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ABSTRACT
A METHOD OF GENERATING INTEGRAL REPRESENTATIONS

by Walter William Turner

Imposing the condition that the Schrodinger equation
V2U + ¢U = 0 be simultaneously separable in at least two coordinate
systems sharing a coordinate, one obtains functional equations whose
solution completely determines ¢. The special functions obtained by
the separated ordinary operators can be related through integral
relations by using a well-known integral theorem. With this theorem
one can predict the value of the integral involving special functions,
and in this way some new integral representations are discovered,
which contain as special cases some of the existing integral repre-
sentations. Thus, a unified theory of these integral representations

is obtained.
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INTRODUCTION

This represents an attempt to initiate a unifying concept for
generating many of the existing integral representations, as well as
generating some new integral representations for special functions of
Mathematical Physics. Three main ideas are involved; (i) simultaneous
separability of linear partial differential equations, (1i) solutions
of the Schrdodinger equation,

(1) V2U + ¢ (ul, u,, u5) U=0

and (1ii) avtheorem concerning a definite integral representing the
solution of a linear differential equation of two variables
(Meixner-7).

In order that (1) be separable ¢(ul, Uy, u3)‘has a definite
form as exhibited in Table 1, depending on the coordinate system under
consideration. Equation (1) can then be solved by the method of
separation of variables in various coordinate systems for various
forms of the function ¢.

It is well known that the scalar Helmholtz equation obtained
by letting ¢ = k2 is separable in all eleven orﬁhcgonal coordinate
systems involving ellipsoidal surfaces and their degeneracies,.ﬁhich
are listed in Table 1. The case ¢ = k2 is discussed quite thoroughly
in the literature and the use of the integral theorem is summarized
by Meixner (Meixner-T7).

In this thesis we ask what is the most general form of ¢ in
order that (1) be separable in two coordinate systems, and this is
called simultaneous separability. This yields functional equations

for each pair considered and these equations determine the form of ¢.



We will impose the restriction that the pair of coordinate
systems in which (1) is to be simultaneously separable share a
coordinate. In that case equation (l) can be reduced in each of
the two coordinate systems to a partial differential equation involv-
ing only two variables, by separating out the common variable.

The form of the integral theorem we wish to apply in this
thesis requires that the above restriction be imposed (see page 27).

When each of the reduced partial differential equations 1is
solved by the separation of variables we are led to two special
functions. The product of either pair will serve as the kernel
of an integral. By using the theorem and integrating over suitable
paths, integrals relating the special functions in the other pair are
obtained. In such a way it is possible to obtain integral represen-
tations.

In 1958 A. Leitner and J. Meixner investigated cylindrical,
spherical, and prolate spheroidal coordinates and obtained new inte-
gral representations (Leitner-l4). We will investigate other pairs of
systems of coordinates to obtain new integral representations, which
appear in the thesis as (42) page 33, (49) page 43 and (50) page 46.
Special cases of these integral representations are also derived and
appear as (43) page 34 and (51) page 47. We believe (L42), (L49), and

(50) are new integral representations.



II. SIMULTANEOUS SEPARABILITY

The original idea behind this thesis was to investigate all
possible pairs of coordinates in Table 1 which share a common variable
but we soon realized this was too ambitious a project to undertake, and
furthermore such a project would be of little practical advantage. We
could not obtain solutions for a few of the funcfional equations
encountered. Moreover consideration of all possible pairs of coordi-
nates led to special functions that were not of the hypergeometric
class, such as Mathieu functions, Lame' polynomials, Spheroidal wave
functions and other functions whose theory is complex. We, theref§re,
limited our investigations to those pairs of coordinates which lead
to classes of most interest, namely the h&fergeometric class of
special functions, and their conflueﬁces.

The new integral representations we found contained as special
cases many of the existing integral representations and in this way
they afe an attempt to initiate a unifying concept into the broad area
of integral relations.

Our first concern is that of simultaneous separability so we
begin by considering pairs of coordinates in Table 1 which share a
common variable. The systems all having z in common are rectangular,
circular cylindrical, parabolic cylindrical, and elliptic cylindrical.
Systems having ¢ as a common coordinate are ciréular cylindrical,
sphérical, paraboloidal, prolate spheroidal, and oblate spheroidal.

Only two systems have the variable r in common, namely, spherical and
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sphero-conal. These can be considered pairwise in thirteen ways, but as
we previously noﬁed, not all of these combinaéions can be separated
simultaneously.

We will consider, as an example, the simultaneous separability of
rectangular and cylindrical coordinates in detail and merely list the
results of other pairs. Referring to Table 1 we see the forms of ¢ for
rectangular and cylindrical coordinates are respectively:

Ay (x) + Ay(y) + Aq(2)

B,(#)
and B, (p) + —iz— + By(2)

Since z is the common variable we have A3(z) = Bj(z), but other-

wise arbitrary, and we must solve the functional equation
32(
(2) Bl(p) +'——;§- = Al(x) + A2(Y)

We proceed by differentiating (2) with respect to x obtaining

e e . LI T A R
dx dp adx dp 2

Now since p2 =X+ y2 and ¢ = tan-l—%-it is obvious that
¥ _x Jp _y A -y 4 8 x
ax p ’ Ay p ’ ax p2 dy p2

We now use these relations to obtain

dAl . X dBl 4 —2x B -YX_ dBE
dx p dp ph 2 ph aé



Now we take the derivative with respect to y to obtain

2
o,.xg_(i)ﬂ BLx B E-QXE(%;)EEB 2x
d dy d 2 a -
plp/ady dp P ap Y dp 0 dy 2 ;3?
dB dB a°B
_l__2_y<_i_(iﬂ)ép__2_xh__2ﬁ
ph de dp 5 dy d¢ ge2
dB a°B 2 4B dB 2
o 1, xy 1.8 _ 2x 2 _1 2
© —’%dp + 3 —+ ¢ B, ® " Ta %
P p- dp p - P o]
a%B dB a°B dB
o=X|_L_1 1| | 8B - 2] [, —2(3_
=72 2 p dp 2 2 aé L
p Ldp p dae P

Now we separate the variables to obtain

2
(3) Dh daBl - 3 dBl = d Be + 6 00820- 5 de - 8 B
dpa dp d.a cos¢ sin¢ ae 2

Now (3) ylelds two ordinary differential equations which are

2
d Bl 1 dBl A
2 ap b
dp (o] P 0
dzB 2 dB
2 ,6cos"® -3 2 _ 8B =A
d02 cos® sin¢d a¢ o> =

i

The solutions to these equations are:

22 2 A 1
B, (p) = -a%p" + X" +5 5
p
-A %-hﬁ %—hg
and B2 (¢) = |t > +

9B ae
d¢ Qay
B, 4B
ae o d02



This determines the particular form that (2) must assume in order that
the Schrdédinger equation be separable in both reétangular and cylindrical

coordinates simultaneously.

1 2 1 2
( Bl(p) + B220) = k2 - 15.2¢:)2 + b :0 + 4 '21‘7
o) cos ¢ sin” ¢
s(1,2) < .
1 2 1
- kg - L

L

A (x) + A(y) = K2 - a2(x + ¥+ 4 5 *—

\ x y

The problem of solving the functional equation in other pairs of coordi-
nate systems is similar to the one Jjust illustrated and the detailed
calculations will not be given. The results will be found in Table 2.

To denote various coordinate systems we shall use the numbers as
they appear in the first column of Table 1. Whenever the same greek
letters are used for two distinct pairs of coordinates, for reasons of
tradition, we shall subscript the variables according to the numbering
in Table 1. For example (g7, N z) are the elliptic cylindrical
coordinates.

The solution to the problem of simultaneous separability of any
given pair of coordinate systems is denoted S(i,j), where i, j =1, 2,...
10. So since rectangular coordinates in Table 1 correspond fé the
number 1 and cylindrical to the number 2, we denote the solution of
the problem of simultaneous separability in rectangular and cylindrical
coordinates by S(1,2). Likewise S(2,6) refers to the solution of the
problem of simultaneous separability of cylindrical and peraboloidal
coordinates and so forth.

Furthermore we found that the same function of ¢ arose as the

solution to the problem of simultaneous separability for pairs of



coordinates more than once. In fact we found that S(1,2), S(1,7) and
S(2,7) bave the same solution, as do §(2,3), 5(2,8) ana 5(3,8). We
denoted these triplets by S(1,2,7) and 8(2,3,8) respectively in Table 2.
Table 2 has been so arranged as to call attention to the fact
that @ has the same form vhen the table is read horizontally. This
symmetry differs from the one discussed above, since the previous symmetry
deals with the same function of space vhereas this new symmetry involved
equality of form and the variables are different functions of space. This
equality of form can easily be explained by geometrical considerations.
Consider (2,3,8): when the azimuth ¢ is held fixed in each of
these systems, we obtain three two dimensional coordinate graphs which
are illustrated in Figure 1. We obtain the same graphs when we hold 2z
fixed in (1,2,7).

(a) (v) (c)

Figure 1. Similarities between (2,3,8) and (1,2,7)
Azimuth ¢ held constant in (2,3,8) and z held constant
in (1,2,7)
(a) Picture of lines of constant p,z (or x and y)
(b) Picture of lines of constant 6, r (or ¢, p).

(¢) Picture of lines of constant kg, Tg (or ts n7)
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10

Figure.2 indicates vhy S(1,4) and 8(2,6) likewise yleld the same
functional form for § even though the variables are not the same functions
of space. Figure 3 indicates why S(2,4) and 5(3,6) also yield the same
functional form for ¢. Also notice that in Figure 3 © corresponds to 90o -9,

We have not been able to golve the functional equations for the

coordinate pairs (6,8) and (4,7) but they too have geometrical similarities.

Plane of constant z Plane of constant ¢

Figure 2. Similarities Between (1,4) ana (2,6)

Z

n)y=1
Y
Eg=l
x 0-2
Plane of constant 2z Plane of constant ¢

Figure 3. Similarities Between (2,4) and (3,6)



III. SOLUTIONS OF THE SCHRODINGER EQUATION

In this section we will solve the various forms of the
Schrodinger equation, which are obtained when we use the results of
the various simultaneous separabilities. Usually we will indicate

two or more solutions of the ordinary differential equatiohs that

occur after we assume a separated solution of the partial differen-

tial equation. Finally we will summarize the results of this

section in Tables 3 through 5.

A. 5(1,2)

The simultaneous separability form of this equation is:

1 2 1

2 2 2 T +-uf
ag+a§+a§+ K2 - a2(:Pry?) + 2‘0 - 7t AU
ox- dy- Oz x y

We assume a solution of the form U = kl(x)ka(y) el*% to obtain

2 1 2

a°k - T-U
o
21 + k2 - u2 - e, - a2x2 + L > kl =0 ,
dx x
d2 1 _ h12
22 .4
and +lec -ay +—F— |k, =0 .
2 o) 2 2
o dy Yy

These two equations can be reduced to the form of Whittaker's

differential equation. Thus we can find kl(x) and k2(y) to be:

2 2
() kl(x) a2t W (ax ) orl-M v, (ax2), v =X"H-C

Ve e 0 Ny

c
(5) x (y) \/_. 7 < (ay ) o_:\'/-::-Mn‘r (aya) Y g_ﬁg—
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In cylindrical coordinates the same equation is:

1 2 1 2
13 , 30, .1 U % j2 22 B Y% F-4
= (p?) += —— 4+ —= +|k"-a"p~ + + + A (z)|U=0
p 9 P pa 32 32 p2cos2¢ p281n2° 3

We assume a solution of the form U = gl(p)ga(ﬂeiuz to obtain

2
dg g c
1,1 4°1 2 2 22 1
+ = —+1k - - -ap =-—F g, = 0
2 o} 2 1 ’
dp p dp o
dag L. haa L.y
2 L L
and ) + cl+ 3 + 2 32=0 .
a4 cos ¢ sin™¢

The first of these equations can be reduced to the form of

Whittaker's differential equation, and has as a solution

(o]
1 2 1 2 1
(6) &,(p) =5 Ye (ap®) or o My e (a0%), € = 5

The second equation can be transformed to a generalized hyper-

geometric function (Leitner and Meixner - 5). The solution is

i 1
(7) e, (¢) = (1 - cos2e) g ~2% 20737 (cos 0) .

s(2,4)
In parabolic cylinder coordinates the equation is:
2 2
1 (2% |, le, 2a , b g5 a + ,(2)|u=0

+ = +
§2+T]2 ag2 an2 322 §2"_1‘2 g4'2‘,“2 §2+‘I]2 §2,‘]2

iuz

We assume a solution of the form U = kl(;) k, (n) e to obtain

+]lk +2a-co-p.2§2+'d—'1k =0 ,

at §2 1
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d2k

2% % " p2n2 ¥
an n

d +b
2 k2 =0 .

and

Both of these differential equations can be reduced to the form

of Whittaker's differential equations,

2
0 K t2a-cy  V1thb-ld

hu ’ - h ’

.o

(8) 1, (8) 37 Vo, (467) om, My o (")

1 2 1 ¢ 1-bb-14
(9) ) 253, (o) ordem, () v =g, @ Na-be-ld

In cylindrical coordinates the Schrddinger equation is:

1 9 Uy , 1 aau 32U a _ b sin® a
o 3 (P, * 2t ot s o, 23, t Bsl2)|U=0
e Cp 028 P p cos ® pTcos ¢
We assume a solution of the form U = gl(o)ge(0)eiuz to obtain
2
dg dg
1.1 1 2 2,8 €
2 * p dp MR ot p P2 g1 0,
dp
d2g
+
and 22 + €2 + b sin; d gg =0
de cos ¢
The first of these can be reduced to the form of Whittager's
differential equations:
h

(10) g, (o) =V—_— ", €(’1:‘\/ X p) orvT M . (2Y u=k" 0), A=y,
’
The second equation can be transformed to a generalized hyper-
geometric function(Leitner-k) :
2 i"' L
(11) g,(®) = (1-sin®0) 1) 1 2 (sin ¢)



1k

This function can also be reduced to the Gauss hypergeometric
equation,

1 2/t ¢
o [—2—- €-0-T,5+€-0- 1;1-2T; cos (I- 5)1
(12) g(0) = N -

)

cos ° ¢ (1+sin ¢) © (1-sin ¢) ©

1 1 2/ ¢
2F1[5-6+1:-c;2+e+1’- o; 1 + 21; cos ()4_-5)]
or J
L
s 2o (1+sin 6)"F (1-sin 6)°
c. s(3,6)

In paraboloidal coordinates the equation is:

2.2 d + c.(9¢)
wnere F(,1,9) =k2+23 7t 22 2 2 *’ﬁ}_
£+ g n (&4 EM

R .
We assume & solution of the form U = kl(g)kz(n) e™® +5 obtain

2
d 'k dk 2
1.1 1 2,2 ,d-b-yu

+ == +128-c¢c tkE t—F—— k, =0 ,
d§2 £ dt o g2 1

d2k dk 2

2 1 2 22 d+b-u _

and dq2 + 1 an + s + kn + ———:FS————— k2 =0

Both of these equations can be reduced to the form of Whittaker's

differential equation,

(c2-2a)i Wm2+b-d

(13) x, (&) = % (ki§ ) or?M (kig ); v=—p— o=t
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1 2, 1 2, VpPp-a _ "%t
(14) kg(’l) - n“,, o (kin%) or M (1;111 ); Tt e

For spherical coordinates the SchrSdinger equation is:

19 ,2 1 1 Pt
r Or (r" S20)+ 2311‘19 & (sin® 39) + 1 29 392 —5 + C(r,0,¢) U=0,

P cos® + d + C,‘(O)

where C(r,0,¢) = %4- kK° + 2 sinZe

We assume a solution of the form U = gl(r)ga(e)e to obtain

dg
2_1. 1 22 _
'dr2 +2rdr+[ar+kr cl]glso,

2
d 4 2
and 22 +cose g2’+ c +d—g + b cos ©

’ o L]
e gin @ de 1 1n26 &

The first of these equations can be reduced fo the form of
Whittaker's differential equation:

111

2

(15) g)(x) =5 W,,, . (2Kir) orTH  _ (2kir), ¢ =

v+7,€

The second equation can be reduced to a generalized hypergeometric

equation (Leitner-9):

~ 1
21,29 -1
(16) gy0) = F ; 2 (cos 2
) € --2- .

D. s(1,4)

The form that @ assumes in the case S(1,4) 1s quite compli-
cated, because the seﬁnted ordinary equitiona cannot be reduced
to recognized special functions. Certain sp?’cial cases can be
readily solved and so this section is subdivided into three special

cases.
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Al(x) + A2(y) = k? + 2dy + 25-- hreya - o2
X
S(l)h) ¢=
D(&) + Dy(n) = KB(ePr i) ra(e n?)eln v Dnn oB(e
3 n

Case (1) d=0 T=0 Db =-%-- 02

In this case for rectangular coordinates the Schr8dinger

equation becomes:
1_ 2
% . %y . U 2,4°9 A5(z) |U=0

+ | k°+
3x° aye 322 X

We assume a solution of the form U = kl(x)kg(y)eiuz to obtain

2 . ' 1 2
dk -0

1 2 2 2 L

2+ k-u -7+ 2 kl=o,

dx b 4

d2k2 5
and ——+ 7k, =0 .

2 2
dy

The first equation can be reduced to the form of Bessel's

differential equation,
1

1N k) =L ze VP 0, e =ViZZ
where Zo is any cylinder function.
The second equation is easily solved.
(18) ke(y) = sinyy or cosyy
For parabolic cylinder coordinates we have:

1 2
> -0
1 S, P )+ 3%y R A, 12) ‘A

( (
2,2 32 a2 a2 22 2 q 3

z)|U =0

v

n%)
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We assume a solution of the form U = Bl(ﬁ)gz(ﬂ)eiuz to obtain
2 1l 2

dg -0
21 + Cl + (k2"u2) §2 + h 2 gl =0 )
dg E
2 1l 2
d '8, 2 L°
and —3~ + | -c; + (k -u%) n *t—5 g, =0 .
dn n

Both of these equations can be reduced to Whittaker's differential

equation,

1 1 VZ.Z ..Q
(19) &, (¢) =V——§—W g o (at?) ozvng g(g& 2); a = Vi, €=l

(20) gy(n) =2W__ o (en%) or =M __ g (and).

Vo =<3 Vo e2

b=1- 1602

"
o

Case (2) da =0 ¢

In rectangular coordinates the Schrddinger equation becomes:

2
aau+aau+aau+ @4 Lol6e 22

ax> ay 32° x

x + A5(z) U=0

We assume a solution of the form U = kl(x)ka,(y)ei“'z to obtain

2
a“k 2
1 2 2.2 .22, 1-16
+ K -4 =-7-7 1-160 |k, =0,
2 2 1
dx X
2
d%k
and——=+ | 7° - koy? | x_ =0
2 2
dy

The first equation can be reduced to Whittaker's differential

equation
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(21) k,(x) = \ﬁEiE?"(rx ) or M Vi6R_5 (%),
.\/‘ -v-ie, .\/- ie,_e_ |

2
Bk, V_7_2
T 27 T L4t

€ = The second equation can be reduced to the

parabolic cylinder equation

(22) k,(y) =p | (-2Vity) orD
vV - E? vV - §-

(EW/I; y).

The differential equation for kz(y) can also be reduced to the
confluent’ hypergeometric equation of Kummer, and another choice
for k2(y) would be

_ iTy ; -iTy2 =V, 3.3.5¢
(23) ka(y) = ( pipieity ) or e y lFl( 2t 321ty ).

For parabolic cylinder coordinates we have:

2,,6,..6
1 ~ 3% 32‘2{) + aag K+ 1;163 (-1-2 L 'Lég—;l)J'AB(z) v=0
22 A2 d® 2 SR I B

We assume a solution U = gl(g)gz('q)e:"“z to obtain

2

d‘g) | 2
+ (k2'u2) §2 _ 12§6 + 1 160 g. = 0 ,

2 2 1

13 : 3
d232 o 2, 2 26 . 1-160°

and ——+ | (k5-u%) 1% - 150 + 50— g =0 .
an ' 1

Both of these equations can be reduced to Whittaker's differential

equation,
2 2

(21) gy (8) =& 2 W, (R ore M (TN
2 2

(25) gy(n) = % W, (3 1) orn @ Me o C5 1)
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Case (3) ¢, =0 b=;%

1

In rectangular coordinates the Schrddinger equation is:

2
v, , P, [, 2dy - 3 - 4BR - B2

+ A (z) U=0
32 ay2 Y e

ipz

We assume a solution of the form U = kl(x)kg(y)e to obtain

2

d
5, 22222 3

k. =

o

s
ax> hxe 1
2
d 'k
and 2 + 72 + 2dy - h'reya k, =0 .
dya 2

The first equation can be reduced to Whittaker's differential

equation
2 k2_'2
(26) k (x) ?\/:_WU-V ]6 (‘rx ) oz‘\/: o-v’ (tx )‘, O’TrL’
» .

v s-%;-, d2 = 1613 2. The second equation can be reduced to the

parabolic cylinder equation

(27) ky(y) = D L (@Vry - 2¢) or D, (-2\fay + 2¢).

+V-€ -5 . V=€ -é-

In parabolic cylinder coordinates the Schrodinger equation is:
1 520 32U 52U 3 1'2(§6+'q6)

2
+lk +d(§ -1 ) + A (Z) U=0
§24m2 ag anz "2 22 (22 3

We assume a solution of the form U = gl(g) ge(n) el"? to obtain

2

dg,
—L 0B v at - A - )
at g
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2

d'g
2 2,2 L
and 22+ (x"-u“)n° - an -12116-% g =0 .
an ln

Both of these equations can be reduced to parabolic cylinder

equations,

(28) g, (¢) ‘\/_ D2 (VT &+ e);

(29) e,(n) = \/- Dpe2 (VT n+e).
E. S(2,6)

This case is somewhat similar to the S(l,h) case sO we will

consider two cases, which we will now indicate.

B(p)+35(z) K2 + 2dz + 2- 1222 -12p2
p
(2,6 4 - ()4, ()
F,(8)+F,(n 2
| ; - k2+d(;2-n2)+ 2b2 . 12(52_1]2) ; 12g2n2
3 +n En

Case (1) d=0 T=0

For cylindrical coordinates the Schrddinger equation is:
R :
J.a(u)lazu du, B2()U=O
p O

- EN
P 3o’ 22” az pe pa

i¢
We assume a solution of the form U = kl(p)kz(z)e1“ to obtain

2
Lol L1, gP-Pe¥ | -0,
'd02 p dp ‘ p2 1




21

The first of these can be reduced to the form of Bessel's differential

equation,

(30) X,(p) =2 (vo) , o= Vo, ve Ve

For the second equation we have
(31) k2(z) = sin ¥z or cos 7z.

For paraboloidal coordinates the Schr8dinger equation is:
b+B,(?)
1 (13 3,13 . |, d%
= (g¢—)+= (n + -3 + k y —2 U=0
gﬁmﬁ £ O 3 v O & 342 1202
‘We assume a solution of the form U = gl(g)ge(ﬂ)ejw to obtain
2

dg dg 2
1.1 %6 2.2 Db-u
—_— e —— c, + kg +—m— g =0,
a2 & GE 1 ;2 1
dega 1 98 22  b-p?
st YTtk T (8= 0

Both of these equations can be reduced to the form of Whittaker's

differential equation,

(32) g (8) =¥ _ (k%) or =M (ixt
€

’

Nja

(33) g,(n) -—w (1xn
] €2

Case (2) d =0 c, =0

In cylindrical coordinates the Schr8dinger equation is:
B,(¢)
13 oy ,1 % S e p 22 22, 0
P ap

+ U=0
302 3° 2 §

P P
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¢
We assume a solution of the form U = kl(p) ke(z) e to obtain

2
dk dk 2
el R AR S el PAEL
do o}
d2k2 2
and + - hr z ko =0 .
2 2
dz

The first of these equations can be reduced to the form of

Whittaker's differential equation,

2 2
1
(34) k,(p) =-5- Pe-v,0 (162) or+ o Moev, o (169), e—g—-, v ='f-,
o= Vb-p . The second equation can be reduced to the form of

the parabolic cylinder equation,

(35) k2(2) =D (2 \/?-z) orD (-2'VF? z)

V-E V=

2

In paraboloidal coordinates the Schrodinger equation is:

1 el ou 1 32U
+ o (8 )+ (n)+——— + F(g,m,%) U= 0
ERE T Ot 202 202
2 B,(¢)
vhere F(E,n,9) = K + 2b2 - P(8%n?) BB 4 S 5
£ £n

¢
We assume & solution of the form U = gl(g)gz(d')ei"1 to obtain

2
dg dg 2
1.1 1 b-p 2,2 2,6
+ 5 + +kE -TE g, =0,
2 1
d§2 g adt £
deg dg 2
and 2,1 1, ({b-p k2 2 12n6 g o
dn2 n dan TI2 2
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Both of these equations can be reduced to the form of Whittaker's

differential equation,

(36) g (8) = 25w &M or ow _ Geh
g €y 3 N

n €,h Tl €’I



TABLE 3

@ ko=r=W, ) or = M, ¢(ax)
(5) hz(Y) = V_I'y'- w“;t (aYz) oy v‘-y—_ M x,,t (Ia\/z)
3@4 |
\
(&) 9(P=5 W\M,e @) or P M VY€ (@ P‘)

V) G (-costal® I )

, O h.(s)a,—{rW«,t(ps‘) or \;T M«,t(p'i‘)
|
) k== W), ¢ () o T My, (ur)
- z -
Sl 10 9(p= 7= Wy.e (i o) 5 M, ¢ 2vEwp)
) 9,¢#= (|-smzq>)v" 62?_2:-&(sm¢)

\ (2) g = cose (i) (-sm@)” , F (%-€-6-2 Jere-s-1; 1-2%; cod (%-%))

13 k=5 W,  (kis) or 4 M, g (kis)
(1) k=T W o (ki) My teit)
SE® \ |
19) 9,0=- W, ﬂ,)e(zk'ur) - M, +v,e(7"‘“')
~ T ,26-%2

‘e 0= @, ), (eosd)

2L






TABLE 4

S1,4)
(07 k)= x% Z s (Va7 x)
caset) | 18 k)= sinvy or cos¥y
d ==0¢ ‘ |
b=k-¢!| (o) 38)~37 W £ (a8) o TeMeg@¥)
L : L :
\ (20 QW= WE& @n’) iy M_q% ()

@) RO= W Eem ) or %—;Mv,nﬂ'_\s:'.a (x %)

V-6 =

(@2) Rob)= Dy (-2TT Y) or D,_y, (24FTY)

case(2) oyt Lyt ) s e
d==0( (23 kW)= em.f'.'('%’**z;%;?i‘cv‘) or €YY F(3ed33;0y)
b= |-\66?

(29 g5)= 3 We) (Ee) or 3% N\E’s("%.f*)

: %y
\as) g E W () or UM G

‘ 4 2 | 4 2
(26) k=7 WM)L%E (1A or T N\s_v;g (xx)

case 3| @V kW)= Dv,g_yt(i'ﬁY‘Z&) or D,_guy, C2EY+2€)
¢=0

b% | @8) (8= = Dy, o (B4 ov 7= Dy ol s -e)

L(2‘3) gz('(\=_\/—'-n=D _a T +e) V—%‘Ds_et(’\/?'l- )

25



TABLE 5

d(2,6)
/ 0 k(p) = Zc (vp)
case“){ (3) k(2= sinyz or sYZ
T=d=0 ‘ o ‘
G2) 9,(3)= 3 WE)E_(U?S ) ov 3 N\e)%(ikiz)
\

\ , |
6 G0 W, liRp) o —Q—ME& k)

H

;60 R =,L—W25_v)°.(%p‘) ov LP N\ze_v)s(”cpz)

@ k@=0,_, (2472) or D, 2V 2)

case(?)
d=G=0

(30) a,(s)=—;vwsj%("%s‘) or —%TN\E)%('%S*)

| \
G g l= Ti—we)%(l;. ) S M, 5 (%)

26






IV. A METHOD OF GENERATING INTEGRAL REPRESENTATIONS

In this section we shall introduce the theorem which enables
us to generate integral representations between the various special
functions, appearing in Tables 3 and 4. First we will introduce
appropriate notation. Let Xy Xoy x3 represent mutually orthcgonal
coordinates (any system appearing in Table 1). The Schrodinger equa-
tion, V2U +@U = 0, for the various forms of ¢ in Tablev2, can be
solved by the method of separation of variables. Thus
U(x,, Xo) x3) =k (xl) ky (x2) ks (x3). The associated ordinary
operators will all be selfadjoint, e.g. of the form

o) )
Li '-gxi pi (xi) -&i + qi (xi) i = l} 2) 3'

When we write U(xl, Xp) x3) = K(x,, x2) ks (x5) we obtain a partial
differential equation of two variables of the form
(38) F(x)) Ly K(x), x5) = Fplx;) Ly K(x;, x,)
The theorem is:
Let
(a) C be a path in the X, plane with endpoints a, b.
(b) B be & domain in the x, plane.
(e) fé(x2) be a separated solution of L2f2(x2) = 0.
(a) K(xrx2) be a regular analytic solution of (38) for

X, € B and x2 on C.

1
G9) Then (xy) = kG, 1) 7,7 M) g,

27



28

is uniformly convergent for xl € B and t(xl) will be a solution of

the differential equation Llfl(xl) = O provided the bilinear con-

comitant vanishés, that is to say provided

3 K(x, x,) 32, (x)|]°

Rl | T Tolxe) - KOxy ®) =) =0
a

This theorem is the very essence of the idea of generating
many integral representations. We begin with a linear second order
partial differential equation of three variables which can be solved
by the method of separation of variables. Furthermore each of the
separated ordinary equations are of the self adjoint form,

L, (xi) =0 fori=1,2, 3. Then we eliminate the variable X3 by
assuming a solution of the form u = fl(xl) fé(xz) fs(x3) so that the
remaining equation has the form of (38).

Next we introduce a second coordinate system sharing one coordi-
nate variable, say X3s with the first. Let the other two variables be
denoted xi xé. Suppose that the Schrddinger equation is simultan-
eously separable in both systems. Then there is another partial
differential equation of a form equivalent to (38) but involving

1) !
X and X5, ©.8-
L} 1] 1 1] 1 ) - L} L} 1 1 L} 1
(ko) Fj(xy) Ly K'(x), x3) = Fy (x}) Lp K'(xg, x})
a 1 1 a 1 )
vwhere L! = (?,Ti) p; (x}) (a;i) +qi(x}), 1 =1, 2.

Now K'(xi xé) fj(xé) is also a solution of the original Schrddinger

equation.
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We can now choose for our kernel K(xl, x2) in (39) a solution
of (40). Then if we integrate the product of the kernel and
f2(x2)/F2(x2) along a path for which the bilinear concomitant vanishes
we are assured that this integral will satisfy Llfl(xl) = 0. Of course
the beauty of the method now becomes clear, for we know fl(xl) and we
need only determine what linear combination of solutions of Llfl(xl) =0
will actually represent the integral.

The power of this method lies in the fact that we can choose
various kernels subject to paths for which the bilinear concomitant
vanishes. Furthermore, we can interchange roles of fl(xi), f2(x2)
and even choose our kernel from the first coordinate system. This
then should exhibit the power of the method and subsequent sections

will contain a few integral representations worked in detail.



V. INTEGRAL REPRESENTATION USING S(1,2)

We are now ready to consider the results of previous section
for the case S(1,2) and generate a new integral representation. By
examining Section III we have:

1
G 2 2 22 L4

Fl(x)Ll == 3 + k -y -ax + B Fl(x) =1 pl(x) =1
dx x
-a° 22 %' b
dy Yy

vge ld o dy . .2 2 22 o) oL ey

Fl(p)Ll = 4o (p dp) + k-utap Fl(p) o Pl(p) o}
42 %-hg %«hg (%)

FI(®)L) == - - Fi(®) =1 pi(?) =1

2 2 d°2 c082¢ sin2° 2 2

The separated ordinary differential equations corresponding to these
operators are also solved in section III. We assumed that

U = kl(x)kg(y)emz or U = gl(p)ge(‘b)ei”'Z so we simply 1list the solutions
we will use in this section, which are determined by our choice of path
and the vanishing of the bilinear concomitant. Our kernel will be the
product of (4) and (5)

K(x,y) = (ax?) v _ (ay®) .

5 e "5
Also we choose (6) for
1 2
f2(x2) = ) WV+7,€ (ap ) .
Now by the theorem in section IV and especially equation (39) we have

the integral
2 2 2
t(¢) = wV)U ax") Wy,T(ay ) Wv+7’€(ap )

J T T T

p dp

30
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and we realize this integral represents a solution of Fé(‘)Lése(‘) = 0.
That is to say it is one or possibly a linear combination of two of
Yy T¢-27¢,26-%
the various functions denoted by (|-cosl¢~) ¢zs-*z_ (co_g Q)
We must still choose a path C. When we take it along the real axis

from O to oo the bilinear concomitant vanishes, e.g.

2
3 v (ap cos ¢) 5 wyw e(a.p )
° {35 (ap sin 0) SALS LI
o %.. % P
psin<¢ cos
co
2 2 2 2 2
wv’c(ap cos“¢) W7'T(ap 8in“¢) 3 W e(ap ) o
1 1 ap )
psin2¢ cos¢ 0

subject to the condition |Re 0| + |Re | + |Re € <;‘ (Whittaker-8).

Our integral takes the form

e 2 2
W, o(ax%) <(a¥%) 5
t(¢) = 2 2 W (ap”) adp
_ v+y,€
o Vx Vv
o0
W (a02c032¢) W (ap281n2¢)
£(0) = v,0 2,7 W (ac®) dp
1 _%_ v+y,€
0 o cos2¢ sin<é

This integral converges provided |Re o + |Re 7| + [Re €] < %
' ~
To determine which functions ¢ we actually have express
WV o(apzcosgtb) in terms of confluent hypergeometric functions
2

(Magnus-6) and choose & = 1.



32

00
_ cosu*%d* [26) f |F‘[r-w’é; \+26; P‘oog‘tt] Wv,t(Pls‘“z‘P) wa el d P
S\Vlyz ® Ryz 'G'v) A eP‘ cfs’!b p‘ZO‘
o0
+ cos’ 2% [(26) f |E[ -6-v+¥;1-26; PC"“’] W’T(PS'M) W’*' €

SNt ¢ |—Ui+6-v) e&zgﬁg_ st dP

let z = p2 and examine this expression for small cos .

26+% = v
c0s®'e [0 252 z
t(@) sm"24; I—(li-g.\,) E sz.( )W\er( ) olZ -+

%-2¢ <0
s’ d (@) 1 [ %
S\Vl&¢ r(‘ii»g.v) ?[ Wrt(z) W\H! £(Z) dz

These integrals can be evaluated (Bateman-1, Vol. 2, Page Lh10 (42)).

%y [c2e) (r%ut«-c)[(—%ems) [(-z0) rEALrs hoertes) e ¥ ‘]

4 ~°°5 F
RO n*¢ [Oe-e)\ [(3-0) [@v-y+2+6) 3F?. 2T, 2-V-F4Te S )

r@z+e-"t+c)|— y-ere e (22) [%+a—’t+s,%-e-‘c+s, Y- ]
[(% 'X"f)r(z-u-i-‘ta»s) 32| ‘-2t 2-v-¥-T 46 ,'

+ Cos’é-lc¢ [ (26) [(4+err-6) [Z%_—e +’t—e)ktzt) [%f&‘t-s,%-eft-s,&-lrt ]
25m%24 [(ered)\ [(4-3-1) [(2-v-gat-6) 22l W2t 2-v-g42-6

[(Gre-v-6) [(Greve) @) [rrer-sketeh¥t ]
[ (%842 (-v-7-r-6) 3\3. \-2%  2-v-¥t-6 ',‘
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2, V& 2%, 25°%
When we examine the various forms of (|- cos¢) ¢z£-”z (cos o)
for small cos ¢ and compare them with the previous expression for

£(#) we find that we have a linear combination of the functions

2% ,26-% [ -zt -26-%
(I-cos ¢) Y7_£ —)”z (cos ) and (|- cos 4))4 26-Y (cosd) where

t-5-%)
(3 -27) 26-% em(e* N g“2t¢ coszs‘&q, [’t+6+e+‘&,‘t~s-s«-§,

2oy los= z""'iﬂzs)l_g-t-sﬂ)[_(g»,»t-.sw) hl s 3“‘14’]

So if we define

T(y 1)5 »t)e) = 225*&[-26_)’_”2‘) rﬁ*-’t-“-&\ I_Q-’t‘_l-s).
o 2w @Me-e k) [ -sy)

( R-Z'C) |_(3z' +€ +'t'+6‘) R;i’e +T+ C) [o‘+t+€+%,c+‘t—£+;i,yz“+t ]
32

[(2-v-2) [(2-v-y+246) 12T, 2-V-Yrt 46 ; |

[(22) |—(3i+£-'t+s) [(%-e-t+6) Suix “taesk, - BT ])
|

6-
r('i.-ht)l_(z—u—r—tw') BFZ[ -2t ,2-V-3-%+65 )
we can write

“2 [ W\/(:T) Fur) W,ir,elp) dp =

,26-%
T(v,‘l,c,‘t)e) (- cos¢) Y;’.: (cosd) + T(V,V, ste) (- ‘°§4’) Y:: : Ceos)

provided |Re o| + |Re t| + |Bee| (%
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We shall now check this result against known cases by
assigning special values to the parameters. Let V=q¢+% , and

¥= t+% . The integral of (L42) becomes

°0

26+% vz, s+ &
cos” p s g - oz e c+’t+|,e(z)dz uheve Oz .

This integral can be evaluated (Bateman-1, Vol. 1, Page 337, (8)),

and yields

)
(43) o a2ty [(ovrre+k) [(ore-co)

L
2
We now must show that the right hand side of (42) reduces to (43).
First we note that T(c#z'h‘i,—o"t,e)—yo and also the last half
of‘T(O‘fyz &c,'ta) vanishes due to the factor I_(’i ’*'C)

We have

Zu*y‘ |—<—\+G) [(_'t —64+E+%) I—t-s +54Ji)rz3+£+t+c“—( ‘€+'U6')

- -V,
T QLW(E €+T-%)

Tlsrhzen, 6,%€)=

z,
hewee  (|-cod ¢) Y .;_:6(2054” T(ﬂ’i)‘qu)G,’t’e) =

Cos”® ¢ smn“ — r(o'+'a.-+e.+%) [(s+t-e+%).



VI. INTEGRAL REPRESENTATIONS USING S(1,L)

Referring to Section III we recall the case S(1,4) was
subdivided into three special cases. In this section we ﬁill obtain
integral representations for cases (1) and (2).

A. For case (1) we have:

1 2
: 2 : =_ g
a 2 2,.2 4
F, (8)L, -dg_2+ c; + (x"-u%)8 +§— F.(8) =1 p(8) =1
2
2 o
-d 2 2,2 1]1'
Fi(n)Ly s =5+ c) - (K5-u5)n" - —5—  Fy(n) =1 py(n) =1
, an n
1 2
2 -0
Fi(x)Li -4 5+ ka-n2-72 . 5 Fi(x) =1 pi(x) =1
dx x
2
Fi(y)Ly = =3 - 52 Fu(y) =1 pi(y) =1
2 2 ay2 2 2

The separated ordinary differential equations corresponding

to these operators are solved in Section III. We assumed that

iuz iuz

Us kl(x)k2(y)e orUs= gl(l)ga(ﬂ)e , 80 we simply list the
solutions we will use in this section, which are detemined by
our choice of path and the vanishing of the bilinear concomitant.

For our kernel we choose the product of (19) and (20)

1 2, 1 2
K(g,n) = =W _ (at) =W _(an) , 8= Vuz-l;z ,
V§ €,5 Al -€,5
2 2
and formula (18) for f,(x,) = sinyy.
If we choose a suitable path and use K(8,n) sinyy as our
integrand, the integral will then represent Bessel functions of
order +0 and argument Vk -u§-72 x , except for a factor i&'.

It is convenient to use the notation 32 = ua-ka introduced earlier.

35
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The integral

|
t = [ \/—;_We'%(as‘) T W, glan) sy dy

Y,
will be some linear combination of X - I!G(Va‘p{" X) , where
I is a modified Bessel function. Our choice of path C is the

real axis from -o0 to +00, since this causes the bilinear con-

comitant to vanish, e.g.

Sy 55 [ngz(?/i_wfg.(an‘)] - Wfﬁ(aj;)x_wﬁ%(ml) .;;_[smﬂ] ] .

- 00
provided |Rea| > 0.

The integral can now be written

(44) t® ‘[‘\/— 6% (ay + ay/9) W (—ay+ x+y’)smxydy
[V_ gC(aY AW‘I W ‘,(-ay W) smfy dy

To determine which solution of the modified Bessel equation t(x)

é.ctually is we consider only the first part, namely
0
= | L ay+ A Ky ; z
d(x) /;/7 Wc,o%( ) WS)%(ana\/Fw ) sin¥y dy .
()

Examine \'ﬂ(x) for small x. We obtain

[ea) x™ X' sn n
) = l—-(,__§+e) (—)‘/‘VV ( dy

I_(O’) X sy
I"(l+¢+) ('—) 9:‘2”) y‘%i dY

)

provided ‘Re a|< 2, which insures convergence of the integrals.
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These integrals are known (Bateman-1, Vol. I, Page 337 (8)). Using

the Euler identity for sinyy, and with small x we have,

[colt-o) 2™ ¥ F[i—: et] R ]

do) =
T Toe) 21 a-is a+id

%-6 Sz "€ (5 "'4 -€ ‘ ¥
R I—(O') WH-C) a Z‘ X zﬁ[l";:‘é )?._Lli] _ z [3’:"5 lo‘.xl]

T (335-e)  ai @-in™ @+

Using the definition of the hypergeometric functions as Gauss series,

we have

Bdliad et N (e
cQ(x)~ [(F+6[35€ -¢) (a%a)" (E_E}"(. s (2n+1)y
n

=0 2

e

, [oolio a2’ x e (H6n £, "
(e (BE2-e) a) T nl (e )

N=0

SN+ 6V,

R | €Lv=jii‘—-= COSV+1L Sy
e 6K ) W 4] 4+l .

The new form of the restriction on ¢ is necessary to insure con-
vergénce of the Fourier series.
The analysis for the second integral appearing in (Lk) is

similar, and leads to the same restriction on o¢.



For small x

o0
(45). =~ talo 1 C+E Z[ ‘—;‘“)n (— +E) ]Sm(zmbv

[0 r@g,qm ([ [559, []

rw)l—G) al X 2“[‘ (ﬂ!“) ”‘ ) .l("‘)" swn+6)Y

TR [Fe] [ e)“(w.e IS

Consider each series separately. First we have

) (e e e

This series can be summed as a Fourier sine series and the

functional dependence of 8, upon v can be determined explicitly

as follows. Modify sl(v) by using the definition of the Barnes

symbol.
z‘” )
_ [(F-¢)[ (55 _ F-a01E+ |,
>0 _ [R“T‘+E-n-5)f—(z%‘-&m‘i) [Crems) [(%5-en-¥) ] sz

The bracket can be represented as an integral (Grﬁbner-2,

Page 108,9(c)).

0 ¥
[ [(Fe) 2 ‘
5,v) = T (o) Co5 x Sinex sm@ndx dx | sin(@mdy
0

n=0
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-£ |" -6+£ i—o‘
S,V Zr “_l.)_(' = ) [ﬁcosx[ SIMEX SM(2n+NX dx:‘ s (zn+1)V
()

By the Fourier theorem we obtain

[(32-e)[(15%+e) 22°°
m [_(|—o*)

(46) s, = lcosvl_wsmev

The second series in (45)

o0

1+ Its
E [55-¢), (5 +e),,
- +s)
(47) s, e oo T me e Lﬂf“(l) sm(+i+-6)Y
s WE20e), (e [ e]
can be shown to have the value
SHl_ S+l
(48) S,(v) = I_(Z E)r( 2 ve) SIN2EV .
f1|+c)
First of all we note that (47) reduces to
o0
_ 2 2 _
Sz(v)-g [2 - ]“{‘('ﬁs)" SIN(zn+1+s) Y .
N+l+6-2¢ NFI+6+ 2¢ n.

n=0
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This series may now be summed by the following steps.
Making use of the identity

Sin (Zn+1+6-2642€)V = SM(2ZNt14+6-26)V CoS2€D + Coslznti+s-26)V SN 2EV

we have
o0 <0
8, (V) = 2.cos% e (1e6ln_Smbnsis-2dy _\ C0' (el SMEnti+ s+ 23v
z Nl 2t e-z¢ n! N4 1+642€
n=0 N=0

n! 20414 6-2¢ W+I+642€
n=90 N=Q

+ 2sM2ey €01+ 6 oS (20414 6-26V Z(-l)“(ndnmdmnﬂzd\)] .

For the four series in the brackets we introduce the

notation

S2Av) = 2 coszey [au)-c'(v + Zsin2ey [B(VHD(vi .

We will now prove that the first bracket vanishes and that the
second bracket has a value independent of v. To show this,

differentiate each series with respect to v.

We have
o0
t(zm|+c—ze)v “Wen+l+6-2€)v
2
\ - l. 4 6-26)V i
_ \? en(us 2eN F(H»G,l)l _ 2w) + u F( u»)
C0S 2VE

£+s co§+qo



L1

Similarly
’ SMZEVY ’ cosS2€Y ' -5m|m2¢€y
BW=F5— ChYy= —mMm—— and Th)y=""——.
Moty ! 2" codtSp ) 2% cod™*S
Also A(0) = Cc(0) = 0. It follows that A(v) = C(v).

Furthermore D'»v) = -B'Ww).

A v
Dw) - Do) = Blo)-By) = -IM 4z
(o]

2\"" - snct

S,v)= 2cos2€y [F\(v)- C(v)] + 2sin2ev [B(o) + D(o)]

o0
; €)' G+e), J !
= 2 -
Sz(v) 2 sin2¢€y nl N4+ 6-2 M4\ +6+2E

n=o
0

S, = sin2ey __ - : q -t
) n nneSloe Sl i r(“'m R_"“)

n=0

a0

S,(»M) = Sinzey ' - ' (—G-‘
¢ N+ -g nneSlag n

n=0

Note that this form for S2(v) is far simpler than form (47).
We now show how the infinite series immediately above can be

summed as Gamma functions involving o and €. First we use the

| =2 00 t
identity '/;“Zo(ﬂ) X" dx = “Z:o (:) h+||+p ':fo (”x)o( Xp dx .

I s-1 6-1
—6-| =- -6-f &1
5,M= smzw[ ) ' x 2 C v ) x 28| ax
(o)
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X‘EE‘-E-I
S, = Sinzey [
o]

. Xg§1+e4
)0“+l dx

This integral is known (Grdbner-2, Page 171,9(d)).

(4x

|'_ [-xd) |E)
(\)) Sinagy o1l - “*E 5'“2E“ ) (
2 ﬁ( ) 2 ) l— ')

The proof of (48) is now complete. Now that the series Sl(v) and
S2(V) have been summed, and are represented by (46) and (L48)
respectively, these functions continue the series for Sl(v) and
SQ(V) beyond Re 0<1, and this restriction upon ¢ may be removed.

Returning to equation (45) and using (46) and (L48) we obtain

| -
\+¢ c+2 -0
[(s)a 2

) =
T (@ +X‘)v‘

-6
| cosv| smev

V-
[eya2® x*
(a‘ﬂf‘)’r'l:l

sin2¢eV

Remember that this is an approximate form for t(x) when x is small,
and that, for any x, t(x) must be a linear combination of modified
Besgel functions. Now

~ L NE 0 2 (e
(a*+¥3) 72

when x is small.

We conclude

4o e
t(x)= E:)Efz::)%_. [cosv] swmew X I « @ x)

I’. &) a

(a%+¥2)"2

Y
Sm2ev X ZI_O.Wa"u‘ X)
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we obtain

-w
Using the Weierstrass identity [-(-dr(lﬂ‘) = Py

b _ %
toy= -4X ( cow’ fosv)] eme IG(W/a‘M‘ x) + ;Tn)t(l’ - (cosv) smzevI_ cb/a‘q’ %)

ST e

Our final integral representation in this case is

49) f We)qz;(as‘) Wg’g.(“'l‘) smyy dv =
~ o0

=4 X It& -6 — Tx :
b (cos)  Joosv| simev L-('\/an X) + S COSY Saey L(w/a_ai X),

provided |Rea|> 0,|Re sl < 2.

B. For case (2) we have

2 2
d 2 2 6 , 1-160
F (8)L, =— u%) g% +=5.—  F(&) =1 p(¢) =
dg g :
2 2
- 6 -16
Fp(mi, = 235 + (WP-i)nPeen® - 218 B () <1 py(n) =
dan n
d2 22 2 22 1-1602
Fi(x)Li 5+ K -uT-yTettx 4 Fi(x) =1 pi(x) =
dx b 4
Fi(y)L2 -a° R Y FA(y) =1 pA(y) =
2 Yy 2 = 2 V4 Y 2 Yy P2 Yy

dy
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The separated ordinary differential equations corresponding
to these operators are solved in Section III. We assumed that

Mz v kl(x)ka(y)eiuz so we simply 1list the

U = g (t)ey(n)e
solutions we will use, which are determined by our choice of path
and the vanishing of the bilinear concomitant. For our kernel we

choose the product of (24) and (25)

Kop= W 0380 TW, (3) |, =55,

and (21) for

1

v-;; .

s = - A W v&es (o)
2

—V-ZE.

If we choose a suitable path and use K(§,n) Fé(xQ) as our
integrand, the integral will then represent parabolic cylinder

functions of order v -%n The integral
-3 5 -3 5
t(v)zfs‘We)c(%S*)'IZW (*'\’) =W, ] (tx) dx
2€,
¢

2
will be a linear combination of e'”y

2
-ity 2.3, 2
e ( 2+h,2,211y ).

( 5 h,2,21~cy ) and

(Seé (23) Section III).
Our choice of path C is the real axis from - o0 to +00, since this

causes the bilinear concomitent to vanish, e.g.

[ W, (31 W, 'l’)]rW Y& (1) -

W, BN W, (0 Sl W, Emme)] | =0,
-00
provided Rev 3> - % (Magnus-6).
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The integral can be written

+00
'% —’t s’ -¥ -‘t ‘ ' T
= z = —— boz3 (T X .
too= | 5*W, (370 We)a( ) Wv_zer) 553 (04 dx
— o0

This converges absolutely for Rev > --;—and when x = O this is
valid for all real values of y provided IRe ha, + lRe V16¢ !-3|<2.
By the theorem of Section IV we may assume t(x) has the following

form:

t(x) = H(e,c,v,t)é ﬁ(—%’ ',11‘(Y2)+B(€ me \/.\'—(* z)z)ZLTY)

It remains only to determine A(e,o,v,T) and B(e,o,v,T). To

lim [3tW
determine B(e,o,v,T) we consider the y+0l 3y

+

- a5t ot (Ex -
B(e)‘)")t)z lI|-:W(‘) ('i ! ) )W (t“’)W 4\66-:3 tx)
—00
ast | ot
Since 57 + 3y = 8Y , the integrand tends to zero hence

Be,sv,0)=0

To determine A(e,o0,v,T) we let y approach zero.

2
Ace,5v,2) = 2 [WE)G('%x‘)] Wv-ze,“’“/—f:’ (xx) éxé

0

We have not been able to evaluate this integral.so our answer

takes the final form,



+00
% -t ot 3% T e . 2 ix_ _
(50) fs Wfﬁ(zs)'l We)s(z'a) V_V\,_ze;/@(tx)w =

=0

417
ﬂ(C)G)V)'t)Q |F(\zu)'%)2'~t'yz) where Alespr) =2 [W (- xj] \,Mm('t{)

We notice that Kummer's function does not depend on 6, and €
so we consider the special case where ¢ = € -—%—. Our integral

for A(e,e-%,v,T) becomes

(¢2] N d
sz. S 3 ._§
Aleje-spr)= an; ts9)¢ W-v-ze,m(zs )

where $=\/F X. Let 2%'=U to obtain

<0
VT 2%
Q(qﬁ-‘ép‘{t)—z—zg U Wv 1&'\/1-:_*-_454-74 () d“
o

This integral is known (Bateman-1, Vol. 2, Page 406, (25)).

Y-
Vz) )2 Y

i A2 VT Gy [P 2e faciaek 26 ok AN
M0 1% % [T +va2e4yagiaceg ) [ (e+ve2e-Vieses )

R(E)E-!ﬁ)\){t) -

Let R = Vke“-lLe +-%- and use the definition of the Meier G-

Function (Bateman-1) to obtain
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-za
g(i,&"i,\),t): V— .
|—(>;_+v+ze+R) r(yzwns—R)

hm (2R Ex2eR)[(b+2e+R)[(zesR) [ (2 +V+ 26 +R) g+ 2648 S HRZERRZENR
A0 2 R[(1+2e-MR) JG 2, meemr r2eam 72

[2R) [Er-26+R) [ U5+ 26-R)[ (2e-R) [Vs+ve2e-R) lp+2e-R, 26-R otV +26-R
) )
3*® [+2¢-R-A) Fylratpaenaer g

[N TU5-A) [0 [(A+2e-R)(Ar2¢4R) [ b-X)=A ) %A+ ) ])
3

a (-2 120, 1-A-24R |-M-26 R

Since [(-1) = :%— in the neighborhood of A = 0, we obtain

Vi [@er) (2e-R) [ (i)

Ale e-%2v.7) = .
D 225 [(%+v+2e+R) |—(Vz+v+2£-R)

1 our integral becomes

For the special case o0 = € - 2

-t nt
(s1) B W € e )5_ )W ( ) Wv 26;Y4c- 1e+‘4( )
VT TeewvimmmlGe-vazaal (vi%) '“Y F (25552107

2 R& +a2efae4ek) l_( % +V+ 26 NGeAG )



VII. EQUIVALENCE OF FORM FOR THE INTEGRAL REPRESENTATIONS

5(1,3).

P, = G (5 + 2a- e+ i

USING S(3,6) AND S(1,2)

To show the equivalence of form we will begin by considering

Referring to Section ITI we have

) -c

(o}

(r2 d ) + ar + k

Fo(n)L, = n dn (n 3

a
Fi(r)Li * 5
Fé(e)Lé (sin 2]

to these operators are solved in Section III.

U =k ()ky(M)e™ or U = g (Day(0)e™’

de) %

-kn

2.2

r

sin® -

22

(o]

§2

d+b-p.2

n

1

d-u2+b cosq

8in®

2
2 + d-b-p

F,(e)=1 p, (&)=t
Fy(n)=1 py(n)=n

Fi(r)=l pi(r)ar2

Fé(G):l pé(e)zsine

The separated ordinary differential equation corresponding

We assumed that

so we simply list the

solutions we will use in this section, which are determined by our

choice of path and the vanishing of the bilinear concomitant. For

our kernel we choose the product of (13) and (14),

K(g,n) =W

and (15) for F,(x,) = %3

o (ki€

w

2y 1
— W
) n 7

2
¢ (kin%)

v+7,€

(2kir)
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By the integral theorem of Section IV we have

te) = W,, G(Ius W,,c(km) va)i(zkf.r) dr
c

where t(e) represents one or possibly a linear combination of the

various functions denoted by

~-2T, -kt .0

If we choose a suitable path and use K(¢,n) Fz(xe) as our
integrand, the integral will represent a generalized hypergeometric
equation (Leitner-4). For our path we choose the real axis from

O to ©© since this causes the bilinear concomitant to vanish, e.g.

2 rl 1 2 ( | .
A = [ﬂ W, (ki¥) W”(m | — va)a(zmr) -

I 4

;—1 W\,,((kls‘) W 't("m 5‘ { | vaa(zkir)] 0

provided |Re o | + | Re x| +|Ree| €%

Our integral takes the form

N
\ 2 . .
S I ki 2kiv) dv
tols | g W, lat) Wop (i) W, (2ki
0
Using r sin ® = ¢7 and r cos 6 = ; (§2 - 7}2) we have 7}2 = r(1 - cos @),
§2 = r(l + cos E;), 30 our integrel becomes

®
1(0) = —/; r"_swfé \Nv) o (kirDcosal) Wx)t(hi.ri\-cose]) \Ny +, ¢ (2kiy) dr,

ard this integral converges when, |Res l + lRe?:‘i' |Re5| <%.
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2
S o] !
Let cos 5 =W and r = oy * ve have

o0
(s2) t(e)=m f = W, P Wi 0w D W, () dp -
(o]

This integral is equivalent to (42) where © corresponds to 90O - ¢,
The integral (42) was obtained by considering S(1,2) and we realize

that (52) is equivalent to (42) and is obtained from S(3,6).



VIII. CONCLUSION

The objective of this thesis was to present a unified method
of generating integral representatiéns in special function theory,

using the idea of simultaneous separability of

FU+FU =0

in orthogonal curvilinear coordinate systems.

Not all possible cases were pursued. For those in which
the functional equations for ¢ could be solved and in which the
special functions were of the hypergeometric class, several inte-
grals were obtained.

Many more integral representations could be generated using
s(2,4), s(2,6) and case (3) of S(1,4), which we did not find time to
investigate. Furthermore, it is conceivable that other simultaneous
separabilities exist which we did.not find. We did not investigate

all possible special cases of our main results (42), (49) and (50).
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