¢

MSU

LIBRARIES
ST

RETURNING MATERIALS:

Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.

INTERACTIVE CUSTOM FUNCTION DEFINITION

FOR THE ENPORT BOND-GRAPH PROCESSOR

By

Charles R. Sherman

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Mechanical Engineering

1987

Copyright by Charles Robert Sherman 1987
All Rights Reserved

ABSTRACT

INTERACTIVE CUSTOM FUNCTION DEFINITION
FOR THE ENPORT BOND-GRAPH PROCESSOR

By

Charles R. Sherman

The ability to design custom function definitions for bond-graph elements
to supplement the standard function library can make a bond-graph
processor much more versatile for the user. This thesis presents an
enhancement to ENPORT, an existing bond-graph processor, and allows
multiple custom function definitions to be written interactively by the
user, without the need to leave the processor environment. The method
scans the function definition and builds a control stream of commands

which is interpreted during the bond-graph solution.

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Ronald Rosenberg, for
his guidance and for his great patience during this work. The effort
extended over many more semesters and masters research credits than either

of us imagined.

To Guy Allen for his help with the installation of this work into
ENPORT, and to Ace Sannier for his help in making source code listings

available, I extend thanks.

I also want to recognize the contributions of my former major
professor, Dr. M. G. Keeney, for his unflagging efforts to instill in us
some of the aspects of compiler design. Both he and my compiler partner,
Dr. Zane Mottler, might see similarities in the approach I have taken in
this work and the approach we used in the compiler series course. Dr.
Keeney is to be especially thanked for making available a grammar analyzer
which automated the process of developing a simple precedence grammar for

the parser. (I also have never again spelled grammar with an "e.")
Finally, I would like to thank my wife, Debbie, for her love and

proofreading. She has learned a lot about program execution, matrix

multiplication and developing patience.

iv

TABLE OF CONTENTS

LIST OF FIGURES .
Chapter
1. INTRODUCTION
1.1 Overview .
1.2 Menus
1.3 Features .
2. EXTERNAL FUNCTION DEFINITION
2.1 Lexical Analysis .
2.2 Parsing
2.3 Internal Code Generation .
3. EXTERNAL FUNCTION EVALUATION
3.1 Exchanging Values with ENPORT
3.2 Interpreter
4. INSTALLATION INTO ENPORT

4.1 Bond-Graph Setup .

4.2 Reading or Writing a Saved Problem .

4.3 Replacing an External Function .
5. MAINTENANCE .

5.1 Parameters .

5.2 Hidden»Menu Options

5.3 Trace Option for Debug .

Page

. Vit

12

15

15

16

18

18

19

20

21

21

22

22

6. SUMMARY AND RECOMMENDATIONS .

6.1 Expanded Error Messages
6.2 Improved Validity Checking .

6.3 Internal Code Optimization .

LIST OF REFERENCES

APPENDICES

A.

USER DOCUMENTATION .
Al. Sample Create Session

A2. Sample Edit Session

A3. Sample Archive/Restore Session .
. LANGUAGE SYNTAX
. FSA DIAGRAM

. SIMPLE PRECEDENCE GRAMMAR

D1. Grammar Rules

D2. Grammar Tokens .

. INTERNAL CODE
. SUBPROGRAM CALLING TREE.
. SUBPROGRAM LIST

. SOURCE CODE

vi

25
25
27
28

30

31
33
36
42
48
53
55
56
58
59
62
65

67

LIST OF FIGURES

Page
Figure 1. FORTRAN Functions 5
Figure 2. Lexical Analysis of a User Input Line 8
Figure 3. Parsing of Grammar Tokens from Figure 2 11
Figure 4. Symbol Table after Parse 13
Figure 5. Trace Flags 24
Figure Bl. External Function Syntax 51
Figure C1. FSA Diagram b4

Chapter 1

INTRODUCTION

The goal of this thesis was to create a method for an ENPORT user
to write his own function definition for a bond-graph model node [1].
It is presumed that the reader is familiar with this modeling technique
as well as the ENPORT computer program (2], which can process the

bond-graph as input and provide the dynamic system response.

Prior to this work, a user selected functions from a pre-defined
library and could only set various constants like amplitude, phase,
frequency, etc. Building a customized "external" function was done by
writing a new FORTRAN subprogram. This had to be compiled and linked with
the rest of ENPORT to make the new external function available for the
bond-graph solution. This compile-and-link process could only be done
by someone with knowledge of the particular hardware's compiler and

linker.

As a result of this work, the ENPORT user is now able to create his
own external function definition without the need to leave the ENPORT
environment, or to write, compile and link a FORTRAN subprogram. The
external function is supported through the use of menus and prompts,

allowing easy definition of the function. Each definition is saved and

2
restored with the problem description and can be archived separately for

use in a different bond-graph model.

1.1 Overview

This enhancement affects ENPORT primarily in two areas: (1) during
formulation of the system equations and (2) during their solution.
(Detailed discussions of these two areas are in chapters two and three,
respectively.) In the first area, the program interacts directly with
the user to create an external function definition that becomes the system
equation for a bond-graph node. Once the function is properly defined,
the user moves on to specify the next node equation, which can also be
an external function. Up to ten external functions may be defined at one
time for a particular problem. This is not a constraint imposed by the

method, but rather a space consideration when allocating memory.

After specification of the system equations is complete, ENPORT can
solve the equations for the transient response. During the solution, each
system equation is repeatedly evaluated. Equation types from the standard
library have been compiled and linked with ENPORT and are in object code
form. External functions are not in object code form. They are reduced
to a series of operations at the level of an assembly language. This
transformation of the external function occurs during its definition.
The resulting series of assembler-like instructions is interpreted many
times during the solution, once at each time-step. The second area of
this work is an interpreter, which evaluates the function for the

bond-graph solution.

3
Due to the complexity of reducing user statements to assembler-like
instructions and the overhead of user dialog, the first area consumed much
more time and effort than the second area. This complexity is reflected
in the relative amount of source code written to implement each of these

areas. (Source code files are described in Appendix H.)

1.2 Menus

All interaction with the user is controlled through menus and
prompts. (See the sample sessions in Appendices Al, A2 and A3.) Two
menus are available, each providing a "Help" panel. The first presents
the main options for the external function processor. Of the ten options
only two ever need to be used: (1) to create a new function definition
and (2) to exit the external function processor. However, two other
options can be useful with the function definition. One displays a
generic form of the node equation which shows the output bond variable
and the input bond variable(s). These variables must be used when writing
the external function definition. The other allows a current definition
to be edited. Selecting the edit option brings up the second menu used
in this work: the external function editor options. It contains seven
options, which include four kinds of line editing, a save of the edited
function and an exit from the editor. The remaining six options on the
external function processor menu, excluding help, deal with archived
functions. This work has provided a feature allowing an external function
definition created for one problem to be archived and then restored for
another problem. Since it is unlikely that the input and output variables

would be the same for two different problems, the restored function must

4
be edited. The editor is invoked automatically after a function is
restored from archive. This ability to preserve definitions between
problems and sessions of ENPORT can save tedious retyping and potential
errors when using the same function in several different bond-graph models

or when exercising alternate user-defined functions for the same node.

1.3 Features

In addition to the function archive ability described above, the work
has included the potential to define parameters, which may then be
referenced as constants in any function definition. The only parameter
currently defined this way is PI which is set to 3.14159. PI can be
referenced in the definition statements and the value 3.14159 will be used
during the solution. It is not expected that the user would make these
additions, but the ENPORT support programmer may add other such
parameters, if desired. The procedure to make additions is discussed

thoroughly in Chapter 5, Section 1.

A simple precedence grammar is used to parse FORTRAN-like definition
statements input by the user. The full grammar is described in Appendix
D1. Statements may begin in any column since no labels or continuation
statements are allowed. All of the FORTRAN algebraic operators (+, -,
*, /, **, =) may be used, as well as any of the functions in Figure 1.
The double-precision versions of these functions are implemented by the
interpreter in order to be consistent with the precision maintained

elsewhere in ENPORT.

ABS LOG
ACOS LOG10
AINT MAX
ANINT MIN
ASIN MOD
ATAN SIGN
ATAN2 SIN
COoS SINH
COSH SQRT
DIM TAN
EXP TANH

Figure 1. FORTRAN Functions

Also available is the IF-THEN-ELSEIF-ELSE-ENDIF statement. This
statement must start with IF, must have a THEN clause and must end with
ENDIF. The ELSEIF and ELSE clauses are optional. Logical operators
(.AND., .OR. and .NOT.) may be used with the relational operators (.EQ.,
.NE., .GT., .GE., .LT. anq .LE.) to build relational expressions for the
IF and ELSEIF clauses. A brief introduction to the syntax for entering
definition statements appears in Appendix A and a complete formal language

specification appears in Appendix B.

During lexical analysis of user input, an integer value is associated
with each input character. This integer identifies the input character
position in the character set accepted by this work. Because machine
independency was desired, intrinsic FORTRAN functions, which would return
the character position in the system collating sequence, were not used.
These returned results may not be consistent between machine
architectures. Instead, a character string constant called COLATE was
defined and used to establish an integer positional value for each
character in the character set. Use of the intrinsic function INDEX with

the string COLATE returns a positive value for every character accepted

6
by the work and zero for every character not accepted. This method
guarantees machine independence when identifying a positional integer

value for each input character.

Another feature required of this work was that a valid external
function be in place when the user leaves the external function processor
environment. That is, if the user requests an external function type but
fails to complete a successful definition, a default function definition
will be established. This was accomplished with a check for a wvalid
function after the user selects the exit option from the external function
processor menu. If a valid function is found, the exit proceeds, and
control returns to ENPORT. If no valid function is found, and the user
insists on exiting, a default function sets the output bond variable to

zero.

A special feature of this work and one which was of great value
during development is a trace option. Debug-aiding output can be
generated and controlled through the use of trace flags. This feature
is intended for the ENPORT support programmer only. Extensive traces of
the lexical analysis and parsing operations can be written to a file for
review or comparison with previous traces after a major program
modification is made. Chapter 5, Section 3 presents a discussion of this

option and Figure 5 lists the available trace flags.

Chapter 2

EXTERNAL FUNCTION DEFINITION

As the user enters each line of input to define the external
function, the line is reduced to a stream of assembler-like instructions.
There are three phases to this operation: (1) lexical analysis,

(2) parsing and (3) code generation.

2.1 Lexical Analysis

Lexical analysis is the process of scanning a line of input one
character at a time and identifying input tokens. An input token is a
single element of the definition statement. Four types of input tokens
exist: (1) operators, (2) variable names, (3) constants and (4) reserve
words. A finite-state automaton (FSA) is used to scan through the input
and accept or reject strings of characters as input tokens. The FSA (see

Figure Cl) is implemented in the table-driven subprogram LEX.

LEX is able to detect some user errors based on input character
sequence. These are errors like (1) two operators with no intervening
operand, (2) a variable name beginning with a digit or (3) any error that
can be detected by looking ahead at the next input character. LEX

contains many messages for display to the user if an error is encountered.

8
Any error in the input renders that line invalid, and the user is prompted

to correct the error and reenter the line.

If LEX finds that the next input token is a variable name or a
constant, the token is entered into a symbol table, which provides storage
for the value during function evaluation. LEX distinguishes between real
and integer constants, but the integers are converted to double-precision
values in the symbol table. All arithmetic is double precision for the
function evaluation. Once space is reserved in the symbol table, LEX
changes the input tokens for variable names and constants to VAR and CON,
respectively. These are "terminal" tokens used by the parsing grammar
to represent variable names and constants. Input tokens for operators
and reserve words are already terminal tokens in the grammar and are,

therefore, unchanged by LEX.

SQUARE = BASE * 8
(A) User Input Line

Call Input Token Terminal Token Symbol Table

Number Found Returned Pointer Returned
1 SQUARE VAR 1
2 = = None
3 BASE VAR 2
4 * * None
5 8 CON 3

(B) Result of Five Calls to LEX

Entry Entry Entry
Number Name Value
0001 SQUARE 0.0
0002 BASE 0.0
0003 8.0

(C) Symbol Table Entries Generated

Figure 2. Lexical Analysis of a User Input Line

9
Figure 2 shows the result of lexical analysis on a line of user
input. Five successive calls to LEX are needed to process the user input
line in Figure 2, Part A. At each call, LEX identifies the next input
token and returns a terminal token of the parsing grammar and, if
appropriate, a symbol table pointer. Figure 2, Part B shows these results
and Figure 2, Part C shows the three entries generated in the symbol

table.

2.2 Parsing

The series of terminal tokens identified by the lexical analysis is
passed on to the parser, which is implemented in the subprogram PARSER.
This work uses a "simple precedence" parsing grammar that defines new
tokens called "nonterminals." The grammar rules (Appendix Dl) are used
to recognize a series of one or more "grammar tokens" (terminal and/or
nonterminal tokens as listed in Appendix D2) that can be replaced by a
single nonterminal. This replacement is called a "reduction," because
usually several grammar tokens are replaced by one nonterminal. A
precedence-relation table derived from the grammar defines one of the
relations (<<, >> or ==) to be associated with each pair of grammar
tokens. The table is only about half full, meaning that no relation
exists for many pairs. If grammar tokens having no precedence relation
ever appear together during the parsing of a user input line, indicative
of a user syntax error, PARSER sends an error message to the user, rejects
the input line, and prompts the user to correct the error and reenter the

line.

10
The grammar has many rules which seem to do nothing but reduce one
token to another. (See rules 44 and 45 in Appendix D1 for example.) These
are necessary to remove conflicts from the precedence-relation table and

make the grammar pairwise disjoint.

Figure 3 shows five steps in the parse of grammar tokens from the
user input line of Figure 2. Figure 3, Part A shows the first four
terminal tokens and the precedence relations between them. The symbol
<< at the far left is the relation between the bottom of the parsing stack
and any grammar token. The appearance of >> signals the parser that a
reduction can be made by applying the grammar rules to the series of
tokens between the right-most pair of << and >> relations. Figure 3, Part
B has the parse continuing after VAR is reduced to FACTOR and the last
terminal token CON is added. The relation >> appears after CON because
it represents the relation between any grammar token and the end of the
user input line. Figure 3, Part C shows the reduction on CON to CEXFAC.
The result of the next reduction, FACTOR == * == CEXFAC to CXPR, is
shown in Figure 3, Part D. One more reduction is possible and the result
is shown in Figure 3, Part E. At this point a statement, represented by
the nonterminal SSTMT, has been successfully parsed. PARSER now prompts
the user for more input and the user may continue or end the external

function definition.

(A)

(B)

(C)

(D)

(E)

11

<< VAR == = << VAR >> *
The precedence relations and tokens are stacked until
a relation >> is encountered.

<< VAR == = << FACTOR == * << C(CON >>

The new token FACTOR derived from VAR is stacked and
followed by the rest of the input tokens.
<< VAR == = << FACTOR == * == C(CEXFAC >>
The new token CEXFAC derived from CON is stacked with
the appropriate precedence relations.

<< VAR == = == (CXPR >>
FACTOR == * == CEXFAC is replaced by CXPR with
the appropriate precedence relations.

<< SSTMT

VAR == = == C(CEXPR has been recognized as a valid

statement and been replaced by SSTMT.

Figure 3. Parsing of Grammar Tokens from Figure 2

12

2.3 Internal Code Generation

The result of the external function definition is a series of
assembler-like instructions called "internal «code," which can be
interpreted during the bond-graph solution. The generation of this
internal code occurs simultaneously with the parsing described above in
Section 2. Each step of the parse is marked by a reduction, that is, the
application of one of the grammar rules to the tokens on the top of the
parser stack. Of the fifty-two simple precedence grammar rules used in
this work, thirty of those, when used in a reduction, also require
internal code generation. The internal code is written to an array, which
is made available to the interpreter for the bond-graph solution. Each
internal code instruction is an integer four-tuple, consisting of one
operator field followed by three operand fields. A list of all the

internal code instructions and their descriptions appears in Appendix E.

Two of the reductions in the user input example of Figure 3 generate
internal code. The reduction in Figure 3, Part D of FACTOR == * ==
CEXFAC to CXPR represents both the multiplication of two values from the
symbol table and the storage of the result in a third value. The internal
code generated is 0013 0002 0003 0004. The four-tuple shown is written
as four integers separated by blanks for readability. Internally, the
four-tuple is written as entry "i" in an array defined as OBJCOD(4,i).
The first field contains the operator 0013, which means multiplication.
The three operands 0002, 0003 and 0004 are pointers to symbol table
entries that were made by LEX. Figure 4 contains the symbol table

generated in Figure 2 by the calls to LEX.

13

Entry Entry Entry
Number Name Value
0001 SQUARE 0.0
0002 BASE 7.0
0003 8.0
0004 0.0

Figure 4. Symbol Table after Parse

One more entry for storage of an intermediate value has been added by
PARSER. Also, the user variable BASE has the value 7. This could be a
parameter or a value previously assigned in the external function
definition, or it might stand for a bond variable whose value is supplied
by ENPORT. User input tokens SQUARE, BASE and 8 were entered into the
symbol table by LEX at locations 0001, 0002 and 0003, respectively, and
the intermediate value was entered by PARSER at location 0004. This
multiply instruction then says to multiply the value stored at 0002 by
the value stored at 0003 and place the result into the value for entry

0004.

Reduction VAR == = == CEXPR to SSTMT shown in Figure 3, Part E
also generates internal code. The instruction generated is 0016 0004 0000
0001. Operator 0016 is the assignment operation and this instruction
assigns or copies the value of symbol table entry 0004 to the value for
entry 0001. The third field in this four-tuple (the second operand field)
is 0000. This operand is not used by the assignment operation 0016 and,

therefore, is set to 0000.

These two internal code instructions and the symbol table are all
that are needed by the interpreter to accomplish the operation specified

by the user in his input of Figure 2, Part A.

14

After processing all of the user input, the generated internal code
itself is "post-processed" to remove label instructions and to modify
branch and branch-on-condition instructions. These three instruction
types are generated by the parser to implement the logic of the
IF-THEN-ELSEIF-ELSE-ENDIF structure. Blocks of statements must be
executed or jumped around depending on the result of evaluating a
relational expression. This post-processing of the internal code makes
the interpreter execute much more efficiently. If the internal code were
not modified, the interpreter would have to decode every operator, even
in the blocks to be skipped, in order to find the label instructions.
Instead, the first pass of the post-processor removes the label
instructions and retains location pointers for the first executable
instruction after each label. During the second pass, the post-processor
modifies every branch and branch-on-condition, replacing its label
operand with the appropriate location pointer. Now, for the interpreter
to execute a branch, the location pointer is merely copied from the branch

operand into the interpreter's location counter.

Chapter 3

EXTERNAL FUNCTION EVALUATION

After completion of a successful external function definition, the
FORTRAN-like statements input by the user have been parsed and reduced
to a series of internal code instructions. This instruction set and the
accompanying symbol table are used during the ENPORT bond-graph solution
by an interpreter. The internal code is accepted as input and each
instruction is performed by the interpreter implemented in subprogram

INTERP.

3.1 Exchanging Values with ENPORT

ENPORT has established a vector containing storage for the inputs
and outputs of all node equations in the bond-graph. The user references
the input bond variables when writing the external function to define the
equation output. As LEX identifies a valid bond-variable name in the user
input line, the variable name is converted by LEX to the form VBL(offset),
in which VBL is the ENPORT I/0 vector and offset is the pointer into the
vector where the value of the bond variable is stored. The parser
generates the appropriate read-ENPORT or write-ENPORT instruction
(operator 0023 or 0024, respectively) and the interpreter uses the offset

to retrieve input values from the ENPORT I/0 vector and to write output

15

16
values to it. These instructions carry the offset value as one of the
operands in the instruction rather than a symbol table pointer. This

imitates an "immediate" instruction in assembler.

3.2 Interpreter

The INTERP subprogram is fairly short, only about 330 lines including
comments, and is completely self-contained. ENPORT calls INTERP to
evaluate the external function and INTERP processes all of the internal

code for the function without calling any other subprograms.

Because the bond-graph problem at hand may have more than one
external function definition, each function is "loaded" to an array called
MEMORY. Pointers to the start of the }nternal code for each function are
maintained, and the interpreter initializes its location counter for
MEMORY with this pointer. Symbol tables for each external function are
loaded to another array and pointers are maintained for each of them.
Logically, this is the same bookkeeping effort done by a system linker

for loading object code programs.

After 1its location counter and symbol table offset have been
initialized, INTERP evaluates the first internal code instruction. The
twenty-four operators are numbered one through twenty-four in order to
simplify use of a computed GO TO statement which implements operator
evaluation. The appropriate action for each instruction is performed,
referencing values in the symbol table or values in the array used for

exchanging variables with ENPORT. Then the location counter is

17
incremented by one, and the process continues with the next instruction
until a return (operator 0020) is found. One evaluation of the user's
external function has now been completed for one time-step in the

bond-graph solution, and control is returned to ENPORT.

The interpretive process described above involves a lot of computer
processing overhead and one might expect that solution times would be
extended when using an external function; however, initial comparisons
between a bond-graph problem using a library function and the same problem
using an external function indicate little difference in solution times.
It is felt that the solution process as a whole is quite CPU intensive
and, therefore, the added overhead of the interpreter has little effect
on the total solution time. This might no longer be true in a problem
involving a large number of time-steps or using several external
functions. The task of evaluating solution times using external functions

lies outside the scope of this work.

Chapter 4

INSTALLATION INTO ENPORT

Initial installation efforts concentrated on transferring execution
from ENPORT to this work and modifying the external function routines to
use the standard ENPORT I/0 handlers. This also made the ENPORT dialog
trace facility available for the remaining development. Installation was
completed by providing routines to (1) initialize a new bond-graph
problem, (2) read and write an external function definition for a saved

problem and (3) clear an external function.

Once this installation was complete, the value exchanges with the
ENPORT 1I/0 vector, VBL, could now be fully tested. The external function
processor can recognize bond variables and correctly locate them in VBL.
Also, the variables T and TIME are recognized as read-only variables

containing the time value set by ENPORT during bond-graph solution.

4.1 Bond-Graph Setup

Whenever ENPORT initializes to restore an old bond-graph problem
from a problem file or to create a new problem, certain areas within this
work must also be initialized. The routine CLREXT resets (1) MEMORY,

(2) the symbol table array TMPVAL, (3) the array TEXT which holds each

18

19
line of user input and (4) LOADPT which holds pointers for each external

function. This occurs once for each problem.

4.2 Reading or Writing a Saved Problem

Since ENPORT provides the ability to save a bond-graph problem
description, this enhancement had to support that feature also. ENPORT
optionally writes the node equations to a file, and if this option is
selected for a problem having an external function, saves the user input
lines. The subprogram EXTPTR returns the pointer to TEXT and the count
of user input lines stored there for any node equation having an external
function. Installation required a test for a function type of USERDEF,

a call to EXTPTR and the writing of TEXT lines to the problem file.

When ENPORT restores a bond-graph problem, all of the text lines must
be parsed again to generate internal code and the symbol table for the
interpreter. The installation required testing for function type
USERDEF, and loading user input lines defining the function into array
EARRAY and setting ECOUNT equal to the number of lines read. A call to
subprogram READEX causes lexical analysis and parse of all lines in
EARRAY. This process exercises the same subprograms LEX and PARSER that
are used during an interactive definition, but suppresses user dialog
except for error messages. Since these defining statements were
successfully accepted before they could be saved in the problem file, no

errors should occur.

20
These file read-and-write procedures are repeated for each external

function defined in a bond-graph problem.

4.3 Replacing an External Function

Once a node equation has been defined, the user has the option
available to change it. If the original definition used an external
function, this definition must be "unloaded" to release space in MEMORY,
TEXT, the symbol table and LOADPT. This is done with one call to the
subprogram ULDEXT. The only argument passed to ULDEXT is the number
ENPORT assigned to the node. Each array is compressed after a definition
is unloaded in order to provide the maximum available space for another
external function. This work supports up to ten definitions
simultaneously for one bond-graph problem, but user function sizes may
exceed MEMORY, TEXT or symbol table array limits. These limitations are
necessary. simply to define finite sizes for program data structures and

can be extended by the ENPORT support programmer.

Chapter 5

MAINTENANCE

The intent of this chapter is to provide enough information about
several areas of this work to facilitate future maintenance. Included
are details regarding parameter table expansion and two hidden main menu
options for the external function processor. One of these options
activates a trace facility, which has the capability to trace the lexical

analysis and parse operations. The trace output is written to a file.

5.1 Parameters

During the initialization performed for every new external function
definition, the symbol table is loaded with reserve words and the
parameter names and values. This table, in subprogram ANFANG, consists
of three data structures. The first, the integer NPARAM, is simply the
number of active parameters in the table. The other two data structures
are parallel one-dimensional arrays of length NPARAM. The first array,
NPARM, is of type CHARACTER*6 and contains the name of the parameters that
can be referenced within an external function. The second array, VPARM,
is of type DOUBLE PRECISION and contains the value of each parameter named
in NPARM. These three structures are local variables initialized with

DATA statements and are not referenced outside ANFANG. The table is

21

22
expanded by adding the parameter names and values to NPARM and VPARM,

respectively, and setting NPARAM to the new table size.

5.2 Hidden Menu Options

Two hidden options are available on the external function processor
menu: L and T. Option L is described in this section, while option T

is described in Section 3.

During the development and testing of this work, it was helpful to
separate the tasks of creating, editing and loading an external function
definition. Initially, the external function processor menu offered an
option for each of these three operations. After development was
complete, it proved more effective to automatically load after a
successful create or edit and this greatly smoothed the flow of operations
required of the user at the main menu. While the load procedure is
automatic, the load option (option L) is still accepted from the main menu
prompt. This could be useful during future maintenance of this work.
The separation of loading from editing and creating has been maintained

by keeping separate subprograms to support these options.

5.3 Trace Option for Debug

This trace option is not presented to the user because it is intended

only for the ENPORT support programmer and it can generate large amounts

of output. Therefore, the output is routed to a file rather than to the

23
screen. In order to evaluate the trace information after the ENPORT run,

this file can be browsed online or printed.

Entering the hidden option T at the external function processor main
menu calls subprogram DEBUG which controls the trace facility for this
work. DEBUG provides a toggle to enable or disable all trace printouts
and allows trace "flags" which control individual printouts to be turned
on. Trace flags can also be turned off and on during the function
definition by entering specially-coded comment statements. The trace
toggle and all trace flags are initialized off at every entry into the
external function processor from ENPORT. The special comment statements
have the form CSET# followed by sets of "+nn" and/or "-nn." (+nn means
to turn flag nn on and -nn means to turn it off.) Setting flag +00 will
turn all trace flags on and -00 will turn them all off. The +nn and -nn

can be repeated allowing several flags to be set with one CSET# statement.

Figure 5 lists the trace flag numbers, the subprogram in which they
appear and a brief description of the trace output. The trace output file
is named DEBUGIT and is opened on unit five. If the file name already
exists the first time tracing is toggled on, the option to overwrite or

give another file name is presented.

Flag

Tracing

24

Number Subprogram Trace Description to Debug File

02
04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

24

NEWECT
LEX
LEX
PARSER
CODE
PUSH
PARSER
PUTINT
LEX
LEX
PUTSYM
PUTREL

NEWFCT

LEX

REDUCE
CODEGN
REDUCE
FAILRD
CODEGN
NEXT

PARSER

CODEGN

ULDEXT

User input line after a good parse
FSA and user input pointers

Screen error messages

Parser stacks each time a token added
User input line before calling LEX
Integer constant symbol table entry
Building of integer constant

Building of real constant

Variable name symbol table entry

Real constant symbol table entry

Symbol table dump after function
definition completed

Building of comparison and relational
operators

Grammar rule reduction
Internal code generation

Screen error messages

Pointers to reset after user error

Dummy message when rule reduction
generates no internal code

Load areas and pointers before and
after function unload and at exit
from external function processor

Figure 5. Trace Flags

Chapter 6

SUMMARY AND RECOMMENDATIONS

The work presented in this thesis has addressed an ENPORT user's need
to write his own node equation definition and allows the definition to
be made without leaving ENPORT. Node equations are no longer limited to
the standard function library, but can now be fine tuned to more closely
model the real (nonlinear) world. Multiple custom function definitions
may be defined for a bond-graph problem and a definition can be archived
for use in another problem. This enhancement supports ENPORT's ability
to save complete problem descriptions to a problem file and to restore

the problem during another session.

A review of the evolution of this work reveals some areas which could
benefit from further attention. Recommendations for further work appear
in the sections which follow and deal generally with user interface and

internal code optimization for the interpreter.

6.1 Expanded Error Messages

Writers of compilers and other language processors agree that errors
must be detected, but which action should be taken is the subject of much

debate. Some batch compilers try to make corrections to recover from

25

26
input stream errors [6,7]. In the case of this work the user is at the
console, and since only he knows what he meant to do, the approach taken

informs the user and lets him make the correction.

Extensive validity checking during lexical analysis and parsing of
user input means that all errors in syntax are detected and a message is
written to the console. Most error message texts include the element of
the user's input that was found to be in error. Almost all errors require

entry of a new (and hopefully correct) definition statement.

The error message to the user could be enhanced by echoing the input
line and underlining the error. Errors detected in LEX must occur between
the two pointers TOPUI and PT2. TOPUI marks the start of the token and
PT2 is moved one character at a time to scan the input. Errors found by
PARSER result from (1) grammar tokens that cannot appear together or
(2) a failure to find a match between the grammar rules and tokens on the
parser stack when PARSER tries to do a reduction. Delimiting the error
here will be more difficult. Another array parallel to the parsing stack
of tokens would have to be defined and it would contain pointers to the
start of each token in the user input. Then the message handler could
underline the area of the user input that contributed the tokens found

to be in error.

Error messages are also produced if some non-recoverable condition
occurs within the programs supporting this enhancement. The most likely
cause would be the filling of a data structure used to hold external

function definitions. In these cases, since some internal limit has been

27
exceeded already, there is no point asking the user to continue and so a
program stop is executed. A stop should only happen in extreme cases
involving unusually large complex function definitions, but it is clearly
not a desirable action. Now that this work is complete, a comprehensive
solution could be devised to abort the current function definition and
return control to one of the function processor menus or in the extreme

case return to ENPORT and allow selection of a library function.

Most of the program stops are accomplished by calling the subprogram
STOPIT and can therefore be tracked down using the subprogram calling tree

in Appendix F.

6.2 Improved Validity Checking

All user references to bond-variable names are validated to ensure
that only inputs specified for the node are used as input and that only
the output variable can have a value assigned to it. Of course,

assignment can be made to intermediate variables.

Checks are not made to see if the function definition has referenced
all declared input variables. There is also no check to verify that a
value has been assigned to the output variable. Both of these checks
would have to be made after the user ended his input. One way to make
these checks would be to scan the internal code for the operators 0023
and 0024. These are Read-ENPORT and Write-ENPORT, respectively. Each
instruction contains the offset in ENPORT I/0 vector VBL, which can then

be compared to the input and output list for the node. A user warning

28
message should be produced if the lists do not match. It would be up to

the user to determine if the function definition needs to be corrected.

6.3 Internal Code Optimization

Time studies can easily be done to compare the solution time of a
bond-graph problem using an external function and the same problem using
a compiled function. If these tests show that the interpreter is

significantly slower, steps can be taken to improve its performance.

Each internal code instruction contains three operands which are
"decoded" before the operator is evaluated. Not every instruction uses
all three operands, however. Six use two operands, two use only one and
one instruction does not use any. If the operands were decoded after the
operator evaluation, only those operands used by each operator would have

to be referenced.

This decoding really just assigns the contents of MEMORY to another
variable name (OP1, OP2 or OP3) in order to simplify the instruction
evaluation procedures. The interpreter could also be improved by
referencing MEMORY directly, eliminating operand decoding for any

instruction.

Another optimizing step would be a check for any "imbedded"
arithmetic, that is, arithmetic that could be performed in the internal
code prior to interpreter processing. For instance, if the user had

written AREA=2*PI*RADIUS, and since PI is a constant parameter, the

29
multiplication 2*PI could be performed ahead of time. The result is
placed in the symbol table and the internal code modified to reference

it directly, and the multiply instruction is removed.

An extension of this same idea is to look for unnecessary temporary
variables in assignment statements. For example, if the user sets a
variable named TEMP1 equal to a constant, then references TEMP1 later in
his function, the assignment instruction can be removed and the internal

code modified to reference the constant directly from the symbol table.

Efficient programming by the wuser would eliminate imbedded
arithmetic and unnecessary temporary variables, but the cost to optimize
for these cases is small. Even so, it is only worth the effort if the

time studies show a need to increase interpreter efficiency.

LIST OF REFERENCES

LIST OF REFERENCES

1. Rosenberg, R. C. and Karnopp, D. C., SYSTEM DYNAMICS: A UNIFIED
APPROACH, John Wiley & Sons, New York, 1975.

2. Rosenberg, R. C., 'ENPORT-6 User's Manual,' Rosencode Associates Inc.,
Lansing, Michigan, 1986.

3. Barret, W. A. and Couch, J. D., COMPILER CONSTRUCTION: THEORY AND
PRACTICE, Science Research Associates, Inc., 1979.

4. Aho, A. V., and Johnson, S. C., LR Parsing, Computing Survey,
Volume 6, No. 2, June 1974, pp. 99-124.

5. Aho, A. V., and Ullman, J. D., THE THEORY OF PARSING, TRANSLATION AND
COMPILING, Volume 1, Prentice-Hall, Englewood Cliffs, New Jersey, 1972,
pp. 58-75.

6. Ripley, G. David, A Simple Recovery-Only Procedure For Simple
Precedence Parsers, Communications of the ACM, Volume 21, No. 11, November
1978, pp. 928-930.

7. Graham, Susan L. and Rhodes, Steven P., Practical Syntactic Error .
Recovery, Communications of the ACM, Volume 18, No. 11, November 1975,
pp. 639-649.

30

APPENDICES

APPENDIX A

USER DOCUMENTATION

This appendix provides an introduction to the syntax and statement
format used to enter custom external function definitions. Also following
are three sample sessions that trace the steps used to create, edit and

archive a function definition.

If you know FORTRAN, you should be able to write an external function
equation without much trouble, since the syntax for the algebraic
expressions is based on FORTRAN. Normally, you will want to code some
expression using node inputs, FORTRAN library functions and constants,
and then set this expression equal to the output variable for the node.
The following is an example (not from any real bond-graph problem) using
F.5 as input and E.5 as output:

+- ENPORT prompt
+- enter in this area after the prompt
>> 1>>: E.5=(1/100.0)*SIN((F.5**2)+2) - 1
>> 2>>: IF E.5 .LT. 0 THEN

>> 3>>: E.5=0.0
>> 4>>: ENDIF

Notice that your statements can begin in the first column. Another

difference from FORTRAN is that no GO TO's or labels are allowed. In

32
general, blanks are ignored in the input, so for more readability in that
first line, blanks could be added:

>> 1>>: E.5 = (1/100.0) * SIN((F.5%*2) + 2) - 1

You may use all the normal algebraic operators (+, -, *, /, **) and

any of the following FORTRAN intrinsic functions:

ABS LOG
ACOS LOG10
AINT MAX
ANINT MIN
ASIN MOD
ATAN SIGN
ATAN2 SIN
Cos SINH
COSH SQRT
DIM TAN
EXP TANH

Also available is the IF-THEN-ELSEIF-ELSE-ENDIF statement. This
statement must start with IF, must have a THEN clause and must end with

ENDIF. The ELSEIF and ELSE clauses are optional.

Each line must contain a complete statement. Algebraic expressions
cannot continue over to the next line. If you must code long expressions,
use intermediate variables. The parts of the IF-THEN-ELSEIF-ELSE-ENDIF
construct that should stand alone on a single line are:

IF relational-expression THEN
ELSEIF relational-expression THEN
ELSE

ENDIF

Some variations on this are possible for the external function processor

to understand, but experiment at your own risk.

APPENDIX Al
SAMPLE CREATE SESSION

(From the ENPORT "Element equation options" menu, node equations
can be set or changed. Selecting either of these options
generates prompts for the element name, the function type and the
number and name(s) of the inputs.)

Element equation options

L: List the current equations

D: Details of current equations
C: Change selected equations

S: Specify all equations

U: set to Unit linear

A: Available function types

V: Vector definitions

H: Help

X: eXit from this menu (default)

Enter option (X): C
Ready to change selected equations ...
Enter the element name (QUIT): R
Enter the function type (GAIN) : USERDEF
Enter number of inputs (1):
Enter input 1 (F.5):
(One of the function types available is USERDEF. If this type

is selected, specify the number and name(s) of the inputs, and
an "External function processor options" menu appears.)

33

34

External function processor options

Q: show eQuation for this node

C: Create a new external function

E: Edit the current function

D: show Directory of archived functions

S: show Source statements of an archived function
R: Restore an archived function

A: Archive the current function

P: Purge an archived function

H: Help

X: eXit from external function processor (default)

Enter option (X): Q

The node equation is: E.5 = USERDEF (F.5)

(Generally, when entering the external function processor, you
will want to create a new functional relationship of the input
variables to the output variable for this node. Option Q
displays a generic version of the node equation, showing the
output equal to a function of the inputs. Initially the name of
the function shown is USERDEF. This means an external function
type has been specified, but no external function has been created
and loaded. The variable names shown are the ones that are used
when writing the function definition statements.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): C
(Option C begins the creation of a new function definition.

Bypass use of a file as input. An input file would have to be
created before entering ENPORT.)

Do you want to define the function using a file as input? (N):

35
Processing begun for the current function
>>nn>>: <---- Enter up to 50 source statements of maximum length 72 --->

>> 1>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE
>> 2>>: * COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE

>> 3>>: C

>> 4>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE
>> §5>>: C

>> 6>>: PARM=100.0

>> 7>>: C

>> 8>>: C OR THEY CAN HAVE LEADING BLANKS

>> 9>>: C

>>10>>: E.5=F.5/PARM

>>11>>: C

>>12>>: C TERMINATE INPUT BY TYPING "END"

>>13>>: C OR JUST HIT <ENTER> AFTER A LINE PROMPT
>>14>>: E

(Processing the definition statements for the external function
has begun. Source statements are entered after the numbered
prompts. All normal algebraic expressions can be used to set a
value into the output variable. Comments are optional. Statements
may begin in column one or have leading blanks.)

Creation of a new current function successful.

The function will now be loaded to make it available for the problem
solution.

Hit <return> to continue...
The current function is successfully loaded.

The node equation is: E.5 = CUR.FCN (F.5)

(Extensive syntax checking is done for each source statement. A
particularly complicated expression may take several seconds to
process. After terminating the input, the message "Creation of
a new current function successful" should appear. The function
definition is then loaded and the new form of the generic node
equation is displayed. The name USERDEF is replaced by
"CUR.FCN" to indicate that an external function is in place.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): X
(Option X allows an exit from the external function processor
and offers a chance to modify the equation definition for the

node.)

Modify the equation definition? (N):

APPENDIX A2
SAMPLE EDIT SESSION

(An external function type can always be replaced by one of the
standard library function types like GAIN. However, if
an external function type has already been defined and loaded
for the node, you may wish to edit it. To do this, select the
USERDEF type again to enter the external function processor.)

Element equation options

L: List the current equations

D: Details of current equations
C: Change selected equations

S: Specify all equations

U: set to Unit linear

A: Available function types

V: Vector definitions

H: Help

X: eXit from this menu (default)

Enter option (X): C

Ready to change selected equations ...
Enter the element name (QUIT): R
Enter the function type (USERDEF):
Enter number of inputs (1):

Enter input 1 (F.5):

36

37

External function processor options

Q: show eQuation for this node

C: Create a new external function

E: Edit the current function

D: show Directory of archived functions

S: show Source statements of an archived function
R: Restore an archived function

A: Archive the current function

P: Purge an archived function

H: Help

X: eXit from external function processor (default)

Enter option (X): Q

(The name "CUR.FCN" shown by option Q indicates that an external
function is in place for this node.)

The node equation is: E.5 = CUR.FCN (F.5)

(Option E enters the editor, and its own menu, "External
function editor options" appears. The menu allows several
ways to edit the definition statements for the current function.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): E

External function editor options

L: List definition statements

R: Replace a line in the current function

D: Delete a line in the current function

I: Insert a line in the current function

S: Save edits to the current function

H: Help

X: eXit from the external function editor (default)

Enter option (X): L

(Option L shows a listing of the source statements for the
external function.)

38

Editor listing for the current function

>> 0>>: <-mm-memmmmmmmoooaoo TOP - OF - DATA ---=--=---=-cmcmmmmoao-
>> 1>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>: * COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE

>> 3>>; C

>> 4>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>: C

>> 6>>: PARM=100.0

>> 7>>: C

>> 8>>: C OR THEY CAN HAVE LEADING BLANKS

>> 9>>: C

>>10>>: E.5=F.5/PARM

>>11>>: C

>>12>>: C TERMINATE INPUT BY TYPING "END"

>>13>>: C OR JUST HIT <ENTER> AFTER A LINE PROMPT

(Use the line numbers shown in the source statement listing
to make edits. Option R allows a line to be replaced.)

List,Replace,Delete,Insert,Save,Help,eXit (full): R

What is the line number of the line you want to replace?: 6
>> 6>>: PARM=100.0

Okay to replace this line? (N): Y

Enter the replacement line.
>> 6>>: PARM=50.0

Line 6 is replaced.
(Another listing shows the line replaced.)
List,Replace,Delete,Insert,Save,Help,eXit (full): L

Editor listing for the current function

(This function must be SAVEd to retain your edits)

>> 0>>: om-mmmmmmmmmeeeeaooae TOP - OF - DATA --------==---=ccmmmnmnn
>> 1>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>; * (COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE

>> 3>>: C

>> 4>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>: C

>> 6>>: PARM=50.0

>> 7>>: C

>> 8>>: C OR THEY CAN HAVE LEADING BLANKS
>> 9>>: C

>>10>>: E.5=F.5/PARM

>>11>>:

C
>>12>>: C TERMINATE INPUT BY TYPING "END"
>>13>>: C OR JUST HIT <ENTER> AFTER A LINE PROMPT

39
(Option D allows a line to be deleted.)
List,Replace,Delete,Insert,Save,Help,eXit (full): D
What is the number of the line you wish to delete?: 13
>>13>>: C OR JUST HIT <ENTER> AFTER A LINE PROMPT
_Okay to delete this line? (N): Y

Line 13 is deleted.
(Again, a listing shows the line deletion.)

List,Replace,Delete, Insert,Save,Help,eXit (full): L

Editor listing for the current function

(This function must be SAVEd to retain your edits)

>> 0>>: K--=-mmc-cmeeeeooaooo TOP - OF - DATA ------==-----===-------
>> 1>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>: * COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE

>> 3>>: C

>> 4>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>: C '

>> 6>>: PARM=50.0

>> >>: C

>> 8>>: C

>> 9>>: C
>>10>>: E.5=F.5/PARM

>>11>>: C

>>12>>: C TERMINATE INPUT BY TYPING "END"

OR THEY CAN HAVE LEADING BLANKS

(Option I allows lines to be inserted into the source code.
Specify the line number after which the line(s) are to be
inserted. Unlike replace or delete, insert allows more than one
line to be inserted at a time. Hit <enter> after a prompt to
terminate the insertions.)

~ List,Replace,Delete,Insert,Save,Help,eXit (full): I
After what line number would you like to insert?: 0

Enter insertion(s) after the following line.

D > I G TOP - OF - DATA -----------------------
>> 1>>: * THIS FUNCTION HAS BEEN EDITED.

>> 2>>: * (MORE THAN ONE LINE CAN BE INSERTED AT ONE TIME)

>> 3>>: * .

>> 4>>:

Insertion(s) completed.

40

(Option L shows the lines which have been inserted.)

List,Replace,Delete,Insert,Save,Help,eXit (full): L

Editor listing for the current function
(This function must be SAVEd to retain your edits)

>> 0>>:
>> 1>>:
>> 2>>:
>> 3>>:
>> 4>>:
>> 55>
>> 6>>:
>> T>>:
>> 8>>:
>> 9>>:
>>10>>:
>>11>>:
>>12>>:
>>13>>:
>>14>>:
>>15>>:

Qommmmm e TOP - OF - DATA ---=---c-cmmmemomamn-
THIS FUNCTION HAS BEEN EDITED.
(MORE THAN ONE LINE CAN BE INSERTED AT ONE TIME)

COMMENTS BEGIN WITH A "C" IN COLUMN ONE
COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE

DEFINITION STATEMENTS CAN START IN COLUMN ONE
ARM=50.0

OR THEY CAN HAVE LEADING BLANKS

OOV OOO v & & »

E.5=F.5/PARM
C
C TERMINATE INPUT BY TYPING "END"

(A "Save" must be done to preserve your edits. Continuing to
exit will lose all edits done during this edit session.)

List,Replace,Delete,Insert,Save,Help,eXit (full): X

The current function has been edited, but not SAVED.
Okay to lose your edits? (N):

Use the SAVE option before exiting the editor.

(Option S to save the new function definition invokes the
syntax checker. Errors in the edited statements may be detected
and must be corrected by further edits. Only a correct function
definition will be accepted.)

List,Replace,Delete,Insert,Save,Help,eXit (full): S

The current function has been edited and
it will be checked for correct syntax.

Hit <return> to continue...

(The syntax checker echos the definition statements of the
function as they are checked.)

41

Processing begun for the current function
>> 1>>: * THIS FUNCTION HAS BEEN EDITED.

>> 2>>; * (MORE THAN ONE LINE CAN BE INSERTED AT ONE TIME)
>> 3>>: ¢

>> 4>>: C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 5>>: * COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE
>> 6>>: C

>> 7>>: C DEFINITION STATEMENTS CAN START IN COLUMN ONE
>> 8>>: C

>> 9>>: PARM=50.0

>>10>>: C

>>11>>: C OR THEY CAN HAVE LEADING BLANKS

>>12>>: C

>>13>>: E.5=F.5/PARM

>>14>>: C

>>15>>: C TERMINATE INPUT BY TYPING "END"
Parse of the current function successful.

(The edit session is complete. Use option X to exit the editor
and go back to the external function processor main menu. The
edited function definition will be loaded to make it available
for the problem solution.)

List,Replace,Delete,Insert,Save,Help,eXit (full): X

The function will be loaded to make it available for problem solution.
Hit <return> to continue...

The current function is successfully loaded.

The node eguation is: E.5 = CUR.FCN (F.5)

Hit <return> to continue...

External function processor options

Q: show eQuation for this node

C: Create a new external function

E: Edit the current function

D: show Directory of archived functions

S: show Source statements of an archived function
R: Restore an archived function

A: Archive the current function

P: Purge an archived function

H: Help

X: eXit from external function processor (default)

Enter option (X): X
(Option X exits the external function processor.)

Modify the equation definition? (N):

APPENDIX A3

SAMPLE ARCHIVE SESSION

(The other options available on the External function

processor menu are D, S, R, A and P.)

External function processor options

XITO2>ONVOMOO

show eQuation for this node

Create a new external function

Edit the current function

show Directory of archived functions

show Source statements of an archived function
Restore an archived function

Archive the current function

Purge an archived function

Help

eXit from external function processor (default)

----- g

Enter option (X): D

(Option D lists the archived functions in the external

function directory. Included are the names of the function,
the file in which it is stored and the file creation date
and time.)

Function External File Creation

Name File Date Time

ARCH2 ARCH2 11/02/86 20:03:55
ARCHA ARCHA 11/03/86 19:54:41
SAMPLE SAMPLE 11/06/86 12:47:40

External function directory has 3 entries and a limit of 50.

42

43

(Option S lists the function "Source" statements for an
archived function.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full):

Enter the name of the function: SAMPLE

Source

isting for archived external function SAMPLE
""""" COMMENTS BEGIN WITH A "C" IN COLUMN ONE
COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE
DEFINITION STATEMENTS CAN START IN COLUMN ONE
: PARM=100.0
OR THEY CAN HAVE LEADING BLANKS

>>11>>:
>>12>>:
>>13>>:

1

E.5=F.5/PARM

TERMINATE INPUT BY TYPING "END"
OR JUST HIT <ENTER> AFTER A LINE PROMPT

(The name USERDEF in the response to option Q indicates
that no external function is in place yet for this node. An
archived function may be restored using option R. SAMPLE
is one of the archived function names listed in the directory.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full):

The node equation is: E.5 = USERDEF (F.5)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full):

Enter the name of the function: SAMPLE

Restore successful for function SAMPLE

The restored function must be edited to insure
the correct use of bond variable names.

Hit <return> to continue...

(Because functions restored from archive probably will not
reference bond variable names appropriate for the current node,
the function must be edited.)

S

Q

R

44

External function editor options

L: List definition statements

R: Replace a line in the current function

D: Delete a line in the current function

I: Insert a line in the current function

S: Save edits to the current function

H: Help

X: eXit from the external function editor (default)

Enter option (X): L

(Option L lists the restored function. Change the bond variables
used, if necessary, using the edit features. When editing is
complete, SAVE the function.)

Editor listing for the current function

>> 0>>:<-=mmmmmmmmmmeeaeoee TOP - OF - DATA -----------mcmmmnaoen
>> 1>>:C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>:* COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE

>> 3>>:C

>> 4>>:C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>:C

>> 6>>:PARM=100.0

>> 7>>:C

>> 8>>:C OR THEY CAN HAVE LEADING BLANKS
>> 9>>:C

>>10>>: E.5=F.5/PARM

>>11>>:C

>>12>>:C TERMINATE INPUT BY TYPING "END"

>>13>>:C OR JUST HIT <ENTER> AFTER A LINE PROMPT
List,Replace,Delete,Insert,Save,eXit (full): X

The current function has been restored and must be saved.
Use the SAVE option before exiting the editor.
List,Replace,Delete,Insert,Save,eXit (full): S

The current function has not been edited, but
it will be checked for correct syntax.

Hit <return> to continue...
(In this case, no editing is necessary, so the function is saved.

Each line of text is checked for correct syntax and echoed to the
screen.)

45

Processing begun for the current function

>> 1>>:C COMMENTS BEGIN WITH A "C" IN COLUMN ONE

>> 2>>:* COMMENTS CAN ALSO BEGIN WITH AN "*" IN COLUMN ONE
>> 3>>:C

>> 4>>:C DEFINITION STATEMENTS CAN START IN COLUMN ONE

>> 5>>:C

>> 6>>:PARM=100.0

>> 1>>:C

>> 8>>:C OR THEY CAN HAVE LEADING BLANKS
>> 9>>:C

>>10>>: E.5=F.5/PARM

>>11>>:C

>>12>>:C TERMINATE INPUT BY TYPING "END"
>>13>>:C OR JUST HIT <ENTER> AFTER A LINE PROMPT

Parse of the current function successful.

(After a successful parse, use option X to exit the editor.
The restored function is loaded for use in the problem solution
and the node equation is displayed. "CUR.FCN" indicates that the
new external function is in place.)

List,Replace,Delete,Insert,Save,eXit (full): X

The function will now be loaded to make it available for the problem
solution.

Hit <return> to continue...
The current function is successfully loaded.
The node equation is: E.5 = CUR.FCN (F.5)

Hit <return> to continue...

External function processor options

Q: show eQuation for this node

C: Create a new external function

E: Edit the current function

D: show Directory of archived functions

S: show Source statements of an archived function
R: Restore an archived function

A: Archive the current function

P: Purge an archived function

H: Help

X: eXit from external function processor (default)

Enter option (X): A

46
(Option A archives the definition statements for the current
function to an external file and adds the function to the
directory.)
Enter the name (limit 6 char) for the archived function: SAMPL2
External function directory has 3 entries and a limit of 50.
Enter external file name for saving SAMPL2, (SAMPL2):
Current function definition successfully archived to SAMPL2.

(Option D shows the updated directory with the newly-archived
function added.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full):

Function External File Creation
Name File Date Time
ARCH2 ARCH?2 11/02/86 20:03:55

ARCHA ARCHA 11/03/86 19:54:41
SAMPLE SAMPLE 11/06/86 12:47:40
SAMPL2 SAMPL2 11/06/86 12:50:08

External function directory has 4 entries and a limit of 50.
(Option P allows an archived function to be purged from the

directory. This action also deletes the storage file from
your library.)

eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full):

Enter the name of the function: SAMPL2
Function selected for purge: SAMPL2
Saved on external file: SAMPL2
Created on day: 11/06/86
Created at time: 12:50:08
Okay to purge this function? (N): Y
External file SAMPL2 for function SAMPLZ2 will be deleted.

Directory entry purged for function SAMPL2

D

47
(Another listing of the archive entries in the external function
directory shows the function is purged.)
eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): D

Function External File Creation
Name File Date Time

ARCH2 ARCH2 11/02/86 20:03:55

ARCHA ARCHA 11/03/86 19:54:41

SAMPLE SAMPLE 11/06/86 12:47:40

External function directory has 3 entries and a limit of 50.
eQn,Create,Load,Edit,Dir,Source,Restore,Arch,Purge,Help,eXit? (full): X

Modify the equation definition? (N):

APPENDIX B

LANGUAGE SYNTAX

The descriptions below use the following symbols in their
definitions for elements of the language. Blanks in the definitions of
variable names, integer constants and real constants are for clarity only

and are not part of the definition. Blanks terminate each of these

language elements.

[] square brackets enclose optional elements
or lists of optional alternate elements

([]] doubled square brackets enclose optional
elements or lists of optional elements
that can be repeated

{ } braces enclose lists of alternate elements,
one of which must be selected

| a vertical line separates alternate items when
one item is to be chosen exclusive of the others

48

49

Variable names

variable: letter [[letter | digit]]

Variable names must begin with a letter and are made up of letters
and digits. The maximum length is six characters. Use of names longer
than six characters causes a warning message stating that the name will
be truncated to six characters and processing will continue. Logical
variables are not supported and there is no typing of variables either
explicitly or implicitly. All calculations are done wusing

double-precision arithmetic.

Integer constants

integer: digit [[digit)

Integer constants are recognized, but are converted to double
precision (real) when they are stored, since all subsequent calculations
will be done in double precision. The length of an integer constant is
limited to ten characters. An integer that is too long is truncated to
the left-most digits and processing continues. Of course, a warning
message is issued. This does not yield the program the user desires, but
it does allow the rest of the line to be checked for syntax errors. The
lexical analyzer does not force the user to reenter a line after a warning

message, only after an error.

50

Real constants

real: [[digit)] { digit. | .digit } [[digit]]
real-exponential: { integer | real } E [+ | -] integer

Real numbers must use a decimal point or be expressed by using
exponential notation. The decimal must precede or follow at least one
digit. If an exponent is specified, it must immediately follow the last
character in the mantissa (either a digit or the decimal point). The
exponent is written with an "E" followed by the value of the exponent.
The value may be signed or unsigned (assumed positive) and must be an

integer.

External function syntax

Figure Bl presents the comp}ete formal syntax for user input
statements needed to define an external function. The sequence of syntax
from top to bottom proceeds from the most general to the most specific.
The first syntax rule, then, defines an external function as a series of
statements followed by an optional "END." Succeeding rules further

delineate the syntax of correct statements.

51
External Function: statements [END]
statements: statement |[[statements]]
statement: variable = expression
statement: IF relational THEN statements
([ELSEIF relational THEN statements]]
[ELSE statements |
ENDIF

relational: (relational)

relational: .NOT. relational

relational: relational { .OR. | .AND. } relational

relational: expression { .EQ. | .NE. | .LT. | .LE. | .GT. | .GE.
expression

expression: (expression)

expression: expression { + | - | /| * | ** } expression

expression: [+ | - 1 { variable | constant | FORTRAN-function }

FORTRAN-function: FORTRAN-function-name (argument-list)
argument-list: argument-list , expression
argument-list: expression

Figure Bl. External Function Syntax

52

Note on blanks in the input

In general, blanks are ignored by the processor. However, blanks
are not allowed to appear within any single operand, operator or reserve
word. Lines can have leading blanks and there can be any number of blanks
between operators, operands and reserve words. All statements must be
completed on one line, that is, statements are not allowed to be continued
to another line. Statements that are a part of the control for the
IF-THEN-ELSEIF-ELSE-ENDIF structure can span several lines. The parts
that should stand alone on a single line are:

IF relational-expression THEN
ELSEIF relational-expression THEN
ELSE

ENDIF

Assignment statements within the blocks must still be on a single line,

however.

Comment lines

Any line with an asterisk in column one will be treated as a comment.
Any line with a "C" in column one will be treated as a comment, unless
the "C" (or variable name beginning with "C") is followed by an "=", as
in an assignment statement. Blank lines signify the end of user input

and cannot, therefore, be used as comments.

APPENDIX C

FSA DIAGRAM

The Finite State Automaton (FSA) shown in Figure Cl controls the
lexical analysis portion of this work and has twelve states. State
zero (0) is a final state from which LEX returns the user input token to
PARSER. The FSA recognizes arithmetic operators, relational operators,
variables, integer constants and real constants, which may be in decimal
or exponential form. Two of the final states indicate input character
sequence errors. Other errors may occur but are not detected until the

return to PARSER.

From the initial state one (1), the FSA changes states by scanning
one character of the user input and moving along a directed arrow to the
next state. Next to each arrow leaving a state are indicators of the
input needed to take that path. The legend below the FSA diagram explains
the notation next to the arrows. Boxes drawn around states are titled

by the input token related to those states.

53

54

.........................

Operators .

0

[

<rem>

.......................

..............................

<rem> 0

.Relational.
.Operators .

A-2

..........................

Error .Integers 0-9

A-Z:

E:

. 0-9:
. l 0 <rem>(11 +:
. b <opr>:

0-9

. . <dot>:
.Real Exponentials . <blk>:
......................... <rem>:

All
The
All
The
The

+

’

the

The .

The
All

0-9 . <rem>.

letters except E
letter E

numbers

+ character

- character

-, /, =, (,), comma itself or

end-of-line

character

blank character

characters not on another path

Figure Cl1. FSA Diagram

APPENDIX D

SIMPLE PREDECENCE GRAMMAR

The simple predecence grammar governs the parse of the user input
lines. The rules are comprised of grammar tokens called terminals and
nonterminals. Terminals are tokens returned by the lexical analysis to
the parser and consist of operators, reserve words, operands and a special
token "ENDLNE" which indicates a carriage return used to end the input
line. The nonterminals are defined by the grammar rules in terms of
terminals and other nonterminals. These grammar tokens are listed in

Appendix D2.

The rules are written with a nonterminal on the left of an arrow
symbol (-->) and the tokens it replaces in a grammar reduction written
on the right. The grammar rules for the simple precedence grammar used

in this work are listed in Appendix D1.

55

Rule
No.

(A0S It~ N OV) [\V]

O 00 =

10.

11.
12.

13.
14.

15.

16.
17.

18.
19.
20.
21.

22.
23.

APPENDIX D1

GRAMMAR RULES

Grammar Production Rules

FUNCT
CSTMTS
STMTS
STMTS
STMTS
STMTS
SSTMT
SSTMT
SSTMT
CXPR

IFLLSE
IFLLSE

IFTHNN
IFTHNN

IFELSE

IFCOND
IFCOND

IFSTMT
BRELAT
CRELAT
CRELAT

CRELAT
CRELAT

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->
-->

-->
-->

-->

-->
-->

-->

->

-->

-->

<>
-->

CSTMTS END ENDLNE
STMTS

STMTS SSTMT ENDLNE
STMTS SSTMT

SSTMT ENDLNE

SSTMT

VAR = CXPR

IFLLSE CSTMTS ENDIF
IFTHNN CSTMTS ENDIF
BTERM

IFELSE ENDLNE
IFELSE

IFCOND ENDLNE
IFCOND

IFTHNN CSTMTS ELSE

IFSTMT BRELAT THEN
IF BRELAT THEN

IFTHNN CSTMTS ELSEIF
CRELAT

.NOT. CRELAT
RELATE .OR. CRELAT

RELATE .AND. CRELAT
RELATE

Rule
No.

24.
25.
26.
27.
28.
29.
30.

31.

32.
33.
34.
35.
36.

37.

38.
39.
40.

41.

42.
43.

44,
45,
46 .
47.
48 .
49.
50.
51.

52.

Grammar Production Rules

RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE

BTERM

XPR
XPR
XPR
XPR
XPR

CTERM

FACTOR
FACTOR
FACTOR

CEXFAC

EXFAC
EXFAC

STERM
STERM
STERM
STERM
STERM
STERM
STERM
STERM

STERM

>
>
>
>
>
>
>

>
>
>
>
>

>
>
>

>
>

>
>
>
>
>
>
>
>

\"

XPR .EQ.
XPR .NE.
XPR .LT.
XPR .LE.
XPR .GT.
XPR .GE.
(BRELAT)

XPR

XPR + CTERM
XPR - CTERM
+ CTERM

- CTERM
CTERM

FACTOR

FACTOR * CEXFAC
FACTOR / CEXFAC
CEXFAC

EXFAC

EXFAC ** STERM
STERM

VAR

CON

VAR (CXPR)

VAR (CXPR , CXPR

VAR (CXPR , CXPR

VAR (CXPR , CXPR

VAR (CXPR , CXPR

VAR (CXPR , CXPR
CXPR)

(CXPR)

- e e e s~

CXPR
CXPR
CXPR
CXPR

CXPR)
CXPR , CXPR)
CXPR , CXPR

’

APPENDIX D2

GRAMMAR TOKENS

Terminals
Reserve Carriage
Nonterminals Operators Words Operands Return
FUNCT = IF VAR ENDLNE
CSTMTS + THEN CON
STMTS - ELSEIF
SSTMT / ELSE
CXPR * ENDIF
IFLLSE b END
IFTHNN (
IFELSE)
IFCOND ,
IFSTMT .NOT.
BRELAT .OR.
CRELAT .AND.
RELATE .EQ.
BTERM .NE.
XPR .LT.
CTERM .LE.
FACTOR .GT.
CEXFAC .GE.
EXFAC
STERM

58

APPENDIX E

INTERNAL CODE

The internal code operators are listed below in numeric order. Also
included are the simple precedence grammar rule numbers which generate
the instructions during the parse, the operator type and description of
operand usage. There are twenty-four instructions in the set. Each one
is an integer four-tuple of the form OPER OP1 OP2 OP3, in which OPER is
the operator field and OP1, OP2 and OP3 are the operands. All four fields
are integers and the value of OPER is between one and twenty-four. When
the operand is preceded in the description with an "@", it means the
operand is a pointer to the.value to be used; otherwise, the operand is
the value itself. Pointers refer to symbol table locations or, in the

case of operators 0023 and 0024, to the ENPORT I/0 vector, VBL.

Some instructions do not make use of all of the operand fields and

this is noted in the description.

Operator Rule(s)

0001
0002
0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

20
21
22

24

25

26

27

28

29

35

32
33
38
39

42

46-51

17

15,18

60

Instruction Type and Description

Relational. Put .NOT. @OPl in @OP3.
Relational. Put @Pl .OR. @OP2 in @0P3.
Relational. Put @P1 .AND. @OP2 in @QP3.
Compare. Set @OP3 true, if @OP1 .EQ. @OP2
is true, otherwise set @0P3 false.
Compare. Set @OP3 true, if @OP1 .NE. @0OP2
is true, otherwise set @0P3 false.
Compare. Set @OP3 true, if @Pl1 .LT. @0OP2
is true, otherwise set @0P3 false.
Compare. Set @OP3 true, if @OP1 .LE. @OP2
is true, otherwise set @0P3 false.
Compare. Set @OP3 true, if @OP1 .GT. e0OP2
is true, otherwise set @0P3 false.
Compare. Set @OP3 true, if @OP1 .GE. @OP2
is true, otherwise set @0OP3 false.
Numeric. Put the negative of @OPl in
@0P3. OP2 is not used.

Numeric. Put @Pl + @OP2 in @OP3.
Numeric. Put @OPl - @OP2 in @OP3.
Numeric. Put @Pl * @OP2 in @0OP3.
Numeric. Put @OPl / @P2 in @OP3.
Numeric. Put @OPl1 ** @0P2 in @OP3.
Assignment. Put @OP1 in @OP3. OP2 is

not used.

Function. Call function OP1 with 0OP2

arguments and put the result in @OP3.
The arguments are in data instructions
following this instruction.

Branch to location
OP2 is not used.

Branch-on-Condition.
0oP3 if @0Pl is false.
Branch. Branch to location OP1. O0P2
and OP3 are not used.

Operator

0022

0023

0024

Rule(s)

46-51

8,9,
15,18

46

61

Instruction Type and Description

Return. End interpreter and return to
ENPORT. No operands are used.

Data. Non-executable instruction to hold
an argument in @Pl for a function call.
0OP2 and OP3 are not used.

Label. Marks the destination for a
branch instruction. OPl1 is the label
number. OP2 and OP3 are not used.

Read-ENPORT. Put @OP1 in @OP3 of ENPORT
1/0 vector. OP2 is not used.

Write-ENPORT. Get @0P1 from the ENPORT
I/0 vector and put it in @OP3. OP2 is
not used.

APPENDIX F

SUBPROGRAM CALLING TREE

CHGFCN (ENPORT)

DEFINE?
ARCHIV?
GOON!
LSTDIR*
DEBUG?
GETIN!
GOON!
EDTFCN?
DLLINE?
GETIN!
PROMPT!
YORN!
EXTPTR
GOON!
INLINE?
GETIN!
GETWD!
PROMPT!
MENPAG!
RHFILE!
RPLINE?
GETLIN!
OUTBUF !
SAVFCN?
GOON!
NEWFCT*
EXITCK?
SHOWEQ*
VBLNAM!
FLAG
GOON!
LDCHK
LDFCT?
ULDEXT
FLAG
LDCHK
LSTDIR?
GOON!
MENPAG!

62

63

LSTSRC
GOON'!
DIRCHK?
LSTDIR4
MENPAG!
OPNECT
OUTBUF!
OUTBUF!
MENPAG!
MENSET!
NEWFCT?
ANFANG
INTGER
PUSH
FLAG
PUTSYM
FLAG
CMTCHK
FLAG
GOON!
MENPAG!
NEXT?
FLAG
STOPIT?
PARSER?
ERRTXT
EXPAND
WRTSTR!?
FLAG
INTGER
LEX?
CVTINT
CVTREL
PUTINT
FLAG
PUTREL
FLAG
PUTSYM
FLAG
TRANSIT
VARCVT
VBLIX!
PREC
CODE?
FLAG
PUSH
FLAG

& W N -

64

REDUCE?
CODEGN?
DISPLY
FLAG
INTGER
NEXT?
FLAG
STOPIT?
FLAG
STOPIT?
STKCHK
STOPIT?
OPTCOD
FLAG
PROMPT?
PRTCOD
YORN!
PRTSYM
OUTBUF!
PRGFCT
BLNKLN!
DIRCHK*
OPNECT*
OUTBUF!
PROMPT!
YORN!
RESTOR?
DIRCHK*
GOON?
OPNFCT?
PROCED!?
RHFILE!
SHOWEQ
EXTPTR
VBLNAM!
WRTSTR!

ENPORT routine; no sub-tree given

Calls ENPORT routines BLNKLN and WRTSTR

Calls ENPORT routines BLNKLN, GETWD, PROMPT, WRTSTR and YORN
Sub-tree given elsewhere in this Appendix

APPENDIX G

SUBPROGRAM LIST

ANFANG
ARCHIV
CLREXT
CMTCHK
CODE
CODEGN
CVTINT
CVTREL
DEBUG
DEFINE
DIRCHK
DISPLY
EDTFCN
ELLINE
ERRTXT
EXITCK
EXPAND
EXTPTR
FAILRD
FLAG
INLINE
INTERP
INTGER
LDCHK
LDFCT
LEX
LSTDIR
LSTSRC
NEWECT
NEXT
OPNFCT
OPTCOD
PARSER
PREC
PRGFCT
PRTCOD
PRTSYM
PUSH
PUTINT
PUTREL

(DEFINE.
(DEFINE.
(OLDECT.
(DEFINE.
(PARSER.
(REDUCE .

F77)
F77)
F77)
F77)
F77)
F77)

(LEXIC.F77)
(LEXIC.F77)

(DEBUGT.
(DEFINE.
(OLDFCT.
(REDUCE .
(EDTECN.
(EDTFCN.
(PARSER.
(DEFINE.
(PARSER.
(OLDFCT.
(REDUCE .
(DEBUGT .
(EDTECN.
(INTERP.
(REDUCE .
(DEBUGT .
(OLDECT.

F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)

(LEXIC.F77)

(OLDFCT.
(OLDFCT.
(DEFINE.
(REDUCE .
(OLDECT.
(DEFINE.
F77)

(PARSER

(PARSER.
(OLDFCT.
(DEBUGT .
(DEBUGT .
(PARSER.

F77)
F77)
F77)
F77)
F77)
F77)

F77)
F77)
F77)
F77)
F77)

(LEXIC.F77)
(LEXIC.F77)

65

PUTSYM
READEX
REDUCE
RESTOR
RPLINE
SAVFCN
SHOWEQ
STKCHK
STOPIT
TRANSIT
ULDEXT
VARCVT

66

(LEXIC.F77)

(OLDECT.
(REDUCE .
(OLDFCT.
(EDTECN.
(EDTECN.
(DEFINE.
(DEBUGT.
(PARSER.

F77)
F77)
F77)
F77)
F77)
F77)
F77)
F77)

(LEXIC.F77)

(OLDFCT.

F77)

(LEXIC.F77)

APPENDIX H

SOURCE CODE

There are nine files containing FORTRAN subprogram source code with
extensive comments. In addition, there are seven files containing COMMON
blocks which are referenced with INCLUDE statements in the source code
files. The file contents are briefly described below. The source code

itself has not been included here because it extends over 140 pages.

Subprogram files:

BLOCK DATA routines to initialize data structures
within the project.

BLOCKS .F77

DEBUGT.F77 - Subprograms supporting the project trace feature
used for debugging and development.

DEFINE.F77 - External function processor menu and subprograms
to create and archive a function definition.

EDTFCN.F77 - Menu and subprograms to support external function edit.

INTERP.F77 - Internal code interpreter called during bond-graph
solution.

LEXIC.F77 - Subprograms supporting the lexical analysis of
user input lines.

OLDFCT.F77 - Utilities to maintain the external function load area
used by the interpreter and the directory of archived
function definitions.

PARSER.F77 - Subprograms that implement the simple precedence
parsing algorithm.

REDUCE.F77 - Implements the grammar rule reductions and
generates internal code for the interpreter.

67

COMMON Files:

EXEDBK.COM
GLOBAL .COM
INTDBK.COM
LEXDEF.COM

PARSER.COM

68

Data structures for external function editing.
General data structures used by many subprograms.
Load area structures used by the interpreter.
Data structures used during lexical analysis.

Data structures to support parsing.

