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ABSTRACT

A METHOD OF GENERATING INTEGRAL REPRESENTATIONS

by waiter William Turner

Imposing the condition that the Schrodinger equation

‘VQU + ¢U - 0 be simultaneously separable in at least two coordinate

systems sharing a coordinate, one Obtains functional equations whose

solution completely determines ¢. The Special functions Obtained by

the separated ordinary operators can be related through integral

relations by using a well-known integral theorem, With this theorem

one can predict the value of the integral involving special functions,

and in this way some new integral representations are discovered,

which contain as special cases some of the existing integral repre-

sentations. Thus, a unified theory of these integral representations

is obtained.
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INTRODUCTION

This represents an attempt to initiate a unifying concept for

generating many of the existing integral representations, as well as

generating some new integral representations for special functions of

Mathematical Physics. Three main ideas are involved; (1) simultaneous

separability of linear partial differential equations, (ii) solutions

of the Schrodinger equation,

(1) V2U + ¢ (ul, u2, ”3) U s O

and (iii) a theorem concerning a definite integral representing the

solution of a linear differential equation of two variables

(Meixner-7) .

In order that (1) be separable ¢(ul, u2, “3) has a definite

form as exhibited in Table 1, depending on the coordinate system under

consideration. Equation (1) can then be solved by the method of

separation of variables in various coordinate systems for various

forms of the function ¢.

It is well known that the scalar Helmholtz equation obtained

by letting ¢ 2 k2 is separable in all eleven orthogonal coordinate

systems involving ellipsoidal surfaces and their degeneracies, which

are listed in Table l. The case ¢ , k2 is discussed quite thoroughly

in the literature and the use of the integral theorem is summarized

by Meixner (Meixner-7). M

In this thesis we ask what is the most general form of ¢ in

order that (I) be separable in two coordinate systems, and this is

called simultaneous separability. This yields functional equations

for each pair considered and these equations determine the form of ¢.



we will impose the restriction that the pair of coordinate

systems in which (1) is to be simultaneously separable share a

coordinate. In that case equation (1) can be reduced in each of

the two coordinate systems to a partial differential equation involv-

ing only two variables, by separating out the common variable.

The form of the integral theorem we wish to apply in this

thesis requires that the above restriction be imposed (see page 27).

When each of the reduced partial differential equations is

solved by the separation of variables we are led to two special

functions. The product of either pair will serve as the kernel

of an integral. By using the theorem and integrating over suitable

paths, integrals relating the special functions in the other pair are

obtained. In such a way it is possible to obtain integral represen-

tations.

In 1958 A. Leitner and J. Meixner investigated cylindrical,

spherical, and prolate spheroidal coordinates and obtained new inte-

gral representations (Leitner-h). We will investigate other pairs of

systems of coordinates to obtain new integral representations, which

appear in the thesis as (A2) page 33, (A9) page A} and (50) page A6.

Special cases of these integral representations are also derived and

appear as (hi) page 5h and (51) page h7. we believe (A2), (A9), and

(50) are new integral representations.



II. SIMULTANEOUS SEPARABILITY

The original idea behind this thesis was to investigate all

possible pairs of coordinates in Table l which share a common variable

but we soon realized this was too ambitious a project to undertake, and

furthermore such a project would be of little practical advantage. we

could not obtain solutions for a few of the functional equations

encountered. Moreover consideration of all possible pairs of coordi-

nates led to special functions that were not of the hypergeometric

class, such as Mathieu functions, Lame' polynomials, Spheroidal wave

functions and other functions whose theory is complex. We, therefore,

limited our investigations to those pairs of coordinates which lead

to classes of most interest, namely the hypergeometric class of

special functions, and their confluences.

The new integral representations we found contained as special

cases many of the existing integral representations and in this way

they are an attempt to initiate a unifying concept into the broad area

of integral relations.

Our first concern is that of simultaneous separability so we

begin by considering pairs of coordinates in Table l which share a

common variable. The systems all having 2 in common are rectangular,

circular cylindrical, parabolic cylindrical, and elliptic cylindrical.

Systems having 0 as a common coordinate are circular cylindrical,

spherical, paraboloidal, prolate spheroidal, and oblate spheroidal.

Only two systems have the variable r in common, namely, spherical and
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sphero-conal. These can be considered pairwise in thirteen ways, but as

we previously noted, not all of these combinations can be separated

simultaneously.

we will consider, as an example, the simultaneous separability of

rectangular and cylindrical coordinates in detail and merely list the

results of other pairs. Referring to Table l we see the forms of ¢ for

rectangular and cylindrical coordinates are respectively:

Al(X) + A20) + A3(2)

B (o)

and Bl(p) + ‘ié" + 33(2)

Since 2 is the common variable we have A3(z) s 35(2), but other-

wise arbitrary, and we must solve the functional equation

320)
(2) 31(0) +"—;§— = Al(x) +‘A2(Y)

we proceed by differentiating (2) with respect to x obtaining

dAl . dBl _ag_ +_9__ (1”) do dBa do

dx dp dx do 2

Now since p2 s x2 + y2 and 0 s tan-1—%-it is Obvious that

92.5. E,1 2,1 “.13.:
dx 9 ’ dy p ’ dx p2 dy 02

we now use these relations to Obtain

dAl =_§_ dBl + ~2x B '_y__ dBe

dx 0 do ph 2 pk d¢



Now we take the derivative with respect to y to obtain

 

 
 

2 _

xd _l_dp (131 del do 2xd 1 pp 2de2a¢

°‘aspa§ap*sear‘db‘HaB'T—a*
do o y o y

dB dZB
-_1____2__y L(IE>22_A XII—31°—

ph (10 dop dy d0 d¢2 By

2

0.1g Era “Mag 13.2-1 same all
do 2 2 2 d Td¢ die 2

o o do o » o o o o d0

daB dB d2B dB 2‘ 2
l 1 l 2 2 _5__ 6 cos¢

0-fl _.._.__.._.___ + % BB - + —— _/.L_€__

2 2 d 2 2 ¢ 1+
o do p p o M d o o

Now we separate the variables to obtain

2

(3) ha231_ 31.818 dB2+6cos2¢-5 dB2_BB

p 2 do 2 coso sin¢ d¢ 2
d0 d9

Now (3) yields two ordinary differential equations which are

2

 

 

dBl -_;_dBl A.

2 d a ’4(19 O p p

dzB 2 dB
2+6cosQ-l 2-8B -A

(102 cos¢ sin¢ dd 2 "

i

The solutions to these equations are:

22 2_A_1_
Bl(p)='ap+k+8 2

-A %- hag %- 1472

and B (.) a — +_ +

2 8 2
cos 0 2

sin ‘9



This determines the particular form that (2) must assume in order that

the SchrOdinger equation be separable in both rectangular and cylindrical

coordinates simultaneously.

 
 

B (d) 1 - hoe 1 - hra
2 2 22 h 1+

Bl(o)+ 2 ak-ao+ 2+ 2

9 cos ¢ sin ¢

S(l,2)

l 2 l 2

A(X)+A(y)=k2-a2(x2+y2)+E—;£+h I”
l 2 x2 y?

The problem of solving the functional equation in other pairs of coordi-

nate systems is similar to the one Just illustrated and the detailed

calculations will not be given. The results will be found in Table 2.

To denote variOus coordinate systems we shall use the numbers as

they appear in the first column of Table 1. Whenever the same greek

letters are used for two distinct pairs of coordinates, for reasons of

tradition, we shall subscript the variables according to the numbering

in Table 1. For example (:7, n7, 2) are the elliptic cylindrical

coordinates.

The solution to the problem of simultaneous separability of any

given pair of coordinate systems is denoted S(i,J), where i, J a l, 2,...

10. SO since rectangular coordinates in Table 1 correspond to the

number 1 and cylindrical to the number 2, we denote the solution of

the problem of simultaneous separability in rectangular and cylindrical

coordinates by S(l,2). Likewise S(2,6) refers to the solution of the

prOblem of simultaneous separability of cylindrical and paraboloidal

coordinates and so forth.

Furthermore we found that the same function of O arose as the

solution to the problem of simultaneous separability for pairs of



coordinates more than ones. In fact we found that S(l,2), S(l,7) and

s(2,7) have the same solution, as do s(2,3), s(2,8) and s(3,8). ‘we

denoted these triplets by S(l,2,7) and s(2,3,8) respectively in Table 2.

Table 2 has been so arranged as to call attention to the fact

that ¢ has the same fbrm when the table is read horizontally. This

symnetry differs from the one discussed above, since the previous symetry

deals with the same function of space whereas this new symmetry involved

equality of form and the variables are different functions of space. This

equality of ferm.can easily be explained by geometrical considerations.

Consider (2,3,8): when the azimuth o is held fixed in each of

these systems, we Obtain three two dimensional coordinate graphs which

are illustrated in Figure l. we Obtain the same graphs when we hold 2

fixed in (1,2,7).

 

 
 

 

 

    
(a) (b) (c)

Figure 1. Simdlarities between (2,3,8) and (1,2,7)

.Azimuth 0 held constant in (2,3,8) and 2 held constant

in (1,2,7)

(a) Picture of lines of constant 9,2 (or x and y)

(b) Picture of lines of constant e, r (or o, p).

(c) Picture of lines of constant :8, "8 (or :7, n7)
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Figure 2 indicates why 8(l,h) and s(2,6) likewise yield the same

functional form for ¢ even though the variables are not the same functions

of space. Figure 3 indicates why s(2,h) and s(3,6) also yield the same

functional ferm.for ¢. Also notice that in Figure 3 6 corresponds to 90° -0.

we have not been able to solve the functional equations for the

coordinate pairs (6,8) and (lb?) but they too have geometrical similarities.

  

   

Y
z

nhel n6a-1 ‘ "6.1

X D

gh.1 £6... 1 £631

Plane of constant 2 Plane of constant 0

Figure 2. Similarities Between (l,h) and (2,6)

 
  

  

nu'l

Ill y

a

Plane of constant 2 Plane of constant 0

Figure 3. Similarities Between (2,14) and (5,6)



III. SOLUTIONS OF'THE SCHROIINGER EQUATION

In this section we will solve the various forms of the

SchrOdinger equation, which are Obtained when we use the results of

the various simultaneous separabilities. Usually we will indicate

two or more solutions of the ordinary differential equations that

occur after we assume a separated solution of the partial differen-

tial equation. Finally we will summarize the results of this

section in Tables 3 through 5.

A. s(1,2)

The simultaneous separability form of this equation is:

1 2 l
2 2 2 —-h —-l+1'2

122+ _8_2IJ_+ —a—g—+ 322(x+y2) +———a +L—2———+ 113(2) U:

3x By 32 x2 y

we assume a solution of the form U’s k1(x)k2(y) em2 to Obtain

 

 

2 _l_ 2

dkl+k2_ 2_ -a2x2+‘LL—'f£—k-O

2 “ co 2 1‘ ’
dx x

2 1 2

d d k2 + c - a2 2 + h - hT k - 0

an 2 o y 2 2 - '

dy Y

These two equations can be reduced to the form of Whittaker's

differential equation. Thus we can find k1(x) and k2(y) to be:

2

(h) kl(x)=-:-L—W (ax2)ori-MV ax),V=____ 3

v; v; m

(5) k2(y)==\/_. W71 (By2 ) o§/::2M7 r (aye) ’ 7 3 EE—
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In cylindrical coordinates the samelequation is:

' 2 l

is an 1 _a__20 figs "rho The_ (p )+— 3,229 + + +A(z)U=O
p'Eb 5p 02 372 322 pacos2¢ o2s1n2¢ 3

we assume a solution of the form U = gl(p)g2(¢)eipz to Obtain

2

d s 8
1+1 d1+ 2 2 2 2 1

~———— k - u - a o --——— g = o ,
dP2 +p do 2 1

deg -1—- if —1-- lrrz
2 h h

and—2+ °i+—2—— +“—12—“ 82-”-
d¢ cos ¢ sin ¢

The first of these equations can be reduced to the form of

Whittaker's differential equation, and has as a solution

(6) 81(9) =-1— w (ape) or 1 (ape). e = —.j—
p v+7,e E'Mv+7,e

The second equation can be transformed to a generalized hyper-

geometric function (Leitner and Meixner - 5). The solution is

AL

 

.. - -i.

(7) 82 (¢) = (1 - c052°)h ¢ 21’ 2° 2 (cos °)

26 -»le

2

s<2.h)

In parabolic cylinder coordinates the equation is:

-l—— _§E§_ aZU +BZU+ + -——- + -E— §2_q2 + d + B ( ) U-O
2 2 2 +_2 2k222812 2 2 2 2 2 2 ' 3 z ‘

i +n 8: an 52 e +n 5 n e +n i n

we assume a solution of the form U = kl(£) k2 (n) e1“z to Obtain

l + k2 + 2a - co - u?§2 +.Qih. k = O ,

dg g2 1

 



l3

'2 2 d + b
+ co - u n + 2 k2 = O

 

and 2

dfl n

Both of these differential equations can be reduced to the form

of Whittaker's differential equations,

2
1 2 1 2 . k +2a-cQ ‘V1+hb-hd

(8) kl(§) <fE'Wd,T(H§ ) OtVfg'Ma’T (#5 ) , a= hp : T= h ;

(9) k2 (n) \/—~N’V0(un2 ) 0{f==Mv a (un2 ); =”:3 , 0 =filiZEEZE§-,

In cylindrical coordinates the Schrodinger equation is:

 

33; 1 can a2u a b sin¢ d _
?F(p ap +§a¢2+ 5—2—24- ‘—+ + +B3(Z)U-O

p c082¢ 0 cos ¢

We assume a solution of the form U = gl(p)ge(¢)eiuz to obtain

 

 

2

d g dg .
l 1 l 2 2 a e

————— -———-+ - +-—--

2 + 0 do k u o 02 813 O ’
d0

d2g
+

and 22 + 62 + b sin; d g2 a O

d¢ cos ¢

The first of these can be reduced to the form of Whittaker's

differential equations:

(10) 851(0) =V-——_ W1€(2 “-1"'k D) Orv—g;— Ml,€ (2V pick 0), l=2\/

The second equation can be transformed to a generalized hyper-

h

geometric function(Le1tner-h):

1‘v~ 1

(11) g2(¢) = (1—sin2¢)h ¢ 20’ 2i‘57 (sin ¢)

22 - 2



1h

This function can also be reduced to the Gauss hypergeometric

equation,

F _1.'_ .. e - a - T, —1— + e - a .. 1'; 1.21; c032(1 - 1)

2 l 2 2 h 2

cos 2 ¢A(l+sin ¢) T (l-sin ¢) 0

 

l l 2 n ¢

2F1[-§-€+1’-o;3+e+1-0:14-21; cos (It—-5]

1 _

cos 2 ¢ (1+sin ¢)-T (l-sin ¢)°

OI‘ 

0. 8(3,6)

In paraboloidal coordinates the equation is:

2 .

—l—§'[l a “-3—: +%a (”QH]+ l fl+F(§,fl,¢)U=O

 

 

 

§+n 5 5E 5n 5n g2H2 5,2

2 2 d + c (¢)
2 2a b 3

where F(g,n,¢) = k + + i —_________

§2+n2 §2n2 52+ 2 2 2
n E W

0 ¢ .

we assume a solution of the form U z kl(§)k2(n) e1L1 to obtain

 

 
 

   

2

d k dk 2

l l 2 2 d - b - u
+-—— + 2a - c + k g + k = 0 ,

d§2 g dg o g2 l

d2k dk 2

2 .3; 2 2 2 d + b - u _

and dn2 + n dfl + C0 + k n + n2 k2 _ 0

Both of these equations can be reduced to the form of Whittaker's

differential equation,

(c -2a)i V 2
l , 2 l 2 . _ 2 a p +b-d

(13) klm :va’a (k1: ) orgmmmg ), v “‘—uk, a —2 ,
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_ _ 2 .1_ 2 . Vgg-b-d '°21
(1h) k2(‘|']) 111W7 1' (kin ) or 7| M7,T (kin ): 1'" 2 9 ”IT '

For spherical coordinates the Schrodinger equation is:

15-3— (1‘2 5U)+ l 1 620
. (sine —) + + C(r,6,¢) 020

r or E r2sine 36 Be rasinae 302 ,

2 b cose + d + (3(0)
a

where C(r,e,¢) . ?+ k + 12 Bin29
 

We assume a solution of the form U . gl(r)32(e)e1“. to obtain

d8
r2d_:l. _1 22

mg +2rdr+[ar+kr cl]glso,

2

d d 2

and 82 + cose 82+ c +d-E +b cose

. o
‘ c192 sin e as 1 tunes 82

The first of these equations can be reduced to the form of

Whittaker's differential equation: '

+1

. l i 1

(15) gl(r) --1;-WV+7’€ (2kir) or—r MW7e (2kir), e :- 2
 

The second equation can be reduced to a generalized hypergeometric

equation (hither-5) :

- .1
2 ’2 E'—

(16) g2(6) .3 g “'1 2 (cos-g-
. € -§f ,

. s(1,h)

The form that ¢ assmnes in the case S(l,h) is quite compli-

cated, because the separated ordinary equations cannot be reduced

to recognized special functions. Certain special cases can be

readily solved and so this section is subdivided into three special

03888.
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A1(x) + A2(y) = k? + 2dy +-E§-- h12y2 - 12x?

X

5(1))4) ¢ = u 6 6

Dim + D201: = k2(§2+n2)+d(§ -n2>+%+12-- 12(5 +n >
g n

Case(l)d=0 T=O b=—i—- a

In this case for rectangular coordinates the SchrSdinger

equation becomes:

2l

in. sin a_2_u 2 1'“ ”3(2) he
2

k +

5x2 5y2+ Bz2+ x

We assume a solution of the form U = kl(x)k2(y)eiuz to obtain

 

deki 2 2 2 i" “2
+ k - u - 7 +'——2—— kl == 0 ,

dx x

d2k 2

and 2 + 7 k2 = O .

div

The first equation can be reduced to the form of Bessel's

differential equation,

1

(17) k(x) = x2 Zo- (i V3402 x) , a = V J‘s-kg ,

where Za is any cylinder function.

The second equation is easily solved.

(18) k2(y) = sinyy or cosyy

For parabolic cylinder coordinates we have:

1_2

2 -a
520 5211 1 1

(U+—) 22+k+————(—+—)+A(z)U=o
,2282 an2 +225 “2112;? 112 5
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We assume a solution of the form U = gl(§)g2(n)eiuz to obtain

2 l 2

 

 

 

d g -a
2 2 2 h

21 + C1 + (k '“ ) 5 +'__—2_- 81 = O ’
d: E

d2g .1_a2

and 2 + -c + (ke-ue) n2 + h g o .
(in2 1 2 2

Both of these equations can be reduced to Whittaker's differential

equation,

(19) glm '37:"w (61:2) “vi:M a (8152), a = VIP-k2, «231—,
6’2 ’2

(20) 22(n) =— 3(an2) or-—-M 0(an2)

WW“ V'n— ‘32

Case (2) a = 0 cl = o b = 1 - 1602

In rectangular coordinates the Schrodinger equation becomes:

2
aeu + 520 + 320 + k2 + 1-166 _ l”23,2 _ T2x2 + A (2) U a o

2 2 2 2 5

dx By 52 x

we assume a solution of the form U a kl(x)k2(y)eiuz to obtain

 

2 V

d k 2
1 2 2 2 2 - 6

+ k--u--72- T x +—1 1a , k = O ,

2 2 1
dx . x

2
d k

and 2 + 72 - h12y2 k = o
2 2

dy

The first equation can be reduced to Whittaker's differential

equation
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(21) k(x>= w__v “NF—1602-3 m2) orim_v_i€3r—1502-3 (132),
Vac; 2 V; T ,

2

u k2 72

V=_.

T ’ hr

 

e = The second equation can be reduced to the

parabolic cylinder equation

(22) k2(y) = D 1 (-2 V373» or D (2V1? y).
l

V-2 v-72—

The differential equation for k2(y) can also be reduced to the

confluent'hypergeometric equation of Kummer, and another choice

for k2(y) would be

 

2

(23) k2(y) = e iTy 1F1(:g+%3%32i1y2) or e iTy§-1Flc—-+E;§;211y2).

For parabolic cylinder coordinates we have:

§ 6 6)

2l 2 (BZU 52g) 523 R2 + 121622 6&2L2h2g2 +A3(z) U=O
a +n 5&2 5n 52 . § +n g n a +n

We assume a solution U = gl(§)g2(n)eiuz to obtain

 

2
d g ' 2

1 2 6 - 6

+ (kg-ue) a - T2: +-2-2-9- s = 0 ,
2 2 1

d5 - 5

deg 2

and 22 + (k2-u2) n2 - T2n6 +.l:lgfl__ g2 = O .

dn ' n

Both of these equations can be reduced to Whittaker's differential

equation,

-2 -2

(2n) sl(§) = g 2 “W (.651) or e. 2 “m g >,

.2 -

(25> gem) = n2 “2,0 ('g n“) or n 2 MW ('2 n >
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520 ago a2u 2 3 2 2 2x2

—2‘ 2 2 Y“? ’"Y'
ax By 52 - hx

+ + +

w

+ I
'
D

D
; I + A5(z) U a 0

we assume a solution of the form U kl(x)k2(y)eiuz to obtain

d R1 2 2 2 2x2_ 5

 

+ k--u -7 -T k = O ,

dx2 fix? 1

2

d k

and 2 + 72 + 2dy - hreye k = O .
dye 2

The first equation can be reduced to Whittaker’s differential

equation

2 k2_'2

(26) k1(X)=\/31¢—wa-v,i[5 (1x2) 0?Ma-v’ 11‘5”): ).’ 6.1L,

2 .

v =-£;—, d2 = 161362. The second equation can be reduced to the

parabolic cylinder equation

(27) k2(y) a D l(2w¢¥y - 26) or D 2 1 (-21J¥y + 26).

+V-€2'5 . V-€ '5

In parabolic cylinder coordinates the Schrodinger equation is:

 
 

21(2 (52U ”Beg ago + k2+d<§2_n2)- 3 2_12é§6;n6)+ A5(z) U=O

a +n 5:2 5n 522 ha n t +n

we assume a solution of the form U = gl(g) g2(n) eiuz to obtain

degi - 2 ‘2 2 h 2 6 3
—2-+ (k-u): +d§ -'r§ -—é—gl=0,

d5 hé
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2

d s
2 2 2 2 u 2 6 3

2 + (k -u )n - dn - T n ----5- 82 = 0 -

dn 1m

 

and

Both of these equations can be reduced to parabolic cylinder

equations,

(28) 31(5) \/__ Da+€2 (W/?- E + e);

(29) 82(n)=‘/__ Babe62 (\f?- n + e)

E. s(2,6)

This case is somewhat similar to the S(l,h) case so we will

consider two cases, which we will now indicate.

 

 

VB1(O) + B3(z) = k2 + 2dz +-D§ - h12z2 - 1202

p

SW) 95: <) <) 2F E +F n
12 2 2 g k2+d(g2-n2)+ éb2 _ 12(52-n2) _ 12§2n2

\ § +n a n

Case (1) d = O 1 2 o

For cylindrical coordinates the Schrodinger equation is:

p a

+ -—-+

”ES? D2 672 :22 02 02

’¢

we assume a solution of the form.U = kl(p)k2(z)e1H to Obtain

 

d kl A_dkl 2 2 b _ 2

'd0 9 D . p

2

d Re 2
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The first of these can be reduced to the form of Bessel's differential

equation,

(30) kl(o) s 20 (Va) , a = V11-43 , v = k2-72

For the second equation we have

(31) k2(z) a sin 72 or cos 72.

For paraboloidal coordinates the SchrBdinger equation is:

b+B (i)
1 1 a EU 1 a 6U 2 2

— (g—)+— (1] +-— + k + ——-— U = O

§§+n§ g 5E 5g n Bfi' SE9 5.2 g2W2

-We assume a solution of the form U a gl(§)g2(fl)ejp¢ to obtain

2

d 8 dg 2

l l l 2 2 b-u

d§2 g d§ l g2 l

deg2 1 d82 2 2 b-ue

“‘15‘2—+WW+ “1*“ 712— 82‘0-

Both of these equations can be reduced to the form of Whittaker's

differential equation,

(32)gl(§)--g—W€ (m?) orL
:3 6,2

In cylindrical coordinates the SchrBdinger equation is:

B (¢)
16_(p§q) +1. fi+a_2u_+ k2 +L_ 1202 , {”222 1 2
p 2 2 2 2 2

p 3¢ 82 o p

 

U = O
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1u¢
We assume a solution of the form U a kl(p) k2(z) e to obtain

 

 

2

d k dk 2

l l l 2 2 2 2 b-H

'————'+‘—- -——-+ k - 7 - T p + k = O

2 d 2 ’do 0 p p l

d2k2 2
and + 7 - ht z k = O

2 2

dz

The first of these equations can be reduced to the form of

Whittaker's differential equation,

2 2

(3h) k1(p) =-l-W (Tog) or-l-M (Toe), €=g;-, V ='£;',
p 2e-v,a p 26- v, a

a = Vb-u . The second equation can be reduced to the form of

the parabolic cylinder equation,

(35) k2(z) = D 1 (2‘\f;-z) or D l (~2‘th'z

V--2' I"?

In paraboloidal coordinates the SchrSdinger equation is:

 
 

 

1
1 deU

(a§)+ (n— + .+me”0=°§2+n2 g a; néfi— an gene 5,?

2 B (¢)

where F(§,fl,°) = R2 + 2b2 ’ T2<§2'n2) T2gM“ +22

g n 5 n

¢

We assume a solution of the form U a gl(g)g2(¢)ei “ to obtain

 

d2g dg 2

21 +-%—-EEl-+ -9l%—-+ k2§2 - 12g6 g1 = o ,

d5 5

deg dg 2

2 _1_ 1 b-E 2 2 _ 2 6
and due + n dn + 2 + k I n 82 = o .
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Both of these equations can be reduced to the form of Whittaker's

differential equation,

1 T h l T h

(36)gl(§)=—2-W a 35) 01' —2M 0 gfi);

§ Gig E, ('59):

(37) 22 (n) =1—2 W a (gnu) or 17M 0 (gnu)

Tl 5"); fl 6,?
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TABLE 3

 

‘ z z/ <4) h.(x)=V—7W,,,(RX) "T's:- Mmgax)

(5) hM='—W ( 2) Y J— 2z w :3 a7 ° W M8,“: (3W)

\ I

(6) 9'(P)=va+1,e(af°‘) or 7;- Mv+Y’&(aF1)

\ (7) 92(4): (u-cos‘¢)v* ~::l:6-yz(cos¢)

/ (2) h|(’)=v—';’W«,t(/‘52) °Y w/I—f MmWi’z)

(9’ “NV—"T- Wv’,(m‘) mr 3;? ngun‘)

5%“ (‘0) 3I(P)=T%Wx,e(ZVF‘-R‘P) °" me(aware)

m) gawk (I-sm‘q»)v" §:?_i:-&(sm¢)

3(3,6)

 
L (.2) 92“,): cos"2¢(”sumo-Stu-smgfzfiOfi-E-c-tyue-c-t;1-223cosil‘5’rcpéw

/ (13) Risk é—Wv’ccms‘) or _;_ Mv’cflats‘)

(m tm= % mem‘) ‘7 MW (m1)

(.5) g.<r>=+ Wx+»,e(2km Jr" AAM’Eum)

 ~ 1?: 7.6-";

K «6) 32(9):: an)”. (cos?)

21+



‘
1



 

TABLE ’4

 

SW?)

7 (‘7) KOO: X)2 25-“. Va‘+x‘ X)

case“) 08) Mb smw

d ='c=o< ‘

b=V+-a‘ (19) askfiwfigas‘)

k (20) 31(13=J-7WE,§ (W)

= _L. , a.
, (2|) hm WWWeyEng (’tx)

(12) ha“): 13,4, {-24% Y)

CBSCQ) '1.th

d=c.-0< (23) mm s .Efiz’ +i;%;zi‘rv‘)

b: MM"

(24) g,($)=- 5-35 We) 6(‘1'; 5")

V25) 32% YE" We), ($41”)

I . z
/ (26) www— WM)?(m

caseb) (27) k2“): Dv-a’thfiV'ze)

“3-3 - _L
b‘ 4 (28) 8"?)‘43— D5+£1 (1&5 +E)

 
K (29) 3,01%“ V431: D642(fin +2)

25

or COSBY

I 1.

°' fimes (3’)

\ 2.
or W Meg: (1‘1)

°r ‘T/Lx— Mv-ze,J——“;13 (T X‘)

0V .Dwyz (ilk-7C Y)

or émy .F. @4332; 1‘3”)

or 5‘35 Me 4'2?)
)

or V135 M2,:G'1?)

\ ' z

or "xi—x- Ms-va/E (tx)

or Dv_£z_yz {-zfiwze)

°V V—_é-_Dc+£z(:\ff$-E)

file-Et (V? 'l“ E)



TABLE 5

3(2,6)

/ (50) k.(p)=Z¢(v.o)

“sew (an) hz(z)= smarz

’t=d=0 ‘

<32) g.(s>=?WE,Z-_(ns‘)

\
 

(as) 92W=%-WE¢(LW)
Y5

/ (3+) Mp) =;TW2£_),FWPZ)

(35) RJZ)‘; 0,42 (27/? 2)

casem

d=q=o

(as) 3.05% “—érwg’g (it: 5")

 
l

(31) 9201):- le—Wffijqévt")

26

or cosiz

I

w E'Mg)%(tk$‘)

I
CY 71- ME)? (Unit)

L 2

W P MZE-vfiu'P)

or Dwzéz 'V‘E z)

u

or 37 M6543; 3*)

\

0v viz-Masai





IV. A METHOD OF GENERATING INTEGRAL REPRESENTATIONS

In this section we shall introduce the theorem which enables

us to generate integral representations between the various special

functions, appearing in Tables 3 and h. First we will introduce

appropriate notation. Let x1, x2, x3 represent mutually' orthogonal

coordinates (any system appearing in Table l). The Schrodinger equa-

tion, V2U + ¢ U a 0, for the various forms of ¢ in.Tab1e 2, can be

solved by the method of separation of variables. Thus

U(xl, x2, x3) = kl (x1) k2 (x2) k3 (x3). The associated ordinary

operators will all be selfadjoint, e.g. of the form

a 5

L1 3&1 Pi (xi) $1 + qi (xi) 1 g l) 2) 3'

When we write U(xl, x2, x3) 2 K(xl, x2) k3 (x3) we obtain a partial

differential equation of two variables of the form

(38) Fl(x1) Ll K(xl, x2) - F2(x2) L2 K(x1, x2)

The theorem is:

Let

(a) c be a path in the x2 plane with endpoints a, b.

(b) B be a domain in the x1 plane.

(c) fé(x2) be a separated solution of L2f2(x2) = 0.

(d) K(xr32) be a regular analytic solution of (58) for

x1

(59) when m1) =fc m1. x2) F2'1<x2)r2<x2)ax2

e B and x2 on C.

27
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is uniformly convergent for x1 6 B and t(xl) will be a solution of

 

the differential equation L1f1(x1) . 0 provided the bilinear oon-’

 

comitant vanishes, that is to say provided

b

a K(x1, x2) 8 f2 (x2)

P2(x2) 3 ,x2 f2(x2) ' K("'1’ x2) "3"§;"’ ' 0 ‘

 

This theorem is the very essence of the idea of generating

many integral representations. we begin with a linear second order

partial differential equation of three variables which can be solved

by the method of separation of variables. Furthermore each of the

separated ordinary equations are of the self adjoint form,

L1:1 (x1) - o for i . l, 2, 3.” Then we eliminate the variable x} by

assuming a solution of the form u - f1(xl) f2(x2) f3(x3) so that the

remaining equation has the form of (38).

Next we introduce a second coordinate system sharing one coordi-

nate variable, say x}, with the first. Let the other two variables be

denoted xi xé. Suppose that the Schrodinger equation is simultan-

eously separable in both systems. Then there is another partial

differential equation of a form equivalent to (38) but involving

xi and xé, e.g.

(W ‘1“? L1 Wt 1%) =- Fé he) Le “Xi, s)

where Li a (531) pi(xi) (531) + qi(xi), i s l, 2.

Now'K'(xi xé) f3(x3) is also a solution of the original Schrodinger

equation.
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we can now choose for our kernel K(xl, x2) in (39) a solution

of (AC). Then if we integrate the product of the kernel and

f2(x2)/F2(x2) along a path for which the bilinear concomitant vanishes

we are assured that this integral will satisfy Llf1(xl) a 0. Of course

the beauty of the method now becomes clear, for we know f (x1) and we
1

need only determine what linear combination of solutions of Llfl(xl) s 0

will actually represent the integral.

The power of this method lies in the fact that we can choose

various kernels subject to paths for which the bilinear concomitant

vanishes. Furthermore, we can interchange roles of fl(xi), f2(x2)

and even choose our kernel from the first coordinate system. This

then should exhibit the power of the method and subsequent sections

will contain a few integral representations worked in detail.



V. INTEGRAL REPRESENTATION USING S(l,2)

we are now ready to consider the results of previous section

for the case S(l,2) and generate a new integral representation. By

examining Section III we have:

 

  

d2 2 2 2 2 i ' h°2
Fl(x)Ll =-—é + k -u -a x + ——-§-—-- Fl(x) = l pl(x) a 1

dx x

-d2 2 2 'I" hTe
F2(y)L2 a 2 + a y ---§-- F2(y) = l 92(y) . 1

dy Y

. ._id_ d_ 2_ 2 22 . ,l . ,
Fl(o)L1 - 9 dc (9 do) + k u +3.2 Fl(p) p pl(p) 0

d2 %-ha2 $2.12 ) )

F'(¢)L' = ' - - F'(¢ = 1 p'(¢ e 1

2 2 (W2 c082¢ sin2¢ 2 2

The separated ordinary differential equations corresponding to these

operators are also solved in section III. we assumed that

U = kl(x)k2(y)eiuz or U = gl(p)g2(¢)eiuz so we simply list the solutions

we will use in this section, which are determined by our choice of path

and the vanishing of the bilinear concomitant. Our kernel will be the

product of (h) and (5)

K(X.y) =iw (artiw 1. (aye) .
‘5; V90 w 7)

Also we choose (6) for

l 2

f2(x2) "’ p WV+7,€ (8-D ) .

Now by the theorem in section IV and especially equation (59) we have

the integral
2 2 2

t”): Wv’a(ax) W7)T(ay) Wv+7,€(ao)

. v: V? °
odp

  

3O



31

and we realize this integral represents a solution of F'2(¢)L282(¢) ' 0.

That is to say it is one or possibly a linear combination of two of

Q5—“21:.262Y
the various functions denoted by (“20514104 ZE-ya. (cos ¢).

we must still choose a path C. When we take it along the real axis

from O to ex: the bilinear concomitant vanishes, e. g.

 

 

 

 

5 ”(socos2¢) W74Ve2(302)

o a ”(assin2¢) ’ ‘
p 2? érw o

psin ¢ cos

oo
2 2 2 2

wv’a(ap cos ¢) W721(ap sin ¢) 5 W7+v 5(802) 8 0

ll .11 50 ~o

psin2¢ cos2¢ ‘ 0

subject to the condition |Re 0| + (Re 1| + |Re e|<2 (Whittaker-8).

Our integral takes the form

00

 

2

v 0(ax ) (ay2) 2

13(0) :- —1——— L— W (so) do

v+7,e

0 V" , \/y

00

(aogcose¢) W (angsin2¢)

t(°) = v’0 7’T W (an?) do
IL. 1 ' v+7,e

O 'p c082¢ sing}

This integral converges provided |Re a} + |Re 1| + [Re el<1€§

To determine which functions ¢ we actually have express

WV 0(apgcose¢) in terms of confluent hypergeometric functions

,

(Magnus-6) and choose a = 1.
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00
2 L

“(9): cosuvict I126) fir-wk \+25-) P‘Oogib] W511. (F‘SM 4:) WVW15? ) c1

5‘V‘yz ¢ [Eyre-v) o eP‘CfS'lb P‘Zd‘
P

00

+ “S‘s-16¢ R“) .EPG-wisI-zssp‘wsh] Wm(P‘sm‘4>) W,,,,,E(.o*) d

sm‘icp Rho-v) o eflgiggig P26 P

Let z a p2 and examine this expression for small cos ¢.

zc+i

cos 4; R-16) \ 6’5- z
t(¢)3 smyz¢ r0936.» 3 oz WK‘IJZ) WV+X,E( ) dz 4-

(”85-2% R") '- 1'”?- W (2) W (2) a
ran/15¢ ram-» Z Z 8;: v”): 2

O

 

 

These integrals can be evaluated (Bateman-l, Vol. 2, Page th (h2)).

‘4‘) t(¢) $1". Coé‘t’ét> R163 (R%+£+I+S)E3-€+t+s) R-Z’t)
3é+£+t+67re+t+sfi-XVC ‘]

25"",14’ WT“) Ryz‘Z-t) fiz-v-n‘bs) 3E[ Hit , ‘z—v-xruc 3

 

+ Rim-1&6)Rafi-e
m s (at) [%+e—’t+sfi-E-t+6’ v1-3-1. ]

R’é’X-t)r(z-v-‘l-
't+6)

32 “741,2-v-x-t
+ 6 ; |

 

+ cook-25¢ [_(26) What-5) [(31% +t4)‘Ezz) [3&+£+t-6,32-6+t-6,’5-3+2 ‘ ]

25sz¢ Ryzi’sfi) WE'X-t) f-(z-v-n’t-s) 32. \+Z’t)Z-v-X+’t—6',

 

Halve—ts) R’ré—‘r—S) Rn) 2+e—1— qX-E-t-cfi-X-‘t ]

I—(K'MfiRZ-v-I-t—s) 3E \-7.'t)z-v-34_--5 3‘
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2. "',.2't16

When we examine the various forms of (l-Cos4>)y+ ¢z€_y1:’&(cos¢)

for small cos ¢ and compare them with the previous expression for

t(¢) we find that we have a linear combination of the functions

-Z’t 26'- ’2 y ~~zt,'26-";

(I--Cos1'ch) Y.“ 3y: (c.0540 and (l-Cos2W2‘- ya (cosdr) when.

m s+1=~6J5)

~-2t,25-Vz1[ e ( 9",”; m3‘*’,,, [T+6+£+‘& {he-ed

2(CO )7- . 1]

1E ‘9' sq) 2“"I—I+zc)l_e—t-6+‘2)R€+‘t-s+’2) Z ' ”’25 ,C051>

 

So if we define

#él—26)R|+z$) Eut-6'4-‘0 REM-yt")

T

(v,1,o',’t,£)
21r26.6015 6+‘t Jr.) fiyz-c-v)

(2fi-Zt)r(35+e+t+6)r(3i-e +t+c) [nt+e&,c.z-z+3a,’a-r+t ]

l
rm’V't) I—(Z-v-X+’t+s') SFZ I+2t,2-v-X+‘t+s 3

 

[_(Z't) r(5i+£-’t+6) [-051 -t+6) Em Fruu‘ig-r-e‘kfi-x-z ]

[-(‘i'hfi [_(z—v—r-tm) az \-1t,2.v—z-'r+¢- 3'

we can write

(42) ]; Whig) WmW') Wy+1,e(f") dp

 

J}. .‘L -

T6»{1,6,t,e) 0-1x'coso) Y3?_Z: (cow) + Th,1,-at,e) (\-cage) Y~:,:_,:’3.(«,qu

provided |Reol + |Re 1'] + IBeel ( é.
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We shall now check this result against known cases by

assigning special values to the parameters. Let v: 64-"2 , and

Y= 23-5 . The integral of (12) becomes

00

26% 22+”: \ 6+1 “5-
cos 4) sm ¢ ? Z 82' WON-2356(2) dz when [0122.

O

This integral can be evaluated (Bateman-l, Vol. 1, Page 337, (8)),

and yields

x, y

£052“ 4> smuucb R6+t+a+3é)r(6+t-e+°/z)
I

(43) —
2

we now must show that the right hand side of (#2) reduces to (MS).

First we note that T(s#z,’t+’i,—c,’t,e)-?O and also the last half

of‘Rm-Vzgn’t+¥;,,6,‘ca) vanishes due to the factor [_(‘i-3+t)

We have

27'EV; I—wc) r’t- (+8 +5) fi-t-s +£4JQRX+ER+JR "*‘t*‘)

2:“. 8““8-6+1: Vt.)

T(6f’i;t+kl., 6) t)€')-2-'

t,

hence. (I C(54))” Y2:_:6-yz(506$) TG+5,t+vz,6,’t,£) :

£052654. anu”:4;—LRMt-wfi’z) Row-t- 03$)



VI. INTEGRAL REPRESENTATIONS USING s(1,h)

Referring to Section III we recall the case S(l,h) was

subdivided into three special cases. In this sectionwe will Obtain

integral representations for cases (1) and (2).

A. For case (1) we have:

 

 

  

 

1 2
. 2 . '--s

d 2 2 2 h

F1(‘)L1 - age + c1 + (k -u )z + :2 Flu) - 1 P1“) - 1

2
2 s

-d 2 2 2 I?

F1001? - —3+ cl - (k -u )n - 2 F201) - 1 p201) . 1

_ an n -

1 2
2 --s

Fi(x)Li . d 2 + k2-n2-72 + h 2 Fine) - 1 pi(x) - 1

dx x -

2

I 'd _ 2 t I

The separated ordinary differential equations corresponding

to these Operators are solved in Section III. we assumed that

iuz iuz

U . kl(x)k2(y)e , so we simply list theor U - sl(£)se(n)e

solutions we will use in this section, which are detennined by

our choice of path and the vanishing of the bilinear concomitant.

For our kernel we choose the product of (19) and (20)

l 2 l 2 W, 2 2

K(£.n)a—W a (6§)- W 0(an),a= u-ls ,

V; €,— V1] '6’;- ’
2 2

and formula (18) for {2(12) - sin7y.

If we choose a suitable path and use K(§,n) sinyy as our

integrand, the integral will then represent Bessel functions of

order to and argument VkE-uE-yz x , except for a factor ii'.

It is convenient to use the notation a2 a uz-ke introduced earlier.
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The integral

t“) :[V—wWEAR?) _\/-"L-W£%(a|12)sm3ydy

V

will be some linear combination of )(2 Itch/d117- x) , where

I is a modified Bessel function. Our choice of path C is the

real axis from -00 to +00 , since this causes the bilinear con-

comitant to vanish, e.g.

W5.z(35)W.s (a'l‘) W (35W5":(a'l) +
$\MY§-y[ W {- ]- 6”": W 5—;[5\MY]] =0.

—00

provided [Real > 0.

00

Q
)

The integral can now be written

(44) “>0 =[Vr—WEa" (EON-am WE,NewWY)SMXY d)’

[V’WEC (aY an];N) WEd.(-ayMVX‘arI) sad, (1’.

To determine which solution of the modified Bessel equation t(x)

actually is we consider only the first part, namely

00

<Q(X)= [\f‘f WE’%(aY+aV§z+Y ) WE’%(-av+a\/?+Y1)smxv dy .

o .

Examine tux) for small x. We obtain

|_(—_{__)X6“: sm___t_|Y
~ Zayrfitx) ~ RT”) (fig-10W?”

L) smb’Y

+l'_(|___+s':£)4%)OVVECMY)
1

provided ‘Re a|< 2, which insures convergence of the integrals.
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These integrals are known (Bateman-l, Vol. I, Page 337 (8)). Using

the Euler identity for sinyy, and with small x we have,

mmaw F.[‘1‘‘ wt] _ m11 111*]T'E ) 23+! 3¥-e , a“173';51 ~ __

(x) |—'—‘ +-3—;—z)r(‘1) 2L a--U n+1:

 

_ C+| : ' .. Q H 4C

+l—(O‘H-(H-O') 326- X,2 6 2F[£‘1&f‘6 3%_ 2FF[§5é'£ éL-‘gq.

Rflng—(‘iig-e) 23. (2)-ix)“. (“Lila-T

Using the definition of the hypergeometric functions angauss.series,

we have

 

 

 
 

~ liar-mmX6”& (“-5) (fin
:Q(X)~r‘i‘+5)[_3—;- -g)x1(a+x‘)’5 (2:55. 6.)" sm (ZYH-UV

mac 2 “

°° |+c

+[(—+€)l—a‘) ‘dZ Xyz . (HEN (Twe)H)“smumnflv

reEma—“max; N'- 31.: ’
“'0

R I ew=jflL= c sv 'smve 6< ) W— 0 4". .

The new form of the restriction on a is necessary to insure con-

vergence of the Fourier series.

The analysis for the second integral appearing in (hh) is

similar, and leads to the same restriction on a.



For small x

00

(455) 100713“(firnaMT xflgbZSf[ $4“ (57f.“)h Lnamov

fi1—1R11w (11-e(((:( (1:we)
 

 

*FMHIG) 3?. x’é6 00M“, (£2!E“) (”6E)“ 193‘)“ sm(zn+|+6)v

+RT‘éRfl-E) (3331)?"fU|Ls__t)(3§_EL (16%)" FEE””In!

 

  

Consider‘each series separately. First we have

5'”):EM(1)"( 4112’s] (-.(1.........

This series can be summed as a Fourier sine series and the

 

functional dependence of 8 upon v can be determined explicitly
1

as follows. Modify s1(v) by using the definition of the Barnes

  

symbol.

_ qr'—11) R's“ell—1%) ,,

Sid-Z [gig-1»:---nJim—fwd R¥+€+I09 FL;‘115nK) ] 5.42%.)»

The bracket can be represented as an integral (Grobner-Q,

Page 108,9(c)).

°° 3’

_ R"-.‘-‘~£) F629”) 2‘" z _6.
SM) 1' W [_(l-s‘) cos 1: sum $m(zn+l)x dx sm(2m0\)

0
"=0
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oo
1T

5 (u)= R¥-£)n?+€)£« lcos T6 (n d 5n 1)
. FRI-6) x 5: ex 5(m2m-nx x I (zml?

n=0 0

By the Fourier theorem we obtain

 

[—(‘i‘-€)RL¥+€) 22"

W (_(\-O“)

-—o*

(46) $.(u)= Icosvl smev

The second series in (hS)

00

 
 (47) 5(1))“ (LIE-8L (229".6‘)" (ELEM VI2. ‘ ":0 ‘32—6-5 32—6-5)" -(3:52-+5)"(H-—Z§+5) H‘. H) sm(2n+li~6)v

 

can be shown to have the value

(48) 52h): Rigiwfi'“)

[(I+6)

an2£u.

First of all we note that (h?) reduces to

00

_ z 2 - +
52“” - - (”n—Oi)?— sm(2n+(+o)v.

ZVI+|+s-ze Zn+|+6+2€ YI'.

“=0
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This series may now be summed by the following steps.

Making use of the identity

Sm (Zn+l+s-ze+ze)v = sm(zn+|+s-ze)v cos 251) + cos(zn+(+s-2e)v 5m 25»

  

we have

. co
w

s (v) = “052M firms). Smhmus-ZQp __ (~I)"((+c).. smumu c125)”

2'
“1 ZmH’ 5‘15. n! Zh+|+€+1g

L. (0:0
“to 

+ Zsmzev (~l)“(|+s')n (o5(zn+(+c-ze\v _zflrmmcddzmnazew] .

n! 2h+|+ 6-22 zn+l+6+ze

"=0 VB 0

For the four series in the brackets we introduce the

notation

31“,): ZCOSZEN [Hhfi-Cw + 2. sm ZEV [B(y)+D(vi .

We will now prove that the first bracket vanishes and that the

second bracket has a valuedndependent of v. To show this,

differentiate each series with respect to v.

  

We have

00

ei£2n+|+c-ze)v Jihmhc-ze)»

HIV-(v ("no“:63“ + e-

2.

‘ _ él. |+6-as)» '_ ‘E emu; 2e)» 1F (\+6 I' I' _ 82w) +_;_ ( 2F(\+€, 15:91“)

_ cos we

2H6 cos‘wv



hl

Similarly

I sm 7.6.1) . cos zev ' - smzev

B( )= _ C(V)=———— and E‘y)::-———— .

Z.“‘cos”‘v ’ 2H6 cosH‘v ‘ Z'Ncosmx')

Also Mo) =- C(O) a o. It follows that A(v) a C(v).

Furthermore 0.6)) = —B'(v).

_ to

Don - D(o) = B(o)-B(v) = -£flt d’t

52M: 2 coszev [Hm - CM] + a 5m 25» [6(0) + 0(0)]

 

co

2 Wow)“ I ‘ ._= z
‘

 

  

“=0

‘ \ r(“)

310:) = Smifiv —6-| " 6-!n+\+ ’2" - E "Ht '5: + 5 “HM R‘s'")

nso

w

|
|

-6"|

5 (v): sm LEV _' -z
mug? -g rung-3 +£ N

n=0

Note that this form for 52(v) is far simpler than form (’47).

We now show how the infinite series immediately above can be

summed as Gamma functions involving a and 6. First we use the

I co co 1

identity L}: (2‘) W“3 dx = Z (3:) m1”, =f OH)“ x” dx .

0“=0 “=0

 

~64 6"| 6-!-5... _- _.

Sz(v)= smzevf (HX) x‘ E + (m0 x “8 AX

O



11,2

{like-I

S,(v)= smzev [

o

 

‘Li-‘H-n

+ X
)cr-H dX

This integral is known (Gr6bner-2, Page l7l,9(d)).

R‘f’i'i) R53”)

r—(o—H)

The proof of (h8) is now complete. Now that the series Sl(v) and

(H)!

 5:10)) sunzevfl(§*—'-ef;——-‘+e)= smzw

S2(v) have been summed, and are represented by (h6) and (#8)

respectively, these functions continue the series for Sl(v) and

S2(v) beyond Re a<:l, and this restriction upon a may be removed.

Returning to equation (ks) and using (h6) and (h8) we obtain

V z-o'

l—(o') amxfiz 2
 

 

-¢

fix) 2: 1T (35'sz I cosvl sm av

V -o'

Rf) a 20- X 2 em 22»

(El‘ivzi‘rzf‘L

Remember that this is an approximate form for t(x) when x is small,

and that, for any x, t(x) must be a linear combination of modified

Bessel functions. Now

6"

1014324): X) Z fins)

(a‘+ I“) "7-

 

when x is small.

we conclude

 

_k—lerMa'” «r v2 ,5 ,
{200- ‘IT (az+xz)§i_T'lCOSVI SMEU X {5643+} X)

 +r' 6')[-O') 3‘ SM 221! {alert/3W X)
(a+X‘)V’-



1&3

we obtain Using the Weierstrass identity fi-QRH-C) = sunno‘

 
 

XV;
Vz

WOMCOS‘J 65mg” 156/3111 x) + 3:123 ((051)) SWEEvICWat‘az X)
SlVITI'C

flX):

Our final integral representation in this case is

(49) [ W€)gz;(a§‘) Wgfih'l‘) smxy ch =

~00

 

-4 x Ho“ ’6' 1 1 ‘Wx 1

swam-(Cob) Icosvl smsv LWan X) + 5mm- cos» S\Yt1€VI£('\/a+lz x) 7

provided |Real) 0)IR¢ d < 2.

. For case (2) we have

 

 

 

2 2

Fl(g)Ll - d + (k2-u2-T)§22:6 +1—g—6—2— Flu) = 1 plm =

dfi E '

2 2

F2(n)L2 = 53-5 .+ (u2-k2)n2+72n6 - £29- F2(n) = 1 p201) =

dn TI

2 2

Fi(x)Li a d 2 + k2-u2-72-12x2+1-lg° Fi(x) = l pi(x) =

dx x

F'< )L. '22 - 2 + ur2y2 F'( > , i p'<y) =
2 y 2 2 2 7 2 y 2



M;

The separated ordinary differential equations corresponding

to these operators are solved in Section III. we assumed that

122 or U - 1i:]_(3c)k2(y)em'z so we simply list theU - 81(§)s2(n)e

solutions we will use, which are determined by our choice of path

and the vanishing of the bilinear concomitant. For our kernel we

choose the product of (2h) and (25)

' - ‘2 '2: + '2 ~'t 1 F" “2
K(§,’1)'—32\N€)6(25) TWAIN , a 6. ,

and (21) for

 

x1

'4xtz’

F(x;\--——— \WJ -¢§§§:i(1:X)
ave:

If we choose a suitable path and use K(¢,n) Fé(x2) as our

integrand, the integral will then represent parabolic cylinder

functions of order v -%a The integral

- ‘g 1

uwzffiwe’fisw \A/£,6(--E-'1’)V='_x— wmm m) dx
c ’ 2

2

will be a linear combination of e'12y1y(g+%3%;21Ty2) and

2 , .

e-iry yFG—-+2~2~2i1y2). (See (23)1Section III).
1F1 h’2’

Our choice of path C is the real axis from - co to +00 , since this

causes the bilinear concomitant to vanish, e.g.

g;é[2w£fi<5‘M2w6('§"l‘)]QLR-Wv_zc;f\z_§§(’txz) —

5—22 W," (25.35“) 2‘32 WQ’G (.31; yr) %[‘\7% W-v-ZE.) £12122 (2: £2] = O ’

-ao

provided Rev 7 - % (Magnus-6) .



1‘5

The integral can be written

4: + 32 -
no: :iwwess')n w”(24947- w_E.“3 (NW

—00

This converges absolutely for Rev > --:—and when x a 0 this is

valid for all real values of y provided |Re ha, + [Re V166 -3|<2.

By the theorem of Section IV we may assume t(x) has the following

form:

-1izfcy —L’tY7'

t(x)= Weo')v,’t) e |Fl (:52; 'E' ZL’tY)+B(€,6,\3,’C) Q ‘/ $0222}2 ,ZlTY)

It remains only to determine A(e,a,v,‘r) and B(e,a,v,'r). To

   

determine B(€,a,v,'r) we consider the “mo 25%)")

+00

hm 3:533; 8_'12W(-3 1 -t AX

8(2)‘>”>2)= Y-vo V\/£)6(2X)VV€)‘(-z-x’) WU_2£[__\L:-a (Tx‘) 72
-00 A )

easy“ 3"1
Since __ + —Y— _—8y , the integrand tends to zero hence

B(E,S,v,’c)s o .

To determine A(e,a,v,1') we let y approach zero.

00

9<e,a,v,z)=z [wgfi1)] WWW—m) 7%.
0

we have not been able to evaluate this integral.so our answer

takes the final form,



h6

+«3

-q5 {E i ‘% -£ 4 t z EEK...
(50‘) [5 WESMSM Wgéflw) %_ZEV)Lb%-_3(‘CX)W —

)

-°O

-mz , .

9(£)6)v)t) e IF'(‘TUSJ2.3 ZLZ'YI) wkCYe Hkfipfl’) =2<fi>aw§6
t; x9]Zw-v.z£m (sz) ix;

)7

we notice that Kummer's function does not depend on a, and s

so we consider the special case where a = e --%—. Our integral

for A(e,e-g,v,1) becomes

m v )-\/ :S‘ues1 W ( ‘) 9‘;-E)E-z,v)’t — 22’ o -y—Lg)m ZS 32.

where 3=V§ X. Let zs‘=u to obtain

co
9’

3/2; 22-? 2

Q(€)E-‘é)v)’t)—2—zi u e quj-W (u) d“

o

This integral is known (Bateman-l, Vol. 2, Page hO6, (25)).

 

 

A 33 a Vz)‘)VZ-v

hm _Aa \ff G34 2£+Y%3%+K,2€-figtqg%f)§,l\

H(E,£-’é)v,‘t)= 

""° n522€r(’z+V+ZE+464M)l—(Vz+v+1E-V4e’—+E+‘4)

 

Let R = 1¢§62-he +-%- and use the definition of the Meier G-

Function (Bateman-l) to obtain



1&7

1:."

Q(£,£-’i,v,’t)= V—a .

R5+v+ze+R)“if—(Yzi-vHe—R)

 

I W R—ZR)R:A-2€-F§) R5+ZE+R)l—(;—t+R) R5*WZE +R) )5: Ze+R,‘2+V+2£+R,Ze oR ]

“0 aze'R [_(HZe-MR) 3E3 "ZRx‘flemflx‘nHiR 3 6

Km) [Ex-25m) R1§+ZE-R)R25-R) Wanna
—R) |&+22-R,ze-R ”,1“, +224?

item [—(H-ZE-R-A) 3F3 I-ZR)I+2.£+X'R,I+Zg-ka 3-3

 

[-H) W?“ l—(Vzw-A) RA+2£-R)RM2&+R) ['Q-x ,-A ,ie-Aw _ D

3

ax [—U-ZA) I-Z\)|-A-ZE+R,l-A-Z£ -R;

Since R-x) = 1%— in the neighborhood of x = 0, we obtain

\f’g I—(zuR) [-(za-R) I—(w 1g)

2.25 [-(VzwnuR) I—(Vzwne—R) .

  

Q(€)E-Vz)v)t) =

For the special case a = e - 5 our integral becomes

1,41-
x2.

(SI) WEE_,£(’§‘ 5)W#262 Vt‘) W
u--zegit—’5m“

E Rzom)r(2s-W)RV*’Z\ 3“” F (realism?)
222 R’2+v+2nfie‘-4eo§)r(’i*‘”u 445—4234) I ‘



VII. EQUIVALENCE OF FORM FOR THE INTEGRAL REPRESENTATIONS

USING s(3,6) AND s(1,2)

To show the equivalence of form we will begin by considering

S(l,5). Referring to Section III we have

 

2

__l..§_ .9. _ 2 2 .9:P;H . -
Fl(§)L1 - g dg (: dg + 2a c0 + k g + £2 F1(§)-1 P1(§)=§

F ( )L -l.d ( d + - - k2 2 - d+b‘“2 F ( )-1 ( )
2 n 2 3 n Efi' “'Efi co n “;2" 2 n ‘ p2 n =n

' '39— 2d 22.. ' ' 2

Fl(r)L1 dr (r '5?) + ar + k r cl Fl(r)=l p1(r)=r

F'(9)L' . i9. (sin 9-9—9 -c sine - d‘”2+b cose F'(e)=1 '(6)=sin9
2 2 d6 d6 1 sin6 2 p2

The separated ordinary differential equation corresponding

to these operators are solved in Section III. we assumed that

U a k1(§)k2(n)eiu¢ or U a g1(r)g2(9)e1“¢ so we simply list the

solutions we will use in this section, which are determined by our

choice of path and the vanishing of the bilinear concomitant. For

our kernel we choose the product of (13) and (1h),

K(e,n) =-%—wv,a (kig2)-%- ”7,1 (kin2)

and (15) for F2(x2) =-%- w (2kir)



1+9

By the integral theorem of Section IV we have

Me) = é—WVFUQ'LSI) 41. me'f) L, wwnux) .1.

C’

where t(9) represents one or possibly a linear combination of the

various functions denoted by

Muffin

(cos‘é)
"’21'26 z ‘

If we choose a suitable path and use K(§,n) €2(x2) as our

integrand, the integral will represent a generalized hypergeometrfl:

equation (Leitner—h). For our path we choose the real axis from

O to d3 since this causes the bilinear concomitant to vanish e.-.
)

2. 3 i - 1 ' 1W ' °r 5-; [5i WWII“? ) WmQRW) 7 vafihmr) '-

i

I

J

:— WVJAELS-L) Mfimmz) ‘3? [_L— vaahma]
O

5’!

provided lReO‘l + IRC'EI +‘Rcil <y2 -

Our integral takes the form

d)

\ , 1 . .

:. __ \2 1 2h fl olrHe) 5v” WWW?) Wmfl w) vaefi L

0

Using r sin 6 = gq and r cos 9 = g (£2 - we) we have n2 = r(l - cos 9),

52 = r(l + cos 6), so our integral becomes

00

“Fir—15755 WW6(er[\+<:056]) Wx)t(RLrI\-cose]) Wy+3) F_(7Je'ur) dY,

and this integral converges when [Red I I |Re“: | *- IRCE I (3/2. °



SO

2

6 0

Let cos w and r = 2ki2 - , we have

(52) {(e)=m[%a Wv)5-(P1W1) W131: (Fth‘wq) Wl+t)&(loz) dP .

O

This integral is equivalent to (h2) where 9 corresponds to 90° - ¢.

The integral (h2) was obtained by considering S(l,2) and we realize

that (52) is equivalent to (h2) and is obtained from s(3,6).



VIII. CONCLUSION

The objective of this thesis was to present a unified method

of generating integral representations in special function theory,

using the idea of simultaneous separability of

V2U + ¢ U a o

in orthogonal curvilinear coordinate systems.

Not all possible cases were pursued. For those in which

the functional equations for ¢ could be solved and in which the

special functions were of the hypergeometric class, several inte-

grals were obtained.

Many more integral representations could be generated using

s(2,h), s(2,6) and case (3) of s(1,h), which we did not find time to

investigate. Furthermore, it is conceivable that other simultaneous

separabilities exist which we did not find. we did not investigate

all possible special cases of our main results (h2), (h9) and (50).
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