QVERDUE FINES: *
25¢ per day per item
RETURNING LIBRARY MATERIALS:

Place in book retumn to remove
charge from circulation records




ON THE RISK PERFORMANCE OF BAYES EMPIRICAL
BAYES PROCEDURES IN THE FINITE STATE
COMPONENT CASE

By

How Jan Tsao

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Statistics and Probability

1980



ABSTRACT
ON THE RISK PERFORMANCE OF BAYES EMPIRICAL

BAYES PROCEDURES IN THE FINITE STATE
COMPONENT CASE

By

How Jan Tsao

Since Robbins' introduction of the empirical Bayes approach
to a sequence of decision problems, a large literature has evolved
treating a variety of component problems. Most of the papers
advance empirical Bayes procedures which are asymptotically optimal,
and some establish rates of convergence.

In empirical Bayes decision making, the Bayes empirical
Bayes approach is discussed by Gilliland and Boyer (1979 ). In
the finite state component case, the Bayes empirical Bayes pro-
cedures are shown to have optimal properties in a fairly general
setting and believed to have small sample advantage over the classical
rules. The flexibility of making desirable adjustments for these
decision procedures by choice of prior enables one to set a proper
strategy when dealing with actual problems.

In this thesis, a complete class theorem is proved to show
that, at each sample stage, the class of Bayes empirical Bayes
rules is complete, and, under some regularity conditions, that it

is minimal complete. In the two state component case the posterior



mean which generates the Bayes empirical Bayes rules is shown to
be asymptotically normal under certain assumptions.

The use of Bayes empirical Bayes procedures creates some
interesting theoretical and computational problems as the Bayes
procedures are fairly complicated in structure. The thesis also
develops methods of computing Bayes empirical Bayes rules and
determining their small sample risk behavior. In some cases risk
functions are evaluated by numerical methods, and, in other cases,

Monte Carlo simulation is used to estimate risk.
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CHAPTER I
FINITE STATE BAYES EMPIRICAL BAYES PROCEDURES

Section 1.1. The component and empirical Bayes decision problems.

Consider the following component statistical decision
problem with which we shall be concerned. This comprises
(i) A sample space (X,X) and a parameter space (o,Q) where
X,q are g-algebras on X,2 respectively. {Pe:
is a family of probability measures on (X,X) dominated

6 € Q}

by some o-finite measure . fe is a density for Pe
with respect to u, 8 € 2. X denotes an X-valued random
variable distributed Pe’ conditional on o.

(ii) An action space (A,A) where A is a g-algebra on A
containing the singleton sets.

(iii) A loss function L: o x A + [0,») representing the loss
of taking action a in A with 8 € . L(e,-) 1is measur-
able for each ¢ € Q.

(iv) The (behavioral) decision rules t(.,.), each a function
of the pair (x,B) where x € X and B € A, having the
measurability properties below:

(a) for each x, t(x,-) is a probability measure
on A.

(b) for each B, t(.,B) is X-measurable.



A nonrandomized decision rule is one where for each x,
t(x,+) 1is degenerate. The set of (behavioral) decision
rules is denoted by A.

For any t, the expected loss when ¢ is the true para-

meter is
R(e,t) = ffL(e,a)t(x,da)Pe(dx).

Let G denote the class of all probability measures (priors) on
Q with respect to which the t-sections of R(e,t) are measurable.

The Bayes risk of t versus G is
R(G,t) = [ R(e,t)G(ds).

tG is called a Bayes rule with respect to G if its Bayes risk

attains the infimum Bayes risk
R(G) = inf R(G,t).
teA
We will assume that R(G) is attained for each G € G.
Throughout our discussions we will consider q = {0,1,...,m},
? gyP, is identified by

8=0
G = (go,...,gm). G 1is the m-dimensional simplex in Em+1’ the

Q= 2%, and assume that Pg =

m+1-dimensional Euclidean space. We will call R(-,t) the risk
function of t and R(:) the Bayes envelope defined on G.

Consider the empirical Bayes decision problem. In it the

component decision problem just described occurs repeatedly and

independently. Thus, let (el,xl), (ez,xz),...,(en,xn), (en+1,Xn+1),...

be iid with 85 having distribution G and, conditional on



i Xi having distribution Pe . The marginal distribution of
i

Xi is the mixture PG' Based on the initial observations

X, = (xl,...,xn), a component decision rule Tn(zn) is selected

and evaluated at «x to reach a decision about 6 .., n 3z l.

n+l
Thus, an empirical Bayes decision rule for reaching a decision

about 8+1 is
Tn(ln)(xn-l-l")’ n ; 1.

The goal is to use the information about G from the
initial observations to construct a rule Tn whose risk behavior
is close to that of the Bayes rule tG(Xn+1,-). In general, more
information about G will be available with increasing number of
observations. We will consider an empirical Bayes procedure as
a sequence T = (TI’TZ"") of empirical Bayes decision rules

, , +
where for each n, T is a function on X1

x A such that every
X, = (xl,...,xn) -section is an element of A, the class of component
decision rules, and such that for each 6 € Q, R(e,Tn(gﬂ)) is
a measurable function in Xp-

For each n, we let Tn denote the collection of all possible
Tn defined as above. The use of Tn against prior G incurs
the unconditional component Bayes risk

R,(6,T ) = [ R(G,T (x))PRdx ), n > 1

where here and throughout a symbol for a measure with a superscript
indicates a product measure. Since Tn(ﬁn) € A for each x € X",

R(G), the minimum component

nv

we see that for all n, Rn(G,Tn)



Bayes risk. Observe that

R,(6,T,) = ER(G,T (X))
5 n
= GZO 9 / R(G,Tn(zﬂ))PG(dén)
) 920 9 J RCeTp(x )){1H1 C Z £5(x;)g5 w"(dx,)
L L
= %‘ ) ge(goo...gmm)Hn(B,lo,...,zm) (1.1)

= + + =
8=0 lo cen lm n
where

Hn(e,zo,...,zm) = Bg""’Bm / R(e’Tn(ﬁn)) i 0 1€B f (x )} u (dx ).

lB'iI =
i=0,...,m

The summation above is over partitions {BO’Bl""’Bm} of
{1,2,...,n}, and the second summation in (1.1) is over all partitions

20’21””’2m of the integer n, i.e., integers 25 2 0 with
m
) 2; = n. From (1.1) we see that the risk function Rn(-,Tn)

is determined by the collection of coefficients

{Hn(esEO’---aﬂm)|9= 0,...,m; Z L: = n, 4. 2 0, i =0,..,m (1.2)

which in turn, can be identified by an element of of the space
Ey» Where by Feller (1975, (IL5.2)),N = (m + 1)(™™). This remark

will prove useful in Section 1.4.



Definition 1.1. If 1im Rn(G,Tn) = R(G) we say that T is
n
asymptotically optimal relative to G(a.o.[G]). If T 1is a.0.[G]

for all G € G, we say that T is asymptotically optimal (a.o.).

3 [ * o * 3
Definition 1.2. For Tn,Tn € T'n,Tn is as good as Tn if

* ) *
Rn(G’Tn) < Rn(G,Tn) for all G € G. Tn is better than Tn

. * *
if Rn(G’Tn) < Rn(G,Tn) for all G € G and Rn(G’Tn) < Rn(G’Tn)
for at least one G € G. Tn is equivalent to T: if

G,T *y for all G
Rn( R n) = Rn(G,Tn) or all € G.

Definition 1.3. Tn is said to be admissible if there does not
exist an empirical Bayes decision rule in Tn that is better than
Tn' T 1is called an admissible empirical Bayes procedure if Tn
is admissible, n > 1.

Listed below are some desirable properties of an empirical

Bayes decision procedure T = (TI’TZ”")‘

(1) T is a.o.

(ii) Rn(G,Tn) converges to R(G) rapidly for all G € G.

(ii1) T 1is admissible.

(iv) Tn has good risk behavior for small to moderate
values of n, that is, T is suitable for use
even when large numbers of observations are not
available.

(v) An algorithm for computing the decision rules is

available and can be executed economically.



(vi) T can be adjusted systematically to improve its
performance on many specified subsets of G.
We will judge the performance of an empirical Bayes procedure

on the basis of properties (i) - (vi) mentioned above.

Section 1.2. Bayes empirical Bayes

Let G be the Borel o-algebra of subsets of G. The
Bayes approach to the empirical Bayes decision problem considers

possible priors on (G,g). First we give the following definitions.

Definition 1.4. An empirical Bayes rule Tn € Tn is Bayes with

respect to a prior A on G, if it is a infimizer (across Tn) of
Rn(A,Tn) = | Rn(G,Tn)A(dG)

Definition 1.5. T 1is said to be a Bayes empirical Bayes procedure

if Tn is Bayes, n > 1. T 1is said to be a Bayes procedure with
respect to a prior A if Tn is Bayes with respect to A, n > 1.

To construct a Bayes empirical Bayes rule at stage n, it
is convenient to introduce the component risk set, S = {§_=(so,...,sm)|
for some t € A, sy *® R(i,t), i = 0,...,m}. S 1is a convex subset
of Em+1 which we will assume is compact throughout this thesis.

We will use the following theorem (LeCam (1956, Theorem 3.3.2)).

Theorem 1.1. Let (X,é) be a measurable space and let & be a
compact metric space. Let f(x,8) be a function from X x @ to

the real 1ine. Assume that f is measurable in x for each 38



and continuous in 8 for each x. Then it is possible to find

a function &8(x) which is measurable in x and such that

f(x,6(x)) = inf f(x,t). 0
tee
For a given A, Tn € Tn
R(A,T,) = ER(G,T (X))

= () EARGGT (X)) (X))
m
= £y ezo R(8,T (X ))E, (g 1X)

Here EA(G|§n) is G-valued conditional expectation corresponding
to the conditional distribution of G given Zn and E(A)
corresponds to the mixture P(A)(-) = | PE(-)A(dG). Since
(R(O,Tn(gﬂ)),...,R(m,Tn(éﬂ))) €S forall x and T, to minimize
Rn(A,Tn) we seek a function &: X"+ 'S such that & is measur-
able and

mo m

ezo 8" (X )E, (g 1X) = ;2; eZo sg EplgglX,)

. (.0 m

where c(gﬂ) = (6 (gﬂ),...,s (gn)). By Theorem 1.1, such a §
exists.

Suppose & 1is a measurable version, and for each X

Tn,A(En) € A is such that



Then

Also note that the Bayes empirical Bayes rule Tn A is pointwise

component Bayes with respect to EA(G|5n) = (EA(golxn)”"’EA(ngZn))'

In what follows we sometimes will use the notation GA(gn) in-
stead of EA(Glgﬂ).

For a given prior A, let Tn A € Tn denote a Bayes empirical
Bayes rule with respect to A which has the above form. We first
discuss conditions that assure that Tn A is a.o0.. OQaten (1972,

(1.6 )) shows that
0 < R(G,tF) - R(G) < M [IG-F]] (1.4)

for all F,G € G. Here M 1is a bound on the component risk,
i<l is the 2 (total variation) norm on Em+1. Under the
assumption that A has support all of G, Gilliland and Boyer

(1979) prove that

1;m HGA(ln) - GJl =0 a.s. PG for all G € G, (1.5)

where PE is the probability distribution of X ,X,,... . Thus,
in the bounded risk case, (1.4) with F = GA(xn) and (1.5) establish
that Tn’A is a.o., that is,

];m Rn(G’Tn,A) = R(G) for all G € G.



The above shows how the question of asymptotic optimality
in the finite Q Bayes empirical Bayes problem can often be re-
duced to a question of the consistency of the estimator GA(Zn)

for G.
To obtain the form of GA(gﬂ), note that the conditional

density of ln is

n m
(x,16) = m Z fj(xi)gj-

Hence the conditional probability of G given Kn has density
n n
f(GI;ﬂ) f (5ﬂ|G)/ [ f (§n|G)A(dG)
with respect to A and
6,(X,) = [ 6F(6]x,)r(d0),

G -
We denote the components of GA(gn) by gA(gn), 8 =0,1,...,m.
We now develop an algorithm for computing GA(gn). Here

we will represent G by the m-dimensional simplex in Em

m
Sp = {8p = (sppvvns)lsg 20, 1=1,...m J s, ¢ 1}

and for s €S, let sj=1- Y s.. By (1.6)

s, I { S, f (X )} A d(s.)
filjzo —m

I?x { z s5F5(X;)1 A (ds,)

(1.6)

(1.7)
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Ltet.. 4 = n g ) (ln)“g %
- 071 °°° ™m 0’ ’™m 0°>*"*°>"’m , e6=1, ,m (1.8)
)
- S (X)) u
T L T "TITN TL Lo SYPUN &

where for each nonnegative integer partition 20’21""lm of n,

m
S (x) = Y {(n n CF.(X)-F~(X.)1y 1 f~(X.)}.(1.9)
Raseeesd ' 21 4 Jgroit oM . (VAN R
0 m BO:---sBm J 1 1€Bj IGBO
|80| = zo,...,IBml =

Here B U...UBm = {1,...,n}, BinB. = ¢, i, =0,...,m,

! ]
f ! 'm
H = S ... A (ds )
JZ,O, -azm S 1 m
m
and
L )
o = 1 m .
L PO f (51 eeeSp ) Sg A (dS‘), 8 =1, ,m
0 m S
m
The following theorem leads to a convenient way of computing
(1.9).

Theorem 1.2. For each n > 1 and set of real numbers {aij|i=1,...,n;

j=0,...,m} define the function Qn on Sm by



-—



11

For each nonnegative integer partition Bgakysc -l of n, let

m
" denotes the coefficient for the term
SIEEREY
4 %2 m
Sy Sp .Sy in the polynomial expansion for Qn. Then
m
n n-1 -
c = ) a.C _ , N> 2, (1.10)
9.0,...,9."1 j=0 nJ Rogonolj 1,...2"1 -
n-1 -

with the convention Ck 0 if some kj = -1,

0,...,km

Proof. The proof follows from the uniqueness of the coefficients

n . .
CEO""’Zm in the polynomial Qn' 0

To find all coefficients of Qn(sl,...,sm), n>2, we go

through equation (1.10)

n m
kZZ [{(20,...,2m)| iZO b=k 2y 2 0}]
=" T -2
m+l
n
A T3V

times (see Feller (1957, (II.5.2) and (II.12.8)), where the sign
v 1s used to indicate that the ratio of the two sides tends to
unity as n + =, The Timiting form is obtained by applying the
Stirling's formula (Feller (1957)) and the 1'Hénital's rule. To
apply Theorem 1.2 in computing (1.9), for each X € xn, we let

ai.

i = fj(xi) - fO(xi) and ;g = fO(xi), i=1,..,n, j=1,...,m

Then for each nonnegative integer partition gseeotn of n, we

. Hence by (1.8),

_ AN
have S2 (x.) = C _

0,...,£m"’n o,oco’l
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2nt : +_=n CQ 2 “i )
g(x,) = ——L O T m 0 M s em (1.1D)
) ch u
L TP e FTR R

Note that gi (gn) depends on A only through a finite number
of general moments of A. The computation of (1.11) is, in most
cases, more efficient and accurate than a direct numerical inte-
gration in (1.7) or a direct evaluation of (1.8). Even in the case
m = 1, a direct evaluation of gi (5n) through (1.9) is not feasible;
in most cases, however, the application of (1.11) results in an
efficient and accurate evaluation. Chapter 2 provides a detailed
example.

0f course, computation with (1.11) is simplified when those
general moments of A can be evaluated easily. Here we consider

one such example:

EXAMPLE. (Bayes empirical Bayes with Dirichlet priors.)
Let D(al,...,am,ao) denote the m-variate Dirichlet distribution

on the simplex Sm which has probability density function

T(ap*...+a ) a,-1 a -1

a
= - - 0
-m B F(QOT-..r(amy Sl "'Sm (l-sl cee Sm)

)_S_rnesm’

where the a; are all real and positive. If we let
A= D(al,...,am,ao), then it can be verified (Wilks (1962), (7.7.6))

that the general moment My . of the m-variate Dirichlet
O,ooo, m

prior A has the following value
; i r(a1+zl)...r(am+zm) F(a0+...+am)
EO,...,lm P(dl)... F(aﬁf’ P(a0+...+am+21+...+2m)
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Section 1.3. A complete class theorem

Gilliland and Boyer (1979) have suggested that, for each
n, the study of empirical Bayes rules in Tn can be viewed as
a study of the class of nonrandomized decision rules in a decision

problem (G,D,Rn), so that the class B_ of Bayes empirical Bayes

n
rules is the class of Bayes rules in (G,D,Rn). In this section

we will prove that, in a large number of empirical Bayes problems,
Bn is a complete class for (G,D,Rn). The results apply to each

stage n, n > 1.

Definition 1.6. A class C of decision rules Cc D, is said

to be complete, if, given any rule t in D not in C, there
exists a rule t* in C that is better than t. A class C
of decision rules is said to be essentia]iy complete, if, given
any rule t not in C, there exists a rule t* in C that is as
good as t.

Consider the decision problem (G,D,Rn) with sample space
(X",{P), parameter space (G,G), {PE: G € G} a family of pro-

bability measures on (X",ﬁp) dominated by "

’ln distributed
Pg conditional on G, action space (S,S) where S is the Borel
c-algebra on S, loss R: G x S + [0,») with R(G,s) = E 9gSg-
The class of nonrandomized rules D 1is represented by thg—glass
of measurable transformations form (X",gﬁ) to (S,S). Using
rule d = (do,dl,...dm) € D, the expected loss when G 1is the

true parameter is



-
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Ry(Gsd) = [ R(G,d(x,))PE(dx, )
(1.12)

'f f d®(x )PR(dx )
o20 g X IPglax,

Note here (1.12) and the fact d(gﬂ) € S implies that each

Tn € Tn determines a d € D such that Tn’ d have the same risk
function; conversely, for each d € D there exists a Tn € Tn
with the same risk function.

Let A be a prior on G; the Bayes risk of d € D is
Rn(A,d) = f Rn(G,d) A (dG).
A Bayes rule with respect to A is a rule dA € D such that

R (A,d.) = inf R_(A,d).
nt AT gep M

Qur discussion is restricted to nonrandomized rules because for

t € 0,0 denoting the class of behavioral rules, we have
n
R (G,t) = [ [R(G,5)t(x,,ds)Pg(dx )
m n
» eZO 9, [/ st(x,.ds)Pg(dx,).

For each X define

d(x;) = [ st(x,.ds).

Then, according to Lemma 2.7.3. of Ferguson (1967), we have
d(gn) € S. This implies d € D and d,t are equivalent (De-

finition 1.2). Therefore, the discussion of t € D 1is redundant
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as far as the risk behavior is concerned and we may restrict our con-
sideration to the class of non-randomized rules D.

Assume that X 1is generated by a countable number of sets
and recall S 1is a compact, convex subset of Em+1‘ From previous
discussions we know that the question as to whether Bn is complete
is reduced to the question whether B, the class of nonrandomized
Bayes rules in the game (G,D,Rn), is complete. To study this,

we need the following lemma.

Lemma 1.1. A compact convex subset S of Em+1 is an intersection

of countably many closed half spaces which contain it.

Proof:
Let Qm+1,Q1 denote the rational points in Em+1,E1,
respectively, and define the countable collection of closed half-

spaces,
S={H={(xb'x sc}be Qm+1, cE€ Ql and S c H}.

We will show S = NS. Obviously, S= NS so it remains to show
nNsScS.
Let a ¢ S. The separating hyperplane theorem (e.g.,

Rockafellar (1972), Corollary 11.4.1.), implies there exist

by, ¢y such that for all s € S, bys s ¢y and cy < bja. Let
A = (gég - co)/3. The fact that S is bounded and Qm+1 is

dense implies the existence of a b € 2, such that for all
s€S,b's ccy*ta and 963.- A g b'a. The denseness of @,

establishes the existence of a c € 9, such that ¢

=1
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Then Sc< {x|b'x <c}=H and c <b'a so a¢H. Since HegS,
agns. 0
The remark preceding Definition 1.1 of Section 1.1 implies
that in the bounded S case, all empirical Bayes risk functions
Rn(G,d) are polynomials in G = (go,gl,...gm) on G. Identify
a d € D by the risk function which in turn is identified by a
vector d = (gl,...,g") of coefficients in the polynomial. Let
D=1{d|d € D} and let |-|l denote the usual Euclidean norm

in EN.

Theorem 1.3. D 1is a compact subset of EN.
Proof: The proof will be based on the fact that D is (component-
wise) weakly compact.

Since D is a subset of a metric space it is sufficient
to show that [ 1is sequentially compact (Munkres (1975) p. 181),
that is, every sequence in [ has a convergent subsequence. Let
{g1}<: R. Let {di} be a corresponding sequence in D such that
gi is generated by di' Since {di} is bounded, by the weak
compactness theorem (Lehmann (1959), p. 354), there exists a real
valued measurable function dg and a subsequence {dg.} of

0 .'
{di} such that

Tim D (xIn(x )" (dx,) = S dgxIh(x,u"(dx,)
1 1

for all integrable h.

Again, apply the weak compactness theorem to the sequence

{d; }. There exists a real valued masurable function dé and
i
a further subsequence {d1 } of {d1
my n;

} such that
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Tim [ dp (xdh(eu(dx) = S dglxIh(x,u"(dx,)
1 1

for all integrable h.

Repeat the above process we obtain a measurable transfor-

0

. n - m
mation from X  to Em+1, d0 (do,...,do) and a subsequence

{dk } of {d.} such that

j i
Tim [ d® (x )h(x )u"(dx.) = [ d2(x )h(x )u"(dx ) (1.13)
i ki =’ - 0'=n’"‘=n - )

for all integrable h and for o =0,...,m. By the expression

following (1.1), each coefficient of d in the polynomial

K

Rn(G,d is of the form (1.13) so from (1.13)

)
Ky
tim g, - dyll = 0
1 1

It remains to be shown that go € D or equivalently,

n
Pg [d

S={H={x|b'x <cl}be Une1» € €2, and Sc Hl. We claim that

0€S]=1 for all G € G. Let

Pg [dy € Hl =1 for all G€G and He€S. To see this, suppose
]
beE »c€E,andb's cc forall s €S. Then

cP". [b'dy > ]

s/
i

. n n . . n..,
Jg do(in)fe(l‘n)“ (dln) (with < if PG[p_ d0 > c¢] > 0)
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= vim / bldy (x)fa(x )" (dx,)

1
i [b'dy>cl” ST

HA

n '
cPq [_lg_d0 >cl,

where the last inequality follows from the fact gjdk.(gﬂ) <c
for all i. Therefore, we have Pg (b'dy > c] =0, i.;.,
Pg (b'dy g ¢J = 1. This proves the claim.
From the fact that S is countable and the above claim,
we obtain the result
1= Pg {Hn [dy € HI} = Pg [dy € N S] for all G € G.
€S
But Lemma 1.1 shows that S = NS. Therefore Pg [d, € S] =1

for all G € G. This completes our proof. O

Corollory 1.1 There exists a topology on D such that (a) D

is compact and (b) Rn(G,d) is continuous in d € D for all
G € G.

Proof: Define ¢ to be a function on D such that ¢(d) = d

for all d € D. Then the collection of sets
F = {¢"}(A)|A open in D}

is a topology on D such that ¢: D -+ D is continuous. Since
¢ is onto, if Q dis a covering of D = @(D) then

{¢'1(A)|A € Q} 1is a covering of D. Hence the compactness of
D from Theorem 1.3. implies that (D,F) is compact.

Form the polynomial form of Rn(G,d), Rn(G,d) is a linear

1

combination of ¢ = m.ee(d), i = 1,...,N where
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Hi: EN > El’ i=1,...,N, is the projection map. Therefore the
continuity of N.ep, i = 1,...,N, implies that Rn(G,d) is continuous

in d €D for all G € G. a

Definition 1.7. A rule d € D 1is extended Bayes if for every

e >0 there is a prior distribution A such that

R (A,d) g inf R (A,d) + ¢
deD
The following theorem follows immediately from Corollary

1.1 and Theorem 2.10.3 of Ferguson (1967).

Theorem 1.4. The class of extended Bayes rules in D 1is essentially

complete.
Theorem 1.5. Any extended Bayes rule in D 1is a Bayes rule.

Proof: For d € D, Rn(-,d) is continuous in G. Let d € D be
an extended Bayes procedure. Then for each positive integer N,

there exists a prior distribution A, such that

N

/ Rn(G,dAN)AN(dG) < [ R (6,d)A(dG)

s/ Rn(G,dAN)AN(dG) + 1/N. (1.14)

Since G, a closed subset of [0,1]m, is compact, the class

{AN};=1 is tight. By the Prohorov theorem (Billingsley (1968))
{AN};=1 is relatively compact which means that there exists a

prior A and a subsequence {AN}N=1‘: {AN}N=1 such that AN

converges weakly to A as N » =,



Con

Thi
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Consequently,

A

/ Rn(G,dA)A(dG) ] Rn(G,d)A(dG)

lim R (G,d)Ay(d6)
N

A

Tzﬁ'f Rn(G,dA&)A&(dG) by (1.14)
$ T [ R, (62d)) 1y (d6)
= J R (G,d,)A(dB).

The above shows that d is Bayes with respect to A. 0
OQur complete class theorem follows directly from Theorem

1.4. and Theorem 1.5.
Theorem 1.6. The class of Bayes empirical Bayes rules 1is complete.

Proof: From Theorems 1.4., 1.5. we know that the class of extended
Bayes rules is equal to B and is essentially complete. There-

fore, for d ¢ B, there exists a Bayes rule dA such that

Rn(G’dA) < Rn(G,d) for all Ge€ G. If "=" holds for all G
in G then d 1is Bayes with respect to A, a contradiction, so
dA is better than d. This implies that B is complete. a

Definition 1.7. A class C of decision rules is said to be minimal

complete if C 1is complete and if no proper subclass of C is
complete.
It is also of interest to know when the class of Bayes

empirical Bayes rules will constitute a minimal complete class.
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The minimal complete class, when it exists, is exactly the class
of admissible rules. Since Bn has been proved to be a complete
c]aés, any admissible rule will be in Bn. It is then sufficient
to find conditions under which the Bayes empirical Bayes rules
are admissible. The following remark is needed in the proof of

Theorem 1.7.

Remark 1.1. If the members of {Pele € 2} are mutually absolutely
continuous then so are the {PG[G € G} which implies that the
product measures {PEIG € G} are mutually absolutely continuous

and equivalent to any mixture P(A).

Theorem 1.7. Suppose that {Pe, o € Q}, are mutually absolutely
continuous and that the Bayes component decision rules are unique
up to risk equivalence. Then the class of Bayes empirical Bayes

rules is minimal complete.

Proof: Since the class of Bayes empirical Bayes rules is complete,
if we show that the Bayes empirical Bayes rules are admissible,
then Bn is minimal complete.

For a given A, let Tn,A be the Bayes empirical Bayes

rule with respect to A as defined in (1.3). Then for T, €T

R(G, (X)), T (X)) 2 R(B,(X ), T, (X)) (1.15)

n AT

Suppose Tn € Tn is Bayes with respect to A. Then

R, (AT ) = R(A,T, ) (1.16)
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and (1.15) and (1.16) implies

R(Gy (xp) s T(x)) = R(G, (x))s Ty (xg

By our hypothesis, the Bayes component rules are unique up to risk
equivalence, which means if tl,t2 € A are Bayes with respect

to G, then R(e,tl) = R(e,tz), 6 =0,...,m. This and (1.17) im-
plies that

R(e’Tn(Zn)) R(e,T. . (x.)), & =0,...,m, a.s. P(

n’A -

By Remark 1.1, the above equalities holds a.s. Pg for all G € G,

so that

Rn(G,Tn) = Rn(G’Tn,A) for all G € G.

i.e., Tn is equivalent to Tn Thus, the Bayes rule with

A°
respect to A 1is unique up to risk equivalence. It is well known
that if a Bayes rule is unique up to risk equivalence then it is

admissible. d

Empirical Bayes classification between N(-1,1) and
N(1,1) 1is a decision problem satisfying the hypothesis of Theorem
1.7. This example is the subject of computation and study in
Section 2.3.

Boyer and Gilliland (1980, Theorem 4) point out how the
continuity of risk functions Rn(G,Tn) in G ensures that Tn,A

is admissible if A has support all of G.

)) a.s. P(A). (1.17)
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Section 1.4. The classification problem

In this section we will derive the form of the Bayes empirical
Bayes rules for classification problems. A classification problem
will provide an example for the application of the algorithm de-
veloped in (1.11) for computing Bayes empirical Bayes rules. In
a classification problem, an observation is to be classified as
comming from one of m + 1 distributions. Specifically, we let
A = {0,1,...,m} = Q and the loss be o« 1if an incorrect classifi-
cation is made and g 1if a correct classification is made,
a>Bg20.

Recall, G = (go,...,gm) represents a probability measure

on Q. Conditional on X = x, the distribution of 6 has density

m
f(e]x) = fe(X)ge/jZ0 9;f5(x) 8 =0,....m.

For each a € {0,...,m} and x € X,

m

I L(s,a)f(s(x)
8=0

a - (a -8)f(a|x)

]

E(L(e,a) [x)

nv

a - (a -8) max f(i|x)
ieq

Define d.(X) = max {e|f(e|X) = max f(i|X), 6 € Q}
6 j€q

max {e]fe(x)ge = max fi(x)gi’ 6 € Q} (1.18)
ieq

Then dG is a non-randomized component decision rule which is

Bayes with respect to G.
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From the discussions in last section we know that Tn A(5“)
9

choses a Bayes component rule with respect to GA(5n)’ Therefore,
to implement the Bayes empirical Bayes rule with respect to A,

first evaluate GA(gn) and then replace fe(x)g in (1,18) by

)
)
folXne1)9,(%,)-
It is known (Ferguson (1967)) that when both o and A
are finite, the risk set S 1is compact. Hence in classification
problems, Theorem 1.6. implies that the class of Bayes empirical

Bayes rules Bn is complete at each stage n > 1.



CHAPTER II
TWO STATE BAYES EMPIRICAL BAYES PROCEDURES

The studies based on a two state component decision problem
have a long history. Robbins (1951) studied the compound decision
problem and discussed both bootstrap and Bayes rules. After that,
Hannan and Robbins (1955), Hannan and Van Ryzin (1965), Huang (1970),
Van Houwelingen (1974), Shapiro (1974), Gilliland, Hannan and Huang
(1976), Snijder (1977) have studied two state component decision
problems through either the compound or empirical Bayes approach.
Some of these discuss the rate of convergence for a.o., some discuss
finite state risk behavior. Only Snijder found a complete class
among a class of decision procedures under consideration.

In this chapter, we will study the two state component
Bayes empirical Bayes procedures. Section 2.1. formulates the
classification problem between two subpopulations and applies the
computing algorithm developed in Section 1.2. to evaluate the
Bayes empirical Bayes rules. In Section 2.2. we give sufficient
conditions under which the 1imiting distributions of the posterior
means are asymptotically normally distributed. In order to illus-
trate the properties of Bayes empirical Bayes procedures we examine

empirical Bayes classification between N(-1,1) and N(1,1) in

25
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Section 2.3, where we know that the class of Bayes empirical Bayes
procedures is minimal complete at each stage n, With the help

of the algorithm developed from (1.11), the computations of the
risk functions are simplified, so that in Section 2.4. we are able
to compare the risk performance of Bayes empirical Bayes procedures
with other empirical Bayes procedures for selected priors A and

n. Van Huwelingen (1974) has discussed the empirical Bayes approach
to the classical problem of testing a simple hypothesis against

a simple alternative. He has proposed a non-Bayes empirical Bayes
procedure as an improvement over the original Robbins rule. The
fact that the Robbins and Van Houwelingenrules are inadmissible

is also established in Section 2.4. Section 2.5 explores their
risk behavior and compares it with that of selected Bayes empirical

Bayes procedures.

Section 2.1. Testing simple hypothesis against simple alternative

In order to demonstrate the feasibility of Bayes empirical
Bayes approach we study a two state classification problem, i.e.,

m = 1, with the following component model:
Q= {0,1} = A
PO’ P1 have densities fo, fl respectively

Loss function

1 if 6 #a
L(s,a) =
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Identify G by the mass p it puts on 1, so e.g., we write
R(p,t) in place of R(G,t). Thus Pp has density

fy = pfy + (1-p)fy, P € (0,1 = S..
version of a component Bayes rule is

From (1.18), a nonrandomized

nv

tp(x) =1 if pfl(x) (l-p)fo(x) (2.1)

A

0 if pfl(x) (l-p)fo(x).

X ) denote gi(gn). By (1.7)

Now let pA(_Jn

1 n
[ P LA [pfy(X;) + (1-p)fy(X;)1a(dp)

P, (X)) = 2 -
J) B pl) + (1p)f(X;)10(dp)
- Sn(l(n)mn+1+"'+ So(ln)ml (2.2)

SnZplmy oot 5,2 0m #50(%,)

1 .
where m, = / p'A(dp); and, for Bc (1,...,n}, |B| = cardinal
0
number of B and
) [fl(xi) - fO(Xi)] it fo(Xj) k =0,1,...,n.

ieB N[ 12

k(—n g
|=k

|B

Direct computation of pA(gﬂ) by (2.2) involves the search of
(:) subsets of {1,...,n} for each value of Sk(gﬂ) (2" in total)
and by Stirling's formula (rz‘")~(rrn)';§22n increases quite rapidly.
To apply Theorem 1.2. in this special case (m=1), observe

that the function Qn on S1 = [0,1] is
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Q. (s) =

n

n= s

L (a;5 * a548)s nz L
Let C: denotes the coefficient for the term sk in the polynomial

for Qn‘ Then (1.10) becomes

Cn-l + Cn--1

n_
Ck = anolx ~ * a1l N 2?2 (2.3)

v

-1 _ .n-1
1 Cn

of Qn(s), we only need to go through the recursive definition

with Cf = 0, Hence, to compute all the coefficients

(2.3) (n% + 3n - 4)/2 ~ n%/2 times.

Let a;; = fl(xi)-fo(xi); a59 = folx;)s 1= 1,...,m. Then

= M. =
Sk(_xﬂ) = Ck, k 0,...,m, andg therEfore,

n n n
Cn mm_1 +,..+ C1 m, + C0 m1 (2.4)
"mo+...+C"m o+ D '

nn °° 171 0

p,(x,) =

has the form of (1.11). (Note that pA(én) depends on A only
through the first n + 1 moments of A.) The Bayes empirical
Bayes rule is given by (2.1) with p = pA(gﬂ) as in (2.4); this
was discussed in Section 1.4.

We now turn to risk behavior. For Tn,A the conditional

expected loss given gﬂ is

R(aTy (%)) = ROPEy () )

p f.(t)dt+(1-p)/
ftpA(zﬂ)f1<(1-pA(xn))fOJ 1 Cp, (X ) F2(1-p, (X

Also, the risk function Rn(-,T ) has the form

n,A
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n

R(PaT ) = [ RBT, ((x)) T f(x)a, (2.6)

which is a polynomial in p with degree at most equal to n + 1.
From the observations in Chapter 1, we see that a Bayes
empirical Bayes procedure TA = (T1 A,T2 A,...) has the properties

(i) T, s a.0o. if A has support (0,1)

A
(i1) Th A is admissible, if A has support (0,1)
(iii) Tn A is admissible, if {Pele € Q} are mutually

absolutely continuous and if the Bayes component rules
tp are unique up to risk equivalence. Admissibility
results in a good risk performance for small values
of n.
(iv) Tn,A € Bn’ Bn is a complete class, n > 1.
(v) An algorithm for computing the decision procedure is
based on (2.4) which can be executed economically.

(vi) The performance of Tn can be adjusted by choice of A.

oA
Low risk over a region of [0,1] is obtained by
choice of A concentrating on that region.
In later sections we will study the risk performance of
Tn,A along with other empirical Bayes decision procedures. All
the properties (i) - (vi) above will be demonstrated in a class of
examples. Also, for notational convenience n will not be displayed
in denoting empirical Bayes rules. It will be clear from the con-
text whether a sequence of decision rules (procedure) or a decision

rule is being discussed.
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Section 2.2. Asymptotic property of pA(gn)

This section is a slight digression in which asymptotic
properties of the posterior mean pA(gﬂ) and maximum likelihood
estimator ﬁ(gn) are stated. The proofs aredeferred until Appendix
B. A theorem of LeCam (1956) is used to prove the asymptotic
normality of /n (ﬁ(gﬂ) - p) and one of Johnson (1970) to prove
the asymptotic equivalence /n (pA(lﬂ) - ﬁ(ln)) + 0. The approach
is similar to that of Shapiro (1972) in establishing the asymptotic
normality of the cut point in the Bayes empirical Bayes rule.

The product of mixtures density fg(gn) is continuous in
p € [0,1], a compact subset of El' Theorem 1.1 ensures the exis-
tence of a maximum likelihood estimator p. Whereas the evaluation
of 6(5ﬂ) is a difficult computation, the Bayes estimator is easily
computed by the recursive formula developed in Section 2.1.

Gilliland, Hannan and Huang (1976) show that the maximum
likelihood estimator p 1is consistent for the empirical proportion
of states "e1 = 1" in the independent non-identically distributed
compound model and the consistency result is inherited by the em-
pirical Bayes model. Likewise, their results on the consistency
of Pa transfer to the empirical Bayes model. The theorems to
follow place stronger assumptions on the model and prior but yield
the asymptotic normality in addition to the consistency for p

in the interval (0,1).
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Theorem 2.1 If [|log fi(x)IPj(dx) <=» for i,j € {0,1} and the
true parameter p, € (0,1), then

~ oo

p(X,) + Py a.s. P

Po
and
A -1 . . . .
/ﬁ(p(}n) - po) -+ N(O,I(po) ) in distribution
where
a2
= - log f

1(p) Ep ;;z og p(x)

Proof: (In Appendix B) 0

Theorem 2.2 Suppose A is a prior on (0,11 which has density
A with respect to the Lebesgue measure where x(po) >0 and
A(+) has three continuous derivatives in a neighborhood of the
true parameter Po € (0,1). If PO’ P1 are mutually absolutely
continuous and if [|log fi(x)le(dx) <= for i,j € {0,1} then

o0

Mpy(X) = BE)) ~ 0 as. Py

Proof: (In Appendix B) a

As a consequence of Theorem 2.1 and Theorem 2.2, under the hypothesis

of Theorem 2.2, p,(X, ) +p, a.s. pe

” and /F(pA(Xn) - pg) -

N(O,I(po)-l) in distribution.
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Section 2.3. Optimal properties and risk performance of Bayes

empirical Bayes procedures for classification between N(-1,1)

and Nfl,l}.

To illustrate the risk performance of Bayes empirical Bayes

procedures we will study the following example.

EXAMPLE: Testing N(-1,1) against N(1,1).

In this example we have X = El’ fo(x) = (Zn)'%exp{-(x+1)

2,2}

and fl(x) = (Zn)'%exp{-(x-l)Z/Z}. By (2.1) a nonrandomized version

of a component Bayes rule is:

tp(x) =1 if x

v
(@]

0 if c
x <G

where Cp = %-p,,, (%E). The Bayes empirical Bayes rule TA(ln)
simply replaces p 1in (2.7) with pA(ﬁn). By (2.4) and (2.7)
an algorithm for computing the Bayes empirical Bayes rule is al-
ready available. If A is chosen as the probability measure
corresponding to a mass 1 at p, then TA = tp is the Bayes em-
pirical Bayes procedure with respect to A. In particular, with
Al) = 1, TA = t35 is the minimax procedure with constant risk
Rn(p’TA) = PO(X >0) =0.1587 for all p € 0,11 and n > 1.
Observe that the risk set of tp, p € (0,11, is

{(so,sl)ls0 = Po (X > al, 5, = P1 [X <al] for some a € [-w,»]};
this together with the form of (2.7) implies that the component

Bayes rules are unique up to risk equivalence. By Theorem 1.7

(2.7)
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we see that at each stage n, the class of Bayes empirical Bayes
rules is minimal complete in this example.

In our applications we will deal with those A that belong
to a given parametric family B = {B(y)|y > 0} where B(y) denotes

a symmetric beta distribution on (0,1) with density

= I(2 v-1 y-1
QB(Y)(p) —1-11-7 p" “(1-p) for 0 <p < 1.

From previous discussions we note that {TA:

totically optimal procedures and are admissible at each stage n.

A € B} are asymp-

Also note that assumptions in Theorem 2.2 are satisfied, so that
pA(gn) is asymptotically normally distributed. The variance of
. . : -1

the limiting distribution of /n (pA(zﬂ) - po) is I(po) .
(Behboodian (1972) discussed the conditional moments of p for

Beta priors.)

Remark 2.1. If A has a density gA(p) which is symmetric about
1/2, then Rn(p,TA) = Rn(l-p, TA) for p € [0,1]. To see this,
observe
(1) £(=x) = f1_(x)
(i) pA('5ﬂ) = l-pA(gﬂ) (by elementary calculus)
(iii) CA(-ln) = -CA(gﬂ) (a direct result of (ii))

where CA(ln) =-%an[(l-pA(Zn))/PA(zn)]. Since (iii) implies
R(p,T,(-x,)) = R(1-p, T (x)),

the remark is verified by appealing to (2.6), (i) and (iii).
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Since Rn(p,TA) is a polynomial in p (see (2.6)), the
Remark 2.1. implies that for A € B, Rn(p,TA) is a function of

(p- %)2; hence, it has an even degree less than or equal to n + 1.

With n=1 or 2 one can readily see that Rn(p,TA) will be
a horizontal line or a parabola with extremum at 1/2.

We will compute the values Rn(p,TA) for p € (0,11 when
n=1 or 2. Using (2.5), (2.6) and results (i), (ii), (iii)

of the Remark, elementary calculus shows

R (P,T,) = 2(a-b)p’ + 2(b-a)p + a
with
o Cplxq)
a=/[ | fl(x)dx fl(xl)dx1
= Calxy)
b=1/[] fl(x)dx fo(xl)dxl.

Also, a tedious calculation shows that

Rz(p,TA) = [3c - (2d + e)]p2 + [(2d +e) -3lp+c
with
o o Cplxyax))
o = Calxpexp)
d = f_m f_m f-°° fl(x)dx fl(xl)fo(xz)dxldx2
C,(xq5%5)

e=f [ J £1(x)dx Fo(x,)Fy(xp)dx dx,

-]
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For the case A = B(1), the uniform distribution on (0,1),
numerical computations supported by softwares from IMSL (1979)
(Table A.6) subroutines were used to compute: a = 0.12071,

b = 0.21212, ¢ = 0.09576, d = 0.16486, e = 0.25720. Using MSU

CDC 6500 computer the accuracy of computing a,b,c,d,e was controlled

at 3 to 4 significant decimal digits. Therefore:

Ry(PaTy(q)) = -0.1828p% + 0.1828p + 0. 1207  (2.8)
- . 2
R2(p,TB(1)) 0.2997p~ + 0.2997p + 0.0958 (2.9)
are parabolas concave downward with extremum at p = % .

The direct numerical computations for n >2 and A€ B
are in general not feasible; to overcome this difficulty, Monte
Carlo integration method was used to evaluate Rn(p,TA). For
A € B, we generate independently L sample sequences of independent

random variables X;,...,X from a population having fp(x) as

n
density. For each of the L sequences generated, we then compute
R(p,TA(én)) based on (2.4) and (2.5). An estimate of Rn(p,TA)

is obtained by averaging the L computed values of R(p,TA(gﬂ)).

An estimate of two standard deviations of the average is also
obtained based on these L samples. L is made large enough to
make the two standard deviations width acceptable in each experiment.
Within each constructed table in this paper, the numbers following
the + signs are estimates of two standard deviations of the Monte
Carlo estimates. (See Table A.5 for computing program. )

To examine the accuracy of our Monte Carlo estimates,

Table 1 compares the values of Rn(p’TB(l)) with p = 0.0(0.05)0.5
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and n = 1,2 obtained by (2.8), (2.9) and by Monte Carlo integra-
tions. Table 2 explores the risk behavior of Rn(p,TB(l)) for

n=1,2,5,10,25,50 and for p = 0.0(0.05)0.5. (also see Table
A.3 for Rn(p’TB(Z)))' It can be seen that Rn(p,TB(l)) converges
to R(p) quite rapidly and has steady small sample size risk
behavior. Values of Rn(p’TB(l)) for p > 0.5 need

not be computed because of the symmetry about 0.5.

Table 1. Rn(p’TB(l))

n=1 n=2
“Monte*  Mumerical  Montet  Numerical

p Carlo Computing Carlo Computing R(p)
0.0 0.122+0.006  0.121 0.093#+0.005  0.096 0

0.05 0.128+0.006  0.129 0.107+0.006  0.110 0.0405
0.10 0.137+0.005 0.137 0.125+0.006 0.123 0.0701
0.15 0.146+0,005  0.144 0.135+0.006 0.134 0.0934
0.20 0.151+0.005  0.150 0.147+0.005  0.144 0.1121
0.25 0.155+0.004  0.155 0.152+0.005  0.152 0.1270
0.30 0.160+0.003  0.159 0.159+0.004  0.159 0.1387
0.35 0.16210.003  0.162 0.164+0.003  0.164 0.1476
0.40 0.165¢0.002  0.165 0.168+0.002  0.168 0.1538
0.45 0.166+0.001  0.166 0.170£0.002  0.170 0.1574
0.50 0.16610.001  0.166 0.170+0.002  0.171 0.1587

*200 replications for each estimate
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At this point it is important to note that in the Bayes
empirical Bayes approach the presence of A does not restrict the
construction of Bayes empirical Bayes procedures but adds the
flexibility which enables one to access a family of decision pro-
cedures with predictable risk behavior. In particular, consider
procedures TA for A € B. While the mass of B(1l) is evenly
distributed over [0,1], B(y) puts more weight to those p values
close to 0.5 as y increases, and conversely, puts more weight to
those p values close to 0 and 1 as y decreases. From the
fact that TA is admissible and TA is Bayes with respect to A,
we expect that for a < b, Rn(p’TB(a)) > Rn(p’TB(b)) for p
close to 0.5 and Rn(p’TB(a)) < Rn(p,TB(b)) for p close to
0 or 1. Table 3 shows the flexibility with choices among
B(y); y =0.25,1,2,3,10 and gives values of Rl(p’TB(y)) for
p = 0.0(0.05)0.5. The fact that B(y) has mean %— and variance
1/4(2y + 1) implies that as y - =, B(y) converges weakly to the
distribution degenerated in p =-% ,» and hence TB(y) converges
to the minimax rule with constant risk .1587. This is also re-

flected in Table 3.

Section 2.4. Other empirical Bayes procedures

Robbins (1951) in his original example of the related com-

pound decision problem uses the estimator

nr~13

py(X,) = max{0,min{1, 0.5 + ( ] 0.5 X;)/n}} (2.10)

i=1
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and the corresponding decision procesure T1 constructed by re-
placing p 1in (2.7) with pl(ln). Van Houwelingen (1974) modified
Robbins' procedure by estimating p with an improved estimator
n
pz(gﬂ) = max{0, min{1, 0.5 + (igl 0.908429 tan h(Xi))/n}} (2.11)

and constructing a decision procedure T2 by replacing p in
(2.7) with pz(gﬂ). Both PysP, are consistent estimators of p,
and consequently from (1.4) and (1.5), the corresponding decision
procedures T1 and T2 are asymptotically optimal. Also as observed in
Van Houwelingen (1974), the rate of convergence for both T1 and
T, 1is proportional to (n)'l.

However, T1 and T2 are not Bayes empirical Bayes rules.
To see this, note that from (2.2) it follows that the conditional
mean pA(gﬂ) is 0 if A is degenerate at p =0, is 1 if

A is degenerate at p = 1, and satisfies 0 < pA(gﬂ) < 1 other-

wise. Thus, apart from the trivial procedures T(ﬁn) = t0 and

T(ln) =z tl, there are no Bayes empirical Bayes procedures taking

n
p

since pl(gn) and pz(gn) take on both 0 and 1 with positive

values to or tl’ with positive P_ probability. However,

P; probability, T1 and T2 take on values to and t1 with

positive Pg probability demonstrating that T1

not Bayes empirical Bayes procedures. Moreover, the fact that

and T2 are

Bn is complete implies that Tl, T2 are not admissible empirical

Bayes rules.
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In fact, if p(}n) is an unbiased estimator for p =0
other than the estimator p(xn) = 0 a.s., then the corresponding
decision rule ? choses to with a positive probability less
than one, which implies that T is not Bayes and hence not admiss-
ible.

Before leaving this section we assess the accuracy of equation
(28) of Van Houwelingen (1974) which gives an approximation to the
risk functions of T1 and T2 for large n and p € (0,1).
The approximation formula has a faster convergence rate for points
p close to 0.5 than those points close to 0 or 1 and is not defined
at p= 0,1. Table 4 compares the values of Rso(p,Tz) estimated
by (28) of Van Houwelingen (1974) with the Monte Carlo estimates.
Note there is a significant difference for the two estimated values
at p = 0.05 and agreement otherwise.

Since pA(gﬂ) is known to be asymptotically equivalent to
the M.L.E., using the asymptotic second moment of pA(ln) about
p 1in (28) of Van Houwelingen (1974) provides an alternative estimate
for the large n risk Rn(p’TB(y))' A numerical computation
showed the fairly close agreement of the results with those reported

in Table 2 for n = 50.

Section 2.5. Monte Carlo Comparisons of TA, T1 and T2

T1 and T2 are neither Bayes nor admissible rules. At
stage n, we were able to choose a A 1in B such that Rn(p,TA)
behaves as a good competitor against Rn(p,Ta); a=1,2. In

some cases that follow, the risk values of T1 will not be listed



Table 4. Rgy(p.T,)

P Van Houwelingen Monte Carlo*
approximation
0.0 0.004+0.001
0.05 0.050 0.046+0.001
0.10 0.077 0.078+0.001
0.15 0.099 0.101+0.002
0.20 0.117 0.11910.002
0.25 0.132 0.133+0.001
0.30 0.144 0.14410.001
0.35 0.152 0.153£0.001
0.40 0.158 0.158t0.001
0.45 0.162 0.162+0.001
0.50 0.163 0.163+0.001

200 replications for each estimate




43

if our results showed that the risk behaviors of T1 and T2
were very similar. (See Table A.1 and Table A.2 for complete data,
Table A.7 for computing program.)

From Table 5 we see that the estimates of Rl(p’TB(.ZS))
dominate those of R,(p,T ), Rz(p’TB(.IO)) dominates R,(p,T ),
Rs(p’TB(.IS)) dominates R5(p,Ta). From Table 6 the estimates of
Rlo(p’TB(.BS)) dominate those of Rlo(p,Ta). The estimates of
R25(p’TB(.37)) come within one standard deviation of the estimates
for st(p,Tz) when p = 0.25(0.05)0.5 and p = 0.0 but signif-
icantly less than st(p,TZ) at p = 0.05(0.05)0.2. For
n = 50, R50<p’TB(1)) dominates Rso(p,Ta) except at p = 0.0.

The small difference may be adjusted by carefully choosing some
B(y) with y slightly less than 1. This will improve the risk
function at p = 0.0 with a little sacrifice at p = 0.5.

Table 2 shows the rule TB(I) has good small sample per-
formance. However, this is not true for T1 and T2 at n=1,2.
Table A.1, Table A.2 and Table 5 entries indicate that the Bayes
empirical Bayes rule with respect to the uniform prior TB(I) has
lower risk than Robbins and Van Houwelingen empirical Bayes rules
T1 and T2 except near p =0 (and by symmetry, near p = 1).
Copas (1969), p. 413) reports a similar finding in regard to
TB(l) and Tl'

It is interesting to note that the estimates of Rl(p’Tl)
dominate Rl(p,Tz), but, estimates of RSO(p’Tl) are dominated
by Rso(p,TZ). This means that small sample properties may not

be guaranteed by a fast convergence rate and vice versa.
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Table A.4.

[ .
%ng,F. PROGRAM EMVLOF(OUTFUT)
105= REAL F»CP+UsVsAsBIRF
110= P=0.
120= po 2 1=1,50
130= P=P+0.01
140= CP=0.5%XALOG((1.-F)/P)
150= U=CP+1.
140= V=CP-1.
170= CALL MDNOR(V»A)
180= CALL MDNOR(U:R)
190= RP=F%A+(1.-P)%(1,-BR)
200= PRINT 7sPsRP
210=7 FORMAT(3XsF3.2+3X»F10.6)
220=2 CONTINUE
200= END

Evaluation of the Bayes envelope R(p)

EXEC BEGUN.09.24.20.

001
.02
.02
04
05
06
.07
.08
'oq
«10
.11
12
13
.14
15
18
17
.18
.19
.20
.21
.22
.23
.24

«25

26
'27
.28
29
30
31
«32
.33
«34
+35
« 36
37
.32
'39
30
41
42
VAT
44
85
44
'47
LAD
£ A2
SO0
O AN

009511
L013134
.625C70
.033503
.620459
.047018
053224
.059118
1064722
«070061
075155
.080019
.084670
.089117
.093373
.097446
1101345
.105077
+108449
.112067
115336
.118461
e121447
1124298
.127017
129408
.132074
.134417
0136642
138749
«140741
.142620
.1443e8
+146047
.147398
.149042
150382
.151618
.152751
.153783
.154714
155545
V156276
1546909
V157443
157820
,153219
. 158442
£ 1305807
LIG0AES

rueae
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RERDY
OK.
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A.5. Monte Carlo simulation of Rn(p,TA), A€EB

22.11.32

DK-ATTACH» A» BAYESS.
ATTACH» A> BAYESS.

OK-FTN

s I=R, OPT=2.

COMPILING BERISK
COMPILING COEFICT
COMPILING BETA

OK-PRIMPT.

.531 CP SECONDS COMPILATION TIME

.

DK-LISTTY, I=AsNS.

PROGRAM BERISK CINPUT,QUTPUT» TAPES=INPUT, TRPE6=QUTPUT)
DOUBLE AC100>»B<C100>5CC100>5sM<100>sX<100>

DOUBLE DA»DBs» DSEED,GE1>SUM1,ySUM2

REAL ACLIMIT,MERN>PsP1yP2,PRRyR(1000> sRISK1,RISK2,SDs¥Y1>Y2
RERL RNUM,SSD

INTEGER COUNT s NEXPs NUM

COMMON RAs Bs C/MOMENT/M

WRITE (65100)

100 FORMAT (+1+» ¢THIS PROGRAM 1S WRITTEN BY HOW JRAN TSAO>
c
READ(S5,4000SyT
400 FORMAT (FS5.2sF3.2
1000 IFCEDOF(S>.NE.0>STOP
c .
READ (S, 500> Ps NEXP> N» DSEED
c
500 FORMAT (FS.2s I4» 145 D25.18)
c
WRITE (65 350) Py NEXP» N» DSEED
550 FORMAT (+0+yFS.253Xs 14,3X, 14,D25.13)
c
K=N+1
c CALL BETR(Ks»T»S
C FOR ERCH EXPERIMENT WE RSSIGN A UNIFORM(O0,1> RANDOM YARIABLE
c
CALL GSGUBS (DSEED» NEXP»R)
c
COUNT=0
C COUNT 1S THE NUMBER OF ILLIGAL DATAS FOR GE1
Cc
RISK1=0.0
RISK2=0.0
[
DO 1 L=1,NEXP
c
DSEED=2147432647.DOsR (LO+1.,
c
DO 10 I=1>N
PAR=SSBIR (DTEEDs 1, P>
c

C WE

HAYE GENERATED R BERNOULLI <F» FAMDOM WARIABLE
X(I>=GGNAF (DZEEDY + (2. «PRARP~-1.)
WE HAYE SENEFRTED R MHOFMPAL (SeFAP-1.s1> FAMDOM YARIARELE

CORTINUE
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WE COMPUTE GE1sACLIMIT

DO 20 I=1sN
DA=—0.3¢(X(I)=1.0®(X(I)=1.>
DB==0.5¢ (X(I>)+1.0e(X(I>+1.D
B(I>=DEXP (DB>
AI>=DEXP (DR> =B (D>

CONTINUE

CALL COEFICT (N>

SUM1=C (1> oM (1)
SUM2=C (1>

DO 30 I=2,K

SUM1=SUMI+CCId) oM (DD

SUM2sSUM2+C (1) eM(1-1)

CONTINUE

GE1=SUM1/SUM2

WE SCREEN OUT ALL ILLIGAL DATA
IF((GE1.LE. 0.D0> .OR. (GE1.5E.1.D0>> 60 TO 4321

ACLIMIT=0.5D0+DLOG((1.D0-GE1> /GE1>

NOW WE COMPUTE CONDITIONMAL BAYES RISK GIVEN X(1)s...s XM

Yi=ACLIMIT-1.
Y2=RCLIMIT+1.

CALL MDNORCY1,P1)

CALL MDNOR (Y2sP2)
RISK=PeP1+(1.-P)e(l.~P2)
RISK1=RISK+RISK1
RISK2=RISKeRISK+RISKZ

60 TO 1

WRITEC(6s650) CIyACI> s BCIDsCCID > I=1 N
FORMAT (& ¢,4X, 14,3D23.13>

COUNT=COUNT+1
CONTINUE

NUMsNEXP-COUMT

MERAN=R I K1 /NUM

SD=SHRT ((RISK2-NUMeMEANSMEANY / (NUM=1.))
RMLIM=MNIIM

SSD=2, «SD/SORT (RNUMD
WRITE(5y700PsMyMNEXPsMERANs SDs £3D

FORMAT (e0esoP=m ¢3F5.2s¢ HN=eyIdse MNEXP=e)I4d,
+ ¢ RISK=eyF10.55¢ SD=e«F10.5s¢ SID= &3FS5.3>
30 TO 1000

END
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SUUEPDUTIME COEFICT (M)
DOLELE RC1007 sBC100Y s (100> D100
COMMOM RsBsCC v

CC1d =R

C@r=R<1

IF(N.EQ.1>550 TO 3
DO 10 I=2sN
Dc1>=BC(I>eC (1>
DO 20 J=2&,1
DCH=ACII SCCI=1D+B(ID o0 (D
C(J=1>=DcJ~-1>
20 CONTINUE
D(I+1)=ACI> «CCID
C<I>=D(I>
C(I+1)>=D(I+1>
0 CONTINUE
RETURN
END

o0 -

SUBROUTINE BETA(K»T»3)
REAL T»S

DOUBLE M<100>,PROD1,PROD2
cCoMMON ~MOMENT/M

THIS SUBROUTINE GENERATES 1 THRU K TH MOMENTS OF
BETA(T: S

PROD1=1.D0
PROD2=1.D0
DO 16 I=1,K
PROD1=PROD1® (T+(I-1.>>
PROD2=PROD2® (T+S+(I-1.2)
M<I>=PROD1/PROD2
10 CONTINUE

RETURN
EMD

*EORNO

*E0I

OK=-HAL.

HAL S5.33

L?LG0.

EXEC BEGUN.R22.16.42.

OO0

THIS PROGRAM IS WRITTEM BY HOW JAN TSAO

0.3 0.9
.20 10 S 13524.D0
.20 10 S L.1352400000000000000+0%
P= .20 HN= S NEXP= 10 FRIZK= L12E07 SD= . 03410
0.2 400 S 14%26.D0
.2 409 S L1425 0000000000000D0+05
P= .20 HN= g MEXP= 400 PRIZK= . 12454 ID= . N2372

s THIZ FOUTINE COMTIMUES UMTIL UIER AEOFT.
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Table A.6. A numerical computation program.

This program evaluates:

DCADRF (H,A,B) — where
HT) — 0 — ! £ _(x)
| | 0 2
: - L)
B8 (0 (C(s,T) ; -1 T2
J [ £ (x)dx * £ (s)ds * £ (T)dT /Zr
A c . 0 ) 0
!1__ » — !
L—rF(s)
DCADRE(F,C,D)
READY 12.22.37
- ATTRCH» R» ROMBS.
ATTRACHs As ROMRS.

RERDY 12.22.4°

LISTTYs I=As NS,

PROGRAM ROME3 (QUTPUT)

INTEGER 1ER

REAL DCRADRFsHsFO0sF1sAsByARERRs PERRYERFOR» INTEG
EXTERNAL H

A=-3.11

B=3.11

RERR=0,

HRERR=1 _ E-5 .
INTEG=DCRIRF (Hs R» By RERR s RERRs ERRORs IER)
PRINT 7, INTEG»ERPORs IER

FORMAT (1XsF17.15:3XsF10.853%s I3

END

=~

(]

REAL FUNCTION H<T>

INTEGER IER .
REAL DCRDREsF»FO0;F1,CsDyRERRs RERRsERROR INTEG»Z
EXTERNAL F

coMMOM ~JOINT/2

Z=T

C=-3.11

D=3,.11

RERR=0,

RERR=1 E-S

H=DCADFE (F»C: Ds REFRs RERRs EFROF s IERY &F 1 (T2
RETURN

END

O

REAL FLIMCTION F (33
DOUBLE C

RERL SsPeV¥eZsTHFN0

- y P 1. MDNOR
SOMMON . .z

!rELT orn £J0INT 2. DCADRE
YEC (S TY+1, 3. DCADRF: a binary copy
CALL MONOF 0« P of DCADRE.
F=FeFnii,

RETURM

EMD

IMSL subroutines used:
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s

DOIELE FLUNCTIOM C/SsTD

DOUBLE X1sH2»DRyDBsi5

FERL S»T

X1=S

X2=T

DA=1.+DEXP (2. ¢X2) +DEXP (2. X 1> +3, ¢DEXP (2. ® (X1+x2> )
DE=4.+2. ¢DEXP (2. #X2) +2. ¢DEXP (2, #X 1) +4, ¢DEXP (2. ¢ (41 +X2)D
>=DA-DB

C=0.S«DLOGC(1. =G>50

RETURN

END

D 0wl

REAL FUNCTION FO (X

DOUBLE YsP1

RERL X
PI=3,141592635353979223846264338D0

YaXx

FO=DEXP (=0.Se (Y+1.) *(Y+1.)) /DSORT (2. P>
RETURN

END

REAL FUNCTION F1 (O
DOUBLE YsPI
REAL X
PI=3,14159265353979323346£264338D0
YaX
F1=DEXP (=0,5¢ (Y=1.>+(¥=-1.))>/DSART 2. *P >
RETURN
EMD
*EOROO
<€0I

FERDY 12.24.10
PETLRMs DCADRF.

READY 12.25.49
REWINDsR.

READY 12.26.04
ATTACH, DCADRF» CRSDCADRF.
ATTACHs DCADRF s CRSDCRADRF.

READY 12.26.29

FTNs I=R.

COMPILING ROMB3

COMPILING H

COMPILING F

COMPILING C

COMPILING FO

COMPILING Fi

.220 CP SECOMDS COMPILATION TIME

SERDY 12.26.48

HaL.

HAaL $.37

. *LORDs DCADRF.

L7L3ANLIF0.

LTEECUTE.

EMET BEBUM,18.87. 23,

SEG1 TRITETHEIVE
gMDd FOMEZ
1.9312 CP SECOMDI EXECUTION TIME

SINNNE1S i}
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Table A.7. Monte Carlo simulation of Rn(p,T )s a =1,2
a

RPEADY 12.48.39

LIST,F>NS.
PROGRAM RISK (INPUT,OUTPUT, TAPES=IMNPUT: TAPE6=OUTPUT>

DOUBLE DSEED
REAL R<(6000>,X(100)

MONTE CARLD SIMULATION OF MIXED NORMAL RANDOM VYARIABLES
FOR TESTING N<1>1> ¥S N<(-1,1>
MEXP REPLICATIONS OF SAMPLES WITH SIZE N IS GENERATED
TO ESTIMATE RISK BEHAYIORS OF (1> ROBBIN‘S DECISION PROCEDURE
AND (2> VAN HOWELINGEN‘S DECISION PROCEDURE126=C
WRITE (65350)
0 FORMAT ¢+ 0ey ¢DATA—+)

ol O0Oo00O00

READ ¢S» 100> Py NEXP»sN» DSEED

FORMAT (FS5.25 145 14,D25.18)

WRITE (65200) Py NEXP»s N> DSEED

FORMAT (+0eyFS. 25 3Xs I453X»s 14, 3%, D23. 15

wi | VIR
o o
o [~}

Ly

CALL 66GUBS (DSEEDs NEXP)»R)
RB1=0.0
RE2=0.0
RYH1=0.0
RYH2=0.0

[y R}

DO 1 L=1,NEXP
DSEED=2147433647.+R (LI +1.
SUM1=0.0

SUM2=0. 0

(o]

DO 10 I=1sN
PAR=GGBIR (DSEED»y 15P>
X ¢(I)> =GGNAF (DSEED> + (2. *PAR-1.)
SUM1=X (1) +SUML
. SUM2=TANH (X (1> ) +SUM2
10 CONTINUE

PRB=0.3+SUM1/ (2. *N)
PYH=0,.5+0.90342942+SUM2/N

IF(PRB.GE.1.>60 TO 350
IF(PRB.LE.0.>50 TO 352
CRE=0.5+RLOG((1.~-PRB> 7PRB>
YRB1=CEB-1.
YRE2=CRE+1.
CALL MDMOR C(YRE1,PRE1>
CALL MODMOR CYRBZ,FPRB2?
RE=P+PRE1+{1.~-P)+ (1. -PRESY
G0 TO 2S5

=L0 FE=1, -P
30 T0 254

Rty FE=p



56

) IF<PYH.GE.1.060 TO 230
IF<FYH.LE.0.>530 TO 33&
CYH=0,SeALOG (1. -PYH> ~PYVH>
YYHI=CYH=>1,

YYHZ=CVH+1.

CRLL MDNOR CYYH1sPYH1)

CALL MDMOR (YYHZ s PYHE)
PVaPePYHL+ (1. P} e (1.-PYHE)

G0 TO 450
30 Pysl.-P
:1 G0 TO 450
32 PvaP

=0 RB1=RB1+RB
RBZ=RB2+RB*RB
RYH1=RVH1+PY
RYH2=RVH2+PVYePY
1 CONTINUE

RNEXP=NEXP
SMRB=RB1 /RNEXP
SDRB=SQRT ( (RB2-RMEXPeSMRBeSMRB) / (RNEXP=1.))
SSDRB=2+SDRB/SQART (RNEXP)
SMVYH=RYH1/RNEXP .
SDYH=SQRT ( (RYH2~-RNEXPeSMYHeSMYH) ~ (RNEXP—1.))
SSDYH=2+SDVH/SART (RNEKP)
WRITE ¢55 400> SMRB» SDRRs SSDRB» SMYHs SDVHs SSDVH

400 FORMAT (#0es «ROBBIN ¢»F10.55F10.5,F5.3s¢ ¥ HOU *:8F10.5,F5.3)
END

READY 12.50.09
FTN.
COMPILING RISK
.159 CP SECONDS COMPILATION TIME

RERDY 12.50.37

HAL .

HAL S.37

L7Le0.

EXEC BEGUN.12.31.38.

DATA-0.3 200 S 26138.DO

30 200 ] .2613300000000300000+03
FOBBIN . 19827 . 03320 , 012 vV HOU .19713 .02019 .013
END RISK

.193 CP SECOMDS EXECUTION TIME
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In this appendix we prove Theorem 2.1 and 2.2. The notation
and the following assumptions are from Johnson (1970). The model
assumes Xl, X2,..., i.i.d Pe where Pe has density f(x,6)
with respect to a given o-finite measure yu.

B.1 The parameter space & is a compact subset of El‘ Let
90 denote its interior and © denote the Borel c-algebra
on ®©.

B.2 8 1is identified by Pe.

B.3 f(x,8) 1is jointly measurable in (x,8).

B.4 For each x, f(x,6) admits continuous first and second

partial derivatives with respect to o.

B.5 The measures Pe are mutually absolutely continuous.
B.6 If lim leil = =, then lim f(x,ei) = (0 for all x except
> 'i-»on

for perhaps a null set depending on the sequence.
B.7 For all 6 € @, Eellog f(X,6)| <« and
2
0 < I(e) = -E, [—5 Tog f(X,6)]
38

B.8 For each 90 € @0

,» there exist functions Gl(X) and
GZ(X) satisfying
2
3 ?
35 109 f(X,8)| s Gl(X), l;;? log f(x,0)| g G,(X)
for o 1in a neighborhood of 6, and also E, [GI(X)] < ®
0
and E_ [G,(X)] < ». The functions G, and G, may
60 2 1 2

depend on 8-

B.9 Let f(x,8,0) = sup f(x,9'), p >0
le-6"|<p
and Q(x,y) = sup f(x,8), y > 0.
le >y

57
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For every 6 € ® and o,y >0, f(x,8,0) and Q(x,v)
are measurable functions of x. Moreover, for sufficiently
small p and sufficiently large v,

Ee (log f(x,e,p)]+ < w
0

E, [log Q(x,Y)]+ < for each 9, € @O

0
B.10 For each x, log f(x,6) had 5 continuous partial derivatives
with respect to 6 € ©.
B.11 There exists functions Gk(x) with Ee [Gk(x)} < o

0
and

Iigu-log f(x,8)| g G (x) for e 1in a neighborhood
of 89 € @, k = 3,4,5.
B.12 A is a probability measure on (8, &), A has density
A with respect to the Lebesgue measure. For h € @0,
Nsgy) > 0 and A(+) has 3 continuous derivatives in a
neighborhood of 89

B.13 [ |e|r(e)de < =.
©

Conditions B.1 B.9 are basically those assumed by Wald
(1949) to establish the strong consistency of the M.L.E. and those
of LeCam (1956) to show that the M.L.E. is asymptotically normal.

A weakened one-dimensional verison of LeCam's (1956) Theorem 3.4.1 is

Theorem B.II.1 Let B.1 ~ B.4, B.7, B.8 be satisfied.

Then the maximum likelihood estimator §n is strongly consistent

and asymptotically normally distributed. The variance of the
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limiting distribution of
/n (en(gn) - eo) is 1/[1(60)].

The following Theorem is a specialization of Theorem 3.1

of Johnson (1970) to y =1 and k= 2.

Let
b(s) = T 1?"21 £(X;,0) 1%
8) = [~ = og .0
N 429 502 !
and
a1 !
a3n(6) =n 121 a?' log f(X1,6)/6, 6 € V.

Theorem B.I1.2 Under the assumptions B.1 ~ B.13, there exists

a constant C such that for sufficiently large n depending on

X = (xl,xz,...) belonging to a set of probability one,

A
o
]
—
(]
3

2 '1 x 1 - ~ ."1
IE,(8]x,) - 6, - b™(6ag,(5.) + ¥ (8.)/A(5 )In"L|
where we have abbreviated b(en(gﬂ)), en(én) by b and o .

Proof: See Theorem 3.1 and (3.4) of Johnson (1970). )

For the proofs of Theorem 2.1 and Theorem 2.2 we apply the
above results with f(x,8) = efl(x) + (1-8) fo(x), ® = [0,1], 8 = p.

Proof of Theorem 2.1. It is sufficient to show that the hypothesis

of Theorem 2.1 implies that of Theorem B.II.1. Clearly B.1 ~ B.4
are satisfied. (Recall that identifiability B.2 is a tacit assumption
in our empirical Bayes problem and is implied by P0 and P1 being

different measures in the two state case.)
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Since logarithm is strictly increasing on (0,~], for

8€ [0,17] and for almost all «x
[Tog f(x,8)| s max{|log f;(x)|, [Tog fy(x)]}. (2)

Also,
)2

2 (f,(x) - f5(x)
I = -[-2- log f(x,0)P (dx) = 1 0
(6) faez og f(x,8)P,(dx) = f YA

Pe(dx) >0,
for 6 € @, since u[fl # fOJ > 0. Hence, B.7 is satisfied.
For 8, € (0,1) pick € > 0 such that € < min{eo,l—eo}.
Then for each 6 € (eo-e,e0 +¢) and for almost all x
k
[;gi-log 1"(x,e)|IZ(k-1)1]'1

108 + Fo(x)/(Fy(x)-fo(x)) 1K 5 07K < (o5-e)7

if fl(x) > fo(x)

)-k

fl(X) k k -k
7,y ~LIY/Ce(F 0/ Fp(x0) + (1-6)1 ¢ (1-6)7 < [1-(sg + €)7

if fl(x) < fo(x).

0 if fo(x) = fl(x) >0, k =1,2,3,... (3)
Hence B.8 is satisfied.

Proof of Theorem 2.2 We first show that the hypothesis of Theorem

2.2 implies that of Theorem B.II.2.It is clear that B.5, B.6, B.12,
B.13 are satisfied; also, from the proof of Theorem 2.1, we see

that B.1~ B.4, B.7, B.8 are satisfied.



61
Observe that
f(x,8,0) = f(x,(6-0)VO)ILFy 2 f11 + fx,(6+0)Al)ICF < 17 g max{fy(x),f;(x)
and
Q(x,y) = f(x,O)I[fO 2 f1] + f(x,l)I[f0 < f1ls max{fo(x),fl(x)} (4)

both are log-integrable by (2).
We see that (3) implies B.10, (4) implies B.9. Also, (3)
implies that B.11 is satisfied as well.

Next we show that the result of Theorem B.II.2 leads to

/n (EA(elgn) - en) +0 a.s. P60 (5)
By Theorem B.II.1, én > 38y  a.s. P: » 8y 1is the true parameter,
0
-0
8g € © .
Let
(ofog) = [ - (x,6)P_ (dx)
B(elen) = [ - —5 log f(x,8)P (dx
0 ae2 89
and

3
C(ale,) = f;:aj log f(x,e)Peo(dx).

Together B.8, B.11 and the uniform strong law (Rubin (1956))
implies that

o0

b2(6,) ~1(sg) > 05 a, () » 5 Clegle,) a.s. 7

n
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Also, B.12 implies that

o

A(én) > A(eo) >0 and A'(én) - A'(eo) a.s. Peo.

Therefore, for some M > 0 and for almost all x,

16" (6ag(8,) *+ 3*(3,)/2(6.))| + o™t < m

for large n so that (1) implies (5).
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