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ABSTRACT

A. EFFECT OF INTERATOMIC INTERACTIONS ON

THE ZERO-BANDWIDTH HUBBARD HAMILTONIAN

B. THEORY OF SUPEREXCHANGE INTERACTIONS

IN MAGNETIC INSULATORS

BY

Rem Sing Tu

The works of theoretical solid state physics can

be divided roughly into two types of problems. The first

type is to find the thermodynamic properties from a given

model Hamiltonian. The second type is to find out an

appropriate model Hamiltonian for a given problem or system.

Part A is of the first type, and part B is of the second

type. Therefore, the two main subjects of this thesis,

unrelated as they may seem, can be regarded from a general

theoretical point of view as being two different aspects

of the same branch of physics.

In part A, we consider the linear-chain zero-

bandwidth Hubbard Hamiltonian with added nearest-neighbor

interaction, with a magnetic field present. By the trans-

fer matrix method, exact expressions for thermodynamic
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quantities are obtained in simple closed form for the

half-filled band. Recently, the half-filled band Hubbard

model for the linear chain was proposed to explain the

properties of the organic salt NMP-TCNQ. It was shown

that the susceptibility X versus temperature T obtained

from the Hubbard model disagreed in an essential way with

the experiment. The experimental susceptibility rapidly

becomes too small with increasing T, showing in particular

what appears as a Curie-Weiss law with a moment appre-

ciably reduced from the theoretical value. Since the

nearest-neighbor Coulomb interaction causes a transition

to a ground state of zero magnetic moment if large enough,

it seemed possible that adding the Coulomb interaction

might reduce the discrepancy between the experiment and

theory. The answer we find is unfortunately negative.

In part B, we study Anderson's theory of super-

exchange. It is thought that the exchange interaction

between magnetic ions in a magnetic insulator is des-

cribed essentially by the Heisenberg Hamiltonian; also

the exchange parameter J is of 4th order in the overlap

between para- and dia-magnetic ions. However, the Wannier

functions are not uniquely defined in the superexchange

problem. Therefore, if one uses an arbitrary set to cal-

culate J, one has to go to the 4th order perturbation

theory in order to exhaust all the terms of the 4th order
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in overlap. Anderson suggested that there exists "the

exact" Wannier function which makes the perturbation

theory converge rapidly. By using this set, the exchange

parameter was presumed to come mainly from lst and 2nd

order perturbation terms, the 3rd and 4th order perturba-

tion term being negligible. He proposed to use the

Hartree-Fock method which put all the electrons in the

magnetic ions spin parallel and doubly occupy the diamag-

netic-ion orbitals to find the Wannier functions. However,

his Hartree-Fock leads to a magnetic solution, that is,

the spatial function of the spin-orbital depends on the

spin. This is inconsistent with Anderson's requirement

that they be nonmagnetic. In this work, we use a different

variational approach, namely the thermal single determi-

nantal approximation (TSDA) to substitute for his Hartree-

Fock method. We first investigate a 3-site 4-electron

linear cluster, and then generalize to a crystal. We find

that there exists nonmagnetic solutions which make 3rd

and 4th order perturbation term vanish in both cases. The

exchange parameter therefore comes only from lst and 2nd

order perturbation terms. Hence Anderson's idea is ful-

filled. His "exact Wannier function" turn out to be the

TSDA solution. In the 3-site case, we also show the size

of the contribution to J from each order in perturbation
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theory is very sensitive to the choice of Wannier func-

tions. The generalization of this type of consideration

to more realistic model containing more than one electron

on a magnetic site is important and interesting.
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PART A

EFFECT OF INTERATOMIC INTERACTIONS ON THE

ZERO-BANDWIDTH HUBBARD HAMILTONIAN



I. INTRODUCTION

It is well known that in a crystal the energy

levels of the electrons are grouped in bands. We consider

the case of a crystal of N atoms and an average of N

electrons filling exactly half of one nondegenerate band;

and we disregard the presence of all the other bands. To

do so, we define an orthonormal complete set of N Wannier

functions for this band. The Wannier functions are local-

ized at the lattice sites, i.e., each of them is appre-

ciably different from zero only in the neighborhood of a

lattice site. We then define operators C10 and cio which

respectively create and destroy an electron in the

Wannier function at site i with spin 0. The cio's and

cio's satisfy the usual fermion anticommutation relations

and ni0 = Ciocio is the number operator of site i and

spin 0. The Hubbard Hamiltonian1 is written in terms of

these Operators as

= 2 t

H ijo ij Ciocjo + U i “1+“iI (1)

*

The bij( = bji) and U are constant parameters and have

precise physical meaning. For simplicity we take bij = b



for i and j nearest neighbors, and zero otherwise. b is

called the transfer or hopping integral. U is the intra-

site Coulomb repulsion energy. The Hubbard model has

found wide use in the theoretical description of electro-

nic states in magnetic insulators. It was studied earlier

than Hubbard did; e.g., des Cloizeaux2 discussed it in the

late 50's. Hubbard and also Gutzwiller3 reintroduced it

in 1963. Presumably Hubbard's name is attached because he

was the only one who tried to give a serious derivation.

His derivation leads to completely unsatisfactory behavior

of the bij as a function of distance between sites i and j

as shown by N. Silva and T. A. Kaplan4. They present an

essentially different theory which yields a satisfactory

result. Although the derivation aspect is an important

one, one can take this Hamiltonian phenomenologically as

a model and study its physical predictions. That is, H

is given, and is to be studied as a function of the para-

meters bij and U, as well as temperature. Some exact 50-

5-9. This is an interesting problemlutions can be found

essentially because it is probably the simplest model

such that special cases yield pure band-like behavior and

atomic-like behavior; and of course the question of how

electrons go from one type to the other has been of in-

terest in solid state physics for many decades.



When U = 0, we get a very familiar simple example

of noninteracting fermions. H can be written in terms of

Bloch function occupation numbers as

ck nk0 (2)

. + +

n£0 are defined as nkg - a&o 859’ where 21120 and a5? are

respectively the creation and annihilation operators for an

electron in the Bloch function with crystal momentum k and

. + . . - . .

sp1n o. ak0 15 related to the Wannier function creation

operators by

-l/2 ik ° R

= N 2 e c. (3)

8k are the one-electron energies of the band in question

whose width is prOportional to bi in general

15 . Bi .

c = X b.. e 3 . (4)

J'
E. 13

Thus the energy eigenfunctions are single Slater-determi-

nants with Bloch functions occupied in all possible ways.

The calculation of all physical prOperties is tractable

in the manner discussed in any elementary solid state

textbook.

When bij = 0, H becomes

u 2 NM NH (5)



Two electrons with opposite spins occupying the same site

interact with an energy U. They do not interact if they

are on different sites. The complete set of eigenstates

in this limit is given by the set of Slater determinants

obtained by occupying Wannier functions in all possible

ways. This was pointed out by Kaplan10 in 1968 and Kaplan

11 in 1970.and Argyres

The half-filled band Hubbard model for the linear

chain was recently proposed to explain the properties of

the organic salt NMP-TCNQ. These organic solids are com-

posed of two types of molecules, a donor and acceptor

giving rise to the presence of unpaired electrons in the

crystal. In this material the TCNQ molecules are presumed

to be simple minus ions with the extra electron per TCNQ

being the source of the observed electronic properties of

the system. These molecules are large and flat, and

stacked in linear arrays. These salts are highly aniso-

tropic displaying a very pronounced one-dimensional beha-

vior, the unpaired electron moving along the chains made up

of the acceptor molecules. The one-dimensionality is

clearly displayed by the conductivity measurements by

ShchegolevlS. It was shown14 that the susceptibility x

versus temperature T obtained from the Hubbard model with

T independent parameters, b and U, disagreed in an essen-

tial way with the experimentlz. On the other hand, the



introduction of a T-dependence into b, phenomenologically,

such that b increases appreciably with T (with U = constant)

can correct x versus T. Since the physical interpretation

becomes drastically modifiedls, it was concluded that under-

standing the physics beyond the Hubbard model is the essence

of understanding NMP-TCNQ. The difficulty with the constant

b and U is that when one uses values which fit x to experi-

ment at T=0 the experimental susceptibility rapidly becomes

too small with increasing T, showing in particular what

appears as a Curie-Weiss law with a moment appreciably re-

duced from the theoretical value14. Since large enough

nearest-neighbor Coulomb interaction V(V > g) actually

causes16 a transition to a ground state of zero magnetic

moment, it seemed possible that values of V smaller than

this critical value but still appreciable might importantly

reduce the discrepancy.

In this part, we consider a zero bandwidth modi-

fied Hubbard Hamiltonian in the half-filled chain. A sum-

17,18
mary of the results appeared earlier Our model

Hamiltonian is in the form

H = U E n + V Z n.n (6)

i i
i+ni+ 1 1+1

The second term of the above Hamiltonian represents the

intermolecular electron repulsion. It may be considered

as a first step towards taking into account the long range



character of the electron-electron interaction. This

Hamiltonian is related to Hubbard's by putting bij = O in

Hubbard case and adding the interatomic interaction. In

the half-filled case, as we show below, the ground state

configuration consists of one electron per site if V < U/Z,

but it consists of alternating pairs if V > U/Z. This

effect was first pointed out by Bari16 who investigated the

role of electron-lattice interactions in a very narrow

half-filled band. His Hamiltonian which incorporates elec-

tron-electron and electron-lattice interactions can be

decoupled via a canonical transformation, and in one dimen-

sion reduces to the above equation.



II. SOLUTION OF THE PROBLEM

In the grand canonical case, one must consider

H-UN = U

P
M

:
3

:
3

1+ 1+ + V i(“1++“1+)(“1+1++“1+1+)

' “§(“1++n1+) (1)
1

Here n is the chemical potential and we assume periodic

boundary conditions such that nN+10 = n10 (0 equals either

spin direction). Since we are only interested in the case

Z(ni++ni+) = N, u can be set by finding the average number

i

of particles. This Hamiltonian is rewritten by Kaplan and

Argyres11 in terms of "spins"

S1 5 n1+*“1+‘1 (2)

We find that19

_ u 2

H’“N ‘ 7 E S1 + V F S1 S1+1
1 l

u
c - 7 - 2V) 1; 81 + N(U-u) (3)

1

We drOp the last constant (Si-independent) term and add

the magnetic field energy. We obtain, for a linear chain



in the magnetic field,

H—uN =

N
|
C N

h is tu x the magnetic field.

This Hamiltonian is quite analogous to a spin-1

Ising Hamiltonian in a magnetic field. However, one must

be careful since the "spin value" Si=0 can occur in two

ways. This arises from the fact that a singly occupied

electron site is two-fold spin degenerate. This means

that, if we treat the thermodynamics of H from equation

(5) of this section, we must take special care in counting

the states. From this, the grand canonical partition

function is the following:

1 1 N

Z = Z Z ... exp [- Z (x- S. S.
_ _ ._ 1 1+1

nif—o ni+-o 1—1

+ ys + 28 2 - uM-ll (5)
i i 1

where

x=BV y=8(%+2v-u) 2:12]

.11 _ _ (6)

“ ' 87 M1 ‘ “1+ "1+

Let us introduce the notation £1 = l, 2, 3, 4 corres-

ponding respectively to (n1+ ni+) = (1,1), (1,0), (0,1),

(0,0) and note that we can write the partition function
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as following with the periodic boundary condition

4 4

g g ... r r' ... r
51—1 52-1 a

z = ,

ENEI

where

+T5152 = exp {-[x 5152 § (51 + 52)

+ 5 (52 + $2

2 1 2) (”1+M2)]} = T
gzgl. (8)

N
|
C

Let a 4 x 4 matrix T be so defined that its matrix ele-

ments are given by

TEE' <€|TI€'> = exp {-[xSS' + %(S + S')

2

+ g (52 + s' ) - %-(M + M')]}. (9)

Thus an explicit representation for T is

71

  

e'(X+Y+Z) e-%(y+2'u)
e- %(Y+Z+U) ex_z

_ e-%(y+z-u) eu ‘ 1 e-%(‘Y+z-u)

T =
(10)

e-%(y+z+u) 1 e'u e-%(-Y+z+u)

ex-z e-kC-y+z-u) e-%(-y+z+u) e-(x_y+z)

k
,I

From (T),

- —N _ N N N N

Z - Tr T - A0 + A1 + A2 + A3 (11)

where Ai are the eigenvalues of T. T is called a "transfer

matrix”20
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In the following, we limit ourselves to the half—

filled band case. This condition on the number gives

<§ s.> a 3 log 2 = 0.
i 88p

Referring to eqs. (3) and (6), one sees that y is formally

an effective magnetic field acting on the 81' Therefore,

+ V. (12)

The transfer matrix becomes

(e-(x+z) e-%(z-U) e-%(z+u) ex-z \I

e-’(z-u) eu l e-%(z-u)

T = (13)

e‘;fiZ+tfl 1. e.u e-%(z+u)

ex-z e-%(z-u) e-%(z+ifl e-(x+z)

K /‘
  

Immediately, one sees that an eigenvector of (13) is the

transpose of (l, 0, 0, -l) with eigenvalue -2e'Z sin hx(#0);

furthermore, it can be seen that det T=0 so that the

eigenvalues are obtained in simple closed form. For N + w,

the free energy per particle is f = -kT log Am, where Am

is the eigenvalue of maximum magnitude, which is

..Z
'Z

A e cosh x + cosh u + [(e cosh x

- cosh u)2 + 4e.Z cosh u] . (l4)
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All these results are shown in Appendix A. ‘From this, the

zero-field magnetic susceptibility is

  

Z 1 3A 2A

= -(E_§ = kT[-;7 ( 3m )2 + %_ 3 m]

3h h=0 m m 3h h=0

= B [1 + Ze-z-e-Z cosh x+1]

e-2 cosh x+l + /K /K

where

(e.Z cosh x-l)2 + 4e-z.D m

Similarly, the specific heat is given by

C 3A 2 2 2

V _ 8 m 2 B 3 Am 2 d log A (16)
—-(————)+—-——7=s-—— m

—E Am 88 Am BB d82

To understand these results we investigate the ground state.

Without the magnetic field, the electronic Hamiltonian in

the case of the half-filled band can be rewritten in the

form

_ U 2

He — 7 2 Si + V E S S1+1 + NV

1 1

_ U _ 2 V 2
- (7 V) i Si + 7 §(Si + Si+l) + NV (17)

The variable 81 can take on the values -1, 0, l and each

summation in the above equation is a positive quantity.

We first consider U > 2V; the minimum energy is obtained

by simultaneously minimizing each summation in this case.

This is obtained by requiring Si2 = 0 and Si + Sj = 0 for
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all 1. Thus for U > 2V, a minimum energy eigenstate V1

has each site singly occupied. For the case U < 2V one

must maximize ; Si2 while minimizing ; (si + sj)2. This

leads to the cindition Si2 = 1 and (8: + Sj)2 = 0 for all

i and j. These conditions imply S1 = l for all i on sub-

lattice A and Si = -l for all i on sublattice B. Thus,

ni++ni+ = 2 for 1 on sublattice A and nip-n1+ = 0 for 1 on

sublattice B. A ground state W2 consists in this case of

alternating empty and doubly occupied sites. For U > 2V

the ground-state energy is NV and for U < 2V, it is %NU.

This difference shows up strikingly in the zero-field

susceptibility x as shown in Fig. A1. As is seen, for

V/U 5 0.5, x is very similar to the atomic limit of the

Hubbard model (V/U = 0). But for V/U > 0.5, a marked change

occurs at low T, since in this case X + 0 (rather than 00)

as T=0, due to the fact that <V2|SZIW2> 0 (whereas

<Vl|SZ|W1> is not zero for many of the 2N degenerate state

V1). In fact, it is easy to see from (14) that asymptoti-

cally at low T

U

x = 48 exp [-s(2v - 7)], 2v > u (18)

so that X is exponentially small at low T when 2V > U. In

the other case, equation (14) gives the Curie law

x z 8 2V S U (19)
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In Fig. A2, we see that when V turns on, the peak of the

specific heat becomes narrower and it moves to lower T;

the lowest value occurs when 2V = U. As V continues to

increase, the peak moves back to higher T, with a consi-

derable additional sharpening. Clearly, the area under

the large -V/U peak is appreciably greater than that for

the small -V/U peaks; this is consistent with the easily

proven facts,

I
A

C 10g 2 V

00 V _

Io ET dT “{2 log 2 v

U/Z

U/Z

(20)

'
V

It is interesting to note that the correct low-T behavior,

equation (18) is rather different from what one might have

guessed from continuity given equation (19), namely suscep-

tibility ~B exp [- ecv - U/2)] for 2v 2 U. Finally, it is

the insensitivity of x vs T for V < U/2 that shows that the

addition of V to the zero-bandwidth Hubbard model will not

significantly improve the theory in connection with the

experimental x found for NMP-TCNQ. That is, the experimen-

tal x-l vs. T is nearly straight over T ~ 30°tho T ~ 200°K

with a slope corresponding to ~ 3kT rather than either the

RT we find at kT + 0 or the maximum of 2 ZkT at higher T.

Furthermore, the insensitivity of the theoretical x to the

addition of h0pping terms to the zero-bandwidth Hubbard

model in the Curie Weiss region14 suggests that perhaps

adding b and V also will not help. ,
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I. INTRODUCTION

There is a large class of materials called mag-

netic insulators; some examples: MnO, EuO, Man, KMnF3,

KNiFS, Fe203, Cr203. They have an extremely low electri-

cal conductivity; they are presumed to have localized

electronic magnetic moments on the metal ions, the nonmetal

ions being diamagnetic. The magnetism in these crystals

arises either from incomplete 3d- or 4f— electron shells.

The outer s-electrons are always importantly involved in

the binding energy of the system. The s—electrons from the

metal atom are pictured as being transferred to fluorine or

oxygen atoms; e.g. in Man, the manganese (neutral Mn is

3d54sz) are considered Mn2+ while each fluorine is F'; in

Mn0 we presumably have Mn2+ and 02- ions. Furthermore, the

2
closed shell ion F- or 0"(both ls 2522p6) are pictured as

having much larger ionic radii than the positively charged

cation. Hence, the 3d electrons on the Mn2+ are prevented

from overlapping very strongly with their neighboring Mn

3d-e1ectrons, and therefore one might treat the overlap as

small. At high temperature, the atomic moments behave

paramagnetically. But at lower temperature, they undergo

a phase transition to a magnetically ordered phase. The

20
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critical temperatures TC range from ~1°K to =1000°K. TC

has a different name for different magnetic ordering. For

ferromagnetic crystals, the magnetic moments of the consti—

tuent magnetic ion align parallel to one another, and TC is

called the Curie temperature. Substances of these kind are

Fe, Co, Cr02, EuO, GdBr3 (Fe and Co being metals, however).

In an antiferromagnet the spins are ordered in an anti-

parallel arrangement with zero net moment at temperature

below the ordering or Neel temperature. For example, Mn0,

FeO, and Cr are antiferromagnets (Cr being a metal). If

however, one of the magnetizations is stronger than the

other, it is to be expected that the difference between the

two magnetizations will give rise to a strong magnetism.

These substances are called ferrimagnetic, such as Fe304.

Other types of ordering are also observed, e.g. spiral or

helical ordering.1’2

Clearly the existence of such a Tc implies inter-

actions between the atomic moments and it is the purpose of

this thesis to contribute to the theory of these interactions.

If TC > 1°K then the electron-electron and electron-core

Coulomb interaction plus the electronic kinetic energy are

generally accepted as giving the important source in the

Hamiltonian of these interactions. Also essential is the

fermion nature of electrons. The effective interactions

that arise in this way are called exchange interactions.
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They are generally thought to be essentially of the form

+ +

-.z Jij 31-5]. (1)

" th
where Si is the spin of the i ion and Jij is the exchange

parameter for ion i and j. If the interaction Jij involves

only the overlap of free-ion 3d-states associated respec-

tively with ions i and j, it is called direct exchange. If

the exchange couplings exist between ions separated by one

or several diamagnetic groups, Kramers3 pointed out that the

magnetic ions could cause spin-dependent perturbations in

the wave functions of intervening ions thereby transmitting

the exchange effect over large distances. The latter effect

is called superexchange. One of the stumbling blocks in the

theory of superexchange is the derivation of the Heisenberg

HamiltonianCILThe first formulation is in terms of the non-

orthogonal atomic orbitals. The second formulation uses

orthogonal "atomic” orbitals, namely Wannier functions.

Because of the considerable mathematical advantage when

dealing with a macroscopic system, we follow Anderson's

approach which uses Wannier functions. However, the Wannier

functions are not uniquely defined in the superexchange

problem. Therefore, the convergence of the perturbation

series will depend on the choice of the Wannier functions.

A major presumption of Anderson's theory of superexchange4

is that the perturbation theory defined in terms of
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"the exact" Wannier functions would be rapidly convergent.

(The small perturbation parameter is the nearest neighbor

overlap A). His Hartree-Fock (HF) definition of these exact

Wannier states was shown by Silva and Kaplan5 to be unsatis-

factory; in particular these states do not satisfy his re-

quirement that they be nonmagnetic (nonmagnetic wavefunc-

tions are by definition products W(;)o of spatial and spin

functions in which the spatial functions are independent of

spin 0). In the present paper, we nevertheless investigate

the presumption of rapidity of convergence using a differ-

ent variational definition, namely the nonmagnetic local-

ized solutions in the thermal single determinant approxi-

mation (TSDA).6’7’8

Our investigation is made first within a pre-

viously studied 4-electron 3-orbital 3-site9 model of

superexchange. Then we generalize to a 3-dimensional

crystal. The function space is defined to have atomic

functions ai centered on magnetic atoms and bi centered on

diamagnetic atoms (with one orbital at each atom); a1 and

bi are real; since they are presumed to be free-atom (or

ion) states, they are not orthogonal (interatomic overlap

integrals are nonzero). The states ai are related, for

the crystal, by a lattice translation Operation L, and

similarly, for the bi' We assume that each a1 and bi is

inversion invariant about its respective atomic site. We

also assume nearest neighbor overlap, the next nearest
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neighbor and more distant overlap being taken to be zero.

In case of-3 sites, we have the inversion operation I

through the central site instead of the lattice translation

operation L. This situation is shown in Fig. Bl. Wannier

functions Ai and B1 are constructed in this space. We re-

quire the constructed Wannier function to be real, ortho-

gonal and to satisfy A1 + a B. + bi as the overlap A 4 0.
i’ 1

The Wannier functions so constructed turn out to be not

unique. Adding the spin to these Wannier functions, we

obtain our complete set of orthonormal one—electron states.

Occupying these one—electron states with electrons, we get

the many-electron states, namely the Slater determinants.

The model Hamiltonian is defined as the projection onto these

many-electron states of the usual Hamiltonian containing

electronic kinetic energy, electron-electron, and electron-

nucleon Coulomb interactions.

The Hamiltonian is divided into two parts. HO,

the unperturbed part is diagonal in the basis defined in the

previous paragraph, and is of zero order in the overlap A.

The perturbation part is V E H-Ho which is of first order in

the overlap. In the unperturbed ground state, there is by

definition one electron on each magnetic site and two elec-

trons on each diagmatic site. Because the Wannier functions

as defined above are not unique, this division of HO and V

is correspondingly not unique. As is well known, for the

three-site model, the exchange, i.e., the splitting between
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the lowest singlet and triplet is 0(A4). Therefore, it has

contributions through 4th order perturbation theory. Each

order is very sensitive to the choice of Wannier functions,

as will be shown. Although the sum of all perturbation

terms through fourth order is independent of this choice.

We show however, that with the TSDA choice, the tetal

energy to 0(A4) is given exactly by the lSt and 2nd order

perturbation theory10 both in the 3-site case and in a

3-dimensional crystal.

Previous attempts at calculating the exchange pa-

rameter J within the general low-order perturbation approach

have failed to give agreement with the experiment. In the

most recent and elaborate attempt (for KMnFB), Fuchikami's11

straightforward perturbation calculation led to a J which is

an order of magnitude too smalllz. But her11 Wannier func-

tions were apparently chosen arbitrarily and she considered

perturbation theory only through second order. Hence, our

finding of extraordinary sensitivity to this choice the re-

lative size of lSt through 4th order perturbation terms

(we give simple example where the exchange constant comes

only from fourth order perturbation theory!) suggest that

she might not have obtained all the leading contributions

to J.



II. THE 3-SITE MODEL

The system we are considering in this section is a

single linear cluster with a diamagnetic atom in the center

and magnetic atoms on each end. It is a four-electron sys-

tem. The Hamiltonian of this system is the usual kinetic

energy of electrons, the Coulomb interaction between elec-

tron and electron, and between electron and nuclei:

4 1 4

H= z h(i)+-2— z v(i,j) (I)

:1 ji 1

Here hi is the kinetic energy of the "i" electron plus its

interaction with the atomic cores, and v(i,j) is the Coulomb

interaction between electrons i and j.

Imagine three atomic orbitals a ho, a1 localized0’

at three atomic sites as indicated in Fig. Bl. We assume

that the central one,bO is invariant under I, inversion

through the central site Ibo=bo, and Iao=a]. Among these

orbitals, we assume they are real, and have only nearest

neighbor overlap A, i.e.

f aobodv = A, aoa1 = 0. (2)<ao|bo>

From these one can construct the following set of orthogonal

functions:

26
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A2 = C [a0 + ubo +va1]

E9 = 0 [b0 + Y(ao+a])] (3)

A _

1 - C [a1 + ubo + vao]

Here C and D are normalization factors, while u, v, y are

parameters assumed to be real and of 0(A). A0, 80’ A1

satisfy the same symmetry properties as a0, bo

These "Wannier functions" will have

’ a], i.e.,

I 52 = 52’ I 52 = A .

—
J

*
I

a0, 59 + bo’

pressions for u, v, Y dictated by orthogonality are some-

the properties A0 A1 + a1 as A + 0., The ex-

what complicated; to leading order in A they give

IJ2

V = - (f- + HA)

Y=-(u+A). (4)

A0, 80’ A1 are not uniquely defined because the set

2
I A

A =-——-——— (A +AB -'—— A )

° 1+A2/2 —9 A —3- 2 —1

1-122 1
B=——2-L-(B-——2-—(A+A)] (5)

°1+1/2 —‘-’- l-A/Z —° —1

A=—-]———(A+).B-)‘2A)
o 2_ o

I 1+12/2 J- —- -—

are orthonormal to 0(A) provided A + 0 as A + 0, and still

satisfy the other symmetry conditions. After adding the

spin to these "Wannier function", we have a six dimensional

space.
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Occupying the six spin orbitals Aoo, Boo, A10

(o=++), one obtains 15 four-electron determinants. From

these we constructed those linear combinations 9]... 915

which are eigenfunctions of the total spin operators 92,

S2 and the inversion I. The Hamiltonian matrix <¢i|H|¢j>

is then reduced into block form. This is shown in Appendix

B. For small enough A, the lowest singlet can be shown to

come from a 4 x 4 submatrix connecting the states

'
9
'

I
I I

—— [IAotBotBOIA1 /§ +> - |A0+80+30+A1+>J
I

'
9
'

ll

1

f [IAO+A0+BO+A]+> - IAO+A0+BO+A1+>

+ |A0+Bo+A1+A1+> - IAOIBO+A1+A1+>J ‘(6)

'
6
'

II

I
3 IE [IAO+AO+BO+BO+> + |B0+BO+A1+A1+>J

9 +A1+> .
4

|AO+AO+A1

Similarly, the lowest triplet comes from a 2 x 2 submatrix

connecting the states

_ I
05 - 5E [IAO+80+80+A]+> + IAO+BO+BO+A1+>J

-1Q6 - 2 [|A0+AO+BO+A,+> + |AO+A0+BO+A1+>

+ |AO+BO+A1+A1+> + |AO+BO+A1+A1+>J . (7)

Here | ... > is the normalized antisymmetrized product of
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spin orbitals indicated. The matrix elements

H = <91|H|oj> can be classified according to their order
ii

of magnitude as follows:

(I) 0(A°)

”n

22

- <AO+AOIA

<AO+BO+BO+A11|H|AO+BO+BO+A1+> - <AO+BO+Bo+A1+

|H|AO+BO+BO+A +>
I

<AO+AO+BO+A1+|H|AO+A0+BO+A1+> - <AO+AO+BO+A1+

+A +>+A 1 1|H|AO+BO+A +>+ <AO+AO+BO+A1+|H|AO+BOIA
l l

- <AO+AO+BO+A1+|H|AO+A0+BO+A1+>

<AO+AO+BO+30+|H|AO+A0+BO+BO+> + <AO+AO+BO+BO+

|H|BO+BO+A1+A1+>

+A1+|H|AO+AO+A +A +> (8)
I I I

<AO+BO+BO+A1+|H|AO+BO+BO+A1+> + <AO+BO+Bo+Al+

|H|AO+BO+BO+A1+>

<AO+AO+BO+A1+|H|AO+AO+BO+A1+> + <AO+A°+BO+A1+

|H|AO+BO+A1+A1+> + <AO+A0+BO+A1+|H|AO+BO+A1+

A1+> + <AO+AO+BO+A1+|H|AO+A0+BO+A1+>



(2) 0(4)

12

3

(3) 0(A

uses the

matrix ofIH

- /2[<AO+BO+BO+A]+|H|AO+AO+BO+A

- /2<AO+AO+BO+BO+|H|AO+AO+A

31

/2[<AO+BO+BO+A1+|H|A0+AO+BO+A11> - <AO+BO+BO+A1+

|H|Ao+Bo+A1+A1+>J

/2[<AO+AO+BO+A]+|H|AO+AO+BO+BO+> + <AO+AO+BO+A1+

|H|BO+Bo+A1+A1+>J

2<AO+AO+BO+A1+|H|A0+A0+A1+A1+> (9)

11> + <AO+BO+Bo+

A1+|H|AOIBO+A1+A1+>]

2<AO+BO+BOIA1+|H|AO+AO+BO+A1+>

/Z<AO+BO+BO+A]+|H|AO+A0+A1+A1+> (10)

1+A1~I>

The detailed calculation of each matrix element

technique given in Appendix C. Each diagonal sub-

j is found to have nondegeneracy among the

diaggonal elements. Because of our requirement that the

grollnd state must be singly occupied on the magnetic sites
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in the zero order overlap limit, we obtain the inequalities

E °-E ° = <A A |le A > -<A A |le A > > 0
3 I o o o o o l o 1

E2 -E1 = <AOIhIAo> g <B0IhlBO> +<A0AoleAvo>

- <BoBoIv|BoBo> + <AOA1|v|AoA1>

- <A B lle B >>0. ’ (ll)
00 00

54°-E,° = 2[<A0Ihle> - <Bo|hIBo>] + 2<AOAo|v|AoAO>

- <BoBolleoBo> + 3<AoAllleoAl>

- 4<AOB0|v|AoBO>>0

where

* 3
<a|h|b> = [a (1) h(l) b(l) d v]

<ab|v|fg> = fa(l)* b(2)* v(l,2) f(l)

g(2) dv1 dv2 . (12)

Hence, we apply nondegenerate perturbation theory up to

4th order to calculate the singlet-triplet energy differ-

ence keeping all terms in the energy through 0(A4). We get

4 4

AE = Z E

St -

(i) -

1 AEst "
02(1) - 5(1)) . ~ (13)

l 1=l

where i is the orderor perturbation theory. The formulas

for various order corrections to the energy from perturba-

tion theory are displayed in Appendix 0. Up to 0(A4), each

AEél) can be written as
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.(I) _ ( .

2 2 2 2

E(2) = _( "13 + “14 ) _ ( ”12 _ ”56

5t ”33'”11 H44'HH H22'HH “66'H55)

E(3) = 2“]2 (_121511 . ”24“]4 , (14)

5t “22'”11 ”33'”11 “44'”11

2 2

(4) , ”12 2 H23 H 24

E , ' '(H -H ) H -H + H -H
st 22 11 33 11 44 11

Each Eéé) is a function of A because of (5) but the total

energy difference to 0(A4) is independent of A.

 

4<A A |le A >
= —o—o —o—l z 2

AEst 2<floflilvlfliflo> + w ' ‘2"P
21 w

21

4 2 2 2r 2
- ———-(x + —£9) - ———-(y + ——9) (15)

"31 "21 "41 "21

= (0) - (0) - . (0) (0) .
where Wm" Em in 15 obtained from Em - En given

in (II) with the replacements A0 + 50’ B + Bo, A1 + A], and

p ‘ (flolhlfif * (flofiolvlfioflfi + (flofiolvlgogc?

T (AOAHVIEOB. >

q = <A_O|h|_B_o> + <_A_O_B_0|v|_B_oB > + 2<AOAIIVI§OAI>

r = <Aolhlfio> + Amway + Moslvléoav (is)
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x = <£o|h|fli> + Atlases + “4.2905193

- <A B |le A >
—o—o —o—l

Y = ’ <50§01V1§051>

z = 2<A IhIA > + 4<A A lle A > + 2<A B Ile B >
-—1 —o—o —1—o —o—o -1—o

“2<Aogolvlfioflo> - 2<AoBolleoAl>

The A independence is expected because changing A simply

amounts to changing the basis set.

In the following two sections we examine aspects

of the behavior of the four individual terms Eéi),

i=1, 2, 3, 4 under different choices of the Wannier func-

tions A0, B A1, i.e., of A. We find, in particular,0’

an a priori way of determining A which makes

AEEE) = AEéfi) = 0; we also show that these individual terms

AEgi) depend very sensitively on A. The utility of these

findings, while not apparent from the present simple example

(where the complete answer to 0(A4), (15) has been obtained),

will be seen in connection with the generalization to a

crystal.



III. THE ONE-ELECTRON STATES IN THE THERMAL

SINGLE DETERMINANT APPROXIMATION

The well-known method of determining one-electron

states is the Hartree-Fock approximation. As we noted

earlier, this was Anderson's approach and it fails to

give one-electron states that satisfy the requirement that

they be nonmagnetic. This requirement is clearly impor-

tant, since the magnetism is to be predicted by the result

(effective Hamiltonian = -Z JijSi-Sj) of our perturbation

theory. We therefore turn to a recently introduced devel-

Opmenté, the thermal single-determinant approximation

(TSDA), which is closely related to the Hartree-Fock ap-

proximation in that it also determines "best" one-electron

states. But in the variational context, it is better

(more precisely, it is never worse) than the Hartree-Fock

approximation.4

The idea of TSDA is as follows. We consider the

minimum (or variational) principle of quantum statistical

mechanics for.a system with a Hamiltonian Operator H and

number of particle operator N,

l

Ftp) 2 TriptH-uN+B' log 0)] 2 Fe (1)

35
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Here 9 is an arbitrary Hermitian and nonnegative Operator

with unit trace, (i.e. a density operator) 8 = 1/kT, u is

the chemical potential, and Fe is the exact grand-canoni-

cal free energy for the system, namely

-1 -B(H-UN) ; (2)

'
1
'
]

ll F[pe] = 8 log Tr e

De = e’BcH'UN)/Tr e-B(H-uN) (3)

is the exact grand-canonical density matrix. For a system

of interacting fermions, we have

_ . . i 1 .. i i

H - Z<1lh|J>CiCj + 7 Z X <13|Vlk1>ci cj c Ck (4)

ij k2 9'

where Ii>, lj> ... is any complete and orthonormal set of one-

particle state,and C1 are the corresponding Fermion destruc-

tion operators. The free energy in the TSDA is the minimum

of F(p) for a trial density matrix of the form

= e-B(H-HN)/Tr e
‘B(fi'UN) (5)

where

~ - 1 A

H ‘ z hii n1 T 2 1? Vij,ji ninj (a)

is a function of the occupation-number operators ni cor-

responding to a complete orthonomal set of one-particle

states |i>. Here
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hij = (ilhlj>

Vij,k1 = <1j|v|kl> (7)

Vij,kl = <ij|vlkl> - <ij|v|lk>

Requiring stationarity Of F(p) under arbitrary variations

of the states |i>, we find that the one-particle states

|i> are determined by the system of TSDA equations,

<<ni-nj>> hij + v. . <<(ni-nj)nk>>=0 (8)

i ik,jk

plus the condition that they form a complete orthonormal

set. The double brackets in the TSDA equations denote

the average over the trial density matrix,

<<0>> = Tr[p0]
(9)

where p is given by equations (5) and (6). Thus the equa-

tions Obtained by first putting 0=ni into (9) and then

0=ninj form, together with (8), a set that must be solved

self-consistently: Given the average in (8), solution of

these equations yields a set of one-electron state |i>

which then determines H and p and therefore the average

occurring in (8). And the latter must match those "given"

values that started the process.

In our 3-site problem i, j, k run over 6 values

corresponding to our 6-dimensiona1 single-electron function
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space. Although this was derived from the grand canonical

ensemble, these equations are applicable to our present

considerations. Because we are interested only in T << U,

the smallest unperturbed excitation energy from the ground

state, the fluctuations in the number of particles is

negligible. The reason for this restriction to low T is

that we are after the best one-electron states which will

define our perturbation expansion for the low-lying many-

electron states. Let nio be the occupation number for

site i with spin 0. Then equation (6) becomes

~- 1 A

H - Z hii nio + 2 2 viojo',iojo'nionjo' (10)

and (8) becomes

<<nio-njo>> hij + £§,Viokogjo£o'<<(niO-njo)n£o'>>=0 (11)

Now for the 3-site case, isl, 2, 3 correspond

to A B A1 respectively. For i=Ao, j=Ao’ 0, we get

1

<<n >> vA A A A
+ n ‘n n

>> h <<( A01r AH) Ao+ o o’ 1 o
'11

Act Alt AOA1

AOAO’AlAO

+<<(n -n )n “
AO+ Alt Ao+>>v + <<(nA0+-nA1+) (12)

A

-n )n >>v
Aot Alt Alt AOA1,A1A1nA +>>VA A1,A A T <<(“

1 o o o

+ <<(n ~n ) >>v + <<(n >>

A0+ A1+ 9%1 AOB 0+

A

v =AOBO,AlBo 0

B
-n )n

051 O Ao+ Al B



39

we see that from the symmetry v = v and
AOAO,A1Ao A0A1,A1A1

the left-hand side of the above equation vanishes identi-

cally. Therefore, for i=AO, j=A1 the TSDA equation is

satisfied by symmetry. For i=A, j=B, we get the TSDA

equation

<<nAo+-nBoI>>hAoBo
+ <<(nAOI-nBOI)nAo+>>VAOAo’BOAO

+ <<(nAOI-nBo+)nBo+>>vAoBo’BOBO + <<(nAo+-HBO+)nA1+>>

VA0A1,BOA1 +<<(nAo+-nBO+)nA1+>>vAOA1’BOA1

= <<(DAOI-nBo+)nA1I>>vAoA1’A1B0°

(13)

If we substitute equation (5) of section I into this equa-

tion and use (5) and (6),it becomes a transcendental equa-

tion for A thus obtaining A0, BO,A1. For kT << U we can

neglect terms of 0(exp-BU/2) so that <nB +> = 1,

0

~_ % <nA +nA +> = 0 at T + 0. The above TSDA equa-

o o

< >

“A01

tion then becomes

<AoIhIBo>+<AOAoIvIBvo>+<AOBOIvIBoBo>+<AOA1IvIBOA >=0 (14)
1

to the leading order in A. To the leading order the fol-

lowing matrix elements are



vA A
A t:

O O’BO 0

VA B B B 2
o O’ O o

v

AOAI’BOAI

Substituting

A we get the

lap A

AT

where W21 is

given in (16) in Section II.

overlap A

v + A(v -v ) (15)

AOEO’EOEO EOEO’EOEO flo§0250§0

v + A(v v

505143-051 AOEO’A B A 414 Al)

the above equation into (14) and solving for

TSDA value of A to leading order in the over-

: -_E_
(16)

w21

defined below (15) in section II, and p is

To the leading order of

 

 

A0 2 a0 + le0

E0 = bO - (A+u) (ao+a1) (17)

51 2 a1 + “be

Substituting this into (16), we get a useful relation

AT + u = 6 (18)

where <a |h|b >-A<a |h|a >
e O O o o o (19)

w21

and

e 2

h ; h+jd3¥' [a02(?')+b02(¥')+a12(¥')] (20)
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o . . . .

w21 is Obtained from w21 Simply by letting A0 + a0, BO 0,

A1 + 31.

Although AT is linearly dependent on p, 0 is

independent of p. The solution of TSDA, A0, B0’ A1, should

be independent of the choice of AC, BO, Al for given nonor-

thogonal atomic orbitals a0, b0, 31 or independent of u

from equation (3) of Section II (since A0, B0, A1 is simply

a basis set). We can verify that A0, B A1 do satisfy this
0,

by the useful relation (18). Take the TSDA of A and express

it in terms of the nonorthogonal atomic orbitals. That is,

substituting (3) into (S) in Section II we get

_ 1 _
A - ———7—— { [c ATD(A+p)]ao + (Cp+ATD)bo

1+AT/2

Hz 2
-[C(—7— +pA) + DAT(A+p) + C AT/2]a1} (21)

with C2 = l-ZpA-uz and 02=1.

The coefficient of a0 to 0(A2) is

C-ATD(A+p) 2 A2 92

= 1-..? him.) - ,1 = 1-9:. (22) 

2
1 + AT/Z

The coefficient Of a1 to 0(A2) is

Z 22

-[ + uA-+ (e-u)(A+u) + £9%El—l = “(0A + %—) . (23)

N
"
:
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To the 0(A2), we thus Obtain

02 92
A = (1- 0A- 7—) a0 + ebo - (9A + 7—)a1 (24)

Similarly, we can prove that B0 is independent of p.

Therefore this yields the Wannier functions in TSDA.

To 0(A2) these are13

62 02

(1- 0A- -2—) [a0 + ObO - (9A + 7—)31]A

B = (1- 02 + A2) [b0 - (A + 0) (a0 + a1)]. (25)



IV. RESULTS OF THE 3-SITE MODEL

To the leading order, eq. (9) Of Section II

yield

H = H12 56 = <Aolh|Bo> + <Avo|v|Bvo> + <AoBoIvIBOBO>

+<AA1IvIB0A1>

This is the left hand side of the TSDA equation (14) in

the last Section. Therefore, from equation (8), (9), (10)

and (14) of Section II, we immediately have to 0(A4) and

zeroth order in exp (-8U)

(3) = (4) =
ABSt (AT) 0 , AEst (AT) 0

2 2

AE(2)(A ) H13 H14 (1)

5‘ T H33‘H11 H44’H11 °

nd
Therefore using the TSDA states, the 2 order perturbation

theory exhausts to 0(A4), the total energy splitting:

AEst = AE§I)(AT) + AB§E)(AT) ° (2)

To show how sensitive is the dependence of the

individual perturbation terms on the choice of A, we con-

sider the following simple example. Choose

43
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A0 = a0

B0 = b - A(a +a1) (3)

A1 = 31

instead of the TSDA states. Then dropping all intersite

Coulomb matrix elements, one can see very easily that

(1) = (2) _ (3) _
AEst 0, AEst - 0, AEst - 0

4

__4I<a0|hlbo>|
  

(1+2)AB = ABéfi) w

21 w31 w41

st (4)
 

That is, the total splitting to 0(A4) comes entirely from

the fourth order perturbation rather than from first and

seCond order as is the case where TSDA orbitals are used.

In summary, equation (1) or (2) shows that,

within the model considered here, Anderson's hope that

there exist "exact Wannier functions" which would lead to

rapid convergence of the perturbation series has been

fulfilled, the exact Wannier functions being the TSDA

localized states given by (16) of Section III or alter-

nately by (25) of Section III. In fact, the rapidity of

convergence is probably better than expected, in that the

3rd and 4th order perturbation terms vanish identically
 

to 0(A4) using the TSDA states.



V. GENERALIZATION OF THE 3-SITE RESULTS

TO A MANY-ATOM LATTICE

Similarly to the 3-site case, the function space

is defined to have atomic functions ai centered on magnetic

atoms and bi centered on diamagnetic atoms. These func-

tions are real; the ai are connected by lattice transla-

tions, and similarly for the bi' We also assume nearest

neighbor cation-anion overlap of these functions; the next

nearest neighbor and more distant overlaps are assumed to

be zero. The Wannier functions 51’ Bi are constructed in

this space. We require the constructed Wannier functions

to be orthogonal, and to approach the atomic functions ai

and bi as the overlap approach zero. We also take them

to satisfy "maximum similarity to the ai (bi)" i.e., we

require Ai(Bi) to transform like ai(bi) under all lattice

symmetry Operations that leave the point Ri unchanged.

For simplicity we take the 31 to be s—functions; then we

require the 51 to be real and invariant under the symmetry

group of rotations that leave the point Ri fixed. Despite

these restrictions, the Wannier functions so constructed

are not uniquely defined (as is also true for the 3-site

model).
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For illustrative purposes, suppose we have a

periodic linear chain with 2N+l unit cells,with one a-atom

and one b-atom in each cell, as shown in Fig. BZ. The

Wannier functions in cell "0" on atom a and b respectively

will be

AC a0 + A1(b_1+bo) +A2(b_z+b + ... + Ai(b_i+b. +
1) 1-1)

T AN(b-N+bN-l) T AN+1bN T V1(a-1T31) T ”2(32Ta-2) T

4
. vi(a_i+ai) + ... + vN(a_N+aN) (1)

_ ' t 1

Bo — b0 + A1(ao+al) + A2(a_1+a2) + ... +Ai(a_i+1+ai) + ...

I g I

T ANCa-N+1TaN) T ”1(b-1Tb1) T “2(b-2Tb2) T

+ vi(b_i+bi) + ... + vN(b_N+bN) (2)

There are 2N+l parameters (A1,A2, ... AN, AN+lvl...vN) in

o o

.
'AC; and Similarly 2N+l parameters in BO (41, 1%,

0
1

AN 9

t

1 ... 9N).

A 3—dimensional example for which our assump-

I

’ A N+1’

tions would reasonably apply is indicated in Fig. B3.

There the dots represent cation (magnetic-ion) sites with

wave-functions ai, the open circles stand for axion

(diamagnetic-ion) sites with wave-functions bi' This is



(
I
I
I

I
I
I
,

I
I
I
.
‘
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Figure B2. Linear-chain model

Figure B3.

 

 

 

 
   

Peroskite structure ABFS, showing

only the B-ions (.) and the

F-ion (0). .
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pertinent to magnetic materials of the perovskite struc-

ture, e.g. KMnFS, KNiF314. In the latter example, - = N12+,

0 = F'; the potassium ions, which are not thought to con-

tribute appreciably to the superexchange, are not shown.

The model Hamiltonian is written in terms Of these

Wannier functions as follows:

4..

. c.
10 30

+ +

H = Z X h..c Vij,k£Ciono'C£o'Cko (3)
1

.. 1] +72: 2:2

13 0 ij k2 oo'

‘10 are the destruction Operators corresponding respectively

to the various Wannier functions. The hamiltonian is divi-

ded into two parts, H = HO + V where

N
I
P
-
i

(4)H = Z h..n. + v.. .. n.n.

o i 11.1 13,1] 1 j

E

ii

which is clearly of zero order in the overlap A; here

ni = 2 111 The perturbation part V = H-HO is lSt order

0

in the overlap. In the unperturbed ground state there is

o'

by definition one electron on each magnetic site g ac

and the electrons on each diamagnetic site 2 nb0 =

Our purpose is to derive for smalT overlap the

appropriate spin Hamiltonian which will describe the low-

lying magnetic states (including the magnetic ordering and

thermal magnetic prOperties). We therefore look for our

unperturbed states in a temperature region in which there

is no magnetic ordering, i.e. T >> the magnetic ordering

temperature. Similarly, we want our states to relate to
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the physical situation where the number of electrons on a

magnetic ion is approximately 1, hence we consider

kT <<AEinter the unperturbed energy it costs to hop an

electron from one atom to another. Under this condition,

we get

<n > z % <nb > z 1

aio i

(na tna I) z 0 <na ona O'> 2 T (S)
i i i j

l
(n n ,> 2: ....

aio bjo 2

The TSDA equations between different magnetic sites are

satisfied exactly by symmetry, a similar result being valid

for different diamagnetic sites. The only nonzero TSDA

equation are between the magnetic and diamagnetic sites.

In the case of a linear chain, we have N+1 equations,

namely between a0 and bi’ i=0, 1, ... N. From equation

(11) of Section III let i=ao, j=bj and substitute the con-

ditions (5). We get

<a0|h|bj> + X <aoai|v|bja.> + 2 Z <a0bilvlbjbi>

31 1

i J

+ <a b.|v|b.b.> = 1-
OJ J J 2

2 <aoai|v|aib.>

aifao

J

+ bifbj<aobi|vlbibj> (6)

Besides N+1 of these equations, there are orthogonality
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conditions of the following types:

<AO|Ai> = 2(Ai+Ai+l)A + Zvi i = 1, 2, ... N

= v v v

<Bel Ai> (bo'31T T (Vi+vi+Vi-l+vi-l )A T (Ti+Ti)

= v I<3 |A_N> 2(vN+uN)A + AN+1+AN+1 (7)

____ v r I
<BO|Bi> 2(Ai+Ai+l)A + 291

Therefore, we have totally 4N+2 equations to determine 4N+2

parameters. To the leading order of overlap, we find

f - Ae' f ‘ 43A1 = _—__€'-€ Xi = _E'€' (8)

where

f = <aolh|bo>

c' = <a0|hlao> c = <bo|hlbo>

and

:
‘
z

n

2

3 e 2 2 2
h + f d r —————— [z a +b +2 b ]

IT'T'I 9, R, O £§O 2

The effective Hamiltonian HS defined in Appendix F

can be expanded as follows:

 

1
HS = P[H0 + V-VQ H_E QV]P (9)

= P[H + v-v 1 V+V 1 v 1 v ]p
o H‘TE" fi‘TE— H -E °°'

0 0 O 0 O 0

where P is the projection operator, defined in Appendix F,
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which projects onto the ground state manifold. Looking

at the 3rd order perturbation term, we should begin with

the ground state and come back to the ground state. Each

term in the expansion will be prOportional to the product

Of three matrix elements of V, and has the form

<g'lle><x|vly><y|v|g> where lg'>, |g> are in the ground-

state manifold and |x>, Iy> are excited states. For the

factor <ylvlg>, either one electron or two electrons can be

hopped from the ground state. If two electrons are hopped,

this factor is of 0(A2). If only one electron is hopped,

and the electron goes from one a-site to another a-site,

this factor is also of 0(A2). If the electron goes from

a b-site to an a-site, this factor is the following (see

Appendix E):

+ 3

< 9° ¢°> = ... + 0 A 10
CaOCbO gIHI g ( ) ( )

where ... is the expression on the left hand side of TSDA

equation (6). The rest Of the terms are higher order in

the overlap. Therefore, if we use the TSDA basis, this

factor is Of order A3 instead of A. The total product is

th
therefore higher than 0(A4). For the 4 order perturbation

term, we can apply the same analysis. Therefore, both the

3rd and 4th order perturbation terms are of higher order as

long as we use the TSDA states as basis-functions. Using

nd
this basis, we therefore need apply only through 2 order
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perturbation theory to give all the leading-order contri-

butions (0(A4)) to the effective Hamiltonian “5' As shown

in Appendix G, this gives the Heisenberg spin Hamiltonian

 

where “5 = -E. Jij gi'gj (11)

J

_ P k N
where Jij - Jij+ Jij+ Jij

Z
2|t..|

J..k = - ———ll——, JP: v.. ..
13 1).. 1J 1J.J1

1)

2

J..N = _ z IV1j,2i'

13 2 (12)
. .. 2'5

(on b-51te) 13’

here

= 1,1

ti) hi) T i 2V12.j£ T Vii.jj T i _ Vik.jk

V - <c+ c c c vIH Iy>.. - - _
9

lJ’TT jo to 10 to 0

u. = <CTC vIH |0> - c (13)
ij 1 j 0 '

e = E0, i,j are on a-sites, 2 is on a b-site,and |v>

is an unperturbed ground state.



VI. SUMMARY AND DISCUSSION

In principle, one has to go through fourth order

perturbation theory in order to exhaust all terms of 0(A4),

a very complex task for realistic models of magnetic insu-

lators. We showed that the nonmagnetic Wannier function

rd and 4thsolutions Of the TSDA equations make the 3 order

perturbation terms vanish, for the simple models considered.

This result proves Anderson's idea that there exist "exact

Wannier functions" which make 3rd and 4th order perturba-

tion terms negligible, the main contribution to the exchange

parameter coming from lSt and 2nd order perturbation terms.

The generalization of this type of consideration

to more realistic models (containing more than one electron

on a magnetic site and describing a crystal) is felt to be

of considerable importance.’ The reason is that, in our

opinion, a conclusive evaluation of Anderson's general

perturbation theoretical approach as a practical means of

calculating spin-Hamiltonian parameters is impossible with-

out such considerations. That is to say, one must correctly

evaluate all terms to 0(A4); hopefully an appropriate choice

of Wannier functions will greatly simplify that task.
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APPENDIX A

DIAGONALIZATION OF THE TRANSFER MATRIX

The transfer matrix T is in the following form:

rA B c 07 A = e'(XTz)

1 .

- - (2+U)

B e u 1 B B = e 2

T = where -%(z-u) (A1)

0 1 euC C=e

= x-z
gD B C A’ D e  

If we make a similarity transformation on T with the unitary

  

matrix

W

(.1 0 0 _1_

f2 f2

0 1 0 0

S = (A2)

0 0 l 0

.1. o o ._1

/2 (TI

\

the T is transformed into the following form:
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(A+D /2B J20 0 \)

/2B e.u l 0

5‘1 T s = (A3)

/2c 1 e'1 0

0 0 O A-D

k J

Immediately, one Of the eigenvalues is

A = A-D = -2 e‘2 sinhx. (A4)

The other three eigenvalues are found from the following

characteristic determinant

(A+D)-A /2B /2C

/2B e'u-A 1 = 0 . (A5)

  

By using

A+D = Ze-z coshx

B2+C2 = 2e.Z coshu

one can easily prove

A+D /2B 2C

/28 e'u 1 = 0. (A6)

  /2C 1 eu
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Therefore, another eigenvalue is A1 = 0. The rest of the eigenvalues

are found from the quadratic equation

A2 - 2A(e'z coshx + coshu) + 4e'Z coshu (coshx-l) = 0. (A7)

The solutions are:

A 2 3 = (e'2 coshx + coshu) : [(e"z coshx - coshu)2

’

+ 4e'z coshu]1/2 (A8)

AZ > A3 and AZ > A1 are Obvious. .Also

A2 -|A O| > [(e"2 coshx + coshu) + (e'Z coshx - coshu)]

- Ze'z sinhx = 2e'Z coshx - 2e'Z sinhx = e'CZTX)> 0

Hence 42 > |on (A9)

Therefore, A2 is the eigenvalue of maximum.magnitude.



APPENDIX B

WAVEFUNCTIONS OF 3-SITE

4-ELECTRON LINEAR CLUSTER

Let "t" denote the space orbital which is occu-

pied by a spin up electron and "+" by a spin down electron,

"1" denote the space orbital which is occupied by two elec-

trons with the order of spin up followed by spin down. If

the space orbit isn't occupied, we denote it by "0" and

the order of space orbit is A0, 30, A1. With these conven-

tions we get the following 15 4-e1ectron wavefunCtions on

three sites:

1
a = —— [|+1+> - |+:+>]

1 x:

92 = % [II++> - IS++> + |++3> - |++1>]

4’3 = i [|110> + |0n>1
/2

94 = lsoz>

05 =._1 [|+t+> + |+:+>]

/2

<16 = J; [|:++> + |¢++> + |++z> + |++¢>]

97 = % I|¢t+> + |3++> - |++t> - |++t>]

g8 = I+t+>
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99 = —1 [|:++> + |++:>]

2

v = _1 [|:++> — |+oz>1
10

111 = |+t+>

Y =-—1 [|:++> + |++:>]
12 ,7

v = —1 [|z++> - |++z>]
13 ,7

v = —1-[|::0> - |0u>1
14 /7

v = 1 [|z++> - |x++> - |++s> + |++¢>]
15 2

These are eigenstates of 52, S2 and I with eigenvalues given

as follows:

 

Y. 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

 

 

From the above table, we see that the 15 x 15 matrix fac-

tors into one 4 x 4 submatrix from the singlets, four

2 x 2 submatrices, corresponding respectively to

(52. s I) = (2. o, -1). (2.1. -1). (2. -1, -1).z,

(0, 0, -l), and three 1x1 matrices.



APPENDIX C

MATRIX ELEMENTS OF THE HAMILTONIAN OPERATOR

WITH RESPECT TO DETERMINANTAL WAVEFUNCTIONS

The Hamiltonian Operator for an n-electron system

is taken to have the form

H = Z h(i) + Z v(i,j) C1)

1 i<j

where h(i) is the one—electron interaction term, v(i,j) is

the two-electron term. A Slater determinant of one-electron

states 91 ... on is defined as

91(1) 91(2) ... 91(n)

¢ = l___ 92(1) 92(2) ... 92(n)

/fiT

O 9 O

n(1) n(2) n(n) . (c2)  
We will assume that the Oiare members Of an orthonormal

set. Equivalently, we may write

_ _ l
9 ‘ RI¢1(1) ¢2(2) --~ ¢n(n)] ’ ;%;

2 (-1)p 2141(1)¢2(2) ... ¢n(n)), (03)

P
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where the antisymmetrization Operator R is defined by this

equation. The summation is over all n! distinct permuta-

tions P of the electrons among themselves,andT(-l)p is +1

if the permutation entails an even number of pair inter-

changes, -1 if it involves an odd number. Let 9 and 9'

be two different n-electrOn wavefunctions, with 9' built

up from 91' ...¢n'. Before calculating the matrix element,

we assume that, by interchange of rows, 9 and 9' have al-

ready been put into maximum coincidence with each other.

We then may distinguish four cases:

Case 1: 9 and 9' are identical

Case 2: 9 and 9' differ in one spin orbital

with om entering 9 and ¢p entering 9'

Case 3: 9 and 9' differ in two spin orbitals

w1th ¢m and on entering 9 where 9p and

9 enter 9'

q

Case 4: 9 and 9' differ in three or more spin

orbitals

the overlap integral S is straightforward to derive

1 if 9=9' (case 1)

S = <9,9'> = { (C4)

0 otherwise (case 2,3,4)

The matrix element of H can be broken up into two pieces,

one from the one-electron part, the other from the two-

electron part. The matrix element Of the one-electron

part is the following:
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1 = <e|2 h(i)|9'>

1

= _1 z (-1)p p[¢(1)¢(2) ...)* z h(i)
n! p

1

3(4)Q QI9'(1) ¢'(2) ...) d1(1) dr(2)

at

I (¢1(1) 42(2) ...) 2 h(i) 3(4)Q
1

Q[9i(1) 95(2) ...] d1(1) dT(2) (CS)

I (41(1) 92(2) ...1* I h(i) [9i(1) 45(2) ...]

dT(1) dr(2)

The 4th line follows from the fact that each of the permu-

tations P merely affects the labeling of the variables of

integration. The 61h line follows from the fact that

Xh(i) is a sum of one-electron operators; any nontrivial

permutation P produces two noncoincidences of one-electron

states one of which integrates to zero because of the

orthogonality. We then obtain immediately

2 <9i|h(l)|¢i> for case 1

i

I = <¢n|h(l)|¢p> for case 2 (C6)

0 for case 3 and 4
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For the matrix element of the two-electron part,

the reduction proceeds similarly although now of all the

permutations Q we must retain for each term v(i,j) the per-

mutation that interchanges electrons i and j

II 5 <9 | Z v(i,j)l9'>

i<j

* P

.f [41(1)¢2(2) ...] (iij vij) g (~1)

P[¢i(1) ¢;(2) ...] a1(1) d1(2) ... (c7)

(41(1) 42(2) ...1* ( 2 v..)
i<j 13

[91(1) 9§(2) ... 91(1) 93(1)

-9i(1) 95(2) --.9{(J) ---93(i)-- l

dr(1) dt(2) ... ... dr(i) ... dt(j)....

This gives different answers for each of cases 1, 2, 3

and 4.

(151 [(1113'V11'21"i¢j> ’

<¢i¢i|v(l,2)|¢j¢i>] for case 1

 
II at 2 [<¢i¢m|v(1.2)l¢i¢p> -

1

<¢i¢m|v(l,2)|¢p¢i>] for case 2

<¢m¢n|v(l,2)|¢p¢q>-<¢m¢n|v(l,2)|¢q¢p> for case 3

  
L0 for case 4 (C8)



APPENDIX D

VARIOUS ORDERS OF ENERGY CORRECTION

ON THE PERTURBATION THEORY

Suppose the total Hamiltonian H is divided into

unperturbed part H0 and perturbed part V:

H = H + AV
0

and H9 =E9
n n n

0= 00
Ho9n En9n

therefore E = E° + AE(1) + 125(2) +

n n n n

If E; is nondegenerate we have the formula up to fourthls’16

order, as follows:

 

Let E(11 = <9 °|vl9 °>
n n n

= o o
vij <9i |v|9j >

then Iv. '2

BOTT'Z ()1?)n . O O
i#n Ei -En

v v v v [2
E(3) = z z ni ij jn _ V in

  .. - >3 ,

n ifn an (B§O)'E£b))(E§O)-E£01) “n i#n (5§03-5E0))2
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v. [2

2

BIT) = Z lvinl z -——l£“—2’
“ ifn E£°)—E§01 'an (Hg-E3)

 

v
nivijvjn

nign jgn (E(O) _E(o))2(E(0)_E(O))

+Vn

v .v..v.
n1 1) in

Z Z

n 12m jxn (B§°)-E§°))(E§°)-B§°1)

 

+V

2 Z vnivijvjkvkn

i#n jfn kfin (BIO) BI°))(BI°)-BI°1)(BI°1-EI°1)

2 Ivin|2
Z " V



APPENDIX B

THE MATRIX ELEMENT FOR NEAREST-NEIGHBOR

HOPPING OF ONE ELECTRON

+
o O -

<cao,cbo,9g |H|9g > - <... AotAOIBO+...|H| ... A0+B0+BO+..>

lo¥Bo A

= <Ao+|h|B0+> + 22 <AO+Y£OIVIB0+Y£O>

O’

A jo#Bo+

=<AO |h|B0 > + z <AO IAiU|v|B0+A O> + 2

io i jo

<Ao +B. U|leo+Bjo>

<A0|h|Bo> + I <AOAiIvIBoAi > + 2 z <AoBj IvIBOB

Jfo 1

+ <AOBOIvIBOBO> - i0 <AO+Aio IvIAiOBo+>

-j§<Ao+BjOIvIBjOBO+>

<AOIhIBO> + I <AOAiIvIB0Ai> + Zjio <A0lev|Bij>

i#o

+ <AOBOIvIBOBO> - .z <AO+AiO Ile.
0'10, 1 B01;

- 2 z <A B.|v|B.B >
j#0 0] JO
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APPENDIX F

DEGENERATE PERTURBATION APPROACH

VIA EFFECTIVE HAMILTONIAN

A Hamiltonian can be partitioned into an unper-

turbed part Ho and a perturbation part V

H=H+v (Fl)

We want to solve

H9n = En9n (F2)

and we know

0 = O O

H09n En9n (F3)

we can write

= o = 0
9n 9n + ”n , En En + An. (F4)

Assume (F3) has a degenerate ground level Ei=E§=E§= ...

§=e; E; > e for n > g. We also assume H0 is hermi-

tean so that we can take 9; such that

O O -

<9n | 9m > - anm (F5)

It is natural to call the degenerate ground state manifold

(9°, 9;, ...9;) = subspace G, and all the excited states

(9;,1 ...) = subspace X. From now on, 9; stands for the

projection of 9D onto G, this projection being normalized

to unity. Thus "n is in X and

<9n | 9n> = 1 + <nn | nn>. (F6)
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That is, 9n is not normalized to unity; however, we can

always normalize 9n by dividing by the square root of (F6)

Of course.

Substituting (F4) into (Fl) gives

(HO+V) (93+nn) = (E;+An) (9; + ”n)

or (H-En)nn = (En-H)9; = (An-V)9; (F7)

or (Ho-ESMn + (V-An)nn = -(V-An)9; . (F8)

If one defines idempotent Operators P and Q such that PW

belongs to G and Q9 belongs to X, then we get P+Q=1,

P2=P, Q2=Q, and PQ=QP=0. Clearly we also have Pnn=0,

enn=nn, P93=9fi , and Q9fi=0, for n 5 g. Since H0 is diago-

nal in {9;} , equation (F7) can be split into two equations

with these relations by applying the Operators P and Q on

both sides.

pvonn = P(V-An)P9; (F9a)

Q(H-En)an = -QVP9; (F9b)

(F9b) gives

Qn = -_____l__. QVP9° (F10)

“ Q(H-Bn)Q n

and (F9a) becomes

1
[PVP-PVQ-————————

QCH-En)Q

QVP] 9n = AnP9n . (911)
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By adding PHOP to the left hand side and En to the right

we have

Hs9n = En9n (F12)

where the "effective Hamiltonian” H5 is

1
H s P[H-V —————————

Q(H-En)Q

S v19 . (F13)

This is of course a gxg matrix. If V is "small", we

 

   

expand

1 1 m ' -
—— = . .23 (-1)1[ —i—— Q(V-An)Q11 (F14)
Q(H-En)Q Q(Ho-En)Q 1-0 Q(H-Bn)Q

Up to the 4th order, the effective Hamiltonian become

HS = P{Ho + v-v 1 V+V 1 v 1 v

HO-EO H0.130 HO-EO

- v 1 v 1 v 1 v }P (F15)  

One might note17 that this perturbation theory differs in

an essential way from the "standard" textbook degenerate

perturbation theory 1? in that here the "proper zero-order

states" 9; are allowed to change as higher-order correc-

tions are added, whereas in the standard method these 9;

are fixed by the lowest order correction that removes the

degeneracy. This difference can drastically affect the

rate of convergence Of the expansion.



APPENDIX G

THE EFFECTIVE HAMILTONIAN IN

SECOND ORDER PERTURBATION THEORY

From equation (3) Of Section V

+ l
H = Z 2 h.. c. c. + Z Z 2 v..

ii 0 11 1° 1“ ij ki 00' 13’k1

+ +

(:10. CjU'CRO'CkO’ (G1)

H0 is defined as all terms Of 0(A°):

+ l
H = Z 2 h.. c. c. + — E v.. ..
o i o 11 io 10 2 ij 00' 13,1]

+ +

C10)C O'Cj o'cio

= 2 h.. n. + 2 v.. .. n. n.

. 11 1 11,11 1+ 1+
1 i

+ l 2' v. . n n (G2)

2 ij ij,ij i j

The perturbation term is defined as V = H-Ho. The pro-

jection operator P projects on those states with

1 if i on a s-site

n. = { (G3)

i on b-site

71
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If Dv are single Slater determinants with Wannier functions

singly occupied on magnetic sites, and doubly occupied on

diamagnetic sites, then we have

< > = O 6 E 6DvIHOIDu Ev v“ e VU (34)

E 0: E = <D IHID > = N(h +h +V ) + l}:

v + 2 V + 2 v

aa':aa' éb' bb',bb' ai ab,ab (GS)

If there are N a-sites (magnetic sites), the degeneracy

of B3 will be 2N. In order to apply the perturbation

theory, the one-electron and two-electron interaction

terms are analyzed as follows:

... ,‘~

H =2 Zh..c.c. = .+i j. (G6)

1 ij 0 13 10 30 Q1

Qpi refers to the terms for which i=j and i/ ‘j refers to

terms with ifj.

l + +
= _ z . . .

'

1 + + l
= ... 2 v.. .. c. c. 'C- c. 2' Z X

2 ij 11,3] 10 10 J0: J0 j2 i 00'

v+ c+ c+ c c + l 2' Z 2 'v
ii,j£ i0 10’ “20’ jo Z ik j 00' ik,jj

+ + 1

C. c c. c- + - 2' 2' 2 v. .

10 RC. J0, JO 2 ik 3'2, 00,! 1k,J£

+ +

io ko'cio' 30 = A + B + C + D (G7)
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where 6 = -o, and A, B, C, D stand respectively for the

four sums of the previous expression, taken in the same

order as they appear. They may be represented by differ-

ent types of graphs, in which each line corresponds to a

C+C pair with the same spin index.

    

     

  

    
G

t J J R J

 

 k

I

+D2. l
1

  

+d

 

A: f \ r

i=j 1 o W

A0 + A2 1<:::::> 3

o '3 O

s I k J

o
=°

r ~

B. r 2 1 2 ‘ I o 1

B1 '6' + + B2 1

O \l o‘ _

3 ° 3',N

x j <£:; j=i J (68)

C: k + k=j r ‘

k 0

C1 _ o o + C2 j

o . . .

3=1 1 _

. 1 O J

. - _ o
D. f O 1 N r k-£O k_..‘__2a ‘

o 0’

Do I D1 “TL 0 Oi=j

0’

+ Y [i=g<::>j=k]

  J'J
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Let us first consider the leading term PHP in

the effective Hamiltonian, eq. (F15). The projection

operators demand that only matrix elements of H among the

G-states occur. Clearly CT C
10' j

i=j; thus only the diagramo contributes from H. As to

06 is in G if and only if

the two-electron interaction, we see similarly that only

A0, DO and Y contribute. Hence,

H (1) = PHP = P2 cf c. p+ l P z 2 v..
S 10 2 1 1‘ “i n' 'Pid 1 ij GUI J: J O J0

+ +

v.. .. c. c. ,c.

v 139J1 10 30’

10,chP (G9)

The first two terms of the above equation only give a con-

stant, while the last term will give a Heisenberg Hamil-

tonian, partially from the flip of a part of the electron

spins on different a-sites. We can see this from the

following: Here i,j indicate different a-sites, and we

use

Pni P = % + 812 , Pn P = % - Siz

PCI+C1+P = 81+ , PCI+C1+P = 51- . (G10)

Clearly

% Ej go, Vij,ji Ciocjo'cio'cjo

= ‘ i ?. z Vij,ji [nionjo+ciociécjo Cjo] = ‘ l .¥ Vij,ji
13 o 2 13



75

_1
[ni+nj++ni+nj++si+sj-+Si-Sj+] - 7 Ej Vij,ji

1..

[(7+s lz)(7+sJ ) + (7- sz)(7-sjz) + si.sj-

+S.S]=-—1-)3v (1+2§o's’) (Gll)
1-j+ 2ij ij,ji I i j

The contribution from 2nd

theory has the form

order perturbation

(2) = _ 1

But

H = H +A+Bl+B2+C1+C2+DO+D1+D2+d2+Y,

and we see from the diagram that QAP=0. QYP=0, QB2P=0,

and QD0P=0. Therefore

QHP = Q(H1+B1+C1+D1+C2+D2+d2)P (613)

_ + =
PHQ - [QHP] P(H1+C1+B +D1+B2+D2+d2)Q (614)

For the d2 graph,

spin on different a-sites.

a. a

0
I

 

the following operation will flip the
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Although this operation gives a contribution to the

Heisenberg Hamiltonian, we see immediately that the over-

lap is higher order than 0(A4) no matter whether we consi-

der 3 linear chain or perovskite lattice. Therefore, we

can drop d2. Let

R E H1+B1+C1+D1+D2.

Aside from numerical factors, the effect of operator R is

+ . .

equal to CiOCkO where 1 has to be on an a-51te, and k can

be on an a- or b-site. Therefore

QHP Q(R+C2)P

PHQ P(R+BZ)Q (615)

Because we start from a ground state, and must come back

to a ground state, it is very easy to see from the graph

that

1 _ 1 _
PRQ ——————— QCZP - PBZQ ———————-QRP — 0. (616)

QCH-€)Q QCH-€)Q

Therefore “5(2) arises from two kinds of term. The first

one is called the Nesbet term; it comes from the "double

hopping" i.e.

1

~PB2Q —————7—— QC P

QCHo-€)Q
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I2

+ + + +_ z 7 z 'Vij,22 _ _ _

Cfio'cfio'cjo'Cio'ciocjocfiocko
' ~i ' -
1, 1 oo Uij,£ c

 

Here i,j have to be on different a-sites but 1 is on one

. + +
- .. = < .- . -b Slte’ and ”11,2 CJchacloczo vIHo|v>. |V> 15 a

ground state. The above expression can further become

 

 

 

2
v.. |

-2 Z X 11 21 + + - . + +

ij 2 o Uij ; -e [nlonlocjociociocja niénlocjociociocjo]
’

= -z 2 Ivii zzlz

1i 2 U.. ’ -e ['1 * ni+nj++ni+nj+‘si+sj-'Si-Sj+]
1j,£

Ivij £1|2 1 1 1
= — 4L - _- ..

.. 2 _ [ 1 + (7+Siz) (2 sz) + ('2' Siz)
13 2. Uij 2’ e:

1
(37552) - 51+Sj-‘51-sj+]

 

 

2
|v.. I

= 11,12 [7 + zsizs.z+s.+s._+s._ s.+]

ij 1 U.. — 8 J 1 J 1 J
11.2

lvi' kill 1
= Z 2 3’ [— + 2 §.. §.] . (513)i. 2 U 2 1 JJ .. 8

13,1

nd
Another term in the 2 order perturbation theory

is called the kinetic exchange term. It comes from the

"single hopping", and has the form
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z <v|HJY><YlHJu> (619)

Y EW

where Iv>,|u> are ground states, and Iy> is an excited

state. But

<y|H|p> = <ylH1+B1+C1+D1+D2|u> = <y|R|p>;

+

IV) = Ciockolu>

...

<Y|H|u> = <Cicck0 u|H|u>

If k is on a b-site, this matrix element is 0(A3) for the

TSDA basis from eq. (10) of Section V. If k is on an

a-site, D2 is 0(A2), therefore, we can drop D2. Hence

the Operator corresponding to (619) is

1
'P(H1+C1+B1+D1)QW Q(H1+B1+C1+D1)P. ((320)

0

Clearly

Q(H1+B1+C1+D1)P

+ +

= X'h.. X c. c. + 2'2 .. .. .-+v.... ._ . .

Q[ij 1] o 10 J0 ij 0 (v13:31 n10 IJJJnJg)c10CJO

. ij + = . +

+ £3 E Evi£,jzciocjon2] P Q1? gTijoCio Cjop' (G21)

where

1.. = h.. + v.. .. n.- + v.. ,,n.-

13 13 11,31 10' 313,33 30

13

+ i vi£,j£ “2
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and Zi’j means sum over 2 with 2% i,j. Taking the matrix

element of (620) between ground states, we were able to

do the intermediate state sum over the y which contribute

in order A4. Because the energy denominator is a constant

for all such y, we obtain

2' X 1 + +

ij 00' U3; <VlTijo io‘joTjio' jo' io'l“> (622)

2'21= - +

ij 0 U};(VITijonion-130)Tjio-TijociociocjocjoTjiol11>

Here i,j run over 3 -sites only, and

+

Uij <cicju|Ho|u> - c

.. ij

“ij hij * i V12,j2

Using the expression of 1.. and making a little bit of
130

algebraic manipulation, the part of the effective Hamil-

tonian coming from this term is found to be

1 - - - 2

- Z 1 2 hi n - h n - - h..
ij —U;;— o [( 3+vji jo) nio( ji+vji jo) I 13|

nionjo - (hij +v: i) CiOCiOCjOCjO(hji’rvji)]

lfii.|2 1 - - a:
= - 2' ___l__ - 2' ___ z[h n + h..v..n. n.-

U <1 ij vji ionjo 31.31 10 30
U.. ..

13 1]
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2 ’ * 2 + +

+ Ivjil nionjo - Ihij+vjil (nionjo+ciociocjocjo)

2 _
+ (hijvji fijiv31 lvjil ) nionjo] (G23)

It |7- 2|t..|2
_-%2__1_L_+21__}J__§1§J

13 13 UiJ’

where

ij

.. = h.. + 2 . . + .. .. + v. .

t11 13 i V1£.J£ v13.31 i 1k.Jk-
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