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ABSTRACT

TRACKING SINGLE-UNITS IN CHRONIC NEURAL RECORDINGS FOR BRAIN
MACHINE INTERFACE APPLICATIONS

By

Ahmed Ibrahim Eleryan

Ensemble recording of multiple single-unit activity has been used to study the mecha-

nisms of neural population coding over prolonged periods of time, and to perform reliable

neural decoding in neuroprosthetic motor control applications. However, there are still many

challenges towards achieving reliable stable single-units recordings. One primary challenge

is the variability in spike waveform features and firing characteristics of single units recorded

using chronically implanted microelectrodes, making it challenging to ascertain the identity

of the recorded neurons across days. In this study, I present a fast and efficient algorithm

that tracks multiple single-units recorded in non-human primates performing brain control

of a robotic limb, based on features extracted from units’ average waveforms and interspike

intervals histograms. The algorithm requires a relatively short recording duration to perform

the analysis and can be applied at the start of each recording session without requiring the

subject to be engaged in a behavioral task. The algorithm achieves a classification accuracy

of up to 90% compared to manual tracking. I also explore using the algorithm to develop an

automated technique for unit selection to perform reliable decoding of movement parameters

from neural activity.
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Chapter 1

Introduction

1.1 Background

Extracellular recording is the observation of the membrane potential of an ensemble of neu-

rons using a voltage sensing device. Different types of signals that can be extracted from

extracellular recording are described in [36]. Invasive methods have higher time and space

resolutions than non-invasive methods. In this study, we are primarily interested in action

potentials. An action potential (AP), or a spike, is the main communication method between

neurons and it is a short event (< 1ms) where the neuron’s membrane potential rises and

falls due to the inflow and outflow of different types of ions. These signals can be recorded

invasively using a single electrode or an array of electrodes.

Figure 1.1 shows the neural trace recorded on an electrode. The signal is band-filtered

using a Butterworth filter with frequency range 300-5000 Hz in order to extract spikes [36].

Detection of spikes occurs when the filtered signal crosses a user-defined threshold (typically

equals to three times the root mean square of the noise [52]) and snippets of the signal

surrounding the spikes are extracted which we call “spike waveforms”. Spike waveforms are

time series (since they are subsets of the recorded signal) and they are aligned using one of

two sample points: the threshold-crossing point or the waveform minimum peak.

The signal recorded in extracellular recordings is the aggregate contribution of the mem-
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Figure 1.1: Figure a shows a sample neural trace recorded on an electrode. Figure b displays
the APs detected in the trace (surrounded by boxes). The APs are obtained after filtering
the raw data with Butterworth filter with frequency range 300-5000 Hz. The figure is taken
from [36]. For interpretation of the references to color in this and all other figures, the reader
is referred to the electronic version of this thesis.
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brane potential of all the neurons in the vicinity of the electrode (i.e. the spikes detected on

one electrode might belong to more than one neuron). To be able to understand the brain

encoding mechanisms and the response of individual neurons to different stimuli, we need to

distinguish between the events of different neurons. Therefore, a spike sorting algorithm is

needed to sort out the input spike waveforms into different clusters where each represents a

single-unit (neuron) (Figure 1.2). There are many algorithms to perform spike sorting such

as: using wavelets, principal components analysis, and k-means.

The spike waveforms are characteristic for each single-unit and their shape depends on the

type of neuron and its location relative to the recording electrode [7]. The spike waveforms

from a single-unit form a stochastic process, (denote it as W), consisting of a number of

random variables equals to the number of samples in each waveform snippet.

W = [W(1) . . .W(m)]T (1.1)

where m is the number of random variables in the waveforms stochastic process (= number

of samples in the waveform snippets).

Each random variable reflects the variability at a time instance (i.e. sample) along the

spike waveform and it can be modelled as [36]:

W(t) = S(t) + n(t) (1.2)

where t ∈ [1,m] is the random variable index (or time instance), W(t) ∈ R is the recorded

signal, S(t) ∈ R is the real membrane potential, and n(t) is the noise resulting from other

neurons. n(t) can be assumed to be colored and Gaussian distributed with zero mean and
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Figure 1.2: A spike-sorted channel with two single-units.
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coveriance Σ (i.e. n N (0,Σ)) [36]. Although the Gaussian assumption may not be realistic,

it is reasonable for sufficiently large observation intervals. Each recorded waveform belonging

to a single-unit is a realization of the stochastic process forming its waveforms:

Wi = [Wi(1) . . .Wi(m)]T (1.3)

The average waveform for a single-unit with l recorded waveforms (i.e. realizations) is:

W̄ =

 l∑
i=1

Wi(1)/l · · ·
l∑

i=1

Wi(m)/l

T

(1.4)

Figure 1.3 displays an example of a single-unit waveforms stochastic process. The figure

shows different realizations of the process and their average. The number of random variables

in this process is 48. The waveforms were aligned based on the point of threshold crossing.

A spike train is a sequence of zeros and ones at millisecond precision. A “one” means

the occurrence of a spike at that time instance, and a zero means the absence of a spike.

Another single-unit characteristic that can be inferred from its spike train is the “interspike

interval histogram (ISIH)”, which is a popular feature to characterize the firing pattern of a

neuron. An ISIH is a plot of the distribution of the times between a neuron’s spiking events.

The standard ISIH fits an exponential distribution reflecting the underlying homogenuous

poisson process that governs the firing of the neuron [10]. Each neuron has a refractory

period after each spike where it is hard (but not impossible) for it to fire another spike.

In the presence of a stimulus in the receptive field of a neuron, the firing characteristics of

the neuron become time-varying and they can be modelled by an inhomogenuous poisson

process. During that period, the shape of the neuron’s ISIH changes to reflect the changes
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of sample in each waveform snippet (in this case each waveform is made up of 48 samples).
Each waveform is a realization of this stochastic process.

6



in the surrounding environment [40]. The ISIH can also be used to show whether the neuron

phase-locks to a periodic input.

Next, I show how a unit’s ISIH is computed. Let n be the number of desired bin in the

histogram, ST be the set of the unit’s time stamps. Then the time interval between any two

consecutive spikes is:

∆ti = STi+1 − STi (1.5)

where i ∈ [1, ∥ST∥ − 1] is the index of the spike.

Let B be the set of bin boundaries in the ISIH such that:

B0 = 0 (1.6)

Bi = Bi−1 + step, ∀i ∈ [1, n] (1.7)

where the bins step is defined as:

step =
max(∆t)−min(∆t)

n
(1.8)

Finally, the value of the ith ISIH bin is

H[i] = {∆ti : ∆ti ≥ Bi,∆ti < Bi+1}, ∀i ∈ [1, n− 1] (1.9)

with the only exception:

H[n] = {∆tn : ∆tn ≥ Bn} (1.10)

Figure 1.4 shows the spike train of a single-unit and the ISIH inferred from it.
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Figure 1.4: The spike train for a single-unit is shown in Figure a (top) and the ISIH inferred
from it is shown in Figure b (bottom).
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1.2 Challenges Facing Brain Machine Interface Sys-

tems

While chronically implanted multi-electrode silicon arrays have been very popular in record-

ing neural signals, these recordings, however, frequently exhibit variability in spike waveform

shapes and firing characteristics over days and months, making it hard to assess whether

recordings on consecutive days are made from the same neurons [9, 31]. This variability

potentially results from micro-movements of neurons and electrodes, and the brain tissue

reaction to the abiotic interface (electrodes), or from functional plasticity [15, 16, 37]. This

variability presents a major challenge to neural decoding - the process of translating the

firing pattern of a fixed subset of the recorded neurons into control signals to maintain a

fixed mapping between the neural input space and the kinematic task space. Most of the

current decoding techniques necessitate the calibration of the decoder at the start of each

session where signals are recorded while the subject observes the task being performed and

a new decoder is trained using those signals. This process is a major limitation towards the

practical use of Brain Machine Interface (BMI) systems because it requires an operator to

perform this operation.

For subjects (non-human primates) to routinely use decoders without the need for fre-

quent calibration, the mapping from the neural input space to the kinematic task space

needs to be fixed, and that requires the accurate identification of neurons to use at the start

of each recording session, preferably when the subject is not engaged in any behavioral task.

Using the same set of neurons during each session would ensure the fixation of this mapping.

Hence, there is a need for a fast and efficient single-unit tracking algorithm that analyzes

neural data recorded over a short duration of time and that uses only features extracted
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from the units’ waveforms (as opposed to their stimulus-driven firing characteristics) for

the decoder’s routine calibration. This can pave the way for fully automated tracking and

thereby eliminating the need for human supervision all-together.

1.3 Related Work

Previous work on assessing the stability of these signals has focused on qualitative measures

to track units based primarily on visual inspection [6, 8, 15, 29, 34, 41]. Few studies have

attempted to develop automated solutions to the unit tracking problem. Jackson et al. [23]

tracked units using the peak of the normalized cross-correlation between average waveforms.

They reported that 80% of the stable units had correlation values of > 0.95 across days.

In [45], Suner et al. approach the problem from a signal reliability perspective. They

compare the signals recorded on the same channel across days by comparing the centers of

clusters in the principal components space and the Kolmogorov-Smirnov statistic between

interspike intervals histograms of the formed clusters.

Movable tetrodes were used in [46]. The authors determined a so-called “null distribu-

tion” of pairwise distances by comparing signals before and after adjusting the depths of the

tetrodes. The “null distribution” can then be used to train a classifier to track the stability

of single-units. Their method is unapplicable in the case of a fixed array.

Dickey et al. [11] trained a classifier on features extracted from both the unit’s average

waveform and interspike interval histogram (ISIH). The authors argued that using both

the average waveforms and ISIHs gave a better accuracy. However, they also stated that

subjects were overtrained on the behavioral task which minimized the variability of the

units’ ISIHs across days. Furthermore, the method the authors used to match ISIHs is

10



Figure 1.5: Components of a typical motion-restoration BMI system: a recording device, a
signal processing module to extract information from raw signals, a spike sorter to identify
single-units, a decoder to map the neuronal input signal to movement parameters, and an
actuator to perform the action.

computationally intensive and time consuming, which makes it unsuitable for real time

Brain Machine Interface applications. The authors reported that 57% of the units were

stable through 7 days and 39% of the units were stable through 15 days. They concluded

that if units are stable beyond the 7 days time marker, they are more likely to remain stable

in subsequent recording sessions.

Fraser et al. [14] used features extracted from functional relations between units, such as

pairwise cross correlograms, to track units across days. However, this method requires the

subject to be engaged in a behavioral task and may be susceptible to plasticity-mediated

changes in functional connectivity between units.

1.4 BMI Systems

A BMI system divides its operation among several sequential modules (Figure 1.5): a record-

ing device, a signal processing module, a spike sorting module, a decoding module and an

actuator [18,35].
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The neuronal signals recorded from the brain undergo some signal processing such as:

band-pass filtering to extract spiking events, denoising of the extracted spikes (typically by

thresholding), and artifact rejection. The processed signal is then spike sorted to produce

spike trains of individual neurons. Spike trains are all-or-none representation of the spiking

events of a neuron. Spike trains are then input to the decoding module. A decoder is what

translates the neuronal activity into motion. It extracts information from the spike trains

and outputs the equivalent movement parameters to perform the desired motion.

In this thesis, I present a fast and accurate single-unit tracking algorithm that uses fea-

tures extracted from single-units’ waveform shapes and firing characteristics. The algorithm

achieves an accuracy of up to 90% when compared to manual tracking. I describe the de-

tails of the algorithm in Chapter 2. I also present one application of single-units tracking in

Chapter 3: unit selection for BMI decoding.
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Chapter 2

Single-Unit Tracking

In this chapter, I present an algorithm to track neurons recorded using a chronically im-

planted silicon array. Section 2.1 gives an overview of the algorithm. Sections 2.2 and 2.3

list some features that can be extracted from single-units. In Section 2.4, I describe four

types of classifiers that can be used in the tracking algorithm, and in Section 2.5 I describe

the algorithm in more details. Finally, I show the results I obtained by applying the tracking

algorithm in Section 2.6 .

2.1 Algorithm Overview

Figure 2.1 illustrates the algorithm flow diagram. The algorithm builds profiles of single-

units from instances of unit recordings across days. The inputs to the tracking module are

the spike sorted units recorded on a given day, and the output is a set of updated profiles of

single-units for that day. The tracking module makes the choice of either assigning a unit

to an existing profile or creating a new profile for that unit on any given day. The distance

vectors used in this decision are computed using different characteristics of a single-unit: the

waveform shape, and firing patterns.
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Figure 2.1: Tracking Algorithm: The tracking module takes in the spike sorted units and the
profiles stored on the channel and calculates the distance between units and stored profiles.
It then assigns each unit to either an existing profile or a new profile based on the distance
computed. The output is the updated set of profiles for that channel.

2.2 Single-Unit Waveform Characteristics

A single-unit’s average waveform (defined in Equation 1.4) can be used to distinguish it

from the surrounding units. Waveforms features, such as amplitude, temporal dynamics,

time between minimum and maximum peak and peaks shapes, can all be used to track

single-units across days. However, due to small movements in the recording electrode’s

location relative to the single-unit, the shape of the recorded waveform differs across days.

Therefore, we need measures to compute how similar two waveforms recorded on the same

channel on two different days, and based on such measures, we could decide whether the two

waveforms are recorded from the same single-unit.

In this study, I chose four distance measures to quantify the difference between two

recorded average waveforms W̄x and W̄y. Table 2.1 lists the chosen measures and the

waveform features each of them uses to compute the distance.
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Table 2.1: Waveform-derived distance measures

Distance Measure Used Feature
Correlation Waveform temporal dynamics
Normalized Peak-to-Peak Amplitude
Height Difference
Normalized Peak-to-Peak Transition time between
Time Difference minimum and maximum peaks
Peak Matching Peaks shape

2.2.1 Correlation

The Correlation (PC ) is used to compare the temporal dynamics of the waveforms during

an action potential. The PC is calculated by:

PC(W̄x, W̄y) =

∑m
i=1 (W̄x(i)− ¯̄Wx)(W̄y(i)− ¯̄Wy)√∑m

i=1 (W̄x(i)− ¯̄Wx)2
√∑m

i=1 (W̄y(i)− ¯̄Wy)2
(2.1)

where m is the number of samples in each of the two average waveforms, ¯̄W is the mean of

an average waveform.

2.2.2 Normalized Peak-to-Peak Height Difference

The Normalized Peak-to-Peak Height Difference (PH ) is defined as:

PH(W̄x, W̄y) =

∣∣∣∣∣
(
max(W̄y)−min(W̄y)

)
−
(
max(W̄x)−min(W̄x)

)(
max(W̄x)−min(W̄x)

) ∣∣∣∣∣ (2.2)

where max and min are the maximum and minimum functions.

This metric quantifies the difference in the amplitude of the two waveforms and normalizes

it to the amplitude of one of them. Therefore, a larger difference between two high amplitude
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units would result in a smaller PH distance than if the difference was between two low

amplitude units. This is desirable to reflect that a large difference between two low amplitude

units indicate a higher variability than in the case of two high amplitude units.

2.2.3 Normalized Peak-to-Peak Time Difference

The Normalized Peak-to-Peak Time Difference (PT ) is defined as:

PT (W̄x, W̄y) =

∣∣∣∣∣
(
t[max(W̄y)]− t[min(W̄y)]

)
−
(
t[max(W̄x)]− t[min(W̄x)]

)(
t[max(W̄x)]− t[min(W̄x)]

) ∣∣∣∣∣ (2.3)

where t[.] is a function that retrieves the sample number (i.e. time instance) of the passed

argument.

This metric quantifies the change in the transition time between the minimum and max-

imum peaks. Combined with the PH, it essentially compares the slopes of the lines joining

the minimum and maximum peaks of the two waveforms.

2.2.4 Peak Matching

The Peak Matching (PM ) is a heuristic asymmetric measure developed by Strelkov [44]

that measures the difference in the shapes of peaks of two signals. The algorithm used to

calculate the distance finds the peaks in both signals and assigns weights to each one of

them. It then finds heuristic pairwise closeness factors between peaks and finally calculates

the total distance as the sum of peak weights multiplied by the computed closeness factors.

Refer to Appendix A for a full description of this metric.
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2.3 Single-Unit Firing Characteristics

Different single-units have different firing patterns and these patterns can be used to dis-

tinguish units from each other [7, 30]. Several features can be extracted from a unit’s firing

patterns such as:

• Average firing rate (λ)

• Coefficient of variation (CoV)

• Interspike interval histogram (ISIH)

I chose to use the ISIH since it can provide more information about firing characteristics of

a neuron and how it responds to external stimuli.

Distance measures that are used to compare two probability distributions can be used

to compare two normalized ISIHs Hx and Hy. I chose four of such distance measures in

this study, where each quantifies the differences between two probability distributions from

a different prespective. Table 2.2 lists the chosen measures and the criterion each of them

uses to compute the distance.

Table 2.2: ISIH-derived distance measures

Distance Measure Distance Criterion
KL-Divergence Total information divergence
Bhattacharyya Distance Amount of overlap
KS-Statistic Maximum divergence
Earth Mover’s Distance Cost of turning one dist. to the other
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2.3.1 KullbackLeibler Divergence

The KullbackLeibler Divergence (KLD) is a non-symmetric measure that measures how

divergent two statistical populations are [27].

The KLD is calculated as:

D(Hx||Hy) =
l∑

i=1

ln

(
Hx[i]

Hy[i]

)
Hx[i] (2.4)

where l is the number of bins in each ISIH, H[i] is the value of the ith bin in the histogram

H.

To compute a symmetric measure out of the KLD, we simply compute the following:

D(Hx,Hy) =
D(Hx||Hy) +D(Hy||Hx)

2
(2.5)

2.3.2 Bhattacharyya Distance

The Bhattacharyya Distance (BD) is closely related to the Bhattacharyya coefficient (BC )

which is a measure of the amount of overlap between two statistical populations [3]. It is

calculated using:

BD(Hx,Hy) = − lnBC(Hx,Hy) (2.6)

BC(Hx,Hy) =

 l∑
i=1

√
Hx[i]Hy[i]

 (2.7)

where l is the number of bins in each ISIH, H[i] is the value of the ith bin in the histogram

H.
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2.3.3 KolmogorovSmirnov Statistic

The KolmogorovSmirnov Statistic (KS ) quantifies the distance between two empirical dis-

tributions [19] and it is calculated as:

KS(x, y) =
l

sup
i=1

∣∣Fx[i]− Fy[i]
∣∣ (2.8)

where Fx and Fy are the cumulative distribution function derived from Hx and Hy, l is the

number of bins in each ISIH, and F[i] is the value of the cumulative distribution at the ith

bin.

2.3.4 Earth Mover’s Distance

The Earth Mover’s Distance (EMD) is a measure of the distance between two probability

distributions. The EMD is the minimum cost of turning one distribution into the other

by moving distribution mass around. For 1-D distributions, the EMD is computed by the

following algorithm:

EMD0 = 0 (2.9)

EMDi+1 = (Hx[i] + EMDi)− Hy[i] (2.10)

EMD(Hx,Hy) =
l∑

i=1

|EMDi| (2.11)

where l is the number of bins in each ISIH, H[i] is the value of the ith bin in the histogram.

Each of the previous distance measures computes the distance between two probability

distributions from different perspectives. While the KLD calculates the total divergence
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between two distributions, the KS approximates that divergence by just including the max-

imum difference at any point in the cumulative distributions. Both the KLD and the KS

impose different constraints when comparing two distributions. The former measure over-

looks individual points and is only concerned by the total divergence across all the points,

which is opposite to what the latter measure does. The BD quantifies the amount of overlap

between the two distributions to decide how similar they are, and the EMD computes the

minimum cost of converting one distribution to the other.

2.4 Tracking Classifier

Given a vector of distances between the features extracted from two single-units recorded on

the same channel on two different days, the tracking classifier makes the decision of whether

these two single-units represent different instances of the same single-unit.

For training a waveform-based classifiers, true positives, which correspond to pairs of

matched waveforms, were obtained by two experts who manually tracked the units. True

negatives, which correspond to pairs of unmatched waveforms are obtained by comparing

units recorded simultaneously on the same channel on any given day. Figure 2.2 illustrates

this process. The same process can be applied for training classifiers that use other single-

units characteristics.

Several types of classifiers were compared in this study. The following few sections give

a brief summary of the classifers I compared. The input to all classifier is a vector, x, of the

distances between the features extracted from two units recorded on the same channel but

on different days. The length, n, of the distance vector is the number of features used in

the comparison. The classifiers’ decision is binary, either to assign x to class 0 (c0), which
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Figure 2.2: Process of training a waveform-based classifier. Using spike sorted units recorded
across several days, experts track the units manually and produce pairs of matching average
waveforms (true positives). Using the same set of units, pairs of non-matching average
waveforms are generated by comparing spike sorted units recorded simultaneously on the
same channel.
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corresponds to non-matching units, or to class 1 (c1), which corresponds to matching units.

2.4.1 Support Machine Vectors (SVM)

The SVM is a supervised binary classification method that finds a high-dimensional decision

plane where the “margin” is maximized. The margin is defined as the smallest distance

between the decision plane and any of the data points. The SVM model is in the form [33]:

y(x) = wTϕ(x) + b (2.12)

where, w defines the decision plane, x is the input distance vector, ϕ(x) is projection of

the input into the feature space (basis function), and b is a offset term to account for any

biasedness in the training data.

Although the SVM model in Equation 2.12 is linear, non-linearity can be added to the

model by the use of a non-linear basis function such a Gaussian radial basis function.

2.4.2 Relevance Machine Vectors (RVM)

The RVM is a Bayesian sparse kernel technique for classification and it shares many of the

characteristics of the SVM. However, unlike the SVM, which gives the classification decision,

the RVM provides the classification probability. In other words, the RVM combines the

advantages of the sparse SVM and the probabilistic Bayesian methods. The model then

becomes of the form [33]:

y(x) = σ
(
wTϕ(x) + b

)
(2.13)

where, σ(.) is the sigmoid function.
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2.4.3 Maximum A Posteriori Classification (MAP)

The MAP is a probablistic classifier and it is used to estimate how likely a new point belongs

to a distribution based on empirical data. In other words, the MAP finds the most probable

class given the available training data.

Given the distance vector between two units, x, the MAP classification would be [33]:

p(x1, . . . , xn|c1)P (c1)
c1
≷
c0

p(x1, . . . , xn|c0)P (c0) (2.14)

where, p(x1, . . . , xn, |c0) and p(x1, . . . , xn, |c1) are the likelihood probabilities that x belongs

to c0 and c1 respectively, and P (c0) and P (c1) are the prior probabilities of c0 and c1

respectively.

The likelihood and prior probability distributions are constructed using the training data,

where the true positives are instances of c1 and the true negatives are instances of c0.

2.4.4 Naive Bayesian Classification (NB)

The NB is a simple probabilistic classifier that is based on Bayes theorem, but unlike the

MAP, the NB assumes independence between features. Therefore, instead of using a joint

conditional probability distribution as in the case of MAP, the NB uses multiple individual

conditional probability distributions to infer its decision. Despite its unrealistic features

independence assumption, the NB is surprisingly effective in practice [12].

For a distance vector between two units, x, the NB decision is [4]:

n∏
i=1

p(xi|c1)
c1
≷
c0

n∏
i=1

p(xi|c0) (2.15)
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where p(xi|c0) and p(xi|c1) are the conditional probability distributions that the ith feature

of x belongs to c0 and c1 respectively.

As in the MAP, the conditional probability distributions are constructed using the train-

ing data, where the true positives are instances of c1 and the true negatives are instances of

c0.

2.5 Tracking Algorithm

2.5.1 Pre-processing

The average waveforms were smoothed using a Gaussian kernel (σ = 2) to get rid of the high

frequency components (which results from the short amount of recording tie I used).

2.5.2 Algorithm

As stated above, the tracking algorithm builds a database of profiles of recorded single-

units. Each profile stores instances of the corresponding single-unit recorded across days.

On a given day x, units on a channel c are spike sorted and passed to the feature extraction

module. Pairwise distance vectors are computed between the stored profiles on c and the

input spike sorted units. A distance vector is the concatenation of the distance measures

computed over an input unit and an instance stored in a profile. A distance matrix is built

using the pairwise distance vectors between the stored profiles and the spike sorted units.

The distance matrix is then input to the tracking classifier to build a membership matrix,

where each cell indicates whether an input single unit is another instance of a stored profile:

Denote the set of profiles stored on channel c as Pc, the set of spike sorted input units
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on channel c as Uc, the distance between the ith profile and the jth unit as Dist(Pc,i, Uc,j),

and the membership of the jth unit to the ith profile as Mem(Pc,i, Uc,j). Assume there are

m stored profiles on c, and n spike sorted units on day x. The distance matrix is formed as:

DistMatc(P,U) =



Dist(Pc,1, Uc,1) Dist(Pc,1, Uc,2) . . . Dist(Pc,1, Uc,n)

Dist(Pc,2, Uc,1) Dist(Pc,2, Uc,2) . . . Dist(Pc,2, Uc,n)

...
...

. . .
...

Dist(Pc,m, Uc,1) Dist(Pc,m, Uc,2) . . . Dist(Pc,m, Uc,n)


And the membership matrix is:

MemMatc(P,U) =



Mem(Pc,1, Uc,1) Mem(Pc,1, Uc,2) . . . Mem(Pc,1, Uc,n)

Mem(Pc,2, Uc,1) Mem(Pc,2, Uc,2) . . . Mem(Pc,2, Uc,n)

...
...

. . .
...

Mem(Pc,m, Uc,1) Mem(Pc,m, Uc,2) . . . Mem(Pc,m, Uc,n)


Finally, the relationship between the distance and membership matrices can be modeled

as:

DistMatc(P,U) ⇒ TrackingClassifier ⇒ MemMatc(P,U) (2.16)

Units are added as instances to the profiles they belong to. If a new unit is identified, a

new profile is initialized and the unit instance is added to it.

A profile is composed of all the recorded instances of the single-unit it represents. When

an input unit is compared to a profile to make the decision of whether the unit is another

instance of the profile, the tracking classifier needs to decide which profile instance to use

in such comparison. In [11], the authors stated that once a unit remains stable (does not
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experience much variability) beyond a threshold (seven days), it is more likely to maintain

its stability. Based on this result, I developed a technique that I call “First Matching

Distance (FMD)”. In this technique the most recent seven instances in a profile are used in

this comparison from newest to oldest. Once the tracking classifier indicates that a profile

instance and the unit are recorded from the same singe-unit (a match), the comparison stops

and this instance is used for distance calculations. Furthermore, two classes of profiles are

defined: active and inactive. Active profiles are those profiles whose single-units have been

recorded on any day within the seven days before. On the other hand, inactive profiles are

those profiles whose units did not appear in the recording on any day during the seven days

before, in which case I consider them “dropped units” and I do not include them in future

comparisons.

2.5.3 Post-processing

The training classifier results in a membership matrix where each cell in this matrix indicates

whether an input unit on a given day can be added to a stored profile or not. In many cases,

because of the similarity of the waveform shapes of different units or misclassifications in

the spike sorting algorithm, the classifier might indicate that the input unit can be added

to more than one profile. However, a unit can be only added to one profile. Therefore, I

developed a backtracking algorithm to find the best assignment of units instances to pro-

files. Backtracking is a standard general algorithm for finding all the possible solutions to

a problem and then selecting one that most satisfies a set of user-defined objectives. The

objectives I specified were as follows:

• Primary objective: Maximize the number of assigned units to already existing stored
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Figure 2.3: Application of a waveform-based classifier. On any given day x, the spike sorted
units of a given channel c are compared against the stored profiles on the same channel c.
Pairwise distance vectors are calculated from features extracted from pairs of waveforms.
The tracking classifier makes the decision of whether to add a unit to an existing profile or
to create a new profile for it.
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profiles.

• Secondary objective: Maximize the total sum of distances to the decision boundary

of the assigned units (since the larger the distance to the boundary, the more certain

the decision of the tracking classifier is).

If two solutions have the same number of units assigned to existing stored profiles, the

one with a larger sum of distances to the decision boundary is selected.

The tracking algorithm, on any given day x, is summarized in Algorithm 1.

Algorithm 1 Tracking algorithm

for each channel c do
Spike sort the signal recorded on c
Input the spike sorted units to the tracking module
Compute distance vectors between each of the input units and the stored profiles asso-
ciated with c
Using the distance vectors computed, build a membership matrix between the input
units and the stored profiles on c using the tracking classifier
Using back-tracking, find the best assignment that maximizes the number of assigned
units to existing profiles
Create new profiles for unassigned units

end for

2.6 Results

2.6.1 Data Acquisition and Behavioral Task

Recordings were obtained using a 100-microelectrode silicon array (Blackrock Microsystems,

Inc., Salt Lake City, UT) chronically implanted in the primary motor cortex (M1) of a Rhesus

Macaque. The implant was performed three months before the recording of the first dataset

used in this study. The surgical and behavioral procedures involved in this study were

approved by the University of Chicago Institutional Animal Care and Use Committee and
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Figure 2.4: Spike sorting on the Cerebus R⃝ Online Sorter. Each single-unit is defined by a
set of “hoops” where any waveform intersecting with all hoops of a given unit is added to
that unit.

conform to the principles outlined in the Guide for the Care and Use of Laboratory Animals.

Spike sorting was done using the Cerebus R⃝ Online Sorter and the sorting templates were

updated on a daily basis. The Hoops method was used to perform the spike sorting where

a set of bars is defined for each single-unit and when a waveform intersects with all the bars

of one set, the waveform is classified as part of the unit corresponding to this set. Figure 2.4

displays a screen shot of the process of defining hoops for single-units.

The subject performed a brain-controlled reach and grasp task. Details of the behavioral

task can be found in [2]. Fifteen datasets, spanning a period of 26 days, were used in training

(7 datasets) and testing (8 datasets) the classifiers. I used only the first 15 minutes of each

dataset.This typically corresponds to the period of updating the spike sorting templates

where the subject is not engaged in any behavioral task.
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2.6.2 Training Features

Figures 2.5 and 2.7 show the distributions of the waveform- and ISIH- based distance mea-

sures when applied on the true positives and true negatives training datasets.

The degree of separability between the distributions provided by each of the features I

selected varied. While the peak matching distance provided the best separability between

matching and non-matching waveforms, the other three waveform-based distance measures

did not provide separation between classes (except in regions where it was very clear that

there is a significant difference in the amplitude or time between peaks). The inclusion of the

latter three features, however, was necessary to account for cases where two waveforms had

very similar peak shapes but with significantly different amplitude or time between peaks or

temporal dynamics, which occurred frequently in our data (see Figure 2.6).

On the other hand, all the ISIH-based distance measures did not provide the degree

of separation between classes provided by the peak matching. However, their inclusion is

nessecary to account for cases where the waveform shapes of two unit instances experience

variability but their firing properties remain similar (see Figure 2.8).

2.6.3 Classifiers Evaluation

The performance of the classifiers was assessed based on two metrics:

1. Classification Accuracy: The percentage of correct classification made on a day-to-day

basis compared to manual tracking. A correct classification happens when a unit on

day x is matched with the correct unit on day x−1 (as compared to manual tracking).

2. Percentage of Correct Profiles: The percentage of profiles that were correctly tracked

across all days of the testing datasets compared to manual tracking. A correct profile
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Figure 2.5: Probability distributions of the training true positives (in blue) and true negatives
(in red) for each of the four wavefrom-based features.
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Figure 2.6: Figure a shows an example of two average waveforms that have very similar peak
shapes but different peak-to-peak height, while Figure b shows an example of two average
waveforms that have very similar peak shapes but different peak-to-peak time.

is the profile that matches a manually tracked profile across all days.

Classifiers implementation was provided by the newFolder liberary [47]. I used a radial

basis function as the kernel for the SVM classifier. I compared the performance of the

classifiers using four different sets of features:

• Set 1: 4 waveform-based features (PC, PH, PT, PM ) and 4 ISIH-based features (KLD,

BD, KS, EMD).

• Set 2: 3 waveform-based features (PH, PT, PM ) and 3 ISIH-based features (KLD,

BD, KS )

• Set 3: 3 ISIH-based features (KLD, BD, KS ).

• Set 4: 3 waveform-based features (PH, PT, PM ).
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Figure 2.7: Probability distributions of the training true positives (in blue) and true negatives
(in red) for each of the four ISIH-based features.
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Figure 2.8: The figure shows an example of two instances of a single-unit on two successive
days where the average waveform experienced some variability and the ISIH remained the
same.
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Performing cross validation was challenging because the order of the datasets had to be

maintained. This is because changes in the characteristics of a single unit might be small

over two successive datasets but much larger across longer duration. We divided the fifteen

datasets (explained in Section 2.6.1) into six partitions. Each partition is divided into five

training datasets and five testing datasets. The first partition contained datasets 1 to 10,

the second partition contained datasets 2 to 11, and so on.

Figure 2.9 shows the classifiers performance under the four feature sets. It is clear

that feature sets 1, 2 and 4 give better performance than feature set 3. This shows that

adding the ISIH-based features can help improve the performance but by themselves they

cannot successfully track single-units. This can be explained by the fact that the subject

are not overtrained and the single-units’ firing characteristics experience variability during

the behavioral task learning phase [21]. Furthermore, I performed t-test to see if any of

the classifiers is better than others. For feature sets 1, 2 and 4 all classifiers performed

similarly. However, for feature set 3, the RVM and SVM classifiers were better than the NB

and MAP classifiers (p > 0.01 - p-value is small because of the small number of samples

(6 samples)). Figure 2.10 displays the average execution time per channel for the classifiers

under different feature sets. The machine used in running the algorithm had an Intel-i7

quad-core processor (3.40GHz) and 16GB of RAM. Execution times were almost the same

for the different classifiers. Feature set 1 has the largest execution time (as we might expected

because of the larger number of features used) and feature set 3 has the smallest one.

Furthermore, I compared the receiver operating characteristic (RoC) curves of the four

classifiers under the four feature sets. For feature set 1, the RVM performed slightly better

than other classifiers. For feature set 2, the NB performed the worst. For feature set 3,

the RVM and SVM were superior to the NB and MAP. Finally, all classifiers performed
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Figure 2.9: Comparison of the classifiers performance using cross validation. Four different
sets of features were used. Cross validation was performed using 6 partitions (each had 5
training datasets and 5 testing datasets). The errorbars indicate the standard deviation
across the 6 partitions. All classifiers performed similarly for feature sets 1, 2 and 4 (con-
firmed by t-test).
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Figure 2.10: Comparison of the classifier performance based on the average execution time
per channel. Cross validation was performed using 6 partitions and 4 feature sets were
defined. The errorbars indicate the standard deviation across the 6 partitions. All classifiers
performed similarly for feature sets 1, 2, and 4 (confirmed by t-test).

similarly under feature set 4. We also plotted the RoC curve of an RVM classifier trainined

by randomly shuffling label of training datasets (we call it Rand). We repeated this process

for 100 times and plotted the average RoC curve which runs along the chance level showing

that my method is unbiased.

Finally, Tables 2.3 and 2.4 show the classifiers’ performance measured by the metrics

above when trained and tested using all 15 datasets. All classifiers performed very well,

however, the RVM was superior to other classifiers in terms of both metrics. We believe that

the reason behind this is that it combines the advantages of SVM and those of a probabilistic

classifier. I decided to use it to perform further analysis.

Figure 2.12 shows the decision boundary of the RVM classifier under the 4 feature sets.

Figure 2.13 displays two of the profiles tracked by the RVM classifier.
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Figure 2.11: RoC curves for different classifiers using 4 different feature sets. The top left
figure is for set 1, the top right figure is for set 2, and so on.
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Figure 2.12: Decision boundaries for the RVM classifier using 4 different feature sets For
visualization, the RVM classifier was trained on the first two principal components of the
training features. The top left figure is for set 1, the top right figure is for set 2, and so on.
The black circles are the basis vectors of the RVM classifier.
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Figure 2.13: Two of the profiles tracked by the RVM classifier across 15 datasets. The
profiles were recorded on channels 4 and 90 respectively.
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Table 2.3: Classifiers’ Performance - Classification Accuracy

Set/Class. RVM SVM NB MAP
Set 1 90.51% 87.44% 87.30% 86.62%
Set 2 89.14% 88.05% 87.91% 88.39%
Set 3 61.16% 61.92% 40.61% 41.36%
Set 4 89.62% 89.41% 89.62% 90.10%

Table 2.4: Classifiers’ Performance - Percentage of Correct Profiles

Set/Class. RVM SVM NB MAP
Set 1 78.34% 73.62% 74.01% 71.65%
Set 2 74.01% 72.83% 74.01% 72.83%
Set 3 20.47% 15.74% 10.23% 9.84%
Set 4 75.98% 77.16% 76.37% 76.77%

One of the goals of this study is to develop a fast and accurate algorithm to track single-

units. A trade-off exists between accuracy and speed and it can be observed clearly when

comparing the performance results for feature sets 1 and 4 (See Tables 2.3, 2.4, and 2.5).

Feature set 1 achieves a higher performance but at the cost of a longer execution time. On

the other hand, feature set 4 has a smaller execution time but at the cost of a lower accuracy.

However, the gain in using feature set 4 is greater than that in the case of using feature set

1, since the drop in accuracy is very small (1% drop) compared to a larger increase in the

average execution time per channel (17% increase). Therefore, I used feature set 4 to perform

any additional analysis.

Table 2.5: Average execution time per channel when the RVM was used to track 15 datasets.

Feature Set 1 2 3 4
Time (sec.) 5.24 4.03 0.62 4.48
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Figure 2.14: Average execution time per channel when feature set 4 and the RVM classifier
were used. The classifier was run on 35 datasets spanning 88 days. Convergence in the
execution time happens on day 34 of the analysis.

Figure 2.14 shows the convergence of the average execution time per channel as the

algorithm is run on more datasets. The convergence happens on day 34 with an average

exection time of 8 seconds per channel. This convergence occurrs because the number of

active profiles stabilizes after some time. Profiles inactive for a long time (> 7 datasets) are

considered droppped and are not included in the tracking.

2.7 Conclusion

In this chapter, I described the details of a single-unit tracking algorithm. I compared

the performance of four different classifiers using four different sets of features that were

extracted from a unit’s average waveforms and firing characteristics. Using all the eight fea-
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tures propsed led to the best performance but at the cost of a longer execution time. I found

that using three waveform-based features achieved the best trade-off between execution time

and accuracy. Using cross validation, the classifiers performed equally. However, when more

training datasets were added, the RVM classifier performed slightly better than other clas-

sifiers. Finally, when the algorithm was run on 35 datasets spanning 88 days, the execution

time converged on day 34 with an average execution time of 8 seconds per channel.
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Chapter 3

Unit Selection Algorithm for

Decoding

A neural decoding is the process of translating the firing pattern of a fixed subset of the

recorded neurons into control signals to actuate an artificial limb. For maximizing success of

this control, it is important to maintain a fixed mapping between the neural input space and

the kinematic task space, which is known as “Memory Motor Consolidation”. To automate

the process of decoder calibration and to fix this mapping, the accurate identication of

neurons to use at the start of each recording session is required, preferably when the subject

(non-human primate) is not engaged in any behavioral task.

However, to apply a fixed decoder that only uses a fixed subset of the recorded units,

one has to make several decisions, among these: which units to use? how to ensure the

stability of these units? what to do when a unit stops showing up on recordings (dropped)?

In this section, I propose a units selection algorithm that addresses these questions in a

systematic way. The algorithms targets the use of a fixed linear decoder [49] following an

operant-conditioning approach [24] where only a finite subset of units (cluster) is used for

decoding a kinematic variable.
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3.1 Unit Selection Criteria

Four criteria for the unit selection algorithm were specified:

1. All units must be stable.

2. Units within a cluster should be functionally connected.

3. Stable units are evenly distributed across clusters.

4. Units recorded on the same channel must belong to the same cluster.

The rationale behind each criterion is explained in the next three sections.

3.2 Tracking Unit Stability

We define a stable single-unit as a unit that was recorded on a daily basis and that maintained

similar properties for at least a certain number of days. In [11], the authors found out that

once a unit maintains its stability beyond a certain number of days, it is more likely to stay

stable. They postulated that this threshold is 7 days. Therefore, using only stable units

in decoding may ensure the reliability of decoding and the minimal inconsistency in the

subject’s experience with the BMI.

I used the algorithm described in Section 2.5 to track units across days. Based on the

results of [11], we defined a variable which we called “Stability Window”, and three categories

of units were defined based on it:

• Stable Units: The units that were recorded and maintained similar properties on

every day throughout the past “Stability Window”.
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Figure 3.1: Classification of single-units. For a stability window of 7 days, stable units are
those units that were identified as similar on a daily basis throughout the stability window.
Partially stable units are those units that were identified throughout more that half the
stability window. Unstable units are all the remaining units.

• Partially Stable Units: The units that were recorded and maintained similar prop-

erties for more than half of the past “Stability Window”.

• Unstable Units: All the remaining units.

Figure 3.1 illustrates the process of classifying the single-units based on their stability.

Furthermore, I modified the tracking algorithm such that the comparison between a

single-unit and a stored profile is performed by comparing the unit against all the profile

instances that occurred within the past “Stability Window” of days. The distance vector

resulting from this comparison is the distance between the unit and the profile instance

closest to it (determined using the distance to the decision boundary). The intuition behind

this modification is that this way I am more tolerant towards a unit that undergoes some

minor instability for a short period of time and then goes back to its stable state. One of the

causes of this short term instability might be the high interference from the electric circuitry

used in recording on one of the days (which was observed on some channels). This tolerance

comes from the fact that now the unit is compared against more than one profile instance. In
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addition, this would increase the accuracy of classification since the closest matching profile

instance is used in the comparison (instead of the first matching profile instance as was done

in Chapter 2). I call this new technique “Maximum Matching Distance (MMD)”.

3.3 Clusters of Functionally Connected Units

Neuronal assemblies cooperate to perform complex behavioral tasks and this determines the

functional connections between neurons. Within an assembly, each neuron assumes a role

depending on its tuning function, which depends on the behavioral task being performed

at the time of recording [13]. It was found that changes in the tuning function of single-

units occur as subjects perform the behavioral task [15]. Correlated neurons are potential

cell assemblies that share common coding [22]. In [1], the authors stated that changes in

functional connectivity between units and the relevance of the behavioral task are necessary

for cortical plasticity to occur. Based on this result, we hypothesized that using already

functionally connected units in decoding can help to speed the cortical plasticity occurring

from learning the behavioral task.

3.3.1 A Multi-Scale Approach

I used the algorithm in Eldawlatly et al. [13] to infer the functional connectivity between

units. The algorithm has a primary parameter and that is the number of time scales in which

the correlation is calculated. The average firing rate is calculated at each time scale using

wavelets. Pairwise correlations are then calculated between units’ spike trains at different

time scales resulting in a set of correlation matrices that are fused into one similarity matrix

using SVD. Algorithm 2 provides a summary of the algorithm and Appendix B provides
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more details on the computations of each step.

Algorithm 2 Functional connectivity algorithm

for j = 1 to J (timescale index) do
for p = 1 to P (neuron index) do

Obtain the wavelet representation s
j
p of each spike train sp

end for
Compute the P × P correlation matrix Σ(j) of the spike trains at timescale j

end for
Form the block diagonal correlation matrixR from the matrices Σ(j) and obtain its spectral
decomposition using SVD
Obtain the pairwise similarity of neurons using the weighted sum of the first few dominant
modes of R

The result of this algorithm is an augmented correlation matrix (augmented because it is

the result of fusing the correlation matrices across different time scales), where each cell in

the matrix indicates the strength of functional connectivity between the two units (i.e. the

augmented correlation between two units is an indicator of their functional connectivity).

Note that from now on when I use the term “correlation”, I mean the “augmented

correlation” between the units. An additional clustering step is required to divide the units

into different partitions, each controlling a degree of freedom. I used the same clustering

algorithm used in [13], and that is the Spectral Clustering [32].

3.4 Balancing Units

The clusters produced from the previous step are generally unbalanced in terms of the number

of units. This is undesirable because one cluster might contain a large number of units while

another cluster contains a much smaller number of units. In the event of a unit drop from

the smaller cluster, the subject may be unable to control the degree of freedom associated

with that cluster. I developed an algorithm to balance the number of units across clusters
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while maintaining the functional connectivity between units within a cluster. The aim of

this algorithm is to provide the subject with the same degree of control for each degree of

freedom by assigning equal number of units across clusters. This way we also divide the

labor equally over units so that the control would not deteriorate in case of a unit drop.

3.4.1 Measuring the functional connectivity between units

Swapping units between clusters during the balancing process requires quantifying the con-

nectivity of each unit to the rest of the cluster units. The Interquartile Mean (IQM) of

the correlations between a unit and the rest of the cluster units can be used for this purpose.

The IQM can be calculated by throwing away the first and last quartiles of the correlations

and averaging the rest [42]. Assume that ρ is the sorted array of the correlations between a

unit and the rest of cluster units and it is of length n, the IQM is:

IQM(ρ) =
2

n

3n
4∑

i=n
4+1

ρi (3.1)

The IQM combines the benefits of both the average and the median. It handles the effect

of the outliers by computing the first and third quartiles and at the same time the result of

the metric does not have to be a value in the series.

3.4.2 Balancing Algorithm

The balancing algorithm is summarized in Algorithm 3. An extra criteria is added to this

algorithm where units recorded on the same channel are assigned to the same cluster. This

criteria is specified because units recorded on the same electrode are located in close proximity
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and it was found that neighboring neurons tend to share common inputs of the same sign [48].

This enables them to work together as a coherent functional group when their common input

is activated. The modified algorithm is summarized in Algorithm 4.

Algorithm 3 Balancing Algorithm

Define a minimum number of units for each cluster
Run the clustering algorithm described in 3.3.1 and get the functional clusters
Sort the units in the clusters based on a functional connectivity metric
Determine clusters that have excess units (P )
Determine clusters that are in short of units (R)
while R is not empty && P is not empty do
for each cluster C in set P do
Find the connectivity of the least connected unit to the rest of the cluster units
MinConC

end for
Select the cluster C from the set P with the minimum MinConC (i.e. the cluster that
has the least connected unit)
Declare the least connected unit in C a free unit
for each cluster C in set R do
Find the connectivity of the free unit to its units FreeUnitConC

end for
Add the free unit to the cluster C with maximum FreeUnitConC (i.e. the cluster that
the free unit is most connected to)
Update stats of sets P and R

end while
if there are clusters with excess number of units above the minimum number specified
then
Distribute them using the same method used above

end if
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Algorithm 4 Modified Balancing Algorithm - Units on the same channel belong to the
same cluster

Set a minimum number of units for each cluster
Run the clustering algorithm described in 3.3.1 and get the functional clusters
for each channel C do
if units recorded on C do not belong to the same cluster then
Find the average connectivity of each cluster to each of the units recorded on C
Move all units recorded on C to the cluster they are most connected to

end if
end for
Sort channels in the clusters based on average connectivity of each channel units to the
rest of the cluster units
Determine clusters that have excess units (P )
Determine clusters that are in short of units (R)
while R is not empty && P is not empty do
for each cluster C in set P do
Find the connectivity of the least connected channel to the rest of the cluster units
(average connectivity of channel units) MinConC

end for
Select the cluster C from the set P with the minimum MinConC (i.e. the cluster that
has the least connected channel)
Declare the units of the least connected channel in C free units
for each cluster C in set R do
Find the average connectivity of the free units to its units FreeUnitConC

end for
Add the free units to the cluster C with maximum FreeUnitConC (i.e. the cluster that
the free units are most connected to)
Update stats of sets P and R

end while
if there are clusters with excess number of units above the minimum number specified
then
Distribute them using the same method used above

end if
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3.5 Unit Selection Algorithm

Figure 3.2 illustrates all the steps of the unit selection algorithm. For each channel, spike

sorting is performed on the recorded signal. The spike sorted units together with the stored

units profiles previously recorded on this channel are then input to the tracking module which

finds matches between the units profiles and the spike sorted units. The tracking module

starts its operation by extracting features from instances of single-units (spike sorted units

and units profiles). It then finds pairwise distances between the features of each spike sorted

single-unit and the instances of each stored profiles. After finding the best assignment,

the tracking module outputs the updated profiles recorded on the channel. Those updated

profiles are then input to a stability units filter, that extracts only stable units according to

the criteria specified in Section 3.2. Stable units from all channels are then lumped together

and input to the functional connectivity module which calculates a similarity correlation

matrix using the stable single-units spike trains. A spectral clustering algorithm is then

applied to the similarity matrix where the number of clusters is the number of degrees of

freedom (DOFs) the subject needs to control. The resulting clusters will vary in the number

of single-untis belonging to them. Therefore, a balancing algorithm is applied to the clusters

to: 1) balance the number of units across all clusters, 2) maintain the functional connectivity

relations between units within a cluster. The clusters output from the balancing algorithm

are used to control different DOFs through the decoder.
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Figure 3.2: Unit selection algorithm: On each channel, spike sorted units are compared
against stored profiles on the same channel. The tracking classifier determines whether to
add a single-unit to an existing profile or to create a new profile for it. The updated units
profiles are input to a stability filter that classifies units into stable, partially stable and
unstable units. Functional connectivity matrix is calculated for stable units. The matrix is
then input to a clustering algorithm that outputs a set of functionally connected clusters
of single-units. However, these clusters are unbalanced in terms of the number of units.
Therefore, the clusters pass through a balancing algorithm that maintains the functional
connection relations between units while balancing the number of units across clusters. Each
cluster is used to control a kinematic variable.
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3.6 Unit Replacement Strategies

Even if I only used stable units, units will continue to drop over time [25]. Among the reasons

of this drop is the formation of a glial scar consisting of reactive astrocytes and microglia

around the electrodes site which affects the quality of recording [17]. The decoder should

be prepared with a strategy to replace the dropped unit with another unit that would best

match the dropped one to get the closest decoding performance and to make the replacement

unnoticeable to the subject as much as possible One way of measuring this is by observing

how much the behavioral performance dropped after the replacement.

In this section, I propose two replacement strategies,

• Strategy 1 is based on the relationship between the replacement unit with the rest of

the cluster units,

• Strategy 2 is based on the relationship between the dropped unit and its replacement

Furthermore, a small modification is made to the units selection algorithm where the units

in the free pool (not assigned to any cluster) are divided evenly on the clusters using the

same balancing algorithm described in Section 3.4.2. These units are regarded as substitute

units for each cluster (i.e. each cluster has its own free pool of substitute units).

3.6.1 Replacement Strategy 1: Unit Closest to Cluster

This replacement strategy looks for the unit from the free units pool that has the highest

correlation (using the metric described in Section 3.4.1) with the rest of the cluster units.

The intuition behind this strategy is the same as the one behind choosing the functionally

connected units for decoding. We postulate that this would make it easier for the subject
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to control the robotic arm since we pick the unit that may constitute a member of the same

cell assembly as the rest of the units.

3.6.2 Replacement Strategy 2: Unit Closest to Dropped Unit

This replacement strategy finds the unit that has the highest correlation to the dropped

unit. The intuition behind this strategy is to find the unit that would act the same as the

dropped unit. In principle, the decoder weights corresponding to the dropped unit should be

suitable for the new unit and the replacement process would be transparent to the subject.

I propose two methods to apply this strategy:

• By using the correlation matrix (computed in Section 3.3.1) directly.

• By applying graph-theory algorithms on the correlation matrix (computed in Section

3.3.1).

The second method models the cluster as an undirectional weighted graph where the graph

nodes are the cluster units and the weights of edges between nodes are the distances be-

tween nodes. The distance measure between two units x and y is derived from the pairwise

correlation ρ(x, y) such that [5]:

D(x, y) =
√
2 ∗ (1− ρ(x, y) (3.2)

Given an adjacency correlation matrix, the model results in a fully connected graph where

each node is connected to all other nodes. The weight on a given edge is the distance between

the two nodes connecting the edge (distance is obtained from correlation as in equation 3.2).

From the fully connected graph, the minimum spanning tree (MST) is constructed using
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Figure 3.3: An example for an MST constructed from a graph containing 10 nodes. An MST
can be constructed using either Prim’s or Kruskal’s algorithms. Both algorithms are greedy
in the way they choose the MST edges. In both algorithms, edges are sorted ascendingly
based on their weights and the lowest weight edges are added one by one as long as a loop
is not formed and until all nodes are added to the tree. The boldface edges in the figure are
the ones that were included in the MST. Total cost of the MST is 31. Taken from [50].

any of the well-known MST algorithms (Prim’s [38] or Kruskal’s [26] algorithms). A tree is

an acyclic graph and a spanning tree is a subgraph that contains all of that graph’s vertices

and is a single tree [43]. Finally, an MST is is a spanning tree whose weight (the sum of the

weights of its edges) is no larger than the weight of any other spanning tree [43]. Figure 3.3

shows an example of an MST for a 10-node graph.

The MST in our case is just a representation of the structure of the underlying network

formed by the cluster nodes. It reveals the underlying network that connects all the nodes of

the cluster and includes only the essential strong connections (edges with high correlation)

to connect all the nodes.

My algorithm forms the MST of the cluster units and the free units using the popular

Kruskal algorithm [26], and from the MST it computes all pairs shortest paths using Floyd-

Warshall algorithm [28]. The free node that is closest to the dropped one is selected as the
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replacement unit. This is different from merely selecting the unit that is most correlated to

the dropped unit because only a small subset of the edges are included in the MST (most of

the connections are considered redundant and not included in the formed tree).

3.7 Results

3.7.1 Tracking Single-Units Stability

I repeated the same analysis I did in Section 2.6.3 after applying the modification described in

Section 3.2 to the tracking algorithm to verify that the modification resulted in an improved

performance. I chose the stability window to be 7 days based on the results in [11].

Figures 3.4 and 3.5 compare the performance of the four classifiers using cross validation.

The results were very similar to the results I obtained in Section 2.6.3.

Tables 3.1 and 3.2 compare the classifiers’ performance when all the 15 datasets were used

in training and testing. Again, the RVM classifier was slightly superior to other classifiers in

terms of both metrics, that is why I chose to use it for the rest of the analysis. Furthermore,

feature set 4 gave the best trade-off between accuracy and speed (similar to what I obtained

in Section 2.6.3).

Table 3.1: Classifiers’ Performance - Classification Accuracy

Set/Class. RVM SVM NB MAP
Set 1 91.67% 88.05% 88.12% 87.44%
Set 2 89.89% 88.32% 89.48% 85.87%
Set 3 62.11% 67.84% 57.26% 57.13%
Set 4 90.30% 89.55% 90.03% 89.89%

Figure 3.6 shows the same profiles I tracked in Section 2.6.3. Both methods obtained the
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Figure 3.4: Comparison of the classifiers performance using cross validation. Four different
sets of features were used. Cross validation was performed using 6 partitions (each had 5
training datasets and 5 testing datasets). The errorbars indicate the standard deviation
across the 6 partitions. All classifiers performed similarly for feature sets 1, 2 and 4 (con-
firmed by t-test).
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Figure 3.5: Comparison of the classifier performance based on the average execution time per
channel. Cross validation was performed using 6 partitions and 4 feature sets were defined.
and the errorbars indicate the standard deviation across the 6 partitions. All classifiers
performed similarly for feature sets 1, 2, and 4 (confirmed by t-test).

same results. Finally, Figure 3.7 shows the average execution time per channel when the

algorithm is run on 35 datasets spanning a period of 88 days. The execution time converges

on day 34 of the analysis.

Comparing the results I obtained using FMD and MMD, I found the following:

• MMD has a higer average execution time per channel and that results from the addi-

tional number of comparisons the algorithm has to perform to find the closest matching

unit within the “Stability Window” history.

• MMD has a higer accuracy than FMD and that is because the technique aims at finding

the closest match to the new unit.

I decided to use MMD for the rest of the analysis.
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Figure 3.6: Two of the profiles tracked by the RVM classifier across 15 datasets. The profiles
were recorded on channels 4 and 90 respectively.
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Figure 3.7: Average execution time per channel when feature set 4 and the RVM classifier
were used. The classifier was run on 35 datasets spanning 88 days. Convergence in the
execution time happens on day 34 of the analysis.
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Table 3.2: Classifiers’ Performance - Percentage of Correct Profiles

Set/Class. RVM SVM NB MAP
Set 1 82.67% 74.80% 75.19% 73.22%
Set 2 75.98% 74.80% 66.53% 65.35%
Set 3 26.37% 29.92% 16.14% 15.74%
Set 4 77.16% 75.19% 75.98% 75.19%

3.7.2 Stability Analysis

Next, I investigated the stability of the units for longer durations. I ran the tracking algo-

rithm on 55 datasets spanning the duration of 5 months. Figure 3.8 shows different statistics

about the neural population on any given day of the analysis. The number of units was al-

most constant across days and it shows that we still have not reached the point where the

array becomes incapable of detecting spikes on a significant number of channels [25]. The

duration after which the spiking activity fades away varries from one subject to another, and

the reason behind this fading away is believed to be the formation of a glial scar consisting

of reactive astrocytes and microglia around the electrodes site which affects the quality of

recording [17]. The slow decay of the curve of the number of units that were recorded on

day 1 and recorded on any given day (the blue line) confirms the results in [11] which stated

that once a unit becomes stable it is more likely to remain stable.

I also plotted the number of units of each of the categories defined in Section 3.2 on any

given day in Figure 3.9. As what we expected from observing Figure 3.8, the stable units

form the majority of the population. Fluctuations in the total number of recorded units are

reflected on the number of stable and unstable units. An increase in the number of units

is reflected as an increase in the number of unstable units and a decrease in the number of

units is reflected as a decrease in the number of stable units. Furthermore, Figures 3.10,
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Figure 3.8: For a given day x: the black line shows total number of units recorded on day
x, the blue and green lines indicate the number units that were recorded on day 1 and were
also recorded or dropped respectively on day x, and the red line shows the number of new
units recorded on day x relative to day 1.

3.11, and 3.12 display different samples of the profiles tracked.

Finally, I conclude the units tracking analysis by plotting a histogram of the number of

contiguous days a unit is recorded on until it drops. The histogram is displayed in Figure

3.13. The mass of the histogram is mainly divided in two regions:

• Days < 20

• Days > 140

Again, my results proves that once a unit becomes stable, it is more likely to remain stable

for a long time.

3.7.3 Unit Selection

We used the algorithm to select the units of five clusters for one subject. We assigned

20 units for each cluster. Figure 3.14 shows the units correlation matrix before and after
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Figure 3.9: Number of stable, partially stable, and unstable units on any given day. An
increase in the number of units is reflected as an increase in the number of unstable units
and a decrease in the number of units is reflected as a decrease in the number of stable units.

applying the balancing algorithm. The figure shows that the correlation within a cluster

is higher than that between clusters. The figure also shows that the balancing algorithm

only swaps the weakly connected units between clusters and therefore, it maintains the same

clusters skeleton resulting from the functional connectivity algorithm. The mapping of the

clusters on the physical electrodes is displayed in Figure 3.15. Some of the clusters reflect

some degree of localization on the array and this agrees with the fact that neighboring units

tend to be functionally connected [48] (because there is a high probability of having common

inputs.)

3.7.4 Replacement Strategies

I compared the performance of three replacement strategies using 10 datasets:

1. Finding the most correlated unit to the dropped unit (UnitFuncCon).
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Figure 3.10: The figure shows 4 sample profiles recorded on channels 30, 32, 49, and 50
respectively. The single-units represented by the profiles were stable throughout the duration
of the analysis (5 months) and were recorded on all 55 datasets. Each subplot displays the
mean of the average waveforms of the instances of each profile. The color range surrounding
the plots repesents the standard deviation across all instances average waveforms. We can see
that all 4 single-units experienced very little changes in their average waveforms throughout
the duration of the analysis.
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Figure 3.11: The figure shows 4 sample profiles recorded on channels 23, 25, 29, and 42
respectively. The single-units represented by the profiles were stable throughout the duration
of the analysis (5 months) and were recorded on all 55 datasets. Each subplot displays the
mean of the average waveforms of the instances of each profile. The color range surrounding
the plots repesents the standard deviation across all instances average waveforms. The
single-units in this experienced bigger changes in their average waveforms throughout the
duration of the analysis than those in Figure 3.10. The algorithm was still able to capture
those changes and correctly classify the single-units instances.
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Figure 3.12: The figure shows 2 sample profiles recorded on channels 44 and 48 respectively.
The single-units represented by the profiles were unstable and they were only recorded on
18 and 15 datasets respectively (out of 55 datasets). We can see that the average waveforms
of both units are unstable and there is much variability across days.
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Figure 3.13: Histogram of the number of contiguous days a unit is likely to be recorded on
until it drops. The large peaks on the left and right of the plot demonstrate that once a unit
becomes stable, it is likely to remain stable for a long time.
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Figure 3.14: The first figure shows the correlation matrix obtained by the functional connec-
tivity algorithm where spectral clustering was applied on the matrix to partition the units
into 5 clusters. The numbers on the axes indicated the start of each cluster. It is clear that
the clustering algorithm results in unbalanced clusters, this is especially true for cluster 3
that contains only 3 units while cluster 1 contains 30 units. The second figure shows that
correlation matrix obtained by balancing the number of units across clusters while taking
the functional connectivity between units into consideration. The strongly connected units
in the initial clusters remained while the weakly connected ones were transferred to other
clusters.
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Figure 3.15: Mapping of the cluster units on the physical recording array.

67



2. Finding the most correlated unit to the dropped unit using MST as described in Section

3.6.2 (MSTFuncCon).

3. Find the unit that is most functionally connected to the remaining units in the cluster

as described in Section 3.6.1 (ClusterFuncCon).

The comparison was performed by dropping each unit in the reach cluster and replacing the

dropped unit with the replacement unit provided by each strategy. Two metrics were used

in this comparison:

1. The average of the mean squared error (MSE) between the decoded velocity using the

original cluster and that using the cluster with the replacement unit across all units

of the cluster. The lower the average MSE, the better the replacement strategy is,

because this is an indication that it provides replacement units close to the dropped

one.

2. The number of times the strategy provided the replacement unit that has the least

MSE among the free units pool (CorRepl). The higher the value of this metric, the

better the replacement strategy is. This is because it is indication that the replacement

strategy provides the best replacement unit available in the pool of free units a greater

of number of times.

Tables 3.3 and 3.4 show the performance of the three strategies based on the two met-

rics. Both UnitFuncCon and MSTFuncCon provided replacement units that gave the lowest

average MSE in 40% of the sessions under test. However, in 70% of the sessions MSTFunc-

Con had the highest number of correct replacements, compared to 50% of the sessions in

case of UnitFuncCon (there was a tie in 20% of the sessions). ClusterFuncCon gave the
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Table 3.3: Replacement Strategies Performance - average MSE between the reach velocity
decoded using the original cluster and that decoded using the cluster with a replacement
unit across all cluster units.

Strat./Day 1 2 3 4 5 6 7 8 9 10
UnitFuncCon 0.24 0.29 0.28 0.30 0.27 0.23 0.24 0.37 0.41 0.30
MSTFuncCon 0.22 0.25 0.29 0.33 0.28 0.31 0.38 0.30 0.24 0.26
ClusterFuncCon 0.29 0.30 0.29 0.28 0.28 0.25 0.28 0.29 0.31 0.31

Table 3.4: Replacement Strategies Performance - the number of times the strategy provided
the replacement unit that has the least MSE among the free units pool.

Strat./Day 1 2 3 4 5 6 7 8 9 10
UnitFuncCon 8 6 7 5 5 5 4 3 2 3
MSTFuncCon 8 10 4 2 7 6 1 3 4 5
ClusterFuncCon 3 0 0 0 0 1 3 1 0 0

worst performance in both metrics and that is expected since this analysis was done offline

(after recording) and in this strategy I was looking for the unit that would be in synchrony

with the remaining cluster unit rather than looking for the closest unit to the dropped one.

The effect of this choice can be better evaluated online (while the subject is controlling

the robotic arm). In Figure 3.16, I show a subset of the results of the offline reach velocity

decoding using each of the replacement strategies. The firing rates of the replacement unit

were measured during the same interval as those of the dropped one.

I also tested the effect of replacing a unit on the decoding of the succeeding datasets and

that can be achieved by using the replacement units found on day 1 in all succeeding days

as well. Table 3.5 gives the MSE between the velocity decoded using the original cluster and

that decoded using the cluster with the replacement unit averaged across all the units of the

cluster and Figure 3.17 summarizes the testing results. As can be observed, the average MSE

of all replacement strategies fluctuates around a constant value (shown by the short error

69



1.62 1.625 1.63 1.635 1.64 1.645 1.65 1.655 1.66 1.665

x 10
4

−5

−4

−3

−2

−1

0

1

Time (50ms bins)

D
ec

od
ed

 r
ea

ch
 v

el
oc

ity

 

 

Original
MostCorr
MostCorrMst
MostCorrFuncConn

Figure 3.16: A subset of the session recorded on day 1. One unit was dropped and each
replacement strategy provided a replacement unit to be used in the offline decoding of the
reach velocity instead of the dropped one.
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Table 3.5: Replacement Strategies Performance - average MSE between the reach velocity
decoded using the original cluster and that decoded using the cluster with a replacement
unit across all cluster units - Testing datasets.

Strat./Day 1 2 3 4 5 6 7 8 9 10
UnitFuncCon 0.25 0.31 0.30 0.29 0.30 0.28 0.29 0.31 0.29 0.26
MSTFuncCon 0.23 0.29 0.29 0.28 0.30 0.28 0.29 0.34 0.31 0.26
ClusterFuncCon 0.30 0.32 0.31 0.28 0.32 0.29 0.33 0.35 0.36 0.35
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Figure 3.17: The figure summarizes the performance of the three replacement strategies
when tested on 9 unseen datasets. The replacement unit in each strategy was selected on
the first day and then it was used on the 9 subsequent days. The error bars are the standard
deviation of the average MSE across days.

bars) and does not deteriorates with time which proves the effectiveness of the replacement

strategies. I also performed a t-test to see if one strategy performed better than the other.

Both the UnitFuncCon and MSTFuncCon were better than the ClusterFuncCon (p > 0.004

and p > 0.008 respectively).

Finally, I show the correlation matrix of the cluster and it corresponding MST on day 1

in Figure 3.18. Using the formula defined in equation 3.2, pairwise correlations are converted

into distances. This is a non-linear transformation where a zero-correlation is mapped to
√
2

distance and a unit-correlation is mapped to zero-distance. A correlation of -1 is mapped to
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a distance equals 2. Therefore, the boundaries of the calculated distance is [0, 2]. The MST

construction algorithm is greedy and it includes edges with small weights (high correlation)

as long as it does not form a loop in the MST. Looking at the correlation matrix, we can

expect certain edges to be present in the MST, such as (5,15) and (5,6) since they have a

higher correlation than other edges.
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Figure 3.18: Figure a displays the augmented correlation matrix of the cluster units on day
1. Figure b shows the MST formed from the correlation matrix.
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Chapter 4

Discussion

In this chapter, I give a summary of the topics presented in this study, list the advantages and

drawbacks of the techniques used, and give directions to future studies and improvements.

In this study, I presented a single-unit tracking algorithm that is based on waveform

features and firing characteristics of single-units and that does not require the subject to

be engaged in any behavioral task. It also requires a short recording time (15 minutes

of recording time) to perform the tracking. I also specified a set of criteria to assess the

stability of a single-unit and to classify it into one of three classes: stable, partially stable,

and unstable. I tracked the stability of single-units over the duration of 150 days where

the first session was recorded three months after implant. The number of recorded units

was almost constant during this duration and there were many stable units. This shows

that the arrays has not reached the stage where it is unable to detect spike on a significant

number of its electrodes. I also used the stability criteria to boost the performance of the

tracking classifier by comparing the newly recorded unit against more than one instance of

the previously recorded single units on a given channel and selecting the instance that is

closest to the new unit. When the algorithm was tested on eight datasets, the accuracy

of classification reached 91% when using all the features I proposed and 90% when using

only 37% of the features. 82% of the profiles tracked by the algorithm matched the experts’

manual tracking. Furthermore, the running time was short and the convergence occurred
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at about 12 seconds per channel. It can also reach 8 seconds per channel at a slightly

reduced accuracy. This makes the algorithm suitable for real-time BMI applications such as

identifying units at the start of a recording session to be used in brain-control decoding.

One possible improvement to the tracking algorithm is to perform a two-level classifica-

tion paradigm. The current paradigm is based on one classifier that is used for all channels.

However, different channels have different properties, for example units might experience

more variability on one channel than on others. A human expert can capture the variability

of a channel across days by looking at the channel’s waveforms, while an automated method

cannot because the training points extracted from this channel would contaminate the clas-

sification decision or might be considered outliers. In the two-level classification paradigm, a

custom classifier for each channel can be trained using training features extracted from this

channel’s units only. The challenges in this paradigm include the need for a large number of

training datasets to generate enough data points for classifiers’ training and ways to handle

the introduction of new single-units on the channel. These challenges should be addressed

before implementing this paradigm.

A drawback of my tracking technique is that it does not include any tuning features,

which are considered a strong proof of whether the recordings on two different days were

from the same unit or not. Although each unit recorded on an electrode has its characteristic

waveform, it was shown that the shape of the waveform depends on the relative location of

the recording electrode to the cell [20]. It may happen that the electrode lies exactly midway

between two cells and the same waveform shape is recorded for both cells. Also, the micro-

movement occurring in the brain might have a major effect on the shape of the recorded

waveform if a different part of the cell body is closer to the recording electode. However,

there are some drawbacks in using the tuning features in tracking units. First of all, the
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subject has to be engaged in a behavioral task and the tuning features depend on this task

Second, changes might occurr to the tuning function of units as the subject learns the task.

I also proposed a unit selection algorithm for BMI decoding as an application of the unit

tracking algorithm. For a fixed decoder, the mapping from the neural space to the kinematic

parameters should be fixed, and in order to do so, the same units have to be used with the

same decoder coefficients across days. I use the tracking algorithm to identify units at the

start of each recording session for this purpose. But then comes the question of how to select

the units to use for decoding. I specified four criteria for this and explained the reasoning

behind each:

1. Units have to be stable to guarantee the reliability and long lasting of those units

(based on the results of [11]).

2. Units within a cluster have to be functionally connected because functionally connected

units are potential cell assemblies that share common coding. We also hypothesized

that using functionally connected units can speed the cortical pasticity reflecting learn-

ing of the behavioral task [1].

3. The number of units across the clusters should be the same to provide the subject with

the same degree of control for each degree of freedom by assigning equal number of

units across clusters. This way, we also divide the labor equally over units so that the

control would not deteriorate in case of a unit drop.

4. Units recorded on the same electrode should be put in the same cluster to control the

same degree of freedom. This is due to the high probability of them sharing the same

source of input [48] and to minimize the effect of misclassifications in spike sorting and

units tracking by making the units still control the same degree of freedom.
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Some of clusters that resulting from the unit selection algorithm show some degree of local-

ization on the physical recording array. The balancing algorithm also maintained the same

connectivity strength in the clusters output from the functional connectivity algorithm and

it only swapped the loosely connected units.

I also described the details of three strategies that provide replacements for dropped

decoding units and they are all based on the augmented correlation matrix resulting from

the functional connectivity algorithm. Using an offline analysis, selecting the most correlated

replacement to the dropped unit using graph-theory algorithms provided the best results.

However, furhter verification of these replacement techniques have to be done online.

One possible strategy to replace units is to use a longer lasting signal than the spikes, the

local field potentials (LFP). The LFPs are a much slower wave than the APs and they are

the aggregate of synchronized activity of the ensemble of neurons relatively away from the

voltage sensing device (> 250µ m) [36]. In [39], the authors report that they were able to

infer the spiking activity of single-units from LFP in the primary visual cortex (V1). Zhuang

et al. in [51] report that LFP can be used to decode hand 3-D position and grasp aperture.

LFP can be used to build what might be called a “Pseudo Unit” by training a classifier or an

artificial neural network (ANN) to predict the firing rates of the dropped unit from features

extracted from the LFP signal. The LFP features include the signal power and phase across

different frequency bands. One challenge towards the use of ANN to predict firing rates

from LFP is how to quantize the resulting output to reflect the discrete-valed firing rates.

K-means clustering is a possible solution to this problem, but it requires the knowledge of

the maximum firing rate in advance.

Another possible application of the tracking algorithm is to track brain-mediated plastic-

ity. This plasticity occurrs while the subject is learning the task where the tuning functions
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of units and their functional connections with other units may change over time. However,

to do so we need the accurate identification of units which can be provided by the tracking

algorithm.

Finally, I point out that the techniques discussed here promotes the practicality of BMI

system. Using the tracking algorithm, units can be accurately identified across days and this

enables us to maintain a fixed mapping between the neuronal space and decoded movement

parameters (i.e. fixed decoder coefficients). In addition, using the replacement strategies

discussed, the system can react automatically to units dropping and maintain a relatively

fixed mapping that is unnoticeable to the subject. This alleviates the need of a human op-

erator that performs decoder calibration on a daily basis. Also, since the tracking algorithm

does consume much time for its operation, any automated decoder calibration can run fast.
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Peak Matching

The peak matching finds the distance between two signals using the maximum and minimum

peaks in both signals. The purpose of the peak matching is to provide comparable results to

those given by an expert. It focuses on the features an expert pays attention to in comparing

signals and the main ones of those are the maximal and minimal peaks.

Preprocessing

Cubic spline interpolation is performed on the signal to generate more data points. This

aims at considering the signal a continuous one.

Algorithm

The algorithm finds the peaks of both signals, assigns weights to them (based on their shape)

and finally quantifies the pairwise distance between peaks from both signals and summarizes

them in one final distance.

Given two signals, H(x) and L(x), each of length n, the similarity of H(x) to L(x),

r̃(H,L), is:

r̃(H,L) = K1(H,L)K2(H,L) (1)
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where r̃(H,L) is the asymmetric similarity of H to L, and K1(H,L) and K2(H,L) are factors

defined in Equations 2 and 4.

The first factor, K1(H,L), quantizes the absolute distance between the two signals using

the Manhattan distance and can be viewed as a scaling factor:

K1(H,L) = exp

(
S(H,L)

S̄

)
(2)

where S̄ is a parameter and S(H,L) is the Manhattan distance between the two signals

and is defined as:

S(H,L) =
n∑

x=1

|H(x)− L(x)| (3)

where H(x) and L(x) are the xth points in signals H and L respectively.

The second factor, K2(H,L), finds a weighted distance between the peaks of the two

signals using some heuristic measures.

K2(H,L) =
∑
i

µi(H)ci(H,L) (4)

where µi(H)’s are a set weights given to the peaks of H(x) (see Section ) and ci(H,L)’s

are heuristic closeness factors between peaks in H(x) and the closest peaks to them in L(x)

(see Section ).

Peak Weights Calculation

In this section, I show how the weights given to peaks of a signal are calculated. The value

of the weight given to a peak depends on its height compared to its neighboring points.
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The first and second derivates of a signal H(x) are defined as:

H(1)(x) = δH(x)/δx (5)

H(2)(x) = δ2H(x)/δx2 (6)

A peak at a point xi is defined as a point in which the second derivative has a local

minimum (this definition includes “shoulders” as well). Define also two points related to each

peak, x
left
i and x

right
i as the nearest points on the left and right of each peak respectively

where the second derivate is zero.

Finally, the weight of a peak at point xi is:

µi =

∣∣∣H(2)(xi)li

∣∣∣∑η(H)
j=1 H(2)(xj)lj

(7)

where li is the maximal distance from the points on the signal in the interval [x
left
i , x

right
i ]

and the line joining x
left
i and x

right
i . η(H) is the total number of peaks in signal H.

Closeness Factor Calculation

The closeness factor (similarity) between peak i in signal H(x) and peak j in signal L(x),

c̃ij , is the multiplication of three factors:

c̃ij = cxijc
y
ijc

form
ij (8)
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The first factor is the distance between the x-location of the two peaks:

cxij = exp

{
−
(△xij

δx

)2
}

(9)

where δx is a parameter, and

△xij = xi − x̃j (10)

xi is the x-location of peak i in signal H(x), and x̃j is the x-location of peak j in signal

L(x).

Similarly, the second factor is the distance between the y-location of the two peaks:

c
y
ij = exp

{
−
(△yij

δy

)2
}

(11)

where δy is a parametre, and

△yij = H(xi)− L(x̃j) (12)

Finally, the third factor aims at finding the distance between the shapes of the two peaks:

c
form
ij = exp

{
−

fij ν̄

η(H) + η(L)

}
(13)
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fij =

∣∣∣H(1)(x
left
i )− L(1)(x̃

left
j )

∣∣∣∣∣∣H(1)(x
left
i ) + L(1)(x̃

left
j )

∣∣∣+ ε1

+

∣∣∣H(1)(x
right
i )− L(1)(x̃

right
j )

∣∣∣∣∣∣H(1)(x
right
i ) + L(1)(x̃

right
j )

∣∣∣+ ε1

+

∣∣∣(xrighti − x
left
i )− (x̃

right
j − x̃

left
j )

∣∣∣∣∣∣(xrighti − x
left
i ) + (x̃

right
j − x̃

left
j )

∣∣∣+ ε2
(14)

where ε1 and ε2 are parameters.

The closeness factor of a peak is defined as the maximum closeness factor it has with any

of the peaks in the other signal:

ci = max
j∈J

(c̃ij) (15)

The calculated similarity is asymmetric and the symmetric peak matching similarity

between two signals is calculated as the geometric mean of the asymmetric ones:

r(H,L) =
√

r̃(H,L)r̃(L,H) (16)

and the peak matching distance is:

D(H,L) = 1− r(H,L) (17)

Figure 1 shows an illustration of the previous steps to calculate the peak matching simi-

larity of one signal to another.
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Figure 1: The figure shows the steps of calculating the peak matching similarity of a signal
x (blue) to another signal y (red). Both x and y have two peaks. Weights are given to
the peaks of x, µ1 and µ2. Closeness factors are calculated between pairwise peaks in both
signals. In this case, there are 4 closeness factors to calculate (c11, c12, c21, and c22). For
each signal in x, we select the maximum closeness factor it has with any of the peaks in y.
We end up with 2 factors, c1 and c2, one for each peak in x. The total similarity of x to y is
then the sum of the peak weights multiplied by the closeness factors for all peaks of x (i.e.
µ1c1 + µ2c2).
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Functional Connectivity Algorithm

The following are the details of computing each step of the functional connectivity algorithm

used in Section 3.3.1. The details below are mostly adapted from [13].

At any given timescale j, the spike train of a neuron p can be expressed as:

s
j
p(t) = W (j)sp(t), j = 0, 1...J (18)

where sp(t) is the spike train (0’s and 1’s)of neuron p, W (j) is a lumped matrix representing

the Haar wavelet transform and J is the total number of timescales. For instance, equation

shows the Haar wavelet transform lumped matrix for the first time scale, W (1).

W (1) =
√
2



1/2 1/2 0 0 0 0 0 0

0 0 1/2 1/2 0 0 0 0

0 0 0 0 1/2 1/2 0 0

0 0 0 0 0 0 1/2 1/2

1/2 −1/2 0 0 0 0 0 0

0 0 1/2 −1/2 0 0 0 0

0 0 0 0 1/2 −1/2 0 0

0 0 0 0 0 0 1/2 −1/2


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“Multiplying by the top half of W (1) by the spike train sp gives the probability of firing

in successive bins that are two samples in size. Multiplying by the bottom half of W (1) by

the spike train sp gives the relative change in the firing pattern in successive bins that are

two samples in size.”

The sample cross-correlation between neurons p and q at timescale j can be expressed

as:

σ
j
pq(ti, tj) = E{sjp(ti)s

j
q(tj)} (19)

The full correlation matrix at timescale j, Σ(j), can be formed using equation 19 for all

p, q ∈ {1, ..., P}, where P is the number of neurons in the population.

A block diagonal matrix can then be formed as:

R =



Σ(0)

Σ(1)

. . .

Σ(J)


(20)

Next, R is decomposed using SVD:

R =

Q∑
i=1

λuiu
T
i (21)

and finally, the pairwise similarity (augmented correlation) of the neurons is obtained

using the weighted sum of the first few dominant modes of R.
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