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ABSTRACT

DIAGNOSIS OF INTERMITTENT FAULTS

IN DIGITAL SYSTEMS

BY

SAMIR KAMAL

Digital computers are being relied upon as integral

parts of an increasing number of systems handling all aspects

of our life. The prOper Operation of computers is vital to

the functioning of these computerized systems. One of the

major approaches to achieve prOper operation of computers

is fault diagnosis plus repair. This thesis lends itself

to one aspect of this approach, namely: the diagnosis of

intermittent faults in combinational circuits.

Intermittent faults in digital systems are those faults

whose effects are not observed all the time. A system having

an intermittent fault may show the effect of such a fault

when an input test is applied one time, and possibly not

show it when the same test is applied many other times.

A probabilistic model is suggested for intermittent

faults in logical circuits. The model assumes that the

circuit is irredundant and that it can have only one of a
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possible set of faults (the single fault assumption). It

also assumes that the faults are well behaved and are signal

independent. Testing for such faults is done through the

repeated application of tests that would detect these faults

had their effect been permanent. These tests are generated

using any of the methods employed for generating tests that

detect permanent faults. The prior probability of the cir-

cuit having any of the intermittent faults is assumed to be

known in the model. Also the probability of observing the

effect of each fault, if that fault exists, is assumed.

A procedure for the detection of intermittent faults

is suggested. It is analogous to a sequential statistical

decision problem. At any stage during testing, the proce-

dure terminates if a failure is observed or if the decision

rules decides that the circuit is fault free. Otherwise,

it selects an appropriate test to be applied at the next

stage. The decision rule used in the detection procedure

is selected such that it insures the procedure termination

in a finite number of steps. Least upper bounds on the

number of repetitions of tests that detect a particular

fault are derived. They are employed in designing optimum

detection experiments. Such an optimization problem is

found to be equivalent to an integer programming problem.

A diagnosis procedure, also employing the repetition of

tests that detect permanent faults, is proposed. It is proved
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that the conditions required in the procedure guarantee that

the expected length of the diagnosis experiment is finite.

Test prOperties that are needed for the diagnosis of inter-

mittent faults are determined. Some fundamental differences

between those properties needed for the intermittent fault

case and those needed for the permanent fault case are

pointed out. The problem of Optimizing the diagnosis experi-

ment is examined. Unfortunately, the true optimum solution

can be obtained only through impossibly lengthy enumeration.

Two subOptimal approaches that are heuristic in nature are

suggested.
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CHAPTER I

INTRODUCTION

The last quarter of a century has witnessed major

changes in many systems organizations which affect every

facet of life. The reliance on digital computers as

intergral parts of these systems has introduced irreversible

changes. The speed and efficiency of computers in handling

massive amounts of information are the main motives for

these changes. For these same reasons, huge and complex

systems are now designed that were unthinkable before the

use of computers, e.g., systems for space flights. These

so-called computerized systems span a very wide range of

applications, from the simple to the extremely complex,

from government agencies to private enterprise, from space

missions to patient monitoring. Air line reservations,

production line scheduling, highway traffic control, ABM,

are just a few examples of these systems.

Prior to computerization, systems had manual backups

for use in case of failures. With the current fast and

sophisticated systems, manual backup is infeasible except

for a limited number of cases for a short period of time.



Proper operation of computers, being important parts of

these systems, must be assured, particularly for real-time

applications, where down time for an extended period of

time would be very costly, if not disastrous. An auto

assembly plant will be shut down and all the labor force

sent home for the day, if the production line is down for

half an hour. With this type of strigent requirements, it

is imperative that we use more reliable computers, even

though today's machines are built from components far more

reliable than their counterparts that were used a decade

or so ago.

1.1 FAULT-TOLERANT COMPUTING

Fault-tolerant computing is a field of study

whose major concern is the assurance of prOper operation

of digital computers. A definition of the term was given

by Ramamoorthy [30] as: "Fault-tolerant computing can be

defined as the ability to execute specific algorithms

correctly regardless of hardware failures or software

errors." This definition, even though comprehensive,

neglects the importance of time. It is very critical,

especially with real-time applications, that algorithms be

executed correctly within a tolerable period of time.

Clearly, the goal implied in the above definition is far

reaching and it is quite a challenge to achieve, even

partially, this goal. The difficulty forseen in achieving



this goal should not be a discouraging factor in the work

toward that end, at least we should try to reduce the

penalty we are likely to pay, in case of failures or

errors, to a minimum.

Even though the roots of this field started with the

early days of computers [27, 28, 38], there has been con-

siderable recent interest in it. Related research papers

appear regularly in the literature. In addition, two

recent international symposia* were SOlGlY devoted to this

subject. Fault-tolerant computing encompasses theory and

techniques for fault and error detection and correction,

modeling, simulation, analysis, synthesis and architecture

of fault-tolerant systems.

Structural reliability is of major importance to

fault-tolerant systems. Several approaches are used to

ensure structural reliability, some of which are presented

in the following section. It should be emphasized that

the term "reliable" is used here in the generic sense and

not in the formal probabilistic sense as in the theory of

reliability in engineering parlance. The term "credible"

was used in lieu of that by Carroll [5].

 

*First International Symposium on Fault-Tolerant

Computing, March 1971, and Second International Symposium

on Fault-Tolerant Computing, June 1972.



1.2 SOME APPROACHES TO ATTAIN STRUCTURELY RELIABLE SYSTEMS

Several traditional approaches to the problem of

assuring proper operation of digital systems have been

studied. The most significant are:

(a) Use of Better Components and Better Designs.

An integrated circuit, for example, could be

made more reliable if it were designed to be more

noise discriminant, and to be capable of withstanding

greater power supply fluctuations without suffering

damage or malfunctioning than is presently possible.

This approach appears to be an obvious and straight-

forward one, but it is limited by the available

technology and by the economics governing the design.

Often, the application still requires more reliability

than this approach can provide.

(b) Redundancy.

Through this approach, it is possible, using

additional hardware, to build a system that will

function properly even after the failure of one or

more of its components. The redundancy employed in

space flights is a typical example of this approach.

A good portion of the early work in fault-tolerant

computing concentrated on the study of different

redundancy systems. By guadrupling the number of

contacts in a relay switching system, Moore and



Shannon [28] have shown that it is possible to come

up with a system more reliable than the individual

relays. This work was later extended to gate-networks

by Tryon [37]. Other classic work in this area was

due to Von Neumann who introduced the notion of the

"Restoring Organ" [38]. This concept was later

developed by Lyons [22] in the study of TMR (Triple

Modular Redundancy). Redundancy is quite expensive

and just postpones the inevitable: given.sufficient

time, enough failures will occur and the system will

eventually malfunction. It is quite suitable for

short-term applications such as space missions where

correct operation must be guaranteed for a relatively

short period of time and repair is rather difficult

or even impossible.

(c) Fault Diagnosis Plus Repair.

Economic considerations make this approach the

most favored one. With this approach, a system is

tested to determine whether or not it is functioning

as intended (fault detection), and if not, which part

caused the trouble (fault diagnosis). Such testing

is needed through the life of the system. When it is

first installed, an acceptance test is needed.

Thereafter, routine testing, e.g., performed by the

CE (Customer Engineer), is performed as part of a

maintainance program. Studies about automatic



testing for the so-called "self-repairing" systems

were carried by Avizienis [1, 2] and others.

This approach has received a great deal of

attention in recent years. It can be safely stated

that, so far, it has been the backbone of fault-

tolerant computing.

A combination of approaches (b) and (c), even though

more expensive than the third approach, will lead to ulti-

mate reliability. Such a combination is very suitable when

the system is used for vital applications where uninter-

rupted operation is a must. Combining these two approaches

must be done with care, since redundancy is incompatible

with diagnosis because it will tend to mask the effect of

a fault when it occurs so it will go undetected. However,

clever use of redundancy (e.g., via additional outputs)

could amount to greater reliability, if the redundant

components are used in such a way that they are not

redundant for test purposes. A system that made use of

this combined approach is the E88 (Electronic Switching

System) of the Bell System, where the failure time is

limited to 2 hours in 40 years (acknowledged off the record

by the designers).

1.3 SWITCHING CIRCUITS

Most of the work done in the area of fault

diagnosis deals with faults in switching circuits. The



basic elements of switching circuits are the logical

elements. Schematic notations for some of these elements

are shown in Figure 1.1. Switching circuits are usually

divided into two types: combinational and sequential

 

  

circuits.

Ifl

NOT gate AND gate OR gate

:19— :D— 1E)»—

EOR gate NAND gate NOR gate

(Exclusive OR)

Figure 1.1 Some Logical Elements.

1.3.1 Combinational Circuits

A switching circuit is combinational [24] if its

outputs 2i (1‘: i §_m) can be written as Boolean functions

of its inputs xj (l i.j : n)

21 = fi (X1,X2,...,Xn) ' (101)

i.e., each output is a function only of the present values

of the inputs. A block diagram for a combinational

switching circuit is shown in Figure 1.2. The realization



 

 

 

 

 

 

 

x1 21

.2 P .2
Combinational

Logic

xn zm

   

Figure 1.2. Block Diagram of a Combinational Circuit.

 

 

 

  z - §2(x1 + x3) +

;‘2 32132§3

Figure 1.3. Example of a Combinational Circuit.

of such a circuit is characterized by the absence of feed-

back. An example of a combinational circuit is given in

Figure 1.3.



1.3.2 Sequential Circuits

In a sequential circuit [24], the output at any

time is a function of the current inputs and also of

previous inputs. The history of previous inputs is summa—

rized in the state of the circuit. The realization of a

sequential circuit is characterized by feedback. The

combined value of the feedback lines yk (l i.k i p),

represent the current state of the circuit. A typical

block diagram is shown in Figure 1.4.

 

 
 

  

  

   

 

    

   
 

x

l 0 o 21

' Combinational '

xn Logic zm

1.44] .4,

Y1 Y1

: Memory :

Y

yp p
   

Figure 1. 4. Block Diagram of a Sequential Circuit.

Sequential circuits are classified as "synchronous"

or "asynchronous" depending on whether or not it is
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operating under the control of clock pulses (additional

input to the "memory" block of Figure 1.4 that is not

shown). Asychronous sequential circuits are characterized

by level inputs and outputs; while the inputs and outputs

of synchronous sequential circuits could be either level

or pulses.

Two different models for synchronous sequential

circuits have been in use, one is due to Mealy [25] and

the other is due to Moore [27]. In both models, the next

state is.a function of current input and current state,

i.e.,

Yk = gk (X1,X2,...pxn3yl,y2,...,yp) (1.2)

The difference between the two models is in the output

function. In the Mealy model it is a function of the

current state and current input, i.e.,

21 = fi (xl,x2,...,xn;yl,y2,...,yp) (1.3)

while in the Moore model, the output is a function only of

the current state, i.e.,

21 = fi (X1,X2,...,Xn) (1.4)

The two models can be shown to be quivalent, see Gill

[18].
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1.4 LOGICAL FAULTS

A fault is a physical defect that causes the

circuit to malfunction. There are numerous factors that

could give rise to faults, among them:

(1) Aging and gradual deterioration with time. This

usually would result in what is called marginal

faults, e.g., the gap between the ON and OFF

thresholds of a transistor gets smaller.

(2) Critical timing, noise, close design tolerances

and loose wires. These would cause some sort of

intermittent faults. Some intermittent faults

eventually will become permanent faults.

(3) Solid failures such as a permanently open col-

lector or base lead of a transistor, a broken

wire, or a short circuit between adjacent con-

nections. These will result in what is called

permanent faults.

This thesis deals only with logical faults. These are

the faults which affect changes in the logical behavior of

the circuit. Failures that cause, say, changes in pulse

shapes, but do not alter the logical functions realized by

the circuit will not be considered. Also, power supply and

clock failures are not considered here. Hereafter, the

term fault would mean logical fault, unless otherwise

indicated. The following are examples of faults and how

they are logically described.



12

Example 1.1 (Faults in an inverter)

Consider the inverter circuit shown in Figure 1.5.

An open collector failure (lead 1 open) will cause the

output y to be at a high voltage regardless of the

value of the input signal x. Logically, this can be

represented as line y being s-a-l (stuck at logical

value 1) if positive logic is assumed. On the other

hand, if the failure is Of the form of a short between

the collector and the emitter (short between 1 and 2),

the output y will always be at ground voltage

regardless of the input signal x. This is represented

logically as line y being s-a-O (stock at logical

value 0).

 

4.

1 Y X Y

1-

1 Open (y high) y s-a-l

l and 2 shorted (y low) y s-a-O

Figure 1.5. Faults in an Inverter Circuit.
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Example 1.2 (Faults in and AND gate)

The circuit diagram Of a DRL (Diode Resistor

Logic) AND gate is shown in Figure 1.6. If the

diode at input x1 is open, the circuit will behave

as if the x1 input is not present. This can be

described logically as xl being s-a-l.

 

 

 

+.

I x1

X

*

x2

*‘

"3

Diode 1 Open xl s-a—l

Figure 1.6. Input Diode Failure of an AND gate.

Example 1.3 (Bridging Faults)

If a short circuit occurs between two lines, say

the outputs of two gates, both outputs will take a

common signal value. The value of such a signal

could be evaluated by detailed circuit analysis. In

general, it depends on the type of technology used in

the realization. With current technologies, which

are mainly TTL (Transistor-Transistor Logic), ANDing
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(a) Normal Circuit.

 
 

 

 

 

  
 

 

x2 I B Afic-fi’: I

"3 ‘c 1 “‘D—
i3

x4 2

(c) Equivalent Circuit if Lines 1 and 3 are Shorted.

Figure 1.7. Bridging Faults.
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the two signals is an acceptable logical description of

the fault. Thus, the effect of a short between lines

1 and 2 of the TTL circuit shown by its logical diagram

in Figure 1.7(a), on the behavior of the circuit can be

analyzed by inserting a virtual AND gate as shown in

Figure 1.7(b). The equivalent circuit when a short

occurs between lines 1 and 3 is shown in Figure

1.7(c). Notice how this fault has transformed the

combinational circuit into a sequential one.

The failures indicated in examples 1.1 and 1.2, are

represented logically as stuck-at faults. This is typical

of a good proportion of known failures. Again, this kind

of representation depends on the technology in use. A

considerable amount of work dealt only with the stuck-at

faults; for example [8, 21].

1.5 INTERMITTENT FAULTS

Intermittent faults in logical circuits are those

faults whose effects are not present all the time. A

circuit having an intermittent fault may show the effect of

such a fault when an input test is applied one time, and

possibly not show it when the same input test is applied

other times. As indicated in the previous section, many

factors could result in intermittent faults, e.g., stray

capacitances, close design tolerances, fatigue, or

irregular physical structure of components [34, 40].
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Almost all of the work cited in the literature in the

area of modeling, detection and diagnosis of faults in

logical circuits deals only with permanent faults [7, 14,

31, 36]. Only one recent paper, Breur [3], deals with

intermittent faults. Breur has a first order Markov chain

model for the faults, but most of his results are based on

the simplified assumption of a zero order Markov chain.

His work deals mainly with detecting whether the circuit

has a certain intermittent fault or not, i.e., the case

where the circuit could have only one possible intermittent

failure.

1.6 CONTRIBUTION AND ORGANIZATION OF THE THESIS

Intermittent faults constitute a respectable

portion of the faults that occur in digital systems. Ad-hoc

methods have been used to handle these faults in practice,

while formal treatment has been completely ignored despite

the need for such a tool. This thesis investigates this

problem. It develops a probabilistic model for these

faults and defines a criterion for fault detectiOn in

combinational circuits. The detection problem is treated

as a sequential statistical decision problem using tech-

niques similar to those employed in pattern recognition

methodology [15]. A method is given for the design of

optimum detection experiments, which was found to be

equivalent to an integer programming problem. A diagnosis
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philosophy is then presented leading to a diagnosis

methodology. A method for finding suboptimal diagnosis

experiments is presented since optimum experiments could

only be found through enumeration of an impossibly large

class of experiments.

Chapter I presents some background material and a

general discussion of fault-tolerant computing. In

Chapter II, an overview of diagnosis of permanent faults is

presented. Chapter III presents a model for intermittent

faults and discusses the problem of their detection in

combinational circuits. Diagnosis of intermittent faults

is dealt with in Chapter IV, while Chapter V summarizes

the thesis and recommends problems for further research.



CHAPTER II

DIAGNOSIS OF PERMANENT FAULTS IN

COMBINATIONAL CIRCUITS

It was indicated in Chapter I that one of the most

common approaches to ensure proper operation of digital

computers is fault diagnosis plus repair. Fault diagnosis

deals not only with detecting faults when they occur, but

also with pinpointing the locations of failures to enable

repair. These diagnostic tasks are accomplished by testing

the system at hand. Testing, in this sense, means applying

inputs and observing the corresponding outputs. In this

chapter, several test generation methods are surveyed. The

total number of tests generated for a large circuit could

be enormous; hence it is often desirable to select a

minimal or a near-minimal subset of these tests that is

sufficient for detection or diagnosis. Schemes for

selection of such optimal test subsets are explored later

in the chapter.

18
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2.1 TESTS

A test for a combinational circuit is an input

vector together with the Observed output. A test tj is

said to detect fault fi if, upon the application of tj,

the output vectors are different when the circuit is fault-

free and when it has fault fi' For example, consider the

exclusive-OR circuit shown in Figure 2.1. Let f1 be the

fault "x1 s-a-O," and f2 be the fault "y s-a-l." Test

t1, denoting the input vector (0,1) (i.e., x1 = 0 and

x2 = l), detects neither f1 nor f2 since upon the

application of t1 the output is 1 when the circuit is

fault-free, when it has f1, and when it has f On the2.

other hand, tests t2 (input vector (1,0) ) and t3

(input vector (1,1) ) detect f1 since they result in

x2

f1 : "x1 s-a-O" , detected by (1,0) and (1,1).

f2 : "y s-a-l" , detected by (0,0) and (1,1).

Figure 2.1. Example of Faults in an Exclusive-OR

Circuit.
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outputs of 0 and 1 respectively, if the circuit has fl,

and in outputs of 1 and 0 respectively if the circuit is

fault-free. Similarly, tests t4 (input vector (0,0) )

and t3 detect. £2.

The following remarks are now clear:

(1) In general, a test detects more than one fault.

For example, test t3 above.

(a) A fault can generally be detected by more than

one test. For example, fault f1 above.

If fl and f2 are the only possible faults that

could occur in the above circuit, then t3 is sufficient

to determine whether the circuit is faulty or not. If t3

fails, i.e., produces an output that is different from

that of a fault-free circuit, then the circuit is faulty.

Actually this is true if any test fails. If t3 does not

fail, then the circuit must be fault-free. For that

reason {t3} is called a detection set for this circuit.

Generally, a detection set would contain more than one

test. {t2,t4} is also a detection set, while {t2} is not.

It is clear that {t3} is an optimal detection set (since it

has only one test) unless test costs are considered.

Detection tests tell us whether a system is faulty or

fault-free, but, in general, do not completely identify the

failure. Diagnosis tests will isolate the faults to a

specific component or a group of components depending on

both the diagnosis resolution needed and on the technology

in use. For example, if the system is built with discrete
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component technology, it might be necessary to pinpoint the

faults down to the gate level. On the other hand, with LSI

(Large Scale Integration) technology, fault identification

down to the module level would be sufficient.

It is possible that a failure occurs, but no test will

detect it; i.e., the effect Of the fault does not change

the function realized by the circuit. This is due to some

sort of redundancy in the circuit. Such redundancy is not

necessarily of the copious type discussed in Chapter I.

For example, the circuit of Figure 2.2 exhibits some

redundancy for test purposes; faults "3 s-a-O" and "4

s-a-O" will go undetected.
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Figure 2.2. Redundancy and Fault Masking.

Line "3 s-a-O" or line "4 s—a-O"

will go undetected.
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2.2 TEST GENERATION

In this section we discuss several methods to

generate tests that would detect a given fault. In the

methods presented, the circuit is assumed to be irredundant,

so that redundancy would not mask the effect of the fault.

Friedman [l3] pointed out some of the difficulties that may

arise when masked faults in redundant circuits interact

with otherwise detectable faults. Also, it will be assumed

that only one fault can be present at a time (single fault

assumption). This assumption is quite reasonable if

testing is done routinely as part of a maintainance

program: then, the probability Of having two faults is

negligible [7]. However, this would not be a reasonable

assumption for an acceptance test of a new installation

where whole sections of the machine may be constructed

incorrectly.

2.2.1 Truth Table Method

This is the most Obvious and straightforward

method for test generation. The truth tables fOr the normal

(fault—free) circuit and for the faulty circuit are com-

pared. An input combination is a test which detects the

fault under consideration if it results in two different

output vectors for the two circuits. A different truth

table is constructed for every fault considered.
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Example 2.1

Consider the circuit shown in Figure 2.3 and let

the line a be "s-a-l." The truth tables of the

output functions of the normal and faulty circuits are

shown in Table 2.1.

From Table 2.1, it is clear that three tests will

detect "a s-a-l." For these tests, the input vector

(xl,x2,x3,x4) will take the values (0,0,0,0),

(0,0,1,0) and (0,1,0,0). Alternatively, these test

could be represented by the min-terms: §1§2‘3‘4,

xlx2x3x4 and xlx2 3 4.

 

Figure 2.3. Truth Table Test Generation for "a s-a-l".

z’ is the output when "a s-a-l".
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x1 x2 x3 x4 2 z’

* 0 0 0 0 0 1

0 0 0 1 0 0

* 0 0 l 0 0 l

0 0 l l l 1

* 0 1 0 0 0 l

0 1 0 l 0 0

0 l l 0 0 0

0 l l l‘ 0 0

l 0 0 0 l l

l O 0 1 0 0

1 0 l 0 l l

1 0 l l l l

l l 0 0 1 l

1 1 0 l l l

l l l 0 O 0

1 l l 1 l l    
 

Table 2.1. Truth Table for Normal and Faulty Circuits when

"a s-a-l." (0,0,0,0), (0,0,1,0) and (0,1,0,0)

detect this fault.

This method is effective for small circuits. If the

circuit has n inputs, the number of computations needed

is proportional to 2n for every fault, which makes it

prohivitive to use this method for even the moderate size

circuits.



25

2.2.2 Path Sensitizing

Many investigators have worked on some form or

the other of this method. The name of Armstrong is usually

linked with it even though he did not publish his work that

is related to it. This method attempts to generate tests

faster and using less memory relative to the exponential

requirements of the previous method. Path sensitizing deals

with stuck-at faults in circuits consisting only of NOT,

AND, NAND, OR and NOR gates. The idea is to propagate a

change in signal value on a faulty line in the circuit to an

output terminal. A path is chosen from that location to an

output, and the inputs to the gates along this path are

adjusted, depending on the type of the gate, so that the

gate output is sensitive only to that input that is part

of the path. For AND and NAND gates, all inputs except the

changing one should be 1. For OR and NOR gates, these

inputs should be 0. For example, in Figures 2.4(a) and

2.4(b), if x2 and x3 are assigned 1, the output of

the AND gate will be x1, i.e., sensitive only to x1,

and the output of the NAND gate will be i1, i.e.,

sensitive only to x1. Similarly in Figures 2.4(c) and

2.4(d), if x1 and x2 are assigned 0, the output of the

OR gate will be x3, and of the NOR gate will be i3,

i.e., sensitive only to x3.
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(a) AND gate.

= x3 = 1 implies y = x1.

Y

(c) OR gate.

= x2 = 0 implies y = x3.

Figure 2.4.

(b) NAND gate.

x2 = x3 = 1 implies y = x1.

x1

X2 y

x3

(d) NOR gate.

x = x2 = 0 implies y = i3.

Adjusting Gate Inputs to Make Output Sensitive

Only to a Single Input.

The general procedure can

(1) A failure at a point

location is assigned

the fault condition.

be summarized as follows:

is assumed. The faulty

a value opposite to that of

isThat is, a value of l
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assigned to a line with "s-a-O" fault and vice

versa for a "s-a-l" fault.

(2) A path is chosen from the fault location to an

output terminal. The inputs to the gates along

this path are assigned values so as to propagate

any change on the faulty line, along the chosen

path, to the output terminal. This path is said

to be sensitized. This phase of the procedure is
 

called the forward-trace phase.

(3) An input vector (test) is determined by tracing

back from the inputs Of the gates, along the path,

to the inputs of the circuit, and assigning input

values to obtain the desired signals for these

gates. An arbitrary choice is made when differ-

ent possibilities exist. This portion of the

procedure is called the backward-trace phase.

It could result in more than one input vector or

even in a contradiction. In case of a contra-

diction, the process is repeated with a different

choice for the signals assigned arbitrarily, if

such a choice exists, otherwise a different path

should be chosen.

An example follows to illustrate this method.
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Example 2.2

Consider the circuit of Figure 2.5. In the

following discussion, a gate label may indicate its output

to simplify notation.

 

 

 

  

 

 

  

 

 
 

 

 
 

 

 

 

 

 

 

 

 
  

Figure 2.5. Path Sensitizing.

(1) "a s-a—l" : sensitize path DH;

detect it.

(2) "B s-a-O" : sensitize path EH;

sensitize path FH,

however, (0,0,0,0)

(1,0,1,1) and (1,0,0,0)

contradiction:

contradiction:

detects it.



(1)

(2)
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To generate tests that detect the fault "a s-a-l":

Sensitize path DH.

Assign 0 to a.

Assign 0 to the other input of gate D, i.e.,

x2 = 0.

Assign 0 to outputs of gates E, F and G.

This completes the forward-trace phase.

a = 0 implies x1 1 or x3 = 1, say x1 = l.

G = 0 implies x3 = l or C = l (i.e., x2 = 0

and x4 = 0), say x3 = 1.

F = 0 implies x4 = l or B = l (i.e., x2 = O

and x3 = 0), say x4 = 1.

E = 0 implies x1 = 1 or B = 1, already satis-

fied by a = 0.

This completes the backward-trace phase.

Thus we see that (l,0,l,1) is a test that detects

"a s-a-l." Have we selected another signal

choice, we would have obtained (l,0,0,0) as

another possible test.

To generate tests that detect "8 s-a-O":

Sensitize path EH.

= 0 andAssign 1 to B, i.e., = 0.
x2 x3

Assign 0 to the other input of gate E, i.e.,

x1 = 0.

Assign O to outputs of gates D, F and G.

G = 0 implies x3 = 1 (not possible), or

C = 1 (i.e., x2 = 0 and x4 = 0).
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F = 0 implies x4 = 1.

This is a contradiction since x4 is required to

be 0 and 1 at the same time.

Sensitize path FH.

Due to the symmetry Of the circuit, we will end

up with a similar contradiction.

However, the input vector (0,0,0,0) detects this

fault since it results in a l-output for the

normal circuit and in a O-output for the faulty

circuit.

This example is due to Schneider [32] to show that

this method is not algorithmic, i.e., even though a test

exists, this method did not generate it. The main flaw is

that only one path is allowed to be sensitized at one time.

For this reason, this method is sometimes called "one-

dimensional path sensitizing." The key to an algorithmic

method is to simultaneously sensitize all possible paths

from the site Of the fault to an output. This will be

necessary if the circuit has reconverqent fan-out at the

site Of the failure, i.e., there are two or more paths

that fan-out from the fault location then subsequently

reconverge as inputs to the same gate, e.g., paths EH

and PE in the above example.
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2.2.3 The D-Algorithm

This method was developed by Roth [31] to over-

come the limitations of the path sensitizing method. This

method is applicable to a wider class of faults than

stuck-at type faults. Also, its use is not restricted to

circuits constructed only of NOT, AND, NAND, OR and NOR

gates. Most important, this method is algorithmic due to

its ability to simultaneously sensitize all possible paths

from the site of the fault to a circuit output. This

method is sometimes referred to as two-dimensional path

sensitizing. Only an overview of the algorithm is

presented here. Details are found in Roth's paper. Roth's

formulation is in terms Of the D-Calculus; a calculus for

cubical complexes. In what follows, the symbol D

represents a signal that is 1 in the normal circuit and

0 in the faulty circuit. The symbol D represents a

signal that is normally 0, but becomes 1 when a fault

is present. The definitions of D and 5 could be

interchanged as long as they are consistent throughout the

circuit.

The elements of the D-calculus are:

(a) Singular Cover.

The singular cover of a gate (or a block) can be

considered as a concise form Of its truth table. It

is used to obtain the other elements of the D—

calculus.
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For example, Figure 2.6 shows a three-input OR

gate together with its singular cover. An "x" denotes

a "don't care” value. The cube lxxl means that the

output y will take a l-value if x1 takes the value

1 regardless of the values of x2 and x3. Notice

that no "x" appears in the output coordinate of the

cubes of the singular cover. For details about how

to obtain these cubes see [7, 14, 31].

(b) Primitive D-Cubes of a Fault.

The primitive D-cubes of a fault define the in-

puts tO a gate (block) which cause the output of the

gate (block) to be different from its normal value if

a given fault is present in the gate (block). These

cubes are obtained by intersecting the singular covers

of the normal and faulty gates (blocks). For cube

 

x1 x2 x3 y

l x x 1

y x l x 1

x x 1 l

0 0 0 0

Figure 2.6. OR Gate and Its Singular Cover.

"x" denotes a don't care.
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intersection rules see [7, 14, 31]. For example

consider the two-input AND gate of Figure 2.7. Sup-

pose this gate were realized by a threshold element

and that the actual threshold, due to some malfunction,

has dropped below the proper value; so the gate

behaves as an OR gate. The singular covers for the

normal and faulty gates are shown. Intersecting these

two sets Of cubes we Obtain 010 and 105 as the

primitive D-cubes of the fault. This means that to

test for this fault, apply 0(1) on x1 and 1(0)

on x2, if the output is 0, the circuit is normal; if

 

 
 

xl-———-

Y

x2-——-1

X1 X2 y X1 X2 y

1 l 1 l x l

0 l

x 0 0 0 0

Singular cover of Singular cover of

normal circuit. faulty circuit.

Figure 2.7. AND gate Behaving as an OR gate When

Faulty. 015 and 105 are the primitive

D-cubes of this fault.
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it is 1, the circuit is faulty. Primitive D-cubes

Of a fault can also be obtained for blocks with more

than one output. Notice that D and 5 appear only

in the output coordinate(s).

(c) Propagation D-Cubes for Input changes(s).

These cubes define the inputs that cause the

output of a gate (block) to be sensitive only to one

or more of its specified inputs, thus propagating a

fault on these inputs to the output. If the output is

to be sensitive to more than one input, then, of

course, these inputs must be related, e.g., have

identical signals or one is the complement of another.

This allows simultaneous multiple path sensitizing.

These cubes are obtained from the singular cover of

the gate (block). Some of the coordinates Of the

singular cover are complemented. The newly obtained

cubes are intersected with the singular cover to

Obtain the propagation D-cubes. For example, consider

the three-input NAND gate of Figure 2.8. The propa-

gation D-cube for a change in x1 is D115, i.e., to

make the output sensitive to x1, apply 1 to both

x2 and x3, then the output will be the complement

of the signal on x1.

To use the D-algorithm for generating tests, the

singular covers and all the propagation D-cubes for single

input change for all the gates (blocks) of the circuit are
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x1 x2 x3 Y

0 x x l

x 0 x l

x x O 1

l 1 l 0

Singular Cover.

Figure 2.8. 0115 is a Propagation D-cube of a NAND

gate for a Change in x1.

obtained. Only single-input propagation D-cubes are com-

puted initially. Propagation D-cubes for multiple input

changes are computed as necessary. They will be necessary

when reconvergent fan-out paths are to be sensitized. A

D-cube which represents partial signal values on the lines

of the circuit is called a test cube.

The procedure for deriving a test for a given fault

consists of two parts: the D-drive, which is analogous

to the forward-trace phase of the path sensitizing method,

and the consistency operation, which is analogous to the

backward-trace phase of the path sensitizing method.

In the D-drive, one Of the primitive D-cubes Of the

fault under consideration is chosen as the initial test

cube. It is then intersected with one of the propagation
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D-cubes. An activity vector is kept to help determine the

next propagation D-cube to intersect with. The activity

vector and the test cube are updated after every inter-

section. The process is repeated until at least one output

coordinate of the circuit is Obtained in the test cube. It

is possible that intersections involving single-input

propagation D-cubes may terminate prematurely before

reaching an output terminal if the circuit has reconvergent

fan-out. In this case, suitable propagation D-cubes for

multiple input changes are computed and intersection

proceeded. This is the case when more than one path needs

to be sensitized simultaneously.

After completion of the D-drive, the consistency

operation is begun. The test cube is successively inter-

sected with the cubes of the singular cover until enough

circuit inputs have been assigned to generate the signal

values specified by the test cube. It is possible that some

intersections will be empty, in this case it is necessary

to return to the D-drive phase and Obtain a new D-chain

before the consistency Operation can be successfully

completed.

2.2.4 Algebraic Methods

The basic ideas Of three algebraic methods for

test generation are presented. Even though some of these

methods are mathematically neat, they are only suitable
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for small circuits due to the large computation and memory

requirements for larger circuits. These methods are:

(a) Method of Complements.

The output function 2 is computed for the

normal circuit as is its complement, E. The corre-

sponding output 2’ and its complement 2’ are

computed for the faulty circuit. The above functions

are Obtained in normal form expressions. The Boolean

product of z and 2’ and of E and z’ are

computed. The Boolean sum of these products represent

the tests that detect the fault under consideration.

This method is somewhat better than the truth

table method since it deals with terms of the normal

form rather than with all the minterms (rows of the

truth tables). However, we need to store all the

terms of these functions which may very well exceed

the available memory. It is estimated that it would

take 109 reels of tape to store the terms of the

minimal normal form of the parity check circuit for a

60 bits per word computer, even though the circuit

would contain only about 63 logical blocks.

(b) Poage's Method.

Poage [29] has developed a complete and thorough

method for generating tests to detect all possible

stuck-at faults in combinational circuits. His work

is applicable to single faults as well as multiple
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faults. The disadvantage Of the method is that it is

practical only for relatively small circuits. In

order to introduce the effect of a fault on the

function realized by a circuit, he uses a kind Of

ternary algebra. For every line i in the circuit,

three Boolean variables i0, 11, and in, called

faultgparameters, are defined as follows:

10 = 1 iff line i is "s-a-O",

i1 = 1 iff line i is "s-a-l",

in = 1 iff line i is normal.

Only one of these parameters is equal to 1 while the

other two are 0's. If the signal on line i is

supposed to be y, it is replaced in the analysis by

the literal y* defined as:

y* = y-i + 11 . (2.1)

The complement 9* is defined as

§* = §~in + 10. (2.2)

These substitutions are successively carried on until

expressions 2* and 2* for the output and its

complement are obtained. Substitution for fault

parameters is then made to insert the fault condition.

Expressions for the faulty function and its complement
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are then Obtained. The method of complements,

described above, is then used to generate the tests.

(c) Boolean Differences.

Sellers et a1. [35] have developed the Boolean

difference method to generate tests, that detect

stuck-at faults, from the Boolean forms representing

the output functions.

The Boolean difference of an output z(x1,x2,

...,xn) with respect to one Of its variables xi is

defined as follows:

d

332:1 = z("1'°°°"‘i--1")"‘i+1"""‘n’69

z(xl,...,xi_1,l,xi+1,...,xn) (2.3)

In general, 5%} will be a function of some or all of

1
, .. dz _ ,

the xj s, jf1. If 351 - 1, then any change in xi

will result in a change in z regardless of the other

signals x.'s, j#i. If 95 = 0, then 2 is inde-
j dxi

pendent of xi. For single output circuits, the tests

that detect "xi s-a-O" are represented by xi 3% ,

while the tests detecting "xi s-a-l" are represented

- dz

by "1 3:31.
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2.3 FAULT TABLE
 

In the previous section, several methods for

generating tests that detect a particular fault were

presented. A set of tests, detecting all faults that are

likely to occur is generated. Let the set of faults of

interest, {f1,f2,...,fn}, contain n elements, and the

set of tests generated to detect these faults, {t1,t2,...,

tm}, have m elements. As noted earlier, some of these

tests detect more than one fault. An n x m fault table

could be constructed from these two sets. The columns

correspond to the tests and the rows correspond to the

faults. The entries are zeros and ones. This table can

be denoted by an n x m fault table matrix A.

Definition 2.1

The n x m fault table matrix A = (aij) is

defined as:

1 if test tj detects fault fi'

aij =
(2.4)

0 if test tj does not detect

fault fi'

For completeness, the set Of faults may contain an

additional element f0 corresponding to the fault free

circuit condition since it represents a circuit condition

to be distinguished from the rest of the faults. A 2257

plete fault table is defined to be a fault table appended

to it an additional row corresponding to £0. All entries
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Of the row corresponding to fo in the complete table will

be zeros. The m-dimensional binary vector corresponding

to fi (0|: 1‘: n) will be denoted by f1.

It is possible to save some of the effort used to

generate tests if some relations among faults are known.

If a class of faults is known to have indentical test sets,

it is sufficient to generate only a test set for one of the

faults in that class. Such faults form an equivalence

class that has indentical rows in the fault table. This

technique is called fault collapsing and is due to Schertz

and Metze [33]. For example, "s-a-O" faults at an input

Of an AND gate and at the output of the same gate have

indentical detection test sets. Practically, it does not

matter which fault of these occur, since the gate has to be

replaced anyway. Similarly, if all tests that detect a

particular fault fi also detect another fault fj, then

it is not necessary to generate tests to detect fj' In

_).

this case, for every 1-entry in fi, there is a corre-

+ +

sponding l-entry in fj, this is referred to as row f.

3

dominates row fi. For example, any test that detects an

input "s-a-l" for an AND gate also detects the output

"s-a-l" for that gate.

If two or more tests in the fault table have identical

columns, all but one of these columns can be removed since

they correspond to redundant tests. Similarly a column

whose entries are all zeros can be eliminated since no

information will be gained when the corresponding test is



42

applied. A fault table (complete fault table) is said to

be a reduced fault table (reduced complete fault table) if

it contains no zero or redundant columns.

The following are some properties of fault tables.

Theorem 2.1

An upper bound on the number of tests in a

reduced fault table with n faults is given by:

1:152“ - 1 (2.5)

252:.

Every column will have n entries. There are

at most 2n different binary vectors of n co-

ordinates each. One Of these vectors is all zeros.

Thus, there are at most 2n - 1 non-zero different

possible columns.

Theorem 2.2

Maximum diagnostic resolution (i.e., every fault

is diagnosable) is possible if and only if no two rows

in the complete fault table are identical.

2.9.9.:
+ +

If two rows, say fi and fj (i¢j), are

identical, then it is impossible to distinguish

between f1 and f. since the outcome of any test

3

applied when either fault exists will be the same.
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If no two rows are identical, the following

method constructs a diagnosis procedure with maximum

diagnostic resolution. At any stage in the procedure

apply the test with the lowest index which does not

result in the same outcome for all faults which are

still possibilities for the unknown circuit condition.

As long as there are at least two remaining possible

faults, such a test must exist, because for each pair

of faults there is at least one test which distinguishes

them. The procedure always terminates in fault

identification since the possibilities of unknown

faults are reduced at each stage. This is an

existence proof. It does not necessarily mean that

this is the only procedure with maximum diagnostic

resolution.

Q.E.D.

Theorem 2.3

For maximum diagnostic resolution, a lower bound

on the number of tests m that a fault table with n

faults should have is given by:

m 3 log2 (n + l) (2.6)

Proof

Suppose m < log2 (n + 1). With m tests,

there can be at most 21“ distinct rows in the com-

plete fault table. However, we have
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log (n + 1)

2m < 2 2 = n + l, i.e.,

2‘“<n+1.

Notice that a complete fault table with n faults

has n + 1 rows. Thus at least two rows of the

complete fault table must be identical, and, by

theorem 2.2, maximum diagnostic resolution is not

possible.

Example 2.3

A circuit can have one of six faults. Five tests

t1,t2,t3,t4 and t5 were generated. The detection

sets for f1,f2,f3,f4,fS and f6 are {t1},{t1,t2,t4},

t1 t2
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Table 2.2. Example of a Complete Fault Table.
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{t2,t4,t5}, {t1,t2,t4,t5}, {t2,t3,t4,t5} and {t1,t4}

respectively. The corresponding complete fault table

is given in Table 2.2.

2.4 EXPERIMENTS AND THE DIAGNOSIS TREE

The process of applying tests and drawing con-

clusions from the observed outputs is called an experiment.

Thus, a detection experiment is a sequence of tests to be

applied in order to determine whether the circuit is fault

free or not. On the other hand, a diagnostic experiment

is a sequence of tests whose outcome is used to decide

which fault, or class of faults (depending on the diag-

nostic resolution required), is present in the circuit.

The tests used for either the detection experiment or the

diagnostic experiment are selected from the set Of tests

generated, using any of the methods of Section 2.2, to

detect the set of faults of interest. The application of

all generated tests is sufficient for either detection or

diagnosis. However, the tests generated are usually more

than necessary for either experiment. 3

Experiments are classified into two types:

(a) Preset Experiments, where tests to be applied

are completely determined in advance.

(b) Adaptive Experiments, where the test to be

applied at a given stage depends on the outcome

of the previous test.
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In a preset experiment, the order of test application

is immaterial. The experiment length (number of tests to

be applied) is the same regardless of the existing fault

condition. In an adaptive experiment, the order of test

application is essential. The experiment length generally

varies depending on the existing fault condition. Adaptive

experiments are more efficient since they tend to be

shorter in average length. A schematic representation Of

the two types of experiments is shown in Figure 2.9.

An experiment can be represented by a binary tree

structure. This is due to the fact that every test ti
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Figure 2.9. Experiment Types.
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partitions a set of fault conditions (possibly including

f0) into two classes: those that are detected by ti

(those faults with a l in column i in the complete

fault table), and those that are not (faults with a 0 in

the column 1). The nodes Of the tree are classes of

faults representing the diagnosis resolution Obtained thus

far in the experiment. The root corresponds to the class

of all faults including £0. The root is defined to have

12331 0. The edges out of a node correspond to the two

possible outcomes of the test applied at that stage. The

level of a node, say node a, is one larger than the level

of the node having an edge directed to node a. A tree

corresponding to a preset experiment will have the same

test applied at all nodes of the same level. This is not

the case in a tree corresponding to an adaptive experiment.

For maximum diagnostic resolution, the leaves of the tree

should correspond to classes of single faults. Notice that

for permanent faults, any test need only be applied once in

either type of experiment.

Example 2.4

Consider the complete fault table given in

Table 2.2. A preset diagnosis tree is shown in

Figure 2.10. Notice that at every level the same

test is applied. The symbol ¢ denotes the empty

set. Whenever a class of a single fault is reached,

no further edges are shown. Figure 2.11 shows an
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Figure 2.10. Diagnosis Tree of a Preset Experiment.

(Experiment length = 5)
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Figure 2.11. Diagnosis Tree of an Adaptive Experiment

(Maximum Experiment Length = 3)
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adaptive diagnosis tree. In this case, the experiment

has three tests at most.

2.5 MINIMIZATION OF PRESET EXPERIMENTS

A minimum preset experiment is a preset experi-

ment with the least number of tests. Four approaches for

selecting minimal test sets will be discussed. Exhaustive

enumeration and the prime implicant method are two

approaches that lead to a true minimal test sets. However,

they are lengthy for large circuits. The method of test

intersection and the method Of distinguishibility criteria

produce suboptimal solutions that are not necessarily

minimal, but Often close to minimal.

2.5.1 Exhaustive Enumeration

Exhaustive enumeration can be accomplished by

ordering all possible tests subsets and selecting the

smallest subset which is sufficient for detection or

diagnosis. Obviously, this method is impossibly lengthy

for even small circuits.

2.5.2 The Prime Implicant Method

This method makes use of the similarity between

the problem of finding a minimal detection set and the

problem of minimal cover is switching theory. Tests are

analogous to prime implicants, while faults are analogous
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to the minterms to be covered. Several solutions have been

proposed for Obtaining minimal covers, most notably, the

Quine~McC1uskey algorithm [23], also linear and integer

programming solutions have been suggested [9, 10]. Any

such solution can be directly applied to minimizing

detection experiments. This method can be extended to

handle diagnosis experiments. The extension is due to

Poage [29]. A difference table is constructed from the

original fault table. It has all of the rows of the

original fault table, plus a new row for each pair of

+

faults. An entry Of a new row formed from f1 and

+

f. (i#j) is the exclusive-OR of the corresponding entries

3

in f1 and Ej' The l-entries of this formed row denote

the tests that distinguish between f1 and fj‘ The 1-

entries of an original row can also be thought of as

denoting tests that distinguish between two faults, one of

them being f0. This approach is elegant and guarantees a

minimal experiment, but it is impractical for moderate or

large size circuits since the solution to a covering

problem for that many rows in the difference table is too

long.

2.5.3 The Test Set Intersection Method

This method produces near minimal test sets. It

is due to Galey, Norby and Roth [16]. It is actually a

method for reducing the fault table. After table reduction,

any other method of test selection is used. f1 and f2
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are intersected by ANDing the corresponding entries. If

the result is a non-zero vector, the two rows are replaced

by the intersection. A l-entry in the intersection

represents a test that detects both f1 and £2. The

process is repeated by intersecting the resultant vector

with E3 and so on. If the intersection of f1 and f2

is the zero vector, we intersect f1 and f3 and proceed.

If this intersection also happens to be zero, we intersect

f2 and E3. The process is carried on until all rows are

considered. The result is a reduced fault table. We then

apply any test selection method to this table, such as the

prime implicant method, or selecting one test corresponding

at a l in every row. The test set obtained will be a

suboptimal detection test set.

Examp1e 2.5

Consider the fault table given in Table 2.2. If

+ + + + +

we intersect f1, f2, f3, f4, f

we obtain the reduced table shown in Table 2.3.

+

5 and f6 respectively,

Selecting tests that cover every row in the reduced

table, we obtain {t1, t4} as the detection set, which

happens to be a true minimum in this example.

It is to be noted that the outcome of this method

depends on the order of row intersection.

If we start with the difference table than do the

intersection, we can Obtain a near-minimal diagnosis test

set.
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t1 t2 t3 t4 t5

(£1 £2) 1 o o o 0

(£3, £4, f5, f6) 0 o

    

Table 2.3. Reduced Fault Table for Example 2.3.

2.5.4 Method of Distinguishabilipy Criteria

This method, due to Chang [6], selects a near-

minimal diagnosis test set. The basic idea is to assign

weights to tests. The weight reflects the test's ability

to distinguish faults. Tests are systematically selected

on the basis of their weights. The weight Wi of test ti

is defined to be the number of pairs of fault conditions

(including f0) which it distinguishes, i.e.,

w. = e. z. (2.7)

where, Bi and Zi are the number of 0's and the number

of 1's in the i-th column of the complete fault table. We

select the test for which W1 is greatest as the first

test. When j tests have been chosen, the faults would

have been partitioned into b.

3

depending on the possible outcomes of these j tests. To

(bj :_23) disjount blocks

select the j+1-st test of this procedure, the weights of

the remaining tests are computed. At this stage, the weight

of a test is the sum (over the bj blocks) of the number

of pairs of faults that it can distinguish within each
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block. Let be the number of 0'5 (1's) in
ei,k(zi,k)

that portion of the i—th column of the complete fault

table that correspond to block k. Thus, the weight

W. j of test 1 after j tests.

1:

b.

J

Wi,j = :2 91,k 11.x (2.3)

k=l

The test for which W. . is maximized is chosen as the
1,3

j+1-st member of the test set. The selection of tests is

continued until the partition of faults can be refined no

further: that is, until the weights of the unselected

tests are all zeros.

Example 2.6

Consider the complete fault table given in

Table 2.4.

After calculating the initial weights, we select

t1 (t4 or t5 will do) and rearrange the complete

fault table to form Table 2.5. Select t4 since it

has the largest weight at this stage, then obtain the

rearrangement shown in Table 2.6. Test t5 has the

highest weight, so it is selected. The next re-

arrangement is shown in Table 2.7. Select t2. The

fourth rearrangement is shown in Table 2.8. Here,

every test has a zero weight, so the process termi-

nates. The test set {t1, t2, t4, t5} is the near-

minimal diagnosis test set obtained. It happened
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t1 t2 t3 t4 t5 t6 t7

f0 0 o o o o o 0

£1 0 o o 1 1 o 0

f2 0 o o o 1 o 0

f3 1 o 1 o o o 0

f4 1 1 1 o o 1 0

f5 1 o o 1 1 o 0

f6 1 o o o 1 o 0

f7 0 o o 1 o 1 1

f8 1 o 1 1 o o 0

weight 8 18 20 20 14 8     
Table 2.4. Complete Fault Table and Initial Weights.

that this is a true minimal diagnosis test set for this

problem.

It should be emphasized that in computing the test

weights we should deal with the complete fault table and

not the fault table since fo corresponds to a circuit

condition to be distinguished from the other fault con—

ditions. Chang, in his paper, did not include the ED

row in his analysis. As a result, the test set he obtained

in his example was sufficient to distinguish among the

faults, if it is known that a fault has actually occurred,

but was not sufficient as a detection set.
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I
t1 I t2 t3 t4 t5 t6 t7

f0 0 : o o o o o 0

£1 0 I o o 1 1 o 0

f2 0 | o o o 1 o o

f o I o o 1 o 1 1

7 +
£3 1 I o 1 o o o 0

f4 1 I 1 1 o o 1 0

£5 1 | o o 1 1 o 0

f6 1 I o o o 1 o o

I

£8 1 I o 1 1 o o 0

weight : 4 6 10 7 3   
 

Table 2.5. First Rearrangement of Complete Fault Table.

This method can be extended to allow for different

degrees of diagnostic resolutions, i.e., it can be used to

point out to a faulty block if any fault occurs in that

block without pinpointing to the actual fault.

2.6 MINIMIZATION OF ADAPTIVE EXPERIMENTS

In general, the length of an adaptive experiment

varies depending on the existing fault condition. Thus,

the meaning of the term "minimal" in a "minimal adaptive
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I
t1 t4 I t2 t3 t5 t6 t7

I

£0 0 o I o o o o 0

f2 0 o | o o 1 o o

____._ __ _ _ __ _ .1 ________

£1 0 1 I o o 1 o 0

f7 0 1 I o o o 1 1

__.________+_._._____.____

£3 1 o I o 1 o o 0

£4 1 o I 1 1 o 1 o

I

f5 1 o . o o 1 o o

__.____.._.____+. ________

f 1 1 I o o 1 o o
5

f3 1 1 I o 1 o o o

. l
weight I 2 3 (:) 3 1  

Table 2.6. Second Rearrangement of Complete Fault Table.

experiment" should be different from that used for preset

experiments. An adaptive experiment is minimal if the

expected experiment length is minimal. If prior.proba-

bilities pi (0‘: i §_n) for the different fault conditions

are known, and if £1 (0': 1‘: n) is the experiment

length if fault condition fi exists, then the expected

experiment length I is:
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Third Rearrangement of Complete Fault Table.
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Z is the function to be minimized for a minimal

adaptive experiment. Two approaches to select a test set

for minimal experiments are discussed: exhaustive enumer-

ation, which leads to a true minimal solution, and the

method of distinguishability criteria which results in a

near-minimal experiment.

2.6.1 Exhaustive Enumeration

This approach was not practical for preset

experiments. It is even worse for adaptive experiments,

since we have to consider all possible permutations of

test subsets. Unfortunately, this is the only known

method that gives a true minimal adaptive experiment.

Garey [32], in his Ph.D. thesis, developed a systematic

method for the enumeration, and discussed special cases

which have shorter solutions. This method is only suitable

for small problems.

2.6.2 Method of Distinguishability Criteria

This method makes use of a figure of merit that

is computed for every test that might be selected. At any

stage in the experiment, the test that has the highest

figure of merit is selected. The process is repeated until
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no further diagnosis is possible. This approach results

in locally optimized procedures, rather than globally

Optimized ones. Chang's method, discussed in subsection

2.5.4, can be easily adjusted to apply for adaptive experi-

ments. The test weight is considered its figure of merit.

Instead of adding up the number of pairs a test can

distinguish in all blocks, only one block is considered.

Another figure of merit, based on information gain,

has been suggested by Brule’ et a1. [4]. The initial

uncertainty A0 about the fault condition is:

n

A0 = - 2 pi log2 pi . (2.10)

i=0

At every stage, the test that results in maximum infor-

mation gain is selected. For example, to select the first

test, the information gain AAi due to every test ti is

computed. If test ti is applied, it will fail with

probability qi, narrowing down the fault condition to a

smaller block. Let the uncertainty among this block be

A1 1. It is also true that if ti is applied, it will

I

not fail with probability (l-qi), narrowing down the fault

condition to a different smaller block. Let the uncertainty

among this block be A1 0' The information gain AAi due

I

to ti 1s:

AAi = A0 - (qi Al'l + (1-qi) Al'o). (2.11)
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The test with the largest information gain is selected.

The probability of failure qi can be calculated from the

prior probabilities. The computations at later stages are

computed in a similar fashion.



CHAPTER III

DETECTION OF INTERMITTENT FAULTS IN

COMBINATIONAL CIRCUITS

Intermittent faults in digital circuits are those

faults whose effects are not present all the time. A

probabilistic model for intermittent faults is presented.

Permanent faults are a special case in this model. '

Detection of intermittent faults through repeated appli-

cation of tests that detect such faults, as if they were

permanent, is suggested, together with a detection

criterion. The detection procedure proposed is equivalent

to a sequential statistical decision problem. Optimization

of detection experiments is discussed later in the chapter.

Assumptions similar to those made in Section 2.2 for

the permanent faults case are used here, namely:

(1) The single fault assumption; i.e., the circuit

can have only one fault during the testing

experiment.

(2) Irredundancy; i.e., the circuit is assumed to be

irredundant, thus the effect of a fault would not

be masked.

61
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Moreover, we will assume that:

(3) The faults are well behaved, i.e., during an

application of a test, the circuit behaves as if

it is fault free or having a permanent fault for

that period of time. That is, during the appli—

cation of a test, the effect of an intermittent

fault is either not present at all, present for a

relatively brief interval of time that the

response to the test is the same as if no

failure occurred, or present for a long enough

period of time so that the fault appears to be

permanent for that application of this test.

(4) The faults are signal independent; i.e., the

presence of a fault does not depend on the signal

values existing in the circuit.

3 . 1 THE MODEL

The model proposed is a probabilistic one. The

basic elements of the model are defined below. Assumptions

about the model are indicated as we proceed. The notation

used is very close to that employed in pattern recognition

literature, for example, see [12, 15, 26].

State Space 0: Q = {mo, m1,...,wn}

Each point in 0 represents a state of the circuit;
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mo: denotes the state of being fault free;

mi: (1 3.1 §_n) denotes the state of having inter-

mittent fault number i.

It is assumed that the state of the circuit can be

described by a single element from 0 (which one, is not

known); i.e., the circuit is fault free or it has only one

of n possible intermittent faults (the single fault

assumption). During the testing experiment, the circuit is

assumed to stay in the same state. If the circuit is in

state mi (1‘: i‘: n), it does not mean that the effect

  

Figure 3.1. State Space 9. State mi corresponds

to the circuit having intermittent fault

number i.
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of the i-th fault on the behaviour of the circuit will be

present all the time; this is due to the intermittency of

the fault.

Permanent Fault Space F: F = {f flpoou'f}
0' n

There is a one to one correspondence between F and

9. f.1, (l :_i i n), is the permanent fault that the circuit

would have, if the effect of mi is present all the time

and fo denotes the fault free condition.

  

 
Figure 3.2. Sample Space 8. Sample point ‘1 corre-

sponds to the circuit behaving as if it

has permanent fault fi.
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Samale Space 3: S = {60, 61,..., an}

Every point in 3 corresponds to the outcome of a

random experiment. Conceptually, the random experiment can

be thought of as testing all circuit components. With the

single fault assumption, the outcome of such an experiment

would be:

40: all components are fault free, or

61: (1': i i n), the component that pertains to the

i-th fault is faulty.

Observing 40 in this conceptual random experiment, we

cannot infer that the state of the circuit is mo; in fact,

it could be any mi (0 1.1 i n) due to the intermittency

of the faults. However, observing 6i (1 1.1 i n), we

could infer that the state of the circuit is mi for sure.

Test Set I: r = {t1, t2,..., tm}

The test set I is a complete test set that would

detect all faults under consideration if they were perma—

nent. This set can be generated using any of the methods

discussed in Section 2.2 to detect permanent faults. In

general, a test tj will detect more than one fault. Let

be the set of faults detected by tj (those faults that

correspond to the l-entries in column j of the fault
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table [definition 2.1)). In terms of the random experiment,

test tj can be thought of as testing the components

corresponding to faults fj , f. , ..., and fj . The test

1 32 m.

has two possible outcomes: 3

(a) all components tested are fault free, or

(b) one component is faulty, which one, is not known.

Test Subset Ti: (l 5,1 i n)

 

A subset of I that contains all the tests in I

that detect £1“ The elements of this subset correspond to

.+

the l-entries in the vector fi of the fault table.

Random Variable Set T: T = {T1, T2,..., Tm}

Every test tj (l :,j :_m) in T defines a random

variable Tj on S. If test tj is applied to the cir-

cuit and it fails, i.e., the Observed output is different

from that of a normal (fault free) circuit, the value of

T3. is defined to be 1. On the other hand if tj does

not fail (i.e., produces an output identical to that of a

normal circuit), then the value of T.

J

0. Formally, Tj is a function from S into the set

{0,1} defined as:

is defined to be

Tj:3+{0,1} I (lijim) 7

l l < i < n, and t. detects fault f..

T44.) = " — 3 1

3 1 0 otherwise. (3.1)
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Random Variable Subset Ti: (l 2,1 1.“)

 

T1 is a subset of T; it contains all the random

variables that correspond to tests in Ti.

Action Space 0 x S:

The probability measure to be used, is defined on the

action space 0 x S in order to be able to use prior

information about the distribution over 0. Since the

presence of the effect of an intermittent fault corresponds

to a single point in 3, many of the points in 0 x S

will have zero probability, namely:

P(w0,bi) = 0 , 1 1’1 1 n

and, P(wi,6j) = 0 , l :_i,j : n and i f j :

That is, only 2n+l points in 0 x S have non—zero proba-

bilities, namely:

(”0:60) o (wioé-) I (”1160) I 1 iiiji no
1

Every point mi in 0 defines an event on 0 x S

as follows:

mi = {041,434 | o _<_ j _<_ n} (3.2)

It follows that only one point in 0 x S of those contained

in the mo event has non-zero probability, namely:

(w0,60). Similarly, only two points in 0 x S in the

wi(l 5.1 :_n) event, have non-zero probabilities, namely:

((91:60) and (0)1161).
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2

(w2,42)

011 “In

(w1,41) «an,4n)

(w2,40)

(w1,60) «un'60)

   

Figure 3.3. Points in 0 x 8 With Non-Zero Proba-

bilities.

Similarly, every point bi in 3 defines an event on

0 x S as follows:

Only one point in 9 x S, of those in the event bi

(l i 1‘: n), has non-zero probability, namely (mi'biI'

and all the n+1 points in 40 have non-zero probabili-

ties.



69

k
k-Dimensional Random Variable Set Tk (Ti , 1 i_i : n):

 

Tk(Tik) is the cartesian product of the set T(Ti)

k) can beby itself k times. An element b from Tk(Ti

written as a k-tuple of random variables from T(Ti), for

example:

b = ( ,...,T. )T. ,T.

31 32 3k

Tjr e T (Tjr 5 Ti) , for l i|r : k .

The outcome of an experiment in which k tests from 1(11)

are applied to the circuit can be represented by such an

element b. Its value is a k-dimensional binary vector.

...p

k will be used to denote a k-dimensionalThe notation b = 0

binary vector, all of its entries are 0's. This corre-

sponds to an experiment of k tests; none of them has

failed.

It should be kept in mind that during the application

of an experiment (a sequence of tests), the circuit will

stay in the same state mi (0 :_i g n). During the course

of the testing experiment, the sample space point will be

60 all the time or changing randomly between 40 and 6.
1

(for some, but fixed 1) only.

Prior Probabilities P(wi): (0 :‘i 2.“)

 

Pi = PIwi). 0 :_i i n, is the prior probability that

the circuit is in state mi. The values of these pi's

are assumed to be known in the model. These values could
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be obtained empirically, from manufacturer information, or

from experience.

Conditional Probability of Malfunction P(Ai/mi): (1<i<n)

 

ei = P(Ai/wi), l i’i :,n, is the probability that the

effect of intermittent fault mi will be present knowing

that the circuit already has intermittent fault mi. The

values of the ei's are assumed to be constants, also known

in the model.

3.2 DETECTION OF INTERMITTENT FAULTS

In general, fault detection means applying tests

from a certain test set to find out whether a given circuit

is fault free or not. TO detect permanent faults, any

particular test need only be applied once. The approach

proposed for detection of intermittent faults employs

repeated application of tests from the test set T. The

repetition of a particular test is needed since the circuit

might have an intermittent fault that could be detected by

this test but the effect of such a fault is not always

present when this test is applied. After applying a par-

ticular test repeatedly and obtaining outputs identical

with those of a fault free circuit, it could be reasoned

that the circuit might still have an intermittent failure

whose effect has not yet been observed. Should the test
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be repeated forever? What is needed is a "wise" stopping

rule. It is assumed that testing is done by a fast machine,

say a computer, so repetitions, possibly in the order of

millions of times, can be done fast and fairly easy. The

problem of detection of intermittent faults can then be

viewed as a statistical decision problem. An appropriate

decision rule is one that is sequential in nature. The one

suggested makes use of the posterior probabilities.

Posterior Probabilities P(wi/Tj)

 

After applying a test tj to the circuit and observing

the output, the probabilities P(wi/Tj), 0 i i i n, can be

calculated using Bayes' Rule:

P (Ti/(Di) P (mi)

P(wi/Tj) = n (3.4)

2 p ('rj/wkwmk)

k=0

 

Details and proof of Bayes' Rule are found in [11].

As the prior probabilities P(wi), 0 :.i i’n, reflect

the beliefs about the condition of the circuit before any

test is applied, the posterior probabilities P(wi/Tj) are

an updated version of these beliefs after applying test tj

and observing the output. These posterior probabilities

will be used as prior probabilities next time a test is

applied. The following detection procedure is suggested.
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Detection Procedure:

(1) Apply an apprOpriate test tj from T. The

meaning of "appropriate" will be clear after

defining the decision rule. If the output of the

circuit is different from that of the fault free

circuit (i.e., if Tj = l) decide that the circuit

has an intermittent fault and stop; otherwise go

to (2).

(2) At this point, the output so far is identical to

that of a fault free circuit. Calculate the

posterior probabilities P(wi/Tj = 0), 0 1'1 :|n,

using Bayes' Rule.

(3) Using the posterior probabilities apply a decision

rule, and decide one of two things:

(a) Request the application of a particular test

and repeat, i.e., go to (1), or;

(b) Decide that the circuit is fault free and

stop.

Decision Rule:

The decision rule mentioned above can be freely

selected to satisfy a set of conditions that represent

acceptable measures for deciding that the circuit is fault

free. Moreover, the decision rule must ensure the termi-

nation of the detection procedure in a finite amount of

time, i.e., ensure that we have a detection algorithm.



C Sm.)

I
Select a test

from T

I

I

Apply test

 

 

 

 

    

   

 

   

     

 

test

failed

?  

    
Calculate posterior prob., Decide circuit has

update prior prob. n intermittent fault

 
 

 

Decision Decide circuit 
Rule is fault free

 

 

 

I
Q... )

Figure 3.4. Flow Chart for Detection Procedure.
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Examples of typical decision rules are presented later in

this section.

3.2.1 A Simple Case

Let Q = {w0,wl}, i.e., one particular inter-

mittent fault could possibly exist in the circuit.

Let T {t1}. If T is not a singleton, choose any

element of T and disregard the others, since it will

function as well as any other test in T. Obviously, any

test in T will detect f1.

 
 

  
(a) Non-Zero (b) State Space.

Probability Points.

 

 

(c) Sample Space.

Figure 3.5. 0 x 8 Space for a Simple Case.



75

It follows that:

3 == {4()r41}

F == {£0,111}

ml = {(w1,bo),(wl,61)}

T1(60) = 0

T1(Al) = 1

Consider the following distribution on 0 x S :

P(w

H

I

'
U
H

P(Tj/wi) P(wi)

 

1

Z P (Tj/wk) P (wk)

k=0

P(Tl=0/w1) P(w1)

P(Tl=0/wo) P(w0) + P(T1=0/w1) P(w1)

 

P1.1 3 I’(“’1/T1 =0) 3

(1-e1) p1

='1_:_e—"'— (3.5)

1 p1

(l-el) is less than (l-e1 pl), therefore:

p1,]_‘< p1 (3.6)

Similarly,

( / 0) po 3 7= P w T = = ---- .p0,1 o 1 1-e1p1 I I

it follows that:

p0,1 > po
(3.8)
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P(Tl = 1/011) P(0)1)

PUD /T = l) = = 1(309)

1 1 P(Tl 8 1/w0\ P(w0) + P(T1 = 1/(01) Paul)

 

Similarly,

P(ub/Tl = 1) = 0 (3.10)

The interpretation of (3.6) and (3.8) is that, if t1

is applied and the circuit produced a good output (identical

with that of a fault free circuit), then our certainty about

the circuit being faulty will decrease and our certainty

about the circuit being fault free will increase; which is

quite reasonable. On the other hand, the interpretation Of

(3.9) and (3.10) is that, once a bad (different from that

of a fault free circuit) output is observed upon the appli-

cation of t1, then we know for sure that the circuit has

an intermittent fault.

The posterior probabilities after applying tj for

k+l times and Observing k+l good outputs are:

—>

P(w1/'r1=o,b=ok ; b e Tk)

Pl,k+l

‘I 7:
P(Tl=O/wl,b=o ) P(wl/b=0 )

-—> —-> —-> —->

k k _ _ k _ k
P(T1=0/w0,b=0 ) P(w0/b-O ) + P(T1-O/w1,b—0 ) P(w1/b-O )

 

a (l-el) pllk = (l-el) 91.x (3 11)

(l-Pl,k) + (1-e1) 91.x 1"‘31 pl,k

  

Shfilafihn
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...p

k

po,k+1 = PIwo/Tl=0,b=0 ; b 8 TR)

9 p

= 1 - e 2’: = 1 _ 2’k(1_ - (3.12)

1 1 Po,k 1 Po,k)

From (3.11) and (3.12) it follows that:

p1,k+1 < pl,k ' (3°13)

p0.k+1 > p0,k °
(3.14)

Theorem 3.1

(l-e ) p

(a) p1,k = 1 % (3.15)

po
(b) p0,k - k (3.16)

Proof

(a) By induction.

(l-el) P1 (1'61) p1

p1:1 _ pO + (l-el) p1 - l - eljp1

  k = 1 :
 

which is true from (3.5).

Assume true for k: from (3.11),

(l-e
= 1’ pl,k

p1,k+l 1 -
e1 pl,k

 

k
(l-el) (l-el) p1

 

k
p0 + (l-e1)k p1 -e1 (1-e1) p1
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k+1

 

 

 

= (l-el) p1

91 + (1-e1)k (1-e1> pl

(1_e)k+l p1

= +

i.e., true for k+l

po

- k

Corollary 3.1

(a) lim p = 0

k+oo 1'k

(b) lim = l

k+oo po'k

Proof:

(l-el) is less than 1, therefore,

lim (l-el)

k+oo

(a) Using (3.15) and (3.19)

lim

k+oo
P1,k

(3.17)

(3.18)

(3.19)
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(b) Using (3.16) and (3.19)

= po :1

p0+0

 lim

k+co
90.x

Definition 3.1

If the test tl is applied k times and good

output (identical with that of a fault free circuit)

was Observed every time, the likelihood ratio 1k is

defined as:

From (3.15) and (3.16), it follows that:

 

 

 

Corollaryf3.2

Ak+1 < 1k (3.21)

Proof:

1

from (3.20) : —§il = (1-e1) < 1

k

i.e., Ak+l < 1k

Q.E.D

Corollary 3.3

lim 1k = 0 (3.22)

k+oo
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Proof:

From (3.19) and (3.20):

lim Ak=I_—p—=O

k+oo

A Decision Rule

Earlier in this section it was stated that the pos-

terior probabilities will be used in the decision rule to

decide whether to continue testing or that the circuit is

fault free. The following decision rule is suggested to be

part of the detection procedure:

If the posterior probability p1,k goes below a

certain threshold 3 (0 < s < 1), decide that the cir-

cuit is fault free and stop, otherwise apply t1 and

repeat (i.e., go to step (1) of the detection pro-

cedure).

This decision rule is an acceptable one, because it

guarantees termination Of the detection procedure in a

finite amount of time by virtue of the fact that p1,k is

monotonically decreasing (from (3.13)), and that as k

increases it can get below the threshold 3 (from (3.17)).

The value of the threshold 5 can be chosen by con-

sidering the probability of error (probability of deciding

that the circuit is fault free while it is actually faulty).

This of course depends on how critical the proper operation
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of the circuit is. Also this affects the length of the

testing experiment which is a factor that can be taken into

consideration when choosing 5.

TO determine a least upper bound on the length of the

experiment, find k for which p1 k < s . From (3.15):

I

k

 

k < S
(l‘Pl) + pl (l-el)

(l-el)k p1 < s [(l-pl) + p1 (1-e1)k]

(1-e1>k (pl-s p1)< s (1-p1)

k 8(1-91)

(l-el) < p1 Il-s)

s (l-pl)

k log (1‘61) < logm

 

s (1-p1)

log EI—Tr:gy

or, k > log (1'91) (3.23)

Note that log(l-e1) is negative.

Example 3.1

Among the gates produced by a certain manu-

facturer, it is estimated that for about 0.01% of

them, the gap between the ON and OFF voltages is

smaller than some critical value. If the gap is

below the critical value, the gate will malfunction

5% of the time. Find a least upper bound for the

length of the testing experiment.
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Solution

From the given figures, the following quantities

are estimated as shown:

 

 

p1 = 10-4

el = 0.05

If we choose the threshold 5 to be 10-6, then

10’6(1-1o'4)
log -4 -6

k > 10 (1-10 )

log 0.95

or k 1 91

Another Decision Rule

The rule suggested here compares the likelihood ratio

(which is a function of the posterior probabilities) with a

threshold u (u > 0) as follows:

If Ak goes below u decide that the circuit is

fault free and stop, otherwise apply t1 and repeat

(i.e., go to step (1) of the detection procedure).

This decision rule is also an acceptable one, since it

guarantees termination of the detection procedure in a

finite amount of time by virtue of the fact that 1k is

monotonically decreasing (from (3.21)), and that as k

increases it can get below u (from (3.22)). Actually

this is the optimum Bayesian decision rule (that minimizes

the average loss) for the (0,1) loss function [15].
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The value of the threshold u could be chosen in a

fashion similar to that of selecting s.

The least upper bound on the length Of the testing

experiment is obtained by finding k such that l < u.
k

From (3.20):

(1-e1)k p1

U’Pl) u

A

)k u (l-pl)

1 p1

A(l-e

u (l‘Pl)

k lo l-e < loq ( 1) 9 pl

11 (1.131)

p1

long-el) (3'24)

log

or, k > 

Which is similar to the results in Wald [39] for binomial

samples.

3.2.2. The General Case

This is the case described by the model in

Section 3.1. The basic assumptions are: (l) the circuit

is irredundant, (2) the circuit can have only a single

intermittent fault out of the n faults considered, (3)

the faults are well behaved, and (4) the faults are signal

independent.

Consider the probability distribution on 0 x S

governed by the following conditions:
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PI‘I-Ii) = P1 I 0

|
A )
5

I
A :
3

P(Ai/wi) = ei , l i 1 i_n

Definition 3.2

The membership functions Mj (1 i’j i’m) from

the the set {0,l,...,n} into the set {0,1} are defined as:

II 0

‘Mj(0)

1 if t. detects f. .
j 1

Mj(i) (1 < i < n)

0 if tj does not detect fi'

The posterior probabilities are now calculated using

Bayes' Rule (Equation 3.4)),

P(Tj/wi) P(wi)

 

  

P(wi/Tj) = n

2 P(Tj/w£) P(w£)

i=0

ei 1f tj detects fi .

P(Tj = l/wi) =

0 if tj does not detect fi .

Similarly,

l-e. if t. detects f..

1 j 1

P(Tj = O/wi) =

1 if tj does not detect fi .

In terms of the membership functions, we can write:

P(Tj = O/mi) = ei Mj(i) (3.25)

P(Tj = O/wi) 11 - e. Mj(i) . (3.26)
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Thus:

ei MJ. (1) P (mi)

 

 

P(wi/Tj = l) n (3.27)

2 e£ Mj(£) P(w£)

i=0

It follows that:

P(wo/Tj = 1) = o . (3.28)

If ti does not detect fi then:

P(wi/Tj = 1, Mj(i) = 0) = o (3.29)

If tj detects fi then:

 

ei P(wi)

 P(u)i/Tj = l, Mj(i) l)
n

2 ez Mj(£) P(w£)

£=0

(3.30)

Equations (3.28), (3.29) and (3.30) give the value of

the posterior probabilities if the applied test tj fails

(results in an output different from that of a fault free

circuit).

Similarly,

[1-ei Mi(i)] P(wi)
 P(wi/Tj = 0) = (3.31)
n

2 [l-e, Mjwn P(w£)

£=0
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Thus,

P(wo)

P(wo/Tj = 0) = n (3.32)

i=0

Notice that:

n

£=0

Thus,

n

2 el Mj(£) P(w£) < l , (3.33)

i=0

and, n

:2 [l-eL Mj(£)] P(w£) <il (3.34)

£=0

From (3.32) and (3.34), it follows that:

P(w0/Tj = 0) > P(wo) - (3.35)

If ti does not detect fi' then:

P(wi/Tj = 0, Mj(i) = 0) > P(wi) (3.36)

This is an interesting result, since it indicates that

the certainty about the circuit having a particular fault

increases (if the applied test does not detect that fault)
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even though the applied test produced a good output (that

is, identical with that of a fault free circuit).

If tj detects fi' P(wi/Tj = 1) could be less than,

 

equal to, or even greater than P(wi), i.e.,

, _ >

P(u)i/Tj = 0, Mj(1) — 1))? P(wi) (3.37)

This is even a more interesting result since the cer-

tainty about the circuit having a particular fault could

increase even if the applied test detects that fault and

produces a good output.

From (3.36) and (3.37), it is clear that a decision

rule based on comparing the posterior probabilities with

some thresholds, as was done in Subsection 3.2.1 for the

simple case, is not acceptable since the posterior proba-

bilities are not monotonically decreasing functions, thus

there is no guarantee that the detection procedure will

terminate in a finite amount of time.

The posterior probabilities after applying k+1 tests;

the k+1-st being, say, test t are (from (3.4)):j;

P(Tj/wi,b) P(wi/b)

k _P(wi/Tj, b , b e T ) _ n . 

P(Tj/w£,b) P(w£/b)

£=0

Notice that P(Tj/wi,b) = P(Tj/wi), thus:
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[l-ei Mi(i)] PIwi/b)

 

P(wi/Tj a o, b ; b 8 TR) =

in 0

(3.38)

Definition 3.3

If k+1 tests from T are applied: the k+1-st

being, say, test tj: and a good output was observed

every time, the likelihood ratios xi,k+l(1 1.1 :,n)

are defined as:

k

P(mi/Tj=o'b= SbET).3
A. - - (3.39)

1'k+1 Paco/Tj = 0, b - 6%»; b e Tk)

 

From (3.38), it follows that:

Ai,k+l = [l-ei Mj(1)] Ai,k . (3.40)

Thus Ai,k+l : Ai,k (3.41)

The equality in (3.41) holds only if the k+1-st test

detects f.1, otherwise this relation is strict inequality.

Definition 3.4

The initial likelihood ratios xi (1 i|i :,n) are

defined as:

A. = 11,0 = mgr ° (“2’
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Theorem 3.2

If k tests from T are applied, L of them are from

Ti, and none Of them failed, then:

_ L
Ai,k — (1-ei) Xi . (3.43)

Proof

It is clear that L :_k. Proof is by induction on k.

k = 1 : from (3.40),

A1,1 = [1'31

the first test being tj.

Mj(i)] A1;

L could be 0 or 1:

II >
a

0, i.e., Ai,l i'If L = 0 (tj t Ti), then Mj(i)

which satisfies (3.43) for L = O.

l, 1.e., Ai,l =If L = l (tj 8 Ti), then Mj(i)

(1‘9 )Air
1

which satisfies (3.43) for L = 1.

Assume true for k: from (3.40),

A1,k+1 = [1'91 MjIIII A1,18

the k+1-st test being tj.

If tj t Ti, then Mj(i) = 0, thus,

A A. = (l-ei)£ A. . (3.44)
i,k+l = 1,k 1

tj ¢ Ti also means that the number of tests from Ti

in the first k+1 tests is L. Therefore, (3.44) indi-

cates that the theorem is true for k+1.

If tj 8 Ti, then Mj(1) = 1, thus;
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_ _ _ L+l

Ai'k+l - (1 31) Ai’k - (1 ei) A1 0 (3.45)

tj 8 Ti also means that the number of tests from

Ti in the first k+1 tests is L+1. Therefore, (3.45)

indicates that the theorem is true for k+1.

 

Q.E.D.

Corollary 3.4

11:21+00 Ai,k = 0 (3.46)

Proof:

(l-ei) < 1 I

therefore, lim 1. k = lim (l-e.)£1. = 0 .

[+00 1' [+00 1 1'

Q.E.D.

The Decision Rule

The decision rule suggested, compares the likelihood

ratios xi, (1 :_i 1.“)! with thresholds ui(ui > 0 for all

i) as follows:

If 11‘: ui for all i, decide that the circuit is

fault free and stop.

If Xi > ui for some i, select a test from Ti and

repeat, (i.e., go to step (1) of the detection pro-

cedure).

From (3.41) we see that the likelihood ratios are

monotonically non-increasing functions. Any likelihood
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ratio Ai,k will strictly decrease if we apply a test from

Ti (and of course, that test produces a good output).

Thus, from (3.46), the likelihood ratios could go below the

specified thresholds, and the detection procedure is

guaranteed to terminate in a finite amount of time using

this decision rule. Hence, it is an acceptable rule.

Theorem 3.2 can be used to determine a least upper

bound on the number of tests ki from Ti (l i'i : n) that

are needed, as follows:

k.
1

(l-ei) Ai < u

1

k. u.

1 1

 

 

u.

ki log(l-ei) < log X_'

u.

1°? 1‘?-
1

°r' ki > 1°9I1'617

u. p
log 1 0

or, k. > 1 . (3.47) 

1 109(1-ei)

3.3 OPTIMUM DETECTION EXPERIMENT

In Section 3.2.2, least upper bounds ki's on the

number of tests that detect fi that are needed were

obtained (3.47). However, a given test usually detects

more than one fault: so, a method is needed to determine
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how many times every test should be repeated so that

(3.47) is satisfied for all i (l 1.1 i n), and that the

overall experiment length is minimum. If tj (1‘: j :.m) is

repeated xj times, then, (3.47), in terms of the fault

table matrix A (definition 2.1), yields,

m

2 aij xj : ki . (3.48)

i=1

The experiment length L is:

m

L.== :E xj (3.49)

i=1

L is the function to be minimized.

The quantities at hand satisfy the following con-

ditions:

1. x. > 0

J

2. all xj's are integers

This is an all integer-integer programming problem,

the solution of which determines the optimum number of

repetitions for each test. For details and solutions of

integer programming problems, see [19, 20].

It should be noted that for the permanent faults case,

every ki (1 5'1 : n) will be equal to 1; thus, similar to

the problem of minimizing boolean functions. Integer
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programming treatments for this special case are found in

[9, 10, 19].

Example 3.2

Consider the following fault table matrix:

 

t1 t t3 t4 t

f1[ 1

f2i 1 1 1 o 1

f3) 0 l 1 1 1

£4: 0 1 o o 1

£5! 0 o o 1 1

f6 1 o 1 o o

 

x1 + x2 + x4 ‘1 k1

x1 + x2 + x3 + x5 1 k2

x2 + x3 + x4 + x5 ‘1 k3

X2 + x5 1 k4

x4 + x5 :_ kS

X1 + x3 1 k6

Find integer xj's that minimize:

x1 + x2 + x3 + x4 + x5.

3.3.1 A Suboptimal Solution

If the values of the kj's are relatively large

(e.g., > 10), the integer programming problem presented by
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(3.48) and (3.49) can be solved as a linear programming

problem (actually as a transportation problem since the

coefficients are 0's and 1's). The solutions are then

rounded up (the smallest integers greater than or equal to

the obtained solutions are used). This is generally a

faster solution since solving a linear programming problem

is easier than solving an integer programming one. Linear

programming methods will result in a very little deviation

from the optimal solution if the values of kj's are large

enough, since the function to be minimized is just the sum

of the xj's.

3.3.2 Reduction of the Fault Table Matrix A:

The size of the matrix A can easily get to be

huge for a large size circuit. The amount of memory and

number of computations needed to solve an integer program-

ming problem (or a linear programming one) can be greatly

reduced if the size of matrix A is reduced. In this sub-

section, an attempt is made to transform the problem into

an equivalent one, but with a smaller matrix A*. As A is

transformed into A*, the values of kj's will be adjusted.

The obtained solution, i.e., xj's, for the reduced problem

will also be adjusted by adding appropriate biases bj's to

Obtain the solution for the original problem. The initial

bias values are zeros.

The following operations are suggested for the

reduction of the fault table matrix A to A*:
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(a) If only one 1 occurs in row i, say, aij=1 and

aik=0 for k # j, delete row i from the matrix,

increment, b. by ki, and, for every row q for

3

which a .=l, replace k by k -ki, if this differ-

QJ q q

ence is zero or negative, delete row q.

(b) If row 1 contains 1's wherever row j does (1 # j),

that 13, for each k, ajk = l 1mp11es aik=l; (row

i dominates row j) and if ij: ki' delete row i.

(c) If column 1 contains l's wherever column j does

(1 # j), that is, for each k, akj=l implies

aki=1' (column 1 dominates column j) then delete

column j.

These operations may be carried out in any order

starting with A and continuing until a matrix A* is Obtained

on which none of them can be applied. The solution for the

reduced problem (with A*) is then obtained. Every xj in

the solution of the original problem is obtained by adding

the bias bj to the corresponding xj obtained in the

solution with A*.

Theorem 3.3

If A* is the matrix obtained from the fault table

matrix A by a succession of operations of the (a), (b)

and (c) types suggested above, then the solution to

the original problem (presented by (3.48) and (3.49)

is the same as that of the reduced problem adjusted

by the biases bj's (1 i j :_m).
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32222

It is sufficient to prove that any Operation will

result in a problem with an equivalent solution.

(1) Assume operation (a) is performed. This means

that one of the constraints in (3.48) is

xj Z ki ,

i.e., test tj has to be repeated at least ki

times. If we adjust the corresponding bias bj

by k1' this constraint can be removed (i.e.,

delete row i) since the bias will make sure that

it is satisfied.

Every constraint of the form:

... + xj + ... Z.kq ,

can be written as

+ (xj'ki) + :kq-ki .

Let x3 = xj - ki. The set of constraints can now

be written in terms of xi (the reduced problem).

If kq-ki is zero or negative, then this con-

straint is automatically satisfied by xj > ki

thus row q can be eliminated. If ki < kq we

solve the reduced problem. Obviously, a solution

to the reduced problem is a solution to the

original problem if we adjust the obtained value

for x3 by ki, i.e., by the amount of bias adjust-

ment. Thus, Operation (a) results in an equiva-

lent solution.
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Assume operation (b) is performed. Let the

number of l-entries in rows 1 and j be qi and qj

respectively. Without loss of generality, assume

that the l-entries in row i are the first qi

entries in that row. Since the condition for

operation (b) is satisfied, we can also assume

that the l-entries of row j are the first qj

entries in that row. It is clear that qi :_q..

3

The following constraints must now exist:

+x2+ooo+xq +ooo+x Zx
1 . .

3 q

X

k1
1

k.+x +...+2 X

[
V

l 3
j

The second constraint implies:

x +x +000+x +OOO+X

1 2 qj qi

>k

If kj :.ki' then the first constraint is auto-

matically satisfied by satisfying the second.

Thus, elimination of row i will not change the

solution.

Assume operation (c) is performed. In this case,

it is clear that xj=0 does not result in any

contradiction to the constraints of (3.48), since

for every xj appearance, xi also appears; so, xi

can be set large enough to satisfy the con-

straint. We need to prove that xj=0 is part Of

m

a solution that minimizes : 2: 1g; . Assume

q=l
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that a solution minimizing this sum exists with

xj > 0. From this solution, substitute xi + xj

for xi and 0 for xj in (3.48). NO contradiction

results since column i dominates column j. The

same substitution will result in the same sum

m

23 x

q=1 q

found a solution with xj=0. Thus column j can be

, i.e., minimality is maintained. Thus we

eliminated.



CHAPTER IV

DIAGNOSIS OF INTERMITTENT FAULTS IN

COMBINATIONAL CIRCUITS

In Chapter III, a probabilistic model for intermittent

faults was introduced, also an approach for the detection

of these faults. The detection procedure proposed relied

on the repeated application of tests that would detect these

faults had their effect been permanent. Several methods

for test generation were discussed in Chapter II. In this

chapter, we present an approach for the diagnosis of

intermittent faults in combinational circuits, also,

employing the repetition of tests that detect permanent

faults.

4.1 GENERAL ASSUMPTIONS

There are three basic assumptions for the

diagnosis methodology to be presented, namely:

(1) The probabilistic model, introduced in Section

3.1 for intermittent faults, will be used here.

99



(2)

(3)
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All the assumptions previously made in the model

are also carried here. Of major importance is

the single fault assumption.

A detection experiment, similar to that proposed

in Section 3.2, is assumed to have been run and

resulted in the decision that the circuit has an

intermittent fault, i.e., a test in that experi-

ment has failed. This assumption assures that a

fault exists in the circuit before we start the

diagnosis experiment.

The posterior probabilities of the states Of the

circuit at the end of the detection experiment

are assumed to be known to the experimenter.

These will be used as prior probabilities in the

diagnosis experiment.

A fourth assumption, that is helpful even though not

essential, will also be assumed:

(4) The test that failed in the detection experiment,

say test tj' is assumed to be known to the

experiment. This assumption tends to reduce the

length of the diagnosis experiment since it will

start with less possible faults (those faults

that correspond to the l-entries of column j of

the fault table) than the total fault set.
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4.2 DIAGNOSIS OF INTERMITTENT FAULTS

The approach suggested for the diagnosis of

intermittent faults is through the repeated application of

tests from the test set I. A subset of T is selected

and its tests are repeatedly applied until a failure occurs.

This narrows down the possible faults that the circuit

might have. The fault table is then reduced and another

subset of T is selected and the process is repeated until

enough failures occur to diagnose the fault in the circuit.

Let the set of possible intermittent faults, at any

stage in the experiment, be 0p. Let Fp be the subset of

F that corresponds to 0p. Let 0p (also Fp) contain n

elements. Initially Fp contains the faults that have

1-entries in column j of the fault table (assuming that

tj was the test that failed in the detection experiment).

Obviously, 0p does not contain mo since in the diagnosis

phase, we know that the circuit is faulty for sure. The

posterior probabilities of the states of the circuit at the

end of the detection experiment are used as prior proba-

bilities for the diagnosis experiment.

Fault Table Reduction. Whenever a failure occurs

during the diagnosis experiment, Fp is narrowed down, and

consequently the fault table is reduced. The following

reduction steps are applied until none of them can be

applied any more:



(a)

(b)

(C)

(d)
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Eliminate all rows that correspond to faults not

contained in Fp.

Eliminate all redundant columns, i.e., eliminate

all but one of every group of identical columns.

Eliminate all O-columns.

Eliminate all the l-columns. The failure of a

test, whose corresponding column in the fault

table has all l-entries, does not contribute any

information to the diagnosis Of the existing

fault. Thus this test is eliminated.

Diagposis Procedure. The following diagnosis pro-

cedure is now suggested (a flow chart for this procedure is

given in Figure 4.1):

(1)

(2)

(3)

(4)

From the outcome of the detection experiment,

compute Fp , 0p. Each of these sets has n

elements.

If Fp is a singleton (i.e., if n = 1) go to

(9), otherwise go to (3).

Obtain a reduced fault table using steps (a)

through (d) indicated above.

Select a subset Tp of I that covers Fp,

i.e., Tp is a detection test set for Fp. Let

Tp contain 0 tests. Without loss of gener-

ality, we can assume that the tests in Tp are

ordered, so we can speak of the i-th test in Tp

(l i i i u). If no such Tp is found, go to (9).
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C .....9

I
Q = Set of possible faults

p F corresponds to 0p

 

 

Each contains n elements

   

 

YES NO
 

 

Reduce fault table

Select Tp that covers Fp

  
Tp contains u tests

 

NO
 

 
 

C )

   

 

 
 

 
[ Apply i—th test of Tp I

 

  U d t 9 F & +__.___Lpaeplp 7)

Figure 4.1. Flow Chart for the Diagnosis Procedure.
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(6)

(7)

(8)

(9)
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i = 1.

Apply the i-th test of Tp' If this test fails,

go to (8), otherwise go to (7).

Increment i by 1. If it exceeds u go to

(5), otherwise go to (6).

At this point, a test in Tp has failed, this

narrows down the set of possible faults 9p

(also Fp) to a smaller set. This smaller set

is the one that corresponds to faults in Fp

with l-entries in the column corresponding to the

failing test in the fault table. Replace F

P

and 9p by the smaller sets indicated above.

Update n. GO to (2).

Stop. Diagnosis experiment is complete. Diag-

nostic resolution is determined by F . If Fp

P

is a singleton, complete diagnosis is obtained.

Notice that when selecting the test set Tp’ no test

that failed earlier in the diagnosis experiment will be

chosen, since such a test corresponds to a column, all of

its entries are 1's, in the reduced fault table. Such a

column will be eliminated by operation (d) of the fault

table reduction procedure.

The diagnosis procedure terminates only if one of two

conditions arises:

(1) Fp becomes a singleton; in which case complete

diagnosis is obtained, or
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(2) no Tp that covers Fp is found; in which case

complete diagnosis is not obtained, the diagnosis

resolution being determined by Fp.

Diagnosis Tree. The diagnosis procedure can be

represented by a tree. The nodes correspond to the Fp's,

with the root being the initial Fp Obtained from the

detection experiment. The edges out of a node correspond

to the tests Of the appropriate Tp' i.e., every node has

u (the corresponding u) edges out of it. An edge, corre-

sponding to a test tj out of a node 8, goes to node B

that corresponds to the subset of the faults of node a

that are detected by tj. At any stage in the diagnosis

procedure, if a different Tp is chosen, a different diag-

nosis experiment and consequently a different diagnosis

tree will result.

A complete diagnosis tree is a diagnosis tree that

contains all the subtrees corresponding to all the possible

outcomes of the diagnosis experiments. The leaves corre-

spond to the maximum diagnostic resolution possibly

obtained.

Definition 4.1

The portion of the diagnosis procedure that con-

sists of applying the tests Of Tp repeatedly until

a failure occurs is called a subexperiment.

In terms of the diagnosis procedure, a subexperiment

consists of iterations of the loop defined by steps (5),
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(6) and (7) until a failure occurs to exit from this loop.

Notice that the failure of a test is the only way to exit

from this loop. In order for the diagnosis experiment to

be finite, the expected length of every subexperiment in it

should be finite. The condition that Tp covers Fp

guarantees that, this will be proved later in Section 4.3.

During the diagnosis procedure, it is desirable to

calculate the posterior probabilities of the different

states of the circuit after observing the outcome of every

test applied. These posterior probabilities can be employed

to select a Tp’ at the beginning of a subexperiment, that

tends to make the diagnosis experiment shorter. It should

be noted that the posterior probabilities for any wi that

is not in Up is zero. This follows directly from (3.29)

since such an mi corresponds to a permanent fault f.
1

that is not detected by a test that failed earlier.

Example 4.1

A detection experiment was run. It resulted in

the decision that the circuit has an intermittent

fault. Observing the failing test ruled out some

possibilities for the fault condition. Fault table

reduction, as suggested above, resulted in the reduced

fault table given in Table 4.1. A diagnosis experi-

ment is to be run.



 

 

t1 t2 t3 t4 t5 t6 t7

f1 0 0 0 1 1 0 1

f2 0 1 0 l 0 1 0

f3 0 1 0 0 1 1 1

f4 1 0 1 0 1 0 0

f5 1 l 1 0 0 0 1

f6 0 1 0 0 0 1 1

f7 0 0 1 1 0 1 1

f8 1 1 0 0 0 l 0    
Table 4.1. Reduced Fault Table After

Detection Experiment.

Th ' 't' 1 Q d F :e 1n1 1a p an p are

up = {w1,w2,...,w8}

Fp = {fl'f2'...'f8}

Notice that mo and f0 are not included in GP or

Fp. The test set {tl,t2,t7} covers Fp; select 1t

as Tp' Apply t1,t2,t7,t1,t2,t7,... unt1l a failure

occurs. Assume that this subexperiment results in the

failure of t7. The set of possible faults is nar-

rowed down to those faults with 1's in column t7 of

Table 4.1 (w2,w4, and w are ruled out). Thus:

8

Q = {wl,w3,w5,w6,w7}.

F = Ifl'f3'fs'f6'f7}°
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The corresponding reduced fault table is shown in

Table 4.2.

Select a new Tp that cOvers Fp. The test set

{t2,t5,t6} is selected. Apply t2,t5,t6,t2,t5,t6,...

until a failure occurs. Assume that t2 failed in

this subexperiment. This rules out w and w
1 7'

Thus, we have:

9

P

Fp = {£3,£

{w3,w5,w6}

s'fs}

Reducing Table 4.2 in correspondence with the

outcome of this subexperiment, we obtain Table 4.3.

The test set {t1,t6} is a suitable Tp since it

covers Fp. Apply t1,t6,t1,t6,... unt1l a fa1lure

occurs. Say t1 fails. This rules out OB and w6.

The corresponding Fp and 0p are:

 

 

t1 t2 t3 t4 t5 t6

f1 0 o o 1 1 0

£3 0 1 o o 1 1

£5 1 1 1 o o 0

f6 0 1 o o o 1

f7 0 o 1 1 o 1

    
Table 4.2. Reduced Fault Table After

First Subexperiment.
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t1 t5 t6

f3

f5

f6 0 1

    
Table 4.3. Reduced Fault Table After

Second Subexperiment.

Q = {ms}

9

F {f5}

P

Fp is a singleton. This terminates the diagnosis

experiment. The circuit is diagnosed as having inter-

mittent fault ms.

If test t6 is the one that failed in this sub-

experiment and not t1, then ms is ruled out. The

corresponding Fp and 0p are:

Up = {w3,w6}

Fp = {f3,f6}

The corresponding reduced fault table is given in

Table 4.4. In this case there is no TP that covers

both f3 and f6. This terminates the diagnosis

experiment with the diagnosis resolution being defined

by Fp which conta1ns f3 and f6.
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Table 4.4. Reduced Fault Table when t6

Fails in Third Subexperiment.

That is, the result of the diagnosis experiment is:

the circuit has either intermittent fault w3 or

intermittent fault N6. Thus, the components that

pertain to these two faults should be replaced for

repair. A diagnosis tree for this example is shown

in Figure 4.2. The tree shown is not a complete

diagnosis tree.

In this example, we did not make use of the

posterior probabilities since we were not concerned

about comparing Tp's or designing a shortest diag-

nosis experiment.

The last result of Example 4.1 should be compared with

the diagnosis of permanent faults. If the faults of this

example were permanent, maximum diagnostic is possible

since the rows of the fault table are distinguishable

(Theorem 2.2). However, in case of intermittent faults,

and using the suggested diagnosis procedure, we were unable

to obtain complete diagnosis. Hence, there are fundamental



111

 

(ifl’fz’fa'f4’fs'fe’f7’f8i>

t1 t2 t7

   
 

{f4,f5,f8} ({ f ,f3, f5 ,f6 ,£;:> {f1,f3,f5, f6 ,fz:)

t t 116

 

 
3} {f6.f7}

 

 

Figure 4.2. Diagnosis Tree for Example 4.1.

differences between the diagnosis of intermittent faults

and the diagnosis of permanent ones that are more subtle

than mere repetition of tests. Fault table properties that

are relevant to the diagnosis of intermittent faults are

explored later in Section 4.4.
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4.3 EXPECTED LENGTH OF SUBEXPERIMENT

In this section, we try to compute the expected

length of a subexperiment (definition 4.1) of the diagnosis

procedure. In a subexperiment, tests of an appropriate Tp

are repeatedly applied in sequence until a failure occurs.

Tp contains u tests. Let the set Of corresponding

random variables be Tp. The set of possible faults 0p

contains n states. Without loss of generality, we can

label the elements of Tp and Tp as: l,2,...,u, and

the elements of 9p as: l,2,...,n. We assume that the

posterior probabilities for the states of the circuit were

computed after Observing the outcome of every test in the

diagnosis experiment. The posterior probabilities computed

thus far (to the beginning of the subexperiment) will be

used as prior probabilities in the subexperiment. The

problem is to find the expected number of times the tests

of Tp will be applied until the first failure.

Notation. The following notation will be used in this

section:

—-+

_ U - _ _ _
Tp - 0 will mean Tl—O, T2—0,..., and Tu—O

This corresponds to the case where every test in Tp has

been applied once and one of them failed.

...)

Tp # 01“ will mean the complement of the above



113

condition. That is, every test of Tp was applied once

and at least one of them failed.

...)

k

~«-> -+

k . .

Tp = 011 will mean Tp=0u, Tp=0u,... k times.

This corresponds to the case where the test set Tp was

applied k times and no failure occurred.

The wi's (l :_i i n) define disjoint events over

the probability space (9 x S)k (the cartesian product of

(0 x S) by itself k times). The probabilities of these

events (the prior probabilities of the subexperiment) add

to 1 due to the single fault assumption. Thus we can

write:

-73 _ _ _ _ -
P(Tp—0 ) — P(Tl—T2—...-Tu—0)

n ——>

__ _ IJ

- P(Tp-0 /wi) P(wi) (4.1)

i=1

If mi 13 covered ki times by Tp (1.e., ki tests of Tp

detect fi), then:

..., k.

_ u _ _ 1
P(Tp—0 /wi) _ (1 ei) (4.3)

The conditional probability of at least one failure during

the application of Tp is:

'3 _ - -p(Tp¢o /wi) — 1 (1 ei) (4.4)
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If Tp is applied k times and no test failed, then:

'—* k.k

P(T k=0“pr = (1—ei) 1p (4.5)

The probability of a first failure on the k+1-st appli-

cation of Tp is:

+ -->

P(T k+1 ; T k+1 = T k T ' T k = OUk ' T #0“)

P P P P P P

n —»

k+1 k k uk

= P T o T " T T r T - 0 T O (1)Z ( P p p y! / o) p

i=1

n k.k k.

= Z (l-e.) l (l - (l-e.) 1) Pi (4.6)

l 1.

i=1

This is the probability that the subexperiment will have

k+1 applications of Tp.

Thus, the expected number of applications of Tp is:+

)2 = E(k)

°° n

k.k k.

= 2 (k+1) Z (l-ei) 1 (l-(l-ei) 1) pjL

= i=1

[I °° k.k k.

.= :Ep.22 (1-e.) 1 (1- (1—e) 1) (k+1)

 

+E(k) denotes the expected value of k.
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The inner infinite series is the expansion of a negative

binomial,* thus

 E.—- 5: pi (4 7- k. . )

The expected subexperiment length 2 is:

Z = ui (4.8)

The expected subexperiment length given by (4.8) is approxi-

mate since the last application of Tp (when a failure

occurs) will probably be incomplete. However, this is

fairly accurate if k is relatively large.

The conditional expectation of the number of applications

of Tp is given by:

E(k/wi) = 1 (4.9)
k.

1- (1-31:)

 

1

From (4.7) and (4.3), if ki > 0, then 2 is finite,

and if k1 = 0, for some i(l :_i i n), then I = m. This

explains why Tp was required to cover 9p in the diag-

nosis procedure: to insure that the diagnosis procedure

will eventually terminate.

 

00

*If 0<x<l , then (1+x)-2== :2 (l+i)x1.

i=0
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4.4 FAULT TABLE

In this section, we study some fault table

prOperties that are pertinent to the diagnosis of inter-

mittent faults. Our discussion will deal only with the

fault table and not with the complete fault table, i.e.,

f0 will be excluded. The number of rows is assumed to be

n, and the number of columns is assumed to be m.

Definition 4.2

A fault table will be called locally symmetric if

for every pair of rows, fi and fj, there is a pair of

columns, t and t , whose entries for these two rows

P q

have one of the following forms:

0 f.

i or 1

Theorem 4.1
 

The local symmetry property is not affected by

the fault table reduction operations (operations (a),

(b), (c) and (d) of Section 4.2) of the diagnosis

procedure.

Proof:

It sufficies to show that the application of any

of these operations maintains the local symmetry

property in the reduced table.
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(a) The elimination of a row, obviously, does not

change the local symmetry for the rest of the

rows as long as two or more rows are left. In

the diagnosis procedure, table reduction is per-

formed only if the new Fp is not a singleton,

i.e., the fault table will have at least two rows

after the reduction.

(b) The elimination of a redundant column, clearly,

maintains the property for the remaining rows.

(c) The elimination of an all zeros column does not

change the property since it does not contribute

anything to it.

(d) Similarly, the elimination of an all ones column

does not change the property since it does not

contribute anything to it.

Corollary 4.1

If the original fault table is locally symmetric,

then any row in a reduced fault table, during the

course of the diagnosis experiment, has at least one

l-entry. This follows directly from Theorem 4.1.

Theorem 4.2

A necessary and sufficient condition for maximum

diagnostic resolution (i.e., every fault is diag-

nosable), using the diagnosis procedure of Section

4.2, is that the fault table be locally symmetric.
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Proof:

Sufficiency. If the fault table is locally
 

symmetric, then by Theorem 4.1, this property will be

maintained in the reduced fault tables. By Corollary

4.1, every row in a reduced fault table will contain

at least one l-entry. Thus, we can always find a

Tp that covers Fp. Thus the only way the diagnosis

procedure can terminate is when Pp is a singleton.

That is, we have maximum diagnostic resolution.

Necessity. Assume that every fault is diag-
 

nosable.

Let mi be the fault that the circuit possesses.

Thus, during the diagnosis experiment, a row corre-

sponding to fi will always exist in the reduced

fault table since mi will never be ruled out (i.e.,

no test that does not detect fi will fail). Diag-

nosis is accomplished through observing enough failures

to narrow down the possibilities of the fault con-

dition as much as possible. Since m. is diagnosable,
1

then considering the fault w. a test that detects
3’

fi and does not detect fj must eventually fail in

the experiment (in order to rule out wj). That is,

there must exist a test, tp, whose entries for fi

and fj are of the form:
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Let wj be the fault that the circuit possesses.

Since every fault is diagnosable, then by a similar

argument, there must exist a test, say tq, whose

entries for fi and fj are of the form:

 

 

t

q

f.
i

f.

3

That is, there exists a pair of tests, say tp and

tq, whose entries for fi and fj are in the one

of the forms:

t ttq tp p q

i or fi

. l 0 f.

3 J

The argument can be repeated for any other pair

of faults. It follows that maximum diagnostic

resolution implies the local symmetry property.

Q.E.D.

Definition 4.3

The complement of an n x m fault table is another

n x m fault table with the l-entries of the original

table replaced by 0's and vice versa for the O-entries.

Theorem 4.3

If a fault table is locally symmetric, then its

complement is.
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The proof follows directly from the definition

of the local symmetry property.

Theorem 4.4
 

A fault table that has no identical rows and that

is its own complement (with the columns rearranged) is

locally symmetric.

Proof:

Since the rows are distinguishable, then for every

.+ +

pair of rows, say fi and fj, there is a test that

has different entries for these rows. Let the entries

+ +

of such a test for fi be 1 and for fj be 0. Since

the table is its own complement, then there is a test

whose entries are the complement of the entries of

+

the above test, i.e., has entries of 0 for fi and l

+

for fj' That is, the table is locally symmetric.

Q.E.D.

Corollaryp4.2
 

An n x m fault table with no identical rows will

become a locally symmetric n x 2m fault table if its

complement is appended to it.

The proof follows directly from Theorem 4.4.

Corollary 4.2 and Theorem 2.3 indicate that the least

number of tests m that satisfies the local symmetry
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property for n faults is greater than log2 n and less

than or equal to 2[log2 n1?

4.5 OPTIMIZATION OF DIAGNOSIS EXPERIMENT

In this section we discuss the problem of opti—

mizing the diagnosis experiment. The diagnosis procedure

suggested in Section 4.2 is adaptive in nature, namely, the

subexperiment to be adopted at any stage depends on which

test failed in the previous subexperiment. The length of a

particular subexperiment is not deterministic, i.e., it

varies when the same subexperiment is run over again under

the same circuit conditions, due to the intermittency of

the faults. The key to an optimum experiment lies in the

choice of an appropriate Tp for every subexperiment. The

usual aim of optimization is to minimize the expected

length of the subexperiment. Three approaches that tend

to minimize the length of the diagnosis experiment are

presented: exhaustive enumeration, local optimization and

the method of maximum resolution. The latter two approaches

are heuristic in nature.

4.5.1 Exhaustive Enumeration

In this method, all possible complete diagnosis

trees are constructed. The expected lengths of the

 

1-|'x] means the smallest integer greater than or equal

to x.
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experiments corresponding to these trees are computed. The

one with the shortest expected length is the optimal

experiment. This method guarantees an optimum solution,

but is not feasible even for small problems. This is due

to the fact that the number of possible trees becomes

unwieldy since at every subexperiment we have to construct

trees corresponding to every possible Tp' The number of

trees to be enumerated is much larger than the case of

permanent faults (which, by itself, is impossibly large as

indicated in Subsection 2.6.1). The reasons are that the

trees we have here are not binary, and that the tests of a

subexperiment do not divide the set of possible faults into

disjoint subsets, due to the fact that a possible fault may

be detected by more than one test in the subexperiment.

This latter reason also adds complexity to estimating the

expected length of an experiment since it amounts to more

than one leaf, in the complete diagnosis tree, having the

same label.

4.5.2 Local Optimization

This method attempts to minimize the length of

the diagnosis experiment by selecting the best (according

to some criterion) Tp for every subexperiment during the

course of the diagnosis procedure. The criterion suggested

here is one that takes into effect the expected length of

the subexperiment, as well as the resolution that might

result at the end of such subexperiment.
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Definition 4.4

Let the u fault subsets that are fault possi-

bilities corresponding to the failures of the u

tests of T be F ,F ,...,F . Let the number of

elements in PP (l :_i :yu) be mi. The resolution

i

figure of merit r for this subexperiment is defined

 

as:

U

r = Z (”i) (4.10)

._ 2
1-1

(ni) is the number of pairs of faults that we have to

2

distinguish if the i-th test of Tp fails in this

subexperiment.

A figure of merit W, that is a function of Z (the

expected length of the corresponding subexperiment as

defined by (4.8)) and r, is computed for every T . The

P

Tp with the lowest W is selected for the subexperiment.

We suggest the following simple function for W:

W = Z.r (4.11)

Any other suitable function of W, in terms of Z and

r, may be chosen as long as it is monotonically increasing

in 2 and also in r.

This method requires the enumeration of all possible

subexperiments rather than all possible experiments as in
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the previous method. However, it does not guarantee an

optimum result.

4.5.3 The Method of Maximum Resolution

The local optimization method requires the

enumeration of all possible subexperiments, a task that

could be quite lengthy especially in the earlier stages of

the experiment. In this section, we suggest a method not

as good as local optimization but one that does not require

the enumeration of all possible subexperiments. The idea

is similar to local optimization. However, we select the

figure of merit to be r itself and try to minimize it.

The problem of selecting the Tp with the lowest r is

similar to the covering problem of switching theory with

costs assigned to the prime implicants. The prime impli-

cants are analogous to the tests of the reduced fault table

and the minterms to be covered are analogous to the faults

of the reduced fault table. The cost of a prime implicant

being (2%) . ”i is the number of 1‘s in the column of

the corresponding test.

4.6 SPECIAL CASES
 

In this section we will discuss the diagnosis

problem for special cases of the fault table, namely, the

simple fault table and the simple elimination fault table.
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4.6.1 The Simple Fault Table Case

A fault table is called simple, if every column

has exactly one 1-entry and every row has exactly one 1-

entry. It follows that the number of rows is equal to the

number of columns and the fault table matrix is the

identity matrix with some of its columns permuted. This

special fault table corresponds to the case where every

test detects one and only one fault.

If the original fault table is simple, then there is

no need for a diagnosis experiment. The test that fails in

the detection experiment identifies the fault that the

circuit possesses.

If one of the reduced fault tables is simple, then

Tp of the corresponding subexperiment will contain all the

tests of this table. This will be the last subexperiment

in the diagnosis procedure since it will result in fault

identification.

4.6.2 The Simple Elimination Fault Table

In a simple elimination fault table every column

has exactly one O-entry and every row has exactly one 0-

entry. It follows that the fault table matrix is a square

matrix. This table corresponds to the case where every

test detects all but one of the faults. Without loss of

generality we can assume the tests are labeled such that
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test ti does not detect fault f i.e., the fault tablei'

matrix is the complement of the identity matrix.

In this case any two tests will suffice as a Tp

since any two tests cover all the faults. It is easy to

see that after the first subexperiment the reduced fault

table will also be a simple elimination fault table with

the number of rows (or columns) being one less than that

of the previous subexperiment.

If we are to minimize the diagnosis experiment for

this case using the method of maximum resolution, we

notice that selecting any two tests will result in the same

value for the resolution figure of merit r. Notice that

selecting more than two tests will result in a larger r.

Thus, any two tests minimize r.



CHAPTER V

SUMMARY, CONCLUSIONS AND SUGGESTIONS

FOR FUTURE WORK

5.1 THESIS SUMMARY
 

Digital computers are being relied upon as

integral parts of an increasing number of systems handling

all aspects of our life. The proper operation of computers

is vital to the functioning of these computerized systems.

One of the major approaches to the proper operation of

computers is fault diagnosis plus repair. This thesis

lends itself to one aspect of this approach, namely: diag-

nosis of intermittent faults in combinational circuits.

Chapter I presents a general discussion of fault-

tolerant computing together with some of the physical

failures that can occur in digital circuits. The logical

representations of many of these failures are also

presented.

Chapter II deals with failures that are permanent in

nature. The idea of applying proper inputs as tests

detecting certain faults is discussed. In Section 2.2

127
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several methods for the generation of tests that detect

permanent faults were surveyed, most notably the path

sensitizing and the D-algorith methods. The notion of

representing the data obtained from the test generation

phase by a fault table is explained in Section 2.3.

Theorems 2.1 and 2.3 in that section give bounds on the

number of tests of a fault table having n faults.

Theorem 2.2 gives a necessary and sufficient condition to

be able to diagnose every fault, i.e., to have maximum

diagnostic resolution. The representation of diagnosis

experiments as trees is elucidated in Section 2.4.

Sections 2.5 and 2.6 cover the problem of optimizing

detection and diagnosis experiments for permanent faults.

Unfortunately, the methods that give true optimal experi-

ments are impossibly lengthy for any practical size

problem. Suboptimal methods that have been used are

surveyed. Most of them locally optimize the testing experi-

ment, i.e., at every stage a decision is made to select

the testing strategy that optimizes only that stage.

Chapter III introduces a mathematical model for inter-

mittent faults and deals with the detection of these

faults. The model, which is a probabilistic one, is

detailed in Section 3.1. Many of the notations used in

this model are similar to those employed in pattern

recognition literature. Every intermittent fault is

thought of as a pattern class. The tests and their out—

comes are thought of as random variables. In Section 3.2
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a detection procedure, through the repeated application of

tests that would detect these faults had their effect been

permanent, is proposed. The procedure suggested is

analogous to a sequential statistical decision procedure.

A decision rule for that procedure must guarantee the ter-

mination of this procedure in a finite amount of time. Two

decision rules were suggested in Subsection 3.2.1 for the

simple case where the circuit can have only one possible

fault. One rule compared the posterior probability of the

fault with a threshold; the other compared the likelihood

ratio (definition 3.1) for that fault with a threshold. It

was proved, in that subsection, that these are acceptable

rules. The general problem, of having one of n possible

faults was tackled in Subsection 3.2.2. A decision rule

for this case, based on comparing the posterior proba-

bilities with thresholds, was not acceptable since it did

not guarantee a finite length for the procedure. However,

a decision rule that compares the likelihood ratios with

thresholds was proved to be acceptable. Section 3.3 dealt

with optimizing the detection experiment. Finding an

optimal solution was shown to be equivalent to an integer

programming problem. Theorem 3.3 proves the validity of

some suggestions made to reduce the size of such an integer

programming problem.

Chapter IV lends itself to the problem of diagnosing

intermittent faults. The model, introduced in Chapter III

is also employed in this chapter. A diagnosis procedure
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employing the repetition of tests is proposed in Section

4.2. The representation of such a procedure by a tree is

also discussed in that section. In Section 4.3, the

expected length of a subexperiment in that procedure is

computed. This made it possible to show that the require-

ments of the diagnosis procedure guarantees that the

expected length of the procedures be finite. Properties

of the fault table that are relevant to the diagnosis of

intermittent faults are explored in Section 4.4. Theorem

4.2 gives the necessary and sufficient conditions for

maximum diagnostic resolution. The conditions in this

theorem are much stricter than those needed for the perma-

ment fault case. Section 4.5 deals with optimizing the

diagnosis experiment. As expected, the method that yields a

true optimum solution is impossibly lengthy to solve. Two

heuristic approaches are suggested that result in local

optimization (optimization of subexperiments only). One

relies on maximizing the resolution at the end of the

subexperiment, and the other takes into account his

resolution together with the expected length of the sub-

experiment. In Section 4.6, the diagnosis procedures for

two special cases are discussed.

5.2 CONCLUSIONS

Intermittent faults constitute a respectable

portion of the failures that occur in digital systems.
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Ad-hoc methods have been used to coupe with these faults

in practice, while formal treatment has been completely

ignored despite the need for such a tool. This thesis

represents, to the best of the author's knowledge, the

first major attempt to treat intermittent faults formally.

Detection and diagnosis procedures for these faults, that

can be employed in practice, were developed. Some funda-

mental differences between these procedures and those for

permanent faults were pointed out. A great number of

problems still remain to be solved. It is hoped that this

thesis paves the way for working on these problems.

5.3 SUGGESTIONS FOR FUTURE WORK

Several interesting problems related to the

diagnosis of intermittent faults remain to be solved.

The probabilistic model presented in Section 3.1

assumes constant probability for the presence of the effect

of an intermittent faults. It will be interesting to study

the detection and diagnosis procedures, proposed in this

thesis, using different models. The employment of models,

that are of the Markov chain type or that have time as a

parameter in the probability distributions, as alternatives:

deserves exploration.

Another problem is finding other suitable decision

rules for the detection procedure suggested in Section 3.2.
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More efficient suboptimal solutions for minimizing the

detection experiment are also needed.

Variations of the diagnosis procedure suggested in

Section 4.2 open a fertile research area. Diagnosis pro-

cedures of limited length (or time) are of practical

importance.

It will be interesting to find the least number of

tests m that satisfies the local symmetry property for

n faults.

Other approaches for designing suboptimal diagnosis

experiments are also needed. Another interesting problem

is that of optimizing the detection and diagnosis experi-

ments when tests costs are taken into account.

An important problem is the detection and diagnosis

of intermittent faults in sequential circuits. Unfortu-

nately, despite the importance of this problem, it is

expected that it will be quite difficult since the problem

of diagnosis of permanent faults in sequential circuits has

not been solved to satisfaction yet.

Another important problem is the design of easily

diagnosable circuits. For example, desired properties in

the fault table could be taken into account when designing

digital circuits.



BIBLIOGRAPHY



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

BIBLIOGRAPHY

Avizienis, A., "Design of Fault-Tolerant Computers,"

in 1967 Fall Joint Compgter Conf., AFIPS Conf.

Proc. I pp. 733-743.

 

Avizienis, A.; Gilley, G. C.; Mathur, F. P.: Rennels,

D. A.; Rohr, J. A.; and Rubin, D. K., "The STAR

(Self-Testing And Repairing) Computer: An Investi-

gation of the Theory and Practice of Fault-Tolerant

Computer Design," in Digest 1971 International

Symp. on Fault-Tolerant Computing, pp. 92-961

 

 

Breuer, M. A., "Generation of Fault Detection Tests

for Intermittent Faults in Sequential Circuits,"

in Digest 1972 International Symp. on Fault—

Tolerant Computing, pp. 53-57.
 

Brule, J. D.; Johnson, R. A.; and Kletsky, E. J.,

"Diagnosis of Equipment Failures," IRE Trans.

Rel. Qual. Contr., Vol. RQC-9, pp. 23-24, April
 

Carroll, J. J., ”Examination of Sequential Circuits :

A Model and a Method,” Ph.D. thesis, Illinois

Inst. of Tech., 1972.

Chang, H. Y., ”An Algorithm for Selecting an Optimum

Set of Diagnostic Tests," IEEE Trans. Electron.

Comput., Vol. EC-14, pp. 706-711, Oct. 1965.

Chang, H. Y.; Manning, E.; and Metze G., Fault Diag-

nosis of Digital Systems. New York: Wiley—

Interscience, 1970.

 

Clegg, F. W., "Algebraic Properties of Faults in

Logic Networks,” Ph.D. thesis, Stanford Univ.,

1970.

Cobhan, A.; Fridshal, R.; and North, J. H., "An Appli-

cation of Linear Programming to the Minimization

of Boolean Functions," in Proc. 2nd Annu. Symp.

Switching Theory and Logical Design, pp. 3-9, 1961.

133



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

134

Cobhan, A., and North, J. H., "Extensions of the

Integer Programming Approach to the Minimization

of Boolean Functions," IBM Res. Report, RC-915,

April 1963.

 

Dubes, R. C., The Theory of Applied Probabilit .

Englewood Cliffs, N. J.: Prentice-HaIl, I968.

, "Pattern Recognition," notes for CPS

817, Dept. of Computer Sci., Mich. State Univ.,

1971.

 

Friedman, A. D., "Fault Detection in Redundant Cir-

cuits," IEEE Trans. Electron. Comput., Vol. EC-16,

pp. 99-100, Feb. 1967.

 

Friedman, A. D., and Menon, P. R., Fault Detection in

Digital Circuits. Englewood C11 3, N. J.:

Prentice-HaIl, 1971.

 

Fu, K. S., Sequential Methods in Pattern Recognition

and Machine Learning. New York: Academic Press,

1968.

 

 

Galey, J. M.; Norby, R. E.; and Roth, J. P., "Techni-

ques for the Diagnosis of Switching Failures,"

IEEE Trans. Cgmmun. Electron., Vol. CE-83,

pp. 509¥514, Sept. 1964.

 

Garey, M. R., "Optimal Binary Decision Trees for

Diagnostic Identification Problems," Ph.D. thesis,

the Univ. of Wisconsin at Madison, 1970.

Gill, A., “Comparison of Finite State Models," IRE

Trans. Circuit Theogy, Vol. CT-7, pp. 178-179,

Junegl960.

 

Gomory, R. E., "All-Integer Integer Programming

Algorithm," IBM Res. Report, RC-189, Jan. 1960.

Introduction

Holden-

Hillier, F. S., and Lieberman, G. J.,

to Operations Research. San Francisco:

Day, Inc., 1967.

 

 

Kohavi, 1., "Fault Diagnosis of Logical Circuits,"

in Proc. 10th Annu. Symp. Switching and Automata

Theory, pp. 1664173, 1969.



[22]

[23]

[24]

[25]

[26]

[27]

[23]

[29]

[30]

[31]

[32]

[33]

135

Lyons, R. E., and Vanderkulk, W., "The Use of Triple-

Modular Redundancy to Improve Computer Relia-

bility," IBM J. Res. Dev., Vol. 6, pp. 200-209,

April 1962.

McCluskey, E. J., Jr., “Minimization of Boolean

Functions," Bell System Tech. J., Vol. 35,

pp. 1417-1444, Nov. 1956.

McCluskey, E. J., Jr. Introduction to the Theor of

Switching Circuits. New YorE: McGraw-HiII, I965.

Mealy, G. H., "A Method for Synthesizing Sequential

Circuits," Bell System Tech. J., Vol. 34, pp. 1045-

1080, Sept. 1955.

 

Mendel, J. M., and Fu, K. 5., Adaptive, Learning and

Pattern Recognition Systems. New York: Academic

Press, 1970.

 

 

Moore, E. F., "Gedanken EXperiments on Sequential

Machines,” in Automata StudiengAnnals of Mathe-

matics Studies No. 34, Shannon, C. E., and

 

 

McCarthy, J., eds., pp. 129-153. Princeton,

N. J.: Princeton Univ. Press, 1956.

Moore, E. F., and Shannon, C. E., "Reliable Circuits

Using Less Reliable Relays," J. Franklin Inst.,

Vol. 262, pp. 191-208, Sept. 1956, and pp. 281-

297, Oct. 1956.

Poage, J. F., "Derivation of Optimal Tests to Detect

Faults in Combinational Circuits," in Proc. Symp.

on Mathematical Theory of Automata, Polytechnic

Inst. of Brooklyn, pp. 483-528, I963.

 

Ramamoorthy, C. V., "Fault-Tolerant Computing : An

Introduction and an Overview," IEEE Trans. Comput.,

Vol. C-20, pp. 1241-1244, Nov. 1971.

Roth, J. P., "Diagnosis of Automata Failures : A

Calculus and a Method," IBM J. Res. Dev., Vol. 10,

pp. 278-291, July 1966.

Schneider, P. R., "On the Necessity to Examine D-Chains

in Diagnostic Test Generation-An Example," IBM J.

Res. Dev., Vol. 11, p. 114, Jan. 1967.

Schertz, D. R., and Metze, G. A., "On the Distingui-

shability of Faults in Digital Systems," in Proc.

6th Annu. Allerton Conference on Circuit and

System—Theory, pp. 752-760, 1968.
 



[34]

[35]

[36]

[37]

[38]

[39]

[40]

136

Schnable, G. L.; Ewald, H. J.: and Schlegel, E. 8.,

"MOS Integrated Circuit Reliability," IEEE Trans.

Relo' V01. R-21' pp. 12-19, Feb. 1972.

Sellers, F. F., Hsiao, M. Y., and BearnsOn, L. W.,

"Analyzing Errors with the Boolean Difference,

IEEE Trans. Comput., Vol. C-17, pp. 676-683,

Ju y .

Szygenda, S. A., "A Simulator for Digital Design

Verification and Diagnosis," Proc. Lehigh Univ.

Workshop on Reliabilitypand Maintainability,

Dec 0 O

Tryon, J. G., "Quaded Logic," in Redundanc Techni-

ques for Computipg_Systems, WiIcox, R. H., and

Von

Mann, W. C., eds., pp.fl255L228. Washington, D.C.:

Spartan Books.

Neumann, J., "Probabilistic Logics and the Syn-

thesis of Reliable Organisms from Unreliable

Components," in Automata Studies, Annals of

Mathematics StudIes No. 34, Shannon, C. E., and

McCartHy, 3., eds., pp. 43-98. Princeton, N. J.:

Princeton Univ. Press, 1956.

Wald, A., Seguential Analysis. New York: Wiley,

Yen,

1947.

Y. T., "Intermittent Failure Problems of Four-

Phase MOS Circuits," IEEE J. Solid State Cir-

cuits, Vol. SC-3, June 1969.



  "'TITI'I‘DI‘I‘LITUMLHEI((Lilflfifljilflilzllfliflfflmfl'ES

 


