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ABSTRACT

ON THE RISK PERFORMANCE OF BAYES EMPIRICAL

BAYES PROCEDURES IN THE FINITE STATE

COMPONENT CASE

By

How Jan Tsao

Since Robbins' introduction of the empirical Bayes approach

to a sequence of decision problems, a large literature has evolved

treating a variety of component problems. Most of the papers

advance empirical Bayes procedures which are asymptotically optimal,

and some establish rates of convergence.

In empirical Bayes decision making, the Bayes empirical

Bayes approach is discussed by Gilliland and Boyer (1979 ). In

the finite state component case. the Bayes empirical Bayes pro—

cedures are shown to have optimal properties in a fairly general

setting and believed to have small sample advantage over the classical

rules. The flexibility of making desirable adjustments for these

decision procedures by choice of prior enables one to set a proper

strategy when dealing with actual problems.

IrI this thesis, a complete class theorem is proved to show

that, at each sample stage, the class of Bayes empirical Bayes

rules is complete, and. under some regularity conditions, that it

is minimal complete. In the two state component case the posterior



mean which generates the Bayes empirical Bayes rules is shown to

be asymptotically normal under certain assumptions.

The use of Bayes empirical Bayes procedures creates some

interesting theoretical and computational problems as the Bayes

procedures are fairly complicated in structure. The thesis also

develops methods of<:omputing Bayes empirical Bayes rules and

determining their small sample risk behavior. In some cases risk

functions are evaluated by numerical methods, and, in other cases,

Monte Carlo simulation is used to estimate risk.
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(iV)

CHAPTER I

FINITE STATE BAYES EMPIRICAL BAYES PROCEDURES

1.1. The component and empirical Bayes decision problems.

Consider the following component statistical decision

with which we shall be concerned. This comprises

A sample space (X,§) and a parameter space (9,3) where

5,3_ are o-algebras on X,o respectively. {P :

e

is a family of probability measures on (X, ) dominated

e e o}

by some o-finite measure u. fe is a density for P6

with respect to u, e 6 Q. X denotes an X-valued random

variable distributed Pe’ conditional on 9.

An action space (A,A) where A_ is a c-algebra on A

containing the singleton sets.

A loss function L: o x A + [0,”) representing the loss

of taking action a in A with e E Q. L(e,-) is measur-

able for each 9 6 n.

The (behavioral) decision rules t(-,-), each a function

of the pair (x,B) where x e X and B E A, having the

measurability properties below:

(a) for each x, t(x,-) is a probability measure

on A,

(b) for each B, t(o,B) is {fmeasurable.



A nonrandomized decision rule is one where for each x,

t(x,-) is degenerate. The set of (behavioral) decision

rules is denoted by A.

For any t, the expected loss when a is the true para-

meter is

R(e.t) = ffL(e,a)t(x,da)Pe(dx).

Let G denote the class of all probability measures (priors) on

g. with respect to which the t-sections of R(e,t) are measurable.

The Bayes risk of t versus G is

R(G,t) = f R(e,t)G(de).

tG is called a Bayes rule with respect to G if its Bayes risk

attains the infimum Bayes risk

R(G) = inf R(G,t).

tGA

He will assume that R(G) is attained for each G 6 G.

Throughout our discussions we will consider a = {0,1,...,m},

m

n = 2“, and assume that P = I g p is identified by

G = (go....,gm). G 15 the m-dimensional s1mplex in Em+1’ the

m+1-dimensional Euclidean space. We will call R(-,t) the risk

function of t and R(-) the Bayes envelope defined on G.

Consider the empirical Bayes decision problem. In it the
 

component decision problem just described occurs repeatedly and

independently. Thus, let (61,X1), (92.x2),...,(en,xn), (e X ),...
n+1’ n+1

be iid with Si having distribution G and, conditional on



e X. having distribution Pe . The marginal distribution of
i’ 1 1

Xi is the mixture PG’ Based on the initial observations

5“ = (x1,...,xn), a component dec151on rule Tn(§n) 15 selected

and evaluated at x to reach a decision about en+1’ n g 1.
n+1

Thus, an empirical Bayes decision rule for reaching a decision

about en+1 is

Tn(5n)(xn+1’°)’ n g 1.

The goal is to use the information about G from the

initial observations to construct a rule Tn whose risk behavior

is close to that of the Bayes rule tG(xn+1")' In general, more

information about G will be available with increasing number of

observations. We will consider an empirical Bayes procedure as

a sequence T = (T1,T2,...) of empirical Bayes decision rules

n+1
where for each n, Tn is a function on X x A_ such that every

x" = (x1,...,xn) -section is an element of A, the class of component

decision rules, and such that for each a e a, R(e,Tn(xn)) is

a measurable function in 5".

For each n, we let Tn denote the collection of all possible

Tn defined as above. The use of Tn against prior G incurs

the unconditional component Bayes risk

_ n

Rn(e,1n> - f R(e,1n(gfl))PG(d§n), n g 1

where here and throughout a symbol for a measure with a superscript

indicates a product measure. Since Tn(xn) 6 A for each .5" 6 X",

we see that for all n, Rn(G’Tn) R(G), the minimum component

I
I
V



Bayes risk. Observe that

Rn(G,Tn) = ER(G.Tn(§n))

= ago 96 I R((6, Tn(_‘n )) PG(dx )

m n m

= a; 96 f R(e.Tn(x )){,§1 [jéo fj( ) J} u ( _n)

= ? g (930. .glm)H (e 20, . ,2 ) (1-1)

e=0 10+. +2 = n 9 m
m

where

m

Hn(e,20,...,2m) = BX*""Bm f R(e Tn( )){ j-no iij fj (x1 )} u"(dxn)

'81) =

i = 0,...,m

The summation above is over partitions {B .,Bm} of
0’8 1’”

{1,2,...,n}, and the second summation in (1.1) is over all partitions

£0,£1,...,£m of the integer n, i.e., integers 2i g 0 with

Z 1i: n. From (1.1) we see that the risk function Rn(-,Tn)
i=0

is determined by the collection of coefficients

{Hn(e.20....,2m)|e= 0,...,m; ; 2. = n, 2. i o, i O,..,m} (1.2)

which in turn, can be identified by an element of of the space

EN, where by Feller (1975, (1L5.2)),~ =(m + 1) m+"). This remark

will prove useful in Section 1.4.



Definition 1.1. If lim Rn(G,Tn) = R(G) we say that T is

n

asymptotically optimal relative to G(a.o.[G]). If T is a.o.[G]

 

for all G E G, we say that T is asymptotically optimal (a.o.).

* . *.

Def1n1t1on 1.2. For Tn,Tn e Th,Tn 15 as good as Tn 1f

*
*

Rn(G’Tn) : Rn(G,Tn) for all G 6 G. Tn lS better than Tn

. *
*

lf Rn(G.Tn) ; Rn(G,Tn) for a11 G e G and Rn(G,Tn) < Rn(G’Tn)

for at least one G e G. Tn is equivalent to T: if

*

Rn(G,Tn) = Rn(G,Tn) for all G 6 G.

Definition 1.3. Tn is said to be admissible if there does not

exist an empirical Bayes decision rule in Tn that is better than

Tn. T is called an admissible empirical Bayes procedure if Tn

is admissible, n g 1.

Listed below are some desirable properties of an empirical

Bayes decision procedure T = (T1,T2,...).

(i) T is a.o.

(ii) Rn(G,Tn) converges to R(G) rapidly for all G 6 G.

(iii) T is admissible.

(iv) Tn has good risk behavior for small to moderate

values of n, that is, Tn is suitable for use

even when large numbers of observations are not

available.

(v) An algorithm for computing the decision rules is

available and can be executed economically.



(vi) T can be adjusted systematically to improve its

performance on many specified subsets of G.

We will judge the performance of an empirical Bayes procedure

on the basis of properties (i) - (vi) mentioned above.

Section 1.2. Bayes empirical Bayes
 

Let IQ be the Borel o-algebra of subsets of G. The

Bayes approach to the empirical Bayes decision problem considers

possible priors on (G,G). First we give the following definitions.

Definition 1.4. An empirical Bayes rule Tn 6 Tn is Bayes with
 

respect to a prior A on G, if it is a infimizer (across Tn) of

Rn(A,Tn) = j Rn(G,Tn)A(dG)

Definition 1.5. T is said to be a Bayes empirical Bayes procedure
 

if Tn is Bayes, n g 1. T is said to be a Bayes procedure with

respect to a prior A if Tn is Bayes with respect to A, n g 1.

To construct a Bayes empirical Bayes rule at stage n, it

is convenient to introduce the component risk set, S = {§j=(so,...,sm)|

for some t e A, 51 = R(i,t), i = 0,...,m}. S is a convex subset

of E"1+1 which we will assume is compact throughout this thesis.

We will use the following theorem (LeCam (1956, Theorem 3.3.2)).

Theorem 1.1. Let (X,X) be a measurable space and let a be a

compact metric space. Let f(x,e) be a function from X x 9 to

the real line. Assume that f is measurable in x for each a



and continuous in e for each x. Then it is possible to find

a function é(x) which is measurable in x and such that

f(x,é(x)) = inf f(x,t). D

t€®

For a g1ven A, Tn e Tn

Rnwn) N

m x

A

m —
.

A

I

m

A

‘ E(A) 620 R(O, T"(m )))EA(gelX)

Here EA(G|Xn) is G-valued conditional expectation corresponding

to the conditional distribution of G given X and E(A)

corresponds to the mixture P U)()= f P3( -)A((dG) Since

(R(0,Tn(xfl)),... ,R(m, 1n(_" ))) e s for all 5“ and Tn, to minimize

Rn(A,Tn) we seek a function 5: Xn + S such that 6 is measur-

able and

m

X 69(X )E (9 IX ) = inf Z 56 EA (9 IX )

e=0 T" A 6* ses e=0 em

where 6(Xn) = (50(Xfl),...,5m(Xn)). By Theorem 1.1, such a 6

exists.

Suppose 5 is a measurable version, and for each 5",

Tn A(x ) e A 15 such that

5%,) = R(e1 <n,A )), e = 0,...,m. (1.3)x
—n



Then

T 6 Th and Rn(A,Tnn,A ) = 1nf R (A,T ).
, A n n

The Tn

Also note that the Bayes empirical Bayes rule Tn is pointwise
A

component Bayes with respect to EA(G|§n) = (EA(gO|§n),...,EA(gm|§n)).

In what follows we sometimes will use the notation GA(§n) in-

stead of EA(G|§n).

For a given prior A, let Tn A 6 Tn denote a Bayes empirical

Bayes rule with respect to A which has the above form. We first

discuss conditions that assure that Tn A is a.o.. Oaten (1972,

(1.6 )) shows that

0 g R(G,tF) - R(G) g M HG-Fn (1.4)

for all F,G e G. Here M is a bound on the component risk,

“-fl is the 11 (total variation) norm on Em+1' Under the

assumption that A has support all of G, Gilliland and Boyer

(1979) prove that

llm UGA(§H) - G“ = 0 a.s. PG for all 6 E G. (1.5)

where PE is the probability distribution of x1,x2,... . Thus,

in the bounded risk case,(ld4l with F = GA(§n) and(1.5) establish

is a.o., that is,that Tn,A

lgm Rn(G’Tn,A) = R(G) for all G 6 G.



The above shows how the question of asymptotic optimality

in the finite o Bayes empirical Bayes problem can often be re-

duced to a question of the consistency of the estimator GA(§n)

for G.

To obtain the form of GA(§n), note that the conditional

dens1ty of 5n 15

n

n -
f (zfllG) - 1:1 jEO fj(x)gj

Hence the conditional probability of G given 5n has density

_ n n
f(G|xn) - f (xfllG)/ f f (xfllG)A(dG

with respect to A and

G(M5“-f Gf(G|X )A( dG) (1.6)

9 _
We denote the components of GA(§n) by gA(§n), e - 0,1,...,m.

We now develop an algorithm for computing GA(§n). Here

we will represent G by the m-dimensional simplex in Em

m

S = {gm = ($1,.. .,sm)|s. > 0, i = 1,...,m, E s. g 1}

 

m i = j 1 J

m

and for gm 6 3m let s0 = 1 - jgl sj. By (1.6)

n

fse H { 2 SJ )} A d(s )

9A (1“) = i 1 m50 (1.7)

figlioE sjj)(f(1.)}A(d§m)
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2 +2 + +2 = n 52 2 (5n)”g 1
0 "' m 0’°'°’ m 0’°'°’ m , B=l,...,m (1.8)

= X ) u
£0+21+...+2m n 20,..., m —n £0""’£m

where for each nonnegative integer partition 20,11....2m of n,

m

5") = Z { n n [f.(Xi)-fO(Xi)l} n f0(XS ( . J

m BO""’Bm J=1 168. 1630
20,...,2

-)},(1.9)
l

J

IBOI = 20,...,|Bm| = 2m

Here B U...UBm = {1,...,n}, BinB' = ¢, i,j = 0,...,m,

1 J

I 21 lm
u = s .. s A (ds )
20, ,tm S 1 m

m

and

6 11 m

“2 , ,2 = f (51 . Sm ) S6 A (ds“). 6 = 1, ,m

0 m S
m

The following theorem leads to a convenient way of computing

(1.9).

Theorem 1.2. For each n g 1 and set of real numbers {a.jli=l...-,n;

j=0,...,m} define the function Qn on Sm by

(a1.0 + ails1 + ... + aimsm)'

O A

U
)

H

0 U

U
)

V

I
I

"
:
2
1
:
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For each nonnegative integer partition 20.11,...,2m of n, let

C2 1 denotes the coefficient for the term
0,...,m

21 22 2m
s1 s2 ...sm in the polynomial expansion for Qn‘ Then

C = a - C . n z 2, 1.10
£0,...’£m j=0 nJ 10,...lj'1,...£m "

with the convention Cn'1 = 0 if some k. = -1.
k0,.oo,km J

3399:, The proof follows from the uniqueness of the coefficients

n . .
C10"°"£m in the polynomial Qn' D

To find all coefficients of Qn(sl,...,sm), n g 2, we go

through equation (1.10)

n m

X ({(2 ,...,2 )| Z t. = k; z. 2 0}]

k=2 0 m i=0 ‘ ‘

-("""‘1>(+2)
- m + l ' m

m+1
n

”m1.

times (see Feller (1957, (II.5.2) and (II.12.8)), where the sign

m is used to indicate that the ratio of the two sides tends to

unity as n + m. The limiting form is obtained by applying the

Stirling's formula (Feller (1957)) and the l'H6pital's rule. To

apply Theorem 1.2 in computing (1.9), for each 5n 6.x", we let

aij = fj(xi) - f0(xi) and a1.0 = f0(xi), 1 = 1,..,n, j = 1,...,m.

Then for each nonnegative integer partition £O’°"’£m of n, we

have 51 Hence by (1.8),(x ) = Cn .
0’°"’£m —n £0’°"’£m
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2 + 1 +2 - n C: 1 “Z 2

92(En) 3 0 m 0 m 0 m a 9 = 1,...,m. (1.11)

1 en u

2.0+ 'HLm '-" n 2.0, .,flm 2.0, ,lm

Note that 92 (5”) depends on A only through a finite number

of general moments of A. The computation of (1.11) is, in most

cases, more efficient and accurate than a direct numerical inte-

gration in (1.7) or a direct evaluation of (1.8). Even in the case

m = 1, a direct evaluation of 9: (5n) through(1”9) is not feasible;

in most cases, however, the application of (1.11) results in an

efficient and accurate evaluation. Chapter 2 provides a detailed

example.

Of course, computation with (1.11) is simplified when those

general moments of A can be evaluated easily. Here we consider

one such example:

EXAMPLE. (Bayes empirical Bayes with Dirichlet priors.)

Let 0(a1,...,am,a0) denote the m-variate Dirichlet distribution

on the simplex Sm which has probability density function

P(ao+...+am) a -1 am-1 -1
_ 1 0‘o

f(§m) - r(a0)1..r(am)’ s1 ...sm (1-51-...-sm) , §m 6 Sm, 

where the o. are all real and positive. If we let
1

A = D(a ,...,am,a0), then it can be verified (Nilks (1962), (7.7.6))
1

that the general moment pl 2 of the m-variate Dirichlet
0,000, m

prior A has the following value

u : r(a1+21)...r(am+2m) F(a0+...+am)

20,...,zm P(oi)... r(ah)' r(a0+...+am+21+...+2m)

 



13

Section 1.3. A complete class theorem
 

Gilliland and Boyer (1979) have suggested that, for each

n, the study of empirical Bayes rules in Tn can be viewed as

a study of the class of nonrandomized decision rules in a decision

problem (G,D,Rn), so that the class B of Bayes empirical Bayes
n

rules is the class of Bayes rules in (G,D,Rn). In this section

we will prove that, in a large number of empirical Bayes problems,

Bn is a complete class for (G,D,Rn). The results apply to each

stage n, n > 1.

Definition 1.6. A class C of decision rules Cc: D, is said

to be complete, if, given any rule t in D not in C, there

exists a rule t* in C that is better than t. A class C

of decision rules is said to be essentially complete, if, given

any rule t not in C, there exists a rule t* in C that is as

good as t.

Consider the decision problem (G,D,Rn) with sample space

{xn,§h), parameter space (6,2), (Pg: 6 e G} a family of pro-

bability measures on (Xn,§h) dominated by u",§n distributed

P3 conditional on G, action space (S,§) where §_ is the Borel

o-algebra on S, loss R: G x S + [0,w) with R(G,§) = E 9656.

The class of nonrandomized rules D is represented by th:_glass

of measurable transformations form (Xn,§h) to (S,§). Using

1
rule d = (d0,d ,...dm) 6 o, the expected loss when G is the

true parameter is



"
'
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mm41-Immu%n$w%>

(1.12)

E fd9( )P"(d )9:0 96 5n G in

Note here (1.12) and the fact d(xn) e S implies that each

Tn e Tn determines a d e D such that Tn’ d have the same risk

function; conversely, for each d 6 D there exists a Tn e Tn

with the same risk function.

Let A be a prior on 95 the Bayes risk of d 6 D is

Rn(A,d) = f Rn(G,d) A (dG).

A Bayes rule with respect to A is a rule dA E D such that

R (A,dn A) = inf R (A,d).

deD “

Our discussion is restricted to nonrandomized rules because for

t 6 0,0 denoting the class of behavioral rules, we have

Rn(e.t> fj'R<e.§)t(gfl.d§)P3<d§fl)

m

a; 99 ff §t(5n,d_s_)P2(d§n).

For each x“, def1ne

Then, according to Lemma 2.7.3. of Ferguson (1967), we have

d(xfl) 6 S. This implies d e D and d,t are equivalent (De-

finition 1.2). Therefore, the discussion of t E U is redundant
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as far as the risk behavior is concerned and we may restrict our con-

sideration to the class of non-randomized rules D.

Assume that 5_ is generated by a countable number of sets

and recall S is a compact, convex subset of Em+1. From previous

discussions we know that the question as to whether Bn is complete

is reduced to the question whether B, the class of nonrandomized

Bayes rules in the game (G,D,Rn), is complete. To study this,

we need the following lemma.

Lemma 1.1. A compact convex subset S of Em+1 is an intersection

of countably many closed half spaces which contain it.

Proof:

Let Qm+1,Q1 denote the rational points in Em+1’El’

respectively, and define the countable collection of closed half-

spaces,

S={H={x_|b'_x§c}|§€ Qm+1,cEQ1 and S: H}.

We will show S = ns. Obviously, St: n 3 so it remains to show

03: S.

Let g_£ S. The separating hyperplane theorem (e.g.,

Rockafellar (1972), Corollary 11.4.1.), implies there exist

60, c0 such that for all §_€ S, 96§_§ c0 and c0 < 9633 Let

A = (Q6; - c0)/3. The fact that S is bounded and Qm+1 is

dense implies the existence of a b_€ Qm+1 such that for all

§.€ 5’ ELE ; CO + A and 963 - A g bfg, The denseness of Q1

establishes the existence of a c 6 0 such that c‘1 0+A<c<b_0§_-A.
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Then 5:: {§JQf§_§ c} = H and c < bfa so a e H. Since H 6 S,

_a_£ns. E]

The remark preceding Definition 1.1 of Section 1.1 implies

that in the bounded S case, all empirical Bayes risk functions

Rn(G,d) are polynomials in G = (90,91....gm) on G. Identify

a d 6 D by the risk function which in turn is identified by a

vector g = (g1....,g") of coefficients in the polynomial. Let

Q = {gld 6 D} and let H-H denote the usual Euclidean norm

1n EN.

Theorem 1.3. Q is a compact subset of EN.

3392:; The proof will be based on the fact that D is (component-

wise) weakly compact.

Since Q is a subset of a metric space it is sufficient

to show that D is sequentially compact (Munkres (1975) p. 181),

that is, every sequence in Q has a convergent subsequence. Let

{gi}‘: Q. Let {d1} be a corresponding sequence in D such that

g, is generated by di' Since {d1} is bounded, by the weak

compactness theorem (Lehmann (1959), p. 354), there exists a real

valued measurable function d8 and a subsequence {dg } of

0 1

{di} such that

113m I dg.(§n)h(§n)un(d§n) = f dgunhunmdx 1
l 1

for all integrable h.

Again, apply the weak compactness theorem to the sequence

{di }. There exists a real valued masurable function d3 and

i

a further subsequence {d%.} of {d%.

1 1

} such that
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1mfd1m1Mxh"(%Id(xn%)"w%1
l '1

for all integrable h.

Repeat the above process we obtain a measurable transfor-

0. n a m
mat1on from X to Em+1, d0 (do....,do) and a subsequence

{dk } of {d.} such that
i 1

lEm f d:i(xn)h(xn)un(dx) = f d8%)h(x )u" (dx ) (1.13)

for all integrable h and for e = 0,...,m. By the expression

following (1.1), each coefficient of dk in the polynomial

i

Rn(G,d is of the form (1.13) so from (1.13)
k1.)

11m “Qk. ' £10“ =

1 1

It remains to be shown that do 6 D or equivalently,

Pg [do 6 $1 = 1 for all G e G. Let

S = {H = {xlb'x g c}|b€ le. c E Ql and S: H}. We claim that

n
PG [dO E H] = 1 for all G e G and H E 3. To see this, suppose

I

9.5 Em+1, c 6 E1, and b_§_§ c for all §_€ S. Then

n n
P G [Ed0 > c]

"
A

M
S 0
'

O
.

O

A

X

V

—
h

(
T
)
3

A

11

1
1
M
B

—
l

—
l

c
-
J

a

fi
g
.

0
'

(
D

a
.

7
r
d
)

A



A

O '
U

(
I
)
:

r
1

[
0
"

D
.

O

V O 1.
..

:

Q

where the last inequality follows from the fact bfdk.(xfl) c

I
I
A

1

for all i. Therefore, we have P2 [bfdo > c] = o, i.e.,

P3 [bfdo ; c] = 1. This proves the claim.

From the fact that S is countable and the above claim,

we obtain the result

-n 1=n .
1 - PG {HES [d0 6 H1} PG [do 6 n S] for all G 6 G.

But Lemma 1.1 shows that s = ns. Therefore Pg [d e 51 = 1
O

for all G E G. This completes our proof. D

Corollory 1.1 There exists a topology on D such that (a) D

is compact and (b) Rn(G,d) is continuous in d e D for all

G E G.

Proof: Define o to be a function on D such that o(d) = g

for all d e 0. Then the collection of sets

F = {m-1(A)|A open in Q}

is a topology on D such that o: D + Q is continuous. Since

o is onto, if Q is a covering of Q = ¢(D) then

{o-1(A)|A E Q} is a covering of D. Hence the compactness of

Q from Theorem 1.3. implies that (D,F) is compact.

Form the polynomial form of Rn(G,d), Rn(G,d) is a linear

combination of g‘ = Hio¢(d), i = 1,...,N where
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Hi: EN + El, 1 = 1,...,N, is the projection map. Therefore the

continuity of H1°¢a i = 1,...,N, implies that Rn(G,d) is continuous

in d E D for all G e G. D

Definition 1.7. A rule d e D is extended Bayes if for every
 

e > 0 there is a prior distribution A such that

Rn(A,d) g inf Rn(A,d) + e

dED

The following theorem follows immediately from Corollary

1.1 and Theorem 2.10.3 of Ferguson (1967).

Theorem 1.4. The class of extended Bayes rules in D is essentially
 

complete.

Theorem 1.5. Any extended Bayes rule in D is a Bayes rule.
 

Proof: For d e D, Rn(-,d) is continuous in G. Let d e D be

an extended Bayes procedure. Then for each positive integer N,

there exists a prior distribution AN such that

] Rn(G,dAN)AN(dG) g f Rn(G,d)AN(dG)

; f Rn(G.dAN)AN(dG) + l/N. (1.14)

Since G, a closed subset of [0,13m, is compact, the class

{AN}:=1 is tight. By the Prohorov theorem (Billingsley (1968))

{AN};=1 is relatively compact which means that there exists a1

pr1or A and a subsequence {AN}N=1<: {ANlN=1 such that AN

converges weakly to A as N + w.



Con

The
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Consequently,

I Rn(G,dA)A(dG)

"
A f Rn(G,d)A(dG)

1am I Rn(G,d)Afi(dG)

I
I
A TEE'I Rn(G,dA&)A&(dG) by (1.14)

g Em f Rn(G,dA)Afi(dG)

= j Rn(G,dA)A(dG).

The above shows that d is Bayes with respect to A. B

Our complete class theorem follows directly from Theorem

1.4. and Theorem 1.5.

Theorem 1.6. The class of Bayes empirical Bayes rules is complete.

Proof: From Theorems 1.4., 1.5. we know that the class of extended

Bayes rules is equal to B and is essentially complete. There-

fore, for d E B, there exists a Bayes rule dA such that

Rn(G’dA) g Rn(G,d) for all G e G. If "=" holds for all G

in G then d is Bayes with respect to A, a contradiction, so

dA is better than d. This implies that B is complete. U

Definition 1.7. A class C of decision rules is said to be minimal

complete if C is complete and if no proper subclass of C is

complete.

It is also of interest to know when the class of Bayes

empirical Bayes rules will constitute a minimal complete class.
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The minimal complete class, when it exists, is exactly the class

of admissible rules. Since Bn has been proved to be a complete

class, any admissible rule will be in Bn' It is then sufficient

to find conditions under which the Bayes empirical Bayes rules

are admissible. The following remark is needed in the proof of

Theorem 1.7.

Remark 1.1. If the members of {Pele e a} are mutually absolutely

continuous then so are the {PGIG e G} which implies that the

product measures {PEIG E G} are mutually absolutely continuous

and equivalent to any mixture P(A).

Theorem 1.7. Suppose that {P e e 9}, are mutually absolutely
 

6’

continuous and that the Bayes component decision rules are unique

up to risk equivalence. Then the class of Bayes empirical Bayes

rules is minimal complete.

Proof: Since the class of Bayes empirical Bayes rules is complete,

if we show that the Bayes empirical Bayes rules are admissible,

then Bn is minimal complete.

For a given A, let T be the Bayes empirical Bayes
n,A

rule with respect to A as defined in (1.3). Then for Tn E Th,

( ),1 (x )) (1.15)
R(GA(-)£n)’ T n,A —n

)) ;R(G(nln win

Suppose Tn E Tn is Bayes with respect to A. Then

Rn(A,Tn) = Rn(A’Tn,A) (1.16)
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and (1.15) and (1.16) implies

_fl n fifl)) = R(GA(§n). Tn A(5,1)) a.s. P(A)' (1.17)

By our hypothesis, the Bayes component rules are unique up to risk

equivalence, which means if t1,t2 E A are Bayes with respect

to G, then R(e,t1) = R(e,t2), e = 0,...,m. This and (1.17) im-

plies that

R(e,Tn(xn)) = R(e,Tn,A(xfl)), e = 0,...,m. a.s. P(A)

By Remark 1.1, the above equalities holds a.s. PnG for all G E G,

so that

Rn(G,Tn) = Rn(G,T ) for all G e G.

i.e., Tn is equivalent to Tn Thus, the Bayes rule with

,A°

respect to A is unique up to risk equivalence. It is well known

that if a Bayes rule is unique up to risk equivalence then it is

admissible. U

Empirical Bayes classification between N(-1,1) and

N(1,1) is a decision problem satisfying the hypothesis of Theorem

1.7. This example is the subject of computation and study in

Section 2.3.

Boyer and Gilliland (1980, Theorem 4) point out how the

continuity of risk functions Rn(G’Tn) in G ensures that Tn,A

is admissible if A has support all of G.
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Section 1.4. The classification problem
 

In this section we will derive the form of the Bayes empirical

Bayes rules for classification problems. A classification problem

will provide an example for the application of the algorithm de-

veloped in (1.11) for computing Bayes empirical Bayes rules. In

a classification problem, an observation is to be classified as

comming from one of m + 1 distributions. Specifically, we let

A = {0,1,...,m} = Q and the loss be a if an incorrect classifi-

cation is made and 8 if a correct classification is made,

a > 8 g 0.

Recall, G = (90,...,gm) represents a probability measure

on Q. Conditional on X = x, the distribution of 6 has density

m

f(elx) = fe(x)ge/jE0 gjfj(x) e = 0,...,m.

For each a 6 {0,...,m} and x e X,

E L(e.a)f(elx)

e=0

E(L(6.a)IX)

a - (a -B)f(alx)

I
I
V a - (a -B) max f(ilx)

169

Define dG(X) max {e|f(e|X) = max f(i|X), e 6 Q}

169

max {elfe(X)ge = max f.,(X)gi. e e a} (1.18)

169

Then dG is a non-randomized component decision rule which is

Bayes with respect to G.
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From the discussions in last section we know that Tn A(xfl

choses a Bayes component rule with respect to GA(xn). Therefore,

to implement the Bayes empirical Bayes rule with respect to A,

first evaluate GA( ) and then replace fe(x)ge in (1.18) by
in

f,(xn,1)gi<xn).

It is known (Ferguson (1967)) that when both R and A

are finite, the risk set S is compact. Hence in classification

problems, Theorem 1.6. implies that the class of Bayes empirical

Bayes rules 8" is complete at each stage n g 1.

)



CHAPTER 11

TWO STATE BAYES EMPIRICAL BAYES PROCEDURES

The studies based on a two state component decision problem

have a long history. Robbins (1951) studied the compound decision

problem and discussed both bootstrap and Bayes rules. After that,

Hannan and Robbins (1955), Hannan and Van szin(1965), Huang (1970),

Van Hbuwelingen(1974), Shapiro (1974), Gilliland, Hannan and Huang

(1976), Snijder (1977) have studied two state component decision

problems through either the compound or empirical Bayes approach.

Some of these discuss the rate of convergence for a.o., some discuss

finite state risk behavior. Only Snijder found a complete class

among a class of decision procedures under consideration.

In this chapter, we will study the two state component

Bayes empirical Bayes procedures. Section 2.1. formulates the

classification problem between two subpopulations and applies the

computing algorithm developed in Section 1.2. to evaluate the

Bayes empirical Bayes rules. In Section 2.2. we give sufficient

conditions under which the limiting distributions of the posterior

means are asymptotically normally distributed. In order to illus-

trate the properties of Bayes empirical Bayes procedures we examine

empirical Bayes classification between N(-1,1) and N(1,1) in

25
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Section 2.3, where we know that the class of Bayes empirical Bayes

procedures is minimal complete at each stage n. With the help

of the algorithm developed from (1.11), the computations of the

risk functions are simplified, so that in Section 2.4. we are able

to compare the risk performance of Bayes empirical Bayes procedures

with other empirical Bayes procedures for selected priors A and

11. Van fbuwelingen (1974) has discussed the empirical Bayes approach

to the classical problem of testing a simple hypothesis against

a simple alternative. He has proposed a non-Bayes empirical Bayes

procedure as an improvement over the original Robbins rule. The

fact that the Robbins and Van Houwelingenrules are inadmissible

is also established in Section 2.4. Section 2.5 explores their

risk behavior and compares it with that of selected Bayes empirical

Bayes procedures.

Section 2.1. Testing simple hypothesis against simple alternative
 

In order to demonstrate the feasibility of Bayes empirical

Bayes approach we study a two state classification problem, i.e.,

m = 1, with the following component model:

9 = {0,1} = A

P0, P1 have dens1t1es f0, f1 respect1vely

Loss function

1 if e f a

L(e,a) =
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Identify G by the mass p it puts on 1, so e.g., we write

R(p,t) in place of R(G,t). Thus Pp has density

fp = pf1 + (1-p)fo, P E [0.1] = 31.

version of a component Bayes rule is

From (1.18), a nonrandomized

I
I
Vtp(x) = 1 if pf1(x) (1-p)f0(x) (2.1)

A0 if pf1(x) (I-p)f0(x).

Now let pA(Xn) denote 9A(5n)' By (1.7)

I p n tpf1(x) + (1-p)f0(xi)11(dp)

 

0 =1
pA(Xn) = 1 n

I0 151tpf1(xl) + (l’p)fo(X1)JA(dP)

- Sn(5n)mn+1+---+ 50(5n)m1
(2.2)

 

Snuhmn +"'+ 31(Xh1m1+so(5h7

1 .

where m1 = f p‘A(dp); and, for Bc: {1,...,n}, |B| = cardinal

0

number of B and

n [f1(Xi) - f0(Xi)] U fOJ.(X ) k = 0,1,...,n

168 jEBO
k(-n g

|=k|B

Direct computation of pA(Xn) by (2.2) involves the search of

(E) subsets of {1,...,n} for each value of Sk(§n) (Zn in total)

and by Stirling's formula (:")~(wn)‘1522n increases quite rapidly.

To apply Theorem 1.2. in this special case (m=1), observe

that the function Qn on 31 = [0,1] is
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"
:
1
3

Q (S) =
n (310 + ails)’ " "

V H

i 1

Let C2 denotes the coefficient for the term 5k in the polynomial

for Qn' Then (1.10) becomes

n _ n-1 n-1

. n-1 _ n-1 . .

w1th C_1 - Cn = 0. Hence, to compute all the coeff1c1ents

of Qn(s), we only need to go through the recursive definition

(2.3) (n2 + 3n - 4)/2 ~ n2/2 times.

Let a].1 = f1(x1)-f0(xi); a].0 = f0(x.), i = 1,...,m. Then

n

 

Sk(xn) = Ck; k = 0,...,m, and, therefore,

n n n
_ Cn mn+1 +...+ C1 1112 + C0 m1 2 4

pA(5n) ' n + + Cn + cn ( ' )
Cn mn ... 1 m1 0

has the form of (1.11). (Note that pA(xfl) depends on A only

through the first n + 1 moments of A.) The Bayes empirical

Bayes rule is given by (2.1) with p = pA(Xfl) as in (2.4); this

was discussed in Section 1.4.

He now turn to risk behavior. For Tn,A the conditional

expected loss g1ven X“ is

R(p’Tn,A(ln)) = R(p.t

l
l

—
h

H

A

fl
-

V

C
1
.

d

+

A

H

I

U g
—
w

—
h

Also, the risk function R (.,Tn n,A) has the form
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n

Rn(p,Tn A) = I R(p.Tn’A(§n)) 1:1 fp(xi)d>_<n (2 6)

which is a polynomial in p with degree at most equal to n + 1.

From the observations in Chapter 1, we see that a Bayes

empirical Bayes procedure TA = (T1 T ..) has the properties

(1')

(ii)

(iii)

(iV)

(vi)

,A’ 2,A"

TA is a.o. if A has support (091)

Tn A is admissible, if A has support (0,1)

Tn,A is admissible, if {Pele e a} are mutually

absolutely continuous and if the Bayes component rules

tp are unique up to risk equivalence. Admissibility

results in a good risk performance for small values

of n.

Tn,A 6 8", 8n is a complete class, n g 1.

An algorithm for computing the decision procedure is

based on (2.4) which can be executed economically.

The performance of Tn can be adjusted by choice of A.
,A

Low risk over a region of [0,1] is obtained by

choice of A concentrating on that region.

In later sections we will study the risk performance of

T along with other empirical Bayes decision procedures. All
n,A

the properties (i) - (vi) above will be demonstrated in a class of

examples. Also, for notational convenience n will not be displayed

in denoting empirical Bayes rules. It will be clear from the con-

text whether a sequence of decision rules (procedure) or a decision

rule is being discussed.
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Section 2.2. Asymptotic property of pA(Xfl)

 

This section is a slight digression in which asymptotic

properties of the posterior mean pA(Xfl) and maximum likelihood

estimator 5(xfl) are stated. The proofs aredeferredtunfil Appendix

B. A theorem of LeCam (1956) is used to prove the asymptotic

normality of Jfi'(5(xn) - p) and one of Johnson (1970) to prove

the asymptotic equivalence JR (pA(Xfl) - 5(Xfl)) + 0. The approach

is similar to that of Shapiro (1972) in establishing the asymptotic

normality of the cut point in the Bayes empirical Bayes rule.

The product of mixtures density f3(xn) is continuous in

p 6 [0,1], a compact subset of 51' Theorem 1.1 ensures the exis-

tence of a maximum likelihood estimator 5. Whereas the evaluation

of 6(Xfl) is a difficult computation, the Bayes estimator is easily

computed by the recursive formula developed in Section 2.1.

Gilliland, Hannan and Huang (1976) show that the maximum

likelihood estimator 5 is consistent for the empirical proportion

of states "61 = 1" in the independent non-identically distributed

compound model and the consistency result is inherited by the em-

pirical Bayes model. Likewise, their results on the consistency

of pA transfer to the empirical Bayes model. The theorems to

follow place stronger assumptions on the model and prior but yield

the asymptotic normality in addition to the consistency for p

in the interval (0,1).
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Theorem 2.1 If fllog fi(x)|Pj(dx) < w for i,j 6 {0,1} and the
 

true parameter pO 6 (0,1), then

p(Xfl) + p0 a.s. P

and

‘ -1 . . . .

/fi(p(§fl) - p0) + N(0,I(p0) ) 1n d1str1but1on

where

32

= - l f1(1)) Ep'a‘p'f 09 p(x)

Proof: (In Appendix B) D

Theorem 2.2 Suppose A is a prior on [0,1] which has density
 

A with respect to the Lebesgue measure where A(p0) > 0 and

A(-) has three continuous derivatives in a neighborhood of the

true parameter pO 6 (0,1). If P0, P1 are mutually absolutely

continuous and if fllog fi(x)|Pj(dx) < w for i,j 6 {0,1} then

(D

(5(PA(£n) - 5(1fl)) + 0 a.s. Pp0

Proof: (In Appendix B) D

As a consequence of Theorem 2.1 and Theorem 2.2, under the hypothesis

of Theorem 2.2, pA(Xn) + p0 a.s. Pcop0 and (R(pAQn) - p0) +

N(0,I(p0)'1) in distribution.
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Section 2.3. Optimal properties and risk performance of Bayes

empirical Bayes procedures for classification between N(-1,1)

and N(1,1).
 

To illustrate the risk performance of Bayes empirical Bayes

procedures we will study the following example.

EXAMPLE: Testing N(-1,1) against N(1,1).

1, f0(x) = (2n)-%exp{—(x+1)2/2}

and f1(x) = (Zn)-%exp{-(x-1)2/2}. By (2.1) a nonrandomized version

In this example we have X = E

of a component Bayes rule is:

f
f

A

X

V

I
I

H .
.
.
.

‘
h

X

“
V n

(2.7)

0 if Cx < p

_ 1 1:3. . .
where Cp - 20m ( p ). The Bayes emp1r1cal Bayes rule TAQn)

simply replaces p in (2.7) with pA(Xn). By (2.4) and (2.7)

an algorithm for computing the Bayes empirical Bayes rule is al-

ready available. If A is chosen as the probability measure

corresponding to a mass 1 at p, then TA tp is the Bayes em-

pirical Bayes procedure with respect to A. In particular, with

A(%) 8 1, TA 8 t15 is the minimax procedure with constant risk

Rn(p,TA) = P0(X ; 0) = 0.1587 for all p 5 [0,1] and n g 1.

Observe that the risk set of tp, p 6 [0,1], is

{(so,sl)ls0 = P0 [X g a], $1 = P1 [X < a] for some a E £-w.w]};

this together with the form of (2.7) implies that the component

Bayes rules are unique up to risk equivalence. By Theorem 1.7
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we see that at each stage n, the class of Bayes empirical Bayes

rules is minimal complete in this example.

In our applications we will deal with those A that belong

to a given parametric family 8 = {B(y)|y > 0} where B(y) denotes

a symmetric beta distribution on (0,1) with density

= [(21) y-l _ y-l < <

93(Y)(p) [r(y)]2 p (1 p) for o p 1.

From previous discussions we note that {TAz

totically optimal procedures and are admissible at each stage n.

A e B} are asymp-

Also note that assumptions in Theorem 2.2 are satisfied, so that

pA(Xn) is asymptotically normally distributed. The variance of

. . . . . -1

the l1m1t1ng distribut1on of /H (pA(Xfl) - po) 15 I(p0) .

(Behboodian (1972) discussed the conditional moments of p for

Beta priors.)

Remark 2.1. If A has a density gA(p) which is symmetric about

1/2, then Rn(p,TA) = Rn(1-p, TA) for p 6 [0,1]. To see this,

observe

(i) fp(-X) = f1_p(x)

(ii) pA(-xfl) = I-pA(xfl) (by elementary calculus)

(iii) CA(-xn) = -CA(xn) (a direct result of (11))

where chn) = 11.)," [(l-pAqnn/pAqnn. Since (iii) implies

R(p,TA(-X ))9_n)) = R(l‘pa TA( 1,,

the remark is verified by appealing to (2.6), (i) and (iii).



34

Since Rn(p,TA) is a polynomial in p (see (2.6)), the

Remark 2.1. implies that for A e B, Rn(p,TA) is a function of

1)2

(P- 2' ; hence,it has an even degree less than or equal to n + 1.

With n = 1 or 2 one can readily see that Rn(p,TA) will be

a horizontal line or a parabola with extremum at 1/2.

We will compute the values Rn(p,TA) for p 6 [0,1] when

n = 1 or 2. Using (2.5), (2.6) and results (i), (ii), (iii)

of the Remark, elementary calculus shows

2

R1(p.TA) = 2(a-b)p + 2(b-a)p + a

with

m CA(x1)

a = f [ f1(x)dx f1(x1)dx1

m CA(XI)

b = f f f1(x)dx f0(x1)dx1.

Also, a tedious calculation shows that

R2(p,TA) = [3c - (2d + e)]p2 + [(Zd + e) - 3c]p + c

with

c = [a I-” I-“ f1(x)dx f1(x1)f1(x2)dx1dx2

m m CA(x1.x2)

d = I-” f-” I-” f1(x)dx f1(x1)f0(x2)dx1dx2

CA(x1.x2)

e = f w f0° f f1(x)dx f0(x1)f0(x2)dx1dx2.

m
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For the case A = 8(1), the uniform distribution on (0,1),

numerical computations supported by softwares from IMSL (1979)

(Table A.6) subroutines were used to compute: a = 0.12071,

b = 0.21212, c = 0.09576, d = 0.16486, e = 0.25720. Using MSU

CDC 6500 computer the accuracy of computing a,b,c,d,e was controlled

at 3 to 4 significant decimal digits. Therefore:

R1(p,TB(1)) = -0.1828p2 + 0.1828p + 0. 1207 (2.8)

R2(p,TB(1)) = -0.2997p2 + 0.2997p + 0.0958 (2.9)

are parabolas concave downward with extremum at p =-% .

The direct numerical computations for n 3 2 and A e B

are in general not feasible; to overcome this difficulty, Monte

Carlo integration method was used to evaluate Rn(p,TA). For

A 6 B, we generate independently L sample sequences of independent

from a population having f (x) as
n P

density. For each of the L sequences generated, we then compute

random variables X1,...,X

R(p,TA(§n)) based on (2.4) and (2.5). An estimate of Rn(p,TA)

is obtained by averaging the L computed values of R(p,TA(xfl)).

An estimate of two standard deviations of the average is also

obtained based on these L samples. L is made large enough to

make the two standard deviations width acceptable in each experiment.

Within each constructed table in this paper, the numbers following

the f signs are estimates of two standard deviations of the Monte

Carlo estimates. (See Table A.5 for computing program.)

To examine the accuracy of our Monte Carlo estimates,

Table 1 compares the values of Rn(p,TB(1)) with p = 0.0(0.05)0.5
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and n = 1,2 obtained by (2.8), (2.9) and by Monte Carlo integra-

tions. Table 2 explores the risk behavior of Rn(p,TB(1)) for

n = 1,2,5,10,25,50 and for p = 0.0(0.05)0.5. (also see Table

A.3 for Rn(p’TB(2)))° It can be seen that Rn(p,TB(1)) converges

to R(p) quite rapidly and has steady small sample size risk

behavior. Values of Rn(p,TB(1)) for p > 0.5 need

not be computed because of the symmetry about 0.5.

Table 1. Rn(p,TB(1))

 

 

n = 1 n = 2

"1133227”""AEAEGEET WEBEETmABAQEEESI"
p Carlo Computing Carlo Computing R(p)

0.0 0.122t0.006 0.121 0.093:0.005 0.096 O

0.05 0.12810.006 0.129 0.107t0.006 0.110 0.0405

0.10 0.13710.005 0.137 0.125:0.006 0.123 0.0701

0.15 0.146:0.005 0.144 0.135:0.006 0.134 0.0934

0.20 0.151:0.005 0.150 0.147:0.005 0.144 0.1121

0.25 0.15510.004 0.155 0.152i0.005 0.152 0.1270

0.30 0.160:0.003 0.159 0.159:0.004 0.159 0.1387

0.35 0.162:0.003 0.162 0.164:0.003 0.164 0.1476

0.40 0.16510.002 0.165 0.168t0.002 0.168 0.1538

0.45 0.166:0.001 0.166 0.17010.002 0.170 0.1574

0.50 0.16610.001 0.166 0.170:0.002 0.171 0.1587

 

*200 replications for each estimate
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At this point it is important to note that in the Bayes

empirical Bayes approach the presence of A does not restrict the

construction of Bayes empirical Bayes procedures but adds the

flexibility which enables one to access a family of decision pro-

cedures with predictable risk behavior. In particular, consider

procedures TA for A e 8. While the mass of B(1) is evenly

distributed over [0,1], B(y) puts more weight to those p values

close to 0.5 as y increases, and conversely, puts more weight to

those p values close to 0 and 1 as y decreases. From the

fact that TA is admissible and TA is Bayes with respect to A,

we expect that for a < b, Rn(p,TB(a)) > Rn(p’TB(b)) for p

close to 0.5 and Rn(p’TB(a)) < Rn(p’TB(b)) for p close to

0 or 1. Table 3 shows the flexibility with choices among

B(y); y = 0.25,1,2,3,10 and gives values of R1(p,TB(Y)) for

p = 0.0(0.05)0.5. The fact that B(y) has mean %- and variance

1/4(2y + 1) implies that as y + w, B(y) converges weakly to the

distribution degenerated in p = %-, and hence TB(y) converges

to the minimax rule with constant risk .1587. This is also re-

flected in Table 3.

Section 2.4. Other empirical Bayes procedures

Robbins (1951) in his original example of the related com-

pound decision problem uses the estimator

n

p1(Xn) = max{0,m1n{1, 0.5 + ('2 0.5 Xi)/n}} (2.10)

1 1
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and the corresponding decision procesure T1 constructed by re-

placing p in (2.7) with p1(Xn). Van Houwelingen (1974) modified

Robbins' procedure by estimating p with an improved estimator

n

p2(Xfl) = max{0, min{1, 0.5 + ( 2 0.908429 tan h(Xi))/n}} (2.11)

i=1

and constructing a decision procedure T2 by replacing p in

(2.7) with p2 ). Both p1,p2 are consistent estimators of p,(A.

and consequently from (1.4) and (1.5), the corresponding decision

procedures T1 and T2 are asymptotically optimal. Also as observed in

Van Houwelingen (1974), the rate of convergence for both T1 and

T2 is proportional to (n)'1.

However, T1 and T2 are not Bayes empirical Bayes rules.

To see this, note that from (2.2) it follows that the conditional

mean pA(Xfl) is 0 if A is degenerate at p = O, is 1 if

A is degenerate at p = 1, and satisfies 0 < pA(Xn) < 1 other-

wise. Thus, apart from the trivial procedures T(X ) t and
-n 0

T(X") 5 t1, there are no Bayes empirical Bayes procedures taking

values to or t1, with positive P3 probability. However,

since p (X ) and p (X ) take on both 0 and 1 with positive
1 -n 2 -n

P3 probability, T1 and T2 take on values t0 and t1 with

positive Pg probability demonstrating that T1

not Bayes empirical Bayes procedures. Moreover, the fact that

and T2 are

Bn is complete implies that T1, T2 are not admissible empirical

Bayes rules.
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In fact, if p(Xn) is an unbiased estimator for p = 0

other than the estimator p(Xn) = 0 a.s., then the corresponding

decision rule T choses to with a positive probability less

than one, which implies that T is not Bayes and hence not admiss-

ible.

Before leaving this section we assess the accuracy of equation

(28) of Van Houwelingen (1974) which gives an approximation to the

risk functions of T1 and T2 for large n and p 6 (0,1).

The approximation formula has a faster convergence rate for points

p close to 0.5 than those points close to 0 or 1 and is not defined

at p = 0,1. Table 4 compares the values of R50(p,T2) estimated

by (28) of Van Houwelingen (1974) with the Monte Carlo estimates.

Note there is a significant difference for the two estimated values

at p = 0.05 and agreement otherwise.

Since pA(Xfl) is known to be asymptotically equivalent to

the M.L.E., using the asymptotic second moment of pA(Xn) about

p in (28) of Van Houwelingen (1974) provides an alternative estimate

for the large n risk Rn(p’TB(y))‘ A numerical computation

showed the fairly close agreement of the results with those reported

in Table 2 for n 50.

Section 2.5. Monte Carlo Comparisons of TA, T1 and T2

 

T and T2 are neither Bayes nor admissible rules. At
1

stage n, we were able to choose a A in B such that Rn(p,TA)

behaves as a good competitor against Rn(p,Ta); a = 1,2. In

some cases that follow, the risk values of T1 will not be listed
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Table 4. R50(p.T2)

p Van Houwelingen Monte Carlo*

approximation

0.0 0.004t0.001

0.05 0.050 0.04610.001

0.10 0.077 0.078:0.001

0.15 0.099 O.101:0.002

0.20 0.117 0.119:0.002

0.25 0.132 0.133:0.001

0.30 0.144 0.14410.001

0.35 0.152 O.153t0.001

0.40 0.158 0.158t0.001

0.45 0.162 0.162t0.001

0.50 0.163 0.163:0.001

 

200 replications for each estimate
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if our results showed that the risk behaviors of T1 and T2

were very similar. (See Table A.I and Table A.2 for complete data,

Table A.7 for computing program.)

From Table 5 we see that the estimates of R1(p,TB(.25))

dominate those of R1(p,T§), R2(p,TB(.10)) dominates R2(p,Ta),

R5(p,TB(.15)) dominates R5(p,Ta). From Table 6 the estimates of

R10(p,TB(.35)) dominate those of R10(p,Ta). The estimates of

R25(p,TB(.37)) come within one standard deviation of the estimates

for R p,T2) when p = 0.25(0.05)O.5 and p = 0.0 but signif-
25(

icantly less than R25(p,T2) at p = 0.05(0.05)0.2. For

n = 50, R50(p,TB(1)) dominates R50(p,Ta) except at p = 0.0.

The small difference may be adjusted by carefully choosing some

B(y) with y slightly less than 1. This will improve the risk

function at p = 0.0 with a little sacrifice at p = 0.5.

Table 2 shows the rule TB(1) has good small sample per-

formance. However, this is not true for T1 and T2 at n = 1,2.

Table A.1, Table A.2 and Table 5 entries indicate that the Bayes

empirical Bayes rule with respect to the uniform prior TB(1) has

lower risk than Robbins and Van Houwelingen empirical Bayes rules

T1 and T2 except near p = 0 (and by symmetry, near p = I).

Copas (1969), p. 413) reports a similar finding in regard to

TB(1) and T1.

It is interesting to note that the estimates of R1(p,T1)

dominate R1(p,T2), but, estimates of R50(p,T1) are dominated

by R50(p,T2). This means that small sample properties may not

be guaranteed by a fast convergence rate and vice versa.
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Table A.4.

LIGTrF.

100=

105=

110= P=O.

120= D0 2 I=1r50

130= P=P+0.01

140=

150= U=CP+1.

160: U=CP—1.

170=2

1803

190=

200= PRINT 79P7RP

210=7

220=2 CONTINUE

230= END

Evaluation of the Bayes envelope R(p)

PROGRAM ENULOPCOUTPUT)

REAL PrCPvUvUrAIBrRP

CP=0.5*ALOG((1.-P)/P)

CALL MDNOR(07A)

CALL HDNDR(UvB)

RP=P$A+(1.-P)*(1.-B)
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F0RMAT(3X:F5.273X1F10.6)

.01

.02

.03

.04
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.09

.10
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.29

.30
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.32

.33

.34

.35

.36

.38

.39

.40

.41

.42
a7

\‘9‘-

.44

.45

.46

.47

an

.4?

r: n
o -_J'.,’

. 111':

l(\.'

EXEC BEGUN.09.24.2

.009311

.026090

.033503

0 040459

.047018

.053226

.059118

.064722

.070061

.073155

.080019

.084670

.089117

.093373

.097446

.101345

.105077

.108649

.112067

.115336

.118461

.121447

.124298

.127017

.129608

.132074

.134417

.136642

.138749

.140741

.142620

.144388

.146047

.147598

.149042

.150382

.151618

.152751

.153783

.154714

.155545

.156276

.156909

.157443

.157380

.158219

.158462

.153507

f." “\ ’ III?

0 s 5L.“ IDLJM.

Knutor
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Table A.5. Monte Carlo simulation of Rn(p’T1)’ A e B

REHDY 22.11.33

UK.

UK-HTTRCH9flyBHYESS.

fiTTRCHyHyBHY586.

UK-FTflyl-HyflPT-e.

COMPILING BERISK

COMPILING CDEFICT

CUMPILING BETH

.531 C? SECONDS CUMPILRTIDN TIME

UK-PRUMPT. ‘

DK-LISTTY’IIfiafls.

PRUGRHH BERISK(INPUT:OUTPUT,THPESIINPUT:THPES'UUTPUT)

DOUBLE 9(100):B(100)a0(100>9M(100):X(100)

DOUBLE na.na.nsesn.se1.sun1.suna

REEL HCLINIT.HERN.P.P1:P2:PRR9R(1000).RISK10RISK29SD0Y1.Y2

RERL Rnun.ssn

INTEGER CUUNT.NEXP.HUH

COMMON n.3,c/HUNEHT/H

URITE(6.100)

100 Funnnr(.1..oTH13 PRUGRHM IS WRITTEN BY HUM Jan Tsao.)

Renn<5.4oo>s.7

400 FoanaT<F5.a.F5.a>

1000 IF<EDF(5).NE.O)STUP

Rean<s.soo>P.HEXP.N.DSEED '

500 FunnnT<F5.a.14.14.225.13)

URITE<69550>PvflEXP’NvDSEED

550 FURNRT<¢0¢0F3.8:3X:I473XaI49D25.13)

C

KIH+1

CRLL BETQ<K0T:S)

C

C FDR EfiCH EXPERIMENT NE 98816” R UNIFORM(0:1) RRNDDM 9HRIHBLE

C

CRLL 66UBS<DSEEDvNEXPrR>

C

COUNT-0 '

C COUNT IS THE NUMBER OF ILLIGHL DRTRS FOR 651

C

RISK180.0

RISKEIO.O

C

DD 1 Ltl’NEXP

C

DSEED=214748364?.DUOPCL)+1.

C

DU 10 1'1,"

PRR=GEBIP<D£EED:1:P)

ME HHVE GENERRTED H BERNBULLIKP) ERNDUM VHRIHBLE

1
3
(
3
0

X(I)=GENQF(DSEED)+C2.¢PHR-1.)

t
p
w
f
fi
fi
t
y

ME HR?E GEHEPHTED R NDFMRL€E*PRP-l.pl} PHNDDM VHRIHELE

1) [DH T I HUE



C HUM

C

30

C

c

C

30

C

C

C HUM

C

C

C

C

C

C

C

4321

650

C
(
i
n
t
?

700
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ME COMPUTE EElsfiCLINIT

DO 30 I'lvN

DHi-O.5¢(X(I)-l.)9(x(I)-1.)

DBI-O.SO(X(I)+1.)¢(X(I)+1.)

B(I)=DEXP(DB)

H<I>=DEXP<DR)-B(I)

CONTINUE

CRLL COEFICT(N)

SUNI'C(1)ON(1)

SUN2=C(1)

DU 30 1-2.K

SUNI'SUN1+C(I)¢N(I)

SUME'SUN2+C(I)ON(I-1)

CONTINUE

6E1-SUM1/8Ufl2

ME SCREEN OUT fiLL ILLIGHL DRTR

IF((GE1.LE.0.DO).OR.(6E1.rE.1.D0))EO TO 4381

RCLINIT80.SDDODLO6((1.D0-6E1)/GE1>

NOU UE CONPUTE CONDITIONRL BRYES RISK GIVEN X(1)s...vX(N)

Yl-RCLINIT-l.

YEIRCLIHIT+1.

CELL NDNOR<Y1$P1>

CRLL MDNOR<YEyP3>

RISK-POP1+(1.-P)O(1.-P8)

RISKI-RISK+RISK1

RISKE'RISKORISK+RISKE

GO TO 1

URITE<6265O>(I:B(I)9B(I)9C(I)9I819N)

FORMHT(O 094X9I493085.13)

COUNTICOUNT+1

CONTINUE

NUN'NEXP-CUUNT

HERN'RISKI/NUN

SD'SE‘PT ( (RISKe-NUNONEFINONEHN5 / (HUN-I . ) )

RNUMINU"

SSD'E..SD/SQPT(RNUM)

WRITE(6,7003P2N9NEXP9HEHN23D!33D

FURNRT(’0.9¢P' .9F5.290 N89214:. NEKP=92I42

+ . RISK=¢9F10.590 39:0.F10.5,o 33D: OsFS.3)

GO TO 1000

END
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SUPPOUTIHE COEFICTfN)

DOUBLE 9(100998(1UU)9C§100}sDilUO)

common 9.2.3 ’

c<1>=3<1>

c<29=9<1>

IF(N.EQ.1)EO TO 5

DO 10 1829N

D(1)=B(I)¢C(1)

DO 30 J8€9I

D(J)8R(I)OC(J-1)+B(I)OC(J)

C(J-I)ID(J-1)

20 CONTINUE

D(I+1)-H(I)OC(I)

C(I)ID(I)

C(I+1)'D(I+1)

0 CONTINUE

RETURN

END

O
f
?

(
R
F

SUBROUTINE BETH<K9T98>

REEL T98

DOUBLE "(100)9PROD19PRODE

CONNON /MONENT/H

THIS SUBPOUTINE GENERHTES 1 THRU K TH MOMENTS OF

BETH<T1$>

O
C
U
O
C
)

PROD1'1.DO

PRODE=1.DO

DO 10 I'lyK

PRODISPROD19(T+(I-1.))

PRODE-PRODEO(T+S+(I-l.)3

N(I)=PROD1/PRODE

10 CONTINUE

RETURN

END

OEOROO

OEOI

OK-HHL.

HHL 5.33

L?LGO.

EXEC BEGUN.22.16.4E.

THIS PROERRM IS WRITTEN BY HOM JRN TSRO

00.3 0.5

90.20 10 5 13524.00

.20 10 3 .135240000000000000D+05

P= .20 Na 5 NEXP= 10 RISK= .1330? SD: .03410

00.20 400 S 14336.nfl

.30 400 5 ,14gagoonunnnnonnnnn+os

P= .20 Na 5 NEXPa 400 PIER: .13464 SD= .039?3

0 THIS ROUTINE CONTINUES UNTIL USER HEOPT.

$20:

0
'
!
)

II
I"
)

.004
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Table A.6. A numerical computation program.

This program evaluates:

 

  

 

DCADRF (H,A,B)-i where

g l N(T) I i 1:000

{a o C(S,T) i _ 1

J I I fo(x)dx . fo(S)dS * r1(r)ar /f;

A c -~ -

’1... P ___I '

l—r(s)

DCADRE(F,C,D)

RERDY 12.22.37

u HTTHCHyRaRONBB.

RTTRCH:H!RONBB.

RERDY 12.32.49

LISTTYyIifiaNS.

PROGRHN RONB3(OUTPUT)

INTEGER IER

RERL DCHDRFPH9FOQF1’RQB!HERR9PERRFERPUR!INTEG

EXTERNRL H

93-3.11

335.11

RERR'O.

HERR'1.E-5 '

INTEG‘DCRDRFstRvByfiERRsRERRQERROP!IER)

PRINT 7!INTE59ERROR9IER

FORNRT(1X9FI7.15!3X!F10.8!3X9I3)

END

"
J

(
"
I

‘
-

REHL FUNCTION H(T)

INTEGER IER .

RERL DCRDREvaF01F19C9D99ERR9RERRsERRORsINTEGIZ

EXTERNRL F

COMMON /JOINT/Z

ZST

D33.11

RERR‘U.

HERR31.E'S

H=DCHDEE(F7C9D!RERR9EERR9EERUESIERF.FI(T)

RETURN

END

1
'
?

"
T
I

REEL FUNCTION F63)

DOUBLE C

REEL $.P.Y.2.T.F0 1

COMMON /.JO I NT "2 2 .

Ta:

HONOR

DCADRE

IMSL subroutines used:

"r'm: (SSW-*1. 3. DCADRF: a binary copy

CHLL mpngp.g"f.p~. of DCADRE.

F=POFflqig

RETuRH

END
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(
'
3

DOUBLE FUNCTION C(SsT)

DOUBLE X12X32D99D396

PERL SpT

X183

X2=T

D981.+DEXP(2.OX2)+DEXP(2.0X1)+3.¢DEXP(2.O(X1+X2>)

DB!4.+2.ODEXP(2.OX2)+2.ODEXPfE.OX1)+4.ODEXP(2.O(21+X2>)

Etna/DB

C-O.S¢DLOG((1.-G)/E)

RETURN

END

1
j

1
7
'
;

RERL FUNCTION F0<X>

DOUBLE Y’PI

RERL X'

P183.14159265353979323846264338D0

Y8K

FOIDEXP(-0.5.(Y+1.)¢(Y+1.))/DSDRTf2.OPI)

RETURN

END

RERL FUNCTION F1(X)

DOUBLE YvPI

RERL X

91-3.14159265353979323346264338D0

Y'X

FI'DEXP(-0.5¢(Y-1.)¢(Y-1.))/DSQRT(2.¢PI)

RETURN

END

OEOR00

OEOI

REHDY 12.24.10

PETURNsDCRDRF.

RERDY 12.25.49

REMINDyH.

RERDY 12.26.04

RTTRCHyDCRDRFuCRSDCRDRF.

RTTRCHsDCRDRFrCRSDCHDRF.

REHDY 12.26.25

FTNsI-R.

COMPILINE RON33

COMPILING H

COMPILINE F

COMPILING C

COMPILINE F0

COMPILINE F1

.220 CR SECONDS COMPILHTION TIME

SEED? 13.36.48

HRL.

HHL 5. 37’

LPLURD1DCRDRF.

L- ?LSH 9 ' LIED.

LTERECUTE.

EHEC BEGUN.13.3?.39.

.3351??353?439?3 .0E000514 0

END ROME?

1.013 CP SECONDS EEECUTIDH TIME
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Table A.7. Monte Carlo simulation of Rn(p,T ), a = 1,2
Cl

PERDY 12.43.39

LIST’FyNS.

PROGRRN RISK(INPUT3OUTPUT:TRPESIINPUT:TRPE6=OUTPUT)

DOUBLE DSEED

PERL R(6000)9X(100)

MONTE CRRLO SINULRTION OF MIXED NORNRL RRNDON VRRIRBLES

FOR TESTING N(1y1) VS N(-191)

NEXP REPLICHTIONS OF SHNPLES UITH SIZE N IS GENERHTED

TO ESTINRTE RISK BEHHVIORS OF (1) ROBBIN’S DECISION PROCEDURE

9ND (2) VRN HOUELINGEN’S DECISION PROCEDURE126=C

URITE<6050)

0 FORHRT(¢0O9¢DRTR-¢)

O
U
O
O
O
O

RERD<50100)P9NEXP9N:DSEED

100 FORNRT(F5. 29I49149D25. 18)

URITE(69200)P:NEXP:N,DSEED

200 FORHRT<¢0¢9F5. 293X’I4’3X9I493X7D25. 13)

CRLL 66UBS<DSEED9NEXPIR)

RBI-0.0

R3280.0

RVHIOO.0

RVH2-0.0

DO 1 L-1:NEXP

DSEED=214743364?.¢R(L)+1.

SUN1'0.0

SUN2'0.0

0

DO 10 I'lvN

PRR’GGBIR(DSEED:12P)

X<I>=GENQF<DSEED)+(2.0PfiR-1.)

SUN1=X<I>+SUN1 ‘

\ SUNE'THNH(X(I))+SUM2

10 CONTINUE

PRB'O. 5+SUN1/(2.ON)

PVHIO. 5+0. 90342942‘SUM2/N

IF(PRB.EE.1.>GU TO 350,

IF<PRB.LE.0.)GD TO 352

CRB=0.5¢HLOG((1.-PRB)/PRB)

vesxaceB-l.

YPB2=CRB+1.

CHLL MDNOR<YR811PRBI>

CHLL noune<vese.eena>

RB=F+PFB1+(1.-F)o<1.-Fesa)

GO TO 356

330 F12 1. -P

60 T0 355.

:23 FE1=F
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336 IFfpwH.5E.1.)EO TO 320

IF(PVH.LE.0.)GO TO 332

CVH=0.509LOG((1.-PVH)/PVH)

YVH1=C¥H*1. '

YVH2=CVH+1.

CRLL NDNOR(YVH1:PVH1)

CRLL NDNORfYVHEyPVHE)

PVSPOPVH1+(1.-P)O(1.-PVH2)

GO TO 460

PV=1.-P

GO TO 450

PVSP

c
.

1
‘
)

1
,
.
.
.

L
g
.

1
.
5
1

.
'

I
I
I

I
I
:

(
I
I
I

[
0
.
-

-
.

RBI'RBI+RB

RBEIRB2+RBORB

RVH1=RVH1+PV

RVH2'RVH2+PVOPV

1 CONTINUE

0
T

D

RNEXP-NEXP

SNRBIRB1/RNEXP

SDRB‘SQRT((RD2-RNEXPOSNRBOSNRB5/(RNEXP-l.))

SSDRD=2OSDRB/SQRT(RNEXP)

SNVH'RVHl/RNEXP

SDVHBSQRT<(RVH2-RNEXPOSMVHOSNVH)/(RNEXP-1.))

SSDVH-BOSDVH/SQRT(RNEXP)

WRITE(6!400)SMRB!SDRB!SSDRB!3NVH!3DVH9SSDVH

400 FORMHT<90999ROBBIN 99F10.5:F10.5:F5.390 V HOU *92F10.59F5.3)

END

QERDY 12.50.09

FTN.

CONPILING RISK

.159 CR SECONDS CONPILHTION TIME

RERDY 12.50.37

HAL.

HRL 5.37

L?LGO.

EXEC DEGUN.12.51.3B.

BETH-0.3 200 5 26133.D0

.30 200 s .2613300000000000002+0s

20321" .1932? .03330 .012 v HOU .1erxs

END RISK

.193 CR SECONDS EXECUTION TIME

.0901? .013
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APPENDIX B

In this appendix we prove Theorem 2.1 and 2.2. The notation

and the following assumptions are from Johnson (1970). The model

assumes X1, X2,..., i.i.d Pe where Pe has density f(x,e)

with respect to a given o-finite measure u-

3.1

3.2

3.3

3.4

8.5

3.6

8.7

3.8

8.9

The parameter space ® is a compact subset of E1. Let

®() denote its interior and @_ denote the Borel 0-algebra

on G.

e is identified by P9.

f(x,e) is jointly measurable in (x,e).

For each x, f(x,e) admits continuous first and second

partialderivatives with respect to e.

The measures P are mutually absolutely continuous.
e

If lim lei] = m, then lim f(x,ei) = 0 for all x except

for perhaps a null set depending on the sequence.

For all e e @. Eellog f(X,e)| < w and

2

0 < 1(6) = -Ee [-3§-log f(X,e)]

36

For each 60 E @0, there exist functions Gl(X) and

62(X) satisfying

2

|§%-log f(X,e)| g 61(X), |§—2-log f(x,e)| g 62(X)

as

for e in a neighborhood of 60 and also Ee [61(X)] < m

0

and E [G (X)] < m. The functions G and G may
60 2 1 2

depend on 90.

Let f(X,6,p) = sup f(x,e’), p > 0

le-e'lgo

and Q(x,y) = sup f(x,e), y > 0.

WM
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3.10

3.11

3.12

3.13
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For every 6 6 ® and 0.Y > 0. T(X.6.o) and Q(X.Y)

are measurable functions of x. Moreover, for sufficiently

small 0 and sufficiently large y,

E8 [log f(x,e,p)J+ < .

0

E6 [log Q(x,y)]+ < w for each 60 6 @0

0

For each x, log f(x,e) had 5 continuous partial derivatives

with respect to a 6 9.

There exists functions Gk(x) with E6 [Gk(x)] < m

0

and

IEEF'IOQ f(x,e)| g Gk(x) for e in a neighborhood

of 60 E 8. k = 3,4,5.

A is a probability measure on (8, go, A has density

1. with respect to the Lebesgue measure. For 60 6 @0,

1(60) > 0 and A(-) has 3 continuous derivatives in a

neighborhood of 60.

f [GIA(6)d6 < m.
6

Conditions 3.1 8.9 are basically those assumed by Wald

(1949) to establish the strong consistency of the M.L.E. and those

of LeCam (1956) to show that the M.L.E. is asymptotically normal.

A weakened one-dimensional verison of LeCam's (1956) Theorem 3.4.1 is

Theorem B.II.1 Let 8.1 ~ 3.4, 8.7, 3.8 be satisfied.

Then the maximum likelihood estimator 5n is strongly consistent

and asymptotically normally distributed. The variance of the
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limiting distribution of

/F (6 (n 5“) - 00) is 1/[I(eo)].

The following Theorem is a specialization of Theorem 3.1

of Johnson (1970) to y = 1 and |<= 2.

Let

M) [13321 f(x )1"2e = - —- 09 .,6

"i=1? 1

and

-1 n a3 ,
a3n(e) - n 121 Egg-log f(Xi,e)/6, e E 8.

Theorem 8.11.2 Under the assumptions 8.1 ~ 8.13, there exists

a constant C such that for sufficiently large n depending on

x = (x1,x2,...) belonging to a set of probability one,

3

~ -1 ~ . . « '-1 -1 ' 2
Iii/((600,) - an - b (6a3n(en) + A (en)/A(en))n l g 0 Ch (1)

where we have abbreviated b(en(xn)), en(xn) by b and en.

Proof: See Theorem 3.1 and (3.4) of Johnson (1970). D

For the proofs of Theorem 2.1 and Theorem 2.2 we apply the

above results with f(x,e) = ef1(x) + (1-6) f0(x0, 0 = [0,1], 6 = p.

Proof of Theorem 2.1. It is sufficient to show that the hypothesis
 

of Theorem 2.1 implies that of Theorem 8.11.1. Clearly 8.1 ~ 8.4

are satisfied. (Recall that identifiability 8.2 is a tacit assumption

in our empirical Bayes problem and is implied by P0 and P1 being

different measures in the two state case.)
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Since logarithm is strictly increasing on (O,w], for

66 [0,1] and for almost all x

 

[log f(x,e)| g max{|log f1(x)|, llog f0(x)l}. (2)

Also,

2

2 (f (X) - f (X))
_ 3 _ 1 0

1(8) - -f;;§-log f(x,e)Pe(dx) -‘[ f(x,e)2 Pe(dx) > 0,

for e e 8, since uEf1 f fol > 0. Hence, 8.7 is satisfied.

For 80 6 (0,1) pick 8 > 0 such that e < min{eo,1-e }.
0

Then for each a e (GO-6’90 + e) and fbr almost all x

ak ~1
|-——-log f(x,e)|[(k-1)1]

86k

1/[9 + f0(x)/(f1(x)-f0(x))lk g e'k < (so-e)’k if f1(x) > f0(x)

-kf1(x) k k -k
|?61;7--1| /[e(f1(x)/f0(x)) + (l-e)l g (1-6) < [1-(90 + 5)]

if f1(x) < f0(x).

0 if f0(x) = f1(x) > 0, k = 1,2,3,... (3)

Hence 8.8 is satisfied.

Proof of Theorem 2.2 We first show that the hypothesis of Theorem

2.2 implies that of Theorem 8.11.2.It is clear that 8.5, 8.6, 8.12,

8.13 are satisfied; also, from the proof of Theorem 2.1, we see

that 8.1'~ 8.4, 8.7, 8.8 are satisfied.
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Observe that

f(x,e,p) = f(x,(e-p)v0)I[f0 ; f1] + f(x,(e+p)A1)I[f0< f1] é max{f0(x),f1(xfl

and

Q(x,y) = f(x,0)1[fO ; f1] + f(x,1)I[fO < f1] g max{f0(x),f1(x)} (4)

both are log-integrable by (2).

We see that (3) implies 8.10, (4) implies 8.9. Also, (3)

implies that 8.11 is satisfied as well.

Next we show that the result of Theorem 8.II.2 leads to

/n (EA(e|§n) - en) + O a.s. P60 (5)

By Theorem 8.11.1, 5n + 30 a.s. P: , 80 is the true parameter,

0
«0

80 G b .

Let

( ) I 32 ( > ( >8 6'6 = - ———-log f x,e P dx
1 0 362 90

and

83

C(eleo) = ]-—3- log f(x,e)P (dx).

as 60

Together 8.8, 8.11 and the uniform strong law (Rubin (1956))

implies that

2. . “ 1.1.
b (an)-+I(eo) > 0, a3n(en) 6 C(eoleo) a.s. P
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Also, 8.12 implies that

w A + I " + l °°

A(6n) 1(80) > 0 and A (on) A (90) a.s. Peo'

Therefore, for some M > O and for almost all .§,

1
|b‘1(6a3n(én) + A'(5n)/A(8n))l + 8b. g M

for large n so that (1) implies (5).
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