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ABSTRACT
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by

Janice Lynn King

Equations are developed leading to a more rigorous

mathematical analysis of baffle plate extraction towers than

has been previously seen in the open literature. Analytical

solutions are used to set bounds upon the amount of mass

transfer between fluids in countercurrent contact; and the

results seem to correlate well with experimental

observations. One result is then used to provide a new

extension to the Graetz Problem.

Our derived equation for mass transfer to nondispersed

countercurrent flow is

NSH = 1.4%2(NRE NSC s/L)1/3 exp (Rf 1n Ne)

where N H is the local Sherwood number, B and L are plate

dimensions; Ne is the Nernst distribution coefficient; and

Kf is a constant described in the paper.

It is shown that most of the mass transfer for

countercurrent liquid extraction comes from transitory drops

located in the spout region of the plate. It is also

demonstrated that concurrent flow is preferable to

countercurrent in regions of slowly diffusing species,

narrow plate spacings, large diameter towers and high

throughputs.
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CHAPTER_QNE

INTRODUCTION

The most common types of liquid-liquid extraction

devices are mixer settlers and agitated differential

columns, which are operated in countercurrent mode. These

extractor designs have served admirably for many years.

However, they continue to have problems with limited

throughputs, inefficient energy use, and inability to

process emulsifying streams.

The alternative non-agitated extractors include packed

towers, perforated plate towers and spray towers.

Countercurrent flow is maintained by gravity operating on

the density difference between the two fluids. These

devices have several advantages, but they still have limited

throughput and an inability to process suspensions or

precipitating fluids. Beyond these problems, spray towers

also suffer from severe axial dispersion. By contrast, the

baffle plate tower (another non-agitated extractor) has low

energy cost, low maintenance cost, and low capital cost.

Also, baffle towers can often process surfactants,

suspensions, or emulsions. The primary disadvantage of the

baffle tower is its low stage efficiency, typically less

than 10%, Morello and Poffenburger (1950) and Cooper (1984).

We choose to analyze the operation of the side-to-side,



countercurrent, baffle tower. We also analyze a novel

variant of this tower, which is designed for operation with

concurrent flow. These towers are shown in Figure 1.

Our analysis joins a growing literature involving

concurrent flows in fluidized beds (Gawronski and Roszak,

1979), packed towers (Button and Leung, 1974; Leacock and

Churchill, 1961; Specchie, sicardi and Gianetto, 1974; Rao,

Ananth and Varma, 1983), reciprocating plate towers (Noh and

Baird, 1984), and pipeline flow (Watkinson and Cavers,

1967). Our theoretical treatment of the baffle tower is

more rigorously mathematical than previously seen in the

open literature, and our results correlate with published

experimental observations (Watkinson and Cavers, 1967;

Linton and Sherwood, 1950).

Our analysis of the countercurrent models can provide

an extension to the I'Graetz Problem' (laminar flow heat

transfer in tubes). We consider variations of the boundary

conditions at the fluid-fluid interface, and consider the

cases of short contact times and small penetration depths.

The results, given in Chapter two, are applicable for low

rates of mass transfer between countercurrent fluids or for

low rates of heat transfer between a fluid and a wall.
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CHARTER—THO

COUNTERCURRENT EXTRACTION

2.1 General Model for Mass Transfer

Consider the mass transfer between two laminar

immiscible streams l and 2 flowing between two flat plates.

The flow fields (countercurrent or concurrent) are fully

developed as shown in Figure 2a and b, respectively. Solute

'A' diffuses from fluid 2 into fluid 1, which is initially

solute-free. Both fluids flow in the z-direction. This

analysis can be restricted to constant velocity profiles

because the depth of penetration of 'A' into fluid 1 is

small in comparison with the film thickness; this is

evidenced by the low experimental plate efficiencies and by

a computer modelling study described in this chapter.

2.2. Countercurrent Model and Computer Model

For countercurrent flow, as shown in Figure 2a, fluids

1 and 2 have velocity gradients 'M' and “M“ respectively.

Steady-state mass balances are written for both fluids with

the interface boundary conditions set by equating the

fluxes. Fluid 1 is considered to have a normalized

concentration of zero at the entrance (2:0), where the

normalized concentration, C1, equals (Cin - C(x,z))/Cin.
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Similarily, fluid 2 is considered to have a normalized

concentration of 1.0 when it enters the plate at z = 1. The

equations describing the mass transfer of 'A' are as

follows:

fluid 1,

MXaCl = ”1 329% [2.1]

32 ax

fluid 2, 2

nxacz = D a [2.2]

82 2 8%;

The boundary conditions are

at z=0 Cl=0

at x=+d Cl=0

at x=o C2=C1/Ne

at =0 Dlafl = 02 3Q

8X 3X

at x=-d C2=1

at x=1 C2=l

Here Cl and C2 are dimensionless concentrations; d is the

laminar film thickness; L is the plate length; and Ne is the

Nernst distribution coefficient which is

Ne=§2

C1 [2.3]

Here Cl and C2 denotes the molar concentrations of component

“A“ in fluids 1 and 2; and over the length of the plate, We

is considered independent of the individual values of C1 and

C2.

A computer algorithm is used to solve this boundary-

value problem for the mass transfer of 'A' into fluid 1. We



use a |'shooting method“ iterative solution (Carnahan, Luther

and Wilkes, 1969). A cepy of our program is given in Table

2. Unsteady-state mass balances are written for both fluids

and the equations describing the time variation of the

concentration are:

fluid 1, 2

331 = -MX 3;; + p a [2.4]

at 32 1 3&2

fluid 2,

392 = -Nx 332 + 02 3293 [2.5]

at 32 ax

These equations are solved simultaneously with initially

assumed concentration profiles for C1 and C2 decaying to

steady state solution through repeated forward iterations.

At steady-state, the computer solution should equal the

correct simultaneous solution of Eqs. [2.1] and [2.2]. A

copy of the program is given in Table 2.

A check on the validity of this computer solution is

that the convective flux at the plate exit must equal the

diffusive flux across the interface

L a

f n 391 dz = I'M x c1 (x,1) ax [2.6]
1 ax

o 0

Although the computer algorithm can accurately solve a

given differential equation, it is found that for fast

convergence, the program must be tailored to the particular

Nernst distribution coefficient, diffusivities, and velocity



gradients (M or N). The computational procedure thus is not

particularly suited towards design. Therefore, we shall

consider two simplifications of the countercurrent equations

approximating the interfacial concentration profiles of the

two fluids; these predict different amounts of mass

transfer. Eqs. [2.1] and [2.2) are solved separately,

rather than simultaneously, and give analytical solutions,

which are better suited for design purposes. The computer

solution will be used to check the effect of our

simplifications.

2.3. Approximate Solution 1: Upper Bound

The first simplification to Eqs. [2.1] and [2.2]

assumes that the concentration profile at the interface is a

constant.

For small penetration depths, Eq. [2.1] for the mass

transfer of 'A' into fluid 1 becomes

a x39; = 32 [2.7]

a z 3%

where B = M [2.8]

D1

and the differential equation for fluid 2 is the same as Eq.

[2.2]. The boundary conditions for this model are

at z = 0 C1 = 0

at x = a C1 = 0

at x = -~ C2 = 1

at Z = L C2 = 1



where at X = 0 C1 = C0 and C2 - Cg:

Ne

Ne is the Nernst distribution coefficient; and Co is found

by equating the fluxes at the interface. This situation is

equivalent to a super-diffusing layer of fluid existing at

the fluid-fluid interface. The effect of this very

permeable layer of fluid is to increase transport in both x

and 2 directions. Thus, this approximation is expected to

predict higher rates of mass transfer than the computer

solution.

In order to equate the fluxes between the two fluids,

and for further use, we will now derive a relationship

between B (which equals M/Dl) and N/Dz, the equivalent term

in the other fluid. At the interface, the momentum

transport is continuous between the two fluids:

at x=o 11 = 12 [2.9]

where :1 and :2 are the interfacial shear stress tensors

in fluids 1 and 2 reSpectively. This means that for

Newtonian fluids:

"1.2111 3 112% [2.10]

6X 6X

or

”1 = H [2.11]

M
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where pl and "2 are the viscosities of fluids 1 and 2

respectively; and Vzl and V22 are the fluid velocities in

the z-direction for fluids 1 and 2 respectively as from Eq.

[2.16]. This allows a particularly nice simplification of

Eq. [2.2] which employs a result of the Stokes-Einstein

diffusivity correlation:

”2 “1

This relationship is considered valid for all non-polymeric

fluids with approximately constant activity coefficients,

Bidlock, Kett, Kelly and Anderson (1969). Combining Eqs.

[2.11] and [2.12] gives

8 = E = N [2.13]

D1 ”2

which suggests that the same value of B can be used for any

two fluids in countercurrent contact.

The interfacial velocity gradient 'M' is found from the

following steady-state force balance. Since the flow rates

are chosen such that the interface is a stagnant region, the

fluid velocity will be considered zero at this boundary, as

in Figure 4. The flow conditions are as follows:

WL Ixz = W (8/2 - X) (Po - P1) [2.14]
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where sz if the stress tensor in the z—direction; B is the

half-plate spacing; (Po - P1) is the head loss across the

plate; L is the plate length; and W is the plate width. For

a Newtonian fluid, Eq. [2.14] becomes

ude = (P0 - P1) (B/2 - X) [2.15]

  

dx L

where the boundary condition follows:

x=0 Vz=0 .

Here n is the viscosity of the fluid. This is integrated to

yield

Vz(x) = AP82 ( X/B — (X/B)2 ) [2.16]

21—13-

and M is determined by solving for the velocity gradient at

the interface.

M = (£12) = .23 [2.17]

dx x=0 2uL

Given a value for B and a constant interfacial

concentration, Kramers and Kreyger (1956) have solved Eq.

[2.7] for the mass flux at the interface. Defining the

averaged mass transfer rate as

= [2.18]
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It is found that the concentration gradient of fluid 1 at

the interface is

(3.91) - -Cg___ (63/9le/3 [2.191
ax xgo 114/3)

where Co is the constant interfacial concentration of A in

fluid 1 at the interface.

The mass flux of 'A' across the liquid-liquid interface

for fluid 1 is

fiErzix=0 = 3 p1 (8/9L )1/3Co [2.20)

2 r(4/3)

where r(4/3) equals 0.893. Similiarily for fluid 2,

N§2(z)x=o = 3 02 (8/9L)1/3(1 - Co/N ) [2.21]

2 .893

From Eq. [2.20], the individual mass transfer coefficient

averaged over the plate length, L, is defined by Skelland

(1974) as

kc = 33111 x=0 [2.22]

Co

where Co is found by equating the mass fluxes at the

interface. Because 8 is the same for both fluids and

because the mass flux, Nal , is the same for both fluids,

Eqs. [2.20] and [2.21] can be equated to show that
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Co = Ng_______ . [2.23]

Dimensional analysis suggests that we can write?c in

terms of dimensionless groups. Eq. [2.20] becomes

NSH = 1.165 (NRE NSC B/L)1/3 [2.24]

The local Sherwood number for countercurrent flow is defined

as

NSH = kcB [2.25)

where “RE is (ZB<V1>p/u): NSC is (u/bDl); r>is the density;

and u is the viscosity.

2.4 Approximate Solution 2: Lower Bound

The second simplification to Eqs. [2.1] and [2.2]

assumes that the concentration profile at the interface is

linear, where C1 is zero at the plate entrance (280) and C1

is Neczo at the plate exit (Z=L). The linear interfacial

concentration profile is expected to give a more

conservative estimate of mass transfer than the constant

concentration profile case of approximate solution one. The

equations describing the mass transfer of 'A' are the same

as the previous case, but the boundary conditions are:
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at z=0 Cl=0

at X=~ C1=0

at X=0 C1 C20 Ne Z/L

at X=0 C2 = C20 ‘ C20 Z/L

at x=-~ C2
C20

at Z=L C2 C20

Here C20 is the concentration of 'A' in fluid 2 at its

entrance (Z=L). It is prOposed that Eq. [2.7] can be solved

by similarity transform; a prOposed transform variable, Y,

is derived by standard techniques. But it is found that the

similarity transform fails because this variable cannot

transform the interfacial boundary conditions. If, however,

Eq. [2.7] is differentiated with respect to 2, it and its

boundary conditions can be written

 

ax 3G = 326 [2.26]

5} 8x2

G = (321). [2.27]

a z x

where B is defined from Eq. [2.8]

at X = 0 G 3 C20 NE/L

at x w G = 0

at Z 0 G = 0

The following similarity transform is now applicable to the

equations and their boundary conditions.

Y = ( 8/(9z))1/3. [2.28]
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Eq. [2.26] is solved for the concentration profile, yielding

Z

c1 = C20 Ne I P(Y)dz. [2.29]

0

Where F is equal to G/(Ne C20) and is a function of Y.

After substitution and some manipulations, Eq. [2.26]

becomes

a2 F + 3y2 as = o [2.30]

de dY

with the following transformed boundary conditions

F=0 at z=0 , Y=°°

F=l/L at x=o , Y=0

F=0 at x=°° , Y=°° .

Integration of Eq. [2.30] twice gives a gamma function.

Y

a = f a exp(-Y3)dY + b [2.311

0

where a and b are integration constants. This is integrated

with respect to Z yielding an expansion for C1 in terms of z

and Y.

2 Y

c1 = 020 Ne[ ] dz I a exp (-y3)ay + bz + c] [2.32]

o o

c = 0

b = 1/L



17

and

az—JZI! =—

ri4/3) .893

To solve for C1, one expands the exponential term, and

inserts the result into Eq. [2.32]. Integrating with

respect to Y and 2 gives

2

__91 = -12L__ f dz (y - x: + _xZ_ - .....) + Z/L [2.33]

Neczo .893 o 4 7x2!

.91 = :11L [(X(B/9)1/3 2 2/3+ x4(e/9)4/3 z‘1/3+ ...)][2.34]

Neczo .893 (273) 4(-l73)

where the mass flux is determined by the first term of the

bracketed series. As with the previous simplification, the

average rate of mass transfer at the interface is defined by

the following equation:

§E(z)x=o = -D1 = [2.35]

L

I .3:
0 a

L

The local concentration gradient of 'A' at the

interface is found by differentiating Eq. [2.34] with

respect to X.

(321) = :3______(822/9)1/3 Ne €20 [2.36]

a x x=o 2(.893)

The average mass flux of 'A' across the liquid-liquid

interface is found for fluid 1 by integrating Eq. [2.36]
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N§T(z) xgo = 9 D1 (B/9L)1/3 Ne c20 [2.37]

10(.893)

It is found that the average mass flux of 'A' for fluid

2 yields a different result.

NE§(2) x=0 = -fi%i_izl x=0 [2.38]

e

In magnitude, the calculation for the transfer is l/Ne times

the result from Eq. [2.37]. The difference arises because 8

is the same for both fluids (Eq. [2.13]), and because C1 is

equal to NeCZ; thus, the driving force in the second fluid

is l/Ne times the driving force of the first. Clearly,

however, a different mass flux for fluids 1 and 2 is a

physical impossibility. The results of Eqs. [2.37] and

[2.38] could not be universally correct unless the Nernst

distribution coefficient equals 1. However, the results of

Eqs. [2.37] and [2.38] can be viewed as the upper and lower

bounds on the countercurrent solution. Furthermore, the

result of Eqs. [2.20] and [2.21] can also represent a bound

on the correct solution. The use of these approximate

solutions as solution bounds is not unreasonable, as is

demonstrated by comparison with the computer solution in

Table 1.

In a way similar to Eq. [2.22], the averaged mass

transfer coefficient for fluid 1 can be expressed
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kc = Nalz) x=0 [2.39]

Cai

where Cgi is the averaged interfacial concentration defined

by ((Caiin - Caiout)/2); and where RE can be written in

terms of standard dimensionless groups. The local Sherwood

number for countercurrent flow becomes

NSH = 1.400( NRE NSC B/L)1/3 [2.40]

where NSH' NRE and NSC are defined from Eq. [2.24].

2.5. An Extension of the Graetz Problem

Sellers, Tribus and Klein (1956) present an analysis of

the Graetz Problem (laminar-flow heat transfer in tubes) and

present eigenvalue solutions to extensions of the Graetz

Problem, which include variations of the fluid-wall boundary

conditions. Their results for these boundary conditions

are:

for constant wall temperature, the Nusselt number is

- l 3NNU - 1.357 (NRE NPR rw/X) / [2.41]

for linear wall temperature, the Nusselt number is

NNU = 2.035 (NRE NPR rw/X)1/3 [2.42]
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where “NO is the local Nusselt number of the fluid at a

distance X from the wall; and rw is the tube radius.

Approximate solutions 1 and 2 analyze the cases of

constant concentration at the interface and linear varying

concentration at the interface respectively. Since the

mechanism of diffusion for mass transfer is analogous to

heat transfer, our results from the approximate solutions

can provide a similar extension to the Graetz Problem for

the cases of short contact times and small penetration

depths. The solutions are:

for constant concentration at the interface (a Leveque

analogue),

_ . l 3NSH - 1.165 (NRE NSC B/L) / [2.24]

for linear varying concentration at the interface,

_ l 3NSH - 1.400 (NRE NSC B/L) / [2.40]

where NSH' NRE and NBC are defined from Eq. [2.24]. Eqs.

[2.24] and [2.40] are applicable for low rates of mass

transfer between countercurrent fluids; and for the case of

heat transfer between a fluid and a wall in the entrance

region of plate.

It is now worthwhile to consider the mass transfer to

the dispersed phase drOplets located in the Spout region of

‘the baffle plate, shown in Figure 1. We shall show that

most of the mass transfer comes from droplets.
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2.6. Dispersed Phase

Many correlations for mass transfer from dispersed

phase drOps are available, see Skelland (1974). The

important drOplet conditions include direction of mass

transfer and internal circulation pattern, if any. The

amount of mass transfer from a drop can be determined by the

exposure time of the dispersed phase drOp in the continuous

phase liquid. The rise time, tr' of a drop is determined by

performing an unsteady—state force balance on an

accelerating drop:

Fw + Fd = ma [2.43]

where Fw is the effective weight of the drop; Fd is the drag

force on the drop; m is the drop mass; and a is its

acceleration. Eq. [2.43] becomes

4/3 rr3g Ap- dful rth = 4/31rr3 pdggfi [2.44]

where Vt is the time dependent velocity of the drop» Apis

the density difference; g is the force of gravity; ad is the

density of the drop; “1 is the viscosity of the continuous

phase; u2 is the viscosity of the drop; r is the drOp

radius; and the drag factor, df, is found from the equation

df = 5 1 + (Zlalflluzl [2.45]

(1 + Dl/uz)
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It follows that from Eq. [2.44]

Vt = a'(1 - exp( -bt )) [2.46]

b

where the vertical velocity of the drop is considered to be

zero at fluid interface; and a' = A , cm per sec2 and

p

b = 3 "1 df , sec-1. d

 

4 r2 pd

The rise time of the drop, tr! is found by integrating Eq.

[2.46] from -B to 0, here B is the half-plate spacing with

respect to X, the vertical distance from the interface.

0 tr

_[ dx = 0 fvt dt [2.47]

_%2 (exp( -btr ) + btr -1 ) -ZB = 0 [2.48]

Eq. [2.48] is solved for tr by expanding the exponential

term

exe< -bt,) = 1 - btr + (btr)2 + ....... [2.49]

I

For most baffle plate spacings, the drop is considered to

have a constant acceleration throughout its rise. This is

supported by the experimental work of Scheele and Meister

(1968), which concludes that for most liquid-liquid systems,

the drag on a drop is negligible under low velocity

formation. Hence, t is
r,
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tr = 2 pd a 1/2 [2.50]

A

p 9

The local mass transfer rate for a liquid drOp is

estimated by assuming that the internal circulation patterns

are laminar, via the Higbie drop model, (1935). Drop

circulation introduces fresh drOp fluid at the top of the

drop. This fluid slides along the outside of the drOp and

enters the well-mixed interior of the drop at its bottom.

This model adequately describes the mass transfer rate of a

drop for short exposure times and slow diffusion times. The

mass flux per surface area during drop rise is

t t

If Na avg dt = IT 401 f/2 CAO dt [2.51]

[

0 0 ntexp

 

where the continuous phase mass transfer coefficient of a

drop is (401/(rtexp))1/2; exposure time, is given as

2r/V(t); and V(t) the time dependent velocity of a drop

rising under constant acceleration is

V(t) = a t [2.52]

= 18.91: [2.531

pd

CAO is the steady-state concentration of 'A' in fluid 1 at

the interface and is found by equating the fluxes at the

interface. For two fluids in concurrent contact and a
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solute diffusing from one to the other, the mass transfer

coefficient is proportional to the square root of the

exposure times the diffusivity. An equivalent calculation

for concurrent flow in heat transfer is demonstrated by

Luikov (1980).

At the interface,

x=o p 1/2(1 - CAO/Ne)= p 1/2(cao - 0) [2.54]
2 ) 2

(  

n texp rtexp

where the mass flux is in units of moles "A“ transferred per

unit area per unit time; and texp is the exposure time for

mass transfer. It is seen that

CAO = Ne , u_ [2.55]

1 + Ne(D1/Dz)172

which is contact time independent and which is seen to

satisfy the initial assumption of constant concentration at

the interface. The mass transfer of 'A' across the

interface for a drOp is

tr

f 'Na avg dt = [201 A09 1/2 tr 3/2 CAO [2.56]

0 nr 05 3/2

where the surface area of a drop is 4flr2.

When typical results from Eq. [2.56] are compared to

those from the previous two sections, it is found that in

typical tower geometries, the majority of mass transfer and
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the majority of exposed surface area comes from the

relatively transitory draplets located about the spout of

the baffle plate.

2.7. Comparisons Between Computer Solution and Approximate

Solutions

A computer program can give exact solutions to any

well-posed set of differential equations with arbitrarily

difficult boundary conditions. If Eqs. [2.1] and [2.2]

accurately describe mass transfer between the non-dispersed

regions of countercurrent flow, then a computer program can

give an exact solution to mass transfer. Sources of

computer error can arise from the derivative approximations,

from the integration technique and from inherent algorithm

techniques. We believe these errors in our application to

be slight. Our computer solution solves Eqs. [2.1] and

[2.2] to within an accuracy of 8%, as shown in Table l. The

value of accuracy is calculated by Eq. [2.6], which compares

the convective flux at the plate exit to the diffusive flux

across the interface.

Approximate solutions one and two (Eqs. [2.20], [2.37]

and [2.38]) are seen to parallel the computer solution.

Approximate solution 2 (Eqs. [2.37] and [2.38]) predicts the

higher rate of mass transfer, which means that the linear

varying concentration profile at the interface gives higher

rates of mass transfer between countercurrent fluids, than
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the constant concentration profile (Eq. [2.20]). Since the

driving force of approximate solution 2 is a linear function

of the Nernst distribution coefficient, it will give the

extremas of the computer solution. On the other hand, the

driving force of approximate solution 1 is bounded by the

asymptotic behavior of CA0, Eq. [2.54]. These approximate

solutions are given in Table 1.

One can now use a weighted combination of the upper and

lower bounding equations, [2.37] and [2.38], to give an

optimal fit to the computer solution. If this fit is

calculated where Nal is the predicted mass flux of “A" in

fluid 1 from the computer solution; and where N1 and N2 are

the predicted mass fluxes from Eqs. [2.37] and [2.38]

respectively; then Kf can be determined by a least square

fit of Eq. [2.57] using the data in Table l.

Nal = N2 (Kf Ln N1/N2) [2.57]

xf = 0.37 Ne > 1.0 [2.58]

Rf = 0.76 Ne < 1.0 [2.59]

The resulting correlation is

Nal x=0 = N1 exp ( Kf 1n Ne ) [2.60]

Ne

and

NSH = NSH exp (Rf 1n Ne) [2.61]

Ne
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where N1 is found from Eq. [2.37]; and “SH! the Sherwood

number is found from Eq. [2.40]; and Ne is the Nernst

distribution coefficient. Comparisons between the correla-

tion and the computer solution is given in Table 1.

While this correlation for non-dispersed flow mass

transfer may not be particularily accurate, it was shown in

section 2.5 that this contact contributes less than 20% of

the total mass transfer. Thus, inaccuracies from Eq. [2.60]

should not contribute significantly to design errors. The

total mass transfer for a baffle plate extractor with

countercurrent flow is the sum of the mass transfer from the

draps and from the non—dispersed phases. Adding Eqs. [2.56]

and [2.60] gives

Na = (0.9 01 (B/9L)1/3 NeCZO) exp (Rf ln Ne)

.893Ne

1 2 3 2+(2n16pg) / :5: cao [2.62]

7'de 3/2

It is now worthwhile to consider liquid extraction with

concurrent flow.
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LIQUID EXTRACTION WITH CONCURRENT FLOW

We consider a variant of the standard side-to-side

baffle tower that can operate with concurrent flow. The

design of this baffle plate liquid extractor is shown in

Figure 1b. In order to compare the plate efficiencies of

_countercurrent and concurrent liquid extractors, we shall

consider a set of entrance and flow conditions which are

similar to those in Chapter Two.

Consider the mass transfer between two immiscible

fluids flowing concurrently in the z-direction. As shown in

Figure 2b, the interface is at or near a region of zero

velocity gradient. Fluid 1 enters with a normalized

concentration of zero at the entrance (2:0); and Similarily,

fluid 2 enters with a normalized concentration of 1.0 (at

z=0). Since the penetration depth is small, solute 'A'

moves with a constant velocity, VI' at the interface. The

interfacial concentration of each fluid will remain constant

over the plate length so that

at X=0; C1 = CAO and C2 = CAO/Ne.

Where Ne is the Nernst distribution coefficient. The

constant, CAO, is calculated by equating the mass flux of

'A' for the two fluids, as in equation [2.55].

28



CAO = Ne. 14. [3.1]

1 + Ne(Dl/Dz) 4

We can simplify the equations describing the mass

transport between two concurrent fluids to

vI ac1 = 32c1 [3.2]

B;- 5—2 3x2

where VI is the constant velocity at the interface. This

equation can also be written

w ac1 = azcz [3.3]

32 3x2

 

where W is defined as

W = VI' [3.4]

D1

and where, for a Newtonian fluid,

Vz1 = (3/2 <v>) (1 - (X/B)2) = VI(l-(X/B)2) [3.5)

where B is the half-plate spacing; and X is the vertical

distance from the interface. The boundary conditions to Eq.

[3.2]:

at z=0 Cl=0

at X=0 C1=CAO

at x= a Cl II

0
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Eq. [3.2] is solved by any of a variety of techniques, e.g.

similarity transform; the concentration profile for fluid 1

is

:1 = erfc( P ) [3.6]

CAO

where P is the dimensionless variable

¢= x (iv/(42))“2 l3-71

The local concentration gradient of 'A' at the interface is

found by differentiating Eq. [3.6] with respect to X.

= -CAQ ( w/z)1/2 [3.8]

rr

After integrating D1 times Eq. [3.8] with respect to 2,

one finds the average mass transfer of 'A' across the

interface.

NETz) x=0 = a1 (4_§ )1/2 CAO [3.9]

TI

Where Eqs. [3.4] and [3.1] define W and CAO respectively.

The average mass transfer coefficient for fluid 1 is

E3 = (Na_1z1) [3.101
sec x=o

E3 = 01(4 w )1/2 [3.11]

1[In
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Eqs. [3.10] and [3.11] can be written in terms of standard

dimensionless groups:

NSH = (3/n)1/2 (NRE NSC s/L)1/2 [3.12]

where

NSH = E? a . [3.13)

D1

Here, NRE equals (ZB<V1>pl/u1 ); and “SC equals (0 l/plDl).
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GENERAL ENERGY RELATIONS

It is now worthwhile to estimate and to compare the

energy requirements of countercurrent and concurrent baffle

plate extractors. The total hydrodynamic head loss through

friction and through interfacial tension effects is called

'H'. This can be divided into No, the head loss in the

continuous phase; and Ed, the head loss in the dispersed

phase where applicable. As shown in Figure 1a,

countercurrent extraction involves dispersed drops, while

concurrent extraction does not.

Treybal (1980) approximates the energy loss for the

continuous phase flow as the equivalent of 4.5 velocity

heads, Be. This includes

(1) friction effects (usually negligible)

(2) contraction and expansion upon entering and leaving

the plate (1.5 velocity heads)

(3) two abrupt changes in direction (3.0 velocity heads)

RC = 4.5 chpc [4.1]

29c 40

where Vc is the average velocity of the continuous phase;

is the density of the continuous phase; A0 is the density

difference; and gC is the gravitational constant.

32
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Similarly, for the dispersed phase, the energy losses

are from the following:

(1) entrance effects, Hf

(2) energy losses during drop formation, Ho.

The latter is usually dominant where Vd' the average

velocity of the dispersed phase fluid, is less than 0.3 m/s.

The energy loss for the dispersed phase flow is

 

Hd = Hf + H0 [4.2]

where

Hf = 4.5 depd [4.3]

29c Ao

Vd is the average velocity of the dispersed phase fluid; pd

is the density of the dispersed phase fluid; Ap is the

density difference; and 9c is the gravitational constant.

The energy due to drOp formation is

no = 69cc I404]

mag dp

Where (313 the interfacial tension given by the equation

a: [.1 -02) [4.51

and where dp is the drop diameter; dp

the correlation of Klee and Treybal (1956):

may be calculated by

 

d = 7.25 g a 1/2 [4.6]

p I ‘c U:I5)

94M> Np
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pc2 63 gc3 [4.7]

1.
“C Apg

 

Here pc is the density of the continuous phase; anduc is

the viscosity of the continuous phase.

At low flow velocities (less than 0.3 m/s), the

countercurrent flow energy requirement is largely due to

drOp formation in the spout region of the plate. Thus, it

is fairly independent of plate spacings and plate length.

At higher flow velocities, however, the energy requirements

of countercurrent flow is not constant and depends on

throughput.

The energy loss for concurrent flow occurs solely in

the continuous phase:

29c p [4.8]

where'fi is the arithmetic average density, 5'= (p 1+92)/2;

and VA is the arithmetic average of the average fluid

velocities, which is defined from the volumetric flow rates,

01 and 02.

vA = (01 /BL) + (02 /BL) [4.91
2

 

The energy utilization for concurrent and counter-

current extraction are shown in Figure 5. It is seen that

the energy requirement for concurrent flow is always lower
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than that for countercurrent flow. Since both liquids are

flowing in the same direction, there is no dispersion

contribution for concurrent flow; and the value of Ed is

always lower than for countercurrent flow.
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PLATE EFFICIENCY RELATIONS

The overall plate efficiency is defined in terms of

mass transfer coefficients and exposure times of fluids on

the plate. The countercurrent plate efficiency considers

mass transfer from the continuous and dispersed phases,

while the concurrent plate efficiency considers only mass

transfer from the continuous phase. The overall plate

efficiency becomes

(1) for countercurrent flow,

no = ncount + ndrop [5.1]

(ii) for concurrent flow,

no = ”concurrent [5.2]

The mass flux from the interface to the bulk fluid in the

direction of decreasing concentration of solute 'A' is

Na = R5 (Ca* - Ca) [5.3]

where-TEc is the local mass transfer coefficient; Ca is the

concentration of 'A' in bulk phase; and Ca* is the steady-

state concentration of 'A' at the interface. For concurrent

flow, Ca* equals CAO, the constant, from Eq. [2.55]; and for

countercurrent flow, the interfacial concentration Ca*

equals 531 (average), which is found from Eq. [2.39]. The

mass flux of 'A' can also be defined as

37
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Na = y gga [5.4]

where V is the volume of fluid on the plate; and where A is

the surface area of the plate. Eqs. [5.3] and [5.4] are

combined to give

dCa = R; A dt .

(Ca* - Ca) V [5.5]

Since Ca=Ca¢ at t=0, we obtain

frCa* - Ca ) = exp (-kc A t/V)

( Ca* - Ca ) [5.6]

which can be used to calculate the channel efficiency for

countercurrent and concurrent extractors. Eq. [5.6] becomes

1b = 1 — exp (-kc A/Q) [5.7]

where "c is the channel efficiency; and Q is the volumetric

flow rate.

To calculate the overall tray efficiency for

countercurrent and concurrent flow, it is necessary to sum

the effects of channel flow and dispersed flow. For

dispersed flow, Eq. [5.6] becomes

ndrop = l - exp (-6kptr/dp) [5.8]
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where dp is the droplet diameter as in Eq. [4.6]: tr is the

rise time of the drOp as in Eq. [2.50]; and kp is the

continuous phase mass transfer coefficient of the drOp as in

Eq. [2.51]. The overall energy relations are:

for countercurrent flow,

no= exp(-EZA/O) count, + exp(-6kptr/dpidrop [5.91

for concurrent flow,

n0= exp(-kcA/Q) concurrent [5'10]

Concurrent operation in baffle plate extraction towers

can represent an improvement over countercurrent operation

for certain tower designs. It appears to be more

advantageous than dispersed countercurrent Operation in

regions where mass transfer from the continous phase is

greater than mass transfer from drops. Concurrent operation

produces higher plate efficiencies than countercurrent

operation in large diameter towers and in narrow plate

spacings. Concurrent operation can also achieve higher

throughputs than countercurrent operation, Leacock and

Churchill (1961); thus making it possible to achieve higher

rates of mass transfer than standard countercurrent

operation.
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Where average plate spacings are .07 to .1 meters and

average plate lengths are 0.9 to 1.8 meters, Treybal (1951),

we find that countercurrent operation generally achieves

higher plate efficiencies than concurrent operation for most

baffle tower designs. Figure 6 presents a plot of plate

efficiency vs. plate length, which shows that plate

efficiencies are linearily related to the plate lengths. It

also shows that most of the mass transfer for countercurrent

Operation comes from drops.

The effect of mass transfer from drops upon

countercurrent Operation is also evident in Figure 7, a plot

of plate spacing vs. plate efficiency. An increase in plate

spacing decreases both concurrent's and non-dispersed

countercurrent's efficiency for operation. Yet, the

efficiency for dispersed countercurrent operation increases,

because the exposure time of the droplets increases.

However, this is not a fair comparison, because the cost of

a liquid-liquid extraction tower increases with increasing

plate spacings. In effect, the large plate spacings make a

baffle plate tower into a spray tower. Mass transfer from

drops generally helps increase the plate efficiency of

countercurrent operation; and it makes countercurrent

Operation advantageous for most baffle tower designs.
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8

CHECK

CB (I,J)

CON (I,J)

DAB

DT

DX

DY

EQN

LOOP

PNA

PK

RATIO

44

LIST OF COMPUTER VARIABLES

Plate spacing

Convective flux at plate exit for fluid 1

Concentration profile of fluid 2

Concentration profile of fluid 2

Molecular diffusivity in fluid 1

Time increment

Vertical increment, B/KS

Axial increment, L/LNG

Nernst distribution coefficient

Plate Length

Number of iterations over CON (I,J) and CB (I,J)

Diffusive flux across interface for fluid 1

Velocity gradient/Oiffusivity

Volumetric flow rate

Diffusivity of fluid 2/Diffusivity of fluid 1



0
0
0
0
0
0
0
0
0
0

o
n

45

TABLE 2

Computer Program

PROGRAM CHE(INPUT, 0UTPUT,TAPE5=INPUT,TAPE6=0UPUT)

DIMENSION CON(30,30),CB(30,30),F(30) ,G(30)

REAL L,

JANICE KING FALL"1983

PROGRAM CALCULATE CONCENTRATION PROFILES C=C(X,Y)

MASS TRANSFER MECHANISM** CONVECTION IN Y, DIFFUSION IN X.

METHOD OF SOLUTION** EXPLICIT METHOD

PDE** DC/DT = AX(DC/DT) + DAB D/DX(DC/DX), WHERE A AND DAB ARE #

L=PLATE LENGTH/ B=PLATE SPACING/ CAO= INITIAL CON(A)

EQN= NERNST DIST. COEF.

BC** (1) CA=CB*EQN (2) X=+B CA= O (3) X=-B CB

BC** (4) Y: 0 CA= 0 (5) Y=L CB=1

BC** (6) X=O DAB(DCA/DX) = DAC (DCB/DX)

1

***************SET CONCENTRATION PROFILES***************

***********READ IN DATA AND COMPUTE CONSTANTS***********

DT+ 1.5325E-6

Q=0.0031

PK= 10E6

EQN=5.

LOOP= 1000

RATIO = 1.2

CBO=1.

B= 4.102564E-3*5.

L= 6.0

DX= B/6.

DY= L/6.

DAB= 7.5347373E-9

LNG = NINT( L/DY)

LNGl = NINT( L/DY + 1.)

MT=LNG1 +1

KS= NINT( B/DX)

KSP1= NINT( B/DX + 1.)

HRITE(*,33)

NRITE(*,52) DX,DY,DT ,LOOP

NRITE(*,99)

NRITE(*,100) B,L,Q,EQN,DAB

************COMPUTE SUCCESSIVE CONCENTRATIONS************

DO 55 MTIMES=1,LO0P

DO 60 J= 2,LNG

DO 60 I=2,KS

CON(I,J)=CON(I,J)+ DT*( -PK*(I,DX) *(( CON(I,J+1) - CON(I,J-1

))/(2.*DY)) + (( -2.*CDN(I,J) + CON(I+1,J) + CON(I-1,J))/

( DX*DX)))

CB(I,J) = CB(I,J) + DT*( PK*(I*DX)*((CB(I, J CB(I,J-1))/

(2.*DY))+ (( -2. *CB(I, J)+CB(I+1, J) + CB(II-1 )/ (DX*DX)))

CON(1,J)= CON(l, J) + DT*((~1.*CON(1, J) + CO 2,J) + RATID*

+1)-

J)

0N(
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60

55

62

450

470

351

500

46

TABLE 2

Computer Program

(Continued)

( CB(2,J) - CB(1,J)))/( DX*DX) )

CB(1,J) = CON(I,J)/EON

DO 54 JJ=1,LNGI,LNG

CON(I,JJ)=CCN(1,JJ) + DT*((CON(2 JJ)-CON(1 JJ) + RATIO*(CB(2

,JJ)-CB(1,JJ)))/(DX*DX))

CB(1,JJ) = CON(I,JJ)/EQN

CONTINUE

CON(I,LNGl)=CON(I,LNGl)+DT*(-PK*(I*DX)*((CON(I,LNGl)-CON(I,LNG

))/DY) + (( -2.*CON(I,LNG1) + CON(I+1,LNGI) + CON(I-1,LNG))/

DX*DX)))

CB(I,1)= CB(I ,1) + DT*( PK*(I*DX)*((CB(I, 2)-CB(I,1) )/DY)

+ ((-2.*CB(I,1)+CB(I+1,I) + CB(I-1,1))/(DXX*DDX)))

CON(KSPl, J) = 0.

IF ( CON(I,J) LT ) CON(I,J)=O.

IF ( CB(I,J) LT 0.) CB(I,J )=1.

IF (CH(I,J)%T 1.0) CB(I,J) = 1.0

IF ( CON(I ,J). O.) CON(I,J)= O.

CONTINUE

CONTINUE

DO 62 I=KSP1,1,-1

WRITE(*,88) ( CON(I,J),J=1,LNGI)

WRITE(*,74)

DO 89 I=1,KSP1

WRITE(*,88) (CB(I,J),J=1,LNG1

******************CALAULATE THE DC/DX at x=0******************

DO 350 I=1,LNGI

F(I)= (2.*CON(2,I )-(CON(3,I)/2.) - 1.5*CON(1,I)

*************SIMPSON"S RULE T0 EVALUATE INTEGRAND*************

SUM1= 0.

DO 450 1=2,LNG,2

N=4.*F(I)

SUM1= SUM1+ N

SUM2 = 0.

DO 470 I=3,LNG-1,2

N2 = 2.*F(I)

SUMZ = SUM2+N2

**********CALC THE MASS TRANSFER**********

DER= L*( F(1) + SUMI + SUM2 + F(LNGI) )/(3. * LNG)

PNA= -DAB*DER/L

DO 351 J=1,KSP1

G(J)=DAB*PK*(J-1)*CON(J,LNGl) *DX

PART=0.

DD 500 J=2,KS,2

Y=4. *G(J)

PART: PART + Y

PART2=0.
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