) after the following line.

>>

>>

>>

>>

>>

0>>:

l>>:

2>>:

3>>:

4>>:

< ---------------------- TOP - OF - DATA ----------------------- >

* THIS FUNCTION HAS BEEN EDITED.

* (MORE THAN ONE LINE CAN BE INSERTED AT ONE TIME)

Insertion(s) completed.

40

(Option L shows the lines which have been inserted.)

List,Replace,Delete,Insert,Save,Help,eXit (full): L

Editor listing for the current function

(This function must be SAVEd tO retain your edits)

>>

>>

>>

>>

>>

>>

)>

>>

>>

>>

0>>:

l>>:

2>>:

3>>:

4>>:

5>>:

6>>:

7>>:

8>>:

9>>:

>>10>>:

>>11>>:

>>12>>:

>>13>>:

>>14>>:

>>15>>:

<

C
)
C
)
F
)
T
J
C
)
C
)
C
3

n
C
fi

I
u

a

C

C

---------------------- TOP - OF - DATA ----------------------->

THIS FUNCTION HAS BEEN EDITED.

(MORE THAN ONE LINE CAN BE INSERTED AT ONE TIME)

COMMENTS BEGIN WITH A "c" IN COLUMN ONE

COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE

DEFINITION STATEMENTS CAN START IN COLUMN ONE

ARM-50.0

OR THEY CAN HAVE LEADING BLANKS

E.5=F.5/PARM

TERMINATE INPUT BY TYPING "END"

(A "Save" must be done to preserve your edits. Continuing tO

exit will lose all edits done during this edit session.)

List,Replace,Delete,Insert,Save,Help,eXit (full): X

The current function has been edited, but not SAVED.

Okay tO lose your edits? (N):

Use the SAVE option before exiting the editor.

(Option S to save the new function definition invokes the

syntax Checker. Errors in the edited statements may be detected

and must be corrected by further edits. Only a correct function

definition will be accepted.)

List,Replace,Delete,Insert,Save,Help,eXit (full): 8

The current function has been edited and

it will be Checked for correct syntax.

Hit <return> to continue...

(The syntax checker echos the definition statements Of the

function as they are checked.)

41

Processing begun for the current function

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>1

>>1

>>1

>>1

>>1

>>1

l>>: ' THIS FUNCTION HAS BEEN EDITED.

2>>: ‘ (MORE THAN ONE LINE CAN BE INSERTED AT ONE TIME)

3>>: ‘

4>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

5>>: ’ COMMENTS CAN ALSO BEGIN WITH AN "‘" IN COLUMN ONE

6>>: C

7>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE

8>>: C

9>>: PARM=50.0

0>>: C

l>>: C OR THEY CAN HAVE LEADING BLANKS

2>>: C

3>>: E.5=F.5/PARM

4>>: C

5>>: C TERMINATE INPUT BY TYPING "END"

Parse Of the current function successful.

(

Lis

The

Hit

The

The

Hit

Ext

Ent

(

Mod

The edit session is complete. Use Option X to exit the editor

and go back to the external function processor main menu. The

edited function definition will be loaded to make it available

for the problem solution.)

t,Replace,Delete,Insert,Save,Help,eXit (full): X

function will be loaded to make it available for problem solution.

<return> to continue...

current function is successfully loaded.

node equation is: E.5 = CUR.FCN (F.5)

<return> to continue...

ernal function processor options

- show eQuation for this node

: Create a new external function

: Edit the current function

- show Directory Of archived functions

- show Source statements Of an archived function

Restore an archived function

Archive the current function

Purge an archived function

Help

eXit from external function processor (default)

er Option (X): X

Option X exits the external function processor.)

ify the equation definition? (N):

APPENDIX A3

SAMPLE ARCHIVE SESSION

(The other Options available on the External function

processor menu are D, S, R, A and P.)

External function processor options

show eQuation for this node

- Create a new external function

Edit the current function

show Directory of archived functions

- show Source statements Of an archived function

- Restore an archived function

- Archive the current function

Purge an archived function

Help

eXit from external function processor (default)

....... q------—------—---‘---—----------------------

Enter Option (X): D

x
z
v
>
w
m
o
m
n
o

(Option D lists the archived functions in the external

function directory. Included are the names Of the function,

the file in which it is stored and the file creation date

and time.)

Function External File Creation

Name File Date Time

ARCH2 ARCH2 11/02/86 20:03:55

ARCHA ARCHA 11/03/86 19:54:41

SAMPLE SAMPLE 11/06/86 12:47:40

External function directory has 3 entries and a limit Of 50.

42

43

(Option S lists the function "Source" statements for an

archived function.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): 5

Enter the name Of the function: SAMPLE

Source listing for archived external function SAMPLE

.C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>:’ COMMENTS CAN ALSO BEGIN WITH AN "‘" IN COLUMN ONE

C

>> 4>> c DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 6>>£PARM=100.0

>> 8>>:C OR THEY CAN HAVE LEADING BLANKS

>>10>>: E.5-F.5/PARM

>>12>> c TERMINATE INPUT BY TYPING "END"

>>13>>:C OR JUST HIT <ENTER> AFTER A LINE PROMPT

(The name USERDEF in the response tO option Q indicates

that nO external function is in place yet for this node. An

archived function may be restored using Option R. SAMPLE

is one of the archived function names listed in the directory.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): Q

The node equation is: E.5 - USERDEF (F.5)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): R

Enter the name Of the function: SAMPLE

Restore successful for function SAMPLE

The restored function must be edited tO insure

the correct use of bond variable names.

Hit <return> to continue...

(Because functions restored from archive probably will not

reference bond variable names appropriate for the current node,

the function must be edited.)

44

External function editor Options

L: List definition statements

R: Replace a line in the current function

D: Delete a line in the current function

1: Insert a line in the current function

S: Save edits to the current function

H: Help

X: eXit from the external function editor (default)

Enter option (X): L

(Option L lists the restored function. Change the bond variables

used, if necessary, using the edit features. When editing is

complete, SAVE the function.)

Editor listing for the current function

>> 0>>:< ------------------------- TOP - OF - DATA --------------------- >

>> 1>>tC COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>:‘ COMMENTS CAN ALSO BEGIN WITH AN "'" IN COLUMN ONE

>> 3>>:C

>> 4>>:C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>:C

>> 6>>:PARM=100.0

>> 7>>:C

>> 8>>:C OR THEY CAN HAVE LEADING BLANKS

>> 9>>:C

>>10>>: E.5‘F.5/PARM

>>11>>:C

>>12>>:C TERMINATE INPUT BY TYPING "END"

>>13>>:C OR JUST HIT <ENTER> AFTER A LINE PROMPT

List,Replace,Delete,Insert,Save,eXit (full): X

The current function has been restored and must be saved.

Use the SAVE Option before exiting the editor.

List,Replace,Delete,Insert,Save,eXit (full): S

The current function has not been edited, but

it will be checked for correct syntax.

Hit <return> to continue...

(In this case, no editing is necessary, so the function is saved.

Each line Of text is checked for correct syntax and echoed to the

screen.)

45

Processing begun for the current function

>> l>>:C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>:’ COMMENTS CAN ALSO BEGIN WITH AN "‘" IN COLUMN ONE

>> 3>>:C

>> 4>>:C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>:C

>> 6>>:PARM8100.0

>> 7>>:c

>> 8>>:C OR THEY CAN HAVE LEADING BLANKS

>> 9>>:C

>>10>>: E.5-F.5/PARM

>>11>>:C

>>12>>:C TERMINATE INPUT BY TYPING "END"

>>13>>:C OR JUST HIT <ENTER> AFTER A LINE PROMPT

Parse Of the current function successful.

(After a successful parse, use Option X to exit the editor.

The restored function is loaded for use in the problem solution

and the node equation is displayed. "CUR.FCN" indicates that the

new external function is in place.)

List,Replace,Delete,Insert,Save,eXit (full): X

The function will now be loaded tO make it available for the problem

solution.

Hit <return> to continue...

The current function is successfully loaded.

The node equation is: E.5 = CUR.FCN (F.5)

Hit <return> to continue...

External function processor Options

Q: show eQuation for this node

C: Create a new external function

E: Edit the current function

D: show Directory Of archived functions

S: show Source statements Of an archived function

R: Restore an archived function

A: Archive the current function

P: Purge an archived function

H: Help

X: eXit from external function processor (default)

Enter Option (X): A

46

(Option A archives the definition statements for the current

function to an external file and adds the function to the

directory.)

Enter the name (limit 6 char) for the archived function: SAMPL2

External function directory has 3 entries and a limit Of 50.

Enter external file name for saving SAMPL2, (SAMPL2):

Current function definition successfully archived tO SAMPL2.

(Option D shows the updated directory with the newly-archived

function added.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): 0

Function External File Creation

Name File Date Time

ARCH2 ARCH2 11/02/86 20:03:55

ARCHA ARCHA 11/03/86 19:54:41

SAMPLE SAMPLE 11/06/86 12:47:40

SAMPL2 SAMPL2 11/06/86 12:50:08

External function directory has 4 entries and a limit Of 50.

(Option P allows an archived function to be purged from the

directory. This action also deletes the storage file from

your library.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): P

Enter the name Of the function: SAMPL2

Function selected for purge: SAMPL2

Saved on external file: SAMPL2

Created on day: 11/06/86

Created at time: 12:50:08

Okay tO purge this function? (N): Y

External file SAMPL2 for function SAMPL2 will be deleted.

Directory entry purged for function SAMPL2

47

(Another listing Of the archive entries in the external function

directory shows the function is purged.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): 0

Function External File Creation

Name File Date Time

ARCH2 ARCH2 11/02/86 20:03:55

ARCHA ARCHA 11/03/86 19:54:41

SAMPLE SAMPLE 11/06/86 12:47:40

External function directory has 3 entries and a limit Of 50.

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): X

Modify the equation definition? (N):

APPENDIX B

LANGUAGE SYNTAX

The descriptions below use the following symbols in their

definitions for elements Of the language. Blanks in the definitions Of

variable names, integer constants and real constants are for clarity only

and are not part Of the definition. Blanks terminate each Of these

language elements.

[] square brackets enclose optional elements

or lists Of optional alternate elements

[[)] doubled square brackets enclose Optional

elements or lists Of Optional elements

that can be repeated

{ } braces enclose lists of alternate elements,

one Of which must be selected

| a vertical line separates alternate items when

one item is to be chosen exclusive Of the Others

48

49

Variable names

variable: letter [[letter | digit)1

Variable names must begin with a letter and are made up Of letters

and digits. The maximum length is six characters. Use Of names longer

than six characters causes a warning message stating that the name will

be truncated tO six characters and processing will continue. Logical

variables are nOt supported and there is no typing Of variables either

explicitly or implicitly. All calculations are done using

double-precision arithmetic.

Integer constants

integer: digit ([digit]]

Integer constants are recognized, but are converted t1) double

precision (real) when they are stored, since all subsequent calculations

will be done in double precision. The length Of an integer constant is

limited tO ten characters. An integer that is tOO long is truncated to

the left-most digits and processing continues. Of course, a warning

message is issued. This does not yield the program the user desires, but

it does allow the rest Of the line to be checked for syntax errors. The

lexical analyzer does not force the user to reenter a line after a warning

message, only after an error.

50

Real constants

real: [[digit]] { digit. | .digit } [[digit)]

real-exponential: { integer I real } E [+ | -] integer

Real numbers must use a decimal point or be expressed by using

exponential notation. The decimal must precede or follow at least one

digit. If an exponent is specified, it must immediately follow the last

character in the mantissa (either a digit or the decimal point). The

exponent is written with an "E" followed by the value Of the exponent.

The value may be signed or unsigned (assumed positive) and must be an

integer.

External function syntax

Figure B1 presents the complete formal syntax for user input

statements needed tO define an external function. The sequence Of syntax

from top to bottom proceeds from the most general to the most specific.

The first syntax rule, then, defines an external function as a series Of

statements followed by an optional "END." Succeeding rules further

delineate the syntax Of correct statements.

51

External Function: statements [END]

statements: statement [[Statements 1)

statement: variable = expression

statement: IF relational THEN statements

[[ELSEIF relational THEN statements]]

[ELSE statements]

ENDIF

relational: (relational)

relational: .NOT. relational

relational: relational { .OR. I .AND. } relational

relational: expression { .EQ. I .NE. I .LT. I .LE. I .GT. I .GE.

expression

expression: (expression)

expression: expression { + I - | / I * I ** } expression

expression: [+ I -_] { variable I constant I FORTRAN-function }

FORTRAN-function: FORTRAN-function-name (argument-list)

argument—list: argument-list , expression

argument-list: expression

Figure Bl. External Function Syntax

52

Note on blanks in the input

In general, blanks are ignored by the processor. However, blanks

are not allowed to appear within any Single operand, Operator or reserve

word. Lines can have leading blanks and there can be any number of blanks

between Operators, operands and reserve words. All statements nnmn: be

completed on one line, that is, statements are not allowed to be continued

to another line. Statements that are a part of the control for the

IF-THEN-ELSEIF-ELSE-ENDIF structure can span several lines. “HM; parts

that should stand alone on a single line are:

IF relational-expression THEN

ELSEIF relational-expression THEN

ELSE

ENDIF

Assignment statements within the blocks must still be on a single line,

however.

Comment lines

Any line with an asterisk in column one will be treated as a comment.

Any line with a "C" in column one will be treated as a comment, unless

the "C" (or variable name beginning with "C") is followed by an "=", as

in an assignment statement. Blank lines signify the end Of user input

and cannot, therefore, be used as comments.

APPENDIX C

FSA DIAGRAM

The Finite State Automaton (FSA) shown in Figure C1 controls the

lexical analysis portion of this work and has twelve states. State

zero (0) is a final state from which LEX returns the user input token to

PARSER. The FSA recognizes arithmetic Operators, relational Operators,

variables, integer constants and real constants, which may be in decimal

or exponential form. Two Of the final states indicate input character

sequence errors. Other errors may occur but are not detected until the

return tO PARSER.

From the initial state one (1), the FSA changes states by scanning

one character Of the user input and moving along a directed arrow to the

next state. Next to each arrow leaving a state are indicators of the

input needed to take that path. The legend below the FSA diagram explains

the notation next to the arrows. Boxes drawn around states are titled

by the input token related to those states.

Operators .

0

I

<rem>

54

000000000000

.Relational.

.Operators .

A-Z

Error .Integers

A-

. 0-

. I 0 <rem> 11

. u (Opp

0-9

. . <dOt>:

.Real Exponentials . <blk>:

......................... <rem>:

Figure C1.

All

The

All

The

The

+

9

the

The

All

The .

E :a:

' .0:
0-9 . <rem>.

letters except E

letter E

numbers

+ character

- character

-, /, a, (,), comma itself or

end-of—line

character

blank character

characters not on another path

FSA Diagram

APPENDIX D

SIMPLE PREDECENCE GRAMMAR

The simple predecence grammar governs the parse Of the user input

lines. The rules are comprised of grammar tokens called terminals and

nonterminals. Terminals are tokens returned by the lexical analysis to

the parser and consist Of Operators, reserve words, operands and a special

token "ENDLNE" which indicates a carriage return used to end the input

line. The nonterminals are defined by the gramnar rules in terms of

terminals and other nonterminals. ‘These grammar tokens are listed. in

Appendix D2.

The rules are written with a nonterminal on the left Of an arrow

symbol (-->) and the tokens it replaces in a grammar reduction written

on the right. The grammar rules for the simple precedence grammar used

in this work are listed in Appendix D1.

55

Rule

NO.

N
0
0
1
q
u

\
D
m
fl

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

APPENDIX D1

GRAMMAR RULES

Grammar Production Rules

FUNCT

CSTMTS

STMTS

STMTS

STMTS

STMTS

SSTMT

SSTMT

SSTMT

CXPR

IFLLSE

IFLLSE

IFTHNN

IFTHNN

IFELSE

IFCOND

IFCOND

IFSTMT

BRELAT

CRELAT

CRELAT

CRELAT

CRELAT

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

CSTMTS END ENDLNE

STMTS

STMTS SSTMT ENDLNE

STMTS SSTMT

SSTMT ENDLNE

SSTMT

VAR - CXPR

IFLLSE CSTMTS ENDIF

IFTHNN CSTMTS ENDIF

BTERM

IFELSE ENDLNE

IFELSE

IFCOND ENDLNE

IFCOND

IFTHNN CSTMTS ELSE

IFSTMT BRELAT THEN

IF BRELAT THEN

IFTHNN CSTMTS ELSEIF

CRELAT

.NOT. CRELAT

RELATE .OR. CRELAT

RELATE .AND. CRELAT

RELATE

Rule

NO. Grammar Production Rules

24. RELATE --> XPR .EQ. BTERM

25. RELATE --> XPR .NE. BTERM

25. RELATE --> XPR .LT. BTERM

27. RELATE --> XPR .LE. BTERM

28. RELATE --> XPR .GT. BTERM

29. RELATE --> XPR .GE. BTERM

30. RELATE --> (BRELAT)

31. BTERM --> XPR

32. XPR --> XPR + CTERM

33. XPR --> XPR - CTERM

34. XPR --> + CTERM

35. XPR --> - CTERM

36. XPR --> CTERM

37. CTERM --> FACTOR

38. FACTOR --> FACTOR ‘ CEXFAC

39. FACTOR --> FACTOR / CEXFAC

40. FACTOR —-> CEXFAC

41. CEXFAC --> EXFAC

42. EXFAC --> EXFAC “ STERM

43. EXFAC --> STERM

44. STERM -—> VAR

45. STERM --> CON

46. STERM --> VAR (CXPR)

47. STERM --> VAR (CXPR , CXPR)

48. STERM --> VAR (CXPR , CXPR , CXPR)

49. STERM --> VAR (CXPR , CXPR , CXPR , CXPR)

so. STERM --> VAR (CXPR , CXPR , CXPR , CXPR , CXPR)

51. STERM --> VAR (CXPR , CXPR , CXPR , CXPR , CXPR ,

CXPR)

52. STERM --> (CXPR)

APPENDIX D2

GRAMMAR TOKENS

Terminals

Reserve Carriage

Nonterminals Operators Words Operands Return

FUNCT = IF VAR ENDLNE

CSTMTS + THEN CON

STMTS - ELSEIF

SSTMT / ELSE

CXPR ‘ ENDIF

IFLLSE “ END

IFTHNN (

IFELSE)

IFCOND ,

IFSTMT .NOT.

BRELAT .OR.

CRELAT .AND.

RELATE .EQ.

BTERM .NE.

XPR .LT.

CTERM .LE.

FACTOR .GT.

CEXFAC .GE.

EXFAC

STERM

58

APPENDIX E

INTERNAL CODE

The internal code operators are listed below in numeric order. Also

included are the simple precedence granTnar rule numbers which generate

the instructions during the parse, the Operator type and description of

operand usage. There are twenty-four instructions in the set. Each one

is an integer four-tuple of the form OPER 0P1 OP2 0P3, in which OPER is

the Operator field and 0P1, OP2 and 0P3 are the Operands. All four fields

are integers and the value of OPER is between one and twenty-four. When

the operand is preceded in the description with an "O", it means the

operand is a pointer to the-value to be used; Otherwise, the operand is

the value itself. Pointers refer to symbol table locations or, in the

case Of Operators 0023 and 0024, to the ENPORT I/O vector, VBL.

Some instructions do not make use of all Of the operand fields and

this is noted in the description.

Operator

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

Rule(s)

20

21

22

24

25

26

27

28

29

35

32

33

38

39

42

46-51

17

15,18

60

Instruction Type and Description

Relational. Put .NOT. @OP1 in @OP3.

Relational. Put @OP1 .OR. @OP2 in @OP3.

Relational. Put @OP1 .AND. @OP2 in @OP3.

Compare. Set @OP3 true, if @OP1 .EQ. @OP2

is true, otherwise set @OP3 false.

Compare. Set @OP3 true, if @OP1 .NE. @OP2

is true, Otherwise set @OP3 false.

Compare. Set @OP3 true, if @OP1 .LT. @OP2

is true, Otherwise set @OP3 false.

Compare. Set @OP3 true, if @OP1 .LE. @OP2

is true, Otherwise set @OP3 false.

Compare. Set @OP3 true, if @OP1 .GT. @OP2

is true, Otherwise set @OP3 false.

Compare. Set @OP3 true, if @OP1 .GE. @OP2

is true, otherwise set @OP3 false.

Numeric. Put the negative Of @OP1 in

@OP3. OP2 is not used.

Numeric. Put @OP1 + @OP2 in @OP3.

Numeric. Put @OP1 — @OP2 in @OP3.

Numeric. Put @OP1 ' @OP2 in @OP3.

Numeric. Put @OP1 / @OP2 in @OP3.

Numeric. Put @OP1 *‘ @OP2 in @OP3.

Assignment. Put @OP1 in @OP3. OP2 is

not used.

Function. Call function 0P1 with OP2

arguments and put the result in @OP3.

The arguments are in data instructions

following this instruction.

Branch to location

OP2 is not used.

Branch-on-Condition.

OP3 if @OP1 is false.

Branch. Branch to location 0P1. OP2

and OP3 are not used.

Operator

0022

0023

0024

Rule(s)

46-51

8,9,

15,18

46

61

Instruction Type and Description

Return. End interpreter and return to

ENPORT. No Operands are used.

Data. Non-executable instruction to hold

an argument in @OP1 for a function call.

OP2 and OP3 are not used.

Label. Marks the destination for a

branch instruction. OP1 is the label

number. OP2 and OP3 are not used.

Read-ENPORT. Put @OP1 in @OP3 Of ENPORT

I/O vector. 0P2 is not used.

Write-ENPORT. Get @OP1 from the ENPORT

I/O vector and put it in @OP3. OP2 is

not used.

APPENDIX F

SUBPROGRAM CALLING TREE

CHGFCN (ENPORT)

DEFINE3

ARCHIV3

GOON1

LSTDIR4

DEBUG3

GETIN1

.GOONl

EDTFCN3

DLLINE2

GETINl

PROMPT1

YORNl

EXTPTR

GOON1

INLINE2

GETINl

GETWD1

PROMPT1

MENPAGl

RHFILEl

RPLINE3

GETLIN1

OUTBUFl

SAVFCN2

GOON1

NEWFCT4

EXITCK2

SHOWEQ4

VBLNAMl

FLAG

GOON1

LDCHK

LDFCT2

ULDEXT

FLAG

LDCHK

LSTDIR2

GOON1

MENPAG1

62

63

LSTSRC

GOONl

DIRCHK3

LSTDIR4

MENPAG1

OPNFCT

OUTBUF1

OUTBUF1

MENPAG1

MENSET1

NEWFCT3

ANFANG

INTGER

PUSH

FLAG

PUTSYM

FLAG

CMTCHK

FLAG

GOONl

MENPAG1

NEXT2

FLAG

STOPIT2

PARSER2

ERRTXT

EXPAND

WRTSTRl

FLAG

INTGER

LEX2

CVTINT

CVTREL

PUTINT

FLAG

PUTREL

FLAG

PUTSYM

FLAG

TRANSIT

VARCVT

VBLIX1

PREC

CODE2

FLAG

PUSH

FLAG

A
U
N
H

64

REDUCE2

CODEGN2

DISPLY

FLAG

INTGER

NEXT2

FLAG

STOPIT2

FLAG

STOPIT2

STKCHK

STOPIT2

OPTCOD

FLAG

PROMPT1

PRTCOD

YORN1

PRTSYM

OUTBUF1

PRGFCT

BLNKLNl

DIRCHK4

OPNFCT“

OUTBUFl

PROMPTl

YORN1

RESTOR2

DIRCHK4

GOONl

OPNFCT“

PROCEDl

RHFILE1

SHOWEQ

EXTPTR

VBLNAM1

WRTSTR1

ENPORT routine; no sub-tree given

Calls ENPORT routines BLNKLN and WRTSTR

Calls ENPORT routines BLNKLN, GETWD, PROMPT, WRTSTR and YORN

Sub-tree given elsewhere in this Appendix

APPENDIX G

SUBPROGRAM LIST

ANFANG

ARCHIV

CLREXT

CMTCHK

CODE

CODEGN

CVTINT

CVTREL

DEBUG

DEFINE

DIRCHK

DISPLY

EDTFCN

ELLINE

ERRTXT

EXITCK

EXPAND

EXTPTR

FAILRD

FLAG

INLINE

INTERP

INTGER

LDCHK

LDFCT

LEX

LSTDIR

LSTSRC

NEWFCT

NEXT

OPNFCT

OPTCOD

PARSER

PREC

PRGFCT

PRTCOD

PRTSYM

PUSH

PUTINT

PUTREL

(DEFINE.

(DEFINE.

(OLDFCT.

(DEFINE.

(PARSER.

(REDUCE.

F77)

F77)

F77)

F77)

F77)

F77)

(LEXIC.F77)

(LEXIC.F77)

(DEBUGT.

(DEFINE.

(OLDFCT.

(REDUCE.

(EDTFCN.

(EDTFCN.

(PARSER.

(DEFINE.

(PARSER.

(OLDFCT.

(REDUCE.

(DEBUGT.

(EDTFCN.

(INTERP.

(REDUCE.

(DEBUGT.

(OLDFCT.

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

(LEXIC.F77)

(OLDFCT.

(OLDFCT.

(DEFINE.

(REDUCE.

(OLDFCT.

(DEFINE.

(PARSER.

(PARSER.

(OLDFCT.

(DEBUGT.

(DEBUGT.

(PARSER.

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

(LEXIC.F77)

(LEXIC.F77)

65

PUTSYM

READEX

REDUCE

RESTOR

RPLINE

SAVFCN

SHOWEQ

STKCHK

STOPIT

TRANSIT

ULDEXT

VARCVT

66

(LEXIC.F77)

(OLDFCT.

(REDUCE.

(OLDFCT.

(EDTFCN.

(EDTFCN.

(DEFINE.

(DEBUGT.

(PARSER.

F77)

F77)

F77)

F77)

F77)

F77)

F77)

F77)

(LEXIC.F77)

(OLDFCT. F77)

(LEXIC.F77)

APPENDIX H

SOURCE CODE

There are nine files containing FORTRAN subprogram source code with

extensive comments. In addition, there are seven files containing COMMON

blocks which are referenced with INCLUDE statements in the source code

files. The file contents are briefly described below. The source code

itself has not been included here because it extends over 140 pages.

Subprogram files:

BLOCK DATA routines to initialize data structures

within the project.

BLOCKS.F77

DEBUGT.F77 — Subprograms supporting the project trace feature

used for debugging and development.

DEFINE.F77 ~ External function processor menu and subprograms

to create and archive a function definition.

EDTFCN.F77 - Menu and subprograms to support external function edit.

INTERP.F77 ~ Internal code interpreter called during bond~graph

solution.

LEXIC.F77 - Subprograms supporting the lexical analysis of

user input lines.

OLDFCT.F77 - Utilities to maintain the external function load area

used by the interpreter and the directory of archived

function definitions.

PARSER.F77 - Subprograms that implement the simple precedence

parsing algorithm.

REDUCE.F77 - Implements the grammar rule reductions and

generates internal code for the interpreter.

67

COMMON Files:

EXEDBK.COM

GLOBAL.COM

INTDBK.COM

LEXDEF.COM

PARSER.COM

68

Data structures for external function editing.

General data structures used by many subprograms.

Load area structures used by the interpreter.

Data structures used during lexical analysis.

Data structures to support parsing.

