

This is to certify that the

thesis entitled

F-SALTS OF THE SALINA GROUP OF THE MICHIGAN BASIN

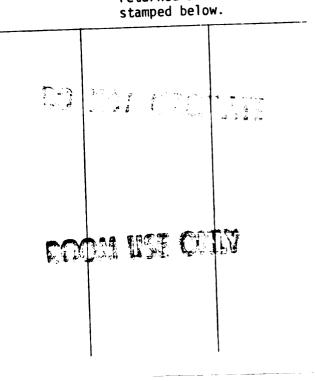
presented by

Burrell Peter Shirey

has been accepted towards fulfillment of the requirements for

Masters degree in Geological Sciences

Major professor


Date ___8/12/83____

0-7639

MSU is an Affirmative Action/Equal Opportunity Institution

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date

F-SALTS OF THE SALINA GROUP OF THE MICHIGAN BASIN

By

Burrell Peter Shirey

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Geological Sciences

1983

ABSTRACT

F-SALTS OF THE SALINA GROUP OF THE MICHIGAN BASIN

By

Burrell Peter Shirey

Previous studies on the Salina have been on a Group basis, resulting in lack of data on the F-salts. Therefore, the F-salts were studied on a basin-wide scale to determine lithology and depositional history.

Results indicate the F-salts are a typical basin marine evaporite sequence. Units F-1 through F-3 were deposited in a stable basin, connected to exterior marine environments by channels across the shelf zone. At the midpoint of F-salt deposition, the Basin experienced tectonic movement, reflected in changes in lithology and deposition. For units F-4 and F-5, depocenter and hinge lines moved northeast; clastic shales dominated the shelf; channels across the shelf ceased to exist, isolating the Basin; units became progressively thicker. Possible causes are: external stress acting on the Basin basement and frame complex, resulting in tectonic activity; basin subsidence; uplift of exterior features and/or sea level changes, before returning to a more normal marine basin environment of unit F-6.

DEDICATION

IN MEMORY

to my Uncle Fred and his two Bachelors degrees.

ACKNOWLEDGEMENTS

The author expresses his thanks to Dr. C. E. Prouty, Committee Chairman and a real good ol' boy; and to Dr. J. W. Trow and Dr. H. B. Stonehouse for their review of the thesis.

Thank yous are extended to the Michigan Geological Survey Division without whose help and records I would not be writing this thank you in the first place.

A very special and loving thanks is given to my parents for all their love and support and for putting up with my procrastinating these past years. This is for you, Mom and Dad, you worked for this as much as I did, and you certainly earned it.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	•	•	•	•	iii
LIST OF FIGURES		•	•	•	V
LIST OF MAPS	•	•	•	•	vi
INTRODUCTION	•	•	•	•	1
STRUCTURAL SETTING OF THE MICHIGAN BASIN	•	•		•	2
PREVIOUS WORK	•	•			•
Regional Geology		•	•	•	9
Geology of the Basin	•	•	•	•	8
SILURIAN HISTORY OF THE MICHIGAN BASIN			•	•	15
MATERIALS AND METHODS OF INVESTIGATION				•	17
Formation Tops and Elevations			•	•	17
Determination of Lithology	•	•	•	•	18 27
RESULTS AND DISCUSSION	•	•	•		31
F-1 Unit					31
F-2 Unit					34
F-3 Unit	•	•	•	•	37
F-4 Unit					40
F-5 Unit					43
F-6 Unit					43
Observations on F-Salt Unit Maps					49
Possible Explanations of Observations				•	50
Isopach Man - Total F-salt	•	•	•	•	52
Isopach Map - Total F-salt	•	•	-	-	55
Chart of Depocenter Thickness	•	•	•	•	55
Lithologic Cross-Section Through Time	•	•	•	•	58
Denocenter and Hings Line Man	•	•	•	•	60
Depocenter and Hinge Line Map	•	•	•	•	60
Hinge Line	•	•	•	•	62
CONCLUSIONS					63

TABLE OF CONTENTS (continued)

RECOMMENDED AREAS FOR FURTHER STUDY	66
REFERENCES	67
APPENDIX	70

LIST OF FIGURES

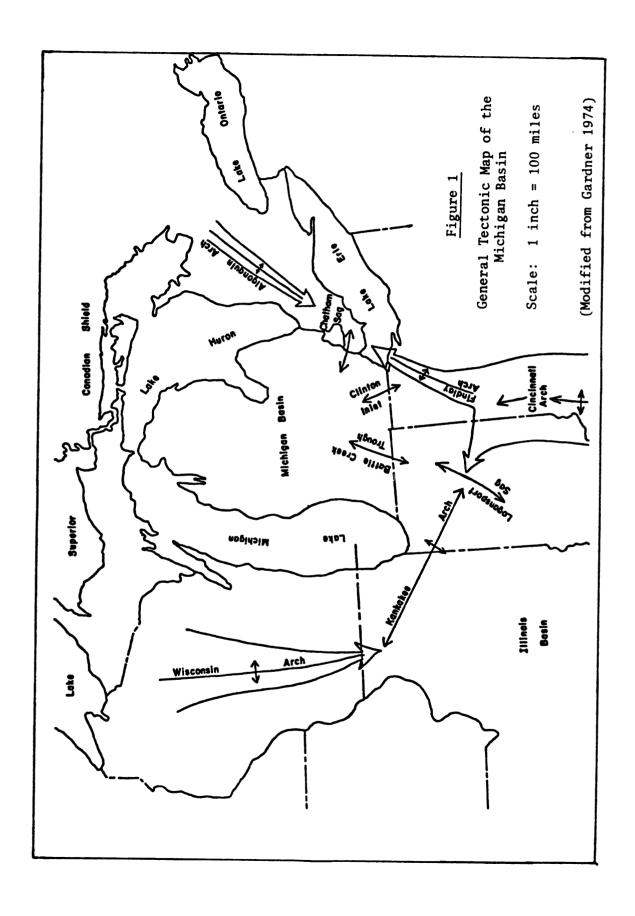
Figure 1.	General tectonic map of the Michigan Basin	3
Figure 2.	Idealized evaporite cycle	12
Figure 3.	Comparison of gamma-ray log, descriptive log and sample analysis - Well 2 - Emery-l PN23849	19
Figure 4.	Comparison of lithologies of the F-salt section from Ells, and descriptive log - well 4 - State-Foster-1 PN25099	20
Figure 5.	Stratigraphic succession in Michigan	22
Figure 6.	Shale reference - Bell Shale - Well 147 - Brandt 1-34 PN34790	24
Figure 7.	Evaporite and carbonate reference: A-2 evaporite - A-2 carbonate - B evaporite - Well 147 - Brandt 1-34 PN34790	25
Figure 8.	Comparison of sample log and interpretation based on geophysical curve analysis - Well 147 - Brandt 1-34 PN34790	26
Figure 9.	General ranges of data for evaporites, carbonates and shales - Well 147 - Brandt 1-34 PN34790	28
Figure 10.	Arch-shelf channels	51
Figure 11.	Depocenter thickness of F-salts	57
Figure 12.	Lithologic cross-section through time	59

LIST OF MAPS

Map A.	Index map with well locations and data index number
Map B.	County map of Michigan
Map 1-1.	Isopach Unit F-1
Map 1-2.	Clastic ratio Unit F-1
Map 2-1.	Isopach Unit F-2
Map 2-2.	Clastic ratio Unit F-2
Map 3-1.	Isopach Unit F-3
Map 3-2.	Clastic ratio Unit F-3
Map 4-1.	Isopach Unit F-4
Map 4-2.	Clastic ratio Unit F-4
Map 5-1.	Isopach Unit F-5
Map 5-2.	Clastic ratio Unit F-5
Map 6-1.	Isopach Unit F-6
Map 6-2.	Clastic ratio Unit F-6
Map 7.	Isopach total F-salt
Map 8.	Structure-contour top of E unit
Map 9.	Structure-contour top of F-salt section
Map 10.	Depocenter and hinge line of F-salt section 61
Map 11.	Geophysical cross-section back

INTRODUCTION

The F-salts of the Late Silurian Salina Group in Southern Michigan are the last of several evaporite formations that were deposited in the Silurian of the Michigan Basin. While many authors have studied the Salina Group, their studies have been for the most part on a group-wide basis, overshadowing the F-salts in favor of the older and more extensive A-Evaporites. This has resulted in a relative scarcity of information on the F-salts alone. Therefore, the purpose of this study is a regional study of the F-salts, to determine the varying lithology of the formation from the Basin interior to the rim with an eye toward any changes in the normally accepted sequence of evaporite interior to a shale and carbonate rim. Additional goals are to develop any data that may show possible effects of basin subsidence; transgressive-regressive sea level effects; and extrabasinal influences during the relatively brief period of the F-salt deposition.


The F-salts are divisible into six units throughout most of the Michigan Basin (Ells, 1967; Lilianthal, 1978). The ability to subdivide and study zones of geologically brief episodes makes it possible to restore the developmental history of the F-salts.

STRUCTURAL SETTING OF THE MICHIGAN BASIN

Tectonic features surrounding the Michigan Basin during the Late Silurian time consisted of the Canadian Shield to the north; the Algonquin Arch to the east; the Findlay Arch to the southeast; the Cincinnati Arch to the south; the Kankakee Arch to the southwest; and the Wisconsin Arch to the west. Other features present at various times include the Battle Creek Trough in the south-southwest connecting the Michigan Basin with the Illinois Basin; and the Clinton Inlet and the Chatham Sag in the southeast connecting the Michigan Basin with marine environments to the east (Figure 1).

Fettke (1948) showed the Chatham Sag to have been present in Ordovician time. Melhorn (1958) thought the Kankakee and Findlay Arches became important in their influence on the Michigan Basin during the Ordovician. One of the major inlets for marine waters into the Michigan Basin was through the Chatham Sag (Burns, 1962). Burns indicated this by his Salina isopach map showing extensive thickening of sediments in the Chatham Sag area. Dellwig (1954) considered ripple marks, poor bedding development and fragmentation of halite crystals as being due to turbulent seawaters from currents flowing through the Chatham Sag area.

Melhorn (1958) believed a link between the Michigan and Illinois basins existed from Early to Middle Silurian and became inoperative by the start of Salina time because of the growth of reefs or arch uplift to the south. He called this link the Battle Creek Trough. He based his idea on the sand-shale and clastic ratio maps he constructed in which the latter showed carbonates dominant along a narrow belt extending south from Eaton and Hillsdale counties into northern Indiana, connecting with the Logansport Sag.

Briggs, Gill, Briggs and Elmore (1980) in mapping the thickness of the Lockport-Guelph rocks in southeast Michigan and northern Ohio, detected the presence of a deep inlet between Ohio and Michigan they called the Clinton Inlet. They believed the Clinton Inlet was present during the Late Silurian and was a major inlet for marine waters into the Michigan Basin. Alling and Briggs (1961) earlier had noted evidence of this feature using the distribution of evaporite facies of the Salina Group in the Michigan Basin.

PREVIOUS WORK

Previous studies of the Salina Group of the Michigan Basin area can be separated into three areas. The regional geology, exterior to the Basin; the geology of the Basin; and the origin, occurrence and deposition of evaporite formations within the Basin.

Regional Geology

Some of the earlier studies on the Michigan Basin were of a regional nature, encompassing the Basin and its relation to surrounding tectonic features. Among these are Pirtle (1932), Newcombe (1933), Lockett (1947), Krumbein, Sloss and Dapples (1949), Kay (1951), Sloss and Krumbein (1955), Hinze and Merritt (1969), and Prouty (1970, 1972, 1976), as well as others.

Pirtle (1932) studied the regional geology of the Michigan Basin and the surrounding areas in regards to anticlinal fold patterns present within the Basin. He attributed the fold patterns to trends of structural weaknesses in the Precambrian basement rocks of the Basin.

Newcombe (1933) further elaborated on the work done by Pirtle and stated that deep-seated basement faults were the source of the anticlinal fold patterns (apparently assuming vertical movement along the faults).

Lockett (1947) concluded that the dominant positive structures of the area are the cores of old Precambrian mountains and that principal movement in the area was the subsidence of the Michigan Basin.

Krumbein, Sloss and Dapples (1949) indicated that sediments deposited within an intracratonic basin are mainly comprised of clastics derived from a distant source or are carbonate rocks in association with evaporite formations

that originated within the basin. They also state that there are intervals during the development of a basin when that basin is connected with surrounding seaways, allowing for normal marine water circulation to occur and produce a marine deposit sequence. Other intervals in the development of a basin, where normal seawater circulation is restricted possibly owing to development of reef banks or low water levels or surrounding positive features, leads to the deposition of an evaporite sequence.

Kay (1951) and Sloss and Krumbein (1955), in their work on geosynclines, stated that the Michigan Basin is the prototype of the autogeosyncline or intracratonic basin, where the basin shape is generally oval and rates of subsidence in the Basin are greatest in the Basin center and decrease as one moves outward from the interior to the Basin rim.

Hinze and Merritt (1969) attributed the formation of the Michigan Basin to isostatic sinking as the crust adjusted to added mass of basic material in the basement complex. Their work was based on regional gravity and magnetic surveys of the lower peninsula of Michigan.

Prouty (1970, 1972, 1976) attributed the origin of most of the Michigan Basin's faulted and folded structures to extrabasinal shearing stresses carried in the Precambrian basement rocks from the southeast, presumably from the Appalachians. It is further suggested that these stresses were instrumental in developing the oblate form of the Basin through the simple shear stresses as well as having a part in the shifting of depocenters through the Paleozoic.

Geology of the Basin

Studies on the geology of the Michigan Basin during the Late Silurian Salina time include works done by Landes (1945), Evans (1950), Melhorn (1958), Cohee and Landes (1958), Burns (1962), Ells (1967), Lilienthal (1978), and Paris (1977) and many more.

Much of the initial work on the Salina Group of the Michigan Basin can be accredited to Landes (1945) who divided the Salina into eight separate formations labelled A through H. These labels, with minor changes, are still in use.

Evans (1950) studied the Salina and further divided the "A" formation of Landes' into four units, the A-1 and A-2 Carbonate and Evaporite sequences.

Melhorn (1958) studied the Silurian and chemically analyzed 35 core samples obtained from oil and gas wells and mapped the Silurian both stratigraphically and lithologically. His data showed the presence of a southwest clastic belt and a structural hinge line that separated the dominant interior evaporites of the Basin from the carbonates and shales of the Basin rim. On a regional basis, Melhorn also noted the influence of the Wisconsin and Kankakee Arches and attributed an increase in his clastics maps on the west and southwest edge of the Basin as due to regional positive influences and erosion from these features.

Cohee and Landes (1958) believed the Michigan Basin underwent its greatest period of subsidence during Late Silurian with downwarping during the Salina, Bass Islands and Detroit River times.

Burns (1962) examined the Upper Silurian Salina A-H groups. He noted the importance of the Chatham Sag as a major inlet of normal marine water to the Michigan Basin. He also noted that the deepest part of the Basin was in eastern Michigan near Saginaw Bay.

Ells (1967) conducted studies of the Salina formation, making stratigraphic analyses and correlations based on sample cuttings and geophysical records of oil and gas wells. Based on his correlations and interpretations he was able to subdivide the F-salts into six separate units and trace each unit across most of the Basin.

Lilienthal (1978) correlated stratigraphic cross sections for the complete geologic column for the Michigan Basin using geophysical records of oil wells. He was able to divide the F-salts into six units and trace each unit across the Basin, the same as Ells.

Paris (1977), in his study of the Howell Anticline, states that the greatest episode of subsidence along the northeast flank of the Howell Fault was contemporaneous with F-salts deposition.

Origin, Occurrence and Deposition of Evaporites

Studies and papers on the deposition of evaporites in various basins are numerous, and include King (1947), Kaufman and Slawson (1950), Scruton (1953), Dellwig (1954), Briggs and Lucas (1954), Briggs (1957), Pannekoek (1965), Briggs and Pollack (1967), Rickard (1970), Matthews and Egleson (1974), Mesollela (1974), Droste and Shaver (1977), Johnson and Gonzales (1978) and Briggs et al. (1980).

King (1947) in his study of the Permian Castile beds of the Permian-Delaware Basin in West Texas and New Mexico, proposed the theory of reflux to explain evaporite composition and deposition in the Basin. He concluded the evaporation rate in the Basin exceeded both the rate of influx of local terrestrial water and the influx of normal marine waters. He states that the waters trapped in the Basin (waters below average wavebase) consisted of a brine formed by evaporation and which was recharged intermittently by normal marine water influx through a restricted connecting channel. He accredited a constant flow of dense, hypersaline brines at depth out of the basin to compensate for the volume of new sinking brines accumulating in the Basin. This theory of dense brine flow out of the Basin at depth he termed "reflux" to explain the lack of halite in the evaporite sequence in the Basin.

Scruton (1953) in a similar theory, states that high brine concentrations are associated with a strong salinity gradient which produces segregation of the various precipitated salts. The escaping deep, dense brines return to the marine environment those salts that were not precipitated. His theory proposed the initial idea of a "brine body" migrating across a basin. The mechanics of migration are due to changes in influx of normal marine waters, rates of evaporation and changes in connecting channels. Scruton noted that the order in which evaporites are precipitated vertically cannot only be predicted from lagoonal studies but agree with the vertical series of sequences found in several formations. Scruton's vertical sequence includes a basal carbonate, then anhydrite, anhydrite and halite and finally halite. Some of his conclusions on deposition of evaporites are:

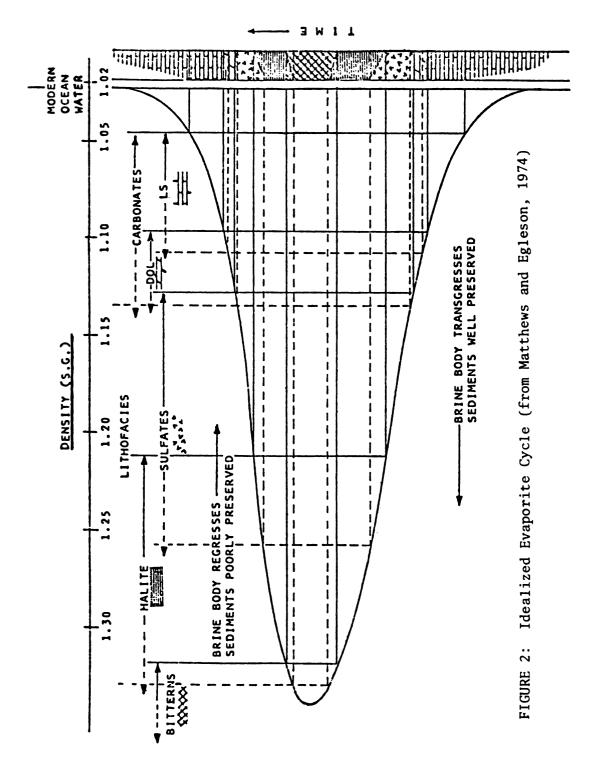
- Evaporites are deposited in restricted areas of the sea in which evaporation exceeds precipitation.
- 2. Circulation in the basin is established similar to that of a continuous influx of surface current of partly concentrated solution, counterbalanced by a continuous return flow at depth of concentrated brines to the sea.
- 3. High salinity is developed because of restrictions to brine escape. Under established equilibrium conditions, escaping brines return to the sea those salts that were not precipitated.
- 4. Restrictions to escape of the brine at depth are in part static (as physical barriers) and in part dynamic (as relationships between pressures due to hydrostatic head and density distribution, friction between opposite flowing currents and friction between the current and the channel bottom). Basin equilibrium is

- dynamic and is sensitive to fluctuations of excessive evaporation and amount of channel restriction.
- 5. The vertical sequence of beds which results from the salinity changes can be predicted approximately from experiments in seawater evaporation.

Briggs and Lucas (1954), in comparing texture and mineralogy of a core section of Salina salt decided the salt was deposited in annual cyclic layers, stating the deposition of separate anhydrite and halite laminae probably resulted from periodic influxes of seawater.

Dellwig (1954) studied the Salina salt to determine the manner of deposition, including the temperature of deposition of the salts and the origin of dolomite-anhydrite laminae. He determined the temperature of deposition of the salts was between 32-48° Centigrade. Alternating bands of clear and cloudy salts he attributed to temperature changes due to seasonal variations, and the dolomite-anhydrite laminae to be the result of the influx of normal marine waters.

Rickard (1966) researched hundreds of samples and gamma-ray logs of the Upper Silurian Salina Group in New York, Pennsylvania, Ohio and Ontario for stratigraphic relationships. He concluded that thick halite beds formed rapidly relative to the deposition of intervening rock layers, supporting the proposition that Basin floor subsidence occurs before the deposition of salt beds, to provide the storage capacity for thick beds of salt. His hypothetical depositional model suggests that salts formed in both shallow and deep water at rates 100 times faster than the rates of the intervening sediments.


Matthews and Egleson (1974) in a study of Potash salts in the Salina salt of the Michigan Basin, concluded that sea level fluctuation was the principal factor in controlling the evaporite megacycles; periods of lowest water over the basin rims are marked by widespread clastics within the evaporite sequences and that the thickness and relative purity of the lower A-1, A-2 and B salts are best explained by the inertia of a large brine mass found only in deep basins.

Matthews and Egleson's theory on evaporite deposition encompasses several points. The first point is that evaporite deposition is cyclic (Figure 2). They state that the early stages of a cycle are dominated by factors leading to an increase in salt concentration, while final stages are dominated by factors causing increasing dilution. The peak of the cycle is when salt concentration is at its highest and the most soluble mineral in an evaporite cycle is deposited.

Their second point is the theory of a transgressive/regressive brine body. They claim that minerals deposited in the early stages of an evaporite cycle are the result of a transgressing brine body, where increasing concentration gradients transgress the ocean floor. These early cycle minerals are usually well preserved as they are covered by higher concentrations of brine. Minerals of the later cycle are the result of a regressing brine body and are often poorly preserved as they tend to be covered by brines capable of redissolving the bottom sediments.

Third, Matthews and Egleson state that reversals or dynamic equilibrium conditions can occur at any point in an evaporite cycle only if reflux to open seas is present. In the absence of reflux, and if conditions of increasing concentration are maintained, the evaporite cycle must reach the eventual point of deposition of bitterns, regardless of basin depth.

Fourth, they conclude that radial or convergent inflow existed in the Michigan Basin (Briggs and Pollack, 1967). With convergent inflow, the densest brines occur at basin center. With radial flow, the densest brine will sink at the Basin center and transgress the ocean floor from the center outward to the rim. As concentration continues, these dense brine bodies will transgress across the

Basin floor from the center. As dilution conditions prevailed, as in the later stages of the evaporite cycle, the dense brine body would regress back across the Basin floor to the Basin center.

As a fifth point, they state that the midpoint of the evaporite cycle is likely to coincide with the lowest water stage over the Basin rim, providing clastics from exposed reef complexes and shelf areas to the evaporite sequence deposited.

For a sixth and final point, Matthews and Egleson state the degree of restriction in the Michigan Basin was controlled by eustatic changes in sea level. They claim a slight rise in sea level increased the influx of marine waters and permitted reflux currents to move out of the Basin during the time of the A-1 salt formation. This reflux of bittern brines out of the Basin caused the evaporite megacycle of the A-1 salt to reverse slowly to the point of halite deposition where it was trapped due to a rise in sea level that cut off the brine body from surface evaporation and isolated it, causing deposition to change from the A-1 salt to the A-1 carbonate. A lowering of sea level to that level that prevailed during the A-1 salt deposition ended the A-1 carbonate deposition as the body of trapped brine was again exposed to surface evaporation, resulting in deposition of the A-2 salts. Deposition of the A-2 carbonate followed under the same conditions as the A-1 carbonate, while the B salts began with trapped brines left over from earlier cycles, as did the A-2 salts.

Matthews and Egleson believe the trapped brines received considerable volumes of re-dissolved salts as the Basin subsided and salt beds around the rim were exposed to less concentrated surface waters and re-dissolved. They concluded the younger A-2, B, D and F salts contain a substantial portion of re-dissolved, second-generation halite, showing a slightly different chemical makeup by containing lesser levels of bromine.

Matthews and Egleson interpret their data to indicate a deep water origin of the A-1 salts, A-2 and B salts. They believed the Basin was at its deepest at the close of the Niagaran and became progressively shallower with the end of each evaporite cycle so that the D and F salts were basically deposited in a "filled" basin. They believed the thickness and relative purity of the halites in the lower salts suggest the slow, regular change of a large brine body while the evaporite megacycles younger than the A-1; the A-2, B, D and F salts, are represented by progressively thinner sequences; they appear to have cycled more quickly as the Basin filled and as the brine involved in each megacycle became smaller in volume.

SILURIAN HISTORY OF THE MICHIGAN BASIN

Early Silurian in the Michigan Basin began with a marine transgression from the north that deposited the Manitoulin Formation (Newcombe, 1933). Melhorn (1958) states that parts of the Basin underwent slight subsidence with the Battle Creek Trough connecting the Michigan Basin to the Illinois Basin across the southern shelf area through the Logansport Sag, while the Kankakee and Findlay Arches already existed as slightly positive elements that controlled and restricted circulation to the basin (Figure 1).

The Cabot Head Shale possibly originated from red and green muds that washed into the Michigan Basin from eastern sources through the Chatham Sag, or originated as detritus from uplift and erosion of Ordovician shales that were deposited along the axis of the Cincinnati Arch (Melhorn, 1958).

Middle Silurian Clinton Shales resulted when a slight increase in subsidence rates and deepening of marine waters over the southeast part of the shelf permitted influx of clay muds from the east (Melhorn, 1958).

The Niagaran began with deepening of the Basin and resubmergence of positive areas that had contributed to the Cabot Head Shale and Clinton Shales. The Battle Creek Trough was present as a link between the Michigan Basin and Illinois Basin, allowing water circulation. Light colored, fine textured fossilized carbonates indicate a normal marine environment. Small reef structures began to become more extensive and widespread on the Basin edges (Melhorn, 1958). As the Niagaran progressed, better development of reefal structures and shallowing of the seas occurred (Mesolella, 1975; Briggs et al., 1980). The shallowing seas were perhaps coincident with uplift of arches to the south. Marginal uplifts, reef growth, lowering sea levels and severance of the Battle

Creek Trough connection to the Illinois Basin marked the end of the Niagaran epoch and the resulting isolation and restriction of circulating seas set the stage for the deposition of the Salina Evaporites (Melhorn, 1958; Nurmi and Friedman, 1975; Briggs et al., 1980).

Upper Silurian Salina and Bass Islands deposition began with the deposition of carbonate muds and anhydrites in a gradually subsiding Basin (Dellwig, 1955). Periodic influxes of seawater occurred into the Basin from the east and northeast. Basin subsidence and isolation continued and saline conditions increased to the point where evaporite sequences were laid down, interrupted by periodic influx of normal marine waters causing deposition of carbonates in dominantly salt sections of the Salina Formation. Reef growth on Basin margins eventually ceased as conditions became too saline for reef growth and survival (Mesolella, 1975).

The close of the Salina deposition is marked by the cessation of subsidence and reinvasion of normal marine waters that led to the deposition of gray muds over the Basin, forming the G-unit shale. Final stabilization of the Basin is noted by the return to normal marine carbonates of the Bass Islands Formation (Melhorn, 1958).

MATERIALS AND METHODS OF INVESTIGATION

Materials used in the study consisted of oil and gas well sample cuttings, descriptive records and geophysical well records available from the Michigan Geological Survey.

Over 150 oil and gas wells were researched for this study. The oldest record analyzed was a well drilled in 1962 while the remaining wells all date from the late 1960's to 1982, providing new data that was not available to earlier researchers.

The method of investigation for this study can be separated into two areas: geophysical log "picks" for formation tops and elevations, and determination of lithology.

Formation Tops and Elevations

The choice of formation tops is that of the author but basically follow those choices commonly accepted and used by the Michigan Geological Survey. These tops also generally correspond to those picks used by Ells (1967) and Lilienthal (1978). Constant cross-checking and cross-correlation of tops from one well to another allowed for consistency in picks across the Basin. Areas of difficulty in formation picks were encountered, especially in the shelf area and to the southwest of the Basin where the Salina truncates very abruptly.

Once formation tops were determined, elevations and thickness of each unit of the F-salts were calculated for structure and isopach maps. Elevations were corrected to sea level as sea level was used for the common reference datum.

Determination of Lithology

The second area of analysis, that of determining lithology, was not as straightforward. The original research plan called for a comparison of some gamma-ray-neutron logs with any available core/cutting samples and descriptive logs to help determine the meaning of mechanical log deflections and reinforce generally accepted log interpretations.

The initial step in this phase of the study consisted of an examination of well cuttings and descriptive log comparisons. Cutting samples of three wells were obtained from the Michigan State University Geology Department. These cuttings of the F-salt sequence were from well #2 (Emery #1 PN23849), well #57 (Zischke #1 PN22348) and well #66 (Sattelberg #1 PN23890). These rotary cuttings were examined under the microscope and compared with the descriptive logs of each well. Initial comparison of the examined cuttings and the descriptive logs of the three wells show a very close correlation between the author's analysis and descriptive logs. The degree of correlation can be seen in Figure 3 which graphically compares the two analyses for well #2, the Emery #1. The comparison of the two remaining wells, well #57 and #66, are not shown as they essentially are the same as the comparison for well #2. However, as also can be seen, the descriptions, while in agreement, are not detailed enough to correlate with available geophysical logs with any great amount of confidence.

The second step was a comparison of lithologies for well #4 (State-Foster #1 PN25099). This well was lithologically analyzed by Ells (1967), based mainly on geophysical log curves. Ells' interpretation was compared with the descriptive log for the well (Figure 4). In this instance, while close correlation was found in the two wells, Ells' interpretation showed much more accurate detail than the descriptive log for the well. It should be kept in mind that in the results shown in Figures 3 and 4 specifically, and as a rule generally, cable tool

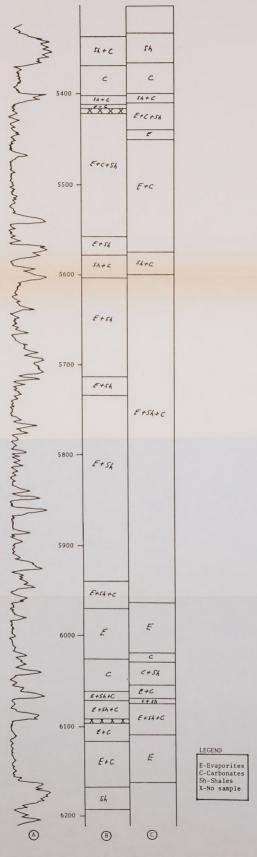


FIGURE 3: Comparison of (A) - Gamma-Ray Curve, (B) - Descriptive Log and (C) - Sample analysis by B. Shirey from microscope examination Well 2-Emery 1 (PN23849)
Salina F-salt Section

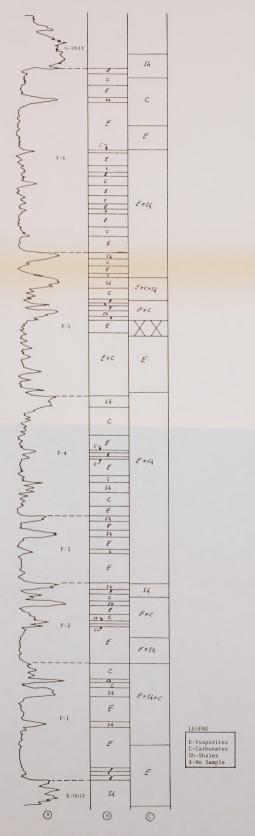


FIGURE 4: Comparison of ♠-Gamma-Ray Curve, №-E11s' (1967) lithologic interpretation based on Geophysical Curve Analysis and ♠-Descriptive Log

Well 4-St.-Foster 1 (PN25099) Salina F-salt Section samples are usually more accurate than rotary samples because of greater downhole contamination in the latter. The final phase consisted of an analysis of various kinds of geophysical logs that would help determine lithology. In this phase, it was determined that the best interpretation could be based on a combination of the Compensated Neutron-Litho-Density Log which contains the Gamma-Ray, Bulk Density and Neutron Porosity Curves and the Borehole Compensated Sonic Log, which contains the Gamma-Ray and Sonic Curves. In determining this, the various curves were interpreted for their responses in areas of definitely known lithology for evaporites, shales and carbonates. Areas chosen in the stratigraphic column for the desired lithology were the Bell Shale of the basal Traverse of the Middle Devonian for shales and the Upper A-2 Evaporite-A-2 Carbonate-lower B Evaporite segment of the basal Salina-Niagaran of the Middle Silurian for the evaporite and carbonate sequences (Figure 5).

The Bell Shale was chosen for its consistent lithology, as described by Lilienthal (1978):

"The Bell Shale...is consistently a shale where present...is widespread...it is generally 60-70 feet thick in the central basin area but thins to the north where it eventually pinches out."

The upper A-2 Evaporite - A-2 Carbonate - B Evaporite segment was also chosen for its consistent lithology, which is described by Ells (1967):

"The A-2 Evaporite...is nearly a pure salt more than 475 feet thick in the deeper part of the basin...the A-2 Carbonate is a widespread formation whose lithologic characteristics...are composed of dark to light-colored limestone, dolomite or both. The B Evaporite is a widespread formation...the unit is over 475 feet thick in the deeper part of the basin...the lower part of the B Evaporite is a clean salt, confined to the inner part of the reef complex."

These two sequences, the Bell Shale and the A-2 Evaporite through B Evaporite section, were analyzed in well #147 (Brandt #1-34 PN34790) and displayed in Figures 6 and 7. The Brandt #1-34 was chosen because of the

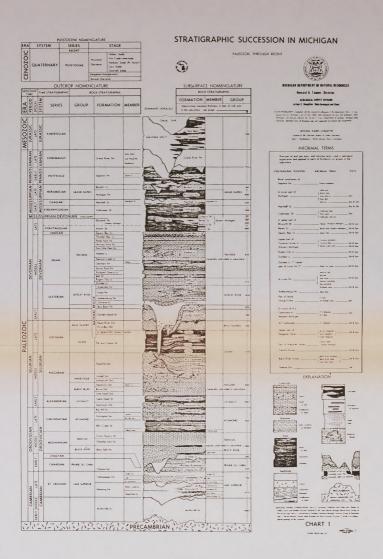


Figure 5

completeness of the geophysical logs that were run on the well. Not only are a Compensated Neutron-Litho-Density Log and Sonic Log available, but also a Sample Log and a Descriptive Log, allowing a thorough and complete analysis of not only the Bell Shale and the A-2 Evaporite through B Evaporite sections, but the F-salts as well.

The Bell Shale and A-2 Evaporite through B Evaporite sequence in the Brandt #1-34 show very distinct log curve responses that can be used in other wells to determine lithology (Figures 6 and 7). Once the geophysical log curves were analyzed for the Brandt #1-34, the lithology of the F-salts was compared with the Sample Log of the Brandt #1-34 which was prepared by a professional logging company (Figure 8). The lithologic analysis, based on geophysical curve interpretations, compares very closely to the actual Sample Log, with only minor areas of differing lithologic interpretation.

To summarize, in comparison of the geophysical log interpretation to the professional sample interpretation, the geophysical log analysis for lithology shows relatively good comparison with the sample log except for one anomalous situation in the column (Figure 8). This anomaly could be due to separation and partial settling of the cuttings during transport to the surface; possible human error in sample collection, bagging or due to possible contamination of samples while down-hole. In all other respects, in even the most optimum conditions of sample description, geophysical log interpretation for lithology would appear to be as good as, if not more satisfactory for, lithologic interpretations. This is not to say that geophysical logs should entirely replace sample logs, but in view of the difficulty in obtaining accurate and true samples as well as the time to run samples, it has been shown that geophysical log interpretation without samples can result in just as accurate a lithologic description as using a sample log.

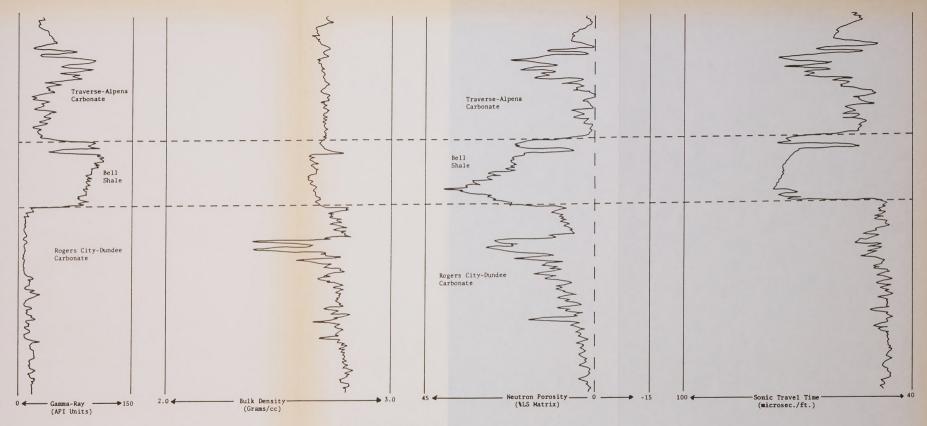


FIGURE 6: Shale Reference
Bell Shale
Well 147 - Brandt 1-34 (PN34790)

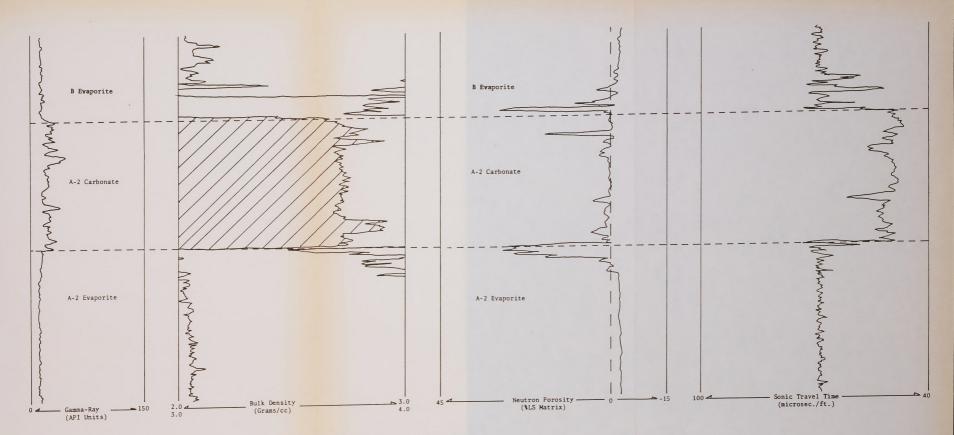
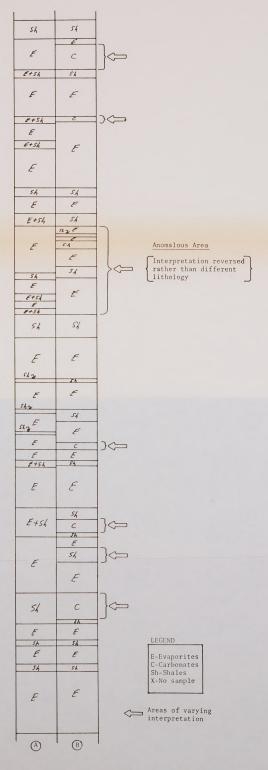
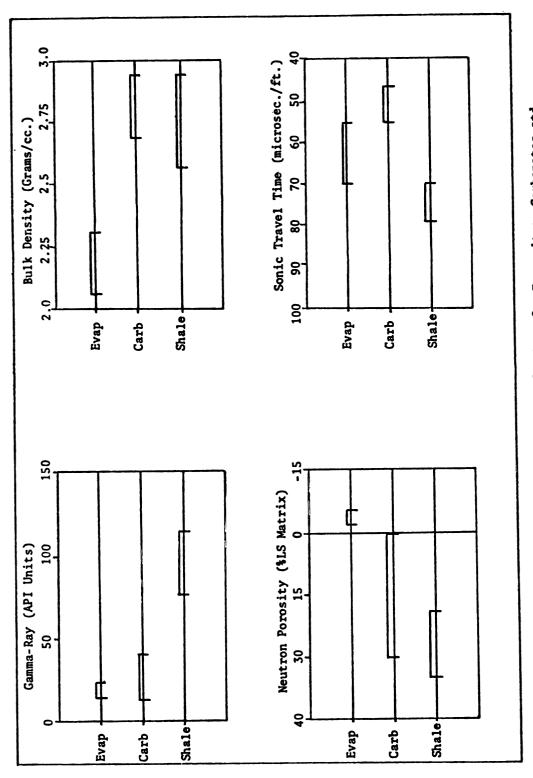
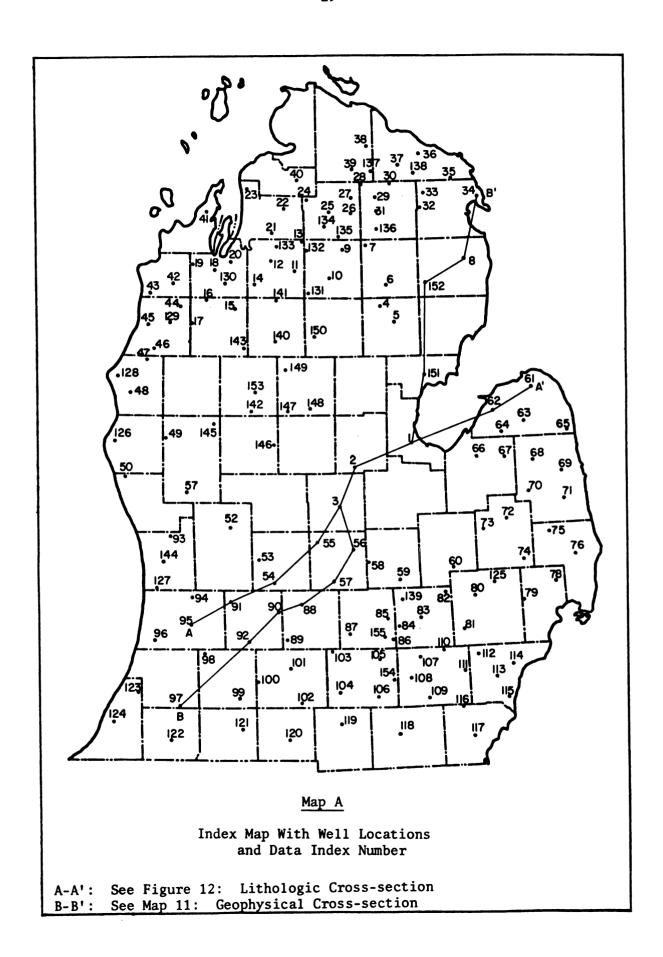


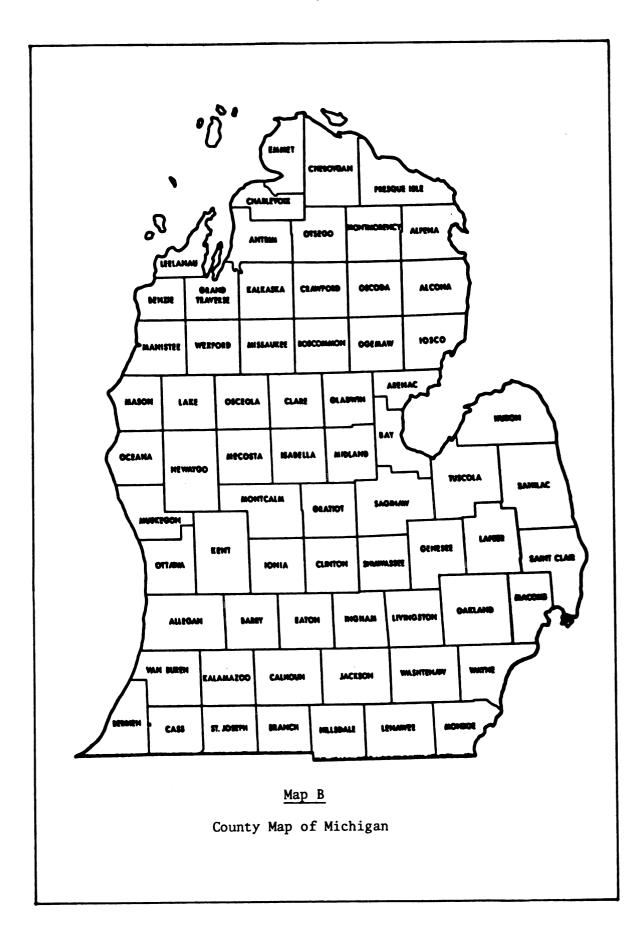
FIGURE 7: Evaporite-Carbonate Reference
A-2 Evaporite-A-2 Carbonate-B Evaporite
Well 147 - Brandt 1-34 (PN34790)




FIGURE 8: Comparison of (A)-Sample Log prepared by Professional Logging Company and (B)-Interpretation by B. Shirey based on Geophysical Log curve analysis

Well 147 - Brandt 1-34 (PN34790) F-salt Section

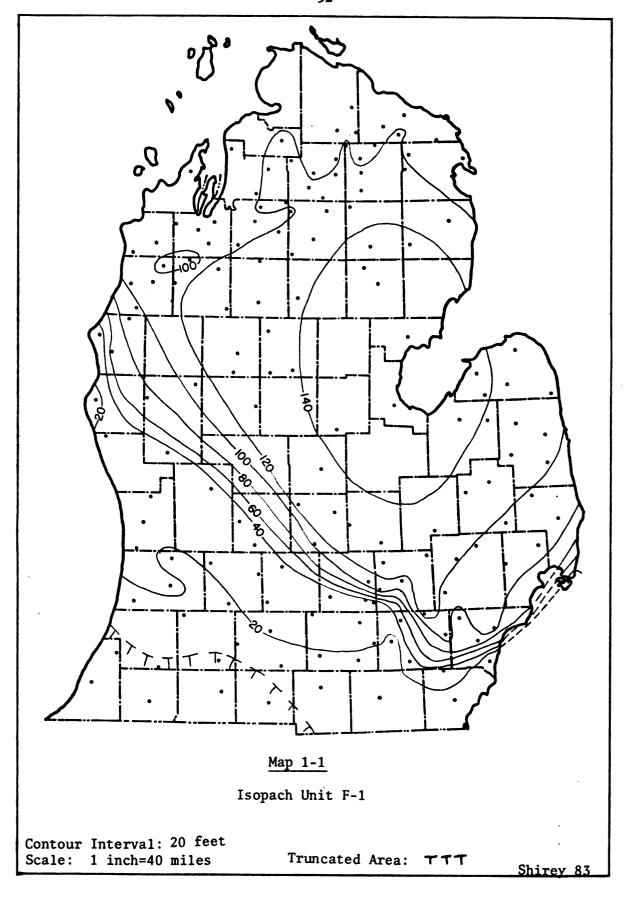

Comparison of Geophysical Curve Responses to Lithology

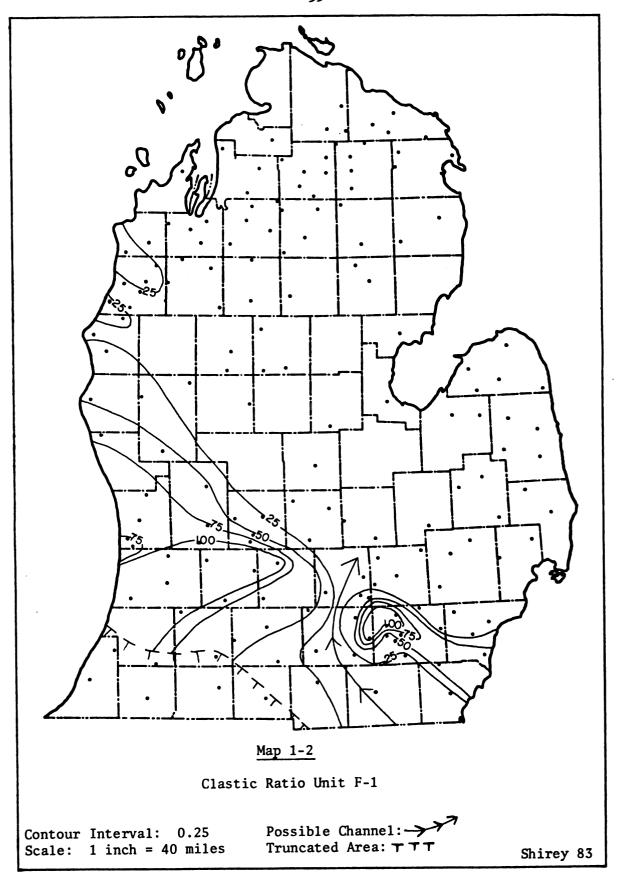

The various geophysical logs of the Brandt #1-34 were analyzed for their responses, with Figure 9 summing up the curve characteristics for evaporites, carbonates and shales. From these data, it can be seen that the use of the Gamma-Ray, Bulk Density and Sonic Curves usually was enough to identify the lithology of the formation, because the responses of the three curves were usually quite different enough in their reaction to the three different lithologies to clearly show a change in lithology from evaporites, shales and carbonates. Use of the Neutron Porosity curve was not as helpful as the other curves, perhaps because the Neutron Porosity Curve is not designed to detect inherent properties of the different lithologies like the other three curves are designed to do.

Once the geophysical logs were interpreted as to their various lithologies, each unit of the F-salts was analyzed as to the total amounts of evaporites, carbonates and shales present. Once this was completed, clastic ratio maps were prepared for each of the six units of the F-salts (the amounts of shales compared to the amounts of evaporites plus carbonates). These data may be compared to an isopach map prepared for each of the F-salt units.

Graphic comparison of ranges of values for Evaporites, Carbonates and Shales curve responses for various geophysical logs for well 147. FIGURE 9:

RESULTS AND DISCUSSION


F-1 Unit


The F-1 Unit (Map 1) is the basal sequence of evaporite deposition of the F-salts. In the depocenter area, the F-1 Unit is composed of two thick evaporite beds separated by a carbonate bed. The upper evaporite bed grades into thin carbonate and shale beds before encountering the basal evaporite bed of the F-2 Unit.

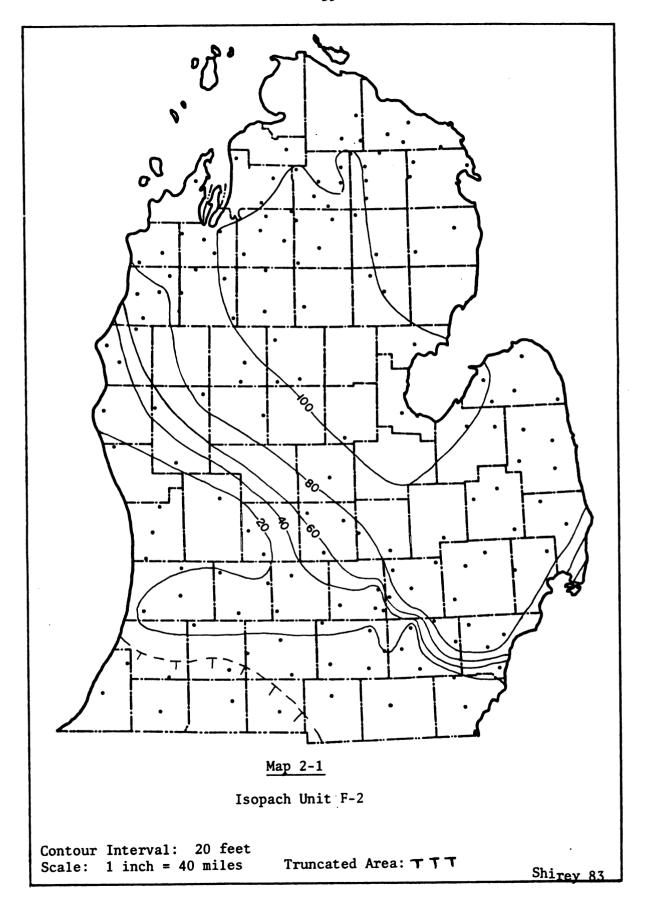
The F-1 Unit is comprised of dominant non-clastic evaporites in the Basin interior and grades to the southwest into a dominant clastic shale and non-clastic carbonate shelf zone before ending in the southwest corner of the state.

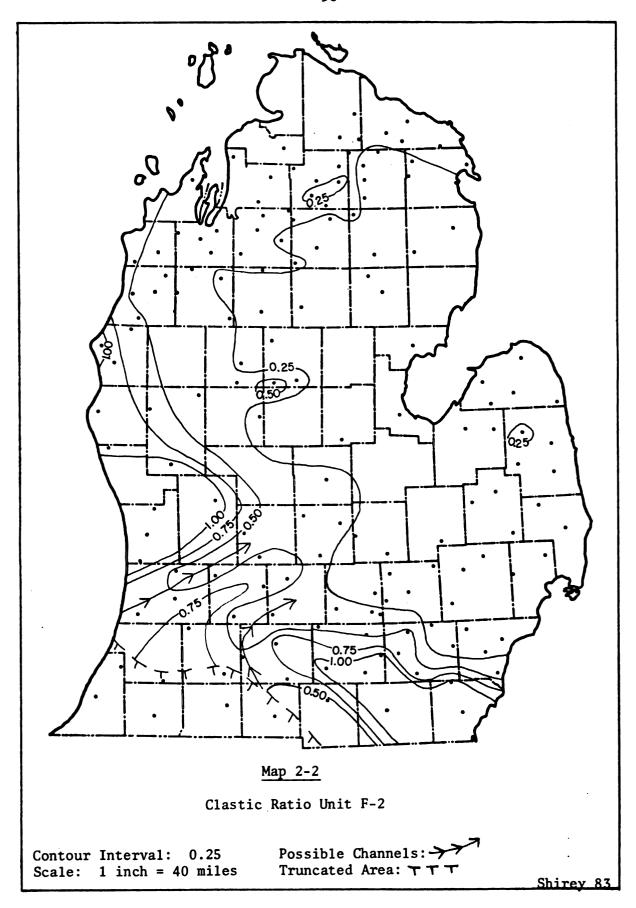
The depocenter of the F-1 Unit is located in the area of Arenac County where 159 feet of the Unit are recorded in well #151. Moving southwest from the depocenter, the F-1 Unit thins abruptly from 120 feet to 40 feet, marking the location of a hinge line trending in a southeast direction from Mason County to Wayne County. Coinciding with the hinge line, the lithology of the F-1 Unit changes from a non-clastic evaporite interior to a clastic shale and non-clastic carbonate "shelf" zone directly southwest of the hinge line. This shelf area is continuous to the southwest until the F-1 Unit ends abruptly in the southwest corner of the state.

The clastic ratio map of the F-1 Unit appears to indicate the presence of a possible channel across the shelf zone in the area of Hillsdale, Jackson, Lenawee and Ingham counties, where a zone of low-clastic sediments is present. This channel possibly provided a connection to marine areas exterior to the Basin and allowed an exchange of marine waters between the Basin and other marine environments.

Zones of high-clastic shale are present in the southeast area of the Basin in Wayne and Washtenaw counties and also in the southwest of the Basin in the areas of Allegan and Barry counties, possibly indicating influence from the Findlay and Kankakee Arch systems.

Possible sources across the surrounding Basin frame complex may be distant sources such as the Appalachians, with shales brought into the Michigan Basin through various sags and inlets present in the frame complexes.

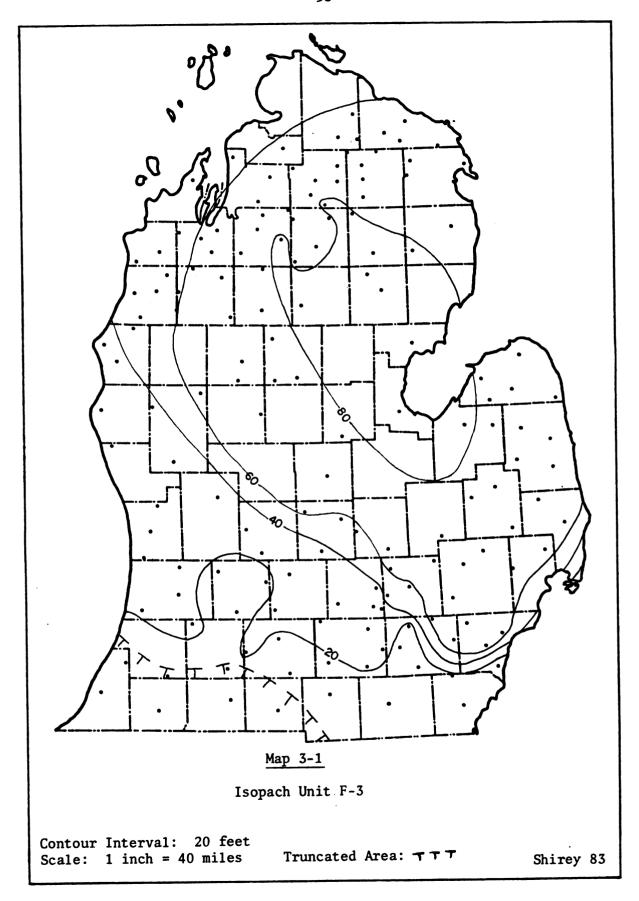

F-2 Unit

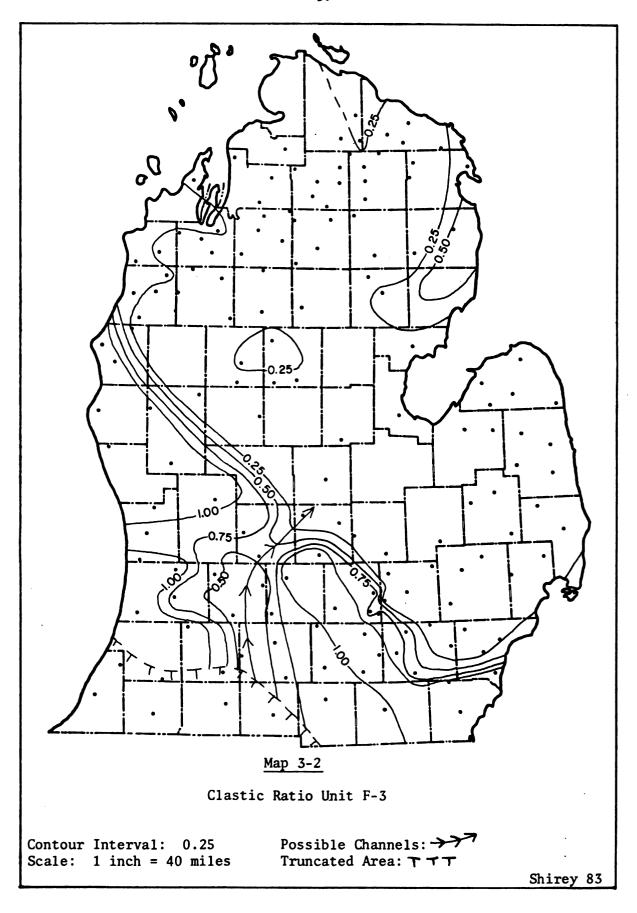

The F-2 Unit (Map 2) is the second sequence of evaporites among the F-salts. In the depocenter area, the F-2 Unit is comprised of a major basal evaporite sequence that grades into a shale and carbonate series of beds toward the top of the unit before grading into the basal evaporite of the F-3 Unit.

The F-2 Unit, like the F-1 Unit, is comprised of dominant non-clastic evaporites in the Basin interior and grades to the southwest into a dominant clastic shale and non-clastic carbonate shelf zone before ending in the southwest area of the state.

The depocenter of the F-2 Unit is located in the area of Bay County where 110 feet of the formation is present in well #1. Moving southwest from the Basin center, the F-2 Unit thins sharply from 80 feet to 20 feet, delineating a hinge line located in the same area as the hinge line for the F-1 Unit. This hinge line again denotes a change in lithology, showing an increase in clastics onto the shelf area from the dominant non-clastic evaporites of the Basin interior.

The clastic ratio map of the F-2 Unit appears to indicate possible channels across the shelf area, possibly providing a connection to marine areas outside the Basin for exchange of water into and out of the Basin. Zones of high shale content, as denoted by the high value of the clastic ratio, are present in the southeast corner of the shelf area in Monroe, Washtenaw and Jackson counties.

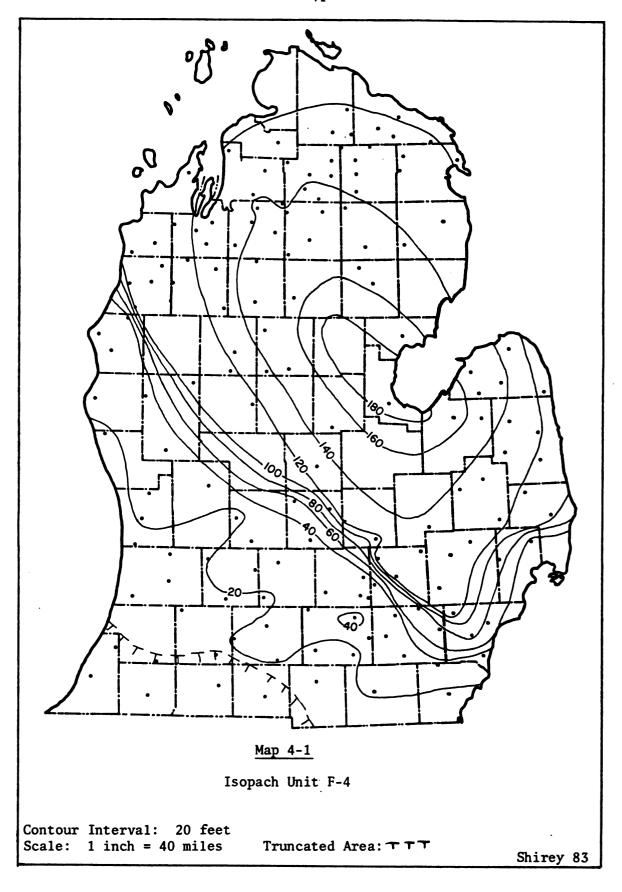

These shale areas may indicate an influence off the Findlay Arch and/or the Clinton Inlet and Chatham Sag (Figure 1), which might have introduced fine clastics from the Appalachians. Another area of clastic shales is present in the west edge of Michigan in the Muskegon, Ottawa and Kent county area, possibly indicating influence of the Wisconsin and Kankakee Arch complex to the west and southwest of the Basin.

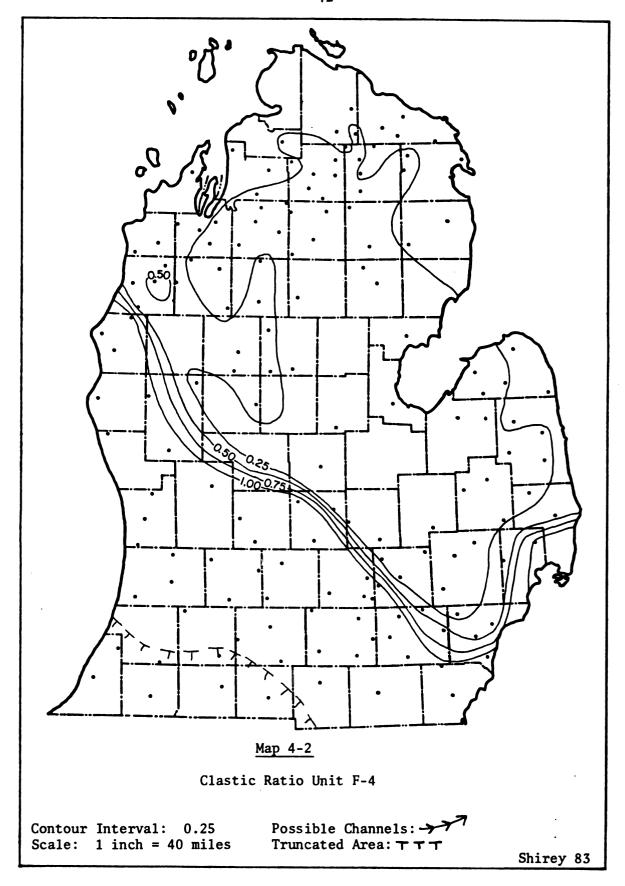

F-3 Unit

The F-3 Unit (Map 3) is the third sequence in the F-salt formation. As in the two previous units, the F-3 Unit in the Basin center is composed of a thick basal evaporite bed, grading upward into beds of carbonates and shales before encountering the basal evaporite of the F-4 Unit.

The depocenter of the F-3 Unit is centered in the area of Arenac County where 90 feet of the F-3 Unit is recorded in well #151. Moving to the southwest from the Basin center, the F-3 Unit grades into a shelf area of clastic shales and non-clastic carbonates. The hinge line of the F-3 Unit is located in the same area as the hinge line of the previous units. However, the abrupt thinning of the F-3 Unit is not as noticeable because the F-3 Unit comprises the thinnest sequence of the F-salts and the location of the hinge line is denoted only by the thinning of the Unit from a thickness of 60 feet to 40 feet. As in units F-1 and F-2, the hinge line denotes a change in lithology from the evaporites of the interior to a shelf lithology of shales and carbonates.

The clastic ratio map of the F-3 Unit appears to delineate a possible channel across the shelf area in the area of Ionia, Barry, Kalamazoo and Calhoun counties, where a low-clastic zone is outlined. As in previous units, high clastic shale zones are present in the southeast and southwest areas of the Basin, possibly indicating an influence from the Findlay and Wisconsin-Kankahee Arch complexes.


F-4 Unit

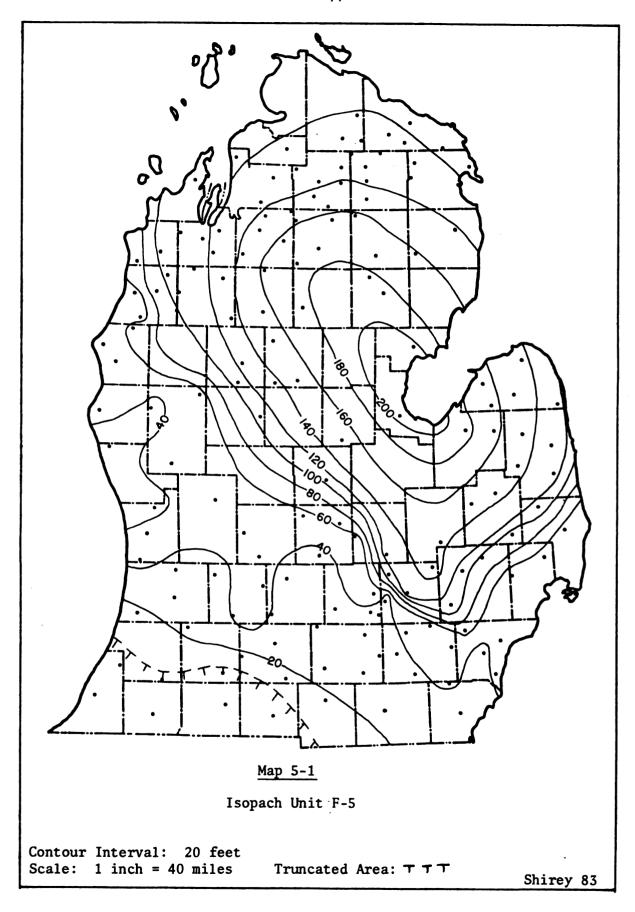

The F-4 Unit (Map 4) is the fourth Unit of the F-salts. In the Basin center, the F-4 Unit is a sequence of two major evaporite beds, separated by carbonates. The lower half of the F-4 Unit is comprised of alternating zones of thick evaporites and thin carbonates. The upper half of the F-4 Unit is comprised of a thick bed of evaporite which grades into carbonates and shales before encountering the basal evaporite of the F-5 Unit.

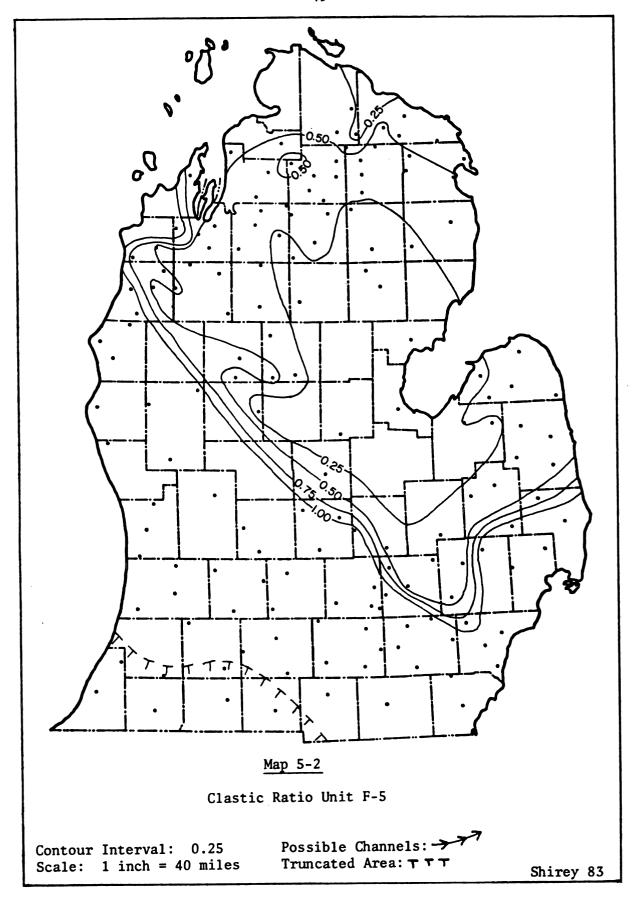
The depocenter of the F-4 Unit is located in the area of Bay County where 193 feet are found in well #1. Moving southwest from the Basin interior the F-4 Unit thins from 120 feet to 40 feet, over the hinge line, which lies slightly more to the northeast than the hinge lines of the previous units. Again, the hinge line marks a change in lithology from the interior non-clastics (evaporites) to the shelf clastics. In the case of the F-4 Unit, the shelf lithology is one of dominant shales, as can be seen in the clastic ratios.

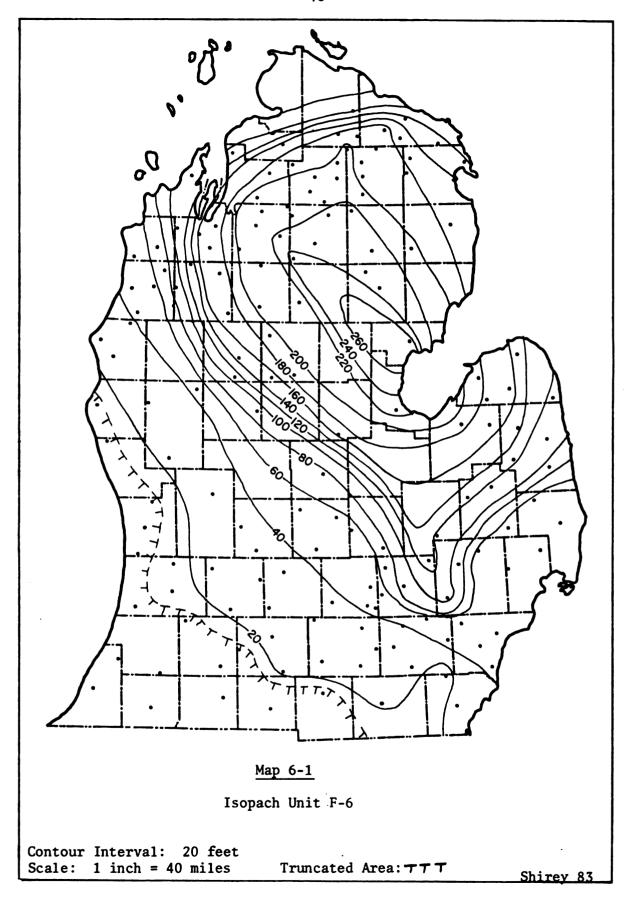
The clastic ratio map of the F-4 Unit fails to indicate any channels present across the shelf area as in the previous units, indicating that possibly no channel connections were present during this time. In the F-4 Unit, the area of clastic shale zones encompasses the entire shelf area, denoting massive widespread shales all through the shelf. This change to a massive shale shelf environment could possibly be due to a change in tectonic activity along the Findlay-Kankakee-Wisconsin Arch complex with increased erosion to provide increased shale content; or a lowering of sea level resulting in exposure and erosion of outlying areas.

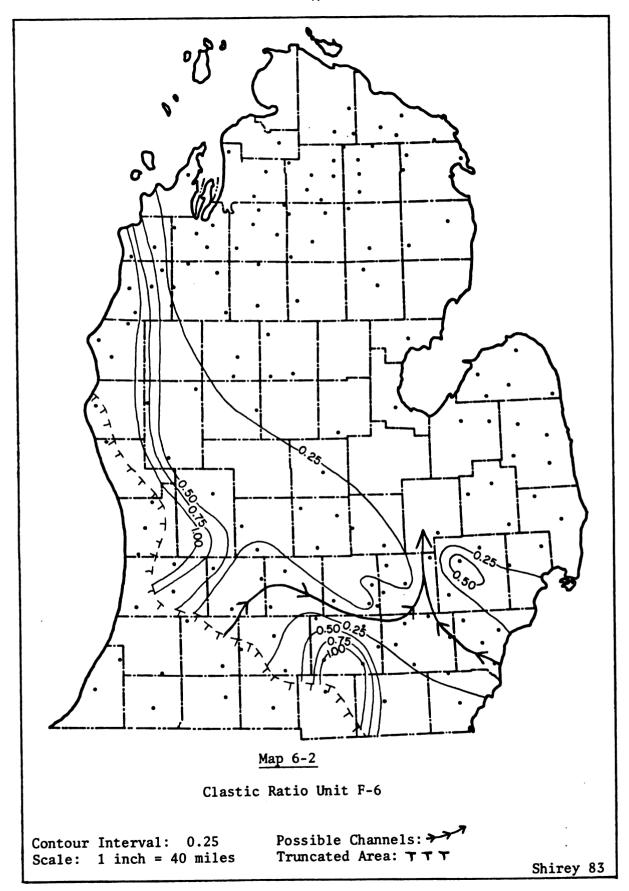
The massive shales on the shelf area and apparent lack of any channels across the shelf may be indicative of a lower sea level and an increasingly isolated depositional environment which may account for the increased thickness of deposition as compared to the previous three units (Figure 11).

F-5 Unit


The F-5 Unit (Map 5) is the fifth and next-to-last sequence of the F-salts. The F-5 Unit in the depocenter area is composed of a thick basal evaporite sequence that contains several thin streaks of carbonates and grades upward into thinner evaporites, carbonates and shales before encountering the basal evaporite of the F-6 Unit.


The depocenter of the F-5 Unit is located in the area of Arenac County where it attains a thickness of 206 feet in well #151. Moving to the southwest from the Basin center the F-5 Unit thins gradually from 206 feet to 140 feet before thinning abruptly to 60 feet, indicating a hinge line located even farther to the northeast than any previous unit. The hinge line again separates the evaporites of the Basin interior from the clastic shelf sediments. As in the F-4 Unit, the clastic ratio indicates the shelf area to be a widespread shale lithology.


The clastic ratio map of the F-5 Unit, as was the case in the F-4 Unit, fails to indicate the presence of any likely channels across the shelf area. The re-entrants along the 40 foot isopach pose a question regarding the possibility of channel development. It should be noted, however, that the 20 foot isopach does not reflect the same re-entrants. As in the F-4 Unit, the area of clastic shale zones encompass the entire shelf area. This massive shale, like the F-4 Unit, may be indicative of the same conditions and depositional environment as existed during the F-4 Unit.


F-6 Unit

The F-6 Unit (Map 6) comprises the uppermost and last unit of the evaporites of the Salina Group. In the Basin interior, the F-6 Unit is composed of two extremely thick evaporite beds separated by a thin shall bed. The upper evaporite bed is topped by a thin shall that separates the upper evaporite bed

from an overlying carbonate bed, which in turn is topped by a thin anhydrite bed before yielding to the shales of the G-Unit.

The depocenter of the F-6 Unit is located in the Arenac County area where the F-6 Unit attained a recorded thickness of 266 feet in well #151. This sequence is by far the thickest unit of all the F-salt Units. Moving to the southwest from the depocenter, the F-6 Unit thins gradually from 266 feet to 140 feet before thinning to 80 feet is a short distance, denoting the hinge line, which is located even farther to the northeast than the previous units. Again the hinge line denotes a change in lithology from the evaporites of the Basin interior and the shelf sediments. However, in the case of the F-6 Unit, the shelf lithology is not one of massive and widespread clastic shales like units F-4 and F-5, but is more like the shelf lithology of units F-1 through F-3, with a mixture of clastic shales and non-clastic carbonates.

The Clastic Ratio Map of the F-6 Unit appears to delineate a possible channel or channels across the shelf zone in the areas of Wayne, Washtenaw and Livingston counties as well as in the areas of Jackson, Eaton, Barry and Calhoun counties, where a trend of low-clastic (high carbonate) is present, providing for influx of marine waters from outside the Basin. Again it is possible that the "trough" shown on the isopach map in Washtenaw and Livingston counties may indicate the presence of a scour channel. High levels of shale are present in the shelf area, being mainly in the Lenawee, Hillsdale and Jackson county areas in the south and along the western shoreline of Michigan ranging northward from Ottawa County to Benzie County. Again, these shale zones may indicate influence from the Kankakee and Wisconsin Arch complex, respectively.

Also of note is the expanded area of the southwest part of the state where the F-salts have been eroded. This area extends up the western side of the state and into Oceana County.

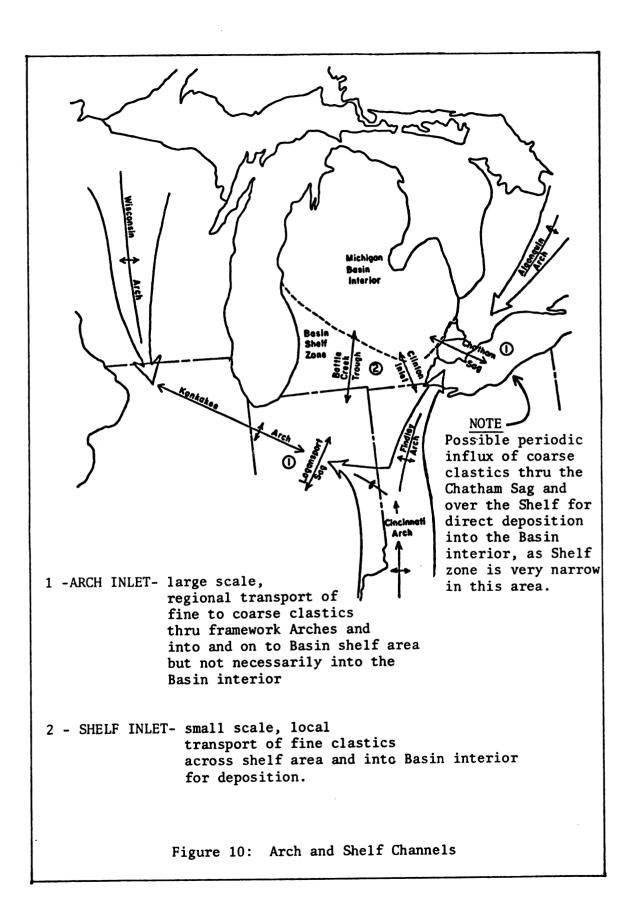
A note of interest in the F-6 Unit is the presence of a widespread and consistent thin anhydrite that tops the F-6 Unit. This anhydrite is present in all the wells used in the study that encompasses the Basin interior, except for well #151. This well is the closest to the depocenter of the Salina Basin and has the deepest and thickest column of recorded F-salts. The thin zone of anhydrite that normally tops the F-6 Unit is not present in the well, but is replaced by a 25 foot thick zone of salt. This salt zone is areally restricted to the depocenter and probably is evidence of a last remnant brine body that was confined to the deepest part of the Basin, before a return to a more normal marine depositional environment of the G-Shale and Bass Islands carbonates.

Observations on F-Salt Unit Maps

Review of the F-salt unit maps leads to several observations regarding the Basin shelf area and possible channels.

- Low clastic, pronounced channel ways across the shelf area and into the Basin interior.
- 2. High clastic areas in the southwest and southeast, possibly indicating effects of channels leading into the shelf areas but not necessarily into the Basin interior. This could possibly represent influence of inlets/sags through the surrounding frame structure, carrying eroded frame structure clastics into and onto the shelf areas.
- 3. Thick isopach zone in Livingston and Oakland County area possibly reflects affects of the Chatham Sag.
- 4. Some isopach reflections in the southwest possibly reflect channel ways from surrounding frame structure.
- 5. In the scientific literature, some channel sag structures are indicated by high clastics (Kempany, 1976; Burns, 1962, on the

Chatham Sag) while other channels are indicated by low clastic sediments (Melhorn, 1968, for the Battle Creek Trough; Briggs et al., 1980, for the Clinton Inlet).

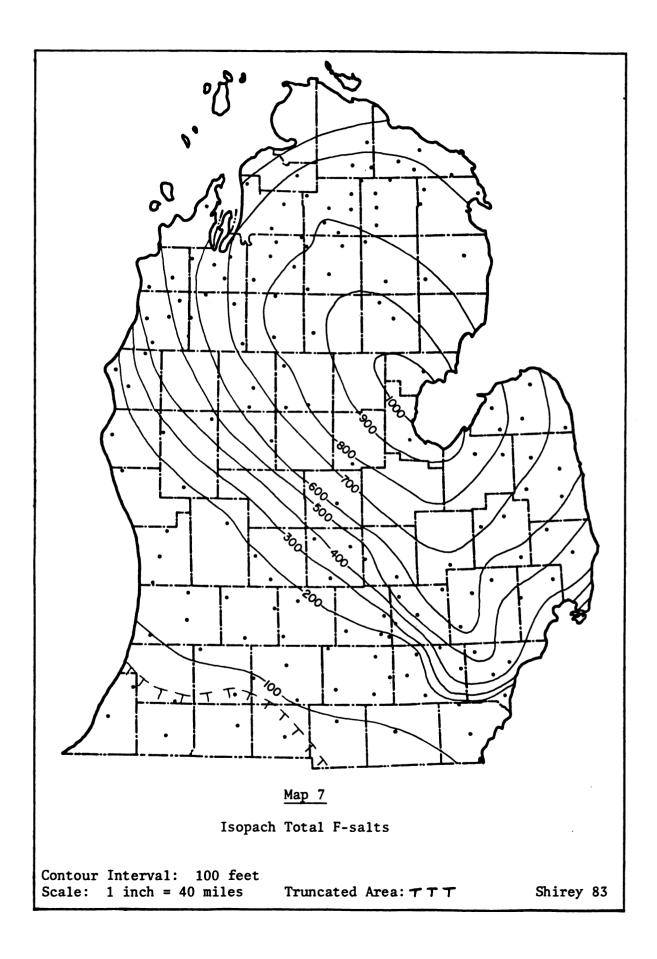

Possible Explanations of Observations

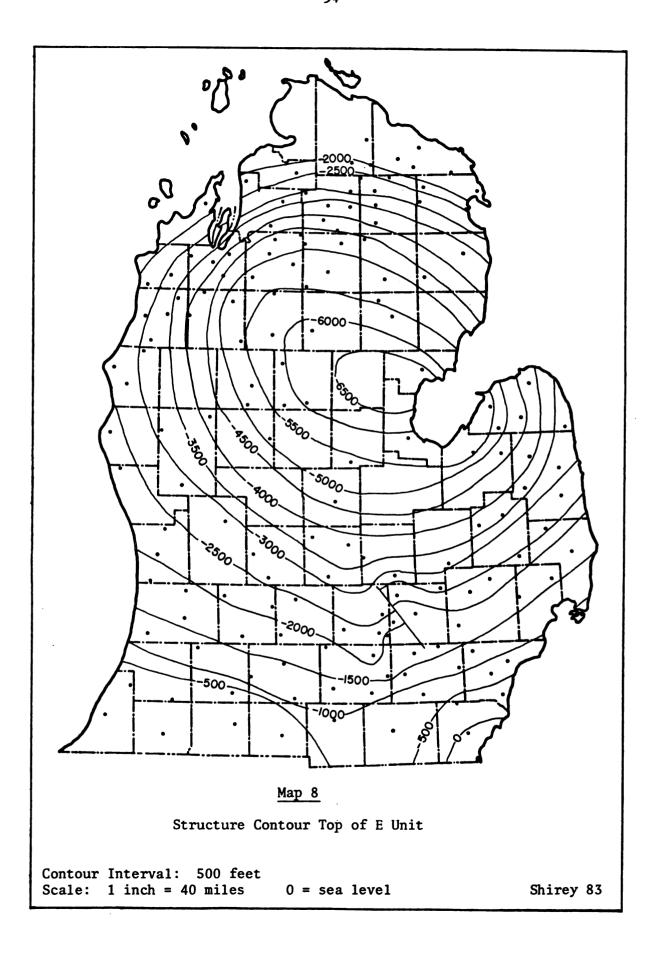
A review of the preceeding observations leads to the speculation on the possibility of two different types of inlets into the Michigan Basin area (Figure 10).

The first type of inlet is called the "Arch Inlet". This type of inlet is represented by such structures as the Chatham Sag and Logansport Sag and is represented in some studies by the presence of high clastics (Kembany, 1976; Burns, 1962; Gardner, 1974). These Arch Inlets connect the Michigan Basin to exterior environments by sags through the surrounding Arch complex, providing areas for clastics to cross the Arches and enter the Basin. These inlets are of a large scale, long-lasting existence, structurally evident and long lasting in their effects and influence.

The other type of inlet is called the "Shelf Inlet". This type of inlet is represented by the Battle Creek Trough (Melhorn, 1958) and the Clinton Inlet (Briggs and Gill et al., 1980) and are characterized by the presence of low clastic sediments. These inlets are of a smaller scale than the Arch Inlets and are confined to the Basin shelf areas, not extending through the surrounding Arch system. The affects and influences on the Basin are much less and smaller scale. These channels are shallower than Arch Inlets, are not as long lived or structurally as evident. These channels provide access across the shelf and into the Basin interior, unlike Arch Inlets which may not provide access directly into the Basin interior but only onto the Basin edge (Figure 10).

It is evident that more data is necessary before any opinions more definite than speculation can be made.


Isopach Map - Total F-salt

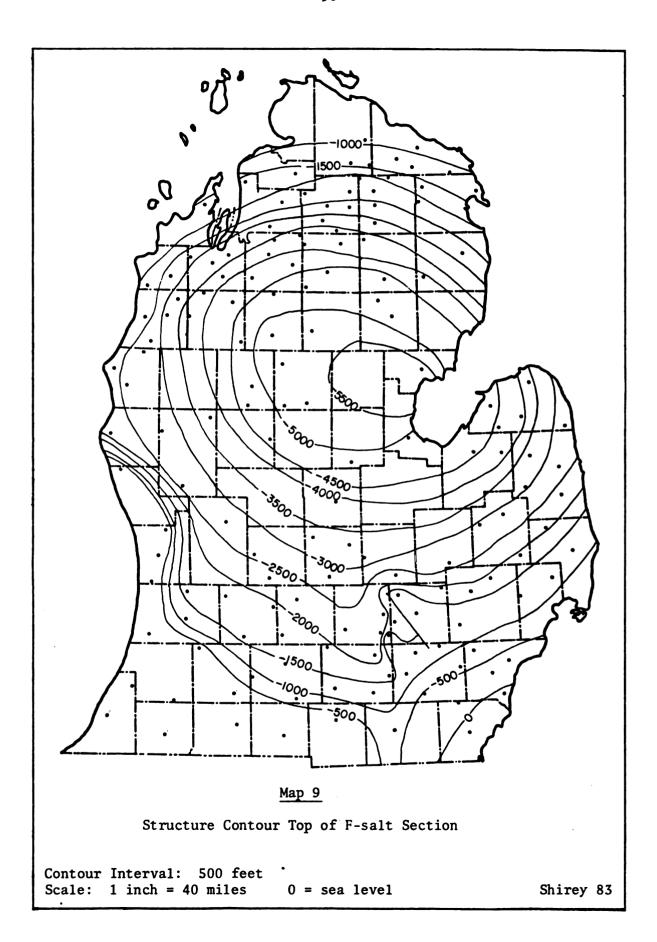

Map 7 represents the total combined thickness of the entire F-salt section, comprising all six of the units that make up the F-salt section.

The map indicates an elongate, northwest-southeast trending depression, ranging from a thickness of 0 feet in the southwest to 1000 feet located in the area of Arenac County where the depocenter of the F-salts is located. Other features of the map are a flat wide area in the southwest of the Basin, between the 100 and 200 foot contours that represents the shelf platform area of the Basin. Another area is the zone of thickening sediments in the southeast area of the Basin, centered in the area of Livingston County and trending in a southsoutheast direction, possibly indicating influence from the Chatham Sag. In all respects, the map indicates a depositional and structural pattern considered typical for a basinal structure. In the extreme southwest area of the basin, in the areas of Van Buren, Cass, Kalamazoo and St. Joseph counties, the F-salt formation disappears completely and abruptly upon truncation and erosion of the F-salt formation. This area was studied by Ells (1958) who concluded that the Salina F-salt section in this area was truncated due to post-depositional erosion of sediments. Ells believed the causes of the erosion could have been due to lower sea levels after the sediments were deposited or movement of the beds and possible uplift due to movement in the basement structure of the area.

Structure Contour on Top of the E-Unit

The structure contour map on top of the E-Unit (Map 8) indicates the Michigan Basin to be a slightly elongate, northwest to southeast trending depression, centered in the Arenac-Bay County area. Relief on the Basin ranges from a high of +351 feet above sea level to a low of -6549 feet below sea level in the basin depocenter, representing a slope of about one-half a degree.

The only structure that shows a departure from the elongate basinal shape of F-salt time is the presence of the Howell and Lucas-Monroe Anticlines in the Livingston County area. Local study of this feature has been done (Paris, 1977) showing the relationship of the structures to the Basin sediments.


Structure Contour on Top of the F-Salts Unit

The structure contour map on top of the F-salt Unit (Map 9) shows very little change in the basin structure as represented by the E-Unit structure contour map. The structure of the Basin is still an elongate depression, trending northwest to southeast. The Howell and Lucas-Monroe Anticlinal features are still present. Relief on the F-salt Unit top ranges between +485 feet above sea level to -5549 feet below sea level in the depocenter, giving a slope of one-half a degree.

Chart of Depocenter Thickness

A chart of depocenter thicknesses (Figure 11) was constructed to help in further analysis of the Basin. This chart indicates continually thinner sequences of deposition for the F-salt units F-1 through F-3, then abruptly reverses and indicates continually thicker sequences of deposition for the units F-4 through F-6.

If one agrees with the theory supported by Rickard (1966) that Basin subsidence preceeds deposition in order to provide the necessary storage space for the rapidly deposited evaporites, then Figure 11 seems to indicate that for the F-salt units F-1 through F-3, the Michigan Basin was a relatively stable basin, slowly filling as the progressively thinner deposits of the early F units indicate. Approximately at the mid-point of F-salt deposition, between the F-3 and F-4 units, the Basin entered a period of subsidence as the progressively thicker beds of the F-4 through F-6 units may indicate.

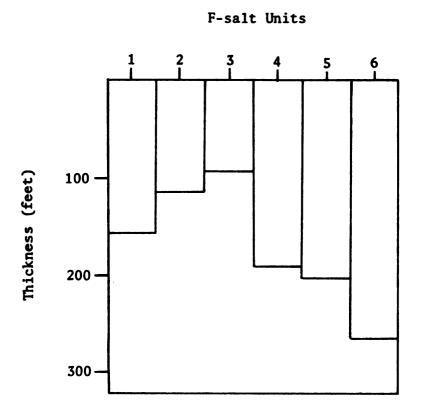


FIGURE 11: Thickness of F-salt Units at Depocenter

An alternative theory may be one that is more in line with the ideas set forth by Matthews and Egleson (1974). In this case, the early F-salt units, F-1 through F-3, may represent an environment of a "sediment-starved" Basin. In this case, while subsidence continued, maximum deposition was never obtained, possibly due to excessive water influx into the Basin and a lack of hypersaline conditions, resulting in the deposition of the carbonates of the early formations and less deposition of salts. This depositional environment may have resulted in a deepening Basin, providing the depth needed for future deposition and storage of the later F-salts.

Approximately midway in the F-salt deposition (F-3 to F-4), some geologic event occurred, as seems to be supported by the change in rim lithology and movement of the hinge line and depocenters. This would seem to indicate movement of the basement complex which may have resulted in the Basin becoming more isolated and restricted, leading to the development of more hypersaline conditions and deposition of more salts in the deepening Basin. This environment may have continued to the point where the depositing sediments eventually "caught up" with the subsiding Basin and finally filled the Basin.

Lithologic Cross-Section Through Time

A lithological cross-sectional chart was constructed (Figure 12), extending from the shelf into the center of the Basin (Map A, Index Map, cross-section A-A' for well locations). This cross-section indicates a dominant evaporite sequence for the Basin interior for all six of the F-salt units. The sequence for the shelf shows some interesting differences in lithology.

The dominant lithology of the shelf for F-salt unit F-1 is a mix of shales and carbonates. This lithology is also true for F-salt units F-2 and F-3. However, for F-salt units F-4 and F-5 the dominant shelf lithology has changed to a widespread shale that covers the entire shelf area. F-salt unit F-6 shows a

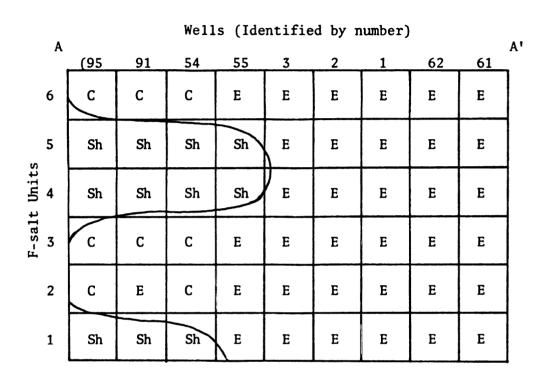
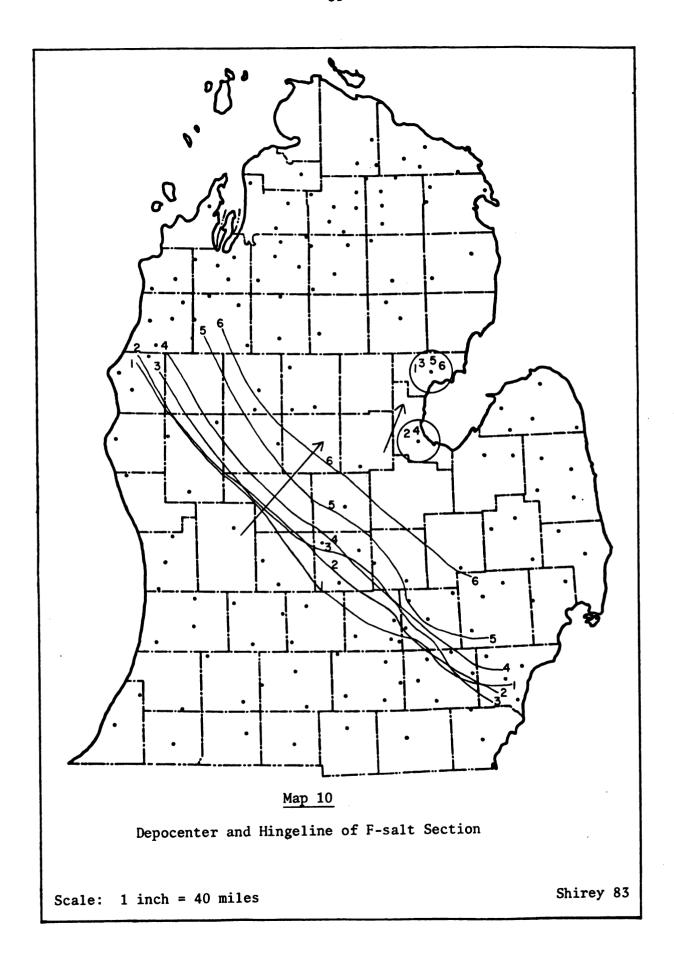


FIGURE 12: Lithologic Cross-Section Through F-salt Time Cross-Section A-A' (see Index Map for locations)

return to the shale and carbonate mix similar to the lithology of units F-1 through F-3.


This variation in shelf lithology, from a mix of shale and carbonate to a shale, coincides with the possible Basin subsidence or tectonic activity which began at the time of the F-4 deposition. The increase in shale during F-4 and F-5 could be due to several possible occurrences: 1) The possible emergence of positive features such as surrounding arches, due to basement movement from external stresses; 2) basement movement resulting in subsidence and 3) low sea levels resulting in exposure of surrounding areas to erosion and deposition of reworked sediments.

Depocenter and Hinge Line Map

The depocenter and hinge line map (Map 10) comprises the depocenter locations where the thickest deposits of each of the six units was found. The map also shows the locations of the hinge line for each of the six units. The hinge line is where the unit thins abruptly and the lithology changes from the dominant evaporites of the Basin interior to the lithology of the shelf areas.

<u>Depocenters</u>. The depocenters of each of the six units of the F-salts has remained relatively steady in the Arenac-Bay county areas. However, individual analysis of each unit depocenter does indicate variations of the depocenters within the area as follows:

- F-1: centered in Arenac County
- F-2: centered in Bay County
- F-3: centered in Arenac County
- F-4: centered in Bay County
- F-5: centered in Arenac County
- F-6: centered in Arenac County

This map indicates general shifting back and forth of depocenters between Arenac and Bay counties for F-salt units 1 through 4, before a trend to the northeast, from Bay County to Arenac County, is noted for F-salt units 5 and 6. This shift of depocenters generally coincides with the time of basin subsidence and change in platform lithology.

Hinge Line. The depocenter-hinge line map also shows the locations of the structural and lithological hinge lines for each of the six units of the F-salts. The approximate location of the hinge lines, which separates the basin interior from the platform shelf areas, trends in a general northwest to southeast direction, starting in the area of Mason County and trending southeast into Washtenaw and Wayne counties. This hinge line remained relatively stable through units F-1 through F-3 then began moving to the northeast for units F-4 through F-6. The location for the hinge line was taken as the line that represents the midpoint of the area of abrupt thinning for each unit.

This shift of the hinge line for F-salts units 4 through 6 toward the northeast coincides with the time of basin subsidence and movement of the depocenters to the northeast and the influx of shales into the platform areas.

CONCLUSIONS

The F-salt sequence of the Michigan Basin represents the last evaporite environment of the Salina Group in Michigan. Previous studies have shown that at the beginning of F-salt deposition, the Michigan Basin was already established as an isolated to semi-isolated basin, connected by channels to marine environments exterior to the Basin. Massive evaporites of the A and B salts had already been deposited and with units C, D and E had essentially filled the Basin by F-salt time. By the time of the F-salt episode, the Basin was for all practical purposes a stable, filled Basin, with the interior dominated by evaporites and the rim areas consisting of a mixture of shales and carbonates.

The results of this study on the period of F-salt deposition indicate that for the beginning and early part of F-salt deposition (F-salt units F-1 to F-3), this lithology held true for both the interior and the shelf area. The shelf zone was composed of a mix of shales and carbonates. Connecting channels were present across the shelf zone to join the Michigan Basin with exterior marine environments, allowing exchange and interaction of marine waters. Progressively thinner beds of units F-1 through F-3 may be indicative of either a less than hypersaline depositional environment partly due to the connecting channels or indications of a stable, filling Basin, allowing progressively less area for deposition and storage of evaporites.

A definite change occurred approximately midway through the F-salt period (F-salt units F-3 to F-4). Evidence seems to indicate possibly some extra-basinal stress was brought to bear on the basement complex, reactivating the frame structure of the Basin and surrounding area and affecting the

conditions of deposition within the Basin. The evidence consists of the following, derived from this study.

An abrupt increase in deposition of the later F-salt units F-4 through unit F-6, represented by the thicker beds of these units as compared to the progressively thinner beds of the early F-salt units. This change may also be indicative of a period of subsidence occurring within the Basin, possibly activated by basement stresses.

A slight but noticable shift of both the Basin-shelf hinge line and the depocenters of each F-salt unit to the northeast for the units F-4 through F-6, possibly due to basement activity.

Widespread clastic shales over the shelf area for F-salt units F-4 and F-5 may be indicative of either lower sea levels exposing outlying areas to erosion or tectonic reactivation of the basement complex may have led to uplift and exposure of once positive structures, providing a shale source to the Basin shelf.

The apparent lack of connecting channels across the shelf area of the Basin may have lead to increased restriction of the Basin waters as they had no means of mixing with marine waters exterior to the Basin, leading to increased deposition and therefore thicker beds of the F-salt units F-4 through F-6.

These changes in Basin lithology were persistent for units F-4 and F-5. By the time of unit F-6 deposition, the lithology had returned to a depositional environment similar to the environment of the early F-salt units F-1 through F-3, namely an environment of mixed clastic shales and non-clastic carbonates in the shelf area, with a connecting channel across the shelf zone allowing exchange of waters into and out of the Basin. Deposition within the Basin eventually "caught up" with subsidence; or subsidence ceased, allowing deposition to catch up, as the depositional environment toward the end of F-6 deposition approached a more normal marine situation, with widespread carbonates across

the entire Basin and a limited remnant brine body confined to the depocenter area of the Basin.

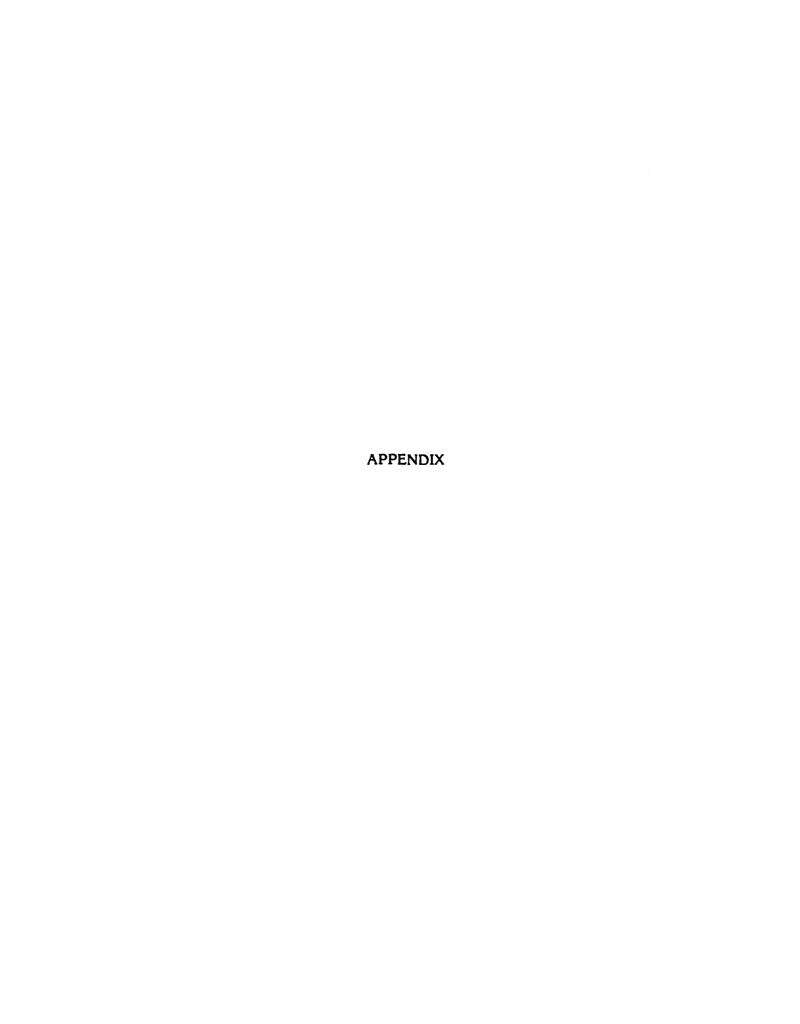
Further study is needed, both on a smaller, local scale and on a larger, regional scale as more data becomes available to further tie in the Salina F-salts with other events at this time. This study, being of a Basin-wide scale, of neccessity could not go into smaller details of deposition or more detailed study in a given area of the Basin, precluding any extensive work on areas of salt dissolution and collapse features. The scale and density used in this study did not reveal any such features as the above, which are known to exist and would possibly appear in areas where more detailed study could be made.

While studies of a Group-wide nature reveal much information, studies of a much smaller, briefer period, such as this study, can also reveal much information that may be overlooked or overshadowed in a larger-scale study. This information may fill in some areas that are lacking or provide more detail on areas that are only touched briefly in larger studies of a Group-wide nature and may be correlated with events that have been documented as occurring on a Group-wide basis.

RECOMMENDED AREAS FOR FURTHER STUDY

Further areas for study that became evident from this study include the following:

- More detailed work on the Chatham Sag area and its influence on the Michigan Basin during F-salt time.
- Extended work to the north and northeast, possibly into Canada
 for influences to the Basin from this direction, as seemed to be
 hinted in this study.
- 3. Study to the south, southwest and southeast in the shelf areas and adjoining states to determine if the speculations concerning the shelf inlets can be better documented.
- 4. Study to the west, possibly into Wisconsin, to determine more data on the clastics that seem to have originated from this direction and are present on the west side of the Basin.
- 5. Detailed study in the area of the Basin-shelf hinge line to determine more exactly what influence the hinge had on the lithology of the shelf and Basin interior.
- 6. More detailed study on the F-salts in relation to Matthews and Egleson's (1974) theory on migrating and cyclic brine bodies and various cycles that may be present within the F-salts.



BIBLIOGRAPHY

- Alling, H. L. and Briggs, L. I., 1961. Stratigraphy of Upper Silurian Cayugan Evaporites. AAPG Bull., v. 45, no. 4, p. 515-547.
- Briggs, L. I. and Lucas, P. T., 1954. Mechanism of Salina Salt Deposition in the Michigan Basin. Geol. Soc. Am. Bull., v. 65, no. 12, p. 1233.
- Briggs, L. I., 1957. Quantitative Aspects of Evaporite Deposition. Mich. Acad. Sci., Arts and Letters, v. XLII, p. 115-123.
- Briggs, L. I. and Pollack, H. N., 1967. Digital Model of Evaporite Sedimentation. Science, v. 55, no. 3761, p. 453-456.
- Briggs, Gill, Briggs and Elmore, 1980. Transition from Open Marine to Evaporite Deposition in the Silurian Michigan Basin, in "Hypersaline Brines and Evaporite Environments". Elsevier Scientific Publishing Company, Amsterdam.
- Burns, J. W., 1962. Regional Study of the Upper Silurian Salina Evaporites in the Michigan Basin. M.S. Thesis, Michigan State University.
- Cohee, G. V. and Landes, K. K., 1958. Oil in the Michigan Basin, in Habitat of Oil. AAPG Symposium, p. 413-493.
- Dellwig, L. F., 1954. Origin of the Salina Salt of Michigan. Jour. Sed. Petrology, v. 25, no. 2, p. 83-110.
- Dresser-Atlas Logging Systems Manuals, 1) Log Review I, 1974; 2) Log Interpretation Fundamentals, 1975.
- Droste, J. B. and Shaver, R. H., 1977. Synchronization of Deposition: Silurian Reef-bearing Rocks on the Wabash Platform with Cyclic Evaporites of the Michigan Basin. Studies in Geology, no. 5, AAPG, p. 93-109.
- Ells, G. D., 1967. Michigan's Silurian Oil and Gas Pools. Rept. Invest. #2, Mich. Geol. Surv. Publ.
- ______, 1958. Notes on the Devonian in the Subsurface of Southwestern Michigan. Mich. Geol. Surv. Prog. Rept. #18.
- Evans, C. S., 1950. Underground Hunting in the Silurian of Southwestern Ontario. Proc. Geol. Assoc. Canada, v. 3, p. 55-85.
- Fettke, C. R., 1948. Subsurface Trenton and Sub-Trenton Rocks in Ohio, New York, Pennsylvania and West Virginia. AAPG Bull., v. 72, no. 8, p. 1457-1492.

- Fisher, J. H., 1969. Early Paleozoic History of the Michigan Basin. Mich. Basin Geol. Soc. Ann. Field Excursion, p. 89-95.
- Fisher, 1969. Stratigraphic Cross-Sections of the Michigan Basin. Mich. Basin Geol. Soc. Spec. Publ.
- Gardner, 1974. Devonian Sediments of the Michigan Basin. Mich. Basin Geol. Soc. Spec. Publ.
- Hinze and Merritt, 1969. Basement Rocks of the Southern Peninsula of Michigan. Mich. Basin Geol. Soc. Ann. Field Excursion, p. 28-59.
- Johnson, K. S. and Gonzales, S., 1978. Salt Deposits in the U.S. and Regional Geologic Characteristics Important for Storage of Radioactive Waste-Rept. for Union Carbide Corp., Nuclear Division, U.S. Dept. of Energy, p. 13-38.
- Kaufmann, D. W. and Slawson, C. B., 1950. Ripple Mark in Rock Salt of the Salina Formation. Jour. Geology, v. 58, p. 24-29.
- Kay, M., 1951. North American Geosynclines. Geol. Soc. Amer., Mem. #8.
- Kempany, R. G., 1976. Subsurface Analysis of the Middle Devonian Sylvania Sandstone in the Michigan Basin. M.S. Thesis, Michigan State University.
- King, R. H., 1947. Sedimentation in Permian Castile Sea. AAPG Bull., v. 31, p. 470-477.
- Krumbein, Sloss, and Dapples, 1949. Sedimentary Tectonics and Sedimentary Environments. AAPG, v. 33, p. 1859-1891.
- Landes, K. K., 1945. Salina and Bass Islands Rocks in the Michigan Basin. U.S.G.S. Oil and Gas Invest., Prelim. Map 40.
- Lilianthal, R. T., 1978. Stratigraphic Cross-Sections of the Michigan Basin. Rept. Invest. 19, Mich. Geol. Surv. Publ.
- Lockett, J. R., 1947. Development of Structures in Basin Areas of Northeast United States. AAPG Bull., v. 31, p. 429-446.
- Matthews and Egleson, 1974. Origin and Implications of a Mid-Basin Potash Facies in the Salina Salt of Michigan. 4th Intl. Symposium on Salt, p. 15-34.
- Melhorn, W. N., 1958. Stratigraphic Analysis of Silurian Rocks in the Michigan Basin. AAPG Bull., v. 42, no. 4, p. 816-838.
- Mesollela, et al., 1974. Cyclic Deposition of Silurian Carbonates and Evaporites in the Michigan Basin. AAPG Bull., v. 58, p. 34-62.
- Newcombe, R. B., 1933. Oil and Gas Fields of Michigan. Mich. Geol. Surv. Div. Publ. 38.

- Nurmi, R. D. and Friedman, G. M., 1975. Sedimentology and Diagenesis of Lower Salina Group (Upper Silurian) Evaporites in Michigan Basin. AAPG, v. 59, no. 9, p. 1738.
- Pannekoek, A. J., 1965. Shallow Water and Deep Water Evaporite Deposition a discussion. Amer. Jour. Sci., v. 263, p. 284-285.
- Paris, R. M., 1977. Developmental History of the Howell Anticline. M.S. Thesis, Michigan State University.
- Pirtle, G. W., 1932. Michigan Structural Basin and its Relationship to Surrounding Areas. AAPG Bull., v. 16, p. 145-152.
- Prouty, C. E., 1970, 1972, 1976. Personal communication.
- Rickard, L. V., 1966. Gamma-Ray Logs and the Origin of Salt. 3rd Symposium on Salt, N. Ohio Geol. Soc., p. 34-39.
- Schlumberger Logging Manuals. 1) Production Log Interpretation, 1973; 2) Log Interpretation Charts, 1977; 3) Log Interpretation Vol. II -Applications, 1974.
- Scruton, P. C., 1953. Deposition of Evaporites. AAPG Bull., v. 37, p. 2498-2512.
- Sloss, L. L. and Krumbein, W. D., 1955. Stratigraphy and Sedimentation. W. H. Freeman and Company, San Francisco, California.

DATA

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
31386 KB	607		Bay 14N4			#1	
E F	5808	980					
6	4828	234	4	87	9	10/224	.0446
5	5062	201	18	61	4	37/164	.2256
4	5263	193	12	63	25	24/169	.1420
	5456	85	18	74	8	15/70	.2142
3 2	5541	110	22	72	6	24/86	.2790
1	5651	157	13	77	10	21/136	.1544
23849			Midland 1	3N1W21			#2
KB	695						
E	5468						
F		794					
6	4674	168	6	70	24	10/158	.0632
5	4842	151	19	52	29	30/127	.2362
4	4999	154	15	47	38	24/130	.1846
3	5153	71	14	68	18	10/61	.1639
2	5224	103	14	61	25	14/89	.1573
1	5327	141	12	71	17	17/124	.1370
29739			Gratiot 1	0N2W8			#3
KB	761						
E	4504						
F		611					
6	3893	66	24	58	18	16/50	.3200
5	3959	131	27	40	33	36/95	.3789
4	4090	127	19	48	33	24/103	.2330
3	4217	66	8	77	15	5/61	.0819
2	4283	87	24	67	9	21/66	.3181
1	4370	134	14	74	12	19/115	.1652
25099			Ogemaw	24N2E28			#4
KB	1477		J				
E	5289						
F		901					
6	4388	233	4	67	19	9/224	.0401
5	4621	181	15	41	44	27/154	.1753
4	4802	153	19	40	41	29/124	.2338
3 2	4955	86	9	66	25	8/78	.1025
2	5041	102	16	62	22	16/86	.1860
1	5143	146	14	56	30	21/125	.1680

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
28456			Ogemaw	23N3E28	}		#5
KB	878						
E	5653						
F		918					
6	4735	235	3	72	25	8/227	.0352
5	4970	188	14	39	47	27/161	.1677
4	5258	157	12	44	44	17/140	.1214
3	5316	87	21	52	27	18/69	.2608
2	5402	93	25	48	27	23/70	.3285
1	5495	158	14	64	22	21/137	.1532
28294			Oscoda 2	5N2E12			#6
KB	1145						
E	5463						
F		878					
6	4585	229	4	81	15		.0456
5	4814	171	18	40	41		.2127
4	4985	1 <i>5</i> 0	13	66	21		.1538
3	5135	85	17	73	10		.2083
2	<i>5</i> 220	95	16	44	40		.1875
1	5315	148	13	68	19		.1562
28546			Oscoda 2	8N1E16			#7
KB	1243						
E	4752						
F		856					
6	3896	234	3	60	37	7/227	.0308
5	4130	162	15	42	43	25/137	.1824
4	4292	145	14	72	14	21/124	.1693
3	4437	80	10	73	17	8/72	.1111
2	4517	105	20	51	29	21/84	.2500
1	4622	130	13	74	13	17/113	.1504
24359			Alcona 27	N8E20			#8
KB	912						
E	3599						
F		763					
6	2836	178	5	57	38	9/169	.0532
5	3014	144	22	45	33	31/113	.2743
4	3158	138	21	35	44	29/109	.2660
3	3296	77	34	57	9	26/51	.5098
2	3373	87	15	72	13	13/74	.1756
1	3460	139	12	71	17	17/122	.1393

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
29036			Crawford	28N2W2	26		#9
KB	1293						
E	4721						
F		839					
6	3882	225	3	72	25	7/218	.0321
5	4107	160	25	46	29	40/120	.3333
4	4267	143	14	43	43	21/122	.1721
3	4410	70	9	38	53	6/64	.0937
2	4480	113	18	55	27	21/92	.2282
1	4593	128	12	76	12	15/113	.1327
28862			Crawford	26N3W3	16		#10
KB	1242		0				
E	5398						
F		844					
6	4554	221	4	66	30	9/212	.0424
5	477 <i>5</i>	167	26	40	34	43/124	.3467
4	4942	144	12	63	25	17/127	.1338
3	5086	77	18	60	22	14/63	.2222
2	5163	105	15	44	41	16/89	.1797
1	<i>5</i> 268	130	13	72	15	17/113	.1504
28187			Kalkaska	26N5W1	6		#11
KB	1124		1,41,145,14	20117 11 2			
E	5193						
F		879					
6	4314	239	3	62	35	8/231	.0346
5	4553	167	18	38	44	30/137	.2189
4	4720	144	14	38	48	20/124	.1612
3	4864	84	10	45	45	8/76	.1052
2	4948	111	18	38	44	20/91	.2197
1	5059	134	13	67	20	17/117	.1452
31656			Kalkaska	27N7W2	3		#12
KB	1093						-
E	4731						
F		779					
6	3952	205	5	61	34	10/195	.0512
5	4157	143	29	34	37	42/101	.4258
4	4300	138	19	27	54	26/112	.2321
3	4438	73	11	41	48	8/65	.1230
2	4511	104	25	44	31	26/78	.3333
1	4615	116	17	65	18	20/96	.2083

DATA (Continued)

	Elev.	Thick.	% Sh	%E	%C	Clastic	Ratio
28325		·	Kalkaska		#13		
lg	1211						
E	4433						
F		781					
6	3652	207	5	74	21	10/197	.0507
5	3859	146	30	40	30	44/102	.4313
4	4005	131	13	59	28	17/114	.1491
3	4136	73	14	55	31	10/63	.1587
2	4209	101	26	35	39	27/74	.3648
1	4310	123	13	61	26	16/107	.1495
24543			Kalkaska	25N8W1	0		#14
KB	1135						
E	5148						
F		778					
6	4370	200	5	59	36	10/190	.0526
5	4570	146	27	24	49	40/106	.3773
4	4716	135	17	44	39	23/112	.2053
3	4851	76	12	53	35	9/67	.1343
2	4929	106	24	54	22	26/80	.3250
1	5063	115	15	70	15	18/97	.1855
28535			Wexford 2	24N9W31			#15
KB	1160						
E	5111						
F		726					
6	4385	170	6	78	16	10/160	.0625
5	4555	128	29	44	27	37/91	.4065
4	4683	131	16	66	18	21/110	.1909
3	4814	72	11	54	35	8/64	.1250
2	4886	102	16	56	28	16/86	.1860
1	4988	123	14	68	18	17/106	.1603
31221			Wexford 2	24N11W6	<u> </u>		#16
KB	1071						
E	4252						
F		617					
6	3635	130	11	60	29	15/115	.1304
5	3765	112	30	63	7	33/79	.4177
4	3877	119	18	44	38	22/97	.2268
3	3996	63	11	40	49	7/56	.1250
2	4059	93	28	49	23	26/67	.3880
1	4152	100	19	63	18	19/81	.2345

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	c Ratio
29037			Wexford 2	23N12W3	31		#17
KB	911						
E	4055						
F		551					
6	3504	83	20	43	37	16/67	.2388
5	3 <i>5</i> 87	102	36	35	29	27/6 <i>5</i>	.5692
4	3689	115	21	49	30	24/91	.2637
3	3804	60	16	42	42	10/50	.2000
2	3864	88	26	53	21	23/65	.3538
1	3952	103	15	55	30	16/87	.1839
28564			Grand Tra	averse 20	5N11W11		#18
KB	772						
E	3871						
F		671					
6	3200	165	8	65	27	14/151	.0927
5	3365	109	32	39	29	35/74	.4729
4	3474	127	24	39	37	30/97	.3092
3	3601	69	13	48	39	9/60	.1500
2	3670	93	27	62	11	25/68	.3676
1	3763	108	19	60	21	20/88	.2272
28041			Grand Tra	averse 27	7N12W32		#19
KB	886						
E	3311						
F		589					
6	2722	112	15	62	23	17/95	.1789
5	2834	108	51	45	4	55/53	1.0377
4	2942	117	20	48	32	24/93	.2580
3	3059	<i>5</i> 8	19	50	31	11/47	.2340
2	3117	87	20	60	20	18/69	.2608
1	3204	107	17	67	16	18/89	.2022
29494			Grand Tra	averse 27	7N10W25		#20
El.	973						
E	4169						
F		727					
6	3442	178	8	62	30	14/164	.0853
5	3620	127	26	59	15	37/94	.3510
4	3747	137	18	47	35	25/112	.2232
3	3884	68	22	41	37	15/53	.2830
2	3952	100	24	53	23	24/76	.31 <i>5</i> 7
1	4052	117	16	69	15	19/98	.1938

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
27483			Antrim 29	9N7W24			#21
lg	1113						
E	4097						
F		772					
6	3325	209	4	56	40	8/201	.0398
5	3534	137	29	<i>5</i> 0	21	40/97	.4123
4	3671	140	19	44	37	26/114	.2280
3	3811	69	14	51	35	10/59	.1694
2	3880	98	21	44	35	21/77	.2727
1	3978	119	10	73	17	12/107	.1121
29058			Antrim 3	1N6W35			#22
log	1042						
E	3244						
F		751					
6	2493	189	6	59	35	12/177	.0677
5	2682	131	29	38	33	38/93	.4086
4	2813	137	20	50	30	28/109	.2568
3	2950	72	14	42	44	10/62	.1612
2	3022	99	22	25	53	22 <i> </i> 77	.2857
1	3121	123	6	61	33	7/116	.0603
22639	····		Antrim 3	2N8W19			#23
KB	878			-110 11 -1			
E	2328						
F		618					
6	1710	129	12	74	14	15/114	.1315
5	1839	108	37	32	31	40/68	.5882
4	1947	123	23	53	24	28/95	.2947
3	2070	56	13	39	48	7/49	.1428
2	2126	85	26	45	29	22/63	.3492
1	2211	117	15	77	8	17/100	.1700
29572			Otsego 3	N4W9			#24
log	1374		•				
E	3038						
F		749					
6	2289	190	6	54	40	11/179	.0614
5	2479	129	38	44	18	49/80	.6125
4	2608	136	26	35	39	35/101	. 3465
3 2	2744	71	13	27	60	9/62	.1451
	2815	101	22	32	46	22/79	.2784
1	2916	122	16	72	12	20/102	.1960

DATA (Continued)

	Elev.	Thick.	% Sh	%E	%С	Clastic	Ratio
29986			Otsego 30	0N3W1		**************************************	#25
log	1371		•				
E	3559						
F		769					
6	2790	207	5	60	75	11/196	.0561
5	2997	135	30	40	30	40/95	.4210
4	3132	135	19	36	45	26/109	.2385
3 2	3267	74	11	53	36	8/66	.1272
2	3341	99	20	30	<i>5</i> 0	20/79	.2533
1	3440	119	16	74	10	19/100	.1900
29612	····		Otsego 30	0N1W16			#26
KB	1383		0				
E	3551						
F		767					
6	2784	204	5	70	25	10/194	.0515
5	2998	142	25	47	28	36/106	.3396
4	3130	129	14	53	33	18/111	.1621
3 2	3259	72	8	68	24	6/66	.0909
2	3331	99	16	52	32	16/83	.1927
1	3430	14	15	74	11	18/103	.1747
28898			Otsego 3	1N1W4			#27
log	1070		J				
E	2996						
F		749					
6	2247	200	6	57	37	12/188	.0638
5	2447	128	29	38	33	37/91	.4065
4	2575	128	19	51	30	25/103	.2427
3 2	2703	73	8	54	38	6/67	.0895
2	2776	101	21	44	35	21/80	.2625
1	2877	119	14	59	27	17/102	.1666
30528			Montmore	ency 32N	11E7		#28
KB	929			•			
E	2776						
F		770					
6	2006	205	6	71	23	13/92	.0677
5 4 3 2	2211	131	34	45	21	45/86	.5232
4	2342	136	22	35	43	30/106	.2830
3	2478	74	18	43	39	13/61	.2131
	2552	101	24	32	44	24/77	.3116
1	2653	123	13	64	23	16/107	.1495

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
30619			Montmore	ency 31N	12E6		#29
KB	915			•			
E	2945						
F		752					
6	2193	198	6	55	39	11/187	.0588
5	2191	133	32	36	32	42/91	.4615
4	2524	134	18	48	34	24/110	.2181
3	2658	71	7	39	54	5/66	.0757
2	2729	98	17	32	51	17/81	.2098
1	2827	118	14	76	10	16/102	.1568
32575			Montmore	ency 32N	 13E5		<i>#</i> 30
ΚB	893						
E	2173						
F		741					
6	1432	190	8	53	39	15/175	.0857
5	1622	130	28	43	29	36/94	.3829
4	17 <i>5</i> 2	135	20	44	36	27/108	.2500
3	1887	70	10	46	44	7/63	.1111
2	19 <i>5</i> 7	97	18	33	49	17/80	.2125
1	2054	119	9	64	27	11/108	.1018
30393			Montmore	ency 30N	12E5		#31
KB	1229			,			•
E	3267						
F		764					
6	2503	192	5	59	36	10/182	.0549
5	2695	137	22	39	39	30/107	.2803
4	2832	134	21	43	36	28/106	.2641
3	2966	75	11	40	49	8167	.1194
2	3041	100	20	58	22	20/80	.2500
1	3141	126	8	61	31	10/116	.0862
28583			Alpena 31	N5E32			#32
lg	784		-				
lg E	2956						
F		746					
6	2210	190	5	57	38	10/180	.0555
5	2400	137	23	54	23	32/105	. 3047
4	2537	131	18	55	27	23/108	.2129
3 2	2668	72	7	63	9 0	5/67	.0746
	2740	94	17	46	37	16/78	.2051
1	2834	122	6	65	29	7/115	.0608

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
29571			Alpena 32	N5E34			#33
Lg	756		-				
E	2259						
F		718					
6	1541	173	7	58	35	12/161	.0745
5	1714	130	24	45	31	31/99	.3131
4	1844	133	16	32	52	21/112	.1875
3	1977	69	7	71	22	5/64	.0781
2	2046	98	13	<i>5</i> 7	30	13/85	.1529
1	2144	115	12	77	11	14/101	.1386
25690			Alpena 31	N9E5			#34
Gl	684		-				
E	1834						
F		660					
6	1174	148	9	55	36	13/135	.0962
5	1322	117	36	36	28	42/75	.5600
4	1439	119	26	34	40	31/88	.3522
3	1558	69	25	54	21	17/52	.3269
2	1627	95	28	36	36	27/68	.3970
1	1722	112	15	72	13	17/95	.1789
24999			Presque I	sle 33N7	E33	· · · · · · · · · · · · · · · · · · ·	#35
KB	815						
E	1712						
F		662					
6	1050	149	9	64	27	13/136	.0955
5	1199	119	35	56	9	42/77	.5454
4	1318	123	21	64	15	26/97	.2680
	1441	65	9	58	33	6/59	.1016
3 2	1506	97	24	38	38	23/74	.3108
ī	1603	109	13	79	8	14/95	.1473
28337			Presque I	sle 34N5	E.5		#36
KB	785						
E	1340						
F		654					
6	686	150	0	33	67	1/99	.0067
5	836	116	34	45	21	40/76	. 5263
4	952	117	25	47	28	29/88	.3295
3	1069	64	0	55	45	1/63	.0158
3 2	1133	93	22	60	18	20/73	.2739
	1226	114	9	71	20	10/104	.0961

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
32255 KB E	894 1781		Presque I	sle 34N3	E36		# 37
F		722					
6	1059	189	5	55	40	10/179	.0558
5	1248	128	33	46	21	42/86	.4883
4	1376	125	22	31	47	28/97	.2886
3 2	1501	68	0	43	<i>5</i> 7	1/68	.0149
	1569	95	29	55	16	28/67	.4179
1	1664	117	15	76	9	18/99	.1818
24918			Cheboyga	n 35N1E	22		#38
KB	789						
E	1279						
F		616					
6	663	107	15	62	23	16/91	.1758
5	770	121	35	43	22	42/79	.5316
4	891	124	20	27	53	25/99	.2525
3 2	1015	66	18	46	36	12/45	.2666
2	1081	91	24	46	30	22/69	.3188
1	1172	107	5	54	51	5/102	.0490
27976			Cheboyga	n 33N1W	/3		#39
KB	909						
E	2194						
F		723					
6	1471	183	9	77	14	16/107	.0958
5	1654	125	36	 55	9	45/80	.5625
4	1779	134	20	58	22	27/107	.2523
	1913	65	14	66	20	9/56	.1607
3 2	1978	99	23	48	29	23/76	.3026
1	2077	117	14	82	4	16/101	.1584
28474			Charlevoi	x 33N5W	/35		#40
KB	825						
E	2417						
F		708					
6	1709	163	8	75	17	13/150	.0866
5	1872	121	32	45	23	39/82	.4756
4	1993	135	18	49	33	24/111	.2162
3 2	2128	71	15	47	38	11/60	.1833
2	2199	93	24	40	36	22/71	.3098
1	2292	125	9	72	19	11/114	.0964

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	c Ratio
22627			Leelanaw	30N11W	'6		#41
KB	925						
E	2329						
F		582					
6	1747	108	15	63	22	16/92	.1739
5	18 <i>55</i>	103	42	31	27	43/60	.7166
4	1958	114	24	61	15	27/87	.3103
3	2072	54	13	37	<i>5</i> 0	7/47	.1489
2	2126	84	29	39	32	24/60	.4000
1	2210	119	10	76	14	12/107	.1121
28109			Benzie 25	N14W1			#42
KB	832						
E	3222						
F		<i>5</i> 27					
6	2695	62	32	45	23	20/42	.4761
5	27 57	102	33	36	31	34/68	.5000
4	2859	115	21	39	40	24/91	.2637
3	2974	56	11	34	55	6/50	.1200
2	3030	85	27	47	26	23/62	.3709
1	3115	107	13	60	27	14/93	.1505
29711			Benzie 25	N15W29			#43
KB	717						
E	2742						
F		483					
6	2259	52	52	40	8	27/25	1.0800
5	2311	75	37	26	37	28/47	.5957
4	2386	111	24	41	35	27/84	.3214
3	2497	53	23	47	30	12/41	.2926
2	2550	83	36	38	26	30/53	.5660
1	2633	109	22	66	12	24/85	.2823
31980			Manistee	24N13W	28		#44
KB	904						
E	3616						
F		<i>5</i> 1 <i>5</i>					
6	3101	69	30	48	22	21/48	.4375
5	3170	100	41	39	20	41/59	.6949
4	3270	113	25	56	19	28/85	.3294
4 3 2	3383	55	24	27	49	13/42	.3095
	3438	88	30	42	28	26/62	.4193
1	3526	90	20	60	20	18/72	.2500

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
29681 KB E	678 28 <i>5</i> 9	424	Manistee	23N15W	31		#45
6 5 4 3 2	2435 2486 2529 2630 2681 2758	51 43 101 51 77 101	63 63 24 22 32 18	31 14 51 51 52 65	6 23 25 27 16 17	32/19 27/16 24/77 11/40 25/52 18/83	1.6842 1.6875 .3116 .2750 .4807 .2168
29966 KB E F	739 3208	423	Manistee	21N15W	15		#46
6 5 4 3 2 1	2785 2840 2881 2981 3031 3110	55 41 100 50 79 98	55 58 27 14 35	18 17 43 0 35 58	27 25 30 86 30 25	30/25 24/17 27/73 7/43 28/51 17/81	1.2000 1.4117 .3698 .1627 .5490 .2098
29370 lg E F	702 3022	344	Mason 20	N16W11			#47
6 5 4 3 2	2678 2706 2768 2805 2855 2928	28 62 37 50 73 94	50 90 59 16 34 25	28 0 41 14 45 49	22 10 0 70 21 26	14/41 56/6 22/15 8/42 25/48 24/70	1.0000 9.3333 1.4666 .1904 .5208 .3428
25053 lb E F	708 2843	214	Mason 18	N17W14			#48
6 5 4 3 2	2629 2658 2694 2717 2756 2780	29 36 23 39 24 63	52 100 100 77 46 29	0 0 0 0 0 46	48 0 0 23 54 25	15/14 35/1 22/1 30/9 11/13 18/45	1.0714 35.0000 22.0000 3.3333 .8461 .4000

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
26662 KB E	829 3088		Newaygo	15N14W	20		#49
F		250					
6 5 4 3	2838 2873 2910 2941 2974	35 37 31 33 45	49 100 100 73 38	0 0 0 0 35	51 0 0 27 27	17/18 36/1 30/1 24/9 17/28	.9444 36.0000 30.0000 2.6666 .6071
1	3019	69	26	65	9	18/51	.3529
28931 KB E F	754 2068	122	Muskegon	12N17W	'8		# 50
6 5 4 3 2	1946 1975 1993 2016 2035	29 18 23 19 33	100 78 56 47 39	0 0 35 37 0	0 22 9 16 61	28/1 14/4 13/10 9/10 13/20	28.0000 3.5000 1.3000 .9000 .6500
28137			Newaygo	11N13W	11		#51
KB E F	888 2946	194	, ,				
6 5 4 3 2	27 52 27 86 28 38 28 66 28 92 29 12	34 52 28 26 20 34	21 92 89 62 50 38	26 0 0 27 25 15	53 8 11 11 25 47	7/27 48/4 25/3 16/10 10/10 13/21	.2592 12.0000 8.3333 1.6000 1.0000 .6190
20103 DF E F	903 2986	178	Kent 9N1	0W27			# 52
6 5 4 3 2	2808 2837 2889 2917 2943 2958	29 52 28 26 15 28	24 90 71 70 53 36	11 0 18 15 0 36	65 10 11 15 47 28	7/22 47/5 20/8 18/8 8/7 10/18	.3181 9.4000 2.5000 2.2500 1.1428 .5555

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
24619 KB E F	77 <i>5</i> 2789	174	Ionia 7N8	₩34			<i>#</i> 53
6 5 4 3 2	2615 2647 2703 2720 2748 2763	32 46 17 28 15 26	31 95 100 46 33 31	13 0 0 32 27 23	56 5 0 22 40 46	10/22 53/3 16/1 13/15 5/10 8/18	.4545 17.6666 16.0000 .8666 .5000
23574 KB E F	870 2559	176	Ionia 5N7	W15			# 54
6 5 4 3 2 1	2383 2415 2466 2487 2513 2533	32 51 21 26 20 26	13 90 100 38 40 46	0 0 0 16 15	87 10 0 46 45 42	4/28 46/5 20/1 10/16 8/12 12/14	.1428 9.2000 20.0000 .6250 .6666 .8571
22399 KB E F	754 3705	384	Clinton 8	N4W27			#55
6 5 4 3 2 2	3321 3364 3411 3460 354 3584	43 47 49 61 63 121	30 92 84 16 25 15	47 0 16 49 51 79	23 8 0 35 24 6	13/30 43/4 41/8 10/51 16/47 18/103	.4333 10.7500 5.1250 .1960 .3404 .1747
27811 KB E F	772 3728	487	Clinton 7	W1W6			# 56
6 5 4 3 2	3241 3285 3348 3458 3516 3591	44 63 110 58 75 137	27 46 16 7 27 14	50 21 39 74 69 73	23 33 45 19 4 13	12/32 29/34 18/92 4/54 20/55 19/118	.3750 .8529 .1956 .0740 .3636 .1610

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
22348	· · · · · · · · · · · · · · · · · · ·		Clinton 5	N3W14			<i>#5</i> 7
KB	835						
E	3125						
F		296					
6	2829	42	24	36	40	10/32	.3125
5	2871	30	83	0	17	25/5	5.0000
4	2901	27	100	0	0	27/1	27.0000
3	2928	28	64	0	36	18/10	1.8000
2	2956	55	24	52	24	13/42	.3096
1	3011	114	17	61	22	19/95	.2000
30727			Shiawasse	e 6N1E	;		#58
KΒ	783						
E	2610						
F		493					
6	3117	46	22	33	45	10/36	.2777
5	3163	59	75	0	25	44/15	2.9333
4	3222	125	17	51	32	21/104	.2019
3	3347	57	7	68	25	4/53	.0754
2	3404	80	19	59	22	15/65	.2307
1	3484	126	13	74	13	16/110	.1454
23375			Shiawasse	e 5N3E1	.5		#59
KB	88 <i>5</i>						
E	2884						
F		586					
6	2298	74	24	61	15	18/56	.3214
5	2372	121	33	25	42	40/81	.4938
4	2493	118	13	30	57	15/103	.1456
3	2611	62	6	50	44	4/58	.0689
2	2673	86	21	66	13	18/68	.2647
1	2759	125	10	78	12	13/112	.1180
23948			Genessee	6N7E29			<i>#</i> 60
Gl.	85 0						
E	3278						
F		676					
6	2602	112	16	73	11	18/94	.1914
5	2714	143	29	27	44	41/102	.4019
4	2857	135	19	41	40	26/109	.2385
3	2992	68	19	66	15	13/55	.2363
2	3060	93	18	74	8	17/76	.2236
1	3153	125	12	71	17	15/110	.1363

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
23899			Huron 18	N13E21			#61
KB	692						
E	4340						
F		704					
6	3636	144	10	78	12	14/130	.1076
5	3780	141	25	39	36	36/105	.3428
4	3921	137	21	47	32	29/108	.2685
3	4058	69	10	58	32	7/62	.1129
2	4127	89	16	54	30	14/75	.1866
1	4216	124	18	63	19	22/102	.2156
24040			Huron 17	N10E36			#62
KB	636						
E	5676						
F		834					
6	4842	190	5	92	3	10/180	.0555
5	5032	170	19	57	24	32/138	.2318
4	<i>5</i> 202	156	11	47	42	17/139	.1223
3	5358	74	8	51	41	6/68	.0882
2	5432	103	15	63	22	15/88	.1704
1	5535	141	16	69	5	22/119	.1848
24789			Huron 16	N12E36			#63
KB	764						
E	4796						
F		751					
6	4045	161	6	76	18	10/151	.0662
5	4206	155	23	34	43	35/120	.2916
4	4361	142	13	37	50	19/123	.1544
3	4503	67	9	54	37	6/61	.0983
2	4 <i>5</i> 70	88	15	52	33	13/75	.1733
1	4658	138	14	66	20	20/118	.1694
28772			Huron 15	N11E20			#64
lg	709						
lg E	5311						
F		813					
6	4498	179	7	72	21	13/166	.0783
5	4677	169	22	47	31	38/131	.2900
4	4846	150	14	43	43	22/128	.1718
3 2	4996	75	9	71	20	7/68	.1029
	5071	94	14	56	30	13/81	.1604
1	5165	146	12	72	16	17/129	.1317

DATA (Continued)

	Elev.	Thick.	% S h	%E	%C	Clastic	Ratio
29191			Huron 15		#65		
lg E	711						
E	3319						
F		631					
6	2688	117	9	66	26	10/107	.0934
5	2805	122	28	37	35	34/88	.3863
4	2927	115	23	39	38	26/89	.2921
3	3042	68	10	69	21	7/61	.1147
2	3110	81	16	63	21	13/68	.1911
1	3191	128	15	77	8	20/108	.1851
23890			Tuscola 1	3N9E8			#66
KB	678						
E	<i>55</i> 07						
F		871					
6	4636	193	5	76	19	10/183	.0546
5	4829	188	20	42	38	38/150	.2533
4	<i>5</i> 017	162	11	44	45	18/144	.1250
3	5179	80	7	79	14	6/74	.0810
2	<i>5</i> 2 <i>5</i> 9	100	14	61	25	14/86	.1627
1	5359	148	13	78	9	19/129	.1472
25609			Tuscola 1	3N11E16			<i>‡</i> 67
KB	737						
E	4867						
F		772					
6	4095	163	4	69	27	7/156	.0448
5	4258	164	19	34	47	31/133	.2330
4	4422	144	16	38	46	23/121	.1900
3	4566	73	8	78	14	6/67	.0895
2	4639	89	17	51	32	15/74	.2027
1	4728	139	13	69	18	18/121	.1487
23500			Sanilac 1	3N13E20			#68
KB	770						
E	4082						
F		713					
6	3369	144	9	77	14	13/131	.0992
5	3513	149	25	43	32	38/111	.3423
4	3662	131	24	37	39	31/100	.3100
3	3793	70	16	61	23	11/59	.1864
2	3863	89	26	56	18	23/66	.3484
1	3952	130	16	66	18	21/109	.1926

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
24254			Sanilac 12	2N15E5			#69
KB	812						
E	3347						
F		655					
6	2692	118	6	73	21	7/111	.0630
5	2810	131	25	22	53	33/98	.3367
4	2941	121	19	31	<i>5</i> 0	23/98	.2346
3	3062	72	10	68	22	7/65	.1076
2	3134	88	17	<i>5</i> 7	26	15/73	.2054
1	3222	125	14	80	6	17/109	.1574
22856			Sanilac 1	IN12E25			<i>‡</i> 70
KB	784						
E	3956						
F		681					
6	3275	128	4	70	26	5/123	.0406
5	3403	143	21	36	43	30/113	.2654
4	3546	130	17	28	55	22/108	.2037
3	3676	67	7	52	41	5/62	.0806
3 2	3743	92	13	60	27	12/80	.1500
1	3835	121	16	70	14	19/102	.1862
25939			Sanilac 10	0N15E9			<i>#</i> 71
KB	775						
E	2676						
F		640					
6	2036	94	19	61	20	18/76	.2368
5	2130	138	25	33	42	34/104	.7269
4	2268	120	18	50	32	22/98	.2244
3	2388	71	8	71	21	6/65	.0923
2	2459	90	14	62	24	13/77	.1688
1	2549	127	9	70	21	11/116	1.0948
24142			Lapeer 91	N11E21			#72
KB	836						
E	3619						
F		678					
6	2941	119	11	80	9	13/106	.1226
5	3060	141	21	45	34	29/112	.2589
4	3201	133	12	44	44	16/117	.1367
3	3334	68	7	60	33	5/63	.0793
3 2	3402	94	13	67	20	12/82	.1463
1	3496	123	14	70	16	17/106	.1603

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	c Ratio
23946			Lapeer 81	N9E10			<i>#</i> 73
KB	801		•				
E	3704						
F		70 <i>5</i>					
6	2999	137	12	70	18	16/121	.1322
5	3136	144	22	44	34	31/113	.2743
4	3280	139	15	45	50	21/118	.1779
3	3419	70	11	73	16	8/62	.1290
2	3489	88	11	56	33	10/78	.1282
1	3577	127	13	72	15	16/111	.1444
24010			Lapeer 6!	V12E17			#74
KB	925						
E	2400						
F		534					
6	1866	44	27	45	28	12/32	.3750
5	1910	97	51	27	22	49/48	1.0208
4	2007	121	16	55	29	20/101	.1980
<u>.</u>	2128	64	15	70	15	10/54	.1851
3 2	2192	89	20	65	15	18/71	.2535
1	2281	119	8	75	17	10/109	.0917
25859			St. Clair	8N14E19)		#7 <i>5</i>
lg	820						
lg E	2635						
F		544					
6	2091	49	14	49	32	7/42	.1666
5	2140	107	34	23	43	36/71	.5070
4	2247	118	14	54	32	17/101	.1683
3	2365	64	17	70	13	11/53	.2075
2	2429	89	16	55	29	14/75	.1866
1	2518	117	9	69	22	10/107	.0934
26086			St. Clair	6N15E1			#76
lg E F	709						
E	1615						
F		468					
6	1147	49	8	51	41	4/45	.0888
6 5	1196	50	90	0	10	45/5	9.0000
	1246	102	22	56	22	22/80	.2750
4 3 2	1348	67	9	76	15	6/61	.0983
2	1415	91	13	63	24	12/78	.1518
1	1506	109	4	70	26	5/104	.0480

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	ic Ratio
25780	<u> </u>		St. Clair	2N16E17	,		#77
lg E	581						
	799						
F		183					
6	616	47	23	66	11	11/36	.3055
5	663	43	67	0	33	29/14	2.0714
4	706	28	89	Ö	11	25/3	8.3333
3	734	13	23	Ö	77	3/10	.3000
2	747	26	27	27	46	7/19	.3684
ī	773	26	0	1	10	0/6	.0400
31301			Macomb 4	4N14E4			#78
KB	713						
E	1525						
F		404					
6	1121	43	19	49	32	8/35	.2285
5	1164	50	80	0	20	40/10	4.0000
4	1214	53	58	40	2	29/24	1.2083
3	1267	61	16	64	20	10/51	.1960
2	1328	92	13	63	24	12/80	.1500
1	1420	105	7	69	24	8/97	.0824
31333			Macomb :	3N12E7			#79
KB	772						
E	1544						
F		456					
6	1088	45	6	47	47	3/42	.0714
5	1133	46	91	0	9	42/4	10.5000
4	1179	97	24	45	31	23/74	.3108
3	1276	62	8	74	18	5/57	.0877
2	1338	93	11	66	23	10/83	.1204
1	1431	113	5	60	35	6/107	.0560
28258			Oakland 4	N8E35			#80
KB	1048						
E	2320						
F		611					
6	1709	83	36	46	18	30/53	.5660
5	1792	117	23	36	41	27/90	.3000
4	1909	128	12	45	43	16/112	.1428
	2037	65	11	63	26	7/58	.1206
3 2	2102	94	13	67	20	12/82	.1463
ī	2196	124	12	69	19	15/109	.1376

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	c Ratio
31372			Oakland 2	2N7E25			#81
KB	963						
E	1887						
F		624					
6	1263	108	19	65	15	20/88	.2272
5	1371	111	29	33	38	32/79	.4050
4	1482	130	12	60	28	15/115	.1304
3	1612	65	9	77	14	6/59	.1016
2	1677	97	16	62	22	16/81	.1975
1	1774	113	6	69	25	7/106	.0660
23426			Livingsto	n 4N6E2	2		#82
KB	1062		J				
E	2647						
F		685					
6	1962	126	11	75	14	14/112	.1250
5	2088	144	30	35	35	42/102	.4117
4	2232	133	11	53	36	15/118	.1271
3	2365	65	9	82	9	6/59	.1016
2	2430	96	16	76	8	15/81	.1851
1	2526	121	15	71	14	18/103	.1747
12766			Livingsto	n 2N4E1			#83
DF	905						
E	1908						
F		599					
6	1309	95	22	63	15	21/74	.2837
5	1404	124	33	36	31	41/83	.4939
4	1528	122	16	40	44	20/102	.1960
3	1650	58	9	31	60	5/53	.0943
2	1708	85	18	15	67	15/70	.2142
1	1793	115	4	20	76	5/110	.0454
28752			Livingsto	n 2N3E1	7		#84
KB	960		_				
E	2175						
F		365					
6	1810	50	8	26	66	4/46	.0869
5	1860	39	74	0	26	29/10	2.9000
4	1899	34	88	0	12	30/4	7. <i>5</i> 000
3	1933	54	17	39	44	9/45	.2000
2	1987	75	17	68	15	13/62	.2096
1	2062	113	13	65	22	15/98	.1530

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
30134 KB E F	944 2670	284	Ingham 2	N2E3			#85
6 5 4 3 2	2386 2430 2475 2508 2531 2563	44 45 33 23 32 107	18 84 88 48 19	55 0 12 22 19 69	27 16 0 30 62 19	8/36 38/7 29/4 11/12 6/26 13/94	.2222 5.4285 7.2500 .9166 .2307 .1382
22607 RT E F	972 1728	194	Ingham 1	N2E13			#86
6 5 4 3 2 1	1534 1583 1621 1655 1678 1701	49 38 34 23 23 27	6 100 91 48 26 22	24 0 0 22 17 15	70 0 9 30 57 63	3/46 38/1 31/3 11/12 6/17 6/21	.0652 38.0000 10.3333 .9166 .3529 .2857
29498 KB E	1003 2355		Ingham 1	N2W1			# 87
F 6 5 4 3 2	2173 2211 2247 3381 2303 2326	182 38 36 34 22 23 29	13 78 85 59 26 28	24 0 6 23 26 17	63 22 9 18 48 55	5/33 28/8 29/5 13/9 6/17 8/21	.1515 3.5000 5.8000 1.4444 .3529 .3809
30432 KB E F	866 2380	153	Eaton 3N	5W10			#88
6 5 4 3 2 1	2227 2245 2271 2308 2334 2364	18 26 37 26 30 16	0 100 70 54 40 56	22 0 8 31 10 0	78 0 22 15 50 44	1/17 26/1 26/11 14/12 12/18 9/7	.0588 26.0000 2.3636 1.1666 .6666 1.2857

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	ic Ratio
22541			Eaton 1N	6W17			#89
	954						
E	1830						
F		159					
6	1671	29	17	0	83	5/24	.2083
5	1700	40	100	0	0	40/1	40.0000
4	1740	18	61	0	39	11/7	1.5714
3	17 <i>5</i> 8	24	38	33	29	9/15	.6000
2	1782	26	19	23	<i>5</i> 8	5/21	.2380
1	1808	22	41	0	59	9/13	.6923
28802	····		Barry 3N	7W23			#90
	949		-				
E	2124						
F		165					
6	1959	31	19	23	58	6/25	.2400
5	1990	44	91	0	9	40/4	10.0000
4	2034	30	80	20	0	24/6	4.0000
	2064	19	32	32	36	6/13	.4615
3 2	2083	20	40	0	60	8/12	· . 6666
1	2103	21	57	0	43	12/9	1.3333
 26182			Barry 4N	10W34			<i>#</i> 91
	790						
E	2030						
F		133					
6	1897	21	28	24	48	6/15	.4000
5	1918	34	100	0	0	34/1	34.0000
4	1952	20	100	0	0	20/1	20.0000
3	1972	17	35	30	35	6/11	. 54 54
2	1989	21	24	43	33	5/16	.3125
1	2010	20	60	25	15	12/8	1.5000
30764			Barry 1N	9W14			<i>#</i> 92
_	940						
E	1837						
F		144					
6	1693	31	16	0	84	5/26	.1923
5	1724	40	100	0	0	40/1	40.0000
4	1764	13	77	0	23	10/3	3.3333
3 2	1777	18	33	0	67	6/12	.5000
	1795	22	32	0	68	7/1 <i>5</i>	.4666
1	1817	20	50	0	<i>5</i> 0	10/10	1.0000

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
22852			Ottawa 8	N14W9			<i>#</i> 93
	695						
E	2170						
F		122					
6							
5	2048	33	100	0	0	33/0	33.0000
4	2081	24	88	12	0	21/3	7.0000
3 2	2105	22	54	23	23	12/10	1.2000
	2127	19	58	21	21	11/8	1.3750
1	2146	24	46	33	21	11/13	.8461
25519			Allegan 4	N13W23			<i>#</i> 94
	690		_				
E	1812						
F		108					
6	1704	10	70	0	30	7/3	2.3333
5	1714	23	100	0	0	23/1	23.0000
4	1737	10	100	0	0	10/1	10.0000
3	1747	28	<i>5</i> 7	0	43	16/12	1.3333
2	1775	19	32	0	68	6/13	.4615
1	1794	18	55	0	45	10/8	1.2500
22959)		Allegan 2	N13W15			#95
	748						
E	1566						
F		133					
6	1433	19	42	0	58	8/11	.7272
5	1452	29	90	Ö	10	26/3	8.6666
4	1481	12	100	0	0	11/1	11.0000
3	1493	28	36	0	64	10/18	.5555
2	1521	24	42	0	58	10/14	.7142
1	1545	21	52	0	48	11/10	1.1000
24016			Allegan 1	N15W18			#96
	652		J				
E	1096						
F		100					
6							
5	996	13	100	0	0	13/1	13.0000
4	1009	16	69	0	31	11/5	2.2000
3	1025	32	53	0	47	17/15	1.1333
2	1057	22	41	0	59	9/13	.6923
1	1079	17	53	0	47	9/8	1.1250

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
23524				# 97			
E							
F							
E F 6 5 4 3							
5							
4							
3							
1							
23035			Kalamazo		#98		
	789						
E	1346						
F		105					
6							
5	1241	23	100	0	0	23/1	23.0000
4	1264	17	100	0	0	17/1	17.0000
3	1281	30	73	0	27	22/8	2.7500
3 2	1311	22	45	0	55	10/12	.8333
1	1333	13	61	0	39	8/5	1.6000
23004			Kalamazo	oo 4S10W	11		#99
_	892						
E							
E F 6 5 4 3							
5							
4							
3							
2							
1							
27862			Calhoun :		#100		
_	982						
E F	1064						
F		91					
6							
6 5 4 3 2	973	10	100	0	0	10/1	10.0000
4	983	27	89	0	11	24/1	8.0000
3	1010	22	18	0	82	4/18	.2222
2	1032	16	38	0.	62	6/10	.6000
1	1048	16	38	0	62	6/10	.6000

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
30339				#101			
-	956						
E F	1440	129					
			4.0			7.100	
6	1311	28	18	0	82	5/23	.2173
5 4	1339 1361	22 23	82 100	0 0	18 0	18/4 23/1	4.5000 23.0000
	1384	19	42	Ö	58	8/11	.7272
3 2	1403	16	44	Ŏ	56	7/9	.7777
1	1419	21	38	0	62	8/13	.6153
24556		7.44	Calhoun 4		#102		
	1018						
E	1041						
F		117					
6	924	28	25	0	75	7/21	.3333
5	952	20	80	0	20	16/4	4.0000
4	972	23	87 4.1	0	13	20/3	6.6666
3 2	995 1012	17 17	41 41	0 0	59 59	7/10 7/10	.7000 .7000
1	1029	12	25	ŏ	75	3/9	.3333
26481		····	Jackson I		#103		
	946						
E	1898	170					
F		170					
6	1728	26	23	0	77	6/20	.3000
5	1754	37	89	0	1	33/4	8.2500
4 3	1791 1822	31	90 48	0	10 52	28/3	9.3333
2	1845	23 22	46 32	0 0	68	11/12 7/15	.9166 .4666
1	1867	31	36	ő	64	11/20	.5500
22950			Jackson				#104
	1044						3 .
E	1288						
F		121					
6	1167	26	<i>5</i> 0	0	50	13/13	1.0000
5	1193	33	100	0	0	33/1	33.0000
4	1226	13	100	0	0	13/1	13.0000
3 2	1239	16	44 57	0	56	7/9	.7777
							.0526
2	1255 1269	14 19	57 0	0	43 100	8/6 1/19	1.33

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
21992	2		Jackson J	S1E26			#105
	924						
E	2233						
F		170					
6	2063	36	17	0	83	6/30	.2000
5	2099	27	81	0	19	22/5	4.4000
4	2126	43	100	0	0	43/1	43.0000
3	2169	21	52	0	48	11/10	1.1000
2	2190	18	33	0	67	6/12	.5000
1	2208	25	32	0	68	8/17	.4705
2866	5		Jackson 4	S1E10			#106
	995						
E	1356						
F		128					
6	1228	34	50	0	50	17/17	1.0000
5	1262	25	100	0	0	25/1	25.0000
4	1287	16	100	0	0	16/1	16.0000
3 2	1303	21	<i>5</i> 7	0	43	12/9	1.3333
	1324	14	<i>5</i> 7	0	43	8/6	1.3333
1	1338	18	0	0	100	1/18	.0555
?			Wa	ashtenaw	1S4E26		#107
_	916						
E	1633						
F		193					
6	1440	40	10	12	78	4/36	.1111
5	1480	41	90	0	10	37/4	9.2500
4	1521	32	81	19	0	26/6	4.3333
3 2	1553	19	42	21	37	8/11	.7300
	1572	18	39	50	11	7/11	.6400
1	1590	43	79	9	12	34/9	3.7800
27472			Washtena	w 3S4E8			#108
	957						
E	1273						
F		165					
6	1108	37	8	27	65	3/34	.0900
5	1145	38	89	0	11	34/4	8. <i>5</i> 000
4	1183	36	75	8	17	27/9	3.0000
3	1219	19	48	6	26	9/10	.9000
2	1238	16	37	26	37	6/10	.6000
1	1254	19	32	0	68	6/13	.4600

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
26856			Washtena	w 4S5E1	7		#109
	860						
E	642						
F		159					
6	483	28	0	21	79	0/28	.0400
5	511	38	100	0	0	38/1	38.0000
4	549	31	64	0	36	20/11	1.8200
3	<i>5</i> 80	19	37	26	37	7/12	.5800
2	599	15	40	20	40	6/9	.6700
ī	614	28	0	0	100	2/17	.0400
32734			Washtena	w 1S6E8			#110
	922						
E	1616						
F		445					
6	1171	45	11	25	64	5/40	.1250
5	1216	55	95	0	5	52/3	17.3333
4	1271	72	32	42	26	23/49	.4695
3	1343	61	10	67	23	6/55	.1090
2	1404	89	13	66	21	12/77	.1558
ī	1493	123	10	64	26	13/110	.1181
25714			Washtena	w 2S7#2	6		#111
	782						
E	1095						
F		439					
6	656	51	9	20	72	5/46	.1086
5	707	42	78	0	22	33/9	3.6666
4	749	72	43	30	27	31/41	.7560
3	821	61	0	82	18	1/60	.0166
2	882	94	0	64	36	1/93	.0107
1	976	119	0	66	34	1/118	.0084
25860	•		Wayne 1S	8E25			#112
	724						
E	1210						
F		524					
6	686	43	7	44	49	3/40	.0750
5	729	75	48	13	99	36/39	.9230
4	804	131	11	63	26	14/117	.1196
3	935	64	10	64	26	6/58	.1034
3 2	999	102	15	70	15	15/87	.1724
1	1101	109	17	70	13	19/90	.2111

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
26443			Wayne 3S	9E12			#113
	633						
E	646						
F		471					
6	175	56	0	30	70	1/55	.0181
5	231	38	87	0	13	33/5	6.6000
4	269	91	26	46	28	24/67	.3582
3 2	360	71	7	56	37	5/66	.07 <i>5</i> 7
	431	106	12	64	24	13/93	.1397
1	537	109	18	69	13	20/89	.2247
25560			Wayne 2S	11E19			#114
	588		· ·				
E	693						
F		448					
6	245	48	6	52	42	3/45	.0666
5	293	42	81	0	19	34/8	4.2500
4	335	75	27	48	25	20/55	.3636
3	410	71	7	75	18	5/66	. 07 <i>5</i> 7
2	481	99	15	71	14	15/84	1785
1	580	113	17	70	13	19/94	.2021
23775			Wayne 4S	10E22			#115
	610		•				
E	164						
F		184					
6	+20	46	9	30	61	4/42	.0952
5	26	41	93	0	7	38/3	12.6666
4	67	40	68	22	10	27/13	2.0769
3	107	16	62	38	0	10/6	1.6666
2	123	25	28	32	40	7/18	.3888
1	148	16	37	26	37	6/10	.6000
23531			Monroe 5	S7E4			#116
	658						
E	400						
F		161					
6	239	20	0	0	100	1/19	.0526
5	259	41	80	Ö	20	33/8	4.1250
4	300	32	56	Ō	44	18/14	1.2857
3 2	332	20	70	0	30	14/6	2.3333
2	352	12	58	0	42	7/5	1.4000
1	364	36	36	0	64	13/23	.5652

DATA (Continued)

	Elev.	Thick.	% S h	%E	%C	Clasti	c Ratio
23356			Monroe 7	S8E6			#117
	640						
E	+351						
F		134					
6	+485	37	24	0	76	9/28	.3214
5	+448	36	86	0	14	31/5	6.2000
4	+412	15	73	0	27	11/4	2.7500
3 2	+397	19	68	0	32	13/6	2.1666
2	+378	8	100	0	0	8/1	8.0000
1	+370	19	0	0	100	1/18	.0555
24515			Lenawee	6S3E30			#118
	872						
E	635						
F		98					
6	537	21	29	0	71	6/15	.4000
5	558	21	81	0	19	17/4	4.2500
4	<i>5</i> 79	22	73	0	27	16/6	2.6666
3	601	13	46	0	54	6/7	.8571
2	614	12	58	0	42	7/5	1.4000
1	626	9	0	0	100	1/8	.1250
23079			Hillsdale	6S3W12			#119
	1121						
E	711						
F		77					
6							
5	634	19	100	0	0	19/1	19.0000
4	653	12	67	0	33	8/4	2.0000
3 2	665	14	43	0	<i>5</i> 7	6/8	.7500
2	679	18	28	0	72	5/13	.3846
1	697	14	29	0	71	4/10	.4000
25853			Branch 75	56W8			#120
	988						
E							
F							
F 6 5							
5							
4							
4 3 2							
2							
1							

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%С	Clastic	Ratio
24183 E F 6 5 4 3 2	862		St. Joe 69	S9W29			#121
23289 E F 6 5 4 3 2	865		Cass 751	¥₩8			# 122
23130 E F 6 5 4 3 2	667		Berrien 3	S17W34			#123
24369 E F 6 5 4 3 2	654		Berrien 6	S19W1			# 124

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
30777			Oakland 2	5N10E31			#125
	1052						
E	2358	522					
F		532					
6	1826	46	6	40	54	3/43	.0697
5	1872	93	51	38	11	47/46	1.0217
4	1965	123	12	70	18	15/108	.1388
3	2088	61	.8	88	4	5/56	.0892
2	2149	95	18	63	19	17/78	.2179
1	2244	114	6	68	26	6/108	.0555
30169			Oceana 1	5N18W27	,		#126
KB	762						
E	2175						
F		151					
6							
5	2033	53	89	0	11	47/6	7.8333
4	2086	26	73	0	27	19/7	2.7142
3 2	2112 2135	23 24	65 46	0	35 54	15/8	1.8750
1	2159	16	31	Ö	69	11/13 5/11	.8461 .4545
							.,,,,,
129-74			Ot	tawa 5N	15W20		#127
KB	604						
E	1829	101					
F		124					
6							
5	1705	43	93	0	7	40/3	13.3333
4	1748	18	67 54	0	33	12/6	2.0000
3 2	1766	22 13	54 69	0	46	12/10	1.2000 2.2500
1	1788 1801	28	69 39	0	31 61	9/4 11/17	.6470
	1801						.0770
28865			Mason 19	N18W13			#128
lg E	646						
E	2610	171					
F		171	_	_			
6	2439	28	50	36	14	14/14	1.0000
5	2467	41	90	0	10	37/4	9.2500
4	2508	23	100	0	0	23/1	23.0000
4 3 2	2531	35 22	83 53	0	17	29/6	4.8333
1	2566 2589	23 21	52 14	18 24	30 62	12/11 3/18	1.0909 .1666
1	4707	21	14	4	02	2/10	. 1000

DATA (Continued)

	Elev.	Thick.	% S h	%E	%C	Clastic	Ratio
28825			Manistee	23N14W	27		#129
KB	772						
E	3477						
F		420					
6	30 <i>5</i> 7	55	40	49	11	22/33	.6666
5	3112	96	32	32	36	31/65	.4769
4	3208	55	38	38	24	21/34	.6176
3	3263	52	10	40	<i>5</i> 0	5/47	.1063
2	3315	56	28	34	38	16/40	.4000
1	3371	106	24	38	38	26/80	.3250
30520			Grand Tra	averse 2	5N10W3		#130
lg	1044						
lg E	45 01						
F		691					
6	3810	168	7	63	30	12/156	.0769
5	3978	121	30	40	30	37/84	.4404
4	4099	129	17	36	47	22/107	.2056
3	4228	68	9	37	54	6/62	.0967
2	4296	98	24	37	39	24/74	.3243
1	4394	107	16	62	22	17/90	.1888
28110			Crawford	25N4W2	21		#131
KB	1239						
E	5231						
F		881					
6	4350	243	3	72	25	8/235	.0340
5	4593	173	18	44	38	32/141	.2269
4	4766	151	13	76	11	19/132	.1439
3	4917	76	8	87	- 5	6/70	.0857
2	4993	111	21	53	26	23/88	.2613
1	5104	127	13	65	22	17/110	.1545
29001		 	Crawford	28N4W2	29		#132
KB	1359			- · · · ·			_
E	4727						
F		798					
6	3929	210	4	77	19	8/202	.0396
5	4139	147	21	37	42	31/116	.2672
4	4286	141	18	45	37	26/115	.2260
3	4427	76	9	41	50	7/69	.1014
3 2	4503	106	24	44	32	25/81	.3086
ī	4609	118	11	63	26	13/105	.1238

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
28479			Kalkaska	28N6W1	9		#133
	1112						
lg E	4518						
F		788					
6	3730	218	4	68	28	9/209	.0430
5	3948	140	26	48	26	37/103	.3592
4	4088	142	18	54	28	25/117	.2136
3	4230	64	11	45	44	7/57	.1228
2	4294	104	29	49	22	30/74	.4054
1	4398	120	12	72	16	14/106	.1320
30848			Otsego 29	9N3W2			#134
	1282		- 10080 -				
lg E	4058						
F		819					
6	3239	216	5	65	30	10/206	.0485
5	3455	145	27	46	27	40/105	.3809
4	3600	146	16	30	54	23/123	.1869
	3746	77	8	45	47	6/71	.0845
3 2	3823	105	17	54	29	18/87	.2068
1	3928	130	16	57	27	21/109	.1926
31255			Otsego 29	9N2W27			#135
lg	1234		J				
lg E	4274						
F		844					
6	3430	216	5	63	32	10/206	.0485
5	3646	1 <i>55</i>	28	41	31	43/112	.3839
4	3801	142	15	51	34	21/121	.1735
3	3943	86	9	67	24	8/78	.1025
2	4029	112	22	38	40	25/87	.2873
1	4141	133	16	75	9	21/112	.1875
30184			Montmore	ency 29N	N2E7		#136
KB	1192			•			
E	3953						
F		790					
6	3163	207	4	65	31	9/198	.0454
5	3370	151	26	38	36	40/111	.3603
4	3521	133	13	68	19	18/115	.1565
3 2	3654	78	6	77	17	5/73	.0684
2	3732	100	19	31	<i>5</i> 0	19/81	.2345
1	3832	121	13	74	13	16/105	.1523

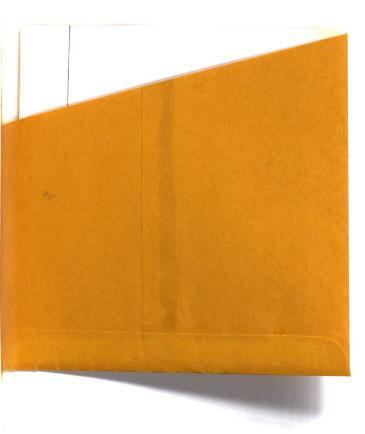
DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
32319			Cheboyga	n 33N1E	.12		#137
KB	794						
E	1957						
F		727					
6	1230	184	7	53	40	13/171	.0760
5	1414	130	45	24	31	58/72	.8055
4	1544	130	19	17	64	25/105	.2380
3 2	1674	70	27	34	39	19/51	.3725
	1744	96	24	44	32	23/73	.3150
1	1840	117	12	56	32	14/103	.1359
28856			Presque I	sle 33N4	E12		#138
KB	874						
E	1778						
F		712					
6	1066	17 <i>5</i>	6	54	40	11/164	.0670
5	1241	126	34	43	23	43/83	.5180
4	1367	128	22	16	62	29/99	.2929
	1495	68	7	49	44	5/63	.0793
3 2	1563	93	24	24	52	22/71	.3098
1	1656	122	11	69	20	14/108	.1296
24324	- · · · - · - · · · · · · · · · · · · ·		Livingsto	n 4N3E3	5		#139
KB	906						
E	2034						
F		589					
6	1445	63	22	57	21	14/49	.2857
5	1508	118	36	20	44	43/75	.5733
4	1626	121	16	35	49	19/102	.1862
3	1747	64	8	64	28	5/59	.0847
2	1811	89	18	67	15	16/73	.2191
1	1900	134	18	64	18	24/110	.2181
34357			Missauke	e 22N6W	31	 	#140
KB	1206			 W	- -		
E	5980						
F		819					
6	5161	205	4	89	7	8/197	.0406
5	5366	147	28	36	36	42/105	.4000
	5513	146	21	53	26	31/115	.2695
4 3 2	5659	79	15	61	24	12/67	.1791
2	5738	115	17	60	23	20/95	.2105
1	5853	127	12	76	12	15/112	.1339

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
34078			Missauke	24N6W	7		#141
KB	1288						
E F	5554	920					
Г		830					
6	4724	211	5	56	39	10/201	.0497
5	5935	161	23	38	39	37/124	.2983
4	5096	150	22	49	29	33/117	.2820
3	5246 5310	73	11	59	30 27	8/6 <i>5</i>	.1230
2	5319 5430	111 124	22 14	51 72	27 14	24/87	.2758
	J430 	124	14		14	17/107	.1588
34558			Osceola 1	7N8W31			#142
KB	1117						
E	5256	44.4					
F		629					
6	4627	114	11	75	14	12/102	.1176
5	4741	109	31	40	29	34/75	.4533
4	4850	115	22	64	14	25/90	.2777
3	4965	78	8	55	37	6/72	.0833
2	5043	86	23	71	6	20/66	.3030
1	5129	127	16	66	18	10/107	.1869
34612			Wexford 2	21 N9W 14			#143
KB	1412						
E	5486						
F		716					
6	4770	162	6	78	16	10/152	.0657
5	4932	128	25	<i>5</i> 8	17	32/96	.3333
4	5060	130	15	60	25	20/110	.1818
3 2	5190	67	9	36	55	6/61	.0983
	5257	102	25	56	19	25/77	.3246
1	5359	127	15	68	17	19/108	.1759
34268			Ottawa 6	N15W1			#144
KB	638						
E	2146						
F		111					
6				_	_		
5	2035	43	100	0	0	42/1	42.0000
4	2078	16	100	0	0	15/1	15.0000
3 2	2094	15	48	27	25	7/8	.8750
1	2109 2115	6 31	100 45	0 55	0	5/1 14/17	5.0000 .8235
T	2117	21	4)))	U	14/1/	•04))

DATA (Continued)


	Elev.	Thick.	%Sh	%E	%С	Clasti	c Ratio
35311 KB E	1078 4358		Newaygo	16N11W	28		#145
F		440					
6 5 4 3 2 1	3918 3957 4009 4110 4171 4254	39 52 101 61 83 104	26 100 1 0 24 4	10 0 70 69 45 62	64 0 29 31 31 34	10/29 51/1 1/1000 1/60 20/63 4/100	.3448 51.0000 .0100 .0166 .3174 .0400
35259 KB E F	1052 5135	619	Mecosta	14N7W12	!		#146
6 5 4 3 2	4516 4613 4722 4840 4907 4998	97 109 118 61 92 137	4 10 22 0 15 8	59 65 78 80 67 66	37 25 0 20 18 26	4/93 11/98 26/92 1/66 14/77 11/126	.0430 .1122 .2826 .0151 .1818 .0873
34790 KB E	1121 5765	730	Clare 17	16W34			#147
6 5 4 3 2 1	5035 5190 5323 5459 5528 5618	155 133 136 69 90 147	9 34 31 7 35 11	75 66 69 81 48 72	16 0 0 12 17 17	14/141 45/88 42/94 5/64 32/58 17/130	.0992 .5113 .4468 .0781 .5517
34611 KB E F	1004 6130	812	Clare 171	14 W 7			#148
6 5 4 3 2	5318 5508 5666 5818 5895 5994	190 158 152 77 99 136	4 29 17 19 23 4	78 64 80 67 63 63	18 7 3 14 14 33	7/183 46/112 26/126 15/62 23/78 5/131	.0382 .4107 .2063 .2419 .2948

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clastic	Ratio
33680			Clare 20N	16W30		***************************************	#149
KB	1157						
E	5843	=00					
F		788					
6	5055	182	5	75	20	9/172	.0523
5	5237	145	26	74	0	38/106	.3584
4	5382	148	24	<i>5</i> 8	18	35/112	.3125
3 2	5530	76	24	68	8	18/ <i>5</i> 7	.3157
	5606	105	19	63	18	20/84	.2380
1	5711	132	5	70	25	7/124	.0564
34537			Roscomm	on 22N4	W16		#150
KB	1141						
E	6174						
F		866					
6	5308	217	3	83	14	7/210	.0333
5	5525	173	19	65	16	33/140	.2357
4	5698	148	11	82	7	16/132	.1212
3	5846	81	10	81	9	8/73	.1095
2	5927	110	5	81	14	6/104	.0576
1	6037	137	10	64	26	14/123	.1138
34973			Arenac 19	9N5E21			#151
KB	629						
E	6549						
F		1000					
6	5549	266	4	81	15	11/255	.0431
5	5815	206	14	78	8	28/178	.1573
4	6021	171	8	71	21	14/157	.0891
3	6192	95	14	77	9	13/82	.1585
2	6287	103	16	61	23	16/87	.1839
1	6390	159	9	64	27	14/145	.0965
34931			Alcona 26	N5E31			#152
KB	986						
E	4903						
F		850					
6	4053	216	7	73	20	15/201	.0746
5	4269	160	17	67	16	28/132	.2121
4	4429	1 <i>5</i> 4	22	78	0	33/121	.2727
3	4583	85	12	78	10	10/75	.1333
2	4668	83	18	60	22	15/68	.2205
1	4751	152	7	71	22	11/141	.0780

DATA (Continued)

	Elev.	Thick.	%Sh	%E	%C	Clasti	c Ratio
34536		Osceola 18N8W27					#153
ΚB	1055						
E	5412						
F		674					
6	4738	141	8	69	23	11/130	.0846
5	4879	122	39	61	0	47/7 <i>5</i>	.6266
4	5001	127	24	76	0	31/96	.3229
3	5128	66	23	67	10	15/51	.2941
2	5194	9 0	12	67	21	11/79	.1392
1	5284	128	9	61	30	12/116	.1034
35153		Jackson 3S2E1					#154
KB	1041						
E	1662						
F		149					
6	1513	27	26	0	74	7/10	.3500
5	1540	19	100	0	0	18/1	18.0000
4	1559	33	100	0	0	32/1	32.0000
3	1592	24	62	0	38	15/9	1.6670
2	1616	22	73	0	27	16/6	2.6670
1	1638	24	75	0	25	18/6	3.0000
29158		Ingham 2N2E32					#155
KB	963		Ü				
E	2386						
F		196					
6	2190	47	29	17	54	14/34	.4242
5	2237	38	89	0	11	34/4	8.5000
4	2275	32	94	0	6	30/2	15.0000
3	2307	30	33	0	67	10/20	. <i>5</i> 000
2	2337	22	27	0	73	6/16	.3750
1	2359	27	22	0	78	6/21	.28 <i>5</i> 7

