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Pi-Cheng hang

The methods of dynamical systems and bifurcation theories are

applied to a mathematical model which is developed to describe the

characteristic behavior of an impact print hammer of the stored energy

type. The armature of the print hammer is represented by a mass held

against a backstop by a preloaded linear spring with negative

stiffness which characterizes the net effect of a permanent magnet and

a prestressed flexible beam. Periodic half-sine pulses are adopted to

represent the effect of currents which oppose the permanent magnet and

release the armature to strike the ribbon and paper which is

represented by a linear spring and a linear viscous dashpot. A

coefficient of restitution is employed to characterize the almost

instantaneous behavior of impact and rebound at the backstop.

For periodic inputs to the printer the existence of periodic

motions with n impacts at the backstop per forcing cycle is determined

using a matching of the solutions in each linear region of the phase

space. The stability and bifurcations of these motions are examined

using a Poincare map. It is determined that nearly all such periodic

motions are unstable. In fact, only a very narrow range of driving



periods admits any stable solutions. This indicates that periodic

operation of the printer is not generally feasible.

Chaotic motions, in the form of strange attractors for the

Poincare map, are found to exist over wide ranges of driving periods.

The existence of Smale horseshoes has been determined in one such case

by showing that the stable and unstable manifolds of a saddle type

‘periodic motion intersect transversally. These horseshoes are

extremely complicated invariant sets for the map which contain an

infinite number of periodic and nonperiodic motions. Lyapunov

exponents which measure the average of exponential rates of

convergence and divergence of long time trajectories in phase space

have also been computed for chaotic motions.

The influence of various parameters on the performance of the

model have been considered to determine if the stable operating range

can be expanded so as to make periodic printing feasible. It is shown

that an increase in the damping at the backstOp or an increase in the

preload will enhance stability by reducing the settle out time of

rebounds at the backstop. They, however, are not sufficient to

increase the operating speed appreciably.

The primary limitation on speed is due to uncertainty in the

position and velocity of the armature during settle out. This causes

variations in flight time and print forces. An open loop control

strategy is introduced which modifies the driving pulse such that it

aids the restoring force on the armature during settle out. This is

achieved by application of a damping pulse, opposite in sense to the

driving pulse, immediately before the driving pulse. This is done in.

an open loop fashion which requires no sensors.



The control method is tested using a set of printer performance

criteria, developed in the thesis, which guarantee that acceptable

print force will be achieved for arbitrarily timed pulses with some

minimum time lapse between them. These criteria are used to show that

the modified pulses increase the print speed for both periodic and

nonperiodic inputs. The criteria are quite general and may be useful

for more complicated models and controllers.
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CHAPTERI

INTRODUCTION

1.1 Dot matrix impact printers

Printing technology has been developed during the past thirty

years to meet the need of printing large quantities of data at a very

high rate of speed and the requirement of high print quality and low

cost. Today dot matrix impact printers with the electronic timing and

control have become the most common computer hardcopy output device.

They offer high printing speed, low cost, and the ability of producing

multiple copies. Although non-impact printing technologies such as

ink-jet, thermaltransfer and laser are fast developing and can offer

the advantages of quiet operation, high-quality resolution, and high-

function operation, its hardware costs and reliability cannot yet

match those of dot matrix impact printers [1-4] .

In dot matrix impact printers, each character is formed on the

paper from an array of dots, and each dot is made by driving a wire

into a ribbon which transfers ink onto the paper. High speed wire

matrix printers usually have a 5x7 array of wires for each print

position, and thus are able to print an entire line of characters in

parallel. In such a manner characters, pictures, charts and graphs

can be generated by the printer. The three most common types of dot

matrix impact printers are the stored energy type, tubular or plunger



type, and clapper or relay type. Each has unique characteristics,

with associated advantages and disadvantages [5].

In the stored energy type, a permanent magnet holds a prestressed

spring member in a cocked position until a dot on the paper is

desired. When energized with a current of appropriate sense and

magnitude, a coil produces a magnetic field that opposes the field of

the permanent magnet and releases the deflected spring. This spring

propels the print wire which is attached to the armature, to strike

the ribbon and paper. The current in the coil is terminated near the

time of impact with the paper. Upon returning from the ribbon and

paper, the armature, due to the permanent force, hits the backstop and

rebounds against the backstop, damping its motion during settle-out

until it is energized again. This type of impact printer has a large

force at the initiation of the print cycle which brings the print wire

up to print speed very quickly. This printer has the highest

potential for high speed printing.

In the plunger type of impact printers, the tubular solenoid has

a cylindrical shape with a coil around a central plunger. The plunger

is pulled forward when the coil is energized and moves the print wire

connected to it. The plunger is returned to its initial position

after the wire strikes the ribbon and paper by the rebound from the

paper and by a flat spring connected to the end of the plunger.

In clapper type of impact printers, the solenoid consists of a

relay mechanism where a clapper (armature) closes an air gap when a

coil surrounding part of its core is energized. The moving clapper

pushes a print wire against the ribbon and paper. This approach is

unique in that the print wire is not attached to its driving spring



member. Instead, the print wire is simply held against the clapper by

a small spring which also holds the print wire and clapper in proper

position before firing and helps to settle out the bouncing of both

after firing. This printer has the advantages of simplicity, low

manufacturing cost, long life, and ease of use.

In order to meat market requirement for high speed printing, wire

dot print head mechanisms had been changed from plunger type to

clapper type. Currently, the stored energy type of printers is very

practical owing to the fact that it has a large initial activation

force and thus can be operated at higher frequencies [5,6] . Despite

the fact that impact printers will be continue to hold a significant

position in the printer marketplace, printer actuator mechanisms must

become faster, i.e. , higher repetition rates for the hammer must be

achieved without compromising cost. A study of impact hammer dynamics

and the factors which limit their speed would be helpful in meeting

these needs .

l . 2 Literature Survey

The subject of impact printers has been studied by a number of

authors in the past years. Dauer [7] has described the contact time,

the time which the hammer is in contact with paper. The contact time

plays a key role in reducing the horizontal slur of the characters

which occurs when the moving wire comes in contact with the ribbon and

paper. In Dauer [7] a hard spring with nonlinear cubic term was

adopted to characterize the behavior of a paper pack. With a simple



model the contact time is shown to be inversely proportional to the

square root of the initial hammer velocity [7] . Wang and Hall [8]

used experimental techniques based on optical measurement to describe

the force-deformation characteristic of paper and ribbon in dot matrix

impact printing. Maximum paper indentation, peak contact force, and

contact time were determined. Watanabe et a1. [5] have analyzed the

coupling of the longitudinal and the transverse collision vibrations

at the paper impact by the wave equation and a new mechanism of wire

dot print head of the stored energy type has been proposed. They

suggested that the connection point of the armature with the wire be

set to be the center of percussion and the spring be connected to the

center of rotation of the armature. Such a device can eliminate

secondary vibrations, due to the interaction of the armature and the

driving spring, which is undesirable. Yang et a1. [9] discussed the

dynamic impact response and wire guide design of the dot matrix

printer head mechanism of the stored energy type. Due to the

limitation of print resolution, the slenderness ratio of wires are

typically very large. Without the support of a wire guide, good print

quality cannot be achieved. In Yang et a1. [9] the guide number and

guide position are optimally designed by using the general slope

deflection method. Also, paper-ribbon defamation and impact stress

waves are studied by using a finite element method.

Hendriks [10] has investigated the behavior of the impact printer

by considering several nonlinear effects, including the effect due to

impacts at the backstop. Using simulations of a simple model, he

showed that under repeated excitation the bounce phenomenon of the

hammer against the backstop contained high frequency forces and



produced responses of great complexity. He pointed out that at low

repetition rates each impact was distinct and essentially independent,

but at high repetition rates the impacts interacted, causing print

time and force variations and thus unacceptable print quality. This

is due to the fact that at low repetition rates there is enough time

for nearly complete settle-out.of'the hammer and the armature

essentially returns to the rest position against the backstop, thus

allowing the next cycle to proceed without interacting with previous

one. However, at high repetition rates, the armature will be fired

during the settle-out phase, this provides essentially random initial

conditions for subsequent actuations. This is the limiting factor in

the operating speed of these printers.

A.survey report by Hall [11] about works related to the

improvement of impact printer performance indicated that there are

only a few works [12-16] related to the impact printer of dot matrix

type, and all are patents.

There are some published works related to the increasing of the

operating frequency of impact printers. Hendriks [10] suggested that

passive damping methods be improved, probably requiring a breakthrough

in materials, and/or that driving current waveform ought to be respond

to the phase of the hammer motion and the pattern to be printed. Wen

[17] claimed that the settling time in impact printers was reduced

while printer speed and reliability were increased by using a separate

return solenoid magnet to accelerate the motion of the hammer to its

rest position thus significantly reducing the damping time. In dot

matrix impact printers of stored energy type, the energy to propel the

armature is completely gained from the prestressed spring. Good print



quality can be achieved if a sufficient energy is stored in the

driving spring in order to gain a sufficient printing force [18-19].

For the purpose of attaining a sufficient print force, the print

hammer is generally improved by increasing its spring coefficient and

displacement from spring rest position. Futhermore, the permanent

magnetic field could be increased for better stability [20-21]. Chiu

at al. [22] found that by a certain arrangement of auxiliary magnetic

poles of dual magnet loops and the center of rotation of the armature

[8] the capability of high speed printing and good stability were

achieved. Generally, the stored energy type impact printer head is an

application of magnetic flux loop. A general structure comprises an

iron core, a nonmagnetic coil, spring, armature, wire, yolk, ring,

permanent magnet and core base. Chiu et al. [22] claimed that by

using the added magnetic pole of dual magnetic design, the offset

energy produced by conventional magnetic flux can be induced and

shifted to another pole which produces a force to attract the

armature. Carson and Harris [15] devised a control system in which

damping pulses were applied to the armature after its return to the

backstop from the paper. This minimizes bounce of the armature

against the backstop. The energy content of the driving pulse was

varied in proportion to the amount of overlap between the driving

pulse and the proceeding damping pulse. The above control strategies

require expensive damping materials and/or additional sensors and

digital signal processing.

From the above we observe that most of papers, except Hendriks'

[10], did not consider the effects due to impact at the backstop.

Also, the general dynamic response of impact printers was not



investigated in those works. In this dissertation a piecewise linear

model is used to study the dynamics of the print hammer and a simple

impact rule employing a coefficient of restitution is adopted to

characterize the bounce behavior at the backstop. Similar impacting

systems can be found in [23-35]. Also, a simple low cost, highly

efficient, open-loop control strategy to increase the operating speed

and the dynamic stability of the print hammer is introduced. Printer

performance criteria are also presented and shown to be useful in the

evaluation of general control strategies.

Previous work on impacting systems is vast and includes that of

Masri [23] who examined the existence and stability of periodic

symmetric two impacts per cycle motions for the impact damper.

Senator [24] studied an impacting system with constant restoring

force, harmonic excitation, and energy dissipation upon impact which

modeled a vibratory plow. In Senator [24] necessary conditions were

found for the existence of periodic motions with one impact per motion

cycle and their stability was investigated by using a procedure

similar to that in [23]. This procedure involves examination of the

behavior of small perturbations near the periodic solution. Holmes

[25] investigated the dynamics of a mass bouncing on a sinusoidally

vibrating table using a discrete-time dynamics approach. In his paper

harmonic, subharmonic and chaotic motions were found and analyzed by

employing bifurcation theory and topological methods. Shaw and Holmes

[26] considered a periodically forced single degree-of—freedom

piecewise linear system with a single change in restoring force slope.

In that paper harmonic, subharmonic, and chaotic motions were found to

exist. Similar works were extended to impacting systems with large



dissipation due to impact which may model mechanical systems having

amplitude constraints with highly inelastic materials (Shaw and Holmes

[27]), with rigid two-sided amplitude constraints which may model

linkages, gears, and fasteners with looseness or play (Shaw [28-29]),

and with dry friction which may model the mechanical system in which

components are in contact with one another and are free to slide

relative each other (Shaw [30]). Heiman et a1. [31] studied the

dynamics of an inclined impact pair which modeled an impact damper.

The stability of the periodic motion of two impacts per forcing cycle

was investigated by using a Poincare map. Period doubling

bifurcations and saddle node bifurcations were analyzed in that paper.

In Dept and Sankar [32] a simulation method was employed to study the

characteristics of an impact damper at various parameters such as mass

ratio, coefficient of restitution and gap size. Whitson [33-34]

investigated the harmonically excited and preloaded vibro-impacting

system. Local and global dynamics of the preloaded system were

thoroughly studied. Domains of attraction and stability regions for

various steady state motions were explored by using Poincare maps and

bifurcation theory together with simulations. In Whitson [35] the

singularity structure in vibro-impact dynamics of an undamped linear

oscillator were studied. The singularity structure is related to the

zero velocity impacts, i.e. , degenerate impacts. Trapping and chatter

phenomena and the associated chaos were discussed in that paper. The

above references [23-35] also contain many other references related to

systems with clearances, etc.

The above mentioned references all consider response of impacting

systems to purely harmonic, periodic input. In this dissertation a



piecewise linear impacting system with nonharmonic periodic excitation

and nonperiodic inputs, which more realistically models actual printer

inputs, is used to study the dynamics of the stored energy type impact

printer.

1.3 Scope of the Investigation

In this thesis the dynamics of a model of an impact print hammer

of the stored energy type is studied and a control method for the

improvement of printer performance is proposed. The methods from

dynamical systems and bifurcation theories are employed to study the

piecewise linear model. The scope of the investigation of this

dissertation are as follows:

1) To determine parameters such that the model used in this

dissertation mimicks Hendriks' model, which is known to be an accurate

model for a particular type of stored energy impact print hammer [10].

2) To determine the periodic motions with n backstop impacts per

forcing cycles(the forcing is assumed to be periodic). For nonlinear

dynamic systems, there may not exist a stable periodic motion for such

an input. Using the solutions of piecewise linear equations of motion

and the conditions for the existence of a periodic motion, we can

obtain the conditions of the periodic solutions and solve these

numerically. The response of these periodic motions for a range of

forcing periods are to be considered.

3) To determine the stability of the periodic motion using the concept

of a Poincare map and a Poincare section. Two types of Poincare
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sections are employed. An unstable motion may cause print force

variations which affect print quality.

4) To determine the bifurcation conditions, i.e. , determine where

stability is lost and how different parameters affect stability.

Bifurcation curves for different parameters are generated and

examined.

5) To determine the influence of various parameters on the performance

of impact printers. We consider the possibility of increasing

operating speed and/or extending stability ranges in this case.

6) To compare our results with those of Hendriks' . Can we predict the

same qualitative behavior as that of the more complicated model due to

Hendriks 7

7) To determine where chaotic motions and strange attractors exist in

the parameter space using Poincare maps and digital simulations in

conjunction with the stability analysis.

8) To study and characterize the chaotic dynamics of the system by use

of digital simulations to determine when the stable and unstable

manifolds of certain saddle-type periodic motions intersect

transversally. which implies that there exists a Smale horseshoe for

the dynamics (it is a complicated invariant set containing infinite

families of periodic and nonperiodic motions). Also to prove there

exists an attracting set which contains these horseshoes, resulting in

bounded, irregular dynamics.

9) To obtain Lyapunov exponents which measure the average exponential

rates of divergence or convergence of nearby orbits in phase space for

chaotic motions .
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10) To increase the operating speed of impact printers. The armature

motion is extremely sensitive to the timing of the refiring. This

sensitivity can cause instabilities of motions and is detrimental to

print quality. Thus current impact printers are operated at low

frequencies to allow enough time for settle-out without affecting the

subsequent firing cycle. It has been found that by increasing the

pro-load during the settle-out phase, one can achieve rapid settle-out

and hence increase the operating speed. An open-loop control strategy

which consists of applying an inverted pulse, of opposite sense to the

driving pulse, to the coil, thus aiding the force of permanent magnet

during the settle-out phase, is proposed. This inverted pulse

increases the net magnetic field which holds the armature against the

backstop causing a decrease in the settle-out time. Thus settle-out

occurs more quickly and all phase-space trajectories are quickly

mapped into a region near the rest position. This provides acceptable

conditions for the refiring and results in acceptable print quality.

11) Printer performance criteria are to be established.

Actual printers are subjected to irregularly timed pulses, i.e.,

"firing combinations," which depend on the distance between dots which

form the desired characters. Printer performance criteria are to be

established based on the requirement that acceptable print quality be

achieved for a class of arbitrary firing combinations with some

minimum period between pulses. This minimum period is typically the

lowest period which provides acceptable steady state, i.e. , periodic,

operation. This must also hold for all physically possible initial

conditions which may be provided at the time of refiring. This

condition is necessary since the print hammer must be fired before
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settle-out is complete if the printer is to run at an increased

operating speed.

Items 1-8) deal with strictly periodic input, the related results

will characterize the dynamic response of the print hammer model.

Items 9-10) deal with more realistic, nonperiodic inputs. The control

method will be applied to the system and tested with both types of

input .

The main contribution of this dissertation are:

l) The methods of dynamical systems and bifurcation theory are applied

with success to a piecewise linear model of an impact print hammer

with nonharmonic periodic and nonperiodic excitation.

2) A simple method of increasing the operating speed of impact

printers is proposed and tested by simulation.

3) New printer performance criteria and means of verification of these

are established using ideas from dynamical system theory.

1 . 4 Dissertation Arrangement

This dissertation is arranged as follows. In Chapter 2 a

mathematical piecewise linear model which characterizes the impact

printers of the stored energy type is introduced. It also provides a

review of Poincare maps and bifurcation theory and their utility in

studying periodically forced oscillators. In Chapter 3 we study the

dynamic response of our impact printer model by considering periodic

input. The existence and the stability of periodic motions are
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discussed. Also, we present simulation results and make some general

observations regarding the system response for various parameter

conditions. The chaotic dynamics of the system are characterized by

finding the intersection of the stable and unstable manifolds, strange

attractors, and Lyapunov exponents. In Chapter 4 an open-loop control

strategy is proposed and printer performance criteria are established

and verified by using a form of a Poincare map. Limitations on

printer speed are demonstrated and we indicate how the control method

is able to increase the printer speed. In Chapter 5 we. close the

dissertation with some conclusions and directions for future work.



CHAPTERII

MODEL AND METHODS OF ANALYSIS

2 . 1 Mathematical Model

This dissertation discusses the dynamic behavior of a simplified

model for an impact print hammer. We consider only dot matrix

printers of the stored energy type as shown in Figure 1. A mass,

called the armature, is held by a permanent magnet until a dot on the

paper is desired. When energized with a current of appropriate sense

and magnitude, a coil will produce a magnetic field which opposes the

field of the permanent magnet and will release the deflected spring.

This spring propels the print wire, which is attached to the armature,

to strike the ribbon and paper. Upon returning from the ribbon and

paper the armature, due to the permanent magnet force, hits the

backstop and rebounds against the backstop during "settle-out" until

it is energized again. It should be noted that the net force which

holds the armature is very small. Thus energizing a small amount of

current will release the armature.

Referring to Hendriks' model for print hammer [10] , we propose

the model shown in Figure 2. A mass m is attached to a linear pre-

loaded spring with nggm stiffness k, which characterizes the net

effect of the permanent magnet and the prestressed spring(see Fig. 2

in [10]), and to a linear dashpot with damping constant c1 which

models energy dissipation in the system. The mass is held against the

14
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Figure 1. Impact printer of the stored energy type (from [10] with
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Figure 2. A model of the simplified dynamical system
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backstop by the pre-loaded spring. When excited by a periodic half

sine-wave pulse, the mass leaves the backstop and strikes the linear

spring kg and the linear dashpot c, which represent the net effect of

the ribbon and paper. After returning from the paper, the mass hits

the backstop and rebounds of successively smaller amplitude occur

until the mass is excited by a next pulse. A coefficient of

restitution, r, which depends on the impact velocity and the backstop

material is adopted to characterize the rebound phenomenon.

The equations of motion can be written as follows:

mz" + clz' - k1(z-zo) - f(r) ; 21 < z < 22 (2.1.1)

M" + (C1+C2)Z' ‘ k1(Z'z°) + k2(2'22) - ;(T) ; z 2 22 (2.1.2)

where ( )' is defined as a time derivative d/dr, klzo represents the

force due to the pre-load in the spring, 22 is the position of the

ribbon and paper, and

(2.1.3)E(7)- F 913(W7) while a pulse is acting

0 otherwise

A A A

and w - 1r/D, D is the duration of a sine pulse and F is the forcing

amplitude. At 2 - 21 impact occurs at the backstop and a simple

impact rule is applied:
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z'(r+) - -rz'(r-) with (7+ - r”) » 0 (2.1.4)

where r is the velocity dependent coefficient of restitution:

A

r - 6 + a z'(r') for z'(r') < vo (2.1.5)

1’ - b for z'(r') < v0 (2.1.6)

A

and 8,0: are constant factors which depend on the backstop material

[36]. The coefficient of restitution r is a decreasing function of

increasing impact velocity z'(r'). However, it cannot, for obvious

physical reasons, be a negative value, thus equation (2.1.5) is only

applicable for a limited range of impact velocities. For higher

velocities z'(r'), an adjusted equation, (2.1.6), of constant r will

be used to characterize the bounce phenomenon at the backstop.

Simplified equations can be obtained through rescaling by letting

k:

t - J a r and x - E where c is a constant factor which rescales the

amplitude 2. In the actual system, the travel distance of a print

hammer is only around 0.1524 mm (0.0006 in) [10]. Amplification of

the amplitude of the mass displacement will be used for convenience in

simulations and other computer analysis. In this dissertation we set

c-0.01 in to make the distance between the backstop and the paper be
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equal to 0.6 in dimensionless units. The rescaled equations are

written as:

x + 2a1x - x + F0 - f(t) ; x01 < x < xo2 (2.1.7)

2 2

i + 2a2x + k x - (1.0 + k ) x02 + F, - f(t) ; x 2 x02 (2.1.8)

 

 

x (t+) - - r x (c') ; x - x01 (2.1.9)

r - 6 + a s (t') for x (t‘) < v, (2.1.10)

- *

r - b for x (c ) 2 v, (2.1.11)

c1 c1 + c 20

where (o) - gt' al v a2 "-_7:::—2 . Fo "_z— .

21k1m 2Jk1m

kz’kl 21 22 A k1

k'lT'XOI'T'Xo2-7'a-aclr.

. k1

v1 - voca J E— , and

fl sin(wt) while a pulse is acting

f(t)- 0

otherwise (2'1'12)

 

* The value of v1 should be such that x1(t+) < x2(t+) if Ix1(t')| <

Ix,(t')l for most backstop materials. The v1 value used in this

thesis allows this condition to be violated at impact velocities above

0.75 (1: does not allow 2(c+) < 0). This behavior is not typical of

Inner mnrnri al a
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wimp-5:, w-g,andD-DJ;'
1

Local solutions of the equations (2.1.7)-(2.l.ll) can be obtained

explicity. Such solutions can be repeatedly matched at x - x01 and

x - x02 to obtain a global solution of the system. However, piecing

together these known equations is not explicitly possible since the

times of flight in each region and the time when the pulse is acting

cannot be found in closed form.

In order to predict the same qualitative behavior of the impact

print hammer as Hendriks [10] , we set the values of the parameters

((21, a2, k, 6, an, F0, 5, D, b) by referring to the diagram of the net

force due to the magnetic field and the linear spring versus distance

and the diagram of the force-displacement in [10]. Then by trial and

error parameters were adjusted to match the phase portrait of a single

pulse motion started from rest. The results from our model are shown

in the plot of the phase portrait in Figure 3(a), the plot of the

phase portrait in Figure 3(b) reproduces the response from Hendriks'

model [10].

Figure 4 shows a plot of the net restoring force versus

displacement for our model. Figure 5 depicts a forcing function which

consists of periodic sine pulses. Figures 6(a) and (b) shows plots of

phase portraits (velocity versus displacement) of the steady state

system response to such an input with a single impact (at the
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backstop) per forcing cycle and two impacts per forcing cycle

respectively .

The plots of the phase portrait in Figures 3(a) and 6 are

generated by digital simulations of equation (2.1.7)-(2.1.ll). The

simulations are easily be performed by piecing together the solutions

from each piecewise linear equation and solving the boundary

conditions, i.e. the crossing time and crossing velocity at x - x01

and x - x02 by using Newton-Raphson method.

2.2 Methods of Analysis

From the equations of motion (2.1.7)-(2.1.11), we see that a

three dimensional extended phase space with co-ordinates (x,y-x,t) can

specify the state of this one degree-of-freedom periodically forced

system. By taking the time t as a parameter and projecting a

trajectory to the two dimensional plane (x,y), we obtain a plot

commonly referred to as the phase plane, or phase portrait, as shown

in Figures 3 and 6. The motion in Figure 6(a) takes point A at the

backstop, x-0.2, through points l,2,3,4 and 5, and back to point B at

the backstop. We see that the time and velocity at the starting point

A will uniquely determine the time and velocity at the next similar

encounter, point B at the backstop. It should be noted that the orbit

is a periodic orbit if the point A and the point B coincide at

identical forcing phases. To determine B we may, in principle, write:

- f(ttB A, YA) (2.2.18)
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YB - s(tA. yA). (2.2.lb)

In this way simple recursion relations, referred to as maps, are used.

to study the behavior of the system.

Tb generalized this idea, consider a function P which maps a

point on a chosen two-dimensional surface in (x,y t) space, back to

the same surface under the governing equations of motion. Such a

function is called the Poincare map. The surface, or cross-section,

is called the Poincare section 2 and must be transverse to solution

trajectories. We then write P: 2 -r 2 and P represents a specified

means of discretizing the dynamics of the system.

In periodically forced systems, a Poincare map is often used

which stroboscopically samples (x,x) points at time values t - to+nT,

where n - 1, 2,. . .. and T is the forcing period. The Poincare section

is then defined as

t

2 0 C R2 - ((x,y,t) I t - to mod(T)) (2.2.2)

and the Poincare map is defined as

t0 t0 t0 t:0

P : E 4 2 or (x1+1, y1+1) - P (xi, yi). (2.2.3)

Here to simply represents the particular phase of the periodic forcing

at which the pulse is applied.
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Referring to equations (2.1.7)-(2.l.1l), we see that our model

has a piecewise linear structure. Nonlinearities occur at x - x01 and

x - x02 due to the change in dissipation and restoring force

coefficients. Similar to the methods described in [25-30], we can

employ another type of Poincare map to study the dynamics of this

system. It is often convenient to choose 2 at a place where a

discontinuity in stiffness occurs. In our system the Poincare section

can be defined as those points in the phase space which correspond to

states at which the mass hits the backstop, i.e. ,

+ 1 2 1

2:,cR xS - {(x,y,d) CR x8 I x-x01,y>0} (2.2.4)

where d - t(mod T) is the phase of the forcing.

The associated mapping P] is equivalent to functions f and g in

equation (2.2.1). This section and map exploit the piecewise linear

nature of the system. We will use both Poincare sections, and their

associated maps, in the analysis as is convenient.

By using a Poincare map we can reduce the study of the system

from that of a three dimensional continuous phase space (x,y,t) to an

iterated mapping, i.e. , a discrete time system, with two variables. A

fixed point of a map is represented as follows: P(§) - E with g e 2.

A periodic point is a point E such'that PJ(§') - E. (Note that E is a

fixed point of the jth iterate of P, P3). These types of points

represent periodic behavior of the system. The stability type of a
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fixed point of the Poincare map corresponds to the stability type of

the corresponding periodic motion.

The stability of a nonlinear system can be studied by using the

Lyapunov direct method [36-38]. The method relies on finding a

positive definite function called the Lyapunov function which

decreases along the solution curve of the differential equations. In

fact, in many physical problem the total energy stored within the

system is the logical choice for a Lyapunov function. The idea of

this method is a generalization of the concept of energy and its power

and.usefulness lies in the fact that the stability is explored by

investigating the differential equations itself and not finding the

solutions of the differential equations. However, in general it is

difficult to find.a Lyapunov function. This method can be applied to

autonomous systems and nonautonomous systems with the existence of

equilibrium points. There are no equilibrium points for nonautonomous

system such as oscillators with external forcing. In this

dissertation due to the piecewise nature and large external forcing in

the system, the Lyapunov direct method is not applicable. Thus

linearization method is employed to determine local stability of

periodic motions. This method consists of linearizing the given

system in the neighborhood of a fixed point of the Poincare map or a

equilibrium point of the flow and determining the behavior of the

nearby solution.trajectories by studying the resulting linear system.

The periodic orbits of interest in the present case pierce one of the

sections 2 in a single point and thus represent a fixed point for the

map P. Local stability can be investigated by linearizing the map P

about the periodic point
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<£1+1.n,+1> - DP (€1.01) (2.2.5)

where (£,n) is a small perturbation about the periodic point and DP is

the Jacobian of P evaluated at the periodic point.

The Hartman-Grobman theorem states that if DP(§") has no

eigenvalues of unit modulus, the eigenvalues of DP(E) determine the

1m]. stability of the associated motion [39] .

 

1

HEIEEQD'QIQDEQD theozem (f9: maps); Let 1’: En " Min

w bo o t '

 

-D£(§)h(z) {2: all g g L]. The proof of the theorem can be found in

[40-41]. P is a diffeomorphism if P is a smooth map with a smooth

inverse. A fixed point E is called a hyperbolic if the derivative DP

has no eigenvalue of unit modulus. Then the asymptotic behavior of

solutions near the fixed point are determined by the linearization.

If any one of the eigenvalues has the unit modulus, then the stability

cannot be determined by linearization. In our case the mapping P

cannot be written down explicity. In fact, P is not always well

defined since some points in Poincare section 2 are mapped onto the

line M. A degenerate impact occurs and leads to discontinuity in

the mapping (see Shaw and Holmes [26-27] and Whitson [35] for

details). In such case the map P is not smooth and Hartman-Grobman

theorem is not directly applicable. The linearized map DP can be

computed directly by using implicit differentiation.
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For a two dimensional map, both eigenvalues of DP evaluated at

the fixed point lie in the complex plane. If both eigenvalues lie

inside the unit circle in the complex plane, i.e. , when I11] < l, i-l

and 2, the motion is locally asymptotically stable and if either

eigenvalue lies outside the unit circle the motion is unstable.

Detailed discussion about different locations of the eigenvalues and

the stability of the associated motion follows. If 11<1, 12<1 and

A, 2 are real, the corresponding fixed point is a stable node and the

local steady state motion is periodic. In the phase space there

exists an associated stable limit cycle. If A,<l, Az>l and 11 2 are

real, the fixed point is a saddle and the associated motion is locally

unstable. The corresponding unstable period orbit in phase space will

be generally unobservable. If A1>1, 12>1 and A, 2 are real, the fixed

point is an unstable node and the associate motion is locally

unstable. If X1, A, are complex, they must exist as a complex

conjugate pair and the local map has a rotational behavior associated

with it. The eigenvalues can be written as A, 2 - a + flj - IA] at“.

2 2 -1 0:

IA] - ./ a + B , 0 - tan (7) (see Shaw [30] for details). The

corresponding rotation number is given by p - F . If IA] < 1, the

fixed point is a stable focus and the associated transient behavior

near the steady state periodic motion is a decaying oscillatory

behavior superimposed on the stable periodic motion. This leads to a

decaying beating-type motion. The inverse of the rotation number is
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approximately equal to the number of cycles in one period of the

envelope. If Ill > 1, the fixed point is an unstable focus and the

associate motion is locally unstable. If IA] - l, the stability type

is very complicated and cannot be determined by linearization. Center

manifold technique need to be used to study those nonlinear phenomena.

No IA] - l, A complex, bifurcations were found to occur for the

printer model.

"Local" in the above means that the motion behavior can only be

predicted near the fixed point. In nonlinear systems there may exist

many stable limit sets and the steady state behavior is dependent on

initial conditions.

2 . 3 Bifurcation

As system parameters are varied, eigenvalues may pass through the

unit circle, at which point a bifurcation occurs and the dynamical

response changes, i.e., the qualitative behavior of the system

changes. The changes are called bifurcations and the corresponding

parameter values are called bifurcation values. It should be noted

that when a discontinuity in map exists and a fixed point crosses it,

the qualitative behavior of the system will also change (as will be

seen in this dissertation). However, this change is not a standard

bifurcation.

Bifurcations can be described as local or global. If a

particular bifurcation is related to behavior near a nonhyperbolic

fixed point (bifurcation point) , the bifurcation is local in nature.
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Others, which involve changes in the global structure of the

phase space are global bifurcations. For studying the local behavior

near the bifurcation point, center manifold techniques can be

employed. A center manifold Wc is a invariant manifold tangent to the

center eigenspace EC, i.e., the eigenspace associate with

nonhyperbolic eigenvalues. One can reduce the map (or flow) to the

center manifold and investigation of the map (or flow) on Wc will

determine the stability types and changes that occur at the

bifurcation point. See Carr [42] .

Eigenvalues with -1 are associated with flip bifurcations, which

are also referred to as period doubling bifurcations. This

bifurcation is a very common type of bifurcation in nonlinear systems.

The period doubling bifurcation involves the birth of a new periodic

motion with period double that of the original period. There are two

types of period doubling bifurcations. Figure 7(a) shows a

supercritical period doubling bifurcation in which a stable periodic

orbit of period T looses its stability and becomes unstable with the

appearance of a stable periodic orbit of period 2T. Figure 7(b) shows

a subcritical period doubling in which an unstable periodic orbit of

period 2T merges with the stable periodic orbit of period T and an

unstable periodic orbit of period T remains. In a nonlinear system

once one of the eigenvalues passes through -1 as system parameters are

varied, a period doubling sequence will typically appear, i.e. , a

motion of period T goes through periods T 2“, n-l,2,3,.... (unless a

discontinuity is encountered) and eventually results in an infinitely

long periodic motion, or chaotic motion. The cascades of period
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doubling are typical behavior for nonlinear systems. See Feigenbaum

[43] for results which indicate the universal nature of these period

doubling sequences. The stability type of a period doubling

bifurcation (subcritical or supercritical) can be determined by using

the center manifold technique. This procedure reduces the map being

considered to a local one-dimensional map as described in [26] and

yields the following generic form:

2

u - - (l + p) un + a un +b un (2.4.1)

n+1

for the behavior on Wc for p and u nearly zero. p is the bifurcation

parameter and u is the co-ordinate on a local center manifold.

The origin 11 - 0 is always a fixed point and is stable for parameter p

< 0. Using the second iterate of this map it can be shown that b+a2>0

(<0) corresponds to a super (sub)-critica1 bifurcation.

As system parameters are varied and an eigenvalue passes through

+1, there are three possible bifurcations: the saddle-node

bifurcation, the pitchfork bifurcation and the transcritical

bifurcation. The center manifold method yields a one-dimensional map

which determines the local dynamics at the bifurcation point. Only

saddle node bifurcations are considered here. See Guckenheimer and

Holmes [39] for details concerning the other types. At a saddle-node

bifurcation a pair of orbits, one a stable node and the other a

saddle, coalesce and annihilate one another as shown in Figure 8.
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Figure 7(a). A supercritical flip bifurcation ( the bifurcated motion

alternates between branches).
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Figure 7(b). A subcritical flip bifurcation.
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In the case that eigenvalues are complex with IA] - 1, a Hopf

bifurcation occurs. If the determinant of DP(§) is less than 1, no

Hopf bifurcations can occur because eigenvalues cannot pass through

the unit circle as a complex conjugate pair since 1112 < 1. No Hopf

bifurcations were found to occur in our model since 1112 < l was

always satisfied. In fact, only period doubling bifurcations were

found to occur for the printer model dynamics.

Global bifurcations occur in the model but are not considered

here. They result in the chaotic dynamics observed in simulations.
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Figure 8. a saddle-node bifurcation



CHAPTER III

THE DYNAMIC RESPONSE : PERIODIC INPUT

3.1 Existence of Periodic Mbtions

In this section we exploit the piecewise linear nature of our

model in order to obtain explicit conditions for the existence of

periodic motions. The analysis involves the piecing together of

several trajectory pieces in the various linear regions in such a

manner that the motion is repetitive, i.e., periodic.

Referring to the phase portrait shown in Figure 6, the solutions

to equation (2.1.7) based at (x01,yo, to) are

-al(t-to)

x(t;yo,to) - e [Ao cosh(01(t-to)) + Bo sinh(01(t-to))]

+ F0 (3.1.1)

for to s t < t1 where t1 is the time when a sine pulse starts to

apply. For the next part of the motion

-ai(t-to)

x(t;yo,to) - e [A0 cosh(01(t-to)) + Bo sinh(0,(t-to))]

34
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+ pa + (p/20,){[(a,-o,) sin(w(t-t1)) - w cos(w(t-t1))] /

[(12,411)2 + wz] - [(a1+01) sin(w(t-t1)) - w cos(w(t-t1))] /

(OI-a1) (t-tl)
2 2 2 2

[(01+O1) + w ] + e [w/((al-01) + w )] -

'(01+°1) (t'tl) 2 2

e [w/((a1+01) + w )]] j (3.1.2)

for t1 5 t 5 t1 + D, i.e., while the pulse is acting, and

-a,(t-to)

X(t;y°,to) - 3 [A0 C08h(01(t‘to)) + Bo 31nh(01(t'to))]

(01'°1)(t't1) (“1'91)D 2 2

+ (3/201) {e (e + 1-0)[w/((01'01) + w )]

‘(01M1)(t't1) (01+01)D 2 2

-e (e + 1.0)[w/((a1+01) + w )]} (3.1.3)

for t 2 t1 + D and x < x02, i.e., after the pulse has ceased but

before the paper is struck, where A0 - x01 - F0, Bo — (yo + ale)/01,

Based at (x02,y‘,t‘) the solution to equation (2.1.7) is
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-a1(t-t‘)

x(t;y‘,t‘) - e [A‘ cosh(01(t-t4)) + B, sinh(01(t-t4))]

+ F0 (3.1.4)

for x01 < x < x02 where y‘ < 0, with A, - x02 - F0, and B‘ -

(y‘+a1A‘)/01. This will be used for the return flight from the paper

to the backstop.

Similarly the solution to the equation (2.1.8) based at

(302:stts) 13

-a2(t-t3)

x(t;y3,t3) - e [A8 cosh(02(t-t3)) + 33 sinh(02(t-t,))]

+ (1.0+k2)x02/k2 - Fo/k2 (3.1.5)

2 2

for x Z X02 Where A3 - Fo/k ' Keg/k , Ba - (Y: + 02Aa>/02, and

 

2 2

02 - Jk -a2. This gives the dynamics during contact with the ribbon

and paper.

For the case of n impacts per forcing cycle, the solutions to the

governing equation (2.1.7) for the settle-out phase are

-a2(t-t3)

x(t;y1,t1) - e [A0 cosh(01(t-ti)) + Bi sinh(01(t-t1))]
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(3.1.6)

where (t1,y1) is the point on the backstop at which time the mass

leaves, and B1 - (yi + ale)/01. (It should be noted that the word

"impacts” in this dissertation refer to impact against the backstop).

A periodic motion of one impact per forcing cycle will satisfy

the following matching conditions:

x(t. 3 Y0» to) ' x02

*(t3 3 Y0: to) ' Ya

x(t‘ 3 Y3: ts) ‘ xo2

*(ta 3 Ya: t3) ' Y4

3(t5 3 Y4: t4) ' x01

*(t5 3 Y4: t0) ' Y5

Y0 ' -r Ya

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

.7)

.8)

.9)

.10)

.11)

.12)

.13)

.14)
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For the conditions of the existence of motion of period T with k

impacts, equations (3.1.13) and (3.1.14) are rewritten as

Ye ' -r Y5
(3.1.l3a)

x(“21.-7 ‘ Y21+6' t21+5) ' “01 (3°1°13b)

*(t21+7 ‘ y21+6’ t21+6) ' y21+7 (3'1°13°)

y21+8 ‘ ’r Y21+3
(3.1.13d)

t21+8 - to - T (3.1.l4a)

where i - 0,1,2,...., k-2, and T is the period of excitation. Then

the corresponding periodic points of the mapping P1, when the Poincare

section in equation (2.2.4) is adopted, can be written as

- - k - -

(t+T.y) - P1(t.y). (3.1.15)

If the Poincare map of the equation (2.2.2) is adopted, the

corresponding fixed point can be written as

- - to - -

(x,y) - P (x.y) (3.1.16)
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since only one forcing period passes during the k impacts.

Solving equations (3.1.7) - (3.1.14) with solutions of equations

(3.1.1) - (3.1.6) the periodic points corresponding to a specific

forcing periods T with k impacts can be obtained. In this

dissertation, due to the generally unstable behavior of period nT

(n > 1) motions, we are mainly concerned with the period T motions

with k > 1 impacts per forcing cycle. A computer generated plot of

the resonance curves of periodic points y versus forcing period T is

shown in Figure 9. On the curves, solid lines represent stable

motions and the dashed lines represent unstable motions. The values

shown correspond to the y component of the periodic points on the

Poincare section of equation (2.2.4).
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The response curves shown in Figure 9 was generated by a

numerical solution of the matching problem. In equation (3.1.7) t3

cannot be analytically determined since it is the root of the

transcendental equation. The same is true for t4 and t5. However, the

local solutions for equations (3.1.7)-(3.1.12) are known explicitly.

We assume that the pulse is only acting when the armature is not in

contact with the paper. This must be verified from simulations, as

seen in Figure 6 for example. From the periodic conditions for one

impact per forcing cycle in equations (3.1.7)-(3.1.14) and their local

solutions there are 8 unknowns (to, yo, t3, ya, t‘, y“ t5, Y5) in

these 8 equations. Solving these equations by numerical methods, we

obtain the periodic points in 2 for various parameters. By following

the same procedure we can obtain the periodic points for k impacts per

forcing cycle in parameter region as shown in Figure 9. An IMSL

routine, ZSPOW, was used to solve these equations [44] .

3 . 2 Stability Analysis

For the stability nature of a period motion, we choose a point on

the orbit as the periodic point by constructing a Poincare section as

described in section 2.2. For convenience a Poincare section is

t0

chosen at the point where the pulse is applied, i.e., 2 is used. In

the following analysis, we choose the point of equation (3.1.16) as

the periodic point with the Poincare section of equation (2.2.2). The
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Poincare section chosen here is different from the section of equation

(2.2.4) which was used in [26-30]. However, the approach taken here

is similar and is equivalent to those in [23-24].

A small deviation from the fixed point is considered. After n

cycles under the action of mapping P, the system is stable if

gig: DPn- Q, where DP is the linearization of P about the fixed point.

Equivalently, I A1 I < l where A are the eigenvalues of DP. In the
1

following we consider two impacts per forcing cycle as an example.

The stability of k impacts per forcing cycle has been analyzed by

following a similar procedure. It is assumed that x < v, for all

impacts.

Referring to Figure 6(b). it is seen that there are 8 pieces of a

periodic trajectory which form one cycle with two impacts at the

t0

backstop. Hence DP (with P written simply as P) can be written

using the chain rule as :

DP - DP10DP07DP7.DP65DP5‘DP‘aDP32DP21 (3.2.1)

where the P11 are the components of the map for the respective

components of the trajectory. The details of calculating the

components of each DPij are given as follows. From point 1 to point 2

the solution to the equation of motion based at point 1 (x1, y1,t1) is

-a1(t-t1)

x(t;x1,y1,t1) - e [A1 cosh(01(t-t1)) + B1 sinh(01(t-t1))]
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+ F0 + (5/201){[(a1-01) sin(w(t-t1)) - w c08(w(t-t1))] /

[(a,-o,)2 + w2] - [(a,+n,) sin(w(t-t1)) - w cos(w(t-t1))] /

2 2 (01‘01) (t'tl) 2 2

[(01+01) + w ] + e [w/((a1-01) + w )] -

'(01+°1) (t'tl) 2 2

e [w/((a1+01) + w )]) . (3.2.2)

Where A1 - x1 ' F0, Bl - (Y1 + alAl)/01.

The point 2 (x2,y2 ,9 ), at which the sine pulse ceases, is

determined by

where t2 - t1 + D, and D is the duration of the sine pulse.

to

.A small perturbation of (x1, y1) e 2 will cause a variation in

point 2. Taking 3:: and g—y— of equation (3.2.3) respectively and

1 1

using equation (3.2.2) we obtain
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time
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3X2 -011) a].

3;: - e [cosh(0,D) + a: sinh(01D)] (3.2.5)

aX2 -a1D 1

5;: - e [01 sinh(01D)] . (3.2.6)

taking a"-'and fl__3 of equation (3.2.4) respectively and using the

x1 3Y1

derivative of equation (3.2.2) we obtain

2

By: «111) a:

5;: - e [01 - a: ] sinh(01D)] (3.2.7)

8y: 'GID 01

-— - e [cosh(01D) - -— sinh(01D)] . (3.2.8)

3Y1 01

From point 2 to point 3 the solution to the motion based at

(x2,y,,t2) is

-al(t-t2)

x(t ; x2,y2,t2) - e [A2 cosh(01(t-t2))+B sinh(01(t-t2))]

+ F0 (3.2.9)

Where A2 - X2 ' F0 , 82 - (Y2 + 01A2)/01.
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The point (x02, ya, t3) can be determined from

X(t3; X2,y2,t2) - X02 (3.2.10)

*(ts; X2,y2,t2) - ya . (3.2.11)

A small perturbation to point 2 will cause a variation in (t3,y,)

since x02 remains unchanged. Thus (t,,y,) are dependent on (x2,y2).

It should be noted that t2 - t1 + D is also kept constant.

Taking g—x—z andgy—2 of equation (3.1.10) respectively and using

the time derivative of equation (3.2.9) we get

at, L -a1(t,-t2) al

5;: - " ya {9 [C08h(01( t3’t2)) + a: 81m(01(t3-t2))]}

(3.2.12)

at, -a (t -t )
_ l. 1 a 2 1.

3y, ' ’ y, [e 91 81nh(01(ts-t2))] . (3.2.13)

Next taking 3? and%— of equation (3.2.11) respectively and

2 2

using the time derivative of equation (3.2.9) and equation (3.1.7) we

get
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3?: I“0"‘02 '°1(t3't2) El

3;; - [ Ya + a1] e [cosh(01( ts-t2)) + 01

-a1(t3-t2)

sinh(01(t,-t2))] + e [01 sin(01(t,-t2)) +

a1 cosh(01(t3-t,))] (3.2.14)

3!: Fo'xo2 '°1(ts’t2) 1_

3y: - [ Y: + 01] e 01 sinh(01(t3-t2))]

‘°1(t3't2)

+ e cosh(01(t3-t2)). (3.2.15)

From point 3 to point 4 the solution to the motion is given by

equation (3.1.5). The point 4, (xo,,y4,t‘), is determined by

X(t‘; Koz, Y3, t3) - 3‘02 (3.2.16)

i(t‘; XO2, Ya, t3) - Y4 (3.2.17)

where x02 is constant. A small perturbation to (t3,y3) will then

cause a variation in (t‘, y‘).

Taking 3;: and 2;; of equation (3.2.16) respectively and using

equation (3.1.5) we get
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at,

5;: - 1.0 (3.2.18)

at 'ag(t ”ts)

—&- - e ‘ —1— sin(02(t‘-t3)) . (3.2.19)
6",

02Y‘

Taking Q—— and fi—- of equation (3.2.17) respectively and using
at, By,

the first time derivative of equation (3.1.5) and equations (2.1.8) ,

(3.2.18) and (3.2.19) we get

DP‘S
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at, - 0.0 (3.2.20)

3Y4 Fo‘xo2 -a2(t‘-t3) l.

3;: - [ y‘ + 02] e 02 sin(02(t‘-t3))]

'°2(t1't3)

+ e cos(02(t4-t3)). (3.2.21)

By similar procedure and calculation we can get the components of

as follows:

3:,

5E: ' 1'0
(3.2.22)
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atb -a1(t5-t‘) ]

3;: ' ' e oxys sinh<01<t.-t.)) (3.2.23)

1y:
3224

at‘-o.o
(..)

22:} Fo'xo1 ‘01(t5-t‘) 1.

0y‘ ' [ Y5 + all e 01 sinh(01(t5-t‘))]

‘°1(ts't4)

+ e cosh(01(t5-t4)). (3.2.25)

From point 5 to 6 the first impact at the backstop occurs. By

equation (2.1.9) and (2.1.10), we can easily get the components of

DP5. as follows

6:.

52: - 1.0
(3.2.26)

6:.

-—— - 0.0 3.2.27”5 ( >

3Y0

at, - o.o (3.2.28)

3Y0 '

-- - - 6 - 2ay5 . (3.2.29)
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From point 6 to pont 7 the solution to the motion is given by

equation (3.1.6). the point 7, (x01, y,, t,), is determined by

where y, can be obtained from equation (3.2.31) after solving equation

(3.2.30) for t7. A small perturbation to to, y6 will cause a

variation in t7 and y7. Taking g; and g; of equation (3.2.30)

0 s

respectively and using equation (3.1.6) we obtain

at,

at? 'al(t7't°)

— - - e —1— s1nh(o,(c,-t,)) . (3.2.33)
3y.

alY"

Taking fi“ and Q‘— of equation (3.2.31) respectively and using
at, fly;

the first time derivative of equation (3.1.6 ) and equations (2.1.7),

(3.2.32) and (3.2.33) we get

2:
at, - 0.0 (3.2.34)



 

sinh(01(t7-t,))]

+ e cosh(01(t7-t.)). (3.2.35)

From point 7 to point 0 the second impact at the backstop occurs. The

components of DPo7 are

at,

E - 1.0 (3.2.36)

3:,

—- - o.o 3.2.378y, ( )

3Y0

at, " °°°
(3.2.38)

3Y0

ay, " ‘ 5 ' 20% - _ (3.2.39)

From point 0 to point 1, a small perturbation to (to,yo) will

cause a variation in (x,,y1). The point(x1, yl, t1) can be determined

from
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X(E1 ; X01, Yo, to) - XI (3.2.40)

t(El ; 801, Yo, to) - YI (3.2.41)

where E, - t1 (mod T).

Taking 3:0 and %;o of equation (3.2.40) respectively and using

equation (3.1.1) we obtain

8x1

5;: — - y1 (3.2.42)

8x1 'al(El't0)
-

—- e —1— sinh(01(t1-to)) . (3.2.1.3)
3Y0 01

Taking 3;: and 3;: of equation (3.2.41) respectively and using

the first time derivative of equation (3.1.1) and equations (3.2.42),

(3.2.43) and (3.1.1) we get

3Y1
.5; - 201Y1 _ x1 + F0

(3.2.44)

aY1 'a1(é1'to) a1

5;: _ e [cosh(01(t1-to)) - a: sinh(01(t1-to))].

(3.2.45)
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From above above, DP can be written as

8(x1.y1) 6(to.yo) 8(t1.y7) 6(6..y.) 6(t..y5)

DP ' [a(to.yo>] [a(t1.y1)] [6(t..y.)] [3(tva5)] [3(t4vY4)]

3(t.-Yc) 3(tvas) 3(x29Y2)

[3(t..y.)] [3(x2.y2)] [3(x1.y1)] (3'2'46)

Performing the matrix multiplication of equation (3.2.46) and

using the periodic points obtained in section 3.2, we can obtain the

matrix DP evaluated on the periodic point. Then the eigenvalues of DP

can be written in term of D, the determinant of DP and T, the trace of

DP, as

1, 2 - g i 182:)2 - 5 (3.2.47)

which determine the stability of (x1,y1) and the correspond periodic

motion.

Variation of the system parameters will cause the fixed point and

its associated eigenvalues to move. If an eigenvalue passes through

the unit cycle in the complex plane, i.e. , IAI - l, a stability change

and an associated bifurcation occur. Bifurcation conditions on the

system parameters are determined by the equations
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Di-Ti- l -0 (3.2.48)

corresponding to A - 2': 1 respectively. No Hopf bifurcations involving

complex eigenvalues occur in this system since D < l as is

demonstrated below.

From the curves shown in Figure 9, as the forcing period T is

varied, the eigenvalues corresponding to a periodic point change. At

point A one of the eigenvalues will be equal to -l, in our case, and a

period doubling bifurcation occurs. The periodic point y of point A

is called a bifurcation point and denoted 5:1,”. This can be obtained

by solving equation (3.2.48) and (3.1.7)- (3.1.14) numerically. The

method is similar to the one described in section 3.2 for obtaining

the period points in Poincare section 2. We only add one unknown 9Mf

and one equation of (3.2.48). In this bifurcation the stable motion

of period T becomes unstable and a stable motion of period 2T appears.

Fig 10(a) shows flip bifurcation curves of forcing period T

(corresponding to the bifurcation point 9b”) versus the backstop

material factor a. It is observed that as a is increased, i.e., as

the damping of the backstop is increased, the forcing period ’1‘

corresponding to 9b” will be decreased. This indicates the print

hammer may be excited at higher forcing frequencies with a stable

periodic motion by increasing the damping of the backstop. Also,

increasing the damping of the backstop reduces the settle-out time,

further discussion of these issues follows in next section. A similar
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procedure indicates that as the system damping during free flight, a1,

is increased the change in forcing period T at the bifurcation is

small as shown in Figure 10(b). This indicates the effect of changing

a1 is not significant.

Similarly the bifurcation point 9b“ for k impacts per forcing

cycle can be determined by following the procedure described above.

It is found that there are no stable regions for periodic motions with

k > 3, does exist for k > 3.

3° S'bif

3.3 Simulation and Observations

Using results of digital simulations we can check the validity of

our solutions to the equations of motion, periodic points, and

bifurcation points. Also, chaotic motions and other responses can be

explored through simulation. Figures 6(a) and 6(b) show the plots of

phase portraits with one and two impacts per forcing cycle

respectively. It was determined that the fixed points corresponding

to the motions in Figures 6(a) and 6(b) are exactly coincident with

their respective fixed points as predicated by the analysis.

Figure 11 indicates a flip bifurcation. Figure 11(a) shows a

phase portrait whose eigenvalue is close to negative one. Figure

11(b) shows the plot of phase portrait with period 2T, the motion has

a period twice the period of the forcing period T. As we continuously

change the parameter T, we obtain the period 4T motion shown in Figure
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11(c), and finally a chaotic motion occurs as shown in Figure 11(d).

The simulations indicate that as the forcing frequency is varied from

T - 3.2 to T - 3.45, a flip bifurcation occurs. Checking the

bifurcation curve in Figure 10, we can obtain the corresponding

forcing frequency at the bifurcation which is equal to T z 3.31.

Since the system is excited by the periodic sine pulses of period

T, the time t at which the armature leaves the backstop can be

replaced with the phase ¢, ¢ - t mod (T). This is convenient for

describing orbits in 21. Figure 12 depicts the points (¢,y) in 21

corresponding to the motions shown in Figure 11. It is observed that

a slight change in phase ¢ causes a variation in the motion as shown

in Figure 11(b) and Figure 12(b). It indicates that a flip

bifurcation will affect print quality, i.e., dots will alternate

between tw0 values of maximum print force causing nonuniform printing.

In Figure 9 between the stable region represented by solid

curves there exist many unstable regions represented by the dashed

curves. It should be noted that one end-point of the solid curve

segment is the bifurcation point discussed above and the other end

point of a solid curve has been determined by simulation. At such

point an orbit in phase portrait hits the backstop with zero impact

velocity, i.e. , a degenerate impact occurs and a motion of n impacts

per forcing cycle undergoes a "transition” and becomes a motion of n-l

impacts per cycle. It undergoes a complicated sequence of chaotic

motions and flip bifurcations in that transition [26,35] . By using

the iterates of the Poincare map, i.e., plotting all points (x1,y1)
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to

which belong to Poincare section 2 of equation (2.2.2), we can

describe the behavior of these unstable motions. Figure 13 shows

Poincare plots for chaotic motions at different forcing periods. It

is found that as the forcing period is increased, the phase points

converge to the point (x1 - x01), i.e., to the rest position at the

backstop.

Figures 14(a), (b) and (c) show a Poincare plot, a phase plane

and a plot of the displacement versus time at the same parameter

values, respectively, with a forcing frequency near that of "buzz
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printing“ [10]. A buzz printing mode is a behavior of motion at high

frequency in which the hammer never returns to the backstop, and print

forces are not large enough to produce acceptable print quality. This

motion is typical of the the chaotic motions that occur when the

system is driven too rapidly.

It should be noted that the forcing in actual printers is not

periodic, and Hendriks [10] pointed out that the motion of the hammer

is extremely sensitive to the timing of subsequent refirings. In

order to avoid interaction from rebound, the minimum forcing period T

of the print hammer is set to be sufficiently large such that y as O at

refire. Some works related to the improvement of performance have

been indicated in [10-22] . It has also been observed that increasing

the pre-load during settle-out phase will improve the performance. A

open-loop control strategy which increases the operating speed will be

discussed in next Chapter.

By using our simple model and carrying out analysis and

simulations we have determined the influence of various parameters on

the printer's performance. A plot of settle-out time versus pre-load

is shown in Figure 15, this plot was obtained by gradually increasing

the pre-load during the phase between the time that the hammer leaves

the paper and the time of the next pulse. Figure 16 shows a plot of

settle -out time versus the backstop material factor. The ”ideal"

settle-out time is the duration between the instant the armature

leaves the paper and the time at which it comes to the rest position

(ac-0.2, y-0.0). For convenience in simulations we let the settle-out

time be the time between the armature leaving the paper and settling
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into the region (xz0.2, y<0.04). These graphs show that an increase

in the backstop material damping and/or the pre—load during settle-out

phase will quickly send the armature towards the rest position and

subsequent refirings can take place nearly immediately. Note that

refiring during settle-out, when the armature is very near the rest

position, usually results in good print quality. By increasing the

preload or the backstop material damping the impact printer can be

operated at higher frequencies and the performance is improved. We

will demonstrate this by using a control method to increase the

preload in next Chapter. It is interesting to note that increasing

the spring stiffness also reduces the settle-out time. However, the

forces required for the permanent magnet and of the excitation would

need to be likewise increased.

3.4 Chaotic Dynamics of the System

It is interesting to note that the Poincare points in Figures 13

and 14 tend to lie on a set of curves. This is referred to as a

strange attractor [39]. Very similar attractors were also observed by

Hendriks [10]. Both show that as the forcing period T is reduced the

attractor ”grows" and there is wide variation in initial conditions

provided for refiring.

An attractor is an attracting set which contains a dense orbit

[39] . An attracting set is an invariant set A e Rn for which there

exists some neighborhood U of A such that for all x e U, solution
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trajectories ¢(x,t) remain in U for all t z 0 and C(x,t) 4 A as t -> on.

It is should be noted that an attracting set is not necessarily an

attractor. The strange attractor is an attractor with some special

properities. Observable chaotic motions in nonlinear systems

correspond with the occurrence of a strange attractor in the phase

space. A chaotic motion is an irregular, deterministic, and bounded

motion with wide-band spectrum and displays sensitive dependence on

initial conditions. As system parameters are varied, a periodic

motion may pass through a series of bifurcations which results in a

chaotic motion, as in the period doubling cascade. However, this is

only part of the picture, global behavior is the source of the chaos.

Chaotic motions usually evolves from global bifurcations of a

saddle type periodic motion for which the associated stable and

unstable manifolds intersect transversely leading to Smale horseshoes

(see Guckenheimer and Holmes [39], Shaw and Holmes [26], or Shaw [29]

for details). The stable (W3) and unstable (Wu) manifolds of the

saddle type fixed point E, associated with the periodic motion, are

defined as those sets of points in 2 which are, respectively, forward

and backward asymptotic to the fixed point under iterates of map P:

w3 t° . n - '
-{§cE(oreE).P(§)-*§asn-v+

co} (3.4.1)

u t° n -

W-{§62(or52):P(§')-*§asn-v-co). (3.4.2)
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Using digital simulations, we can generate portions of these sets and

examine when the stable and unstable manifolds intersect transversely

which implies that there exists ”Smale horseshoes" for P and that

chaotic motions will exist in the system. Iterating two nearby points

in the horseshoe set under the map P reveals that the points will

diverge quickly. This sensitive dependence on initial conditions is

characteristic of chaotic motions.

Figure 17 shows the frequency response of impact velocity at

paper versus forcing period. At point A the motion begins to undergo

a succession of period doubling or flip bifurcations, which eventually

results in chaos. Simulations (see Figure 9) show that the period

doubling bifurcations are supercritical. In Figure 9 we choose a

fixed point which corresponds forcing frequency w - 3.9 for which the

associated motion is chaotic. By digital simulations, we choose many

initial points very near to the unstable fixed point and iterate the

mapping forward to generate the unstable manifold and backward to

generate the stable manifold as shown in Figure 18. It shows that the

stable and unstable manifolds are intersect transversely which implies

the existence of horseshoes via the Smale-Birkhoff homoclinic theorem

[39]. The map P is piecewise smooth, but discontinuous. The

discontinuity is due to a degenerate, grazing type of impact at the

backstop. Thus the stable and unstable manifolds are disconnected

sets [35].

A Smale horseshoe is a complicated invariant set. It can be

shown that the horseshoe is a Cantor set which contains the following:

(a) a countable infinity of unstable periodic orbits including those

of arbitrarily long periods, (b) an uncountable infinity of unstable,
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bounded, nonperiodic orbits, and (c) a dense orbit. The horseshoe is

mm. It acts as a chaotic saddle point since most orbits

approaching it eventually leave its neighborhood. Points near the

horseshoe display an extremely sensitive dependence upon initial

conditions. It does form the "heart” of the strange attractor,

however, in that the motion may move from horseshoe to horseshoe

indefinitely if no other attracting sets are nearby.

Points in the strange attractor on the Poincare section 2 appear

to lie on a set of curves that resembles the unstable manifold. This

is so since points near the horseshoe tend to converge towards the

unstable manifold and be diverged along the unstable manifold. An

attracting set containing horseshoes is referred to as aW

W(see Guckenheimer and Holmes [39] , Devaney [45] , and

Chillingworth [46] for details).

Using the Poincare section 21 of equation (2.2.4), we can

establish the existence of an attracting set in our system. Let the

region R - {t,y|0 S y s L) C 21 in the cylindrical (T-periodic in t)

Poincare section. If L is taken sufficiently large, then we can show

that P(R) C R as follows. The armature leaves the backstop with

velocity yo > O at time to and is excited by a half sine pulse to hit

the paper with the velocity y3 and t3. Using the time derivative of

equation

(3.1.3), we obtain

'°1(t3'to)

y, - e 01 [A0 sinh(01(t3-to)) + Bo cosh(01(t3-to))]
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'01(t3’to)

-al e [Ao cosh(01(t3-to)) + Bo sinh(01(t3-to))]

(01'a1)(ts’t1) (01'01)D 2 2

+ (6/201) {e (e + l.O)[w/((a1-01) + w )]

~(01+a1)(t3-t1) (“1+01)D 2 2

(OI-a1) + e (e + l.0)[w/((a1+01) + w )]

(01+01)} . (3.4.3)

Since we assume that yo is sufficiently large, equation (3.4.3) can be

simply written as

'al(t3‘to) 'a1(ts'to)

Ya - yo e cosh(01(t3-to)) - yo al e

sinh(01(t3-to))/01 + C (3.4.4)

where C represents the terms independent of yo in equation (3.4.3).

From equation (3.4.4) we obtain

y8 < yo cosh(01(t3-to)) + C . (3.4.5)

After impacting with the paper, the armature leaves the paper with

velocity y,' at time t‘. Since energy dissipation occurs during the

impact, we have
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-y, < y, . ' (3.4.6)

Using the time derivative of equation (3.1.4) we get the impact

velocity y5

-a1(t5-t‘)

y; - e 01 [A, sinh(01(t5-t‘)) + B, cosh(01(t5-t‘))]

'01(t5't4)

-a1 e [A4| cosh(01(t5-t‘)) + B‘ sinh(01(t5-t‘))]

(3.4.7)

We then write

'a1(t5't‘) 'a1(t8'to)

Y5 ' Y4 e C03h(01(t5't4)) ' Y1 a1 e

sinh(01(t,-to))/Ox + Cl (3.4.8)

and obtain

-y5 < -y‘ cosh(01(t5-t‘)) - Cl . (3.4.9)

Substituting equations (3.4.5) and (3.4.6) into equation (3.4.9) we

get

'Ys < Yo C08h(01(ta-to))cosh(01(t5-t‘)) + C cosh(01(t5-t‘)) - C1.

(3.4.10)
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During an impact with the backstop a simple impact rule is applied and

equation (2.1.11), r - b -O.15, is employed. Then the armature leaves

the backstop with velocity ya.

y. - -ryo cosh(01(t3-to) cosh(01(t5-t‘)) + rC cosh(01(t5-t‘)) +

r Cl . (3.4.11)

Taking yo is sufficiently large, from equation (3.1.3) and (3.1.4) the

durations ta - t0 and t5 - t, must be small. Then we conclude

Yo < Yo (3.4.12)

for yo large. Hence the motion is bounded and an attracting set must

exist.

There are some criteria often used to detect chaotic motion, one

of them consists of considering the power spectra of dynamic variables

of the system [47]. When we have a stable periodic motion the power

spectra is merely a sum of discrete peaks. Chaotic motion is

characterized by the existence of a continuous spectrum without the

existence of any random inputs or parameters. This method is often

used in numerical experiments or directly in physical experiments.

Another criterion for determining the existence of chaotic motion is

connected with the main characteristic exponent of Lyapunov[48,49,50].

Lyapunov exponents, which are the average exponential rates of

divergence or convergence of nearby orbits in phase space, can be used
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to characterize the system response. Any bounded motion of a system

containing at least one positive Lyapunov exponent is defined to be

chaotic. All strange attractors in three dimensional space have the

same spectral type, (+,0,-): a positive exponent indicating the

separation of trajectories within the attractor, a zero exponent for

the motion along the orbit in time (Haken [51] has proven that at

least one exponent vanishes if the trajectory of an attractor does not

contain an equilibrium point), and a negative exponent for the

contraction of nearby trajectories onto the attractor. The sum of the

exponents is necessarily negative for a dissipative system and thus

the phase space contains at least one attractor. A one dimensional

map has a single exponent which is positive, negative or zero for

chaotic, periodic“ and marginally stable stable behavior,

respectively. In a three dimensional continuous dissipative system,

such as our printer model, the only possible spectral types for

attractors, i.e., stable steady states, are: (+,0,-), a strange

attractor; (0,0,-), a torus, or quasiperiodic, motion; (0,-,-),ll

stable limit cycle; and (-,-,-), an equilibrium point.

The algorithm for computing the Lyapunov spectrum from an

equation of motion has been described in detail in Wolf et al. [49] .

Lyapunov exponents are defined by the long-time evolution of the axes

of an infinitesimal sphere of states. The sphere will become an

ellipsoid due to the locally deforming nature of the flow. The 15h

one dimensional Lyapunov exponent is then defined in terms of the

length of the ellipsoidal principal axis pi(t):
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p1(t)

A — 1m 108 (3.4.13)

1 E4» 2 p1(0) .

The phase space together with its tangent space is used to

calculate Lyapunov exponents. A fiducial trajectory (the center of

the sphere) is defined by the action of the nonlinear differential

equations on some initial condition. Trajectories of points on the

surface of the sphere are defined by the action of the linearized

differential equations of motion on points infinitesimally separated

from the fiducial trajectory. The principal axes are defined by the

evolution via the linearized equations of an initially orthonormal

vector frame anchored to the fiducial trajectory. However such a

method is only applicable to continuous dynamic systems, since the

linearized differential equations are not well defined at

discontinuities. In our case the discontinuity occurs at impact with

the backstop. Thus for our piecewise linear system, a discrete

mapping will be used to calculate the Lyapunov exponent. Using the

t=0

Poincare section 2 of equation (2.2.2) and the associated map P, we

can calculate DP by following a procedure similar to that described in

Chapter 3 for stability analysis. The DP is a composite map similar

to DP of equation (3.2.4). However, in this case DP is more

complicated since the associated orbits involve impacts that occur

during the application of the driving pulse and impacts that do not

occur during some forcing periods. The linearized map can be

expressed as
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6 x 8 x

5 “*1 - DP“(x,) 5 “ (3.4.14)

yn-I-l yn

where X0 represents an arbitrary initial condition, i.e. , Xo-(xo,yo).

An orthonormal frame of principal axis vectors such as ((0,1),

(1,0)) is evolved by applying DP to each vector,i.e. ,

6 xn+1

8 yn+1

o
] - DP(Xn)DP(Xn_1) ...... DP(xo) [1] (3.4.15)

where Xj - P(XJ-1). Similarly equation (3.4.15) applies to the vector

(1,0) . Lyapunov exponents p can be computed from the growth

(contraction) rate of the length of the first vector and the growth

(contraction) rate of the projection of the second vector on the

vector orthogonal to the first vector or from the eigenvalues of the

long-time product matrix, DPn, of the linearization of the map P,

i.e.,

p1 - kgg (—%—) logzlxil (3.4.16.)

where Al is an eigenvalue of the linearized map DPn(Xo). However, the

long time product matrix tends to become a singular matrix since all

the columns in the matrix converge to large multiples of the

eigenvector corresponding to the biggest eigenvalue of the matrix.

Also, the magnitude of the current axis vector diverges (converges),
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and the angular separation between the two vectors goes to zero as the

axis vectors multiply DP. Gram-Schmidt reorthonormalization (GSR) is

used to solve this problem.

In this dissertation the Lyapunov exponents are calculated as

follows. At each iterate DP acts on the two unit axis vectors, e1

and e2 , and we construct the unit vector along the image of e1 to be

used as the first unit axis vector for the next iteration,i.e.,

(J-l)
DP(§ - ) e

ng>_ L1 1(1-1) (3.4.17)

IDP<:J_1> e. I

 

where P(§J_1) - (J, (o is any initial condition we choose and j is the

iteration number. The second axis vector for the next iterate is

constructed by removing that component of the image of e2 which is

parallel the image of e1 and then normalizing, i.e.,

(J) ”P(‘1-1> 953-1) - <DP<:1-1> eéj'l’ .eSJ’ > e§1>

62 -

 

_ (3.4.18)

IDP(§J-1) 351-1) - <DP(§J_1) egj 1)ve§J) > e§J)l

where < , > denotes the usual inner product. Then the Lyapunov

exponent ”i is given by

#1 - kig <-fi-) 321 [103, (11)] (3.4.19)
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where 1 -1,2 and 3% - IDP(§j_1) efj'1)|, 1g _ IDP(§J,1) ng'1)_

<DP(§j_1) egj'l),e$3)> efj)l. The removal of components parallel to

egj) is required to compute #2 since without this step all vectors

will simply approach the eigenvetor associated with the largest

eigenvalue and only p1 could be determined.

Fbr the stable periodic motion the Lyapunov exponents can be

directly calculated form the eigenvalues of the DP(E) evaluated at the

stable fixed point 6 since at an arbitrary initial condition DP will

eventually approach the constant matrix which is equal to DP(E). Thus

the Lyapunov exponents p can be expressed as p, - logIA1I , p, -

loglxgl where A1 2 are the eigenvalues of DP(§) for a two dimensional

map. It is clear that the definition of Lyapunov exponent generalizes

the idea of eigenvalue to give average linearized contraction and

expansion of the system over the global regions of the phase space.

At the same parameter, chosen in this section above, (0 - 3.9,

from digital simulations for the trajectory and the direct calculation

for DP we determine the Lyapunov exponents for the strange attractor

to be 1.14 and -5.10 for an arbitrary initial condition. The spectral

type is (-,+) for the map, and (-,0,+) for the flow. The zero

component is suppressed for the map since time is "removed" by the

map. Thus it shows that the associated motion at this parameter value

is chaotic. For the forcing frequency w -3.3 which is close to the
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bifurcation point, the Lyapunov exponents are equal to -0.00155 and -

4.3572. As we expected, one of Lyapunov exponents is nearly zero and

the spectral type is (-,-) for stable periodic motion. For the

parameter value an —3.45 the associated motion is stable motion with

period 2T and the Lyapunov exponents are equal to -0.2068 and -3.15.

It is should be noted that even if a different initial condition is

chosen, the average rate of expansion and contraction is of the same

type and the same Lyapunov exponents will be obtained since the

Lyapunov exponent is computed based on the long time behavior of a

trajectory.



CHAPTER“

A METHOD FOR THE IHPROVDIEN'I' 0F PERFORHANCE

4.1 An Open-Loop Control Strategy and Printer Performance Criteria

The control strategy which we propose to increase the operation

speed utilizes the coil which in normal operation is excited by a

current pulse producing a magnetic field opposed to that of the

permanent magnet, thus releasing the armature. Immediately before

firing, we propose that an inverted pulse be applied, here called the

damping pulse, of opposite sense to the driving pulse. This aids the

force of the permanent magnet and quickens settle-out of the armature.

This is done in an open-loop fashion without requiring additional

sensors or signal processing. A periodic full sine pulse as shown in

Figure 19 will represent the forcing function, i.e. , the current sent

through the coil.

This control strategy is quite specific, it was chosen because of

its simplicity and effectiveness. It may be tested on more

complicated models and actual impact printers of the stored energy

type.

It is important to note that the driving current pulses in actual

printers are not generally periodic. Actual printers are operated

under various "firing combinations", i.e., time lapses between input

driving pulses are varied and are specified by a particular pattern of

dots required to form the desired characters. General printer

80
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Figure 19 Periodic full sine pulses

performance criteria are established and are based on the requirement

that acceptable print quality be achieved for an entire class of

firing combinations with some minimum time lapse between pulses. This

minimum period is typically the lowest period which provides

acceptable steady state, i.e., periodic, operation. This requirement

must also hold for all physically possible initial conditions which

may be provided at the time of refiring. This condition is necessary

since the print hammer must be fired before complete settle-out if the

printer is to run at an increased operating speed.

Any control strategy, including ours, should thus satisfy the

following three conditions in principle:

(a) Any initial conditions provided for refiring which result in

acceptable print quality will continue to do so for all subsequent
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firings. This implies that once a firing results in acceptable print

quality, all subsequent refirings will result in acceptable print

quality.

(b) Any initial conditions provided for refiring which do not result

in acceptable print quality will be mapped in to the ”acceptable print

region" in a single iterate. This implies that although refiring may

result in unacceptable print quality for a single dot, due to some

disturbance, all subsequent refirings will result in acceptable print

quality.

(c) When fired from rest the system must print an acceptable dot.

This, along with (a), insures that the printer will perform

satisfactorily from a "cold" start.

Conditions (a) and (b) will depend on the time elapsed from the

previous pulse. Thus they must hold for all periods larger than the

minimum acceptable operating period. Condition (c) depends on the

model and is satisfied for printers which operate by requiring settle-

out to be nearly complete at refiring. These conditions may be

relaxed, they are "worst case” criteria.

We now present these criteria more formally. We begin with the

criteria for periodic pulse inputs, this is the simplest case. The

t3o

results are then extended, by a modification of the map P (written

Simply as P in this Chapter) to cases where the input pulses are non-

Periodic.

We assume that pulses do not occur until the hammer has left the

Paper. All reasonable driving periods will satisfy this condition

Since we assume that the printers will not be operated at periods

 



83

larger that the "buzz" printing speed in which the hammer never

returns to the backstop.

Using (a), (b) and (c) with the map P we can establish and verify

printer performance criteria for the periodic pulse case as follows.

t3o

Let D be the region in Poincare section 2 (equation (2.2.2)) which

represents all initial conditions (x,y) which are physically possible

at the time of the driving pulse application. Also, let 0 denote the

subset of D which contains those initial conditions for refiring which

result in acceptable print quality. Control strategies intended to

improve the printer performance, for example by increasing the

operating speed and/or extending stability ranges, must satisfy the

following conditions in order to meet conditions (a), (b) and (c)

above :

P(D) C 0 (4.1.1)

(this is equivalent to (b) above).

Then since 0 C D and P(D) C 0

P(D) c 0 (4.1.2)

(this satisfies (a) above).

Also, if (x,y) - (i,0) is the printer's rest position, then

(i, 0) e a (4.1.3)

(this satisfies (c) above).
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The set 0 is referred to as aWfor P since (4.1.1)

implies (4.1.2), i.e., (b) implies (a). Hence, since points in D will

be mapped in to 0 in a single iterate, points in 0 will remain in 0

for all iterates. To satisfy (c), the printer rest position must be

in the set 0, i.e., (4.1.3) above; this is usually satisfied since

normal printers operate such that settle-out is nearly complete at

each driving pulse application. These conditions can be checked via

simulation studies of a printer model.

Next, we establish criteria, similar to those above, for non-

periodic inputs. Figure 20 shows a non-periodic pulse sequence as an

example of the type of input to which the printer must respond. The

first two pulses shown are assumed to be separated by the minimum

allowable time lapse between pulses. Any pulses spaced closer than
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this will result in unacceptable print quality. The duration of the

driving and damping pulses are assumed to be equal and are denoted as

d; this equality is not necessary but is chosen here for convenience.

The time lapse between pulses is denoted T' and will have a range from

the minimum value T5 to on. We call the minimum period To (-T5 + 2d).

It will be convenient to think of a single pulse cycle as consisting

of three portions in a particular order: 1) first, the driving pulse

is fired which releases the armature, 2) then the unforced phase of

the motion during which the hammer strikes the ribbon and paper and

settle-out begins and, lastly, (3) the damping pulse is applied which

facilitates settle-out, see Figure 21(a).

For each part of the cycle we can define a map which relates the

final (x,y) values of that part to the (x,y) values at its beginning.

Let PP denote the map

PP : (xo,yo) # (x1,y1) (4.1.4)

which takes the initial condition at the beginning of the cycle, i.e.,

at the start of the driving pulse and maps it to the (x,y) value at

the time at which the pulse ceases, (x1,y1). Similarly, let PNT, be

the map

PNT' : (x1,y1) 4 (x2,y2) (4.1.5)
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governed by the unforced portion of the cycle. PN determines where
T!

the point (x1,y1) will go after a time duration T' , during which the

paper is struck and settle-out begins. We label this end-point

(x2,y,). Note that T' will vary from cycle to cycle. Finally we have

a map PI which relates the initial settle-out point (x2,y5) to the a

state (x3,y,) at which time refiring will occur;

PI : (x2,y2) + (x3,y3). (4.1.6)

Note that (x5,y5) and (x,,y,) are similar states. We cannot,

‘however, use the usual notion of a Poincare map since the sampling of

(x,y) states is irregular in time due to the non-periodic nature of

the input. The composite map, depicted in Figure 21(b), is:

PT - PI ' PNT, ° PP : (x5,y5) 4 (x,,y,). (4.1.7)

This will be quite useful for our analysis. Note that for a given

printer, PT is a one-parameter family of maps since T' may take on any

value T' 2 T5 during operation.

In order to meet the performance criteria given above the

following must hold for PT:

i) PT(x,y) e 0 for all (x,y) e D and all T' 2 T5

(satisfies conditions (a) and (b))
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ii) (i,0) e 0 where (i ,0) is the rest position of the armature

(satisfies (c)).

Note that i) implies PT (x,y) e 0 for all (x,y) e 0 so that (a) is

satisfied by 1) immediately above.

The printer must be able to respond to a wide variety of pulse

timing combinations and disturbances. The smallest period, To, to

satisfy 1) above is the period which determines the maximum printer

speed for reliable operation, i.e.,

To - inf{T : PT(x,y) e 0 for all (x,y) e D and all T'> T5 with

(22,0) 6 m.

It should be noted that one may be able to find some period which is

lower than T5 for which the printer will operate satisfactorily in a

nemesis. manner.

In the next two sections we test our control method and our

performance criteria on the two single degree of freedom printer

models, Hendriks' model and our piecewise linear model. For each we

establish the maximum speed of operation by utilizing the printer

performance criteria for both the periodic and the non-periodic cases.

It is shown that print forces are less varied for the controlled

system than are the uncontrolled system, and the printer performance

criteria are satisfied for the controlled system with smaller minimum.

T. This iumdies that the proposed control strategy indeed results in

an increase in operating speed.
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4.2 Simulations and Results : Periodic Input

In this section we demonstrate the usefulness of the damping

pulse in aiding settle-out for the case when the printer is operated

by a periodic train of pulses. Hendriks [10] and the author (Chapter

3) have shown that chaotic motions of impact print hammers exist over

wide ranges of parameter values for periodic inputs. By using the

iterates of the Poincare map P, i.e. , plotting all points which belong

to

to Poincare section 2 , it has been found that as the forcing period

is increased, the steady-state phase points converge towards to the

to

rest position of the system. The points in 2 remain within a

finite, and decreasingly small region near (51,0) as T is increased.

Since these steady state phase points represent the initial conditions

for refiring, we can tell that the corresponding print forces are also

within some finite range. If the print forces are adequate, then the

phase points must belong to the acceptable print region 0.

Using digital simulations of our model, we have plotted the

impact velocity at the paper position and the maximum paper force

versus forcing period by setting the print hammer in the rest position

and exciting the print hammer by periodic half sine pulses and

periodic full sine pulses respectively. The results are discussed

below.

In the following; (a) denotes the system excited by periodic half

sine pulses and (b) denotes the system excited by periodic full sine

pulses, all started from the rest position. Figures 22 (a) and (b)
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show plots of the paper impact velocity versus forcing period for our

model. It is observed that chaotic motions (represented by steady-

states with wide variations) exist over a wide range of the forcing

periods. After implementation of our control strategy, the impact

velocities are bounded within a smaller variation and converge to the

velocity corresponding to the firing at rest position more quickly.

Figures 23 (a) and (b) show plots of maximum print force versus

forcing period. The dotted line to which the print forces converge

represents the print force due to refiring from the rest position

which is, of course, acceptable. The range of acceptable print forces

is indicated in the figure by dashed lines. Thus from Figures 23 (a)

and (b) it is seen that the system with periodic full sine pulses has

a wider Operation range with acceptable print quality than does the

system with periodic half sine pulses. This shows the advantage of

the proposed control strategy.

In order to investigate the effectiveness of this control

strategy on actual impact printers, we also simulated Hendriks' model

[10], which is more complicated than ours and may more accurately

characterize the dynamics of impact printers. The results are shown

in Figures 24 (a), (b) and 25 (a), (b) which show plots of the paper

impact velocity and the maximum print force versus forcing period

respectively. Similar to Figures 22 (a) and 23 (a), the impact

velocities and maximum print forces in Figures 24 (a) and 25 (a) have

a wide distribution, many of which are unacceptable. However, Figures

24 (b) and 25 (b) show that chaotic motions are less prevalent and

that stable periodic motion with period T or period 2T are common, and

that maximum print forces are generally adequate. This implies that
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the operation frequency can be significantly increased using our

control strategy.

The above indicates that printers operating in a periodic fashion

can be improved. To address the same issue for more realistic, and

quite arbitrary, firing combinations we turn to the proposed printer

performance criteria.

4.3 Simlations and Result: General Firing Codiimtions

In this section we show that , based on the printer performance

criteria, printers with the proposed control can be operated at higher

speeds underW combinations of firing pulses with some minimum

time lapse between pulses.

Actual printers are first fired from the rest position with the

settle-out time sufficient for the armature to return very near to the

rest position, then subsequent refiring results in acceptable print

quality. However, due to a disturbance, such as noise or vibrations

of the supporting structure, the refiring position may be far away

from the rest position and unacceptable print quality occurs. This

also occurs if the printer is refired too quickly. The printer

performance criteria above were established to meet the requirement

that acceptable print quality be achieved under disturbance and firing

combinations .

First, we find the acceptable print region 0. In this

t:o

dissertation, we assumed that the region D in Poincare section 2 ,
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which represents all possible initial conditions provided for

refiring, is between 0.5 and -l.O in velocity and between 0.2 and 0.8

in displacement. The displacement limits say that disturbance may

allow the armature to be away from the rest position but that the

system shall not refire while in contact with paper. The limited

values of velocity that we choose here are based on the phase

portraits obtained by simulations in previous chapter which indicate

reasonable bounds for the velocity. The region D can be easily

enlarged, doing so does not affect our results significantly. Digital

simulations were run by firing a fine grid of initial conditions in D.

This drives the armature to strike the paper the maximum paper

deflection can be measured. The maximum print force for each firing

can be derived from the maximum paper deflection. The acceptable

print region is indicated in Figure 26. It is formed by
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recording the initial conditions which result in acceptable print,

i.e. , the maximum print force is in the assumed range 0.5-0.8. (It is

known that firing the armature from rest always results in a good dot

on the paper. Thus we assume that the acceptable peak print forces

are in a region which has some variation around the maximum print

force which results from firing the armature from rest.) It should be

noted that 0 is independent of the forcing period, T, if T is large

enough so the refiring does not occur before the hammer leaves the

paper.

Next, we search for the minimum period To for which the

corresponding map P satisfies condition (4.1.1). At first we begin

T0

with a large period T which consists of the driving pulse, the

unforced portion T' which is long enough so that settle-out is nearly

complete and the damping pulse. By digital simulations we check to

see if this forcing cycle will take every initial condition in D into

the acceptable region 0 or not. If it does, then we decrease this

forcing period, i.e., decrease the duration of the unforced portion,

T' , and recheck. The above procedure is repeated until one of the

initial conditions is not taken into the acceptable region 0 by the

forcing cycle. We then define the previous forcing cycle, which takes

all initial conditions from D into 0, to be the minimum period To.

Using this simulation-based procedure, we obtain the minimum period To

and can be certain that for all forcing periods T larger than To

condition (4.1.5) will be satisfied. Figure 27 shows that the initial

conditions in D are mapped into 0 with the minimum period T0 which is
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found to be equal to 5.25 for our model. Initial conditions in D are

mapped into 0 with forcing periods larger than To, T - 5.5 is given as

an example in Figure 28. As expected, the longer the forcing period

is, the closer the initial conditions are mapped to rest position. By

using a searching method similar to the one described above it was

determined that the minimum driving period for the uncontrolled system

was To - 6.5. Thus an increase in speed of approximately 20% is

achieved without using feedback.

The unforced portion of a cycle, for the uncontrolled system,

determines if there is sufficient time for the armature to reach the

acceptable region or not. If the forcing period T is decreased, i.e.,

the unforced portion '1" is decreased, the armature will not always

reach the acceptable region within the time T' and the printer

performance is unsatisfactory. However, by introducing the damping

pulse, the system is forced into the acceptable region more rapidly

and the printer performance criteria can be satisfied at higher

operating speeds.



CHAPTERV

DISCUSSION AND CONCIDSIONS

In this dissertation we have shown that a simplified piecewise

linear model of a stored energy impact printer can predict the same

qualitative behavior as that of a more complicated and realistic model

[10]. For actual impact print hammers the armature and the driving

spring act as a cantilever beam with nonlinear boundary conditions.

In Moon and Shaw [52] and Shaw [53] it has been shown that a single

mode model of an elastic beam with one sided amplitude constraint can

provide good overall qualitative information about actual physical

system. This was done by comparing experimental results of the actual

system with theoretical and digital simulation results of the single

mode model which is piecewise linear in nature. Also, if the

stiffness ratio of the driving spring and armature is small, i.e. the

stiffness coefficient of the driving spring is small, the armature

acts nearly as a rigid body. By considering the location of the

center of rotation of the armature, the effects of higher frequency

modes can be eliminated [8,9]. From the above we may conclude that

‘using a single degree-of-freedom piecewise linear model in this

dissertation is acceptable.

If a complicated many degrees-of -freedom model is developed,

simulation studies of such a system are significantly more difficult

since one must explore the responses of the system for several

parameter values over wide ranges of realistic initial conditions. In

100
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nonlinear systems there may exist many possible steady state motions

at a given set of parameter values and the steady state is dependent

on initial conditions. Different initial conditions may lead to

completely different asymptotic behavior. In some regions, a small

disturbance may cause the motion to change dramatically. Using the

simple, one-degree-of-freedom, piecewise linear model we were able to

thoroughly explore the stability regions and predict the qualitative

behavior over a wide range of parameter values.

From the results in this thesis, it is seen that our model

mimics Hendriks' model very well. It also allows us to perform

existence and stability analyses for periodic hammer responses.

Stable and unstable periodic motions, their bifurcation points, and

chaotic motions were found to exist in our model and stability regions

were explored. It was shown that chaotic motions exist over a wide

range of forcing periods T. As the forcing period T is increased, the

strange attractor associated with a chaotic motion becomes smaller.

The chaotic dynamics of the system are discussed in detail.-

In addition, the influence of various parameters on the

performance have been discussed. It has been shown that one can

improve the speed of the impact printer by increasing the damping of

the backstop, possibly by changing material, or by increasing the pre-

load during settle-out phase, possibly by employing a changing

magnetic field. The use of preload to suppress vibrations at low

amplitudes applies to other mechanical systems as well.

We have devised a control strategy based on the fact that the

actual impact printers are operated under various "firing

combinations",i.e., time lapses between input pulses are varied and
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depend on the separation between dots which form the desired

characters. This open-loop control'method helps the system to nearly

completely "settle-out" at the backstop in very short time so that the

subsequent refiring can take place more quickly, thus significantly

increasing the operating speed of current impact printers without much

additional cost. Since actual printers are operated under various

firing combinations, the printer performance criteria are set based on

the requirement that acceptable print be achieved for a class of

firing combinations with some minimum period To. Using the map PT and

digital simulations one can verify these printer performance criteria.

The resonance curves in Figure 9 which were generated from the

analysis may be useful in the design of systems with periodic input.

In periodic impact printing, the most efficient printing mode is

stable “resonant printing" [10] in which the pulse acts while the

hammer is on the rise after the first impact with the backstop. In

such a case the resonance curves are useful. However, they show

”resonant" printing to be impractical for our print model because the

range of stable resonant motion is very small. Also, actual impact

print hammers are excited nonperiodically.

The printer performance criteria indicated that the minimum

driving period for the uncontrolled system was To - 6.5. There exists

a stable region for periodic operation from T - 3.95 to T - 4.0. If

the space between potential dots to be printed is constant, the

driving period may possibly be decreased to a period in the range 3.95

< T < 4.0 as follows. A sequence of consecutive dots will settle into

the resonant printing mode. If one or more dots is then to be
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skipped, the lapse between dots will be nT, with n z 2, which is

larger than 6.5. Thus the 11m dot will be acceptable. However,

transient motion will affect the print quality of subsequent dots.

Further tests on this idea are needed before it is judged to be an

acceptable operating mode.

Limitations for the proposed control may exist due to the

saturation of forces on the armature in the magnetic field, heat

generation, increased energy consumption, more impacts with backstop

causing increased wear, and fatigue life. Further study is need

regarding these issues.

The control strategy discussed in this thesis is quite specific.

It is chosen because of its simplicity and effectiveness. It may be

tested on more complicated models and, preferably, on actual impact

printers.

The printer performance criteria, however, are quite general and

are applicable to systems with more degrees of freedom and complexity,

including those with feedback controllers. The sets D and 0 and the

various maps can be extended in a straightforward manner to higher

dimensions. In fact, such criteria may be useful for other systems

which must perform satisfactorily when subjected to irregularly timed

pulses.

Impacting piecewise linear models, for example [23-35] , have many

applications in mechanical systems. In this dissertation we studied

a piecewise linear model with nonharmonic periodic and nonperiodic

excitation with a goal of providing the overall qualitative behavior

of impact print hammers of the stored energy type. We hope this study

has provided some contribution to the understanding of the dynamic
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response of impact print hammers and to the improvement of impact

printer performance. Also, the results may be applicable to other

systems subjected to pulse inputs. In particular, the area of random

pulse inputs could be treated using ideas similar to those of Chapter

4.
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