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ABSTRACT

by
Janice Lynn King

Equations are developed leading to a more rigorous
mathematical analysis of baffle plate extraction towers than
has been previously seen in the open literature., Analytical
solutions are used to set bounds upon the amount of mass
transfer between fluids in countercurrent contact; and the
results seem to correlate well with experimental
observations. One result is then used to provide a new
extension to the Graetz Problem.

Our derived equation for mass transfer to nondispersed
countercurrent flow is

Ngg = 1400 (Ngg Ngc B/L)1/3 exp (K¢ 1n Ne)

where N is the local Sherwood number, B and L are plate
dimensions; Ne is the Nernst distribution coefficient; and
K¢ is a constant described in the paper.

It is shown that most of the mass transfer for
countercurrent liquid extraction comes from transitory drops
located in the spout region of the plate., It is also
demonstrated that concurrent flow is preferable to
countercurrent in regions of slowly diffusing species,
narrow plate spacings, large diameter towers and high
throughputs.
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CHAPTER ONE

INTRODUCTION

The most common types of liquid-liquid extraction
devices are mixer settlers and agitated differential
columns, which are operated in countercurrent mode. These
extractor designs have served admirably for many years.
However, they continue to have problems with limited
throughputs, inefficient energy use, and inability to
process emulsifying streams.

The alternative non-agitated extractors include packed
towers, perforated plate towers and spray towers.
Countercurrent flow is maintained by gravity operating on
the density difference between the two fluids. These
devices have several advantages, but they still have limited
throughput and an inability to process suspensions or
precipitating fluids. Beyond these problems, spray towers
also suffer from severe axial dispersion., By contrast, the
baffle plate tower (another non-agitated extractor) has low
energy cost, low maintenance cost, and low capital cost.
Also, baffle towers can often process surfactants,
suspensions, or emulsions. The primary disadvantage of the
baffle tower is its low stage efficiency, typically less
than 10%, Morello and Poffenburger (1950) and Cooper (1984).

We choose to analyze the operation of the side-to-side,



countercurrent, baffle tower. We also analyze a novel
variant of this tower, which is designed for operation with
concurrent flow., These towers are shown in Figure 1.

Our analysis joins a growing literature involving
concurrent flows in fluidized beds (Gawronski and Roszak,
1979), packed towers (Hutton and Leung, 1974; Leacock and
Churchill, 1961; Specchie, Sicardi and Gianetto, 1974; Rao,
Ananth and varma, 1983), reciprocating plate towers (Noh and
Baird, 1984), and pipeline flow (wWatkinson and Cavers,
1967). Our theoretical treatment of the baffle tower is
more rigorously mathematical than previously seen in the
open literature, and our results correlate with published
experimental observations (Watkinson and Cavers, 1967;
Linton and Sherwood, 1950).

Our analysis of the countercurrent models can provide
an extension to the "Graetz Problem®" (laminar flow heat
transfer in tubes). We consider variations of the boundary
conditions at the fluid-fluid interface, and consider the
cases of short contact times and small penetration depths.
The results, given in Chapter two, are applicable for low
rates of mass transfer between countercurrent fluids or for

low rates of heat transfer between a fluid and a wall,.



Figure 1. Beffle towers. (s) countercurrent

(b) pessudo concurrent



CHAPTER TWO

COUNTERCURRENT EXTRACTION

2.1 General Model for Mass Transfer

Consider the mass transfer between two laminar
immiscible streams 1 and 2 flowing between two flat plates.
The flow fields (countercurrent or concurrent) are fully
developed as shown in Figure 2a and b, respectively. Solute
"A" diffuses from fluid 2 into fluid 1, which is initially
solute-free. Both fluids flow in the Z-direction., This
analysis can be restricted to constant velocity profiles
because the depth of penetration of "A" into fluid 1 is
small in comparison with the film thickness; this is
evidenced by the low experimental plate efficiencies and by

a computer modelling study described in this chapter.

2,2. Countercurrent Model and Computer Model

For countercurrent flow, as shown in Figure 2a, fluids
1 and 2 have velocity gradients "M" and "N" respectively.
Steady-state mass balances are written for both fluids with
the interface boundary conditions set by equating the
fluxes, Fluid 1 is considered to have a normalized
concentration of zero at the entrance (Z=0), where the

normalized concentration, Cl, equals (Cin - C(x,z))/Cin,



x=-B,z=0

Velocity profile of countercurrent case
(a)
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Velocity profile of concurrent case
(b)

x=-B,z=

Figure 2. Flow fields of model for mass transfer



Similarily, fluid 2 is considered to have a normalized
concentration of 1.0 when it enters the plate at 2 = 1. The

equations describing the mass transfer of "A" are as

follows:
fluid 1, 2
MX3Cl = D, 3 [2.1]
92 1 a%i
fluid 2, 2
NXo9C2 = D, 3 [2.2]
92 2 agé

The boundary conditions are

at z2=0 Cl=0
at X=+d Cl=0
at X=0 C2=Cl/Ne
X X
at X=-d C2=]
at X=1 C2=1

Here Cl and C2 are dimensionless concentrations; d is the
laminar film thickness; L is the plate length; and Ne is the
Nernst distribution coefficient which is
Ne=C2

Cl [2.3]
Here Cl and C2 denotes the molar concentrations of component
*A" in fluids 1 and 2; and over the length of the plate, Ne
is considered independent of the individual values of Cl and
c2.

A computer algorithm is used to solve this boundary-

value problem for the mass transfer of "A" into fluid 1. We



use a "shooting method" iterative solution (Carnahan, Luther
and Wilkes, 1969). A copy of our program is given in Table
2. Unsteady-state mass balances are written for both fluids
and the equations describing the time variation of the

concentration are:

fluid 1, )

cl = -wx 2%1 + D, aagé [2.4]
£luid 2, )

%2 = -NX ggz + D, aaﬁé [2.5]

These equations are solved simultaneously with initially
assumed concentration profiles for Cl and C2 decaying to
steady state solution through repeated forward iterations,
At steady-state, the computer solution should equal the
correct simultaneous solution of Egqs. [2.1] and [2.2]. A
copy of the program is given in Table 2.

A check on the validity of this computer solution is
that the convective flux at the plate exit must equal the

diffusive flux across the interface

L B

[ Dy3cldz = [MXCl (X,1) aX [2.6]
1 5%

0 0

Although the computer algorithm can accurately solve a
given differential equation, it is found that for fast
convergence, the program must be tailored to the particular

Nernst distribution coefficient, diffusivities, and velocity



gradients (M or N). The computational procedure thus is not
particularly suited towards design. Therefore, we shall
consider two simplifications of the countercurrent equations
approximating the interfacial concentration profiles of the
two fluids; these predict different amounts of mass
transfer. Egs. [2.1) and [2.2]) are solved separately,
rather than simultaneously, and give analytical solutions,
which are better suited for design purposes. The computer
solution will be used to check the effect of our

simplifications.

2.3. Approximate Solution 1: Upper Bound

The first simplification to Egs. [2.1] and [2.2]
assumes that the concentration profile at the interface is a
constant,.

For small penetration depths, Eq. [2.1] for the mass

transfer of "A" into fluid 1 becomes

8 XaCl = 92 [2.7]
3 2 ag‘}

where B = M [2.8]
D,

and the differential equation for fluid 2 is the same as Eq.

[2.2]. The boundary conditions for this model are

at zZ =0 Cl=0
at X = = Cl=0
at X = -o C2 =1
at 2 =1L C2 =1



where at X = 0 Cl = Co and C2 = Co;
Ne

Ne is the Nernst distribution coefficient; and Co is found
by equating the fluxes at the interface. This situation is
equivalent to a super-diffusing layer of fluid existing at
the fluid-fluid interface. The effect of this very
permeable layer of fluid is to increase transport in both X
and 2z directions. Thus, this approximation is expected to
predict higher rates of mass transfer than the computer
solution,

In order to equate the fluxes between the two fluids,
and for further use, we will now derive a relationship
between B (which equals M/Dl) and N/Dz, the equivalent term
in the other fluid., At the interface, the momentum

transport is continuous between the two fluids:
at X=0 Ty = T4 [2.9]

where 13 and 15 are the interfacial shear stress tensors
in fluids 1 and 2 respectively. This means that for

Newtonian fluids:

u1QVzl = updvz2 [2.10]
dx dax
or
m = N [2.11]
1 M
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where u, and u, are the viscosities of fluids 1 and 2
respectively; and vzl and Vz2 are the fluid velocities in
the z-direction for fluids 1 and 2 respectively as from Eq.
[2.16]. This allows a particularly nice simplification of
Eq. [2.2] which employs a result of the Stokes-Einstein

diffusivity correlation:

D; = gy [2.12]
Dy 13
This relationship is considered valid for all non-polymeric
fluids with approximately constant activity coefficients,

Bidlock, Kett, Relly and Anderson (1969). Combining Egs.
[2.11] and [2.12] gives

B=M = N [2,13])
Dy Dy

which suggests that the same value of B can be used for any

two fluids in countercurrent contact.

The interfacial velocity gradient "M"™ is found from the
following steady-state force balance. Since the flow rates
are chosen such that the interface is a stagnant region, the
fluid velocity will be considered zero at this boundary, as

in Figure 4. The flow conditions are as follows:

WL 1txz = W (B/2 - X) (P, = Pj) [2.14)])
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C1S= 0

INTERFACE

FIGURE 3. CONCENTRATION PROFILE

N

V=M,

FIGURE 4. COUNTERCURRENT FLUID ELEMENT
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where txz if the stress tensor in the Z-direction; B is the
half-plate spacing; (P = P3) is the head loss across the
plate; L is the plate length; and W is the plate width., Por
a Newtonian fluid, Eq. [2.14] becomes

udvz = (P, - P;) (B/2 - X) [2.15]

dax L
where the boundary condition follows:
X=0 vz=0 .

Here , is the viscosity of the fluid. This is integrated to
yield
Vz(x) = APB2 ( X/B - (X/B)2) [2.16]

2L w
and M is determined by solving for the velocity gradient at
the interface,

M= (dyz) = APB [2.17]

dx x=0 2uL
Given a value for B and a constant interfacial

concentration, Kramers and Kreyger (1956) have solved Eq.

[2.7) for the mass flux at the interface. Defining the

averaged mass transfer rate as

_ L 3¢l
Na(Z)x=0 = "Dl IO ax X=0 QZ [2.18]
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It is found that the concentration gradient of fluid 1 at
the interface is
(3€1) = -Co__ (8/92)1/3 [2.19]
3X ‘yoo I'(4/3)
where Co is the constant interfacial concentration of A in
fluid 1 at the interface.

The mass flux of "A" across the liquid-liquid interface

for £luid 1 is

Na(z)g—q = 3 Dy (8/9L )1/3co [2.20]
2T (4/3)

where T (4/3) equals 0.893. Similiarily for fluid 2,

Na2(z)yg_g = 3 D,  (8/90)1/3(1 - co/n ) [2.21)
2 .893

From Eq. [2.20], the individual mass transfer coefficient
averaged over the plate length, L, is defined by Skelland
(1974) as

kc = Na(z) x=0 [2.22]
Co
where Co is found by equating the mass fluxes at the
interface. Because B is the same for both fluids and
because the mass flux, Nal , is the same for both fluids,

Egs. [2.20] and [2.21]) can be equated to show that
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Co = [2.23]

Ne .
(NeDy/Dy+1)
Dimensional analysis suggests that we can write Fc in

terms of dimensionless groups. Eq. [2.20] becomes
Ngg = 1.165 (Npg Nge B/L)1/3 [2.24]

The local Sherwood number for countercurrent flow is defined

as

Ngg = kB [2.25]

Dy
where Npp is (2B<Vy>p/u): Ngc is (u/oDy): p is the density;

and ; is the viscosity.
2.4 Approximate Solution 2: Lower Bound

The second simplification to Egs. [2.1] and [2.2]
assumes that the concentration profile at the interface is
linear, where Cl1 is zero at the plate entrance (Z=0) and Cy
is NeC,, at the plate exit (Z=L). The linear interfacial
concentration profile is expected to give a more
conservative estimate of mass transfer than the constant
concentration profile case of approximate solution one. The
equations describing the mass transfer of "A"™ are the same

as the previous case, but the boundary conditions are:



15

at z=0 Cl=0
at X== Cl=0
at X=0 Cl

Cyo Ne Z/L
at X=0 C2 = C20 - Czo Z/L
at X=-< (C2

Ca0
at 2=L C2

C20

Here C,5 is the concentration of "A" in fluid 2 at its
entrance (Z=L). It is proposed that Eg. [2.7] can be solved
by similarity transform; a proposed transform variable, Y,
is derived by standard techniques. But it is found that the
similarity transform fails because this variable cannot
transform the interfacial boundary conditions, 1If, however,
Eq. [2.7]) is differentiated with respect to 2, it and its

boundary conditions can be written

BX 3G = 232G [2.26]
ag  ax2
G = (%) (2.27]
3L y

where B8 is defined from Eq. [2.8]

at X = 0 G = Cyp Ne/L
at X = = G=0
at 2 =0 G=0

The following similarity transform is now applicable to the

equations and their boundary conditions.

Y = (8/(92))1/3, [2.28]
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Eq. [2.26] is solved for the concentration profile, yielding

Z
Cl = Cyq Ne [ P(¥)dz. [2.29)
0

Where F is equal to G/(Ne Cag) and is a function of Y.
After substitution and some manipulations, Eq. [2.26]

becomes

d2 P + 3¥2 dF = 0 (2.30]

dy2 ay
with the following transformed boundary conditions

F=0 at z=0 , Y=
P=1/L at X=0 , Y=0

F=0 at X=o , Y= ,
Integration of Eq. [2.30] twice gives a gamma function.,

Y
F= [ aexp(-¥3)day +b [2.31]
0
where a and b are integration constants. This is integrated

with respect to Z yielding an expansion for Cl in terms of 2

and Y.

2 Y
Cl = Cog Ne[ [ dZ [ a exp (-¥3)aY + bz + c] [2.32]
0 0

c=0

b =1/L
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and
a = -IZII = —I!ll.
r(4/3) .893
To solve for Cl, one expands the exponential term, and

inserts the result into Eg. [2.32]). Integrating with

respect to Y and Z gives

—C1=-1/L fdz (Y - ¥*+ Y7 - .....) +2/L  [2.33]
N C20 .893 4 Tx2!

€1 = =1/L [(x(8/9)1/3 2 2/34 x4(5/9)4/3 371/3+ | )112.34]
NGCZO .893 [ (273) 4('173) ]

where the mass flux is determined by the first term of the
bracketed series. As with the previous simplification, the
average rate of mass transfer at the interface is defined by

the following equation:

Na(z)g—q = -Dq = [2.35]

L
/| 2c
0 _39
L
The local concentration gradient of ®"A" at the
interface is found by differentiating Eq. [2.34] with
respect to X.
(L) = =3 (822/9)1/3 Ne ¢,y [2.36]
3 X'g=0 2(.893)
The average mass flux of "A" across the liquid-liquid

interface is found for fluid 1 by integrating Eq. [2.36]
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Nal(z) 40 = 9 D;  (8/91)1/3 xe c,y [2.37]
10(.893)

It is found that the average mass flux of "A" for fluid
2 yields a different result,

Na2(z) y-o = -Nal (2) x=0 [2.38]
Ne

In magnitude, the calculation for the transfer is 1/Ne times
the result from Eq. [2.37]. The difference arises because B8
is the same for both fluids (Eq. [2.13]), and because Cl is
equal to NeC2; thus, the driving force in the second fluid
is 1/Ne times the driving force of the first. Clearly,
however, a different mass flux for fluids 1 and 2 is a
physical impossibility. The results of Egs. [2.37] and
[2.38] could not be universally correct unless the Nernst
distribution coefficient equals 1. However, the results of
Egs. [2.37] and [2.38] can be viewed as the upper and lower
bounds on the countercurrent solution. Purthermore, the
result of Egs. [2.20] and [2.21] can also represent a bound
on the correct solution. The use of these approximate
solutions as solution bounds is not unreasonable, as is
demonstrated by comparison with the computer solution in
Table 1.

In a way similar to Eq. [2.22], the averaged mass

transfer coefficient for fluid 1 can be expressed
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kc = Na(z) x=0 [2.39]
Cai

where E;i is the averaged interfacial concentration defined
by ((Cajin - Cajout)/2); and where kc can be written in
terms of standard dimensionless groups. The local Sherwood

number for countercurrent flow becomes
Ngg = 1.400( Npp Nge B/L)1/3  [2.40)

where Nggr Npgp and Ngc are defined from Egq. [2.24].
2.5. An Extension of the Graetz Problem

Sellars, Tribus and Klein (1956) present an analysis of
the Graetz Problem (laminar-flow heat transfer in tubes) and
present eigenvalue solutions to extensions of the Graetz
Problem, which include variations of the fluid-wall boundary
conditions. Their results for these boundary conditions

are:
for constant wall temperature, the Nusselt number is

Nyg = 1.357 (Npg Npg r,/X)1/3 [2.41]
for linear wall temperature, the Nusselt number is

Nyg = 2-035 (Npg Npg r,/X)1/3 [2.42]
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where Ny is the local Nusselt number of the fluid at a
distance X from the wall; and r, is the tube radius,
Approximate solutions 1 and 2 analyze the cases of
constant concentration at the interface and linear varying
concentration at the interface respectively. Since the
mechanism of diffusion for mass transfer is analogous to
heat transfer, our results from the approximate solutions
can provide a similar extension to the Graetz Problem for
the cases of short contact times and small penetration
depths. The solutions are:
for constant concentration at the interface (a Leveque

analogue),
= . 1/3
Ngy = 1.165 (Npg Nge B/L)Y/ [2.24]
for linear varying concentration at the interface,
Ngg = 1.400 (Npp Ngo B/L)Y/3 [2.40]

where Ngg+ Npp and Nge are defined from Eq. [2.24). Egs.
[2.24] and [2.40] are applicable for low rates of mass
transfer between countercurrent fluids; and for the case of
heat transfer between a fluid and a wall in the entrance
region of plate.

It is now worthwhile to consider the mass transfer to
the dispersed phase droplets located in the spout region of
the baffle plate, shown in Figure 1. We shall show that

most of the mass transfer comes from droplets.
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2.6. Dispersed Phase

Many correlations for mass transfer from dispersed
phase drops are available, see Skelland (1974). The
important droplet conditions include direction of mass
transfer and internal circulation pattern, if any. The
amount of mass transfer from a drop can be determined by the
exposure time of the dispersed phase drop in the continuous
phase liquid. The rise time, t,, of a drop is determined by
performing an unsteady-state force balance on an

accelerating drop:
Fw + Fd = ma [2.43]

where Pw is the effective weight of the drop; Pd is the drag
force on the drop; m is the drop mass; and a is its

acceleration, Eq. [2.43] becomes

4/3 wr3g Ap- dguy rnvy = 4/3nr3 Padyt [2.44]

where V, is the time dependent velocity of the drop; 4p is
the density difference; g is the force of gravity; pgq is the
density of the drop; u,; is the viscosity of the continuous
phase; u, is the viscosity of the drop; r is the drop
radius; and the drag factor, dg, is found from the equation

df = 6 1 + (2/3 py/us) [2.45]
(1 + uy/w)
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It follows that from Egq. [2.44]

Ve = %'(1 - exp( -bt )) [2.46]

where the vertical velocity of the drop is considered to be

zero at fluid interface; and a' = Apg, cm per sec? and

(o]

b=23 Hy d¢ sec-1, d
4 1'2 pd

The rise time of the drop, t is found by integrating Eq.

rl
[2.46) from -B to 0, here B is the half-plate spacing with

respect to X, the vertical distance from the interface.

0 t,
[ax = (v, at [2.47)
-B 0

-2, (expl -bt, ) + bt, -1 ) -2B = 0 [2.48]

Eq. [2.48] is solved for t, by expanding the exponential
term

exp( -bt. ) =1-bt. + (bt.)2 + ....... [2.49]
21
For most baffle plate spacings, the drop is considered to
have a constant acceleration throughout its rise. This is
supported by the experimental work of Scheele and Meister
(1968) , which concludes that for most liquid-liquid systems,
the drag on a drop is negligible under low velocity

formation. Hence, t,, is
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t, =2pgq8B 1/2 [2.50]

A
P g

The local mass transfer rate for a liquid drop is
estimated by assuming that the internal circulation patterns
are laminar, via the Higbie drop model, (1935). Drop
circulation introduces fresh drop fluid at the top of the
drop. This fluid slides along the outside of the drop and
enters the well-mixed interior of the drop at its bottom.
This model adequately describes the mass transfer rate of a
drop for short exposure times and slow diffusion times. The
mass flux per surface area during drop rise is

t

t
rf Na avg dt = J

4p, 1/2 cao at [2.51]

[ ]

0 0 m texp

where the continuous phase mass transfer coefficient of a
drop is (401/(ntexp))l/2; exposure time, is given as
2r/v(t); and V(t) the time dependent velocity of a drop

rising under constant acceleration is

V(t) = a t [2.52]
= A gt [2.53)
P q

CAO is the steady-state concentration of "A®" in fluid 1 at
the interface and is found by equating the fluxes at the

interface. For two fluids in concurrent contact and a
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solute diffusing from one to the other, the mass transfer
coefficient is proportional to the square root of the
exposure times the diffusivity. An equivalent calculation
for concurrent flow in heat transfer is demonstrated by
Luikov (1980).

At the interface,

X=0 D, )1/2(1 - cao/Ne)= D,  1/2(cao - 0) [2.54]

(

n texp T texp

where the mass flux is in units of moles "A®" transferred per
unit area per unit time; and texp is the exposure time for
mass transfer. It is seen that

CAO = __Ne [2.55]
1 + Ne(Dy/Dy) "/ “

which is contact time independent and which is seen to
satisfy the initial assumption of constant concentration at
the interface. The mass transfer of "A" across the
interface for a drop is
tr
[ Na avg at = 2p; spg 1/2 ¢ 3/2 cao [2.56]
0 ' >

where the surface area of a drop is 4nr2,
When typical results from Eq. [2.56] are compared to
those from the previous two sections, it is found that in

typical tower geometries, the majority of mass transfer and
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the majority of exposed surface area comes from the

relatively transitory droplets located about the spout of
the baffle plate.

2.7. Comparisons Between Computer Solution and Approximate
Solutions

A computer program can give exact solutions to any
well-posed set of differential equations with arbitrarily
difficult boundary conditions. 1If Egs. [2.1] and [2.2]
accurately describe mass transfer between the non-dispersed
regions of countercurrent flow, then a computer program can
give an exact solution to mass transfer., Sources of
computer error can arise from the derivative approximations,
from the integration technique and from inherent algorithm
techniques. We believe these errors in our application to
be slight. Our computer solution solves Egs. [2.1l] and
[2.2) to within an accuracy of 8%, as shown in Table 1. The
value of accuracy is calculated by Eq. [2.6], which compares
the convective flux at the plate exit to the diffusive flux
across the interface.

Approximate solutions one and two (Egs. [2.20], [2.37]
and [2.38])) are seen to parallel the computer solution.
Approximate solution 2 (Egs. [2.37) and [2.38]) predicts the
higher rate of mass transfer, which means that the linear
varying concentration profile at the interface gives higher

rates of mass transfer between countercurrent fluids, than
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the constant concentration profile (Eq. [2.20]). Since the
driving force of approximate solution 2 is a linear function
of the Nernst distribution coefficient, it will give the
extremas of the computer solution. On the other hand, the
driving force of approximate solution 1 is bounded by the
asymptotic behavior of CAO, Eq. [2.54]. These approximate
solutions are given in Table 1.

One can now use a weighted combination of the upper and
lower bounding equations, [2.37] and [2.38], to give an
optimal fit to the computer solution. If this fit is
calculated where Nal is the predicted mass flux of "A" in
fluid 1 from the computer solution; and where N1 and N2 are
the predicted mass fluxes from Egs. [2.37] and [2.38]
respectively; then K¢ can be determined by a least square

fit of Eq. [2.57) using the data in Table 1.

Nal = N2 (K¢ Ln N1/N2) [2.57)
Re = 0.37 Ne > 1.0 [2.58]
Re = 0.76 Ne < 1.0 [2.59)

The resulting correlation is

Nal x=0 = Nl exp ( K¢ 1ln Ne ) [2.60]
Ne
and
NSH = NSH exp (Kf 1n Ne) [2.61]

Ne
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where N1 is found from Eq. [2.37]; and Ngyr the Sherwood
number is found from Eqg. [2.40); and Ne is the Nernst
distribution coefficient. Comparisons between the correla-
tion and the computer solution is given in Table 1.

While this correlation for non-dispersed flow mass
transfer may not be particularily accurate, it was shown in
section 2.5 that this contact contributes less than 20% of
the total mass transfer. Thus, inaccuracies from Eq. [2.60]
should not contribute significantly to design errors. The
total mass transfer for a baffle plate extractor with
countercurrent flow is the sum of the mass transfer from the
drops and from the non-dispersed phases. Adding Eqs. [2.56]
and [2.60] gives

Na = (0.9 Dy (8/91.)1/3 NeC20) exp (K¢ 1ln Ne)
. 893Ne
1/2 3/2
+(2D1Apg) / EE"Z__ cao [2.62]
"!'pd 3/2

It is now worthwhile to consider liquid extraction with

concurrent flow,



CHAPTER THREE
LIQUID EXTRACTION WITH CONCURRENT FLOW

We consider a variant of the standard side-to-side
baffle tower that can operate with concurrent flow. The
design of this baffle plate liquid extractor is shown in
Figure 1lb. In order to compare the plate efficiencies of
countercurrent and concurrent liquid extractors, we shall
consider a set of entrance and flow conditions which are
similar to those in Chapter Two.

Consider the mass transfer between two immiscible
fluids flowing concurrently in the Z-direction. As shown in
Figure 2b, the interface is at or near a region of zero
velocity gradient. Fluid 1 enters with a normalized
concentration of zero at the entrance (2=0); and similarily,
fluid 2 enters with a normalized concentration of 1.0 (at
Z=0). Since the penetration depth is small, solute "A"
moves with a constant velocity, Vi, at the interface., The
interfacial concentration of each fluid will remain constant

over the plate length so that
at X=0; Cl = CAO and C2 = CAO/Ne.

Where Ne is the Nernst distribution coefficient. The
constant, CAO, is calculated by equating the mass flux of

*"A" for the two fluids, as in equation [2.55].

28
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CAO = Ne . [3.1]
1 + Ne(Dl/Dz)I/z

We can simplify the equations describing the mass

transport between two concurrent fluids to

v; 1 =321 [3.2]
D, 32 %

where V; is the constant velocity at the interface. This

equation can also be written

W 3Cl =  32C2 [3.3]

27 %2

where W is defined as

W= V. [3.4]

and where, for a Newtonian fluigd,
vz = (3/2 <V>) (1 - (%x/B)2) = vy(1-(x/B)2)  [3.5]

where B is the half-plate spacing; and X is the vertical
distance from the interface. The boundary conditions to Eq.

[3.2]:

at z=0 Cl=0
at X=0 Cl=CAO

at X= = Cl=0
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Eq. [3.2] is solved by any of a variety of techniques, e.g.
similarity transform; the concentration profile for fluid 1

is

Cl = erfc( 9 ) [3.6]
CAO

where 0@ is the dimensionless variable
=X ( W/ (43))1/2 (3.7]

The local concentration gradient of "A" at the interface is
found by differentiating Eq. [3.6] with respect to X.

(JLCl

) = -CA0 ( w/z)1/2 [3.8]
9 X’'x=0 Jn

After integrating Dy times Eg. [3.8] with respect to Z,
one finds the average mass transfer of "A" across the

interface.

Na(z) x=0 = D (48 y1/2 cao [3.9]
n

Where Egs. [3.4] and [3.1] define W and CAQO respectively.

The average mass transfer coefficient for fluid 1 is

ke = (Na_(z) ) [3.10]
CAO ' oo
kc = D, (4 W )1/2 [3.11)
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Egqs. [3.10] and [3.11] can be written in terms of standard

dimensionless groups:

Ngg = (3/m1/2 (Ngp Nge B/L)1/2 [3.12)
where
Ngy = ke B . (3.13)
Dy

Here, Npp equals (2B<V1>pl/u1 y; and Ngc equals (u 1/0101).



CHAPTER PQUR

GENERAL ENERGY RELATIONS

It is now worthwhile to estimate and to compare the
energy requirements of countercurrent and concurrent baffle
plate extractors. The total hydrodynamic head loss through
friction and through interfacial tension effects is called
"H®". This can be divided into Hc, the head loss in the
continuous phase; and Hd, the head loss in the dispersed
phase where applicable. As shown in Figure 1la,
countercurrent extraction involves dispersed drops, while
concurrent extraction does not.

Treybal (1980) approximates the energy loss for the
continuous phase flow as the equivalent of 4.5 velocity
heads, Hc. This includes
(1) friction effects (usually negligible)

(2) contraction and expansion upon entering and leaving
the plate (1.5 velocity heads)

(3) two abrupt changes in direction (3.0 velocity heads)

Hc = 4.5 vc2o, [4.1]

2g, 4p

where Vc is the average velocity of the continuous phase;
is the density of the continuous phase; Ap is the density

difference; and g, is the gravitational constant.
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Similarly, for the dispersed phase, the energy losses
are from the following:
(1) entrance effects, Hf
(2) energy losses during drop formation, H,.
The latter is usually dominant where Vg5, the average
velocity of the dispersed phase fluid, is less than 0.3 m/s.

The energy loss for the dispersed phase flow is

Hd = Hf + H, [4.2]
vhere
HE = 4.5 vaZog4 [4.3]
2g4 4o

Vq is the average velocity of the dispersed phase fluid; pg4
is the density of the dispersed phase fluid; Ap is the
density difference; and g, is the gravitational constant,.

The energy due to drop formation is

Hy = 640 [4.4]

dp g dp

Where 4 is the interfacial tension given by the equation
o= hl - 04| (4.5]

and where d, is the drop diameter; 4, may be calculated by

P P
the correlation of Klee and Treybal (1956):

dp = 7.25 g © 1/2 [4.6]
( U.Ts )

g 4p Np
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2 43

L

g3 [4.7]
Apg

Pe

Y
Here p, is the density of the continuous phase; and u , is
the viscosity of the continuous phase.

At low flow velocities (less than 0.3 m/s), the
countercurrent flow energy requirement is largely due to
drop formation in the spout region of the plate. Thus, it
is fairly independent of plate spacings and plate length.
At higher flow velocities, however, the energy requirements
of countercurrent flow is not constant and depends on
throughput.

The energy loss for concurrent flow occurs solely in

the continuous phase:

2g, [4.8]

where 7 is the arithmetic average density, p = (p y+prj5)/2;
and VA is the arithmetic average of the average fluid
velocities, which is defined from the volumetric flow rates,
Q) and Q,.

Vo = (Q, /BL) + (Q, /BL) [4.9]
Z

The energy utilization for concurrent and counter-
current extraction are shown in Pigure 5. It is seen that

the energy requirement for concurrent flow is always lower
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than that for countercurrent flow. Since both liquids are
flowing in the same direction, there is no dispersion
contribution for concurrent flow; and the value of HA is

always lower than for countercurrent flow.



CHAPTER FIVE

PLATE EPFICIENCY RELATIONS

The overall plate efficiency is defined in terms of
mass transfer coefficients and exposure times of fluids on
the plate. The countercurrent plate efficiency considers
mass transfer from the continuous and dispersed phases,
while the concurrent plate efficiency considers only mass
transfer from the continuous phase, The overall plate
efficiency becomes

(i) for countercurrent flow,

ng = ncount + ndrop [5.1]

(ii) for concurrent flow,
ng = N concurrent [5.2]

The mass flux from the interface to the bulk fluid in the

direction of decreasing concentration of solute "A" is
Na = k. (Ca* - Ca) [5.3]

where Ec is the local mass transfer coefficient; Ca is the
concentration of "A"™ in bulk phase; and Ca* is the steady-
state concentration of "A" at the interface. For concurrent
flow, Cat* equals CAO, the constant, from Eq. [2.55]; and for
countercurrent flow, the interfacial concentration Cat*
equals Cai (average), which is found from Eq. [2.39]. The

mass flux of "A" can also be defined as

37
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Na = y _dCa [5.4]

where V is the volume of fluid on the plate; and where A is
the surface area of the plate. Egs., [5.3] and [5.4] are

combined to give

dca =k, A_dt .
(Ca* - Ca) \4 [5.5]

Since Ca=Cay at t=0, we obtain

( Ca* — Ca ) = exp (-kc A t/V)
( Ca* - Ca ) [5.6]

which can be used to calculate the channel efficiency for

countercurrent and concurrent extractors. Eq. [5.6] becomes

e =1~ exp (-ko A/Q) [5.7]

where n, is the channel efficiency; and Q is the volumetric
flow rate,

To calculate the overall tray efficiency for
countercurrent and concurrent flow, it is necessary to sum
the effects of channel flow and dispersed flow. For

dispersed flow, Eq. [5.6] becomes

ndrop = 1 - exp (—6kptt/dp) [5.8]
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where dp is the droplet diameter as in Eg. [4.6]; t, is the

rise time of the drop as in Eq. [2.50]; and kp is the
continuous phase mass transfer coefficient of the drop as in

Eq. [2.51]. The overall energy relations are:

for countercurrent flow,

ng = exp(-EZA/Q) count. * exp(-6kpt, /dp)arop [5.9]

for concurrent flow,

Mo = exp(-E:A/Q) concurrent [5.10]

Concurrent operation in baffle plate extraction towers
can represent an improvement over countercurrent operation
for certain tower designs. It appears to be more
advantageous than dispersed countercurrent operation in
regions where mass transfer from the continous phase is
greater than mass transfer from drops. Concurrent operation
produces higher plate efficiencies than countercurrent
operation in large diameter towers and in narrow plate
spacings. Concurrent operation can also achieve higher
throughputs than countercurrent operation, Leacock and
Churchill (1961); thus making it possible to achieve higher
rates of mass transfer than standard countercurrent

operation.
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Where average plate spacings are ,07 to .1 meters and
average plate lengths are 0.9 to 1.8 meters, Treybal (1951),
we find that countercurrent operation generally achieves
higher plate efficiencies than concurrent operation for most
baffle tower designs. Figure 6 presents a plot of plate
efficiency vs. plate length, which shows that plate
efficiencies are linearily related to the plate lengths. It
also shows that most of the mass transfer for countercurrent
operation comes from drops.

The effect of mass transfer from drops upon
countercurrent operation is also evident in Figure 7, a plot
of plate spacing vs. plate efficiency. An increase in plate
spacing decreases both concurrent's and non-dispersed
countercurrent's efficiency for operation., Yet, the
efficiency for dispersed countercurrent operation increases,
because the exposure time of the droplets increases,
However, this is not a fair comparison, because the cost of
a liquid-liquid extraction tower increases with increasing
plate spacings. 1In effect, the large plate spacings make a
baffle plate tower into a spray tower. Mass transfer from
drops generally helps increase the plate efficiency of
countercurrent operation; and it makes countercurrent

operation advantageous for most baffle tower designs.
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CHECK

c8 (I,d)
CoN (I,J)
DAB

DT

DX

DY

EQN

LOOP
PNA

PK

RATIO
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LIST OF COMPUTER VARIABLES

Plate spacing

Convective flux at plate exit for fluid 1
Concentration profile of fluid 2
Concentration profile of fluid 2

Molecular diffusivity in fluid 1

Time increment

Vertical increment, B/KS

Axial increment, L/LNG

Nernst distribution coefficient

Plate Length

Number of iterations over CON (I,J) and CB (I,J)
Diffusive flux across interface for fluid 1
Velocity gradient/Diffusivity

Volumetric flow rate

Diffusivity of fluid 2/Diffusivity of fluid 1
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TABLE 2
Computer Program

PROGRAM CHE(INPUT, OUTPUT,TAPE5=INPUT,TAPE6=0UPUT)

DIMENSION CON(30,30),CB(30,30),F(30) ,G(30)

REAL L,

JANICE KING FALL"1983

PROGRAM CALCULATE CONCENTRATION PROFILES  C=C(X,Y)

MASS TRANSFER MECHANISM** CONVECTION IN Y, DIFFUSION IN X.

METHOD OF SOLUTION** EXPLICIT METHOD

PDE** DC/DT = AX(DC/DT) + DAB D/DX(DC/DX), WHERE A AND DAB ARE #
L=PLATE LENGTH/ B=PLATE SPACING/ CAO= INITIAL CON(A)

EQN= NERNST DIST. COEF.

BC** (1) CA=CB*EQN (2) X=+B CA= 0 (3) x=-B CB=1

BC** (4) Y=0 CA=0 (5) Y=L CB=1

BC** (6) X=0 DAB(DCA/DX) = DAC (DCB/DX)

Kk kkkkkkkkk*k*SET CONCENTRATION PROF ILE Shhdkd sk kkikk

*xxxkk**A*AREAD IN DATA AND COMPUTE CONSTANTSHHkkik sk
DT+ 1.5325E-6
Q=0.0031
PK= 10E6
EQN=5.
LOOP= 1000
RATIO = 1.2
CBO=1.
B= 4.102564E-3%5,
L= 6.0
DX= B/6.
DY= L/6.
DAB= 7.5347373E-9
LNG = NINT( L/DY)
LNG1 = NINT( L/DY + 1.)
MT=LNG1 +1
KS= NINT( B/DX)
KSP1= NINT( B/DX + 1.)
WRITE(*,33)
WRITE(*,52) DX,DY,DT ,L0oP
WRITE(*,99)
WRITE(*,100) B,L,Q,EQN,DAB

*kkkkkkkxx*XCOMPUTE SUCCESSIVE CONCENTRATIONSH sk sk
DO 55 MTIMES=1,L00P
DO 60 J= 2,LNG
DO 60 I=2,KS
CON(I,J)=CON(I,Jd)+ DT*( -PK*(I,DX) *(( CON(I,Jd+1) - CON(I,J-1
* ))/(2.*DY)) + (( -2.*CON(I,J) + CON(I+1,J) + CON(I-1,J))/
* ( Dx*DX)))
CB(I,J) = CB(I,J) + DT*( PK*(I*DX)*((CB(I,J+1) - CB(I,J-1))/
*  (2.*DY)) + ((-2.*CB(I,J)+CB(I+1,J) + CB(I-1,J))/(DX*DX)))
CON(1,J) = CON(1,Jd) + DT*((-1.*CON(1,J) + CON(2,J) + RATIO*
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60
55

62

450

470

351

*
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TABLE 2

Computer Program
(Continued)

( CB(2,J) - CB(1,Jd)))/( DX*DX) )
CB(1,J) = CON(1,J)/EQN
DO 54 JJ=1,LNG1,LNG
CON(1,JJ)=CCN(1,JdJ) + DT*((CON(2,3d)-CON(1,dJ) + RATIO*(CB(2
,JJ)-CB(1,J3J)))/(DX*DX))
CB(1,JJ) = CON(1,J3J)/EQN

CONTINUE
CON(I,LNG1)=CON(I,LNGL)+DT*(-PK*(I*DX)*( (CON(I,LNG1)-CON(I,LNG
z)/ov) ;)g( -2.*CON(I,LNG1) + CON(I+1,LNGL) + CON(I-1,LNG))/
DX*DX

CB(I,1) = CB(I,1) + DT*( PK*(I*DX)*((CB(I,2)-CB(I,1)  )/DY)
+ ((-2.%CB(I,1)+CB(I+1,1) + CB(I-1,1))/(DX*DX)))
CON(KSP1,d) = 0.
IF ( CON(I,J) .LT. 0. ) CON(I,J)=0.
IF ( CB(I,J) .LT. 0.) CB(I,J )=
IF ( CB(I,J) .GT. 1.0) CB(I,J) = 1.0

IF ( CON(I,d) . GT. 10.) CON(I,J)= O.

CONTINUE

CONTINUE

DO 62 I=KSP1,1,-1
WRITE(*,88) ( CON(I,J),J=1,LNG1)
WRITE(*,74)
DO 89 I=1,KSP1
WRITE(*,88) (CB(I,J),J=1,LNG1
******************CALAULATE THE DC/DX at X:O******************
DO 350 I=1,LNG1
F(I)= (2.*CON(2,1))-(CON(3,1)/2.) - 1.5*CON(1,1)
*xkx*XAXHAXXXSIMPSON'S RULE TO EVALUATE INTEGRAND**#kkskkndns
SUM1= 0.
DO 450 1=2,LNG,2
W=4 .*F(1I)
SUM1= SUM1+ W
SUM2 = 0.
DO 470 1=3,LNG-1,2
W2 = 2.*F (1)
SUM2 = SUM2+W2

*ikhxkkk*kCALC THE MASS TRANSFER** Aok

DER = L*( F(1) + SUML + SUM2 + F(LNG1) )/(3. * LNG)
PNA= -DAB*DER/L

DO 351 J=1,KSP1

G(J)=DAB*PK*(J-1)*CON(J,LNG1) *DX
PART=0.

DO 500 J=2,KS,2

Y=4.*G(J)

500 PART = PART + Y

PART2=0.
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TABLE 2

Computer Program
(Continued)

D0 510 J=3,KS-1,2
Y2 = 2.*G(J)

510 PART2 = PART2 + Y2
CHECK= (G(1)+PART+PART1+G(KSP1))*DX/(3.*1)
WRITE(*, 101) CHECK

C ************FORMAT S************
33 FORMAT(2X,////111111111111117)
52 FORMAT(//,5X,"DX=",E9,4,2X,"DY=",E9.4,2X,"DT=",E9.4,2X,"LOOP",15 )

74  FORMAT(/,20X, "*xkkkkkkkkhkkkhihhkhhhhkhkkkhh ik rdhrkhrrritrrhrk
9 9
*RRAKKIKKRRARIIIAIARIIR KRR KA AIIIRRI AR I II I )

88 FORMAT(/,1X,13€10.4)
99 FORMAT(//, 12X,"B",10X,"L",13X,"G",13X,"EQN",10X,"DAB")
100 FORMAT(//,5X, 4F12.4,E10.4)
101 FORMAT( ///,5X,"CHECK IS ...",E12.5)
900 FORMAT(//,10X,"MASS TRANSFER AVERAGE IS ...... ",E15.4)
END
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