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Cornelius Chung-sheng Shih

ABSTRACT

This study was initiated with the suggestion that theo-
retical analysis of decaying secondary flow after the bend
may contribute some information for the improvement of water
distribution over the field by rotary irrigation sprinklers.
The equations of motion and the continuity equation together
with some assumptions and boundary conditions have been used
to express the flow condition in the pipe, and were solved
for the case of laminar flow.

The general solutions are expressed as asymﬁtotic func-
tions associated with the initial flow conditions at the en-
trance of the pipe. .

Since the length of the transition segment is the main
interest in this study, it was determined by applying the
general solutions. The relationships between the length of
the transition segment and the intensity of the initial flow
or the roughness of the pipe were presented with some calcula-
tions,

In addition, the adaptation of the solutions for the con-
dition of laminar flow to the condition of turbulent flow was
attempted with a hope that theltendency in the relationships
for turbulent flow can be assessed.

By using these relationships, the distances of transition

segments were fheoretically calculated on the basis of assumed

sprinkler characteristics and flow conditions.
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REVIEW OF LITERATURE

Due to the great development of sﬁrinkler irrigation in
the past decade, the need for more uniform water distribution
by this method has become more apparent. For the purpose of
obtaining the necessary information for improving design,
Bilanski and Kidder (1) have investigated various factors
that affect the distribution of water from an intermediate
pressure (30 - 60 psi) rotary irrigation sprinkler. Among
the factors which affected the water distribution were the
flow conditions preceding the nozzle. For example, when the
distance between the nozzle and the main body of the sprink-
ler was varied by using extension tubes of different lengths,
the longer extension tube resulted in an increase in the tra-
Jectory distance and lessened the amount of fall-out of water
near the sprinkler., However, beyond a certain length, a
further increase in the length of the extension tube did not
further affect the trajectory distance or the amount of fall-
out of water near the sprinkler. They also noted that the
use of a short cylindrical tube in place of a sprinkler noz-
Zle resulted in a more effective distribution of water, and
that the most desirable distribution pattern was obtained
When the tube length was two to four diameters (of the inside
Of the tube) as measured from the beginning of the bend in
the sprinkler body to the discharge end. Their study indi-



cated that the secondary motion caused by the bend of sprink-
ler is one of the major factors influencing the distribution
of water. They suggested that further study of water flow
through the bend of various shapes would be beneficial in
predicting the characteristics of the bend and after-bend
length necessary for optimum distribution of water.

As to the study of secondary flow in bends, most of the
studies during the past three decades had their emphases on
the problem of energy loss caused by bends, which is related
to the effect of Reynolds numter, relative radius, roughness
of the pipe, deflection angle, and aspect ratio.

The theoretical explanation of the secondary flow in a
horizontal curved pipe, or a bend, was first given by Thomp-
son (2). He indicated that the centrifugal force on the
fluid due to its curved trajectory, associated with the varia-

tions of pressure gradients over the cross-section of the pipe,
made the occurrence of secondary flow possible,

Theoretical analyses were made by Dean (3) and Adler (&)
for deriving a parameter to relate the resistance in a curved
pipe to that in a similar straight pipe for small and large
Reynolds numbers respectively. From their theoretical anal-
yses associated with the experimental works by White (5),
Taylor (6), and Keulegan ani Beij (7), it was found that the
critical Reynolds number for the transition from laminar to

turbulent flow in bends is higher than for the straight pipe.



By approximate integration of the equations of motion,
Dean (3) found that the theoretical expressions for velocity
components of secondary flow across the circular cross-section
of coiled pipe vary with the radius of curvature, Rc. His
approximation gave a motion in qualitative agreement with that
found experimentally by Eustice (8) and others.

The solutions of the equations of motion and continuity
by Dean will be presented later for the application as bound-
ary conditions in this analysis of the transition segment in
a straight pipe after the bend.

In Dean's analysis, the fluid flow was assumed to be in-
compressible, laminar, viscous, and thérefore, rotational.
The secondary flow occurring in the coiled pipe was assumed
to be fully developed and steady. He also introduced the
assumption that the radius of the pipe is small in comparison
to the radius of the bend, i.e. a/Rc is small, where a is the
radius of the pipe.

As for the study of the transition segment in the pipe
after a bend, Yarnell's (9) measurement indicated that
lengths of from ten to twenty diameters are necessary for the
spiral currents to decay for velocities increasing from five
feet per second to twelve feet per second around a six inch
ninety degree standard bend.

Anderson and Straub (10) concluded that the maximum
transition length for a ninety degree miter bend was only

ten diameters, while for a 180 degree reversed curve and for



several special bends, a length of more than fifty diameters
of straight pipe was required for the decay of spiral currents.
In addition, they illustrated that the distance required to
establish fully developed flow in the straight pipe depends
on the flow pattern in the bend and on the configuration and
roughness of the boundary. The end of the transition seg-
ment, they assumed to be that point where the pressure gra-
dient downstream of the bend becomes constant and presumably
the same as that of the normal flow in a straight pipe.
However, theoretical analysis has not been made so far on
this subject,

From the review of literature, it was felt that a com-
plete analysis of the transition segment in the pipe after a
bend, particularly the length of the segment, might help im-
prove sprinkler design. Hence, the theoreﬁical analysis was
conducted primarily in this study. However, it 1is essential
at this stage to explain the secondary flow at a bend and in
a straight pipe after the bend.

When fluid flows through a horizontal pipe bend, there
must be a pressure gradient across the pipe to balance the
centrifugal force on the fluid due to its curved trajectory,
the pressure being greatest at the outer side of the pipe and
least at the inner side.

Near the wall all around the pipe the velocity is con-
siderably reduced because of boundary resistance. Consequent-

ly, the pressure variation due to the centrifugal force is



greater along the central plane between the inner and outer
sides than the pressure difference near the upper or lower
walls. Therefore, there is a pressure gradient along the wall
from the upper or lower sides toward the inner side and along
the wall from the outer side toward the upper or lower sides.
These pressure gradients induce a transverse flow along the
walls toward the inner side, then from the inner side along
the central plane toward the outer wall,

The superposition of this transverse flow upon the pri-
mary longitudinal flow results in a diagonal flow along the
walls toward the inner side and forms the so-called double
spiral or longitudinal vortices. 1In the straight pipe follow-
ing the bend, the secondary flow will gradually diminish in
intensity along the pipe axis because of the disappearance
of centrifugal force and the shearing stress at the wall asso-
ciated with the secondary flow itself. The relationship be-
tween the length of the pipe and the intensity of the secon-
dary flow might be expected to be asymptotic.

From previous experimental reports, it was confirmed that
a significant intensity of the secondary flow at the plpe
outlet affects the breakage of jet column of the water which

in turn relates to the water distribution into the field.






INTRODUCTION
Presentation of the Problem

The remarkable increase in the use of irrigation sprink-
lers during the past ten years indicated their ever-increasing
importance in opening new agricultural frontiers. Naturally,
along with the development of this method of irrigation,
there has been an urgent demand for technical and general
information on sprinkler irrigation equipment.

Ideally, water should be uniformly distributed over the
entire wetted area. However, as yet a sprinkler system and
technique which will do this has not been developed.

Bilanski and Kidder investigated various factors affect-
ing the distribution. Among those factors studied, it seemed
that the distance from the bend in the body of the sprinkler
to the nozzle, and the type of transition through this dis-
tance, greatly influences the distribution of water. This
suggested that the intensity of secondary flow is important.
As a suggestion for further study it was pointed out that a
theoretical study of the decay of secondary flow after a bend
might be valuable for the improvement of sprinkler design.
Hence, the primary interest of this study was to determine
analytically the length of a straight pipe after a bend re-

quired to reestablish normal flow.



Approach to the Problem

Since it was believed that the decay of secondary flow
in the pipe mainly depends on the effect of shearing stress
due to the viscosity of the fluid, equations of motion (Navier-
Stokes) and continuity equation with proper boundary conditions
were applied for solving the problem.

As a first approximation to the solution of the problem,
the laminer case was solved. The main flow conditions at the
initial section of the transition segment were assumed to be
given by Dean's (3) analysis of flow in a bend. Other assump-
tions and approximations necessary to obtain the solution will
be explained in detail in the development,

Since the solution was based on laminar flow, application
for turbulent flow was attempted by replacing kinematic vis-
cosity by a mean eddy viscosity in spite of the fact that the
eddy viscosity would be variable over any section and along
the transition segment. However, it was believed imperative
that the probable tendency of the relationship for turbulent
flow be assessed, since most of the practical flows in bends
as well as in sprinklers may be supposed to be turbulent.

The results of the theoretical analysis were expressed
as the relation between the length of transition segment and
Reynold's number, radius of the pipe and curvature of the terd,
and the friction factor in the pipe. The accuracy, although

unchecked by experimental measurement, may be sufficient from
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an engineering standpoint. Nevertheless, an experimental in-
vestigation both for laminar and turbulent flows would be
worthwhile as a continuation of this study in order to con-

firm or modify this present analysis.






THE GENERAL SOLUTION OF THE EQUATIONS IN GOVERNING
THE EFFECT OF SHEARING STRESS DUE TO THE
FRICTION IN A STRAIGHT PIPE

I. Nomenclature

a Radius of the pipe, inch (in)

R, ~ Radlus of curvature of the bend which may be con-
nected to the upstream of the straight pipe, inch
(in)

) 4 Density of the fluid, slug per cubic feet
(1b-sec?/rt)

y Kinematic viscosity of the fluid, square feet per
second (ft%/sec)

4 Eddy viécosity of the fluid for turbulent flow,

square feet per second (ftz/sec)

Wo Velocity component of the fluld along z axis at any
point on the centerline of the pipe, feet per sec-
ond (ft/sec) constant,

N Reynolds number, nondimensional

K Reciprocal of Reynolds number, nondimensional

r Radial coordinate in the cylindrical polar system,
nondimensional
g Angular coordinate in the cylindrical polar system,

nondimensional
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U Velocity component along r axis, nondimensional

<

Velocity component perpendicular to U on r-§

plane, nondimensional

W Velocity component along z axis, nondimensional

P Fluid pressure, nondimensional

C, Constants, n=1, 2, 3, 4. ...

A Eigen value, nondimensional

; Eigen value, nondimensional

G Negative constant for the expression in head loss

due to friction
L Distance from the inlet of the pipe to a point
where the velocity component, V, diminished to some
small value, 5', nondimensional
S Some small value of velocity component, V, in the
process of decay, when z = L, nondimensional
The following diagram shows the schematic features of
the flow in a straight pipe after a bend and the system of
cylindrical polar coordinates.

~ -~
\Tl;:;sit;o:\ — rmll flow
zZ- men ] oo
~ S -
—~ > —~ —~— o —
|- L |
A}(Outﬂ'.‘:ide)
upper well)
(Lower wal) Section A-A’

A?Ginners1de)
Figure 1
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II. The Governing Equations in Cylindrical Polar Coordinates.

1. The Continuity Equation: if U', V', W', r', and

z' are dimensional,

1 2 : V', W
SIS S rEs AT

4

Let U(r.ﬁ..z)=—'~L' V(ré.2) =-Y

W, , * We ,
- W PP
W(n’.z)_-&,.L’ P(r.¢.2) -FR
r=-—, z-—2

then the non-dimensional continuity equation is

(l'U)""‘_LT =o s (1)

2. The Equations of Motion (Navier-Stokes): When the

flow is steady, i.e. —g—‘{i-—g—%-%‘t"—=o.
and if P' is dimensional,

’

;Y
vl },’gg VI Lafy (v &-i% Fap

+-'v79T +W§—K+w=-fﬁ +9(V‘V“ re rn%%.)
U%%*%’a%“" Y =~ '7"‘3'5""’ > (VW)
where Vz— 36;,+—'-.-3—r+-|-; -’—'-

They are expressed nondimensionally in equations

(2), (3) and (4).

P 1 A
v3ls %*—, e ANE

WL +¥ .LQT (¢y--¥,+-§,-:—f). (3)
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U+ L3+ 3 =-3F+ 2 (viw) cen (B)
where v .9_}4. ,.,,-""{:r‘;r*'—i-r .

Let K =a%.-—,-|'- . Since N =-2-$-¥'-

and average velocity, M--ﬂél_
approximately in laminar flow, therefore N = _Q§LV5.

III. Assumptions Underlying the Mathematical Analysis.

In order to solve the partial differential equations
governing this problem, the following assumptions have been
made. The validity and applicability of those assumptions in
actual fluid flow problems, will be presented in the Discussion.

1. The fluid is viscous and incompressive, and the mo-
tion of the fluid is steady, laminar and rotational, i.e.
kinematic viscosity, ) , appears in the equations pre-

sented above; density is constant: att] = g‘t’ ;‘: =0

N does not exceed 2100,
2, It has been assumed that the numﬁer of independent
variables of the velocity components can be reduced from
three to two by fixing angular displacement, # as a dummy
variable or parameter, with a hope that the deviation of
the solution from exact solution will be negligible.
Thus, U=U sing +Upcos¢
= Vi Cosp +V, sing
W = (1—r*)+Ww, sin¢ +Ww, cos ¢
P =Gz+ P sing + P cos ¢
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where Ul' U2, Vis VZ' wl, w2, P1 and PZ are functions of
r and z, and G 1s a negative constant for the expression
of head loss due to the friction in the pipe. 1In other
words, the rate of head loss with respect to distance of
the pipe, z, has been assumed to be constant if z is far
away from the transition region.

3. Because the application of a perturbation method or
an approximation method has been required for solving the
differential equations, velocity components, Ul' U2, Vl,
V2, w1 and W, were assumed to be expanded in ascending
power series of parameter, K, respectively. It has been

noted that K is very much smaller than one but not less

than zero (0<K<<1).

Hence, U= KU + KV, + KUis+ - - -
V.= KUyt KUpat K3+ - - - -
ViaKVu+ KV, +KVs +-- -
Vam KVu + KVa+ K*Vas + -« - -
W, = KW, + K'w.+ K’'W,+ - -
W= Kwy + Kwat KPwt - -

L, For application of secondary flow at the entrance

of a straight pipe, Dean's analytical solutions for the
secondary flow in the bend has been adopted as a part of
the initial boundary condition when z is zero. According
to Dean's notes, the assumptions for his solution have

been listed as follows:
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a. The ratio of radius of the curved pipe to radius
of the curvature of the bend or coiled pipe is small,
(about 1 to 5 percent).

b. U, V, and W (but not P, pressure) are indepen-
dent of 8, which is another angular coordinate in a
spherical orthogonal system,

c. The secondary flow is fully developed.

4. The flow conditicns of the fluid are the same

as the assumption 1.

Boundary Conditions Around the Transition Segment in the
Pipe.

(a) Since it is believed that the fully developed secon-
dary flow is distorted at the entrance of the pipe, Dean's
solutions with the product of @ functions and unknown |
functioﬁs of r have been applied for flow condition at

the initial section of the pipe. The unknown functions

of r; Fq(r), Fy(r), F3(r) and Fu(r), can be determined

by the measurement of velocity distribution across the

initial section. Thus,

U(rs0)=2 3"‘&9 ",:2‘(4' ) 4 F.(rcos ¢

P
V(r.d.o)= -G&“—L“—z}—r;’::a”r*"l'l- Facr) sin g

Wir.$.0) e (1 - z)[, rasm ‘Llﬂsg;o"éi(lq 2lr§-¢lr l"g-rF,(r)Cos;‘

Pr.go)= 4 s"‘“;:";g"’*"' Lt Fyrrcosd
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(b) It has been assumed that there is no flow at the

boundary between fluid and inside surface of the pipe.

Uédz)=0,
V(.$.2)= 0,
w(i.$.2)= 0,

P(.gz)¥xo0,
(¢) When the secondary flow is diminished due to the

effect of shearing stress by the friction at a large
distance, L, along z axls, the boundary condition of
fluid flow has been expressed as follows:

U(r.m)=o'

VrdL)=0,

W(r.f L)=0,

P(r. g L)=GL
(3) After assumption 2 was made for providing the dummy

variable, @, the boundary conditions (a), (b) and (c)

should be modified.
_aq-r)*4-r2)
Ul(rlo)a 238 KR‘

Ua(r.o)= F (ry .,

V.(F. 0) == —RL1=F) (4-23r*7r")
‘ .

288 KR, '
Viro) = Focr)
a 3ra ra a ¢ o6
Wa(roo)-(l-r)[‘ﬂ:‘l‘m(n‘ﬂr*qr-r ],
W,cr.o)= Fs(r) .

- A (18r=12r3+ 4r*)
P‘(r‘O) 24 R(— '

Pi(ro) = Fy(h)
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(e)

Vi1, 2) = 0, U.(Lz)y= 0,
Vicl, =) = 0, Va(r.3)= ),

W, (1, 2) = 0, W (1L,Z)= (,

P(1.3) % 0, P(Lz)¥ (0, (if 2<L)
(f)

Y =8 TRINS N )
V,(r.Ly=§& Vicruy =4
Wi(rL=4§ W,(rLy=4
Pnu=§ Po(ru)y=4

and § —= 0 o L —+> oo

V. Formulation of the Problem.

Substitution of assumption 2 iﬁto equations (1), (2), (3)
and (4) has made it possible to eliminate the terms involving
the derivative with respect to £.

Thus, from continuity equation,

sing (43 oo 32) 4 cong (Yo 2t + o0 32) = 0

Since it is obvious that functions of r and z are independent

of #, it is seen that:

«, U ) Wr
_%4-7"1--%4-% - o ......... . (5)

_¥4+#+-¥L+%ﬁzﬁ—— 0 Ceceencens (6)

From Navier-Stokes equations;
sitg (U U alh 4 o QU= W) 4 (1 - sing) (U, 34 Babhy v Q- W]
+ sinfieost (U + U e Yo Yoty iy 34 1 3 220
+(1-r) (sing 3% ¢ cosg 2] =
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=—(snp2P 4 s $2 ]+K(snf(-g-¥,+,'.gg' —24 +LYL+3 U‘)

+r-osf(-§-¥,+—,'.—%—?_— 2—'%4 2%y az')J

Because of independency of r and z and f#, the following equa-

tions are obtained:
1 1 U ol
(,-r)Tz_.’. rak(%ﬁ....#..:_r. 3_1..'.11.;?%) eees(7)

('_ra)%gl.'.%%_ (_u;“"a_u_ z_u‘ 3_%__*3’“:)

s, L3V U, veen(8)

c.o-s¢[U,°—VL+MJL+—'FV‘-+W,.gL’. + (1-cos'y (U2 - WV3+W3V:+ 1)
+ cospsing (U e Uy 2a- Yoy Koy Mo vy Yoo iy et ]
+ (l-r')[cosf-glf Sla¢az

= -y (e #Rim sndB] 4 K (con (Fh 7 - B+ Tt 2p0)

+osinp (3h 4Ll 2y, z_u;+gr:)]

Then separately,

(1= rz)3%+_ﬂ_ k(él“+?‘%¥ %.plr%.’%}g) ceed(9)

(1-ry3h - =K(§ﬁ+—'—‘-%-27‘{*+30_’zlfa) ... (10)
Thereore,

P--Kr(_a_ﬁ .’l:. 2'%_3'%‘. V)+,-('.. *).3.5*. cees(12)

Also,
stn'p (U3~ YaWay AN 4 o5t (1 Q00 + Yl s, 3]

+ sméc.os{)([)rg-y-l- U.%f.;.!(?__’d.. .&;_V!... %.gLZL., P L

+sing ((1-r) - 2u,r] + cos ((1-ry L= 20,1 ] =
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== (v smpdfr st ]+ k lamp (3150~ o 55

+ cosd (Lhte LMW, Pwy)]

dr: or r*’ oz

Then separately,

(|_rz)%¥'-2ru' (ar‘ % %.'gazw") 0000(13)
(""'_l)%l"zrut"' K(ar""r‘-iy’ War g e

Substitution of equation (11) and (12) into equation (7), (8),
(13) and (14) has made it possible to eliminate the pressure
terms. By application of the perturbation method as given

by assumption 3, to equation (5), (6), (7), (8), (13) and (14)

the coefficlients of the first power of K give, respectively,

_l'{n.,._g%t_l'{n.,gzn_o Seee.(15)
_‘F’u+%_l'{§_¥u+.aa_vz@_o eees (16)
(l—r‘)g—‘,',"-r(ar'-l)%ﬁ-n- F(ri-1) 35 gr‘a/; = ( ceee (17)
(=92 -39y r- )3 =0 veee(18)
-r2% - 2Uir+r(r-n2h —p vee.(19)
(-2 oy - ry¥iagp ceee(20)

3

Let equations (17) and (18) be integrated with respect to z,
thus,
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U..-r%?’-r (—;—:':.—{i)v.. + £,(r) ceee(21)
UI‘--r‘g%' (‘:3,-‘:)V2‘+f(r) . 0-00(22)
Since Uy(r.z) =U,(r2) =V, (" 2)—%,(r.z.)_:—‘:‘=aa_‘;"=o

as z is far away from transition segment, then f,(r) and f;Cr)
are shown to be equal to zero.

Then let equations (15), (16), (21) and (22) be substituted
into equations (19) and (20) respectively; the results will

be presented as follows:

" +r?
L I e

DV, Ve 3 Va

’12? EY ror- %&%%Vu .. (24)

VI. Solutions of the Partial Differential Equations
If it has been aSsumed that the function of r and z can

be separated, so that'V11 and V_. in equations (23) and (24)

21
can be expressed as

Vn = Ru Zu » V:1= Rzl zzl.

Where, R" = R" (r) . z” = z“ (z)p

Ra= R.(m , Z,= 2Z; ‘z),
then the equations (23) and (24) can be transformed into the

fcllowing ordinary differential equations:

dZu___1 d’Ry_ 3 dRu , 4(r*1) 52 el (25)

—— —— —————————— S—

wdz? R, 4r* rR, dr (1-r2?

1 d*Zy_ 1 d*Ra_ 3 dRu_ 4(r%i) _ eu. (26
Z, d33 R. dr® r—R:, dr + (1-r3)? 5 (26)

2
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From observation of boundary conditions (d) and (f), the signs

of eigen values are so chosen that the conditions are satisfied.

Hence, from equation (25)

Z, = C/e-,u* c:e?®
wWwhen g —oo0, Z, % co , so that C; =0
therefore Z,,=c,e"\z I V-2 3
It is assumed that function of Ryq can be expressed as:

R. = (,_rz)}(r)' Ceertreeennas ceeess(28)
Substituting equation (28) into the right hand side of the

equation (25), thus,

21 | - a /..gri
gra 3‘_7"; _,_[,\ 0 r*)‘J} O +oeveeen(29)

The use of series solution for equation (29), derives the
solution for y. As a by-product, the eigen value, A * , 1is
found to be 2.

A'=2, )\=-+f_ .
Then, H(r) = &y (et st e Gl G000 --)
+Co(1+1% SLpts ‘f'Lz"-I"O'JTg-Z-r'.f——--).
Since, Y¥(r)#goo vwhen r=o , therefore ¢3; =0
and Ry= ((=r) €4 (1+redLp%tdp€ +J;ir!!2_'7")....(30)

Then, if Cy-C, = Cs

1 #. 1%
V,,='-Cs(1"')(‘*"*7r"'*4—:r“' :. '4‘:—','{-“'-)6 e eeee(31)
Substituting equation (31) into (21), thus,

Up=Ce (i=p9(-r$r- 32 ré- L1 r™ ,f.ffr")e'i"-- . (32)

L _-_Eiii"mj
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By substitution of equation (31) and (32) into (15), wll is

obtained after integration with respect to 2z,

112
M=—££{(r+-}fr’f—§-§r‘+ Pel2p’ 222, riye 33

From equation (26), the left hand side can be presented as

follows:
4% _ ¢z, 0 N 13

az? .
The solution of equation (34) is:

Zm = C{ e-!8+ c‘le
When 2 — oo, Z, % Oo so that Cy=10 ,

sz

therefore Zzl=C;e-’z . B 53
The method of series solution has been used to obtain the so-
lution of Ry1 in equation (26). As the by-product, the eigen
value, § , is found to be equal to /2 : §=2J2 ; positive

$ is chosen. It is noted that the solution of Rpj is iden-

tical with that of R11 except the change of arbitrary constant;

Ru=(1-r)Cs(1+ teidro e 82548200 Lyt o) ... (36)
Then, let Cg-* Cg =‘c”‘

~y3Z2

Vo= Cp(1=r)(1 +reilrstipé L2 % L3240 .--) @ . (37)

Substituting equation (37) into (22),

2 2 v 27 ¢ ‘5‘ . iz (38)
Up==Cr(l-tI(1=r—%r-3Lr— 5L rt e e...(3
By substitution of equation (37) and (38) into (16), w21 is

obtained after integration with respect to 2z,

w=—fc—-—(6r+2rr3f 27, '._z_r *.!_Q «'%%ér"-je—ﬁztoao(39)

W
b

R ime o aa T v
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The second equations which are found from coefficient of sec-
ond power of parameter K for Ull' V11' "11' w21, V21, U21,
Uiz, Vi2, wlz, U22, V22, .and w22 are obtained from equations
(5), (6), (7), (8), (13), and (14) by application of assump-
tion 3, in a similar manner as for the equations from first

power of K.

Ul'. au V aw‘l
Frer otz =0

9 -
__gn..._a_‘#n.p.%&...%?&_o ceeerea(l1)

N £ ()]

-Z2Z
(1-1%) 'w"«t-(ar‘ l)av"o-r(r‘ ')araz j-_‘(;-)e ‘ eeee(82)

(1-r9 3% 4 (1 -3ry3¥es p-py W mf g™ .l (43)

IrdIz
2 -7 ’
r2Wa oy, rerr-n3d = fneT e (B8

-I1
(-3 -2 Uy +r(re- DIHLE = fipg™ ™ oeen (89)

Ir equations (42) and (43) are integrated with respect to z,

then, V
Us—r ( -3r)ylz+ff(r)e +£‘(r) eoee(l7)

Since f,¢r» and ,(Fr) are independent of z in these equations,
therefore f,(r and f,cr) should be equal to zero,

(Ffr 0=, =0), Then the substitution of equations (40),
(41), (46) and (47) into equations (44) and (45) will result
as follows:

*v; . 3 Vi a+r), 2% ceeo (b
T Far 4<l—r’)’ a= e e

iz ¥
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: 'V, Vi 1+ry -tz

:a;/:"" TR t(l-r')'v" =fune ", rees (89)
It is found actually that the equations (48) and (49) are
respectively the nonhomogeneous case of equation (23) and (24).
If separation technique is applied for the second equations,

similarly as for the first equations, i.e.,

Vi2 = Byp 29, and Vpp = Bpp 237
where R:.= Rua(n), Zn= 2. (2), Ru- Rz (m
and Z2=2Z,;(2)

Therefore,

z,3[ M’_f‘_ R,z"'iaﬁu af")+ R.z a!" Bf/ﬂe (50)

ord) 2 ~Vi%
Zou(~ S22 R, o 3 30 ZRu)y g, L Zunk g - (51)

where _i{_g. A_(L:um__;e,n,, N 73

ajl

OR (1+r?
-%F"'J’_ar“ "(.,‘..rl)}"?ll-_hzﬁll ceee.sas(53)

Rearranging equations (50) and (51):

g_‘zg#_,\‘zzn_ )cla(me"“ ceeenaaa(5H)
%,__A:zug et vereee.e(55)
where £ ) =%) , £, = M ]
The general solutions of the equation (54) and (55) are,
Z =, 0" %N }’Lj\é’-e Ceeeean(56)
zz_c“e"‘icwe +_M?_ i veeeea(57)

Since 212 and Z,. are not to become infinite when z approaches

22

inf inity, then, Ciq = 013 = 0,

~—_;

o s, m .mz-m;""

[
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It is found that the only solution for equation (52) or .(53)
would be obtained if the eigen value A%, or A7 is 2.
Thus, A= A= 22

If the positive values of A\, and A, are chosen, equations

(56) and (57) can be expressed as follows:

Z= Cse " Ceereea(58)

Zyy = Cie " . RN 1))
Because the only eigen value of )\f or A: is 2, f,a(r) and
:ﬁ,(h) must be equal to zero in order to satisfy the condition
that value of Z does not increase to infinity. L'hospital's
rule is applied for the proof. From equations (52) and (53),
solutions for 312 and 322 are obtained, and it is found that

they are proportional with some constant. This relationship

is also true for the infinite number of R functions.

Ry _ Ry _ Re_ Re_ ____ _____
Hence, Ca =2, Cir Co .

Also, the same statement can be applied to the solutions of

Z functions, i.e.,
L2y By Zu_ Zu_ .
Cl C; CIS' c’l

Therefore, V. = KV, + KzVu + k’V,,+---=ZMRu[K+Kg£-"§‘f*"']
V. = ZaRu(k+ Kz-g&.c_l.l'l- -~--]

v Cs .
From boundary condition (d), when z = o,

AC1-r*(4-23r+71")

Vi(r.o) = 288 KR,
Va2(ro)= F,(r)

, _ AU =~TY(4-23r+1rY) 472 e (60)
Viirz) = 288 KR, c

and if, Cl7gcr[K*K.2€L;;‘_glf+"'“) and  GgRy=F (0,

)

P o Y TS e 4 S o S
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then, Ve(r.2) = F () e-f.iz cereeeae(61)
Then, V= Vcos¢+ {,smp

@ (1=r3(4 -23r+qrY ZZ (62
Zas K cos$ + Fu(r sm¢]e | )

As a suggestion for the experimental analysis, precise measure-
ments of velocity distribution for each component at the ini-
tial section of the pipe would be sufficient for finding the
function of r, Fp(r).

As a particular case, the solution of V is available from
equation (62) if @ is zero,

_a(=-ry(g-ar ) - 6
V(roz)= 388 K R e cererss(63)

Since the length of transition segment can be determined
only by using the solution of V, the solutions of U and W

were neglected.




DETERMINATION OF LENGTH OF TRANSITION SEGMENT

The solution for the decay of the secondary flow as in-
dicated in equation (63) is an asymptotic function, so that
the length of transition segment, L, is an infinity for a
ccrnplete decay of V to zero. . FW

A more realistic appraisal is to assume that velocity ’

component, V, approaches some small value, 5', when the flow

travels to a distance, L, along z axis. The dimensionless ‘
value of'J.can.be made practically equal to zero from the '

engineering standpoint,

1r  V(roL) =8  and lim V(r.0.2) =0
From equation (62):
—_aq-ri4-artearh) o -EL
§ 288 Re NE,

then,

Jz b a 2 ¢
. _a(-ry(4-23r*Tr’) el (6B)
2 288 R.& N .
The relation between L and the various factors affecting

secondary flow was shown in the above equation.

In order to appreciate the actual flow case as much as
pbssible, the effect due to radius factor is eliminated from
the expression for the relationship. Thus, only V at center
axis of the pipe is applied, as an about average value of V,
j.e. to set r = 0.

Then, aL Q

S 2 S ceeeeeea(65)
e 72R. & N
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Equation (65) is noted to be only for the case of laminar
flow, i.e., N is less than 2100,

Since most flow cases in practice are so turbulent that
the relationship expressed in equation (65) may seldom find
apprlication in engineering problems, an attempt to assess the
tendency in the relationship for turbulent flow has been made.

By interchanging kinematic viscosity,'ﬂ , in equation (65)
with average eddy viscosity, € , for turbulent flow,

thus,

e =2 N ceeeees (66)

As for the expression for € in the pipe flow:

£ =kdfisd o N (12

he - £ WA
where S=T"= o I’% ¢ slope of hydraulic gradient
I 4
§=-x(1-%)
k Von Karman's universal constant (usually =0.4%)
d : diameter of the pipe, feet
g : gravitational acceleration (fb/secz)
. y : the distance measured from pipe boundary

toward the center along the radius, feet
Since,/ €5d "VJ; where f is the friction factor in

2
Darcy's equation (h = f.:-__;zf“;

Therefcre equation (67) beccmes

g -dyeif ¢ ceeeeen. (68)

For engineering purposes, § may be replaced by its average

value, 4,: considering 0§ % <! and —‘QL -X
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)
hence, A =/o X1=X) d,(:.é,
Then E = 00085128 £dwy ceeesacs(69)
Substituting equation (69) into (66)

R | I BN
&= C72Re & )(0.005125 Fdwa) 271 R.5F (70)

The above equation may be applied for turbulent flow in
wholly rough pipes, since pipe friction in wholly rough pipes
at high Reynolds numbers will be governed primarily by the
size and pattern of the roughness, since the disruption of
the laminar film will render viscous action negligible.

For turbulent flow in smooth pipes, Vennard (11) has
suggested an approximate relation between f and N that can
be substituted into equation (70):

f = 0.0032 + 222!

N 0.237

71 a ceeeeeea(71)
RgS/ 0.0032 + —:"—7,%7,—‘

This equation should be applicable for turbulent flow

Then e‘m'= 2

in smooth pipes.

s ¢




CALCULATION

Using equations (65), (70) and (71), calculations are
made for various values of the parameters, J and a/Rc:

When § = 0.01, a/Rc = 0.25, and by equation (65),

vElL
€ = 0.347TN _ cereeeea(72)
When § = 0.01, a/R, = 0.01, and by equation (65),
e™ = 0.0134N. e (73)

Equations (72) and (73) are provided for laminar flow,
and are plotted as curves Aj; and A, in Figure 2,

when § = 0,01, a/Re = 0.25, and by equation (70),

7L )
€ = 67.8 = e (78)
When § = 0.01, a/Rc = 0.01 aﬁd by equation (70),
7L |
e =2'7F‘ 000000.0(75)

Equations (7&4) and (75) are.provided for turbulent flow
in wholly rough pipes, and are plotted as curves B; and B,
in Figure 2.

Since the relationships in equation (74) and &5) are in-
dependent of Reynolds number, the limit in Reynolds number for
application of each value of the friction factor, f, was se-
leccted from Figure 84, p.191, "Elementary Fluid Mechanies" (11).

In Figure 2, only three values of f were selected with
jts limitations in Reynolds numbers:

For £ = 0.,06; N>20000 .

[}

For f = 0.035; N > 100000,

For £

0.02; N > 500000

P

e
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When § = 0.01, a/R, = 0.25, and by equation (71),

e = €175
J 0.0032 + mu’-"" veeeeeas(76)

When = 0.01, a/R, = 0.01, and by equation (71)
Vil 2.71
=
€ Tloewsz+ 2 e (7D)

Equations (76) and (77) are provided for turbulent flow
in a smooth pipe, and are plotted as curves D; and Dy in
Figure 2. The dotted lines in Figure 2 between B curves or
A curves and D curves were drawn in an attempt to premise the
relationship in the transition region of those curves.

From equation (65) the relationship between the distance
of transition segment and residue,ﬁ:is derived, while the
other parameters are fixed as constants.

If the product, an » 1s set as a constant, then
' 72R.

JzlL 1
e =V@o 5
where |/(o,0) = AN 45 the velocity component V at the

72Rc
center of inlet section of the pipe.

Let —%ﬁ‘-’k H, then
g™t = H ceeeeean(78)

where H is the ratio of Wfgo)to velocity component V at a

distance L from inlet section on the center line of the pipe.

Equation (78) is plotted in Figure 3.

¥

sre s ans o wmm—

ik d



an

Fa
;
"
t

*J03908BJ UOT30TJIJ 9Yy3 JO Jaqunu mcaocaom ay3 pum
quawdas uotjTsuedy Jo yzBusl ayjz uasmiaq diysuoijersy °z aan3tJg

N ‘JaqumN SPTOufay

-t

M T T T T 11 o o
10°0 = 4/® :(9/) uorgenbse wodd — 2(
“I1e $z2°0 = H/® :(5/.) uorzenbs woad — lg
JOJ 10°0 10°0 = H/® :(4.) uorisnbe wody =— mm
= p: ¢z2*0 = 4/® :(€l) uorjenbs wouay — ‘g
10°0 = H/® :(z/) uotqenbs woay = 2y

§z2°0 = 4/® :(1/) uotjenbe woayg = Ty w
§9AJINO uoTqTsusay pesoddng ---

L1 /
WOTM l* l.’//l \
.NAE- ] Q* - 7. I T S o a— a— - .I-:V o “

19
— e e e c—— ~.
~y
'I

o~

31

\\Eo

8/,T = T ‘juawdss uoyjyisues] Jo yaBue

8
|
]
ll

X
L

P e cnd c— —D

00 |s .m







32

1) o
I N N S e,

r\lldll!! wowe s Lm ginewep)

* £03 (0°0)A Jo ot3ea sy3 pue
Jusw3es uoT3Tsusay Jo yaBual ay3 usemiaq diysuotqeray °f aunIty

s
oA - H ¢ 9 03 (0°0) A Jo oryey

1 LR | 1)
adtd
oy3 JO UOT309S 38TUT
WOJJ T 9OUBASID B 7€
/A 73usuoduod £310078A = @ \\\\
W3 = pp. |
chﬂoew\- \

N

N S B k17
H= @or= 1T "No *q2° 1

_ A

—t

o

L2

v-

B/4T = T ‘queulasg uorqtsﬁeJm Jo yj3ueg

w




DISCUSSION

In the above treatment, several assumptions have been
made to simplify the equations of motion describing the flow
in the pipe, in order that they might be solved. Most of the
assumptions are good approximations when applied to a limited —
range of Reynolds numbers and the ratiosof radius of.the pipe :j
to radius of the curvature of the bend which is connected up- |

stream of the straight pipe. 1In other words, if a limited

range of secondary flow intensity is applied on the initial -
section of the pipe, the approximation is reasonable. Out-

side these limitations, the equations may give correctly the

general nature of the tendency but close numerical agreement

should not be expected.

In assumption 2, # was so fixed as a dummy variable, that
the number of independent variables was reduced from three to
two, and thereby the equations were solved.-

For the function of § in.thevsolutlon was assumed to be
the product of trigonometric function, the change of the mag-
nitude of @ function would be small along the change of z
downstream in comparison with those of the other variables,

r and z.

However, it was noticed that the error due to the assump-
tion 2 caused the failure in satisfying the continuity equa-
tion. This failure should not be vital to the solution since
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since the main interest of this study is concerned with the
decaying distance along z axis.,

The setup of the boundary conditions was generally con-
sidered to be reasonable and proper with an exception of
boundary conditions (a) and (d). From a physical considera-
tion of the flow phenomenon at the connection between the
bend and the pipe, it is clear that the secondary flow from
the bend should be distorted before getting to the connecting
section. Moreover, the secondary flow may not be fully de-
veloped in a bend of 90 degrees or less. Therefore, adopting
the fully developed secondary flow by Dean, associated with
an unknown function of r for subordinate flow, F(r), is a
necessity, but by no means a complletely satisfying boundary
condition.

In the process of the solution, it was shown that infinite
terms of Z functions or R functions of the velocity component,
V, differ only by constants. Therefore, the V function could
be expressed with unique function of Z and R by summation of
an infinite number of constants which 1nclude‘parameters, K,
and arbitrary constants. Consequently, the exact solution of
V was derived from approximate solutions obtained by pertur-
bation method.

As mentioned in the boundary condition (a), the function
of r, Fz(r), is unknown and can be determined by the experi-

ment to measure the velocity profile of the initial section

of the pipe.
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For F,(r) is undetermined, a complete solution has been
obtained, only when @ is equal to zero (i.e., a direction per-
pendicular to the plane on which the bend and the pipe are
laid).

In order to determine the length of transition segment,
based on the solution obtained in the above analysis, the
central axis of the pipe (i.e., r = 0) is chosen for conven- gj
lence. Since the secondary flow intensity at the center line &

or its neighborhood will be distorted less than near the bound-

ary, at the connecting section of the bend and the pipe, one

LR

may hope that the error due to the application of improper L
boundary condition should be minimized. In the determination

of transition length, the relationship between the distance,

L, required to decay the secondary flow componemt, V, to a

residue, J', and the intensity of secondary flow at the ini-

tial section of the pipe, is presented for laminar flow with

a limitation that the ratio, a/R., 1s small (about 1 to 5 per-

cent).

Outside these limitations, some attempts were made to in-
dicate the general nature of the tendency in the relationship
without expectation of numerical agreement. The relationship
with Reynolds number for turbulent flow in a smooth pipe and
the relationship with friction factor, f, in wholly rough pipes
for turbulent flow were derived in equation (71) and (70) re-
spectively. With a purpose of detecting the tendency of the
relationship in actual sprinkler bends, higher ratio (a/R§0.25)
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is applied into the above three equations (65), (70), and (71),
and those relationships were presented in the calculation, and
illustrated in Figure 2. Some experimental analysis may prove

the validity of the attempts.

—_




CONCLUSIONS

A representative relationship between the length of the
transition segment, L, and the intensity of secondary flow
superimposed was obtained by deriving the function of V at
r=0,d=0, and 2 = L, thus,

__2 "t
V(O,O.Z’—;’zR‘NB .

If V becomes some small value, ; » When z is L, then

~zL
-2
g 72 Ra.Ne
JiL N
or e =72%?- , for laminar flow,

The tendencies of the relationship for turbulent flow

were shown in equations (70) and (71) respectively for wholly

rough pipe and smooth pipe.

fyﬁL 2.7/4Q

= RcS.J?_ ..-00-00(70)
JiL
-— 42'7'4 ..o-aono(?l)
€ Res[0.0032+ 222

Based on the above equations, the relationships between
the length of the transition segment and the Reynolds number,
N, the friction factor, f, and residue, 5', were shown in
Figure 2 and 3 where equations (72), (73), (74), (75), (76),
(77), and (78) are plotted.

In order to meet some practical application for irriga-
tion sprinkler, equations (72), (74) and (76) were provided
with g/hc= 0.25 as a characteristics of sprinkler bend, al-

though the ratio might be outside the limitations of analysis.

S P,
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It is difficult, at this stage of study, to make any
evaluation of the result of this theoretical analysis, since
there is no proper and reliable experiment which can be used

for comparison.

o

SR
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RECOMMENDATIONS FOR FURTHER STUDY

Make measurement of velocity distribution at the initial
section of the pipe for various intensities of flow.

The measurement in the laminar flow should be intensive
and precise so that the comparison between the assumed
boundary condition (a) and the experimental result will
be possible, and F(r) can be determined. Three compo-
nents of the velocity should be measured individually,
if possible{

Experimental analysis of the length of the transition
segment in the pipe for various flow conditions, rough-
ness of the plpe, and the ratio of a and R,, is recom-
mended for the evaluation and ad justment of this theore-

tical analysis.

The possibility of applying this analysis for the improve-

ment of sprinkler design should be further investigated.

i‘-.q
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