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Cornelius Chung-sheng Shih

ABSTRACT

This study was initiated with the suggestion that theo-

retical analysis of decaying secondary flow after the bend

may contribute some information for the improvement of water

distribution over the field by rotary irrigation sprinklers.

The equations of motion and the continuity equation together

with some assumptions and boundary conditions have been used

to express the flow condition in the pipe, and were solved

for the case of laminar flow.

The general solutions are expressed as asymptotic func-

tions associated with the initial flow conditions at the en-

trance of the pipe. _

Since the length of the transition segment is the main

interest in this study, it was determined by applying the

general solutions. The relationships between the length of

the transition segment and the intensity of the initial flow

or the roughness of the pipe were presented with some calcula-

tions. A

In addition, the adaptation of the solutions for the con-

dition of laminar flow to the condition of turbulent flow was

attempted with a hope that the tendency in the relationships

for turbulent flow can be assessed.

By using these relationships, the distances of transition

segments were theoretically calculated on the basis of assumed

sprinkler characteristics and flow conditions.
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REVIEW OF LITERATURE

Due to the great development of sprinkler irrigation in

the past decade, the need for more uniform water distribution

by this method has become more apparent. For the purpose of

obtaining the necessary information for improving design,

Bilanski and Kidder (1) have investigated various factors

that affect the distribution of water from an intermediate

pressure (30 - 60 psi) rotary irrigation sprinkler. Among

the factors which affected the water distribution were the

flow conditions preceding the nozzle. For example, when the

distance between the nozzle and the main body of the sprink-

ler was varied by using extension tubes of different lengths,

the longer extension tube resulted in an increase in the tra-

Jectory distance and lessened the amount of fall-out of water

:near the sprinkler. However, beyond a certain length, a

:further increase in the length of the extension tube did not

further affect the trajectory distance or the amount of fall-

<>ut of water near the sprinkler. They also noted that the

use of a short cylindrical tube in place of a sprinkler noz-

zILe resulted in a more effective distribution of water, and

that the most desirable distribution pattern was obtained

‘NTIen the tube length was two to four diameters (of the inside

<3f' the tube) as measured from the beginning of the bend in

tfle sprinkler body to the discharge end. Their study indi-



cated that the secondary motion caused by the bend of sprink-

ler is one of the major factors influencing the distribution

of water. They suggested that further study of water flow

through the bend of various shapes would be beneficial in

predicting the characteristics of the bend and after-bend

length necessary for Optimum distribution of water.

As to the study of secondary flow in bends, most of the

studies during the past three decades had their emphases on

the problem of energy loss caused by bends, which is related

to the effect of Reynolds number, relative radius, roughness

of the pipe, deflection angle, and aspect ratio.

The theoretical explanation of the secondary flow in a

horizontal curved pipe, or a bend, was first given by Thomp-

son (2). He indicated that the centrifugal force on the

fluid due to its curved trajectory, associated with the varia-

tions of pressure gradients over the cross-section of the pipe,

made the occurrence of secondary flow possible.

Theoretical analyses were made by Dean (3) and Adler (h)

for deriving a parameter to relate the resistance in a curved

pipe to that in a similar straight pipe for small and large

Reynolds numbers respectively. From their theoretical anal-

yses associated with the eXperimental works by White (5),

Taylor (6), and Keulegan and Beij (7), it was found that the

critical Reynolds number for the transition from laminar to

turbulent flow in bends is higher than for the straight pipe.



By approximate integration of the equations of motion,

Dean (3) found that the theoretical expressions for velocity

components of secondary flow across the circular cross-section

of coiled pipe vary with the radius of curvature, Rc. His

approximation gave a motion in qualitative agreement with that

found eXperimentally by Eustice (8) and others.

The solutions of the equations of motion and continuity

by Dean will be presented later for the application as bound-

ary conditions in this analysis of the transition segment in

a straight pipe after the bend.

In Dean's analysis, the fluid flow was assumed to be in-

compressible, laminar, viscous, and therefore, rotational.

The secondary flow occurring in the coiled pipe was assumed

to be fully developed and steady. He also introduced the

assumption that the radius of the pipe is small in comparison

to the radius of the bend, i.e. a/Rc is small, where a is the

radius of the pipe.

As for the study of the transition segment in the pipe

after a bend, Yarnell's (9) measurement indicated that

lengths of from ten to twenty diameters are necessary for the

spiral currents to decay for velocities increasing from five

feet per second to twelve feet per second around a six inch

ninety degree standard bend.

Anderson and Straub (10) concluded that the maximum

transition length for a ninety degree miter bend was only

ten diameters, while for a 180 degree reversed curve and for



several special bends, a length of more than fifty diameters

of straight pipe was required for the decay of spiral currents.

In addition, they illustrated that the distance required to

establish fully developed flow in the straight pipe depends

on the flow pattern in the bend and on the configuration and

roughness of the boundary. The end of the transition seg-

ment, they assumed to be that point where the pressure gra-

dient downstream of the bend becomes constant and presumably

the same as that of the normal flow in a straight pipe.

However, theoretical analysis has not been made so far on

this subject.

From the review of literature, it was felt that a com-

plete analysis of the transition segment in the pipe after a

bend, particularly the length of the segment, might help im-

prove sprinkler design. Hence, the theoretical analysis was

conducted primarily in this study. However, it is essential

at this stage to explain the secondary flow at a bend and in

a straight pipe after the bend.

When fluid flows through a horizontal pipe bend, there '

must be a pressure gradient across the pipe to balance the

centrifugal force on the fluid due to its curved trajectory,

the pressure being greatest at the outer side of the pipe and

least at the inner side.

Near the wall all around the pipe the velocity is con-

siderably reduced because of boundary resistance. Consequent-

ly, the pressure variation due to the centrifugal force is



greater along the central plane between the inner and outer

sides than the pressure difference near the upper or lower

walls. Therefore, there is a pressure gradient along the wall

from the upper or lower sides toward the inner side and along

the wall from the outer side toward the upper or lower sides.

These pressure gradients induce a transverse flow along the

walls toward the inner side, then from the inner side along

the central plane toward the outer wall.

The superposition of this transverse flow upon the pri-

mary longitudinal flow results in a diagonal flow along the

walls toward the inner side and forms the so-called double

spiral or longitudinal vortices. ~In the straight pipe follow-

ing the bend, the secondary flow will gradually diminish in

intensity along the pipe axis because of the disappearance

of centrifugal force and the shearing stress at the wall asso-

ciated with the secondary flow itself. The relationship be-

tween the length of the pipe and the intensity of the secon-

dary flow might be expected to be asymptotic.

From previous experimental reports, it was confirmed that

a significant intensity of the secondary flow at the pipe

outlet affects the breakage of jet column of the water which

in turn relates to the water distribution into the field.
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INTRODUCTION

Presentation of the Problem

The remarkable increase in the use of irrigation sprink-

lers during the past ten years indicated their ever-increasing

importance in opening new agricultural frontiers. Naturally,

along with the development of this method of irrigation,

there has been an urgent demand for technical and general

information on sprinkler irrigation equipment.

Ideally, water should be uniformly distributed over the

entire wetted area. However, as yet a sprinkler system and

technique which will do this has not been developed.

Bilanski and Kidder investigated various factors affect-

ing the distribution. Among those factors studied, it seemed

that the distance from the bend in the body of the sprinkler

to the nozzle, and the type of transition through this dis-

tance, greatly influences the distribution of water. This

suggested that the intensity of secondary flow is important.

As a suggestion for further study it was pointed out that a

theoretical study of the decay of secondary flow after a bend

might be valuable for the improvement of sprinkler design.

Hence, the primary interest of this study was to determine

analytically the length of a straight pipe after a bend re-

quired to reestablish normal flow.



Approach to the Problem

Since it was believed that the decay of secondary flow

in the pipe mainly depends on the effect of shearing stress

due to the viscosity of the fluid, equations of motion (Navier-

Stokes) and continuity equation with proper boundary conditions

were applied for solving the problem.

As a first approximation to the solution of the problem,

the laminar case was solved. The main flow conditions at the

initial section of the transition segment were assumed to be

given by Dean's (3) analysis of flew in a bend. Other assump-

tions and approximations necessary to obtain the solution will

be explained in detail in the development.

Since the solution was based on laminar flow, application

for turbulent flow was attempted by replacing kinematic vis-

cosity by a mean eddy viscosity in spite of the fact that the

eddy viscosity would be variable over any section and along

the transition segment. However, it was believed imperative

that the probable tendency of the relationship for turbulent

flow be assessed, since most of the practical flows in bends

as well as in sprinklers may be supposed to be turbulent.

The results of the theoretical analysis were expressed

as the relation between the length of transition segment and

Reynold's number, radius of the pipe and curvature of the bend,

and the friction factor in the pipe. The accuracy, although

unchecked by experimental measurement, may be sufficient from
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an engineering standpoint. Nevertheless, an experimental in-

vestigation both for laminar and turbulent flows would be

worthwhile as a continuation of this study in order to con-

firm or modify this present analysis.





THE GENERAL SOLUTION OF THE EQUATIONS IN GOVERNING

THE EFFECT or SHEARING STRESS DUE TO THE

FRICTION IN A STRAIGHT PIPE '

I. Nomenclature

Radius of the pipe, inch (in)

* Radius of curvature of the bend which may be con-

nected to the upstream of the straight pipe, inch

(in)

Density of the fluid, slug per cubic feet

(lb-secZ/ft“)

Kinematic viscosity of the fluid, square feet per

second (ftZ/sec)

Eddy viScosity of the fluid for turbulent flow,

square feet per second (ftz/sec)

Velocity component of the fluid along 2 axis at any

point on the centerline of the pipe, feet per sec-

ond (ft/sec), Consiin’c,

Reynolds number, nondimensional

Reciprocal of Reynolds number, nondimensional

Radial coordinate in the cylindrical polar system,

nondimensional

Angular coordinate in the cylindrical polar system,

nondimensional



10

U Velocity component along r axis, nondimensional
<
1

Velocity component perpendicular to‘U on r-fl

plane, nondimensional

W Velocity component along 2 axis, nondimensional

P Fluid pressure, nondimensional

Cn Constants, n = 1, 2, 3, h . . . .

is Eigen value, nondimensional

5 Eigen value, nondimensional

G Negative constant for the expression in head loss

due to friction

L Distance from the inlet of the pipe to a point

where the velocity component, V, diminished to some

small value, 5 , nondimensional I

5’ Some small value of velOcity component, V, in the

process of decay, when 2 = L, nondimensional

The following diagram shows the schematic features of

the flow in a straight pipe after a bend and the system of

cylindrical polar coordinates.
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II. The Governing Equations in Cylindrical Polar Coordinates.

1. The Continuity Equation: if U', V', W', r', and

z' are dimensional,

 

ar‘('U)+'L'é¥'+§—‘ .

Let U(rfiz)= JWL Vtr.¢.z)= XI.

Wattai=J=Lw. Pun) =7‘6, '

r =—- 2-—
then the non-dimensional continuity equation is

 

'aar(rU)+_L._:—T.+_g¥ago.ooooooo (1).

2. The Equations of Motion (Navier-Stokes): When the

upper- aW'flow is steady, 1.8. ‘3’? at STEO ,

and if P' is dimensional,

I

V'

0131+-¥——:g+w§l.'— 35.---7'r%p+9 (W'T‘i’fig-‘ti—a?

U".+¥9T+W§1:+flWi'VW‘V’lrs“23%

U%¥+%% +V'3'E'L ’3+3?+ 9 (ngi)

where V2. 39;“+—1'7"5af'+1’l§% +.§_'.

They are expressed nondimensionally in equations

(2)) (Bland (a)

v
Ui¥+¥%%will...V’-LP+1(V'U-JLr, ‘%§?7‘” .<2)

0‘; +¥§¥+w§1+fl="E37+aM(V‘V-yi+-§¢%flm
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U-g-‘gé-t-Jfig-tw-gl’zf =-%§-+ 3%;(75‘!) (’4)

where VLJP+__rar +fi+1§r .

Let K =-a-%’.—--l— . Since N =1?

and average velocity, M -

2

approximately in laminar flow, therefore N = .8315.

9

III. Assumptions Underlying the Mathematical Analysis.

In order to solve the partial differential equations

governing this problem, the following assumptions have been

made. The validity and applicability of those assumptions in

actual fluid flow problems, will be presented in the Discussion.

1. The fluid is viscous and incompressive, and the mo-

tion of the fluid is steady, laminar and rotational, i.e.

kinematic viscosity, 9 , appears in the equations pre-

sented above; density is constant: —t—-=3¥= :2, =0

N does not exceed 2100.

2. It has been assumed that the number of independent

variables of the velocity components can be reduced from

three to two by fixing angular displacement, D as a dummy

variable or parameter, with a hope that the deviation of

the solution from exact solution will be negligible.

Thus, U = U, sxnf + U: cos ¢

V = V. case +V, Strip

w - (I -—r‘)+w. 5m} +W. coed

P =GZ+ P, Sin? + P: 595%
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where U1’ U2, V1, V2, W1, W2, P1 and P2 are functions of

r and z, and G is a negative constant for the expression

of head loss due to the friction in the pipe. In other

words, the rate of head loss with respect to distance of

the pipe, 2, has been assumed to be constant if z is far

away from the transition region.

3. Because the application of a perturbation method or

an approximation method has been required for solving the

differential equations, velocity components, U1, U2, V1,

V2, W1 and W2 were assumed to be expanded in ascending

power series of parameter, K, respectively. It has been

noted that K is very much smaller than one but not less

than zero (O<K<< 1).

Hence, 0': KVu'l’ KNHK’ILM . . . .

0.: KU..+ I00.” K'U.,+ - . - -

“3K“'+KIV‘I+KJV"+.. ..

V.- KVu + K‘V..+ k—‘Vn + . -

V.” KM. + K'Wu-I- K’w..+ . -

Val-wal’ K'wut» K’Wzs‘l' ' '

h. For application of secondary flow at the entrance

\ s

of a straight pipe, Dean's analytical solutions for the

secondary flow in the bend has been adopted as a part of

the initial boundary condition when 2 is zero. According

to Dean's notes, the assumptions for his solution have

been listed as follows:



IV.

14

a. The ratio of radius of the curved pipe to radius

of the curvature of the bend or coiled pipe is small,

(about 1 to 5 percent).

b. U, V, and W (but not P, pressure) are indepen-

dent of 9, which is another angular coordinate in a

Spherical orthogonal system.

c. The secondary flow is fully developed.

d. The flow conditions of the fluid are the same

as the assumption 1.

Boundary Conditions Around the Transition Segment in the

Pipe.

(a) Since it is believed that the fully developed secon-

dary flow is distorted at the entrance of the pipe, Dean's

solutions with the product of fl functions and unknown I

functions of r have been applied for flow condition at

the initial section of the pipe. The unknown functions

of r; F1(r), F2(r), F3(r) and Fg(r), can be determined

by the measurement of velocity distribution across the

initial section. Thus,

U0: 4’. o): a “"5912?“- r‘) + F. (r) cos i

a - t 9

thfi. 0):.- W476"NIH; + F1") 51nd

mr.¢.a) an -r‘)[l .Affiegt + fiflsggfi-(fiim-21r#9r*-r‘)]+gmc..¢

Ptr. gt. a) . Asinéfgzr-éizfi‘tr‘g F40: a“,
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It has been assumed that there is no flow at the(b)

boundary between fluid and inside surface of the pipe.

Utl.¢.z)=o,

Vn.¢.z)t 0._

woman: 0,

PM i ”#0,

(c) When the secondary flow is diminished due to the

effect of shearing stress by the friction at a large

distance, L, along 2 axis, the boundary condition of

fluid flow has been expressed as follows:

UCr.at—)=o’

V(r.¢.L)=0,

lat/(hf, “=0,

P(r, ¢, L) =- G‘-

(d) After assumption 2 was made for providing the dummy

variable, E, the boundary conditions (a), (b) and (0)

should be modified.

_gn-r’)’(4-r’)

U.(r,o)=- 288 K R.

U.(r.0)=‘ F.<r) .

r') (+-23r‘+ TrD

288m, ,

V2050) = EU) ,

“(no)-_£l‘-

WM“) "'- mf“ Zarfii + uszgak’se (uq-zlr‘k qrt- ”)1 .

w,(r.o)= Fj,(r) ,

_ nun-121:3- 4r‘)

P‘(r.0) 24’ Re. '

PAM) - F.m
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(e)

U,(t,2)=.0' U.(hl)= O,

MU.2)= o, V.(n.z)= 0,

Mun-‘0. w.u.z:= o,

HCI.8)'¥0, P.(n.z)=t=0, (if2<l..)

(f)

'U,(r,i.)=5 ’ U.(r,L)=S

V,(r.L)-i V;(r,n.)=f

M(r.i)=f w.(r.L)=J'

Pact-i=5 P.(r.i.)=f

and 5—1-0 or L—pao

V. Formulation of the Problem.

Substitution of assumption 2 into equations (1), (2), (3)

and (A) has made it possible to eliminate the terms involving

the derivative with respect to D.

Thus, from continuity equation,

5‘" 4 (es-a+%‘.=2-) + asWain-us)-
Since it is obvious that functions of r and z are independent

of D, it is seen that:

c 3" I We
W-%+-§—z— - o oooooooooo (5)

J§L+§Hé4u¥lqu%%%- O .......... (6)

From Navier-Stokes equations;

savf¢(U.-§'.é-¥;¥*+w4}%-¥5J+ u-smwtu.-:%+MA+M:%5-¥L'1

+ ssn¢u5¢(u,fl—'+ U.§—”,.—’+ er—U'- -V—'r1b+m §é+wf§5§l~ 21,-?)

+ (I-r’)[szn¢§-gl + «#13159 =



1?

=—[s:u¢-%F1P+usgf-3L]+K($inf(-g—V.+tl_%_¥u_2lli+%+%:¥Ill

meets-ss-3%:- 134+ $.41.73"

Because of independency of r and z and D, the following equa-

tions are obtained:

(t—r‘)‘§—'+%E—‘=K( i—‘U' +-l-%—u'- 375+ M+3—U—L) ....(7)
32‘

(,_ra)%gc+%§_K(_llli+_Lills_ ills- $4.11.) ....(8)
ar‘ rar- az‘

. ar

+ cosdsmflurgléi-Uzm3r —%~1h+M%J+M§Es+-Qg_—l+ 4-5]

+(l-T’)[C°‘f'§'§‘*5"¢az

=..— _r[c..¢.P- $2u+P11+K[C°S¢('g-¥l+;—%T¥- 2r¥+§g5+llgll

+$ifl¢(%z-TK+I:'_¥‘" 2”" 2y,”Lul]
32‘

Los‘4[u—L°V+M,-lL+—L—V‘+w. V' +(t-cos‘¢)(u.3-',Cl- ”J—s-o-ng—J- +155]

 

Then separately,

(I‘ r.)——.2- =K —-+_—~—-— +4) .0..( )

There-ore,

 

  

 

P= Kr(:—;{+ Tli—V' ~€fl+flP+-aT)-' rW-rrsflé. ....(11)

M--Kr(—3%°; “2,441 199+ g1!)+r(t-rr‘)-3—;5‘— ----(12)

Also, .

swamas[generate-saves]

+ smécosp [ u,§.§£¢+ u,%%i;.¥.;_M- flit/5+ Mfg—’5'?“ Maggi.

+ sup [(1~r‘)-§§’4- 20. r] + £054! [a - D‘s-Elgé- ZU2r1=
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=-[q+ssn§%fiz +Cos4g-1:]+K[$in§(%—m++ %_K_/0__}'gg+§;£’£)

| NG ”G 3'

+ “3“"; +"F3?"r'++37?”

Then separately,

 

fl_m+a.m) ....(13)

(.-ri)fl_—zrua+.g_1=|((mar: +_::.§_M9E1+M) . Hull“)

Substitution of equation (11) and (12) into equation (7), (8),

(13) and (14) has made it possible to eliminate the pressure

terms. By application of the perturbation method as given

by assumption 3, to equation (5), (6), (7), (8), (13) and (la)

the coefficientsof the first power of K give, respectively,

 ¥J+—g%l-¥ll+aag"=o \....(15)

¥”+%%£-¥.L'+%%-O ....(16)

(I- r‘) g—U-"+(3r‘- |)§r'-+r(r=-”——%i_rr;==0 ....(17)

(a-r‘)%——Us+u---3r‘)-g—Y22L+r(x rs);,_K;—'_o - ....(18)

(I--r‘)%—M‘-ZUur+r(r'- 0}}:
-0 ....(19)

(_ r*)","——s'- 20.,r+r(l-r’)%f-zlf‘=0 ....(20)

9

Let equations (17) and (18) be integrated with respect to 2,

thus,



.
l
l
l
l
t
-
r
.
l

u
k
i
l
n

 



19

UH-r%y+(+:-'T‘r)“. + £0")
0000(21)

Uu""‘§£" (,laJ—1.‘:C)Vu*f(r) . ....(22)

Since Uufl'o z)=Uz,(r,z) = V,,(r z;-— m,(r.z)=9¥‘1=:—‘;‘i= O

as 2 is far away from transition segment, then £0) and £0)

are shown to be equal to zero.

Then let equations (15), (16), (21) and (22) be substituted fa

into equations (19) and (20) respectively; the results will ‘ 3‘

be presented as follows:
- g

 .. 3.41M... +r f.
%:ZK‘L+%+Prar w”-o (23) L

M+ .9114; +1Lfl-

32'+ 3!“ rar' (|_ra;t Vila
.(2‘4’)

VI. Solutions of the Partial Differential Equations

If it has been aSsumed that the function of r and 2 can

be separated, so that'V11 and V in equations (2}) and (2b)

21

can be expressed as

Vu = Ru z“ a ‘41: R2: 22‘.

where, Ru = R.,(r) , z,,= Zucz),

Ran: Rafi") , 2:": 221(3),

then the equations (23) and (2b) can be transformed into the

following ordinary differential equations:

%§§3_sl_7flu_i.iflu+ 4—”;‘2.=)\‘ ....(25)

lsizi,”.Ld‘Ru... 3 size 54ml- 3 ....(26)

2”“: RF!-mar * 5 _
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From observation of boundary conditions (d) and (f), the signs

of eigen values are so chosen that the conditions are satisfied.

Hence, from equation (25)

Zn: ale-Az‘.‘ ale»:

When z—a-oo, z,,n\-.-o¢ . so that C, =0

therefore 2“ = 5’3”“ ....... .......(27)

It is assumed that function of 311 can be expressed as:

Ru=(I-ra)y(r) o. oooooooooooo 0000(28)

Substituting equation (28) into the right hand side of the

equation (25), thus,

 

d 1 3—71“) (lo-1""

”+1.- ,__,..) gift-W491}: 0 ........(29)

The use of series solution for equation (29). derives the,

solution for y. As a by-product, the eigen value, 26’, is

found to be 2.

A'5 2 , ,7\=-1’J_ .

1‘ 0

Then, 3(r)= c’(_’{__.+_*£r3:_ TI,- ‘*__L_’. L3,. '+%$%rl+._--)

+C¢(I+r'+ :—:—-——r*+:gr‘v- mr’:JTg-o7-r"+ ----) .

Since, 3079?” when r: 0 ‘ therefore c, -a

and R"- (l‘ra) 6+(1+r*+—'lreigr‘+J3Lr§&7r’£-.).u.(30)

- z

Va=C:(I-r‘)(l+r‘+7'§-r’+ {gm
tug, '+L:TL;,:..)3”. . . . . . .. (31)

Substituting equation (31) into (21), thus,

a ~52

u.=c,(:-rv(:~r*.gtrt 7g. 111,!- %fr’)e. ....... (32)

7
7
‘
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By substitution of equation (31) and (32) into (15), W11 is

obtained after integration with respect to z,

n:

Vu=_fi(‘r*¥r"_{z %r+Lr7‘-3:§L-J+ruo)e-nose-oooo(33)

From equation (26), the left hand side can be presented as

follows: 6/1 1

-—Z"dz,—52.,—O . ........(3h)

The solution of equation (3h) is:

-33

L Z:I=C(e +C7C

When z—vw. Zu‘POO so that C7=0 ,

32

therefore Z:I=C;E-’z , (35)

The method of series solution has been used to obtain the so-

lution of 321 in equation (26). As the by-product, the eigen

value, 3 , is found to be equal to 1J3: 3:1,]? ; positive

‘5 is chosen. ‘It is noted that the solution of 321 is iden-

tical with that of 811 except the change of arbitrary constant;

R2|=(“r3)C9(I+f‘*-+1r+ -,%r figur '+%§,':-.-). ....(36)

Then, let C" C; =C,.‘

-432

VmFCIoflrf‘Wl *r‘H-I-P'FP-r‘v mr .1311, ‘+---) e . (37)

Substituting equation (37) into (22),

32

a ‘ ‘5' ’1

u..=-c,.a—rv(n-r-%r*-5:7r- ‘Serié—r )6 ---~<38>

By substitution of equation (37) and (38) into (16), w21 is

obtained after integration with respect to z,

I -52
VII: [910(6rf26'r3fT27,3’*7" 4.11—1r +ii-gaért-je 0000(39)
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The second equations which are found from coefficient of sec-

ond power of parameter K for 011, V11, W11, w21, V21, U21,

U12, V12, wlz, U22, V22, and w22 are obtained from equations

(5). (6). (7). (8), (13), and (in) by application of assump-

tion 3, in a similar manner as for the equations from first

power of K.

' HE“

Um. aue v. aw. inr +3.. €1+T—z =0
00 co (“0) , 2,:

5

a _.
.¥B+—a—gn+-%L+%gl_o .. ..... .(41)

 .4‘2
.3

('_ P)‘%—"Uu+(3r“' [)3Vla+r(ra_ I):;_:fl_z- f3(r)e 2 o...(’42) Ed

(”rail/a...“ ~3r‘)-§——V”+ rCI-9m“we ....(u3)
6’32

2 -r '

r=)%¥n-zu.,r+r(r*-u—‘41:, - fime ’2 ”Hum

‘ ‘ 1 .[i2 0...

(I-r)—g%E-2Uur+r(r-|)%i)él-=-f‘(r)e,
. (“5)

If equations (42) and (#3) are integrated with respect to 2,

then, 3V
_ Uz-r%T’l+('ir';:)y"+f7(r)e;?:Jugs-ffl') ....(’+6)

Since £0) and in”)are independent of z in these equations,

therefore f3”) and fun») should be equal to zero,

(fi(r)=£.(r)s0). Then the substitution of equations (#0),

(41), (46) and (a?) into equations (an) and (#5) will result

as follows:

“ __3__V: (t-t-r" ' ‘33 ,
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IV a 8 4!":

243—?+—+%.¥"-’1‘:f{5m= =- new .  -~-<~9>
It is found actually that the equations (#8) and (49) are

respectively the nonhomogeneous case of equation (23) and (2%).

If separation technique is applied for the second equations,

similarly as for the first equations, i.e.,

V12 = R12 212 and V22 = R22 Z22

Where R“: R'1(rJ . 2.2 a 2‘3 (2) I Ra. Ra: (r)

and. 21;: 231(2)

Therefore,

z'zt‘4.0112 R.z+i"—3—“ :er* Rna‘a“A‘ffl’ef .(50)

rU

;:u(;“$£L:£2'fiLz+
Z

we 332+fi¢1+ Rug—finafmg” . . . . (51)
rar

where £5253 4.34.33.-Wfin..-)fi R,z ........(52)
'8)!

1’? QR: (+1“)fi+%ar2- tlirv‘fi1--A:R“ ........(53)

Bearranging equations (50) and (51):

322 :2 "2A2 f

a1z3 I 12“ ,3(hh€

~J‘z
:‘zzau_A:zzz= ”('08 ‘ ,o......o(55)

Where a fll(o - tfilla')

fun? ‘7‘? , 3‘10)

The general solutions of the equation (5b) and (55) are,

4“ ...l.....(5a)

)2 -A,z+

2’2-c”e’+c’28 2%e-m .aoooo.o(56)'

A3 42.!

22-613856")?Az't-Zi’fxlé’q. ........(57)

Since 212 and 222 are not to become infinite when.z approaches

infinity, then, C11 = C = O.
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It is found that the only solution for equation (52) or-(53)

would be obtained if the eigen value N}, or A: is 2.

Thus, A. = A.= 1‘ 2 .

If the positive values of 7x, and A, are chosen, equations

(56) and (57) can be expressed as follows:

z..= C,.e’” ........(58)

Zu=c,.e”' . ........(59) 3““

Because the only eigen value of A} or A: is 2, £30) and i

:fi,(t) must be equal to zero in order to satisfy the condition E

that value of Z does not increase to infinity. L'hospital's E

rule is applied for the proof. From equations (52) and (53), i w

solutionsfor 312 and R22 are obtained, and it is found that

they are proportional with some constant. This relationship

is also true for the infinite number of R functions.

 .31.. R0 _&,&= ...........
Hence! C4 "" c? Cl] c" .

Also, the same statement can be applied to the solutions of

Z functions, i.e.,

6'53: 2“ a. 2‘! a Zn- 2:;

C, C] C]:- C"

Therefore. V. = KVN + Klvu + k’vfl+---=ZIIR"[K+K2€:J-§‘f+---J

VI = zlemU‘" Kz-gl'L-EJ’L-b ....1

From boundary condition (d), when 2 a o,

40" l“)(4- 23 r'+ 7!”)

-‘--‘—-——.

 V,Cr.0)-

 

288m.

VZCr.o)= F.(r)

, _ 4(l~r‘)(4-23r‘+7f7 4” ....(60)

Mth) - 288KRc e

and 1‘" C199“: Cyl’K‘K'ch—g’f““‘] and CH Ru" 50‘)
O
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then, V,(r.z) = F;(r) 64.32 ........(61)

Then, V— V, €054 + V35rn¢

.. «(pram-23W"? ”’52 . . . . (62)— [ 2" KR. cos¢ + Far) sum” 3 

0 .

As a suggestion for the experimental analysis, precise measure-

ments of velocity distribution for each component at the ini-

tial section of the pipe would be sufficient for finding the

function of r, F2(r).

As a particular case, the solution of V is available from

equation (62) if fl is zero,

__a(l-r*)(t23r’+7r‘) ”’52 . 6
V(r.o.z)_ 238KR¢ e . .......( 3)

Since the length of transition segment can be determined

only by using the solution of V, the solutions of U and w

were neglected.

“
’
1
a
m
i
n
o
.
“
A
F

fl
fi
m
fi

‘
m
‘
1
‘

.
"
.
-
-
F
.
;
.

I
?

1
"
;
n



DETERMINATION OF LENGTH OF TRANSITION SEGMENT

The solution for the decay of the secondary flow as in-

dicated in equation (63) is an asymptotic function, so that

the length of transition segment, L, is an infinity for a

complete decay of V to zero.

A more realistic appraisal is to assume that velocity

component, V, approaches some small value,,£', when the flow

travels to a distance, L, along 2 axis. The dimensionless

value of 5' can be made practically equal to zero from the

engineering standpoint.

If V(r,o.L) =5. and 1,MV(r.oz)=

z¢oo

From equation (62):

5' a a(n—r‘)(4-23r‘+ vr") N64“

288 R; .

then,

 

6‘“- Luv-90h--23r‘+ vr‘lN ........(6h)

288 R“? -

The relation between L and the various factors affecting

secondary flow was shown in the above equation.

In order to appreciate the actual flow case as much as

possible, the effect due to radius factor is eliminated from

the expression for the relationship. Thus, only V at center

axis of the pipe is applied, as an about average value of V,

i.e. to set r = 0.

Then. 51

--_____ ........(6)

6 7217.5 N 5
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Equation (65) is noted to be only for the case of laminar

flow, i.e., N is less than 2100.

Since most flow cases in practice are so turbulent that

the relationship expressed in equation (65) may seldom find

application in engineering problems, an attempt to assess the

tendency in the relationship for turbulent flow has been made.

with average eddy viscosity,(£ , for turbulent flow,

thus,

m- i
6' =7zx—T.£N( ) ........(66)

As for the expression forE in the pipe flow:

8 =m% ........(67)

BY interchanging kinematic viscosity,'9 , in equation (65) Fax

!

l
i

L

h .1. 9'2'
where SaT‘-‘= d.§ug'& : slope of hydraulic gradient

= T“ “4%) '-

k : Von Karman's universal constant (usually =OJH

d : diameter of the pipe, feet

g : gravitational acceleration (ft/secz)

, y : the distance measured from pipe boundary

toward the center along the radius, feet

Since,J$$d ‘WJ; where f is the friction factor in

, a

Darcy's equation (kt- f7???

'rherefore equation (67) becomes

5-%% ........(68)

For engineering purposes, 5 may be replaced by its average

value, g“: considering 0 ( -%— g I and Ant. - x ’
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I

hence, f‘ =/o zu—x) 4,12%

Then 5 = 0.00512552an ........(69)

Substituting equation (69) into (66)

 ”La fly” - -—'a——' 00000000 0

8 (721?, S')(0.005125.HJW4) 27’ new (7 )

The above equation may be applied for turbulent flow in

wholly rough pipes, since pipe friction in wholly rough pipes

'
"
J
.

at high Reynolds numbers will be governed primarily by the ;

size and pattern of the roughness, since the disruption of .

the laminar film will render viscous action negligible.

 For turbulent flow in smooth pipes, Vennard (11) has 3

suggested an approximate relation between f and N that can

be substituted into equation (70):

 

f =0.0032+Jfi%fi ,

Then efiL=2 0- ........(71)
 .71

[LS/0.0032 + $33;—

This equation should be applicable for turbulent flow

in smooth pipes.



CALCULATION

Using equations (65), (70) and (71), calculations are

made for various values of the parameters,¢f and a/Rc:

When 5': 0.01, a/Rc = 0.25, and by equation (65),

6m=o.347N, ........(72)

When 5': 0.01, a/Rc = 0.01, and by equation (65),

em'=o.olan, .......‘.(73)

Equations (72) and (73) are provided for laminar flow,

and are plotted as curves A1 and A2 in Figure 2.

When 5': 0.01, a/Rc = 0.25, and by equation (70),

JFL l

6 =61”? ........(7z+>

When 5': 0.01, a/Rc = 0.01 and by equation (70),

E#?L== I

2.7?- 000.00.0(75)

Equations (70) and (75) are provided for turbulent flow

in wholly rough pipes, and are plotted as curves 81 and 32

in Figure 2.

Since the relationships in equation (74) and &5) are in-

<iependent of Reynolds number, the limit in Reynolds number for

.application of each value of the friction factor, f, was se-

lected from Figure 84, p.191, "Elementary Fluid Mechanics" (11).

In Figure 2, only three values of f were selected with

its limitations in Reynolds numbers:

For f = 0.06; N>20000 .

For f 0.035; N > 100000,

For f 0.02; N > 500000.

9
\
N
a
'
m
x
a
-
u

.
r
-
‘
I
'
.

L

l'



30

When 5' = 0.01, a/Rc = 0.25, and by equation (71),

 

 

 

 

6.5;; :7. 75

,/0.0032+1E13?;—:. ........(76)

When = 0.01, a/Rc = 0.01, and by equation (71)

6g55=,______2271

fi'0032+—;‘—‘Z:%T. ........(77)

Equations (76) and (77) are provided for turbulent flow

in a smooth pipe, and are plotted as curves D1 and D2 in Fe

Figure 2. The dotted lines in Figure 2 between B curves or g

A curves and D curves were drawn in an attempt to premise the 5

relationship in the transition region of those curves. E

From equation (65) the relationship between the distance i

of transition segment and residue,5:is derived, while the

other parameters are fixed as constants.

If the product, 73;: , is set as a constant, then

6.5L: V6.0) é.—

where V(o,o) = £% is the velocity component V at the

center of inlet section of the pipe.

Let —%"—'°’= R, then

9"“. H ........(78)

where H is the ratio of V(go)to velocity component V at a

 

distance L from inlet section on the center line of the pipe.

Equation (78) is plotted in Figure 3.
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DISCUSSION

In the above treatment, several assumptions have been

made to simplify the equations of motion describing the flow

in the pipe, in order that they might be solved. Most of the

assumptions are good approximations when applied to a limited p:

range of Reynolds numbers and the ratiosof radius of the pipe I]

 

to radius of the curvature of the bend which is connected up- 1

stream of the straight pipe. In other words, if a limited 3

range of secondary flow intensity is applied on the initial l;

section of the pipe, the approximation is reasonable. Out-

side these limitations, the equations may give correctly the

general nature of the tendency but close numerical agreement

should not be expected.

In assumption 2, 0 was so fixed as a dummy variable, that

the number of independent variables was reduced from three to

two, and thereby the equations were solved.-

For the function of 0 in the solution was assumed to be

the product of trigonometric function, the change of the mag-

nitude of 0 function would be small along the change of z

downstream in comparison with those of the other variables,

r and 2.

However, it was noticed that the error due to the assump-

tion 2 caused the failure in satisfying the continuity equa-

tion. This failure should not be vital to the solution since
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since the main interest of this study is concerned with the

decaying distance along 2 axis.

The setup of the boundary conditions was generally con-

sidered to be reasonable and proper with an exception of

boundary conditions (a) and (d). From a physical considera-

tion of the flow phenomenon at the connection between the

bend and the pipe, it is clear that the secondary flow from an

'
.
K
'
.
‘
-
‘
.
‘

the bend should be distorted before getting to the connecting

section. Moreover, the secondary flow may not be fully de-

veloped in a bend of 90 degrees or less. Therefore, adopting

 the fully developed secondary flow by Dean, associated with

W
M
"
-
‘

I ‘
3
:

an unknown function of r for subordinate flow, F(r), is a

necessity, but by no means a compretely satisfying boundary

condition.

In the process of the solution, it was shown that infinite

terms of Z functions or B functions of the velocity component,

V, differ only by constants. Therefore, the V function could

be expressed with unique function of Z and R by summation of

an infinite number of constants which include parameters, K,

and arbitrary constants. Consequently, the exact solution of

V was derived from approximate solutions obtained by pertur-

bation method.

As mentioned in the boundary condition (a), the function

of r, F2(r), is unknown and can be determined by the experi-

ment to measure the velocity profile of the initial section

of the pipe.
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For F2(r) is undetermined, a complete solution has been

obtained, only when 0 is equal to zero (i.e., a direction per-

pendicular to the plane on which the bend and the pipe are

laid).

In order to determine the length of transition segment,

based on the solution obtained in the above analysis, the

central axis of the pipe (i.e., r = 0) is chosen for conven-

 

ience. Since the secondary flow intensity at the center line

or its neighborhood will be distorted less than near the bound-

ary, at the connecting section of the bend and the pipe, one

 may hope that the error due to the application of improper ~j

boundary condition should be minimized. In the determination

of transition length, the relationship between the distance,

L, required to decay the secondary flow componemt, V, to a

residue, 5', and the intensity of secondary flow at the ini-

tial section of the pipe, is presented for laminar flow with

a limitation that the ratio, a/R¢,is small (about 1 to 5 per-

cent).

Outside these limitations, some attempts were made to in-

dicate the general nature of the tendency in the relationship

without expectation of numerical agreement. The relationship

with Reynolds number for turbulent flow in a smooth pipe and

the relationship with friction factor, f, in wholly rough pipes

for turbulent flow were derived in equation (71) and (70) re-

spectively. With a purpose of detecting the tendency of the

relationship in actual sprinkler bends, higher ratio (a/REO.25)
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is applied into the above three equations (65), (70), and (71),

and those relationships were presented in the calculation, and

illustrated in Figure 2. Some experimental analysis may prove

the validity of the attempts.

 



CONCLUSIONS

A representative relationship between the length of the

transition segment, L, and the intensity of secondary flow

superimposed was obtained by deriving the function of V at

r = 0, d = 0, and z = L, thus,

_ a '52
V(0o0:z)—723‘Ne .

If V becomes some small value, 5 , when 2. is L, then

  

-_2__ ‘5‘
5 72 ReNe

«HL

or 6 3 7:32’5' , for laminar flow.

The tendencies of the relationship for turbulent flow

were shown in equations (70) and (71) respectively for wholly

rough pipe and smooth pipe.

J-L

68: 2'7,“
oooeoooo(70)

lfi.5]FF‘

Jit

= 23'7”: 1

e Rci'jomfizv- (7 )

Based on the above equations, the relationships between

 

. I

“0.237

the length of the transition segment and the Reynolds number,

N, the friction factor, f, and residue, 5. , were shown in

Figure 2 and 3 where equations (72), (73), (7h), (75), (76),

(77), and (78) are plotted.

In order to meet some practical application for irriga-

tion sprinkler, equations (72), (74) and (76) were provided

with g/Rc= 0.25 as a characteristics of sprinkler bend, al-

though the ratio might be outside the limitations of analysis.
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It is difficult, at this stage of study, to make any

evaluation of the result of this theoretical analysis, since

there is no proper and reliable experiment which can be used

for comparison.
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RECOMMENDATIONS FOR FURTHER STUDY

Make measurement of velocity distribution at the initial

section of the pipe for various intensities of flow.

The measurement in the laminar flow should be intensive

and precise so that the comparison between the assumed

boundary condition (a) and the experimental result will

be possible, and F(r) can be determined. Three compo-

nents of the velocity should be measured individually,

if possible.)

Experimental analysis of the length of the transition

segment in the pipe for various flow conditions, rough-

ness of the pipe, and the ratio of a.and RC, is recom-

mended for the evaluation and adjustment of this theore-

tical analysis.

The possibility of applying this analysis for the improve-

ment of sprinkler design should be further investigated.
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