

This is to certify that the

thesis entitled

A MICROCOMPUTER-CONTROLLED STOPPED-FLOW CLINICAL ANALYZER IN WHICH IMMOBILIZED ENZYME REACTION LOOPS ARE USED

presented by

MARTIN DAVID JOSEPH

has been accepted towards fulfillment
of the requirements for
Ph.D. CHEMISTRY
degree in

Major professor

Date _____JULY 18, 1978

O-7639

A MICROCOMPUTER-CONTROLLED STOPPED-FLOW CLINICAL ANALYZER IN WHICH IMMOBILIZED ENZYME REACTION LOOPS ARE USED

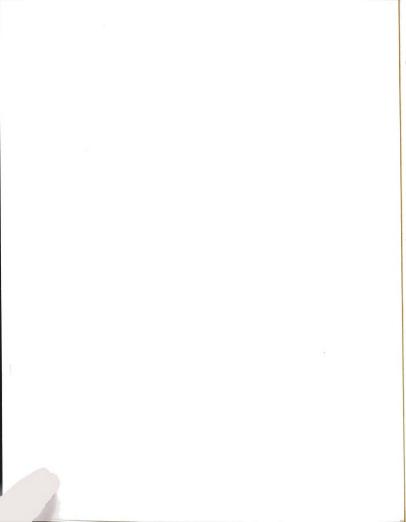
Вy

Martin David Joseph

A DISSERTATION

Michigan State University

in partial fulfillment of the requirements


for the degree of

Submitted to

DOCTOR OF PHILOSOPHY

Department of Chemistry

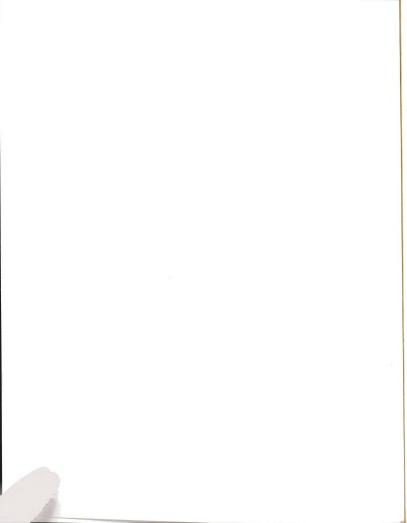
1978

CHOCHS

ABSTRACT

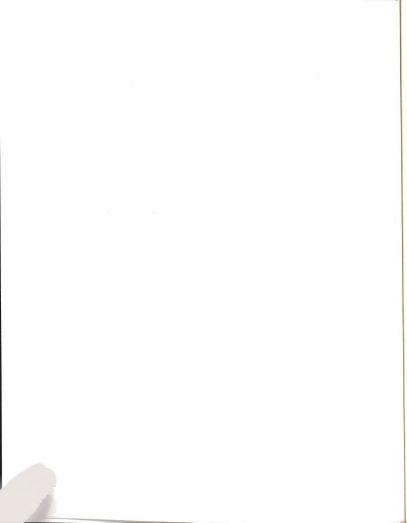
A MICROCOMPUTER-CONTROLLED STOPPED-FLOW CLINICAL ANALYZER

IN WHICH IMMOBILIZED ENZYME REACTION LOOPS ARE USED

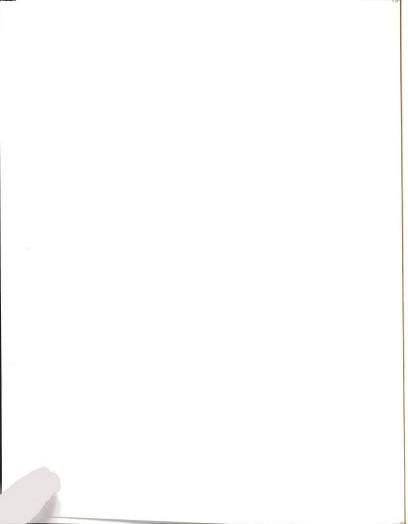

Вų

Martin David Joseph

A microcomputer-controlled stopped-flow clinical analyzer (SFCA) has been developed for application in clinical analysis. The analyzer uses an immobilized enzyme to catalyze the conversion of a specific analyte to a specific product. The concentration of the product is determined spectrophotometrically in a follow-up indicator reaction, which takes place in the observation cell of the stopped-flow module. The separation of these two reactions permits the selection of optimum conditions for each, and also the use of either a reaction-rate method or an equilibrium method to monitor each reaction.


A procedure was developed for the immobilization of enzymes onto the interior surface of nylon tubing. Glucose oxidase was immobilized by this procedure, and showed only moderate loss of activity after several months of use. Immobilized alcohol dehydrogenase was used routinely for over a month.

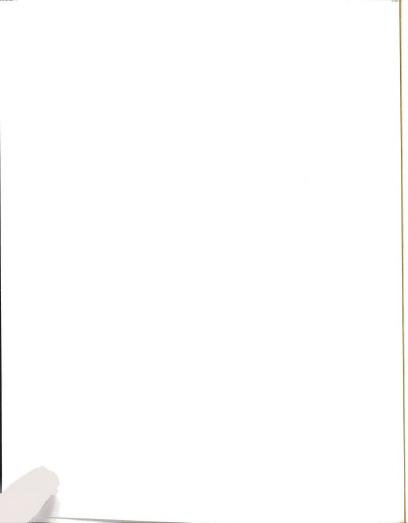
A commercial stopped-flow instrument was modified to



incorporate the immobilized enzyme reaction loops into the stopped—flow mixing system. The sequencing of the SFCA and the acquisition of analog spectrophotometric data were placed under the control of a microcomputer. The interfaces were designed to function in harmony with software to allow a variety of sequencing schemes to be implemented. A minimicrocomputer hierarchical system was designed to facilitate modification of microcomputer software, and to permit sharing of the facilities of a minicomputer system among several microcomputers. The hierarchical system was used to divide computational tasks between the microcomputer and a more powerful minicomputer system.

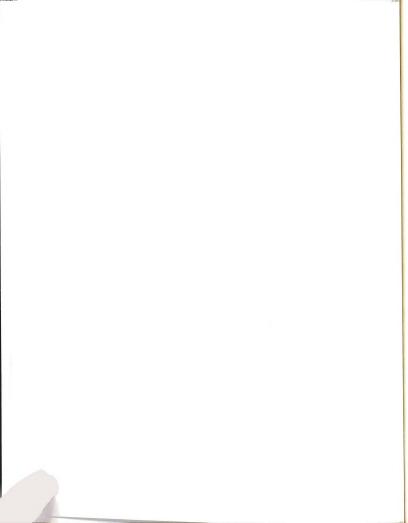
The kinetics of the immobilized enzymes were studied. The Michaelis-Menten model of soluble enzyme kinetics was applied, and modifications to the model which attempt to account for diffusional effects were incorporated. The performance of the instrument in clinical analysis was evaluated. Adequate sensitivity was obtained by allowing the sample to react with the enzyme for as short a time as 2 min. Excellent agreement with accepted methods was obtained in analysis of serum samples.

To Betty
Matt and Meg



ACKMOWLEDGEMENTS

My sincere thanks and appreciation go to Professor Stanley R. Crouch, my research director. As advisor and friend he has been both inspirational and invaluable. I am also very grateful to Dr. Andrew Timnick, who has served as second reader. It has been a pleasure to teach for Andy and I have enjoyed his friendship.


I would like to thank Dr. Gene Pals for many imaginative discussions on an endless variety of topics, and for being a good friend. I am indebted to Dr. Dave Baxter for his help in solving a great many problems, and to Dr. Eric Johnson for sharing his software expertise and for being a patient tutor. Much appreciation is also due to Roy Gall for help in the stopped-flow studies, and to Rytis Balciunas for slaving over the PROM monitor board with me for what often seemed to be an eternity. I am also thankful to Dr. Floyd Holler for his assistance in initial stopped-flow work and for helpful discussions.

My parents and family have my thanks and appreciation for their support, especially Joe, without whose friendship and advice this work would have been so much less enjoyable. Finally, I am eternally indebted to my wife Betty, for giving me the opportunity, and for keeping my sights set far and my spirits high, and to the kids, for greeting me at the door.

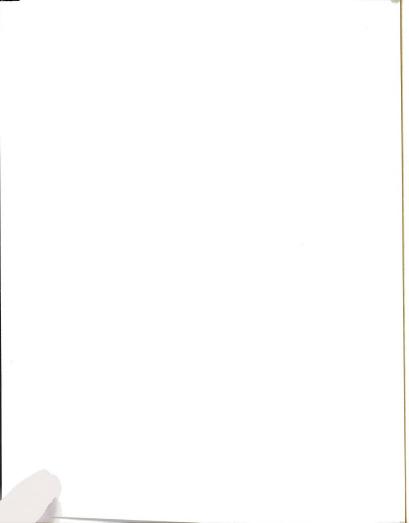
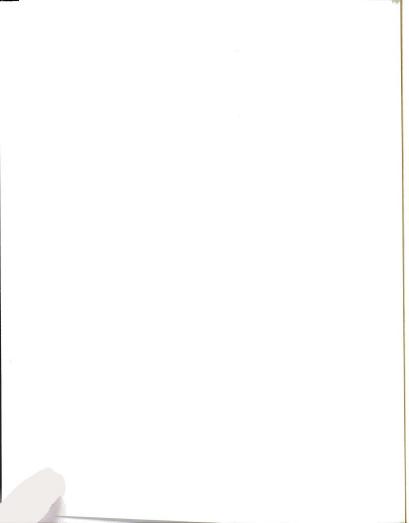
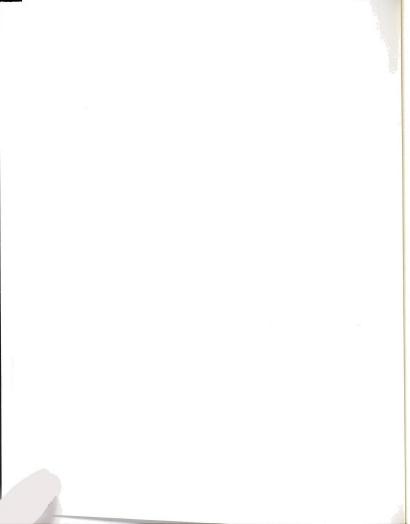
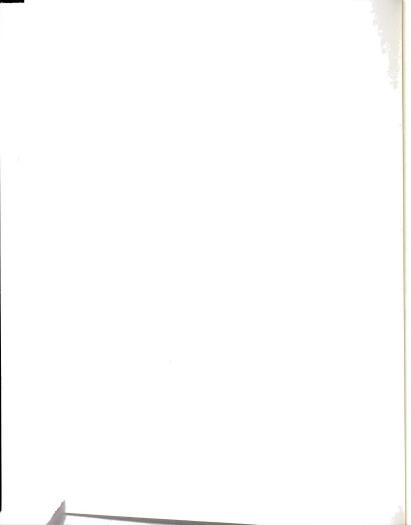


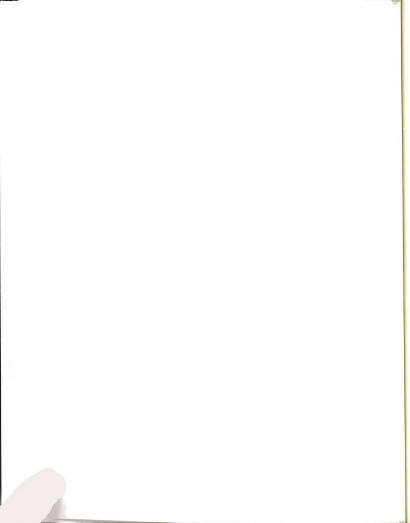
TABLE OF CONTENTS


Chapter		Page
LIST OF	TABLES	ix
LIST OF	FIGURES	x
CHAPTER		1
CHAPTER		4
Α.	Methods of Immobilizing Enzymes	4
	1. Adsorption	5
	2. Cross-Linking	5
	3. Physical Entrapment	6
	4. Covalent Attachment	7
B.	Analytical Applications of Immobilized Enzymes	, 9
	1. Electrochemical Detection	9
	a. Amperometric	, 9
	b. Potentiometric	
	2. Spectrophotometric and Fluorometric Detection	11
	3. Enthalpimetric Detection	16
C.	Commercial Systems Which Employ Immobilized Enzymes	
CHAPTER		21
A.	Initial Preparation and Hydrolysis of the Nylon	22
B .	Attachment of Glutaraldehyde	24
C.	Immobilization of the Enzyme	28
D.	Specific Procedure for Enzyme Immobilization.	31


Chapter		Page
CHAPTER	IV. FIRM SYSTEMS	
	The state of the s	33
A.	Technicon Auto Analyzer	33
	1. Description	33
	2. Design for Immobilized Enzymatic Analysis of Glucose	34
	3. Characteristics	36
₿.	Stopped-Flow Clinical Analyzer	39
	1. Description	39
	2. Characteristics	43
CHAPTER	V. MICROCOMPUTER INSTRUMENTATION	46
A.	Overview	46
В.	The 6100 Microcomputer	50
	1. Description	50
	2. PROM Monitor Software	51
	a. Transparent Mode	53
	b. Binary Loader	55
	c. RAM Monitor	56
	3. Operating Procedures	57
	4. PROM Monitor Logic	
C.	RECA Interferen	61
	1. General Considerations	61
;	7 Control Interdes	63
	a. The Open and Close Sample	
		63
	b. The Syringe Control Instructions	64
	c. The Skip on Flow Stopped Instruction	56
	d. The Read Switch Register Instruction	56


Chapter	•		Pag
	3.	Sequencing and Timing	70
	4.	Analog Interface	
		a. The Convert Command	71
		b. The Skip on Conversion Done	72
		Command	73
		c. The Read ADC Command	73
		d. The Set DAC Command	76
D.	SFC	A Software	76
	1.	Microcomputer Software	78
	2.	Data Transfer Subroutines	83
	3.	Minicomputer Software	83
CHAPTER	VI.	EVALUATION OF THE STOPPED-FLOW CLINICAL ANALYZER	85
A.	Sol	ution Volumes	85
B .	Seq	vencing	87
C.	Ind	icator Reaction	88
D.	Sout	rces of Error	90
	1.	Sampling	91
	2.	Enzymatic Reaction	92
	3.	Indicator Reaction	93
	4.	Measurement of Absorbance	95
		a. Light Source Characteristics	95
		b. Physical Interferences	96
		c. Spectral Interferences	97
		d. Detector Noise	98
		e. Photocurrent Amplifier	99
		f. Digitization	99
	5	Summary of From Sources	100

CHAPTE	R VII.	CHARACTER	RIZATION OF	THE						
Α.	Kinati		ED ENZYMES							102
			Immobiliz							102
	1. Mi		lenten Mode							102
	a.		Oxidase.							105
	b .		Dehydroge							111
	2. Di	ffusion E	ffects							114
	3. In	duction P	eriod							116
В.	pH Pro	files								117
C.	Long T Storag	erm Stabi e Conditi	lity and ons							110
CHAPTER			NCE OF THE		•	•	•	•	•	117
		AS A CLI	VICAL ANALY	ZER						124
A.	Optimu	m Analytic	al Paramet	ers	 •					124
	1. Rea	∍gent Cond	entrations							125
	a.	Glucose	Determinat	ions						125
	b .	Ethanol	Determinat	ions			•	•		127
	2. Mod	le of the	Enzymatic	Reaction					•	130
	3. Mod	le of the	Indicator	Reaction		•				131
B.	Lineari	ty of Cal	ibration C	urves			·	• .		132
			rminations							132
			rminations							132
C.										
D.	Interfe	rences								135
٤.			n							136
			eaction-Lo							
G.	Initial	Study of	Cholester	o l						
							•	•		139
PUME IEK	IX. SU	riciaky AND	FUTURE PRO	JSPECTS.	 _	_			•	145



Chapter		Page
REFERENCES .		149
APPENDIX A:	Selected Program Listings	155
APPENDIX B:	A Stopped-Flow Clinical Analyzer in Which Immobilized Enzyme Reaction Loops are Used	193

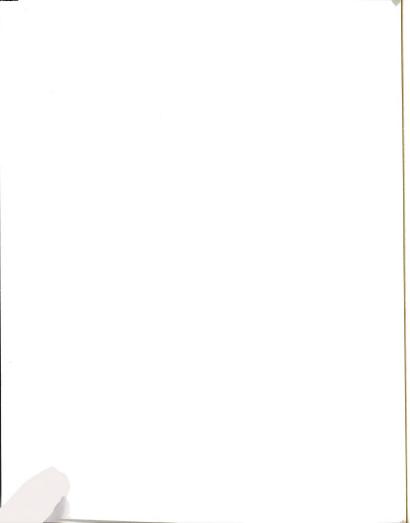
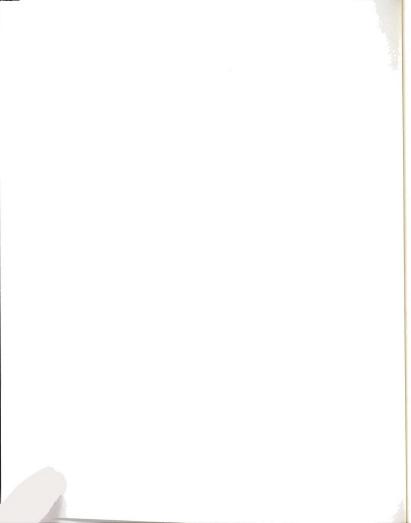

LIST OF TABLES

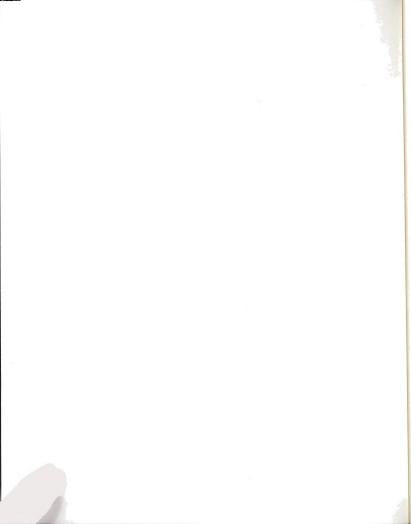
Table		Page
1	Software Commands to the Control Interface	63
2	Control Signals for the GCA-McPherson	
	Stopped-Flow Module	64
3	Software Commands to the Analog Interface	72
4	Manual Mode Commands and Their Function	81



LIST OF FIGURES

Figure		Page
1	Scanning Electron Microscope Photographs	
	of Virgin and Hydrolyzed Nylon Surface	25
2	Attachment of Glutaraldehyde	27
3	Proposed Aqueous Forms of	
	Glutaraldehyde	29
4	Attachment of the Enzyme	30
5	Auto Analyzer Configuration for	
	Glucose Determinations	35
6	Stopped-Flow Clinical Analyzer	40
7	Point-to-Point Hierarchical Network	48
8	SFCA-Micro-Minicomputer System	52
9	Schematic Diagram of Instruction	
	Decoding Circuitry	62
10	Schematic Diagram of Sample Valve	
	Control Circuitry	65
11	Schematic Diagram of Syringe	
	Control Circuitry	67
12	Schematic Diagram of Skip on	
	Flow Stopped Circuitry	68
13	Schematic Diagram of Switch	
	Register Circuitry	69
14	Schematic Diagram of Skip on	
	Conversion Done Circuitry	74

rigone		Page
15	Schematic Diagram of Read ADC	
	Circuitry	75
16	Schematic Diagram of Set DAC	
	Circuitry	77
17	Computer Simulated Initial	
	Rate Curve	104
18	Glucose Progress Curve	108
19	Lineweaver-Burke Plot for	
	Glucose Oxidase	110
20	Ethanol Progress Curve	113
21	pH Profile of Glucose Oxidase	118
22	pH Profile of Alcohol Dehyrogenase	120
23	Calibration Curve for Glucose	
	Determinations	133
24	Calibration Curve for Ethanol	
	Determinations	134
25	Proposed Multi-Reaction-Loop SFCA	140
26	Effect of Azide on Initial dA/dT	
	for Iodide-Peroxide Reaction	144

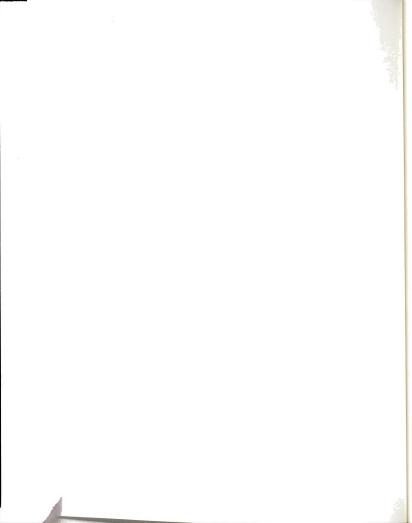


CHAPTER I

INTRODUCTION

Analytical chemistry has played an important role the field of medicine for a number of years. As man's knowledge of the relationship between the levels of certain substances in the body and disease increases, there is an ever increasing demand for accurate information about a Also, with the greater focus on patient's body chemistry. preventative medicine, the physician may soon be able to predict disease, based on body chemistry information, before the appearance of normal physical symptoms. In order to keep up with this ever increasing demand in the clinical laboratory, analyses must be carried out faster, accurately, and at lower cost. Thus there is a real need for automation at every stage of clinical analysis, from sample preparation and introduction to data acquisition and the calculation of a final result.

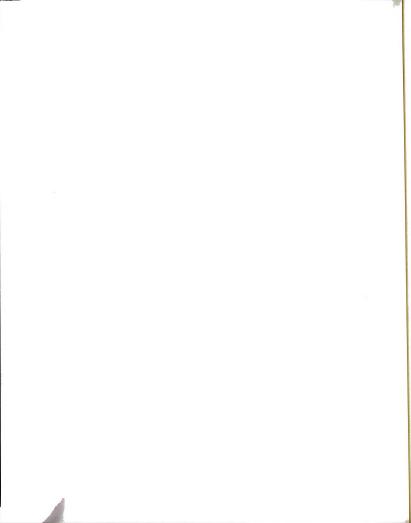
Immobilized enzymes should play a key role in meeting the challenge. Enzymes, by their nature, have the ability to catalyze a particular reaction of a specific substance, even when the substance occurs in a complex matrix such as plasma or serum. When attached to an inert support, the enzyme can be reused, often hundreds or even thousands of times. The increased number of determinations per unit amount of enzyme can reduce greatly the cost of routine



enzymatic analysis. Problems of instability are often diminished when an enzyme is immobilized. Hence, immobilized enzymes are far superior in many aspects to their soluble forms.

This thesis describes the development of an automated stopped—flow clinical analyzer (SFCA), which makes use of an immobilized enzyme to catalyze a specific reaction of a specific substrate (analyte). The concentration of the product of the enzymatic reaction is determined in a stopped—flow spectrophotometer. The operation of the SFCA and data handling are under the control of a microcomputer. A hierarchical network was developed to allow fast and efficient communication between a more powerful minicomputer system and this and several other microcomputers.

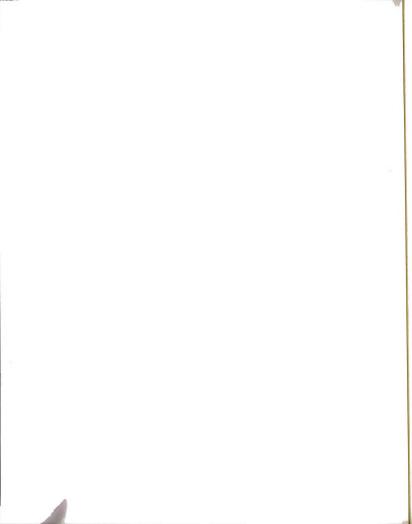
Because the overall project involved work in several different areas of analytical chemistry, this thesis is generally divided according to the various sub-projects. Each chapter presents a particular aspect of the entire project as a complete unit, which can be read independently of the other chapters.


Chapter II presents a history of immobilized enzymes in analytical chemistry and includes a summary of current applications in the clinical laboratory. The enzyme immobilization procedure developed in this work for attaching glucose oxidase and alcohol dehydrogenase to nylon tubing is described in chapter III. These immobilized enzymes were employed in two different flow systems, the

commercial Technicon Auto Analyzer and the stopped-flow clinical analyzer. These flow systems are described in chapter IV.

Microcomputer instrumentation, for the control of the stopped-flow clinical analyzer and for the acquisition and processing of the spectrophotometric data, is described in chapter V. A hierarchical network system is also described. In chapter VI, instrumental aspects of the SFCA are evaluated, both from a theoretical basis and from actual observed characteristics. Sources of error are discussed.

Immobilized glucose oxidase and alcohol dehydrogenase are characterized in chapter VII. The traditional Michaelis-Menten model of enzyme kinetics is applied, and modifications to the model are included to diffusional effects. In chapter VIII, the potential of the SFCA in clinical analysis is evaluated. A proposed system which mould. contain multiple immobilized enzymes is discussed, and initial work on the immobilized enzumatic analysis of serum cholesterol is presented. Finally, a summary of this work and recommendations for future work are presented in chapter IX.


CHAPTER II

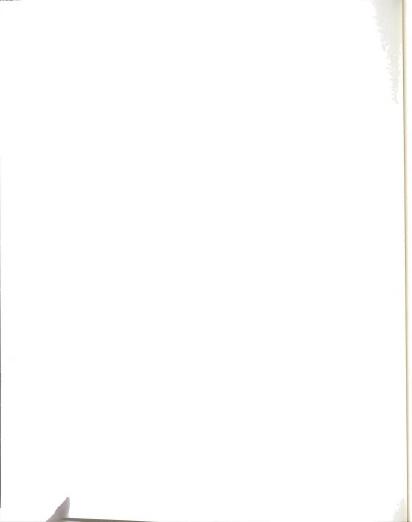
IMMOBILIZED ENZYMES IN ANALYTICAL CHEMISTRY

The development of immobilized enzymes is reviewed in this chapter in relation to the field of analytical chemistry. The first section reviews the methods of immobilizing enzymes. In the next section, an overview of analytical applications of immobilized enzymes is presented. Finally, some commercially available analytical devices which employ immobilized enzymes are presented.

A. Methods of Immobilizing Enzymes

Several methods have been developed for immobilizing enzymes onto a wide variety of inert supports. Several reviews (1-8) have recently appeared covering the topic in detail. The methods can be classified into four main categories: (1) adsorption, (2) cross-linking, (3) physical entrapment, and (4) covalent attachment. Some methods involve combinations of these four, and within each category many variations have been reported. The enzyme to be immobilized as well as the application should be considered when choosing a method.

1. Adsorption

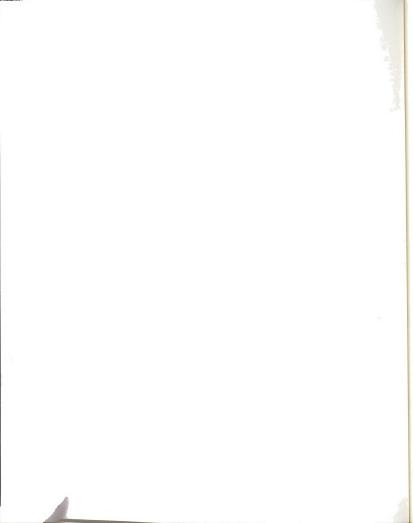

Adsorption of the enzyme to an inert support is by far the simplest method of immobilization and usually does not involve the use of harsh reagents or conditions which might be harmful to the enzyme. Adsorption methods have been reviewed in depth by McLaren and Parker (9).

The earliest reported enzyme immobilization appeared in 1916 by Nelson and Griffin (10). The enzyme invertase was adsorbed onto charcoal, and its activity detected by measuring changes in optical rotation of solutions of cane sugar when the immobilized enzyme was added.

Adsorption methods have not become prevalent due to the ease with which the enzymes are desorbed, particularly in the presence of substrate (11,12).

2. Cross-Linking

Enzymes can be immobilized by cross-linking with low molecular weight multifunctional reagents. Covalent bonds between the enzyme and the reagent form intermolecular cross-links. Multifunctional reagents commonly used include diazobenzidine and its derivatives and glutaraldehyde. Reactive groups in the enzyme (4) include terminal amino and carboxyl groups and the substituents of some amino acid residues such as arginine (guanidyl substituent), lysine (amino), hystidine (imidazole), cysteine (sulphydryl),

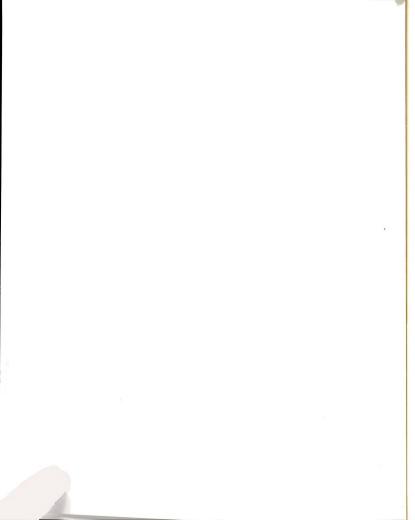

serine (hydroxyl), tyrosine (phenol), aspartic acid (carboxyl), and qlutamic acid (carboxyl).

When attempting an immobilization procedure which involves the formation of covalent bonds to the enzyme, bonds to a group in the enzyme's active site should be avoided. The amino acid residues located in the active sites of many enzymes have been compiled (13).

To avoid bonding to the active site in trypsin (14,15), the enzyme has been first polymerized with the N-carboxyl-anhydride of L-tyrosine before it is to react with various immobilizing polymers. The polytyrosyl chain which forms supplies an alternative site to the essential residues in the enzyme. Other approaches to protecting the active site involve performing the immobilization in the presence of the substrate or a competitive inhibitor (18,17). The presence of a species such as substrate which selectively binds to the active site may also result in enhanced activity of the immobilized enzyme due to stabilization in its active conformation (19). A review of cross-linking immobilization methods can be found in Melrose (4).

3. Physical Entrapment

When a polymer is formed in the presence of an enzyme, the enzyme can become physically entrapped within the polymer lattice. The polymer lattice can be so designed that the large enzyme molecules are not able to diffuse out, but the smaller substrate and product molecules are able to

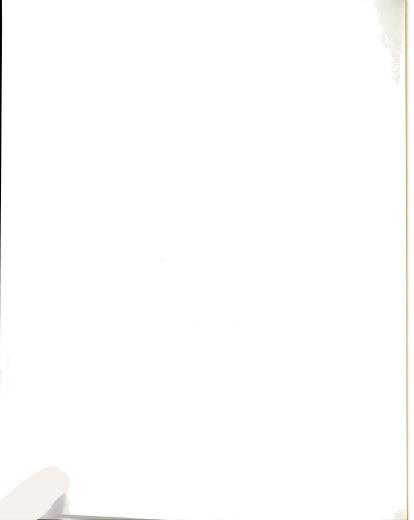

diffuse freely in and out of the matrix. Reagents used for enzyme entrapment include polyacrylamides, silicone rubber, silica gel, and starch.

Cholinesterase (19) has been immobilized in a starch matrix and placed on a polyurethane foam pad. Enzyme activity was retained for at least 12 months. Hicks and Updike (20) immobilized glucose oxidase, catalase, lactate dehydrogenase, amino acid oxidase, and glutamic dehydgogenase by entrapment in polyacrylamide gels. These enzymes showed little loss of activity after three months.

The principal advantages of physical entrapment methods are the ease of preparation and the fact that the enzyme is left unperturbed. Entrapped in a cavity of the proper size, the enzyme is able to take on conformational changes which may occur during the catalysis. Enzymes entrapped within semipermeable microcapsules are considered to mimic best the environment of a living cell. An obvious disadvantage is that entrapment of enzymes which catalyze reactions of large substrate molecules will often result in little or no observed activity.

4. Covalent Attachment

Enzymes have been covalently attached to a wide variety of water-insoluble supports by numerous methods. Covalent attachment is the most common method of enzyme immobilization, since theoretically it offers the most stable and most versatile method (2). A representative



sampling of reports of covalent attachment is presented in this section.

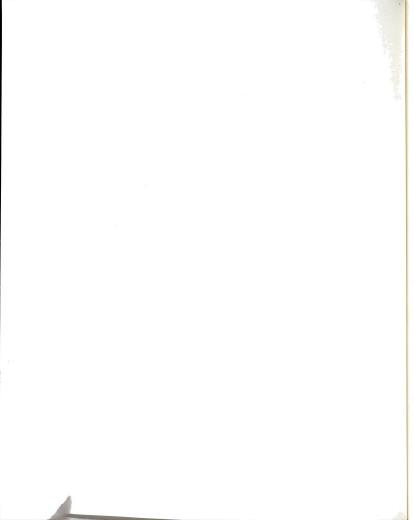
Lactate dehydrogenase (24) has been attached to anion exchange cellulose sheets. Enzymes have been diazotized to cellulose particles (25) and to polyaminostyrene beads (26). Other supports include water-insoluble derivatives of trypsin (27) and carboxymethylcellulose (28). Weetall and Hersh (29-33) have described procedures for the covalent coupling of enzymes to inorganic materials with the aid of an intermediate coupling agent. They note that inorganic carriers have several advantages including immunity to microbial attack and immunity to changes in configuration over a wide pH range or under various solvent conditions.

Porous glass is a popular support for covalent attachment of enzymes. Using silane as a coupling agent, alkaline phosphatase (29), urease (30), trypsin, and papain (31) were covalently coupled to silica glass. The products were used in a packed column continuously for long periods of time without significant loss of activity. Lactate dehydrogenase and pyruvate kinase (34) were immobilized on glass beads by diazotization and used in packed bed reactors. Glucose oxidase has been covalently attached to controlled-pore glass and to NiO on a Ni screen through a silane coupling reagent (32).

Glucose oxidase (35), urease, and urate oxidase (39) have been chemically attached to polystyrene tubes and used in automated analysis. Goldstein (36) has developed a

synthesis of polyanionic and polycationic resins as supports for trypsin, chymotrypsin, subtilisin Novo, subtilisin Carlsberg, and papain.

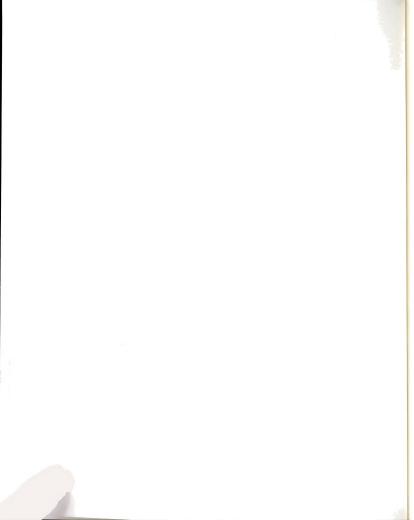
L-Aspariginase has been attached to nylon tubing (38). Nylon has also been used as the support for immobilization of lactate dehydrogenase, maltate dehydrogenase, alcohol dehydrogenase (40), urease (41), trypsin (42), and glucose oxidase (43) for use in continuous flow analysis.


B. Analytical Applications of Immobilized Enzymes

Immobilized enzymes have tremendous potential as reagents in chemical analysis. Their major advantage over non-enzymatic methods is their specificity. As such, in many cases they can be used in conjunction with nonselective detectors such as pH, gas or ion-specific electrodes, thermistor probes, or certain non-specific methods. This section describes photometric some representative examples of analytical uses of immobilized enzymes, and is divided according to the type of detector employed.

1. Electrochemical Detection

a. Amperometric


One of the most common electrochemical detectors used in combination with immobilized enzymes is the oxygen

electrode. The so-called enzyme electrode, first reported by Updike and Hicks (43), is an elegant chemical transducer. Glucose oxidase is polymerized in a gelatinous membrane over a Clark type oxygen electrode and hence combines the specificity of the immobilized glucose oxidase with the electrochemical transducer to produce a portable probe for glucose determinations. Oxygen consumption during the conversion of glucose to gluconic acid is monitored by the current output of the electrode, held at a fixed polarizing voltage. About 30 s to 3 min is required for the diffusion processes to reach equilibrium.

Total serum cholesterol has been determined immobilized cholesterol oxidase and cholesterol esterase (44).The enzymes were immobilized onto alkylamine glass beads and placed in a rotating porous stirrer near the The hydrogen peroxide produced in the platinum electrode. enzymatic reaction was measured amperometrically at +0.60 V The reaction was monitored either by a rate method, by measuring the initial current change over a 2 min period, or after equilibrium had been attained, by measuring the total current change about 10 min after the start of the reaction. A precision of 1-3% relative standard deviation obtained in equilibrium mode determinations. The immobilized enzymes were used in 200-300 analyses with only moderate loss in activity.

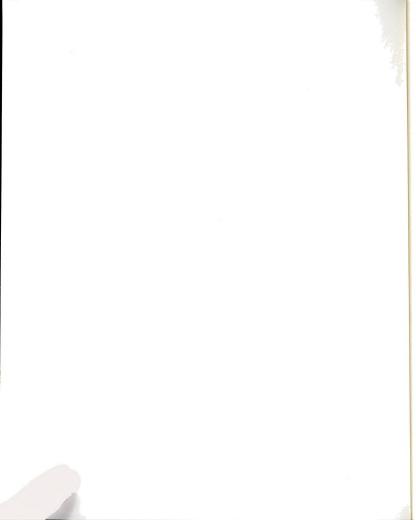
Immobilized glucose oxidase has been used in combination with an oxygen electrode in the continuous flow

analysis of glucose (37). Both equilibrium and reactionrate methods were evaluated. The enzyme appeared to be
stable for 200 days while analyzing over 1000 samples, and
had a storage life in excess of one year.

Williams, Doig, and Korosi (48) have used a platinum electrode to monitor reactions of both glucose oxidase and lactate dehydrogenase entrapped between the electrode and a dialysis membrane.

b. Potentiometric

The ammonium ion electrode has been used extensively as a detector for the enzymatic conversion of urea to ammonium. Guibault and Montalvo (45) have prepared a urea electrode by immobilizing urease in a polyacrylamide matrix on a thin synthetic net. The net is placed over an ammonium ion-selective electrode. When the electrode is placed in a soluton containing urea, the urea diffuses to the urease membrane where it is hydrolyzed to ammonium ion. At pH 7, the ratio of ammonium ion to ammonia is approximately 100. The response is somewhat slow; after approximately 100 s, the potential is measured and found to be proportional to the urea concentration in the range 10 to 300 ppm. The urea electrode has been improved and further described by these workers (46,47).

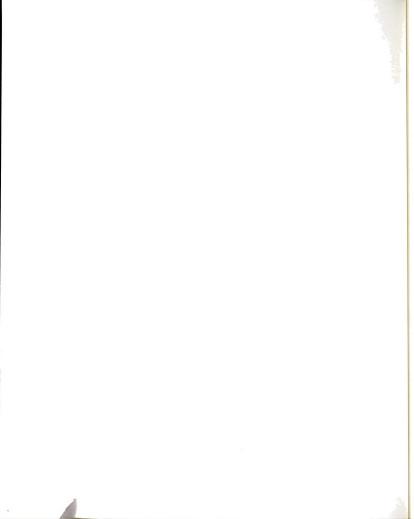

Urea has also been immobilized over the gas diffusion membrane of an ammonia probe. Anfalt, Granelli, and Jagner

(49) used glutaraldehyde as a cross-linking agent to immobilize the enzyme. Papasthathopoulas and Rechnitz (50) measured urea by this technique directly in whole blood samples by standard addition. The electrode potential was measured approximately 5-6 min after immersion of the electrode and found to be proportional to the urea concentration.

Since the ammonia gas electrode responds to ammonia and not ammonium ion, the pH of the monitored solution must be basic enough to ensure that all ammonium ion is converted The urease-catalyzed reaction is however to ammonia. optimized at a somewhat neutral pH. Hence the separation of these two components permits selection of the optimum pH for each. Watson and Keyes (51) immobilized urease on a porous alumina support. Samples containing urea were injected into a continuously flowing buffer stream passing through the immobilized enzyme column. A sodium hydroxide solution was continuously added to the reagent stream as it left the column, which converted ammonium ion to ammonia (pH 11). The solution then came into contact with an ammonia gas electrode which was located downstream. Total conversion of urea took place in the enzyme column, and as such the method is immune to imprecisions arising from fluctuations in the rate of the enzymatic reaction caused by changes in solution composition and temperature.

In a similar technique, urease (52) was immobilized on controlled-pore glass using glutaraldehyde and used in

the continuous flow analysis of urea with an ammonia gas sensor as the detector.

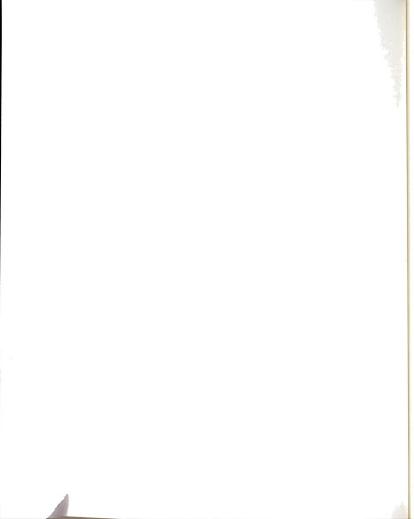

An extensive mathematical treatment of the use of potentiometric sensors to monitor reactions of enzymes immobilized in semi-permeable membranes has been presented by Blaedel, Kissel, and Boguslaski (53).

Changes in solution pH that occur during certain enzymatic reactions has also been used as an indicator. May and Li (54) monitored the enzymatic hydrolysis of urea with a commercial pH stat. Urease was immobilized in hydrocarbon-based liquid-surfactant membranes by adding as aqueous urease solution dropwise to the membrane-forming solution. The enzyme-containing emulsion was added to a solution of urea, and the reaction monitored at pH 6.7 by recording the rate of addition of HC1.

A pH stat was also used to monitor reactions involving immobilized trypsin, chymotrypsin, subtilisin Novo, subtilisin Carlsberg, and papain (immobilized as described earlier) by Goldstein (36).

2. Spectrophotometric and Fluorometric Detection

Spectrophotometric and fluorometric detectors are commonly used to monitor immobilized enzymatic reactions, as the required instrumentation is found in almost all clinical laboratories. The measurement can be either direct or indirect. Direct measurement involves monitoring a

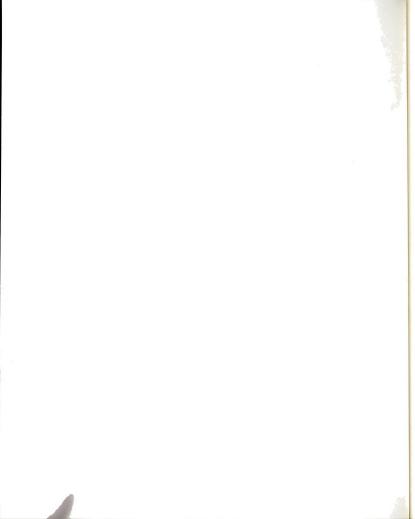

chromophore or fluorophore whose concentration changes during the reaction. Indirect measurement involves the conversion of a species (whose concentration is changing) into a chromophore or fluorophore. Both methods can be used to monitor the reaction continuously, or monitor the species after the reaction has proceeded for a specified time.

Newirth, et al. (34) monitored solutions of pyruvate (PYR), phosphoenolpyruvate (PEP), and adenosine-5'-diphosphate (ADP) with immobilized lactate dehydrogenase (LDH) and pyruvate kinase (PK). The LDH-PK assay system utilizes the change of absorbance at 340 nm due to the disappearance of reduced nicotinamide adenine dinucleotide (NADH).

$$PEP^{3-} + ADP^{3-} + H^+ \xrightarrow{PK} PYR^- + ATP^{4-}$$

In a continuous flow system, solutions were run through either one or both of two packed bed reactors containing the immobilized LDH and PK and on to a spectrophotometric flow cell. PYR solutions (0.01-0.1 mM), PEP and PEP-PYR solutions (0.01-0.1 mM in PEP), and ADP solutions (0.01-0.1 mM) were analyzed by the method.

The increase or decrease in NADH absorbance was used to monitor the immobilized enzyme catalyzed reactions of pyruvate, oxalacetate, and ethanol (40). The enzymes were immobilized onto nylon tubes and used in an automated

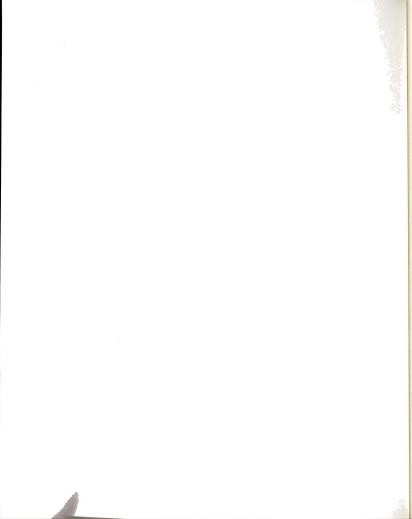


continuous flow analyzer. Substrate solutions pass through the immobilized enzyme tube and on to the flow cell for the determination of the NADH present. Each immobilized enzyme tube was used for at least 1000 analyses over a period of 20 days without any loss in activity.

The hudrogen peroxide produced in the enzumatic uric acid was monitored indirectly conversion by Filippusson, et al (39). Urate oxidase was immobilized nylon powder which was then packed into a column and used in an automated continuous flow analyzer. Samples were mixed with buffer and passed through the packed column where a certain fraction of the uric acid was converted to allantoin hydrogen peroxide. After the sample left the column, HCl and KI were added to the reagent stream. The peroxide converted the iodide to triiodide. The absorbance at 349 nm due to triiodide was measured in a flow cell downstream, and was found to be proportional to the uric acid concentration in the sample. Calibration curve linearity extended from 0.01 to 0.10 mM uric acid. Over 400 analyses were performed with the immobilized enzyme over a 4 month period.

The hydrogen peroxide-iodide reaction has also been used to monitor the enzymatic reaction of glucose with glucose oxidase (35). The enzyme was covalently attached to a polystyrene tube and used in the continuous flow analysis of glucose solutions ranging from 0.5 to 10 mm.

Nessler's reagent was used to monitor ammonia production in the enzymatic conversion of L-asparagine (38).

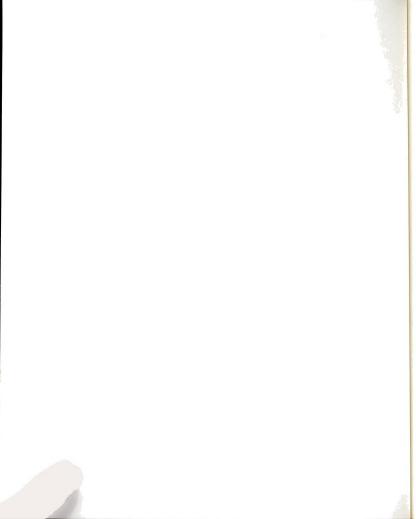


The enzyme, L-asparaginase, was attached to a nylon tube. Solutions of the substrate passed through the tube, reagents were added to the departing stream, and passed through a flow cell. The flow kinetics of the system were studied, and it was found that at low flow rates the enzymatic reaction is largely diffusion-controlled.

The activity of trypsin aattached to nylon tubing has been determined spectrophotometrically (42). The hydrolysis of solutions of N-benzoyl-L-arginine ethyl ester (BAEE) was monitored by measuring the absorbance at 255 nm of the effluent relative to that of the solution entering the tube. The kinetics of the immobilized trypsin were studied by varying the flow rate of solution through the tube (and hence the residence time) and monitoring the extent of reaction.

3. Enthalpimetric Detection

The enzyme thermistor combines the specificity of an enzyme-catalyzed reaction with the generally non-specific detection of small changes in reaction solution temperature. Mosbach and Danielsson (63) developed the first enzyme thermistor by immobilizing trypsin and apyrase and monitoring, with a thermistor probe, the temperature changes which occurred during the enzymatic reaction. The change in thermistor resistance was recorded as a function of time. Linear calibration curves were obtained when the substrate

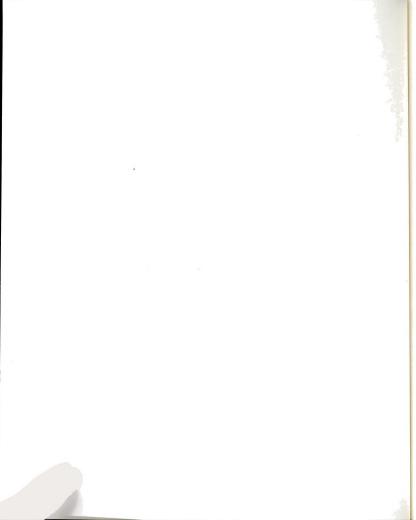


concentration was related to either the peak height, peak area, or the gradient at the inflection point. The system, however, required approximately 10 min to reach baseline after each sample.

Bowers and Carr (56) have presented an excellent treatment of the theory of immobilized enzyme thermochemical reactors. Samples containing urea were injected into a flowing buffer stream which passes through a reactor containing urease attached to porous glass. The temperature of the solution leaving the column was monitored with a fast thermistor and related to substrate concentration. Peak height, area, and width were studied as a function of sample concentration. Linearity in all three relationships were observed for urea concentrations up to 200 mM, above which complete conversion of substrate was not obtained in the column.

Urease immobilized on controlled-pore glass was also monitored enthalpimetrically in other reports (57,58). Cholesterol, glucose, lactose, and uric acid (59) analyzed with immobilized enzymes in combination with thermal detecton. Similarly, hexokinase (59) was immobilized on controlled-pore qlass and used in thermochemical analysis.

Enthalpimetric monitoring of the enzymatic reacton has the advantage of being free from several interferences which plague other detectors. The detector is, however, completely non-specific in that it responds to any


temperature change in the monitored solution. Another drawback to their use has been the somewhat slow analysis rate possible (due to slow response of the thermistor) and the large solution volume requirements. The use of non-compressable supports for the enzymes and the use of fast thermistors (56) has dramatically improved the situation.

C. Commercial Systems Which Employ Immobilized
Enzymes

Immobilized enzyme reactors as well as complete analytical instruments which employ immobilized enzymes are rapidly becoming commercially available, and more are to appear. A review of commercially-available immobilized enzyme products has been prepared by Burns (60).

Owens-Illinois, Inc. (Toledo, OH) has patented a blood urea nitrogen (BUN) analyzer. The BUN analyzer has been evaluated by Watson and Keyes (51). Urease immobilized on a porous alumina support is used to convert the urea to ammonium ion. Samples are injected into a continuously flowing buffer stream which passes through the enzyme Sodium hydroxide is added to the reagent stream as it leaves the column and converts the ammonium ion ammonia, which is then detected with an ammonia electrode located downstream. The column has been used in over 1000 analyses over a 3 month period.

Kimble produces a similar instrument, which has been

evaluated by Hanson and Bretz (61). A two-point calibration is recommended every 10 samples. Standard deviations of 1-3% were obtained on serum and plasma samples.

The "glucose oxidase reactor" can be purchased from Northgate Laboratories (Hamden, CT). The immobilized enzyme reactor has been incorporated in a Technicon AutoAnalyzer-II continuous flow system and evaluated by Leon et al (62). Over 25,000 samples were analyzed for glucose over a 74 day period with the reactor.

Technicon Corp. (Tarrytown, NY) is offerring "Autozyme" tubes for use with their AutoAnalyzer. containing immobilized enzymes (glucose oxidase, glycerol kinase, and co-immobilized hexokinase/glucose-6-phosphate dehydrogenase) are available. Analytical aspects of these products have been evaluated by Leon, et al (64). immobilized glucose oxidase tube was used in the analysis of 20,000 samples over a 4 month period, during which time the activity decreased by only 30%. The shelf life (0°C) is estimated to be over one year. The immobilized glycerol kinase, which is a very unstable enzyme in its soluble form, was used to determine serum triglycerides. Serum ATP was determined by the co-immobilized hexokinase/qlucose-6phosphate dehydrogenase.

Chua and Tan (65) evaluated the Glucose Analyzer marketed by Yellow Springs Instrument Co. (Yellow, Springs, OH). Immobilized glucose oxidase on a membrane is placed over a platinum electrode, which senses hydrogen peroxide

produced in the enzymatic reaction. The current output is measured over a fixed time (approx. 45 s) early in the reaction, and related to glucose concentration in the sample. A digital readout displays the concentration in mg/dl. Approximately 300 analyses can be performed with each membrane.

CHAPTER III

IMMOBILIZATION OF ENZYMES ON NYLON

Glucose oxidase and alcohol dehydrogenase were immobilized onto the interior surface of nylon tubing for use in automated clinical analysis. Nylon tubing was chosen as the support because solution containing the analyte (substrate) can be quickly and easily brought into contact with the immobilized enzyme for conversion to product and then removed to determine the amount of product formed. Nylon tubing containing immobilized enzyme was used in both a continuous flow type arrangement and also in the discrete sampling stopped-flow clinical analyzer.

Development of the immobilization procedure involved repeated synthetic attempts at obtaining adequate activity of the immobilized enzyme. During the development of the procedure, substrate samples mere analyzed by the immobilized enzyme on the Technicon Auto Analyzer continuous flow system described in Chapter IV. Each immobilization attempt was judged by its potential in a clinical laboratory where large numbers of samples environment, must bе processed daily. A procedure reported by Inman and Hornby (66) was attempted first, but proved unsuccessful for reasons discussed below. This chapter describes the development of an immobilization procedure which is believed

to be applicable to a variety of enzymes.

Briefly, the enzymes were immobilized on nylon tubing of 1.5 cm and 0.87 mm inner diameters as follows. After removing amorphous nylon, the interior surface of the tubing was partially hydrolyzed with mild acid. Terminal carbons of glutaraldehyde molecules were then attached to the partially hydrolyzed nylon, after which the remaining terminal carbon bonded to primary amine groups of the enzyme.

This procedure results in enzyme molecules becoming attached to the support by a six carbon cross-link, which allows flexibility in the molecule and hence no steric hindrance to activity. Enzymes in which primary amine groups are not present at or near the active center could be immobilized by this procedure without loss of activity.

A. Initial Preparation and Hydrolysis of the Nylon

Amorphous nylon was first removed from the nylon tube by incubation in a 20% solution of calcium chloride in 80% methanol/20% water (v/v) solvent at 50°C for 20 min. When the tube was then rinsed with distilled water, a stringy white precipitate was purged from the tube. Apparently the CaCl solution acts to remove sections of the nylon surface which are not totally a part of the polymeric structure. This should then result in a somewhat increased surface area for enzyme attachment as well as a more permanent support.

The remaining steps in the procedure were done by pumping the particular reagent through the tube with a peristaltic pump. By choosing pump tubing of appropriate inner diameter, the flow rate of reagent through the nylon tube can be selected from 0.015 to 4 ml/min.

Hydrolysis of the interior surface of the nylon tube was carried out by treating it with a mildly acidic solution. The surface hydrolysis is complete after 20 minutes of pumping 0.5 M hydrochloric acid through the tube at room temperature.

Early attempts at immobilization involved incubating the hydrolysis reaction at 40°C and using 4 M HCl. This invariably resulted in excess hydrolysis. The tube became so clogged that solution flow could not be maintained. Hydrolysis conditions were then made less severe by allowing the reaction to proceed at room temperature, after which solution could be easily pumped through the tube.

However, as shown in Figure 1, scanning electron microscope photographs of the interior surface of both virgin nylon tubing and tubing hydrolyzed under these conditions (4 M acid, room temperature) showed that the hydrolysis was so severe that sections of the tubing had been hydrolyzed nearly halfway through the tube wall. The extent of hydrolysis was also shown to be quite different in various sections of the tube wall.

Although the resulting structure could support immobilized enzymes, it proved to be too porous to be of any

value in enzymatic analysis. Substrate and/or product molecules became trapped in the matrix and at times could not be removed by eluting for 30 minutes or more, which resulted in serious carry-over of these substances from one sample to the next and precluded its use in routine clinical analysis.

When the hydrolysis conditions were changed so 0.5 M HCl was used at room temperature, the problem of carry-over was completely eliminated. All traces of a previous sample could be completely removed by rinsing the enzyme loop with small portions of buffer solution. Presumably, the surface hydrolysis could be carried out even under milder conditions to attain good enzymatic activity.

B. Attachment of Glutaraldehyde

The bifunctional reagent glutaraldehyde is an ideal reagent for enzyme immobilization because both of its aldehydic carbons can be utilized in the formation of a cross—link between the support and the enzyme.

Substrate molecules must have free access to the active site on the enzyme molecule, and once they reach the active site, the enzyme molecule often must be able to take on conformational changes during the conversion of substrate to product. The product molecule must then be able to diffuse back into the bulk solution so that its concentration can be determined. Each of these steps may be

Inner Surface of Virgin Nylon (5000 diameters)

Inner Surface of Hydrolyzed Nylon (5000 diameters)

Figure 1. Scanning Electron Microscope Photographs of Virgin and Hydrolyzed Nylon Surface

hindered if the enzyme is directly bound to the support.

Also, electrostatic interactions between the support and either the substrate or product species may slow the overall conversion rate.

The use of glutaraldehyde as a cross-linking agent leaves the enzyme somewhat less "immobilized" than if directly bonded to the support, and thus it can move somewhat in the near vicinity of the support wall.

In the procedure developed, a 12.5% solution of glutaraldehyde is slowly pumped through the partially hydrolyzed nylon tube, during which terminal carbons are covalently bonded to free nitrogens on the nylon wall, according to Figure 2. The remaining aldehyde groups on each attached glutaraldehyde molecule are then available for covalent bond formation with the enzyme. It is certainly possible that a significant fraction of the attached glutaraldehyde molecules will bond both aldehydic groups to the support and hence be unavailable to bond to the enzyme.

In the development of this procedure, it was found that the solution pH during the glutaraldehyde attachment is very critical, and must be maintained at 9.2. The glutaraldehyde solution in this procedure was buffered in 0.1 M tris(hydroxymethyl)methylamine. Final enzymatic activity was not detected when this reacton was performed at pH values of 8.5, 8.8, or 9.1. Apparently at a pH lower than 9.2, nitrogens on the hydrolyzed nylon are protonated and their reaction with the glutaraldehyde carbonyl is

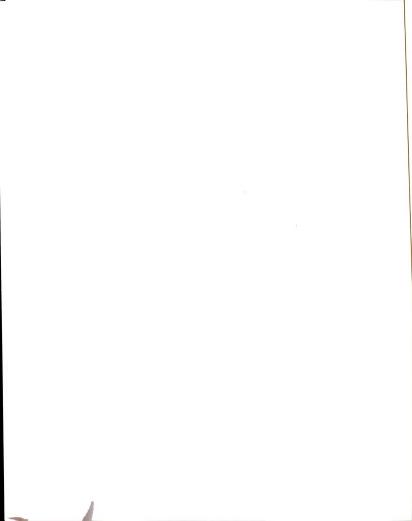


Figure 2. Attachment of Glutaraldehyde

hindered.

Glutaraldehyde is the most prevalent multifunctional reagent used in enzyme immobilization, yet its structure and chemistry are not well understood (3). It has been proposed that aqueous solutions of glutaraldehyde are largely polymeric (67), and also to the contrary that it exists mainly as the three hydrates shown in Figure 3 (68). The mechanism of the reaction of glutaraldyhyde with enzymes is similarly unresolved.

C. Immobilization of the Enzyme

After the glutaraldehyde attachment, the nylon tube is thoroughly rinsed with the tris buffer for 20 minutes. A solution of the enzyme (approx. 4 mg/ml) buffered at pH 6.2 is then slowly pumped through the tube in a closed loop at 0° C (ice—water bath) for 4 h. During this time, primary amine groups on the enzyme, presumably, react with free aldehyde groups of the attached glutaraldehyde to form the structure shown in Figure 4. As can be seen, this structure allows the enzyme molecule flexibility and a certain degree of mobility.

The mechanisms involved in glutaraldehyde attachment and subsequent enzyme immobilization described here are only proposed mechanisms. The actual covalent linkages described have been proposed elsewhere in the literature (3), although

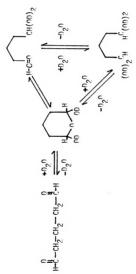
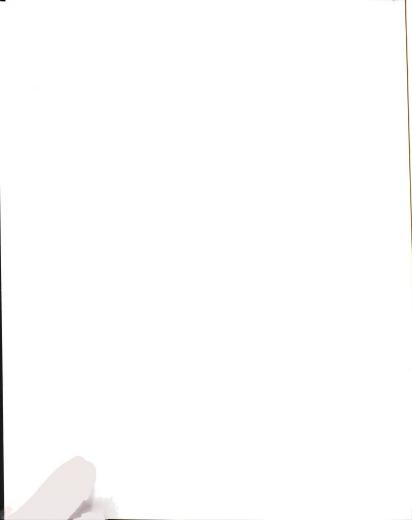
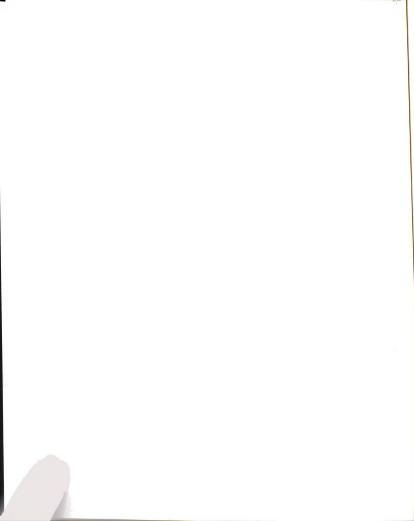



Figure 3. Proposed Aqueous Forms of Glutaraldehyde


no definitive evidence has been put forth. It was not within the scope of this work to determine the mechanism of the immobilization procedure. Rather, this work involved the development of a somewhat empirical and functional procedure. Certainly, though, if the mechanism were better understood, reaction conditions could be intelligently chosen to maximize not only the amount of enzyme immobilized but also the resulting activity.

D. Specific Procedure for Enzyme Immobilization

The following is a detailed description of the immobilization procedure developed. Steps 2-9 were carried out by using a peristaltic pump to bring a constant stream of fresh reagent through the nylon tube.

- Fill a 1.0 m length of the nylon tubing with a solution containing 20% CaCl in 80% methanol/20% water (v/v).
- 2. Rinse with 500 ml of dist. water at 8 ml/min.
- Hydrolyze the surface by pumping a 0.5M HCl solution through the tube at room temperature for 40 min (8 ml/min).
- 4. Rinse with 500 ml of dist. water at 8 ml/min.
- 5. Pump a 12.5% solution of glutaraldehyde in 0.1M tris(hydroxymethyl) methylamine buffer, pH 9.2, through the tube at 2 ml/min for 20 minutes at 0 °C.

- 6. Rinse with the 0.1M tris buffer at 0 °C for 20 minutes.
- 7. In a closed loop, pump a solution containing 4 mg/ml of the enzyme per ml of O. 2M phosphate buffer at OOC at 2 ml/min for 4 hours. The pH of the phosphate buffer should be chosen according to the particular enzyme to avoid possible denaturization.
- 8. Rinse with O.1M NaCl at room temperature at 8 ml/min for 1 hour to remove any physically adsorbed enzyme.
- 9. Rinse and fill with buffer of appropriate pH, and store refrigerated (5° C) when not in use.

CHAPTER IV

FLOW SYSTEMS

Two types of flow systems have been employed in the implementation of the immobilized enzymes, and these flow systems are described in this chapter. The first system, a Technicon Auto Analyzer, uses continuously flowing reagent streams to mix the sample with the desired reagents and then pass the solution through a transparent flow cell for spectrophotometric observation. Secondly, the stopped-flow clinical analyzer which was developed in this work is described. This system is a discrete sample analyzer which uses a commercial stopped-flow mixing system for reagent and sample mixing and spectrophotometric monitoring.

A. Technicon AutoAnalyzer

1. Description

The design concept of the Auto Analyzer was developed by Skeggs (69) in 1957. Solutions are pumped through flexible tubing at selected flow rates by a peristaltic pump. The flow rate for each reagent line is determined by the inner diameter of the tubing over which the pump rollers are driven at a constant rate. The reagent lines are joined

where desired by glass connectors to produce the desired configuration. A non-adjustable thermostatted heating bath can be used to incubate solutions only at 42°C as they pass through the bath.

Design for Immobilized Enzymatic Analysis of Glucose

The Auto Analyzer flow system was used in early studies of immobilized glucose oxidase. The enzyme was attached (as described in chapter III) to the inner surface of a coiled nylon tube, 2 meters in length and 1.5 cm inner diameter, and inserted into the flow system. For the analysis of glucose samples, the flow system components were arranged as shown in Figure 5.

In this configuration, the sample or blank solution was first mixed with the buffer solution and air bubbles were added to the flow stream. The solution then passed through the immobilized glucose oxidase tube which was immersed in the heating bath at 42°C. As the solution passed through the column, a fraction of the glucose was converted to gluconic acid and hydrogen peroxide. After the reacted solution left the column, a buffered solution containing potassium iodide and Mo(VI) was added to the flow stream, which then passed through a mixing coil. In the mixing coil, the hydrogen peroxide was completely reduced by the excess iodide, and a corresponding amount of triiodide

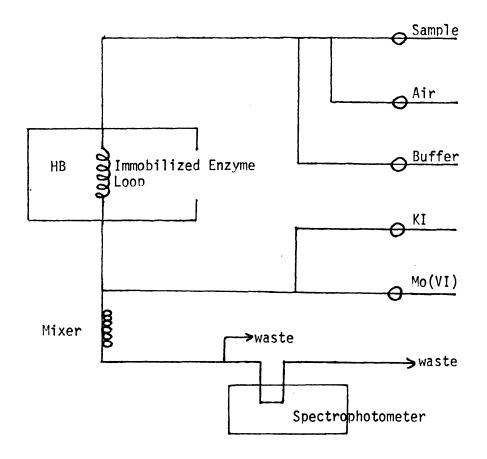
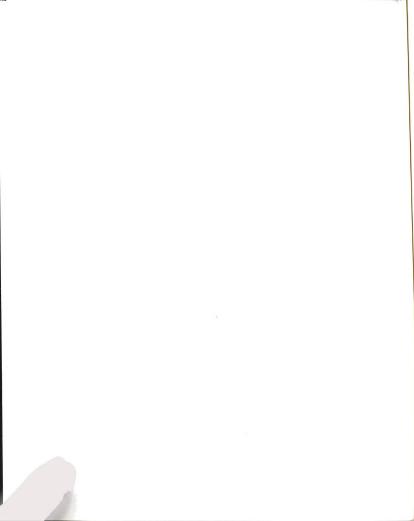



Figure 5. Auto Analyzer Configuration for Glucose Determinations

was produced. The Mo(VI) catalyzes the peroxide—iodide reaction. The air bubbles were then removed from the flow stream, as described later in this section, and the stream then passed through a quartz flow cell housed in a Beckman DB-G spectrophotometer. The absorbance of triiodide at 365 nm was recorded on a strip chart recorder as the triiodide solution passed through the flow cell. Either the peak height or the peak area of the absorbance vs time curve was related to the concentration of glucose in the sample.

3. Characteristics

Air bubbles are added at regular intervals to the flow stream in the AutoAnalyzer to isolate segments of the stream, which permits efficient mixing within each segment and also results in less axial dispersion of each sample plug as it flows through the system. The bubbles are removed from the stream just before it passes through the spectrophotometer to avoid large spikes in the response.

A major disadvantage of the AutoAnalyzer encountered in the study of the kinetics of the immobilized enzymes was the fact that it was difficult and time consuming to vary the enzymatic reaction time, even over a moderate range. The duration of the enzymatic reaction is controlled by both the volume of the column, which was fixed, and the flow rate through the column. However, by altering only the flow rate of the sample, other problems can result. The relative

amounts of each solution added to the flow stream (sample, buffer, air, iodide, and molybdate) are determined by their relative flow rates. Hence, although varying the flow rate of the sample line could have been used to vary the enzymatic reaction time, this would have also varied the relative concentrations of all other reagents. Since the iodide and Mo(VI) gave a small blank absorbance, the baseline would have to be reset each time the flow rate was changed. More importantly, the effectiveness of the buffer in pH control would have to be checked as its concentration was also changed. Similarly, the adequecy of the final iodide and Mo(VI) concentrations would have to be verified as well.

The mixing coil was very effective in mixing the column effluent with the indicator reagent. The mixer consists of 10 turns of glass tubing, so that each solution segment is inverted 10 times as it passes through the coil. The time spent in the mixer of course depends on its inner diameter and the flow rate through it; in the flow design used in these studies, the mixing time was typically 30 s.

The debubbler consists of an inverted tee inserted into the flow stream. The air bubbles and a small amount of liquid are drawn out the top of the tee by connecting the top to the pump. The proper flow rate for the debubbler was selected such that the bubbles were completely removed from the stream while at the same time only a small amount of liquid was removed. The debubbler was placed as near as

possible to the flow cell to avoid axial dispersion of the sample plug after the air bubbles had been removed.

In theory, the triiodide produced in the indicator reaction should pass through the quartz flow cell as a plug, and hence should then give a response curve in the shape of a gaussian peak. The flow rate of solution through the flow cell was typically 3 ml/min. The dimensions of the flow cell are 1 cm X 1 cm X 2 mm, with a total volume of 200 ul. Hence, if the chromophore moved into and out of the flow cell as a plug, each cross-sectional slice of the plug would reside in the cell for approximately 4 s. In practice, however, the sample plug was observed to require about two to three times that expected to completely pass through the cell, mainly due to inefficient design of the flow cell. A relatively large dead volume exists in the flow cell, especially in the corners, where solution can become trapped.

The slow passage of a plug of the chromophore through the flow cell made it difficult, if not impossible, to calculate the actual extent of the enzymatic reaction in the column. The peak area of the observed response could not be related to the integral of the chromophore concentration in the plug.

The peak height of the absorbance response curve, however, could be used to generate a linear calibration curve for glucose. However, due to the degree of axial dispersion and subsequent decrease in peak height of the

sample plug as it travelled through the flow system, the sensitivity was low. This is a fundamental disadvantage af the Auto Analyzer flow system when the peak height is the measured quantity. In clinical laboratories, the flow system is often designed so that the sample plug must flow over a long distance before reaching the flow cell, and often requires several minutes to complete the journey. Axial dispersion also limits the analysis rate, since samples must be introduced far enough apart to avoid overlap of the responses.

B. Stopped-Flow Clinical Analyzer

1. Description

The design of the stopped-flow clinical analyzer is illustrated in Figure 6. The components enclosed within the dashed line are part of a GCA-McPherson stopped-flow module. This particular module is well suited for automated operation, since no manual manipulation of valves is required. A single cycle can be initiated either from the front panel or with TTL-compatable signals to a plug on the rear panel.

The drive syringes (DS1 and DS2) are replaceable glass syringes, and the volume driven with each push is manually adjustable from 200 to 500 ul/syringe. The plungers are driven by a pneumatic cylinder which is driven

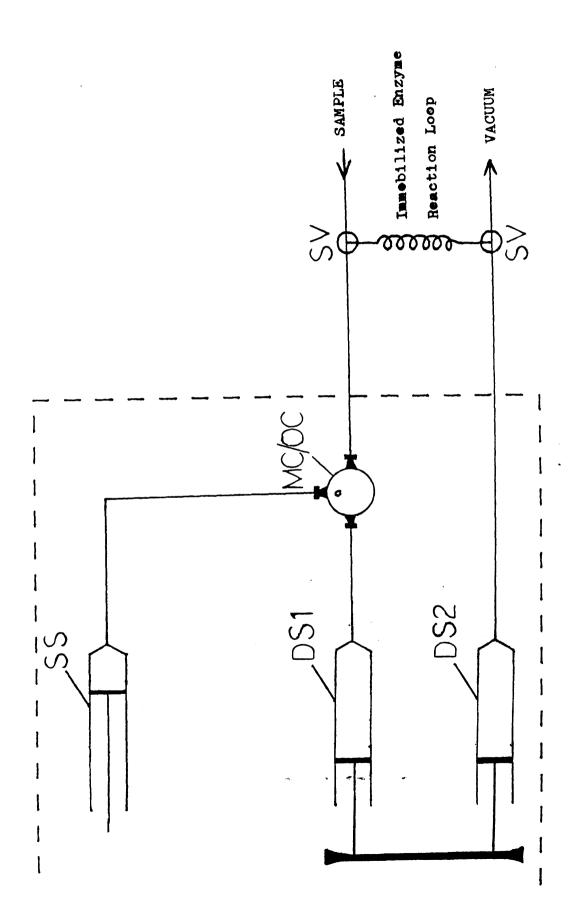
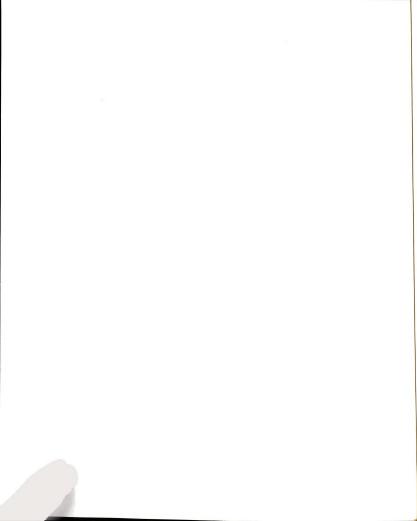



Figure 6. Stopped-Flow Clinical Analyzer

with 35-45 psi pressure supplied by an external air cylinder. The mixing chamber (MC) and observation cell (OC) are housed together in a Kel-F block mounted near the front of the module in the optical path. Solution is directed from the drive syringes to the mixing chamber/observation cell inlet through narrow diameter plastic tubing, and the connections are made with threaded fittings. The quartz observation cell is cylindrical in shape, measures 2 cm in length and 2 mm in diameter, and has a volume of 62.8 ul. The stop syringe (SS) is also replaceable glass, and the volume taken into the syringe before the flow stops is adjustable from 400 to 1000 ul. The dead time of the system is ~~5 ms (70).

The GCA-McPherson stopped-flow module was designed to be used with the Heath series modular spectrophotometer system. A complete stopped-flow spectrophotometer can be easily assembled by mounting the stopped-flow module with a light source module, monochromator, photomultiplier module, and a data collection system.

The GCA-McPherson module was modified to incorporate the immobilized enzyme reaction loop. As shown in Figure 6, one of the reagent lines was brought outside the module. This was done by installing HPLC tubing couplers (Altex) on the front panel of the module, and, on the inside the module, using short pieces of HPLC tubing to connect DS2 to one of the couplers, and the mixing chamber/observation cell entrance port to the other coupler. Outside the module,

short pieces of tubing were also used to connect the other ends of the two couplers to a pair of 3-way slider valves (SV) (Altex). The immobilized enzyme reaction loop was inserted between the valves, so that, when the 3-way valves were switched to the push position, the reaction loop was connected to the stopped-flow system. When the syringes were then driven, solution from DS2 forced the solution from the reaction loop into the mixing chamber for analysis.

The 3-way slider valves consist of a rectangular Teflon slider block mounted within the valve which directs the solution flow from the common line to either of the secondary lines. These valves were automatically switched in tandem by a pneumatic actuator/spring return mechanism. Tubing is connected to the valve ports by threaded fittings so that connections can be easily made.

The operation of the SFCA can be best described the following typical sequence of events for the analysis of a substrate sample. Referring to Figure 6, the stopped-flow mixing system is first rinsed with the desired reagents. DS1 is filled with the indicator reagent and DS2 is filled liquid (buffer). When this cycle with the push completed, the sample valves (SV) are switched to the fill position and the buffered sample is drawn into the reaction loop by the action of the applied vaccuum. When the has been thoroughly rinsed and filled, the sample valves are switched back to the push position, which stops the sampling process and marks the beginning of the enzymatic reaction.

After the enzymatic reaction has been allowed to proceed for a preset time, the stopped-flow syringes are driven. The push liquid in DS2 forces the reacted solution from the reaction loop through the connecting tubing into the mixing chamber, where it is rapidly mixed with the indicator reagent and driven into the observation cell. The indicator reaction then takes place in the observation cell. The indicator reaction treaction converts one of the enzymatic reaction products into a chromophore, whose absorbance is monitored as an indicator of the amount of product produced in the enzymatic reaction.

2. Characteristics

The HPLC tubing and sample valves are designed to withstand a pressure of 500 psi, which is more than adequate for this system. These components are made of Teflon and are therefore chemically inert to the reagents used in these analyses. The sample valves are designed with zero dead volume.

When the immobilized enzyme loops are fitted with the threaded end fittings, they can be quickly and easily inserted or removed from the system, which simplifies replacement the reaction loop.

The design of the SFCA greatly facilitates a fundamental study of the kinetics of the immobilized enzymes. The volume contained within the reaction loop was

designed to be much greater than the combined volumes of the connecting tubing, mixing chamber, and observation cell. The push volume was adjusted so that the solution initially in the reaction loop completely replaced the solution that was previously in the observation cell. Thus, the reacted solution in the reaction loop could be accurately sampled and monitored in the observation cell, without the problem of axial dispersion prevalent in the Auto Analyzer flow system. The concentration of the enzymatic reaction product could be calculated from the measured absorbance, the molar absorptivity of the chromophore, and a knowledge of the stoichiometry of the indicator reaction.

The design of the SFCA allows one to monitor the enzymatic reaction and the indicator reaction separately, each by either a reaction—rate method or by an equilibrium method. This choice allows the use of an indicator reaction which may, for example, be slow, or have an unfavorable equilibrium constant, or undergo side reactions. Also, since the two reactions are physically separated, the reaction conditions can be drastically different in each, and can be chosen to yield the optimum sensitivity, accuracy, and precision from each reaction.

Another fundamental advantage of the SFCA design is that several immobilized enzyme reaction loops containing the same or different enzymes can be multiplexed into the stopped-flow mixing system. This could tremendously improve sample throughput.

The SFCA also is efficient in its use of reagents, since the volume of the stopped-flow syringes is small, and since reagents are consumed only when neccessary rather than continuously flowing.

A disadvantage with the present design of the SFCA is the lack of precise thermostatting. The entire system is held at room temperature. Any increase in the temperature of the reaction loop, mixing chamber, etc. must be dissipated into the surrounding air. In the stopped-flow module, thermostatted water is circulated in copper tubing which is in contact with a cast aluminum base. Thermostatting within the module is therefore dependent on heat transfer to and from the aluminum base via thermal conduction. Holler (71) showed that this design is somewhat inefficient. His studies demonstrated that temperature equilibrium of the solution in the observation cell is slow, and does not accurately track the temperature of the thermostatting bath.

CHAPTER V

MICROCOMPUTER INSTRUMENTATION

Computer technology, specifically microprocessors and microcomputers, has had a dramatic impact on analytical chemistry. With the aid of a computer, chemists are able to perform long and tedious experiments which were previously infeasible or highly prone to human error because of monotonous sequencing or massive data collection and processing. The high speed data acquisition and almost instantaneous feedback control offerred by computers have increased the amount of information that can be extracted from a measurement process. The use of a mini-and microcomputer as an aid to clinical analysis and the networking of computers in our laboratories are described in this chapter.

A. Overview

The microprocessor offers an inexpensive method of process control and data acquisition. It is highly flexible in application since it can be programmed to follow any sequence. With sufficient memory, the microcomputer can perform the entire analysis, including instrument set up, calibration, sampling, data collection, and calculation of a

final result (concentration, rate constant, absorption spectrum, etc.).

At the other extreme, microcomputers can be slaved to a larger computer (e.g. mini) and relegated to perform specific tasks. In this configuration, the minicomputer commands the slave micros to perform a task or to begin a certain sequence, receives information from the micros about the status of the experiment, and receives raw data (e.g. pH, temperature, etc.) collected by the slaves. The data are processed by the mini and displayed in a variety of formats such as lists, plots, etc.

In this work, a microcomputer was relegated to the tasks of instrument sequencing, acquisition of raw data corresponding to transmitted radiant power, and performance of simple calculations on the raw data. The partially worked—up data were then transmitted to a more powerful minicomputer for more complex calculations, display, and magnetic storage. A network was devised for allowing a user terminal and several microcomputers to share the facilities of the minicomputer.

Several network configurations (72) are possible for interconnecting the various devices (microcomputers and terminals) in our research laboratories to the minicomputer. Different networks involve varying levels of communication between the devices and varying degrees of hardware and software requirements. The point-to-point network shown in Figure 7 was implemented. In this configuration, access to

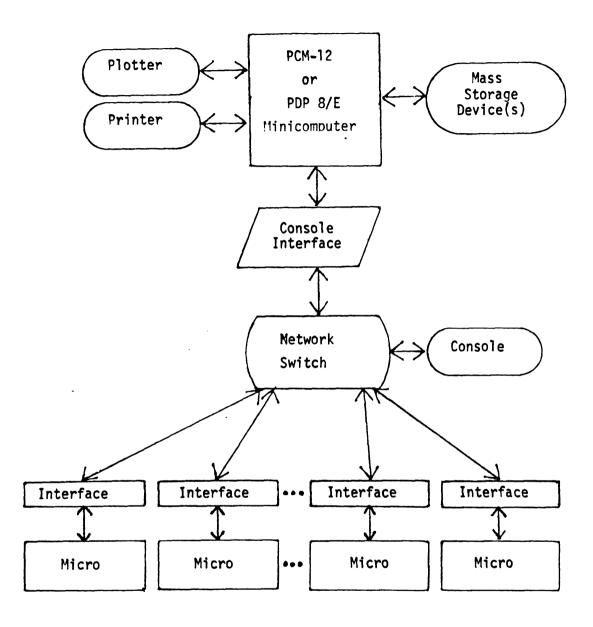


Figure 7. Point-to-Point Hierarchical Network

the minicomputer is controlled by a network switch, so that the facilities of the mini are time-sliced. When a particular device is switched to the mini, it is able to retain complete control for as long as desired, and releases control when its job is completed. The network switch then sequentially samples each device until it finds one which needs access to the mini.

The point-to-point configuration was chosen for several reasons. Because of the wide spectrum of experiments performed in OUT laboratories independence of each, communication between microcomputers is present unneccessary. Since mini-to-micro at communication is made through an asynchronous interface, no restrictions are made on the internal configuration of each The time-sliced sharing of the minicomputer microcomputer. can be implemented because of the typically short time requirements of each microcomputer. Once software has been developed, the mini-to-micro link needs to be made only to down-load the software into micro memory; a relatively much longer time is then consumed performing the experiment, during which the mini is accessable to other devices. Finally, this configuration is the simplest to implement both in hardware and software.

At present, either of two minicomputers can serve as the head of the point-to-point network. A PDP 8/e minicomputer (Digital Equipment Corp.) is configured with 16k of read/write memory, extended arithmetic element, real

time clock, RKO5 cartridge disk drive, dual floppy disk drive, printer, plotter, and console. A second system is configured around PCM-12 minicomputer (Pacific Cuber/Metrics) and includes 16k of RAM, dual floppy disk printer, and console. The PCM-12 utilizes an drive, Intersil 6100 microprocessor as the CPU. This processor uses virtually the same instruction set as the PDP 8/e, so the two minicomputers are software compatible. Software which does not make use of hardware unique to either system can be developed on either mini. Both operate under OS/8, the operating system developed by DEC for the PDP 8's.

B. The 6100 Microcomputer

1. Description

the sequencing of the stopped-flow οf clinical analyzer and data acquisition from the photocurrent amplifier are accomplished with a twelve-bit microcomputer which utilizes an Intersil 6100 microprocessor. The central processor board, 4K RAM board, and the two interface boards were purchased (Pacific Cyber/Metrics, San Ramon, CA) and constructed from a kit. This particular microcomputer was chosen because the 6100 MPU uses virtually instruction set as the PDP 8/e in our laboratory, the same and, as such, software for the microcomputer can be created and developed on either the PDP 8/e or PCM-12 minicomputer

under OS/8 and then down-loaded into the microcomputer's memoru for execution.

Software for SFCA execution is written either in FDRTRAN-II/SABR or PALB (the PDP-8 assembly language) on the minicomputer, stored on a mass storage device (floppy disk or cartridge disk), and compiled and assembled under DS/8. The absolute binary program thus generated can then be down-loaded without further modification, via the asynchronous serial interface directly from the mini to the micro. This procedure greatly facilitates debugging the SFCA software since it can be quickly edited, assembled, and reloaded. It also has versatility in the SFCA operation, as a variety of routines for a variety of SFCA operating procedures can be quickly called up from mass storage and downloaded.

The SFCA micro-mini computer system is shown in Figure 8. Direct communication between the mini and micro is required only to transmit the desired binary program down to the micro, after which the link can be broken and the microcomputer operated in a stand-alone configuration. Optionally the link is later remade to transmit raw data acquired during an experiment back to the mini, where higher-level language routines can work up the data, list, or plot.

2. PROM Monitor Software

A general purpose routine to handle the down-loading of binary programs from the mini into micro memory was designed to operate in PROM in the microcomputer. This PROM

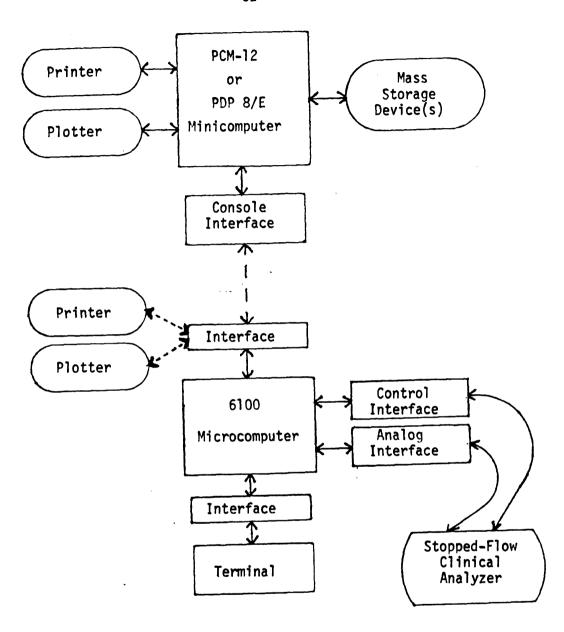
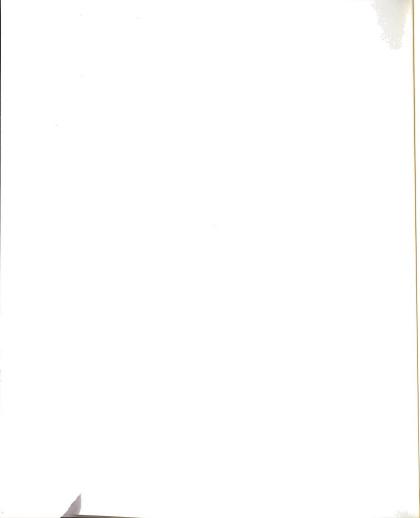



Figure 8. SFCA-Micro-Minicomputer System

Monitor routine serves three basic functions for the micro:

(1) a transparent mode which serves as a software link between the microcomputer terminal and the minicomputer's main terminal port; (2) a binary loader for loading an incoming binary program into the micros mainframe memory; and (3) a RAM Monitor which allows the user, via commands typed at the keyboard, to examine and/or modify locations in mainframe memory, and to begin execution at a specified location.

a. Transparent Mode

The transparent mode provides a link between the user terminal the this and minicomputer; in mode the microcomputer is essentially transparent to the user. The transparent mode is entered automatically after power-up and initialization of the PROM Monitor. The program then monitors both of the micro's serial interfaces. characters input at one port are immediately output to the other. This procedure continues until a special character is received at either port. These special characters cause the Monitor to chain to either the binary loader or RAM Monitor. The user can cause chaining to the RAM Monitor by typing CNTRL-A at the terminal, while the minicomputer can cause chaining to the binary loader by issuing leadertrailer code (octal 200).

A standard feature of the OS/8 Peripheral Interchange

Program (PIP), when outputting a binary program, is to begin and end the actual binary data with leader-trailer. This character is not otherwise normally output by OS/8 software, and hence the transparent mode is not unneccessarily interrupted unless the minicomputer is about to start transmitting a binary program. Similarly, CNTRL-A is not normally typed by the user when operating OS/8 software.

An important consideration in designing software mini-micro communication (specifically with the operating system) was to be able to use the O/8 software without modification. In the particular case of the transparent mode routine, this meant that characters had to be from the minicomputer and then output to the terminal at a fast enough rate that no characters would be missed. was readily accomplished by operating the terminal interface at a higher baud rate than the minicomputer interface. Normally, for example, the terminal is operated at 2400 baud (240 characters/s) while the minicomputer interface is operated at 1200 baud (120 characters/s). As such, each transmission of a character to the terminal requires 4.167 while character transmissions from the minicomputer require 8.333 ms. Once a character is received from the minicomputer, the next one cannot be completely transmitted before 8.333 ms has elapsed, and the micro software then has the additional 4.167 ms to check the input for a special character, which is more than ample time.

As expected, operation of both interfaces at the same

baud rate results in occasional missed characters.

The asynchronous interface between the micro and mini has the additional advantage of allowing the micro to run batch processes by communicating directly with OS/8 software without operator intervention. The micro can be viewed as a "virtual terminal" to the mini since the OS/8 software receives characters as if a terminal were present. Micro software can mimic the action of a user entering commands at a terminal by transmitting a sequence of characters. The routine needs only to wait for each character to be echoed by the mini before sending the next character. Commonly used command sequences can be stored in micro memory and later transmitted in this fasion.

b. Binary Loader

The binary loader secton of the PROM Monitor is automatically chained to when leader-trailer code is input from the minicomputer, a signal that the transmission of an absolute binary program is beginning. Approximately 60-70 frames of leader-trailer precede the actual binary code, so no binary data are missed during chaining.

The binary loader routine was adapted from a software front panel routine developed at Pacific Cyber/Metrics for their PCM-12 minicomputer. Their loader was modified by eliminating several unneccessary features so that it would fit in the 256-word PROM space along with the transparent mode and RAM Monitor.

First, the loader input device number was changed to 13 (the minicomputer interface). Second, extended memory loading was eliminated, since the micro at present has only one field (4K) of read/write memory. Finally, the action taken upon completion of the loading process was changed. The last two binary words of the transmission comprise the checksum of the transmission, which provides a crude check on the entire transmission. The loader calculates the checksum as the program is input and loaded, and then compares this with the input checksum. If the two are not identical, the loader halts. A halt indicates that an error has occurred. If the two are identical, the program is assumed to have been accurately input and loaded, and the loader then chains to the RAM Monitor.

c. RAM Monitor

This section of the PROM Monitor is chained to either after the successful completion of a binary load, or when the operator types a CNTRL-A at the terminal while in the transparent mode. The RAM Monitor serves the functions of examining and/or modifying microcomputer read/write memory, and beginning execution at a specified RAM address. The Monitor begins by typing a prompting dollar sign; this is repeated each time the Monitor is ready for terminal input.

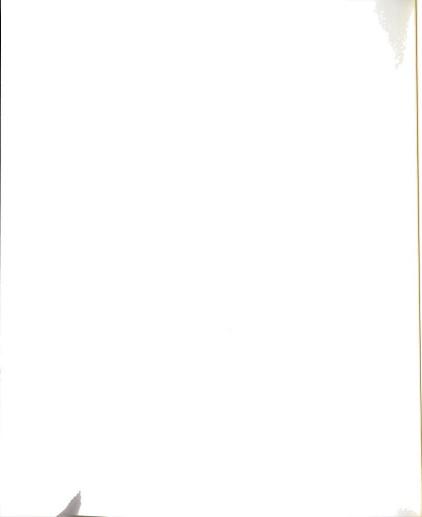
After prompting the user, the Monitor expects to receive from the terminal four octal numbers followed by a control character; any other sequence is ignored. The

control characters are (1) "G" which instructs the Monitor to chain to the RAM address specified by the four octal numbers, and (2) "D" which instructs the Monitor to deposit these data at the last specified RAM address. Any other control character causes the contents of the specified RAM address to be displayed on the terminal. Examples of each are given below.

\$1000/7000 RAM location 1000 now contains a 7000.

\$7600D The contents of location 1000 is changed to 7600.

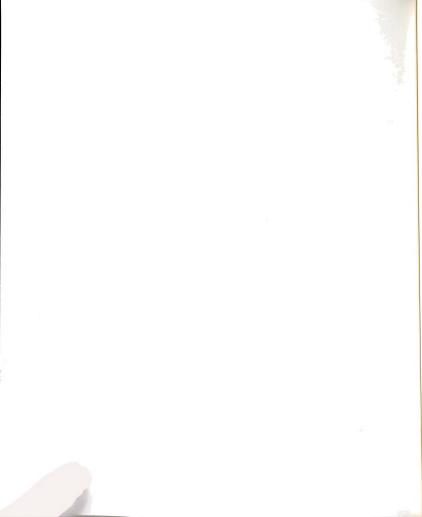
\$0200G RAM execution begins at location 200.


When chaining to mainframe memory, the RAM Monitor first clears the CPU accumulator and link.

3. Operating Procedures

The combined functions of the PROM Monitor and its harmonious interaction with minicomputer software is best demonstrated by following a typical sequence for microcomputer execution of predeveloped software.

After initialization of the PROM Monitor, the asynchronous interface between the mini and micro is connected and OS/8 bootstrapped on the minicomputer.


A typical sequence for execution of a FORTRAN-II program (stored on the mass storage device) is then as follows:

	COMMAND	PROM ROUTINE	OPERATION
(1)	COM PROG1.FT	TM	The FORTRAN-II source file is compiled, assembled, and loaded into microcomputer memory.
(2)	SAVE SYS PROG	1 TM	A CORE-IMAGE file of the program is created.
(3)	MAP PROG1	ТМ	The user finds out the actual entry point of the program.
(4)	R BIN4SV *PRDG1 <prdg1< td=""><td>TM TM</td><td>This creates an absolute binary file from the CORE-IMAGE file.</td></prdg1<>	TM TM	This creates an absolute binary file from the CORE-IMAGE file.
(5)	DOWNLOAD PROG	1 TM, BL	The absolute binary program is transmitted (with leader-trailer) and loaded into microcomputer mainframe memory.
(6)	\$1002G	RM	Execution is started at RAM address 1002, the starting address determined in step 3.

To simplify the procedure of executing software on the micro, the OS/8 Concise Command Language (CCL) program was modified to recognize the MAP and DOWNLOAD commands. MAP runs LODMAP, a program developed in our research group for determining the memory requirements and starting address of core-image files. DOWNLOAD runs PIP with the papertape punch (PTP) as the output device and the /B option to indicate that a binary file is to be transferred.

The sequence for executing a program written in PAL8 is somewhat simpler:

	COMMAND	PROM ROUTINE	OPERATION
(1)	COM PROG. PA	ТМ	The PAL8 source file is assembled into absolute binary and saved on mass storage.
(2)	DOWNLOAD PROG2	TM, BL	The binary file is transmitted and loaded.
(3)	\$0200 G	RM	Execution is begun at RAM address 200.

4. PROM Monitor Logic

A major portion of the design logic for the PROM Monitor board was modelled after the PCM-12 front panel logic. The circuitry consists of the neccessary logic and memory to provide the functions described above. The Monitor itself resides in three 256-word PROM's, and three 16-word RAM's are used for scratch-pad memory.

After power-up, the Monitor routine is initiated by first RESETting the CPU and then asserting a Control-Panel (CP) interrupt to the processor. The RESET is done by grounding the RESET line on the bus thruogh a momentary action switch on the board; this causes the 6100, after completing the current cycle, to clear the accumulator and link, to Jam-set the program counter to 7777, and to HALT. A CP interrupt can then be asserted by grounding the CPINT line on the bus. The CP interrupt actually can be asserted even if the 6100 is RUNning, and therefore is logically not allowed if either an interrupt request or DMA request has been granted by the CPU.

The CP interrupt forces the 6100 into the RUN state (if HALTed). During instruction—fetch cycles, the CPU asserts the CPSEL bus line rather than MEMSEL so that instructions are fetched from the PROM Monitor memory rather than mainframe memory; the low 7 address bits are then decoded by the PROM's. PROM space extends from 7000 to 7377, while RAM space occupies addresses 0000 to 0017; hence if the most significant bit of the requested address is HIGH the PROM's are enabled and if LOW the RAM's are enabled.

The PROM Monitor routine chains to mainframe memory by executing the sequence ION (which does not actually enable interrupts) followed by a JMP I O. The program counter is hence loaded with the contents of Monitor memory location O and, provided the CPU RUN/HALT flip-flop is in the RUN state, execution then begins at that address in mainframe memory. This RUN/HALT flip-flop is always forced into the HALT state after a RESET, executed just prior to the CP interrupt; the flip-flop is then toggled into the RUN state by Monitor logic when the CP interrupt switch is asserted. The CP interrupt switch triggers a 2 s pulse from a monostable to the RUN/HALT line on the bus, which toggles the flip-flop into the RUN state. The monostable pulse is used rather than the switch itself to debounce any switching transients.

B. SFCA Interfaces

1. General Considerations

The stopped-flow clinical analyzer is interfaced to the microcomputer through two wire-wrapped printed circuit boards; one is dedicated to the control functions and the other as a general purpose analog interface for the acquisition of analog data. The two basic functions were separated to minimize noise contributions from the control logic to the analog signals. Through a series of software commands, the interfaces can cause the instrument to open and close the sample valves, empty, fill, and push syringes in the stopped-flow module, digitize an analog voltage from the photocurrent amplifier, and output an offset voltage to the amplifier.

The interfaces latch each instruction from the data bus on the trailing edge of the LXMAR pulse. As shown in Figure 9, bits 3-8 of the instruction are then decoded as the device number; device 50 on the control interface and 51 on the analog interface cause the proper decoder outputs to be asserted LOW. This device number is combined with a DEVSEL LOW to produce COM50 and COM51 at the interfaces. The COM50 (control) and COM51 (analog) are then combined with bits 9-11 (the assignment bits) of the instruction to produce a specific action.

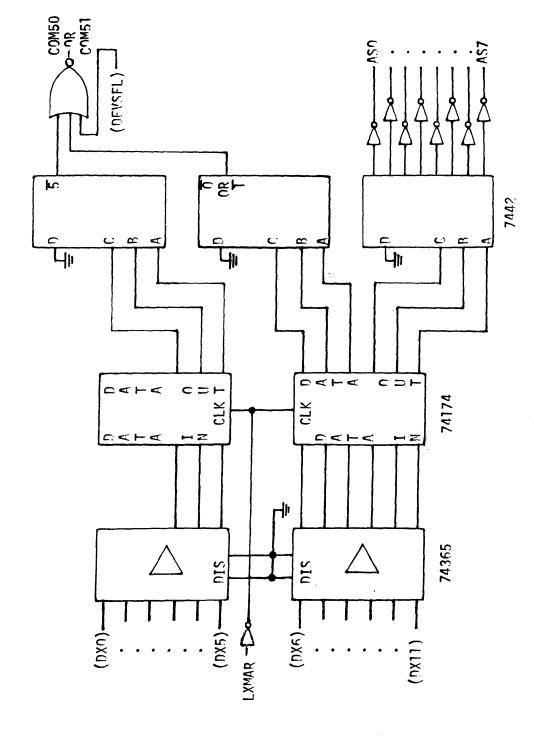
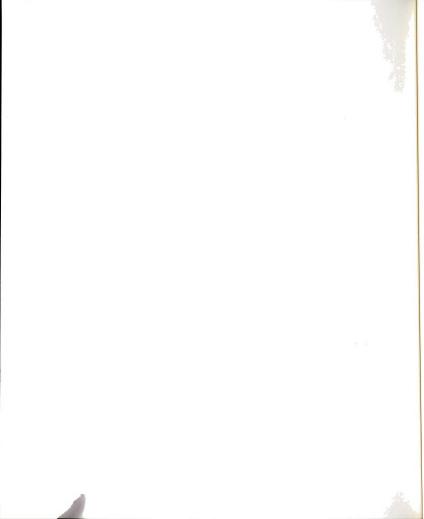



Figure 9. Schematic Diagram of Instruction Decoding Circuitry

2. Control Interface

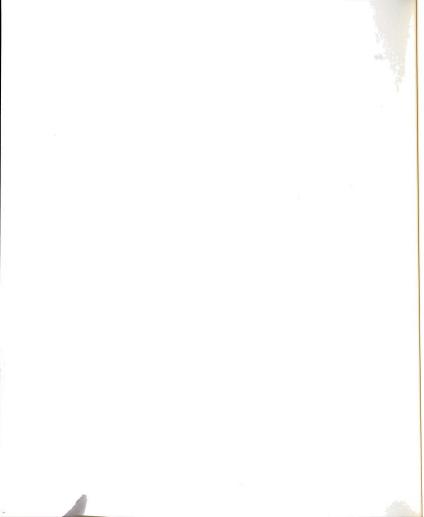
The control interface handles the operation of the stopped-flow and sample valves. A summary of software commands to the control interface are given in Table 1. The following sections give details of the action of each instruction.

Table 1. Software Commands to the Control
Interface

Command	Operation
6500	Open sample valves
6501	Close sample valves
6502	Empty stopping syringe
6503	Fill drive syringes
6504	Push drive syringes
6505	Skip the next instruction if flow has stopped
6506	RESET
6507	Read the 6-bit switch register

a. The Open and Close Sample Valve Instructions

The actual opening and closing of the sample valves is done by activating a solid state relay which then


switches AC line current to a solenoid valve controlling air pressure to the pneumatic actuator/ spring return mechanism on the sample valves themselves. Hence, the OPEN and CLOSE commands need only apply TTL HIGH and LOW levels across the control pins of the solid state relay. As shown in Figure 10, one half of a 7474 J-K type flip-flop is employed, the Q output being set HIGH by the 6500 command and LOW by the 6501. This Q output is cleared (set LOW - valves closed) by a RESET command (6506) or by the assertion of the RESET bus line.

b. The Syringe Control Instructions

The GCA-McPherson stopped-flow module contains the neccessary internal control logic to convert TTL-level signals from either the front panel or from a control port to a specific action in the module. The input signals are named CYCLE and DELAY and a summary of the function of these control signals is given in Table 2.

Table 2. Control Signals for the GCA-McPherson Stopped-Flow Module.

CYCLE	DELAY	FUNCTION
1→0	any	Empty stopping syringe
0→1	0	Fill drive syringes
1	1→0	Push drive syringes

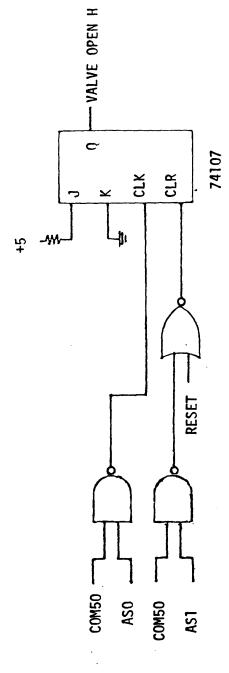
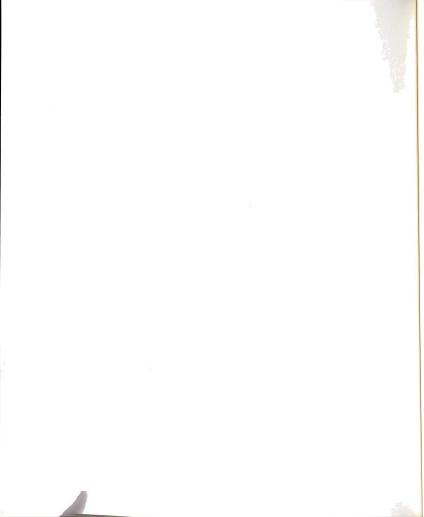



Figure 10. Schematic Diagram of Sample Valve Control Circuitry

J-K type flip-flops are used to generate the CYCLE and DELAY signals required for each of the three functions as shown in Figure 11. The actual inputs to the stopped-flow control logic are outputs of open-collector NAND gates, as the module operates on open-collector logic. A RESET command (6506) sets both CYCLE and DELAY signals HIGH which causes the stopped-flow module to complete any current cycle.

c. The Skip on Flow Stopped Instruction

An optical interrupter in the stopped-flow module generates a flow-stopped signal to the control interface. The OI is triggered when the drive syringes reach the ends of their travel, and the actual trigger point is adjustable. As shown in Figure 12, if this signal is TRUE and the 6505 instruction is executed, the interface directs the CPU to SKIP the next instruction by asserting the proper CONTROL and SKIP bus lines. The skip-on-flow-stopped instruction is used by the SFCA routines to determine when to begin data acquisition.

d. The Read Switch Register Instruction

A six-bit switch register located on the control interface board can be read into bits 0-5 of the CPU accumulator by the 6507 instruction. As shown in Figure 13,

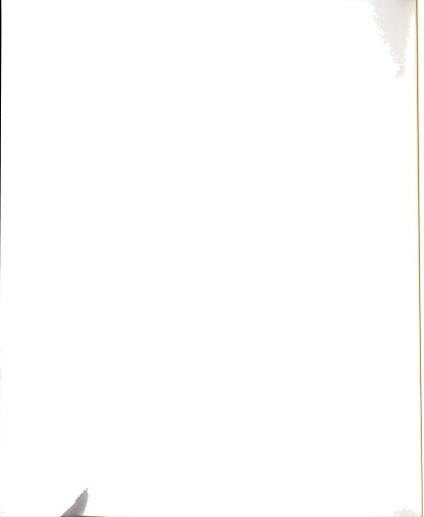
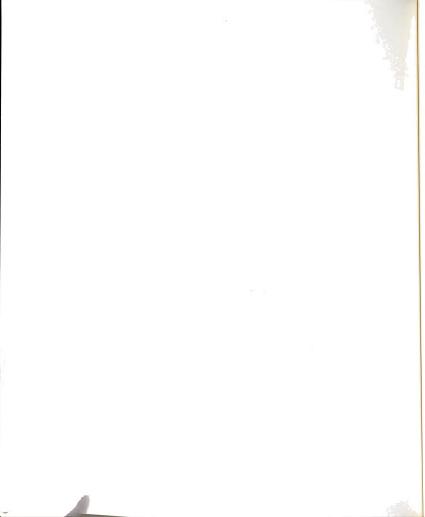



Figure 11. Schematic Diagram of Syringe Control Circuitry

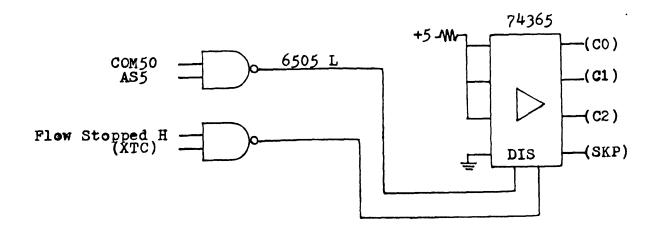
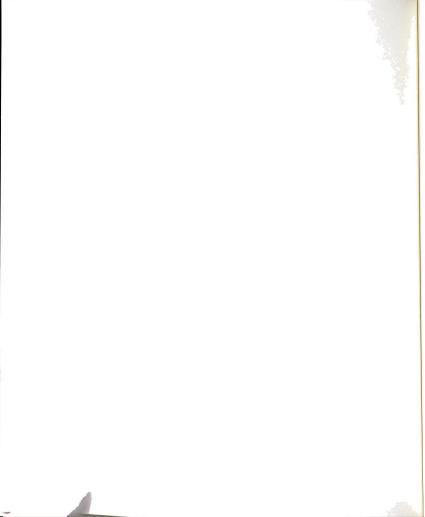




Figure 12. Schenatic Diagram of Skip en Flow Stopped Circuitry

Schematic Diagram of Read Switch Register Circuitry Figure 13.

this instruction causes the interface to drive the contents of the switch register into the accumulator. During that part of the IOT cycle when XTC is LOW, the CPU samples the CONTROL lines to determine what action (if any) is to be taken. The combination of CONTROL lines shown in Figure 13 (CO LOW, C1 LOW, C2 HIGH) causes the contents of the data bus to be jam transferred into the accumulator (i.e. the AC is first cleared). The data present at the switch register is driven onto the data bus during the last half of the IOT cycle (XTC LOW) and the required CONTROL lines asserted by enabling tri-state buffers.

The SFCA routines periodically sample this switch register to direct program flow.

3. Sequencing and Timimg

With the control interface instruction set, the operator can easily select any type of sequencing for the SFCA. The actual sequence of events as well as the time lapse between each event can be customized to the type of experiment being performed simply by changing the software, or even by designing software which allows user modifications during run time.

An obvious application of this versatility is in a case where the immobilized enzyme reaction rate is being studied. Here the time between sample valve closing (essentially the start of the enzymatic reaction) and syringe drive (the end) is controlled by a variable,

calibrated software timing loop. Even the time during which the sample valves are open can be selected at run time, since the actual sample volume drawn depends on this and the vaccuum pressure applied.

When making changes in the solution such as pH, type of buffer, ionic strength, or other parameters, it is desirable to rinse the reaction loop for an extended period of time. Ionic species and large molecular weight species may become trapped in the enzyme/nylon matrix. These can be eluted from the loop by drawing large volumes of the new solution through the loop.

It has been found that when filling the drive syringes with the sample valves closed (i.e. open to the flow system) solution in the reaction loop is perturbed due to the valve design in the stopped-flow module. It is usually possible to avoid this by filling the drive syringes during sample loop fill time, as the reaction loop is then isolated from the rest of the flow system. It may also be desirable to allow temperature equilibration of the reagents in the drive syringes after filling; this can be accomplished by extending the time between filling and pushing the syringes to suit the particular experiment.

4. Analog Interface

The analog interface serves the function of acquiring analog voltage data from the photocurrent amplifier.

Software commands recognized by this interface are summarized in Table 3.


Table 3. Software Commands to the Analog Interface

Command	Operation
6510	Initialize ADC conversion
6511	Skip the next instruction if conversion done
6512	Read the ADC output into the AC
6513	Set the DAC with the 12-bit word in AC

Instructions are latched and decoded as described earlier, with device number 51 being active. Each command is described in detail in the following sections.

a. The Convert Command

The twelve-bit analog-to-digital converter (ADC) begins a conversion after receiving a convert pulse of duration 100 ns to 2 us. Upon decoding a 6510 instruction, the interface triggers a 1 us pulse from a 74121 monostable to the A/D convert pin. Analog signals are brought to the interface by a coaxial shielded cable, and the shielding is connected to a large ground plane on the interface board to minimize noise.

b. The Skip on Conversion Done Command

Analog-to-digital conversions require typically 25 us, after which the ADC STATUS flag is asserted LOW to indicate the conversion is complete. As shown in Figure 14, if this flag is LOW (done) and a 6511 instruction is executed, the interface signals the CPU to skip the next instruction by asserting the SKIP bus line LOW and the CONTROL bus lines HIGH during the last half of the IOT cycle. The bus lines are asserted by enabling the appropriate logic levels through a tri-state buffer.

If the ADC STATUS flag is HIGH (busy) when the 6511 instruction is executed, the 74365 tri-state buffer is disabled, and the program flow falls through to the next instruction (usually a JMP back to continue testing the flag).

c. The Read ADC Command

After the ADC conversion is complete, the resulting 12-bit data word is read into the accumulator by execution of the 6512 command. As shown in Figure 15, this command causes the interface logic to enable three 74365 tri-state buffers, driving the ADC output onto the data bus at the proper time by asserting the CONTROL lines to the appropriate states. The combination of CONTROL line states shown in Figure 15 (CO LOW, C1 LOW, C2 HIGH) causes the CPU

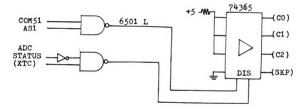
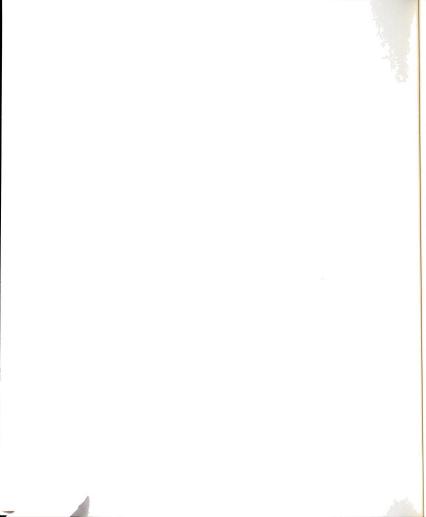



Figure 14. Schematic Diagram of Skip on Conversion Done Circuitry

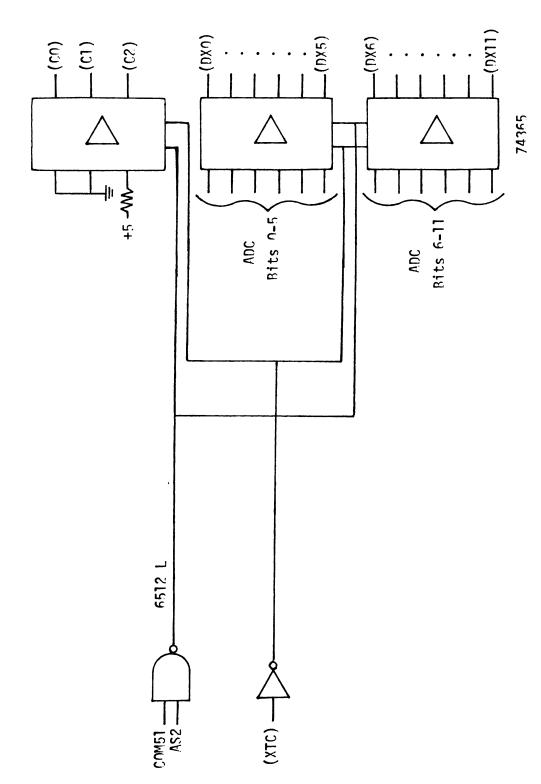
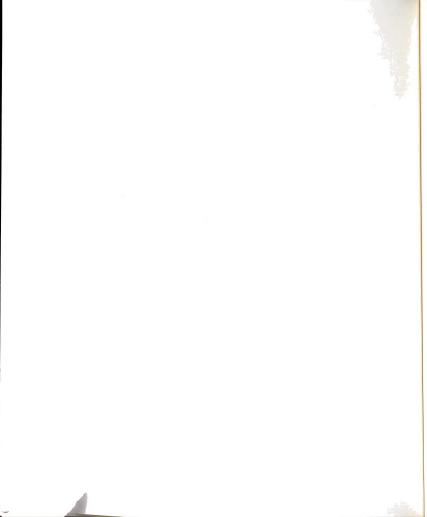



Figure 15. Schematic Diagram of Read ADC Circuitry

to jam transfer the contents of the data bus (in this case the A/D output) into the accumulator (i.e. the AC is first cleared).

d. The Set DAC Command

The digital inputs to the twelve-bit digital-toanalog converter (DAC) on the interface are set from the
accumulator by executing the 6513 instruction. Upon
decoding this instruction, the contents of the accumulator
are latched by a pair of 74174 hex latches, the outputs of
which then set the DAC as seen in Figure 16.

The DAC is typically used to output an offset voltage to the photocurrent amplifier; it can also be used to display digital data on a strip chart recorder, oscilloscope, etc.

C. SFCA Software

Software for the SFCA was designed to serve several functions. First, experimental parameters need to be determined according to the type of experiment to be performed; during the experiment the instrument is sequenced and raw data acquired; the operator occasionally needs to be notified when, for example, to change sample solutions, open or close the PM shutter, and so on; and finally evaluation

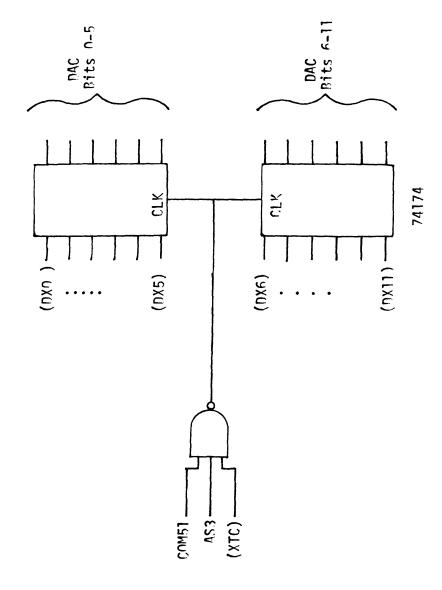
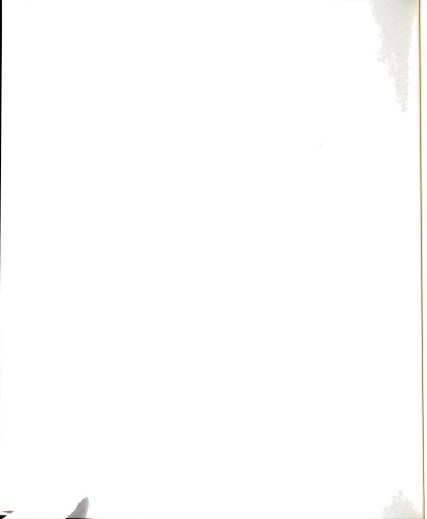



Figure 16. Schematic Diagram of Set DAC Circuitry

of the data involving calculation of average absorbances and statistics, plotting and/or printing the data, and storage on a mass storage device.

As these functions involve various degrees o f complexity, they were divided into two groups: the more complicated, core-consuming routines written were in FORTRAN-IV for operation on either the PCM-12 or PDP 8/E minicomputer, while the simpler, less core-consuming routines written in PAL8 for operation on were microcomputer. A few short testing programs were written in FORTRAN-II/SABR and executed on the micro to individually some of the individual functions of the interfaces.

Data communication between the mini and micro are accomplished through a set of complementary subroutines written for that purpose. Actual listings of most of the programs are given in Appendix A, but a brief description of the software is presented here.

1. Microcomputer Software

The 6100 microcomputer used in these experiments has at present only 4096 words of read/write memory, which must accommodate both the software for controlling the SFCA and data acquisition as well as the raw data itself. Attempts were made to develop the software in FORTRAN-II/SABR, but were unsuccessful due to the relatively large memory

requirements of the language; even seemingly short routines quickly exceeded the available 4K. Therefore, a general purpose set of software modules were developed in PAL8, which allow the flexibility of executing a variety of experiments with only minor alterations. These routines will execute in much less than the available memory.

The 4K of memory (octal addresses 0000 through 7777) were allocated as follows. Page zero (000 through 177) is used to store certain experimental parameters and pointers to the commonly called subroutines, since data stored on page zero can be directly accessed from any other memory location. The executive routine occupies the next several core pages, typically locations 200 through 1777. The executive routine handles such functions as keeping track of which particular sample is currently being analyzed, requesting operator intervention if required, and sequencing the experiment by executing CALLs to the general purpose subroutines.

Most of the actual functions are carried out by these subroutines, called with or without arguments, which then RETURN to the executive. The general purpose subroutines occupy the 7 core pages following the executive, or 1400 locations. The remainder of the 4096 locations (typically more than 2K) are available for raw data, which consists of averaged ADC conversions for each sample stored during the experiment. These data can be optionally printed on the terminal or, at the conclusion of the experiment,

transmitted to the minicomputer for the more complex calculations. Actual program flow is described below.

The working parameters for a particular experiment are input either from the terminal or minicomputer. These include the total number of samples and the number of runs for each sample, the enzymatic reaction time for each, the delay time from flow stoppage to data acquisition, the data acquisition rate, and whether the indicator reaction is to be monitored continuously (for reaction rate analyses) or after equilibrium has been attained.

When the experimental parameters have been input, the dark current and 100% transmittance are sampled after the stopped-flow observation cell is flushed with the reference or blank solution. Zero and 100% T can then optionally be again sampled and updated after the completion of each run; program flow is directed to the scaling routines by setting a bit on the switch register.

Manual control of the SFCA can be obtained by typing an ALTMODE at the terminal any time the software is either waiting for terminal I/O or in a software timing loop. After gaining manual control the operator can cause all hardware functions to be performed be typing key letters at the terminal. A summary of these commands is given in Table 4.

Table 4. Manual Mode Commands and their Function.

Command	Function
0	Open sample valves
С	Close sample valves
Ε	Empty stopping syringe
F	Fill drive syringes
Р	Push drive syringes
R	RESET
a	Set DAC from keyboard
A	Sample ADC
CNTRL-C	Exit to Monitor (transparent mode)
CNTRL-R	Return to calling program

When ready for each new sample, the executive routine prints the current sample and run number on the terminal and waits for any character to be typed before opening the sample valves. This feature can be disabled by setting a bit an the switch register.

The sequencing for each sample is then as follows. After opening the sample valves, a software timing loop is entered for the duration of the sample fill time while sample solution is drawn into the reaction loop. This sampling time is preset according to the solution uptake rate and the reaction loop volume and is determined empirically. The stop syringe is emptied and the drive syringes filled during sampling. The sample valves are then

closed, and the timing of the enzymatic reaction begun.

After the enzymatic reaction has proceeded for a preset time, the drive syringes are pushed. The program waits for the flow-stopped signal, and then delays the preset time before beginning data acqusition. If the indicator reaction is to be monitored after equilibrium, this delay is to the attainment of equilibrium, after which the ADC is sampled in rapid succession, averaged, and stored. The number of conversions to be averaged is preset by the operator.

When monitoring the rate of the indicator reaction, the delay after flow is stopped is to allow settling of the observed solution; incomplete mixing is often observed in the GCA McPherson module when mixing reagents of widely different concentrations. The ADC is then rapidly sampled, averaged, and stored as the first data point of a two-point fixed-time reaction-rate measurement. After delaying the preset time, the ADC is then again rapidly sampled, averaged, and stored as the second data point. The time lapse between the two data points is pre-determined according to the rate of the indicator reaction being monitored.

The entire data set can optionally be listed on the terminal at the end of the experiment, and finally transmitted to the minicomputer for further data analysis.

2. Data Transfer Subroutines

A protocol had to be developed for accurately transmitting data between the mini and micro so that the overall software scheme outlined above could be implemented. Simple FORTRAN READ and WRITE statements were tried first, but proved to be unreliable due to timing difficulties; typically the WRITE statement resulted in a very short time lapse between character transmissions, while the complimentary READ statement involved a much longer time lapse between reading each character. The result was that characters were occasionally missed, since one or more characters had been sent before the previous one had been read.

The most succesful procedure developed requires that the receiving program indicate to the sending program that it is ready to accept a character by transmitting a special character. The sending program then merely waits until it receives this special character before transmitting each character, resulting in no loss of data.

3. Minicomputer Software

Complex calculations such as the use of logarithms and evaluations of standard deviations are more efficiently handled by a higher level language such as FORTRAN-IV (requiring much more memory than is available on the micro).

The FORTRAN-IV software which operates on the minicomputer accepts the raw data from the micro (averaged ADC with conversions for each sample along the 100% transmittance for each). The routines will then calculate the average absorbance and standard deviation for each sample and then display the information in a variety of formats and/or store the data on floppy disk or cartridge disk for later use. Calibration curve data can be called up from mass storage if calculation of an unknown concentration is desired.

The parameters for an experiment can be optionally set up by the minicomputer software. For example, if the kinetics of the immobilized enzymatic reaction are to be studied, the reaction time for each sample is varied between specified extremes while all other parameters remain constant; a calibration curve experiment requires that only the substrate concentration in each sample vary. The minicomputer software is able to set up the desired parameters and then transmit them to the microcomputer.

CHAPTER VI

EVALUATION OF THE STOPPED-FLOW CLINICAL ANALYZER

The potential of the SFCA as a useful analytical instrument was evaluated both by separate characterization of several of the individual elements of the system and also as an integral unit. This chapter describes the evaluation of the instrumuntal aspects of the unit and its fundamental potential in enzyme-catalyzed analysis. The two chapters following describe the characterization of the immobilized enzymes and an evaluation of the analytical capabilities of the SFCA.

A. Solution Volumes

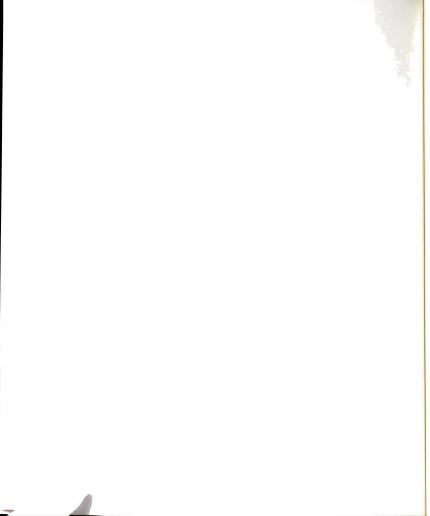
A complete purging of solution from the immobilized enzyme reaction loop and filling with new solution requires drawing a volume equal to approximately three times the reaction loop volume. The volume contained in a 1.0 m length of the nylon tubing was determined by filling the tube several times with water and then weighing the combined fillings. The loop volume was thus determined to be 585 ul. Hence, during most of this study, 2-3 ml volumes of each new solution were drawn to ensure replacement of the old solution with the new.

Once the enzymatic reaction in the reaction loop has

proceeded to the desired extent, the solution is forced bu the push liquid through connecting tubing into the stoppedflow mixing chamber and observation cell. The contained in the connecting tubing i 5 kept (approximately 80 ul) by using very narrow diameter tubing (O.8 mm i.d.). The volume of the observation cell reported to be 63 ul (73). Hence, the push volume of each suringe must be enough to replace completely the total volume of 143 ul to ensure that solution in the observation cell is completely replaced by new solution with each push. The push volume must be not so large as to allow dilution of the observed solution by the oncoming push liquid itself.

The reagent syringes were adjusted to deliver 300 ulper syringe per push. The effectiveness of using this volume was tested by filling a duplicate reaction loop (of identical dimensions) with a dye (p-Nitrophenol) and monitoring the transmittance of a series of alternating distilled water and dye solutions pushed from the reaction loop.

A determination of the expected transmittance of the dye solution was made by successively pushing the dye from the reaction loop into the observation cell. Alternating then between the blank and dye solutions showed a transmittance reproducibly alternating between sample and reference, which verified that the 300 ul push volume was adequate.

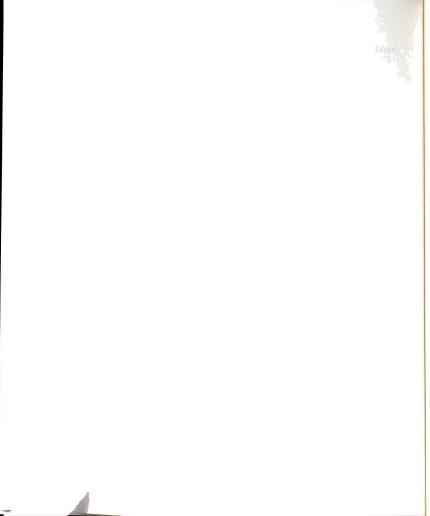

The volume of solution taken up by the stop syringe

before flow is stopped is adjustable in the GCA-McPherson module. This volume was set so that the drive syringe plungers stopped just before reaching the ends of the syringes.

B. Sequencing

The best sequence of events involved for each sample or blank to be analyzed was empirically determined by observing each action of the sequence. It was noted that some solution is drawn from the reagent reservoirs through the observation cell by suction each time the stop syringe is emptied. Solution in the reaction loop is also disturbed when filling the drive syringes. As a result, it was decided that the syringes be operated while the reaction loop is being filled; switching the sample valves to position isolates the reaction loop from the rest of the flow system, possible contamination of 50 immobilized enzyme with harsh reagents in the drive syringes could be avoided.

Since all of these studies were made with all solutions at room temperature, it was not neccessary to await temperature equilibration of reagents in the drive syringes. The GCA-McPherson module relies on ambient air within the enclosed module to transfer heat to or from the glass syringes to thermostatted water circulating within copper tubing below the syringes. If temperature



equilibration of reagents in the syringes is desired, sequencing can be delayed after filling the syringes to allow for that.

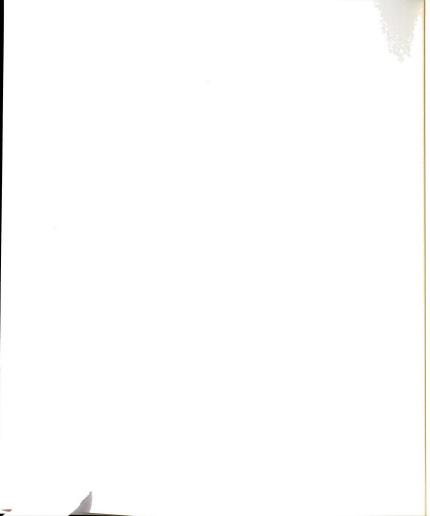
As the 2-3 ml of solution (sample or blank) is drawn through the reaction loop by the vacuum, the stop syringe is emptied, and the drive syringes are filled. The sample valves are then switched to the push position, and timing of the enzymatic reaction is begun. At the end of the specified incubation period, the reagent syringes are driven. The push liquid forces the reacted solution from the loop into the stopped-flow mixing chamber and observation cell for analysis. After data acqusition, the cycle is repeated.

C. Indicator Reaction

the SFCA is that important feature of indicator reaction takes place in the stopped-flow observation cell. This allows the option of monitoring this by reaction-rate methods reaction either or after equilibrium has been attained. Another advantage of arrangement is that, since the indicator reaction takes place outside of the immobilized enzyme reaction loop, drastically different reaction conditions can be used in each of the two reactions. An indicator reaction which may involve a strongly acidic or basic pH or other species which could otherwise interfere with the enzymatic reaction (in

fact even destroy its catalytic ability) can be utilized.

In choosing whether to use a rate or equilibrium method for the indicator reaction, some of the following points should be considered. Equilibrium methods have advantage of simpler data acqusition and data analysis. needs only to wait for equilibrium to be established, measure the absorbance of the chromophore, and compare it to The simple two-point fixed-time kinetic the reference. method requires two transmittance measurements a precise time interval apart and a more accurate measure reaction rate requires even more data and more data analusis. Reaction-rate methods are generally more sensitive to variations in the solution pH and temperature than corresponding equilibrium methods. Reaction-rate have the advantage of involving a relative measurement, the rate of change of the transmittance absorbance with time. Problems such as light source drift and other spectral interferences which do not change during the measurement process do not affect a rate method, while they can cause serious errors in an equilibrium method.

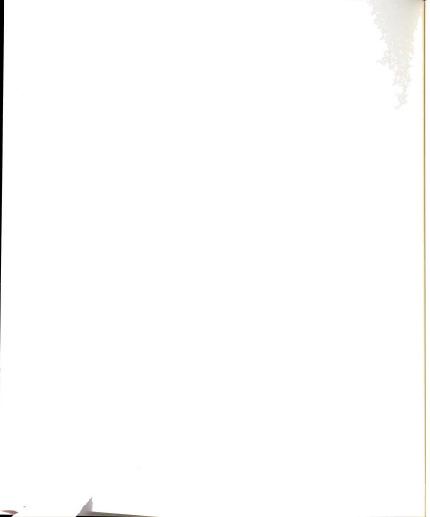

Chemical interferences can also cause errors in an equilibrium measurement. For example, in enzymatic-based determinations which involve the monitoring of hydrogen peroxide produced in the reaction, sodium azide is often added to the reaction medium to inhibit the consumption of the peroxide by catalase (an impurity often present in commercial enzyme preparations). The iodide-peroxide

reaction then suffers from interference by the azide. The triiodide formed in the indicator reaction is slowly consumed, so the absorbance due to triiodide first quickly increases and then gradually decreases over the next few minutes.

By measuring the initial rate of formaton of the triiodide, errors due to the azide interference can be avoided. A two-point fixed-time rate method with two absorbance measurements a short time (1-5 s) after the flow stops should result in an accurate determination of the hydrogen peroxide present.

D. Sources of Error

Several factors play a role in the overall accuracy and precision of substrate determinations by the SFCA. The substrate in both sample and standard solutions must follow the same kinetics in the reaction loop. The product produced in both sample and standard must then react with the indicator reagents in an identical fashion. Similarly, all other elements of the detection system must behave identically for both solutions. The accuracy and precision in each of the transductions involved in the analysis are evaluated in this section, in the order that they occur.



1. Sampling

introduction of the sample solution into the loop can be complicated by immobilized enzyme reaction several factors. The most important of these is the achievement of complete removal of the previous solution. As previously noted over-extensive hydrolysis of the inner surface of the loop in the immobilization process results in a strong affinity between the support-enzyme matrix and the substrate and/or product. This affinity is considered to be ionic in nature, although the addition of strong electrolytes to solution in one of these extensively hydrolyzed loops did not significantly improve the elution of substrate/product from the loop.

When the much milder hydrolysis conditions are used in the immobilization process, the problem of affinity disappears almost completely. Flushing the loop with 2-3 ml of the buffer solution (blank) results in no detection of product in the subsequent indicator reaction. It must be kept in mind however that the presence of certain species in the sample may inadvertantly interact to enhance the affinity of the matrix toward the substrate/product. Frequent sampling of a reference or blank solution should be carried out to monitor the complete replacement of solution in the sampling process.

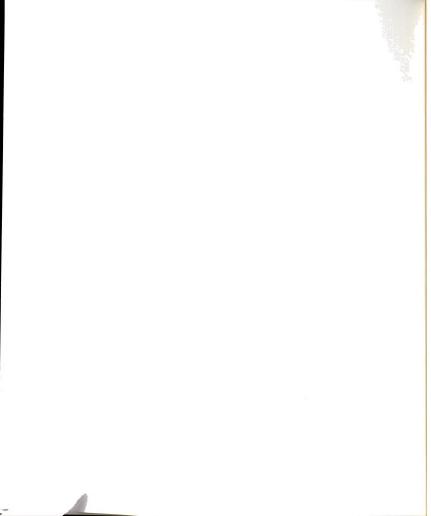
Fluctuations in the vacuum pressure used to draw solution into the reaction loop cause variations in the actual volume of solution taken during the fixed-time

sampling period. Normally the time delay between opening and closing the sample valves is set at 5 s, which was previously shown to be adequate for complete solution replacement. The effectiveness of a 5 s sampling period should be periodically verified. Longer sampling times do not improve solution replacement but only add to the total solution volume requirements.

2. Enzymatic Reaction

Due to the relatively small amount of enzyme (i.e. activity) present in the reaction loop, the enzymatic reaction has been used in a fixed-time reaction-rate mode in all of these studies. That is, the enzymatic reaction is allowed to proceed in the reaction loop for a preset time, identical for both the sample and all standards. If this reaction time is kept short enough so that only a negligible fraction of the substrate is converted to product, the reaction will be psuedo-first order in substrate (see Chapter VII for a more detailed description of the immobilized enzyme kinetics).

Under these conditions it can be assumed that an equal fraction of the substrate in both sample and standard solutions will be converted. This assumption is critical if the amount of substrate in the sample is to be determined from a calibration curve, etc. The rate of the enzymatic reaction is, however, very sensitive to such variables as


solution pH, type of buffer, temperature, ionic strength, the presence of interferences, and others.

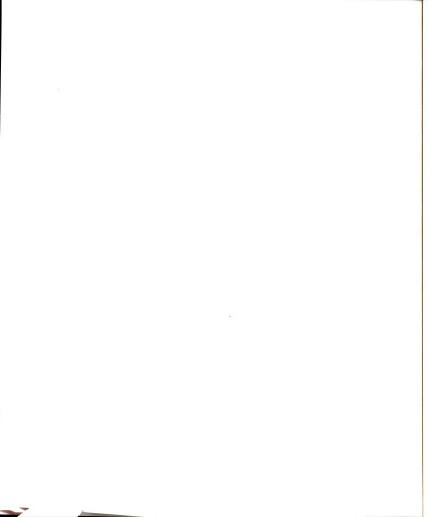
These parameters must be carefully monitored and controlled to be as nearly identical in both standards and sample as possible. Typically standard solutions are aqueous preparations of pure material, while the sample itself is extracted from a complex matrix such as blood or serum.

The magnitude of the error introduced by such changes as pH, temperature, and others can range from negligible to intolerable. The use of commercially available control samples in a variety of matricies is very helpful in evaluating and correcting for matrix effects.

3. Indicator Reaction

The amount of product formed in the enzymatic reaction is determined spectrophotometrically either by a reaction with a chromophore or with a reagent to produce a chromophore. By monitoring either the rate of appearance or disappearance of the chromophore or the total amount produced, and by knowing the stoichiometry of the indicator reaction, one can calculate the amount of product initially present. The transduction from enzymatic reaction product to chromophore is yet another step in the entire analysis scheme, and as such its contribution to the total accuracy and precision must be considered.

As previously described, the indicator reaction can be monitored in either a rate or an equilibrium mode. Errors introduced by variations in the rate of the indicator reaction will obviously affect a reaction—rate measurement much more than an equilibrium measurement. While differences in the solution pH, temperature, or other parameters can seriously alter the rate, the final position of the equilibrium may be slightly affected or even unchanged. It has been noted, however, that species may be present which can shift the position of the equilibrium. In this case reaction—rate monitoring will certainly be superior to equilibrium monitoring.


Other elements of the detection system (i.e. those involved in the absorbance measurement) must also be considered in evaluating the overall performance of each mode. These factors are described in the next section.

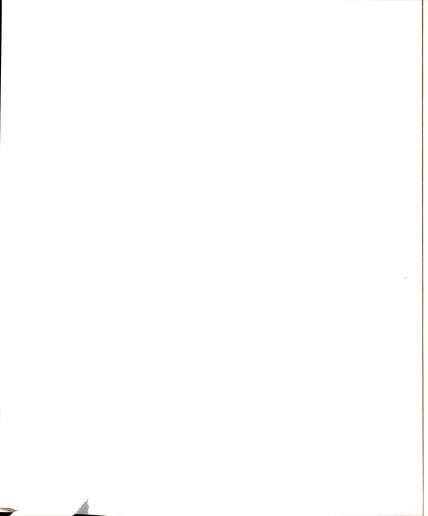
In this work, the hydrogen peroxide produced in the enzymatic reaction was determined almost exclusively by the peroxide-iodide redox reaction,

$$H_2O_2 + 3I^- + 2H^+ \xrightarrow{M_0(VI)} 2H_2O + I3^-$$
.

The absorbance of triiodide is measured after equilibrium is attained; experimental data were actually acquired 30-40 s after the flow stops to improve precision (see Section D. 4. b.).

The accuracy of determining hydrogen peroxide by this

method was evaluated by filling the reaction loop with hydrogen peroxide solutions of known concentrations, sequencing the stopped—flow to initiate the indicator reaction, and measuring the equilibrium absorbance. The absorbance was linear for concentrations of hydrogen peroxide ranging from 4.00 uM to 100 uM, which encompasses the range of peroxide to be determined in the enzymatic analysis of glucose.


4. Measurement of Absorbance

As previously mentioned, a variety of photometric errors can also contribute to the overall accuracy and precision. In this section the most important of these error sources are discussed.

a. Light Source Characteristics

Short term fluctuatons and long term drift are the major sources of error from a non-ideal light source (74). Most of this work involved monitoring the absorbance of triiodide at 365 nm, where both tungsten and deuterium continuum lamps are candidates as the source. The long and short term characteristics of each were evaluated.

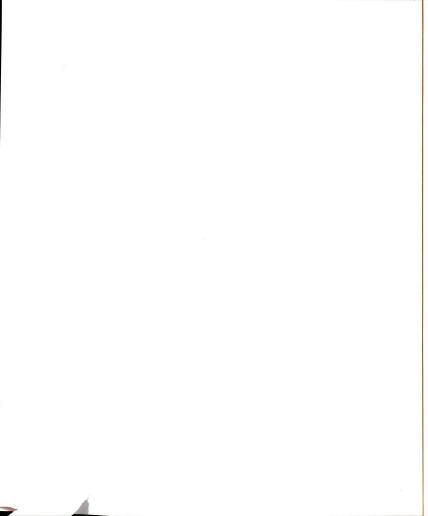
The spectral output of each lamp at 365 nm (monochromator bandpass 3 nm) was recorded both by a strip chart recorder and by sampling the signal through the ADC

and averaging in the microcomputer. As expected, both lamps showed comparable long term characteristics, drifting on the order of 1-2% with a frequency of approximately 0.001 Hz. The short term characteristics proved to be significantly less serious for the deuterium source at 365 nm. In the frequency range 0.5 to 10 Hz, the deuterium lamp fluctuated less than 1%, the tungsten lamp operated in the optical feedback mode showed average deviations about the mean of 2-3%. As a result, the deuterium lamp was used almost exclusively in this work.

Errors due to the short term fluctuations were minimized by averaging multiple A/D conversions (typically 100) for each intensity measurement. Long term drift was compensated for by frequently running a reference or blank, and also by ensemble averaging multiple runs of each solution. Low frequency fluctuations of the source are not a serious problem in a reaction-rate measurement of the indicator reaction, since multiple intensity measurements are made over typically 1-10 s.

b. Physical Interferences

Variations in light throughput can be caused by particulates or air bubbles in the observation cell. Incomplete removal of precipitates formed during serum preparation causes erroneously low transmittance for the sample. Precipitates may also be formed during the


indicator reaction due to impurities in the sample or indicator reagents. Air bubbles may be inadvertently drawn into the drive syringes during filling and then be driven into the observation cell, which also causes decreased transmittance and erroneous results.

Incomplete mixing of reagents in the stopped-flow mixing chamber can create fluctuations in transmitted radiant power. This can be a serious problem in the GCA-McPherson module, especially when mixing two solutions of drastically different composition (e.g. different pH or salt concentrations). In this case mixing continues in the observation cell after the flow has been stopped and has been observed to continue for up to 30 s.

Incomplete mixing causes serious errors if the indicator reaction is monitored by a rate method; in an equilibrium determination, the measurement of the solution transmittance is usually delayed for 30-40 s after the flow stops to improve both accuracy and precision.

c. Spectral Interferences

The triiodide produced in the indicator reaction is monitored at 365 nm. The absorbance maximum for triiodide is actually at a somewhat shorter wavelength (349 nm); maximum sensitivity in this particular reaction is however obtained at 365 nm, since the Mo(VI) catalyst present has an absorbance which steadily decreases from 349 to 365 nm.

The spectrum of triiodide in the presence of Mo(VI) was recorded on a Cary-14 spectrophotometer, using a solution of Mo(VI) of equal concentration as the reference. The difference between triiodide in the presence of Mo(VI) and the Mo(VI) showed an absorbance maximum at 365 nm. The absorption band was found to be quite wide, so the monochromator slit widths of the SFCA subsequently were set to 1500 um (3 nm bandpass).

Stray light entering the stopped-flow module can be a serious problem, contributing 5-10% to the total light passing through the module under normal room lighting. This potential source of error was minimized by placing the stopped-flow module before the monochromator in the light path. In this configuration only stray light of wavelengths within the bandpass of the monochromator will be passed on to the detector.

d. Detector Noise

The major sources of imprecision arising from a photomultiplier tube are phtotcurrent shot noise, dark current noise, and Johnson noise (74). Photocurrent shot noise, arising from the random time distribution of photons striking the photocathode and the random intensity distribution of electrons reaching the photoanode, is proportional to the square root of the light intensity reaching the PM tube. Dark current noise and Johnson noise

are not a function of the light intensity. Since the signal is proportional to the light intensity, best signal-to-noise ratio is obtained, under shot-noise limited conditions, when the light intensity is a high as possible.

Detector noise was also minimized by sampling the photocurrent voltage repeatedly in rapid succession and averaging typically 100 samples for each data point. This essentially reduces the noise equivalent bandwidth of the measurement system for improved signal-to-noise ratio.

e. Photocurrent Amplifier

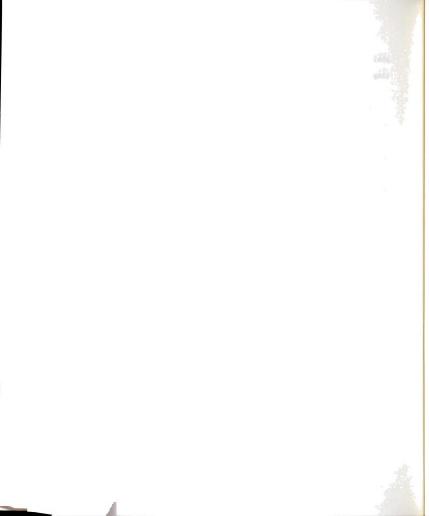
The response linearity and precision of the Keithley current amplifier were evaluated by using a precision current source as the input and monitoring the response with a digital voltmeter. The accuracy and precision were found to be better than 0.1% over a wide range of input currents (1 uA to 100 uA). Temperature variations may cause minor fluctuations in the transfer function. However, errors in the photocurrent amplification should not contribute significantly to the overall accuracy.

f. Digitization

The transfer function of the ADC was evaluated by using a precision voltage reference source as the input

analog voltage and monitoring the digital output over the complete range of +5 to -5 volts.

With the analog voltage held constant at near full scale (+5 V), the digital output of the ADC had an standard deviation of 0.018%. A variation of 1 in the least significant bit of the ADC would cause a deviation of 0.025% of full scale.

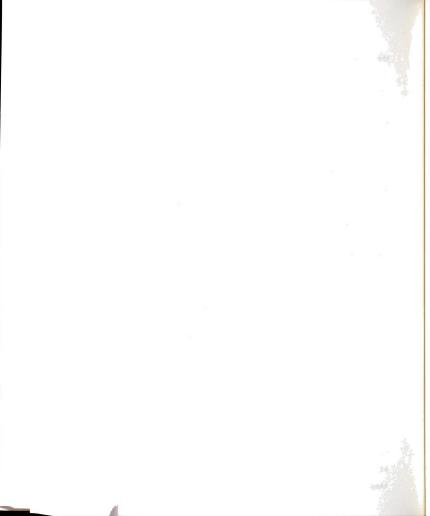

The ADC was then sampled over its entire dynamic range by averaging 100 conversions at each of 11 input voltages (measured with a digital voltmeter). A plot of the transfer function (digital output vs. analog input) had a slope of 409.37 (standard deviation = 0.19) and a Y-intercept of 2049.3 (standard deviation = 1.1). The expected slope is 409.5 and the Y-intercept 2047.

Long term drift of the ADC transfer function due to supply voltage drift and/or temperature variations is compensated for by frequent sampling of the reference photocurrent.

Individual digital data point acquisitions in this study were carried out by averaging 100 A/D conversions. Under these conditions, imprecision due to digitization errors should be negligible.

5. Summary of Error Sources

The relative contribution of each of these potential sources of error to the overall accuracy and precision of


the method are summarized in this section.

Probablu the most important source of error variation in the rate of the enzymatic reaction from sample to sample due to fluctuations in temperature, pH, presence of activators and inhibitors, and other conditions. Carefully prepared aqueous standards can result in excellent than 1% relative standard precision, tupically less deviation. Serum samples, however, can contain impurities which can seriously affect the accuracy the determination.

The effect of carry over from one sample to the next can best be minimized by controlling the surface hydrolysis during the immobilization of the enzyme. Effective purging of each sample from the reaction loop can be easily checked from time to time by running a blank.

The indicator reaction used in these studies (iodideperoxide) has been shown to be an accurate and precise
monitor of the peroxide produced in the enzymatic reaction.

Photometric errors have been minimized both by frequent sampling of the dark and 100% transmittance and by averaging many ADC conversions for each data point. Errors caused by long term drift in the light source, current-to-voltage conversion, and analog-to-digital conversion were minimized by periodic sampling of the dark and reference photocurrents. Higher frequency fluctuations in these elements were minimized by averaging typically 100 ADC samples for each data point.

CHAPTER VII


CHARACTERIZATION OF THE IMMOBILIZED ENZYMES

Glucose oxidase (GD) and alcohol dehydrogenase (ADH) have been immobilized on nylon tubing by the procedure described in Chapter III. A fundamental characterization of these immobilized enzymes is presented in this chapter. The Michaelis-Menten model of enzyme kinetics is applied to the system, and modifications to the model are included to take into account diffusional effects in the reaction loop. Data on the relative enzymatic activity as a function of pH are presented. Finally, the long term stability of the immobilized enzymes is considered.

A. Kinetics of the Immobilized Enzymes

1. Michaelis-Menten Model

The model of enzyme kinetics developed by Michaelis and Menten (75), although a simplified description of an often complex mechanism, can be applied to the kinetics observed in these studies. The model, as described in the following equations, assumes the reversible formation of an intermediate enzyme—substrate complex (ES), which then dissociates into the product (P) and the regenerated enzyme (E).

$$E + S \xrightarrow{k_1} ES$$

$$ES \xrightarrow{k_2} E + P$$

The rate equation which describes the rate of appearance of the product with time is then

$$R_1 = \frac{k_2[E]_{\Theta}[S]}{K_m + [S]} = \frac{R_{max}[S]}{K_m + [S]}$$

where Km is called the Michaelis constant of the enzyme, and is a rough measure of the dissociation constant of ES. Here [E]_O is the initial enzyme concentration. Several assumptions are made in deriving the initial rate equation. The substrate concentration is assumed to be greater than the enzyme. The rate of the reaction is measured early in the reaction, before the build-up of product can cause any significant back reaction. Finally, the intermediate complex is assumed to be in rapid equilibrium with S and E or that ES is at steady state at any instant (Briggs-Haldane assumption (76)).

The initial rate equation derived under these conditions is illustrated in Figure 17 as a plot of the initial rate vs the initial substrate concentration. This curve was computer generated from the Michaelis-Menten equation. It can be seen that the initial rate is linear with S when the initial substrate concentration is much less than Km, and reaches a maximum when S is much greater than Km.

Figure 17. Computer Simulated Initial Rate Curve

a. Glucose Oxidase

In the specific case of immobilized glucose oxidase, the reaction is

Glucose +
$$O_2$$
 Gluconic Acid + H_2O_2 .

If the oxygen is present in excess and the glucose concentration is much less than the Michaelis constant, then the initial rate of appearance of H_2O_2 will be proportional to the initial glucose concentration.

A more detailed description of this reaction has been presented by Gibson, et al (77). Their work demonstrated that the enzyme first converts glucose to gluconic acid and is itself reduced in the process. In a second step, oxygen reacts with the reduced form of the enzyme to produce hydrogen peroxide and regenrate the oxidized form of the enzyme. This mechanism is illustrated below.

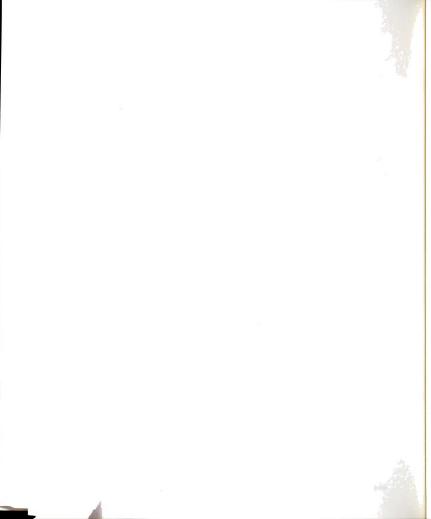
Eox + Glucose
$$\xrightarrow{k_1}$$
 Ered P1 $\xrightarrow{k_2}$ Ered + Gluconic Acid

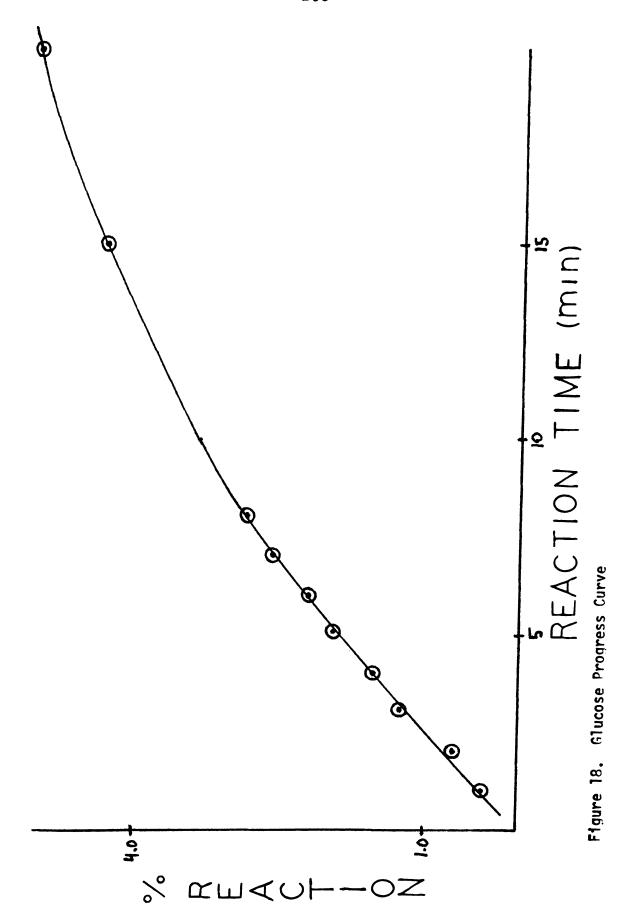
Ered +
$$02 \xrightarrow{k_3} Eox P2 \xrightarrow{k_4} Eox + H_2O_2$$

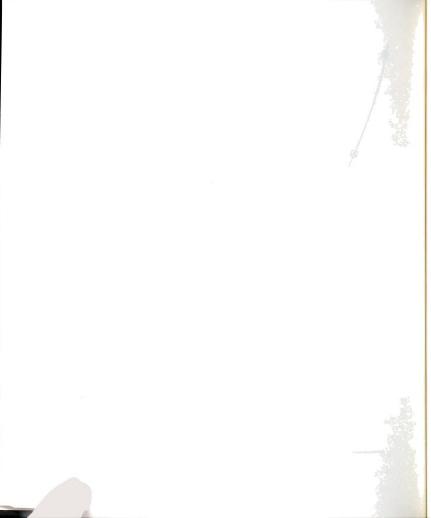
In this study, early experiments with immobilized glucose oxidase on the Auto Analyzer flow system (as described in Chapter IV), the injection of a 4 g/l glucose sample (30 s plug) through the GO column resulted in an extremely prolonged elution of hydrogen peroxide from the column, typically 30 min or more. On the basis of the

mechanism proposed by Gibson, some observations can be made. If the column had contained a large amount of active enzyme, enough in fact to convert nearly all of the glucose to gluconic acid, the first step would have then converted a fraction of the enzyme to its reduced form. Dissolved oxygen passing through the column would then react with the reduced enzyme, converting it back to its oxidized form as the oxygen itself was converted to hydrogen peroxide. Dissolved oxygen in a saturated solution (under ambient air pressure) is about 0.25 mM (78). The 4 g/l glucose solution however, 22.2 mM, or roughly 100 times as concentrated as the dissolved oxygen. It can then be concluded that, the substrate plug passed through the column, a large fraction of the immobilized glucose oxidase was converted to its reduced form, and was then slowly converted back to its oxidized form as sufficient oxygen came into contact with the enzyme. This would give rise to the observed prolonged elution of hydrogen peroxide from the column, which would be expected to extend long after the substrate plug had passed through.

When air bubbles in the segmented flow stream were replaced with pure oxygen bubbles, the observed response, for the same 30 s plug of 4 g/l glucose, had a slightly greater peak height (0.29 vs 0.27 with air bubbles). The general shape of the response curve as well as the length of time required to reach the baseline was, however, not significantly different. A saturated solution under pure

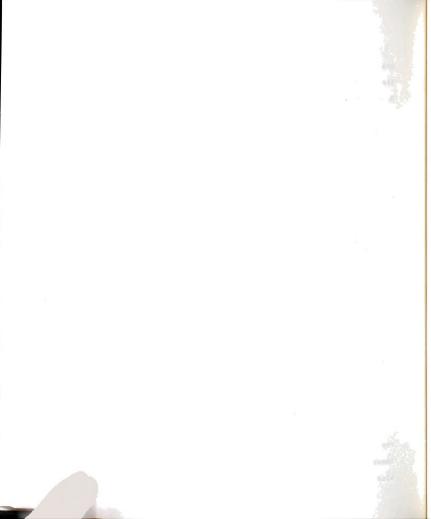


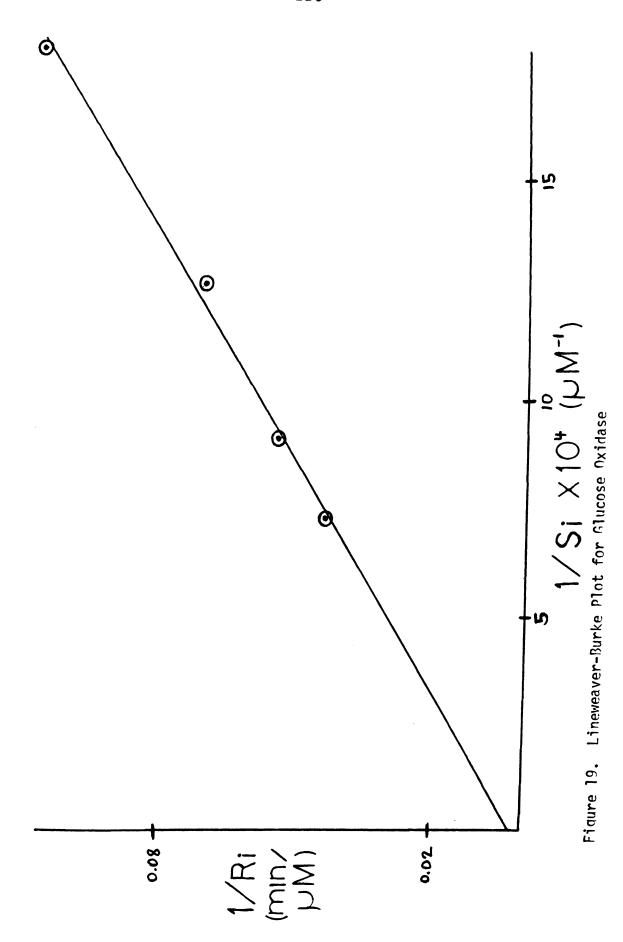

oxygen (760 torr) is 1.275 mM in oxygen (78), which is still only approximately 5% of the glucose concentration in this sample; hence the same behavior is predicted.

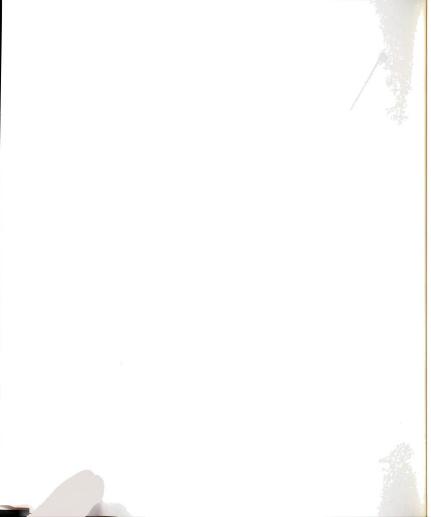

Hornby, et al (35) employed immobilized glucose oxidase in a similar flow system. They noted an approximate two-fold increase in the maximum rate (Rmax, Figure 17) and over a two-fold increase in Km when air bubbles were replaced with pure oxygen. This behavior was not observed in the glucose oxidase column employed in this study. Hence, the column may have actually contained such a high degree of activity that the dissolved oxygen limited the extent of the reaction even during the short time of contact between the glucose and the enzyme.

The dissolved oxygen under ambient air (0.25 mM) may be rate-limiting in an enclosed reactor such as the immobilized glucose oxidase column. In the stopped-flow clinical analyzer, where the sample solution is incubated in the enclosed reaction loop, the dissolved oxygen restricts the total amount of hydrogen peroxide that can be produced. In this environment, only the oxygen initially present in the solution as it is drawn into the reaction loop is available to convert the enzyme from reduced to oxidized form.

The extent of reaction was studied as a function of the incubation time in the reaction loop. The results are shown in Figure 18 for a 500 ppm glucose solution at pH 6.30 and at room temperature. The initial rate of the reaction


was determined from the slope along the linear portion of the curve, early in the reaction, and was found to be 3.56 uM/min.


Lineweaver and Burke (79) rearranged the Michaelis-Menten rate equation to give


1/Ri = (Km/Rmax)x(1/Si) + 1/Rmax

By plotting the inverse of the initial rate of reaction as a function of the inverse the initial of substrate concentration, Km and Rmax for the enzyme can be determined from the slope (Km/Rmax) and the y-intercept (1/Rmax). Lineweaver-Burke plot for immobilized glucose oxidase is shown in Figure 19. From the plot, Km was determined to be 19.0 mM (standard deviation 1.0) and Rmax was 333 uM/min (standard deviation 10). These Michaelis parameters were also determined for glucose oxidase immobilized on another column; Km was found to be 15.8 mM (standard deviation was 44.1 uM/min (standard deviation 1.5). and determined value of the maximum rate depends on the amount of active enzyme present, which is known to vary widely from column to column. The determined Km, however characteristic of the enzyme and should remain constant for the same enzyme in the same environment. Hornby, et al (35) Km value of 15.0 mM for glucose oxidase reported immobilized on polystyrene tubes, and the value of 15 mM has also been reported for the soluble enzyme.

The value of Km corresponds to that substrate

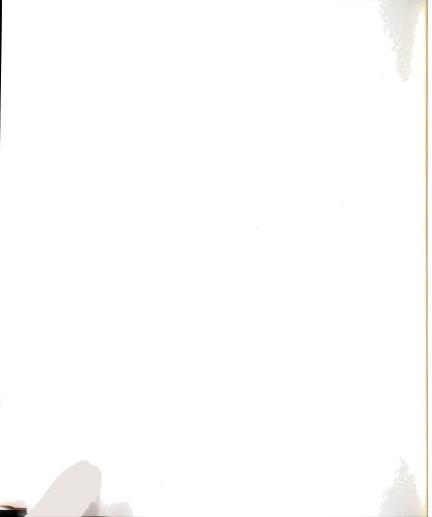
concentration which gives an initial rate equal to half the maximum initial rate. Km also gives an indication of the range of substrate concentration over which the enzyme is analytically useful, as demonstrated by the linearity of the calibration curve obtained over that range. A typical upper limit of the substrate concentration equal to one tenth Km is usually accepted. For glucose in this system, this limit is approximately 1.5 mM (270 ppm).

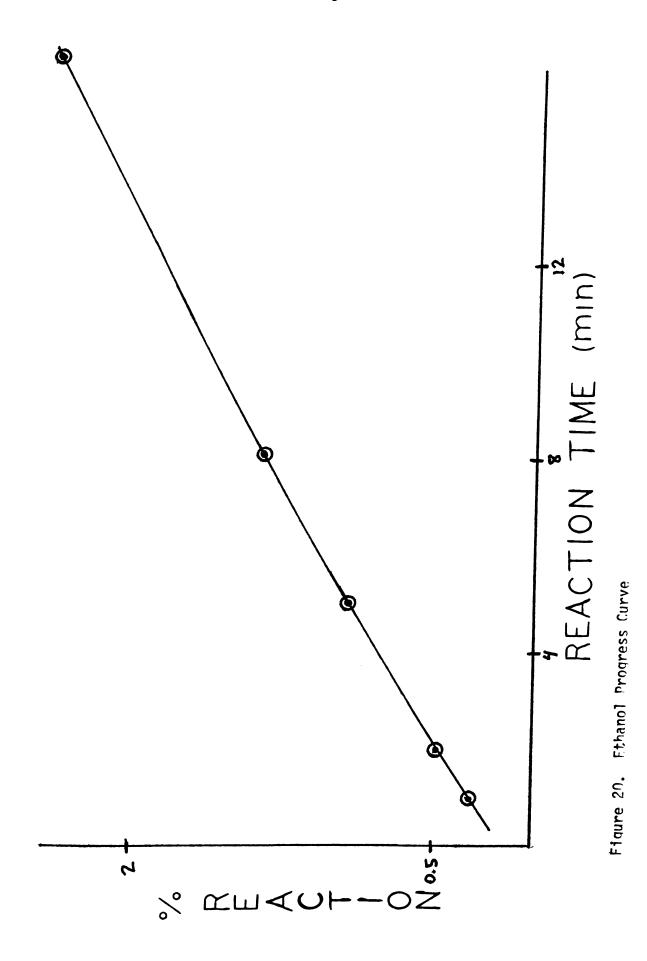
b. Alcohol Dehydrogenase

Immobilized alcohol dehydgogenase catalyzes the reaction

$$CH_3CH_2DH + \dot{N}AD^+$$
 $CH_3CHD + NADH + H^+$

If the NAD is present in the excess and ethanol concentration is much less than Km for the enzyme, the rate of appearance of NADH in the initial stages of the reaction will be proportional to the ethanol concentration. equilibrium lies far to the left (12); semicarbazide hydrochloride is added to the solutions to consume the acetaldehyde as it is formed. In the stopped-flow clinical analyzer, the enzymatic reaction was allowed to proceed in the reaction loop for a fixed time interval. This time interval was kept short enough that only a small fraction (typically 1-2%) of the ethanol was converted to product.

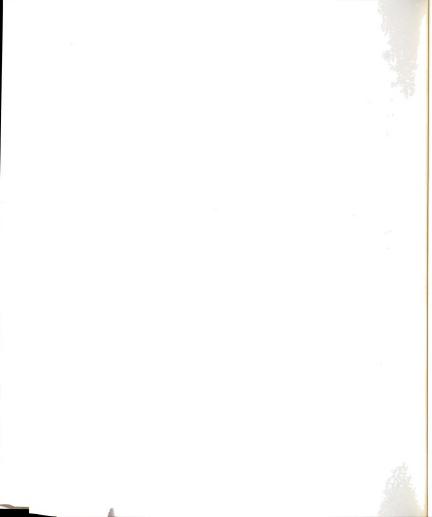

Install


The absorbance at 340 nm due to NADH was then measured and related to the ethanol concentration.

The kinetics of the ADH catalysis are illustrated in Figure 20 as a plot of the observed percent reaction as a function of the reaction time for a 150 ppm ethanol sample at pH 7.7 and at room temperature. It can be seen from the plot that the slope is linear for approximately the first 8 minutes of the reaction, during which 1-2% of the ethanol is consumed. The small positive y-intercept is caused by NAD absorbance which was not present in the blank solution. The initial rate of the reaction, determined from the linear slope, was found to be 11.2 uM/min.

Some interesting facts about this reaction were revealed in deuterium— labelling experiments carried out by Fischer, et al (82). They discovered that the relative orientation of the ethanol and NAD molecules during the catalysis is always the same, and that it involves a direct transfer of a hydrogen atom from the ethanol to NAD. The reaction was thus shown to be stereochemically specific, always occurring with the same face of the NAD ring.

A Lineweaver-Burke plot for the immobilized ADH was carried out at a pH of 7.7, and yielded a maximum rate of 18.9 uM/min (standard deviation 1.2) and a Km value of 3.21 mM (standard deviation 0.11). Hayes and Velick (83) reported Km as 18 mM for soluble ADH at a pH of 7.9.



2. Diffusion Effects

In the stopped-flow clinical analyzer, the transport reactants to the immobilized enzyme surface and the transport of products back into the bulk solution is totally dependent on diffusion. Although the inner diameter of the loop is only 0.86 mm, its diameter is significantly greater than the thickness of the immobilized enzyme layer. results in a diffusion layer between the bulk solution and the surface if the rate of diffusion to the surface is less than the rate of the enzymatic reaction. The rate of the enzymatic reaction may in certain cases be much greater than the diffusion rate, in which case the overall conversion rate will be equal to the diffusion rate. As described by the Nernst-Plank equations (84), the diffusion rate across a diffusion boundary is proportional to the bulk solution concentration. Hence even if the reaction is diffusionlimited, the method will still be analytically useful since the observed rate will be proportioanal to the analyte concentration.

Hornby, Lilly, and Crook (80) have applied the Nernstian diffusion model to enzyme kinetics at a surface. The model accounts for both electrostatic and diffusion effects. The equation they derived is

$$R = \frac{R_{max} S_{1}}{(K_{m} + \frac{xR_{max}}{D})(RT-zxFgrady) + S_{1}}$$

where

R = observed rate

 S_1 = initial concentration of substrate

Km = Michaelis constant

x = thickness of quasi-Nernst diffusion layer

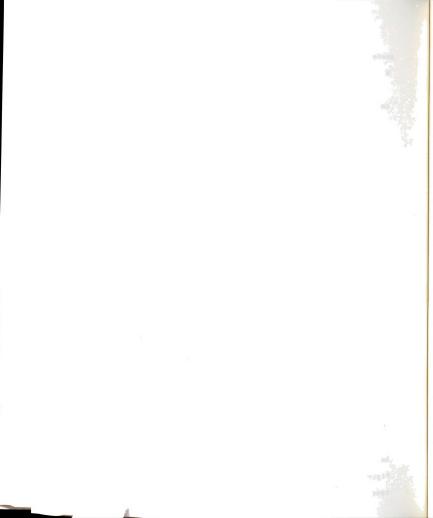
Rmax = maximum rate

D = diffusion coefficient

R = gas constant

T = absolute temperature

z = charge on the mobile species

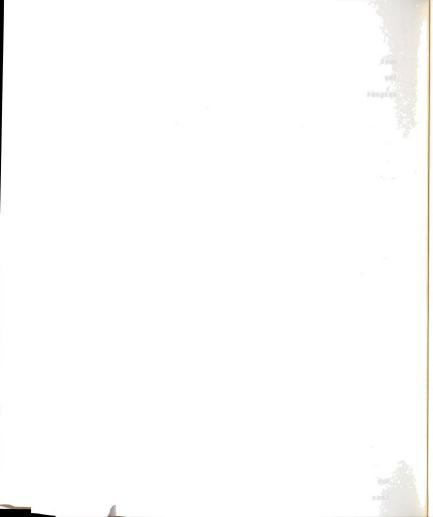

F = Faraday constant

 $\operatorname{grad} \Psi = \operatorname{electric} \operatorname{field} \operatorname{gradient}$

Note that the equation is similar in form to the Michaelis-Menten equation. If either the substrate or the support is neutral (z=0), as in the case of both glucose and ethanol, the apparent Michaelis constant (Km^*) can be defined as

$$K_{\underline{m}}' = K_{\underline{m}} + \frac{xR_{\underline{max}}}{D}$$

This equation demonstrates the effect of substrate transport on the observed Michaelis constant. From the equation, it can be seen that Km is enhanced with either increased Rmax (i.e. increased activity) or increased diffusion layer thickness (i.e. decreased diffusion rate). With Rmax constant, an increase in Km can be interpreted as a decrease in the initial rate of the reaction. Referring again to Figure 17, for Km to occur at a higher substrate concentration and Rmax to remain constant, the initial slope

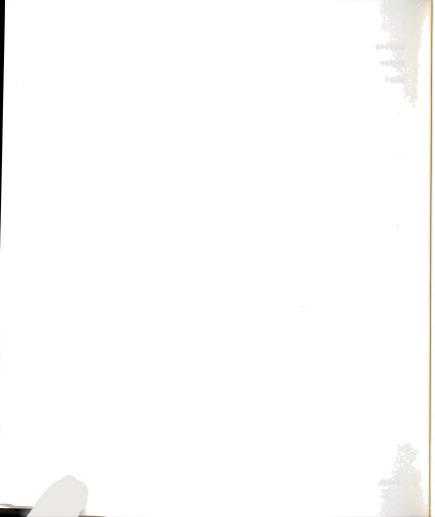


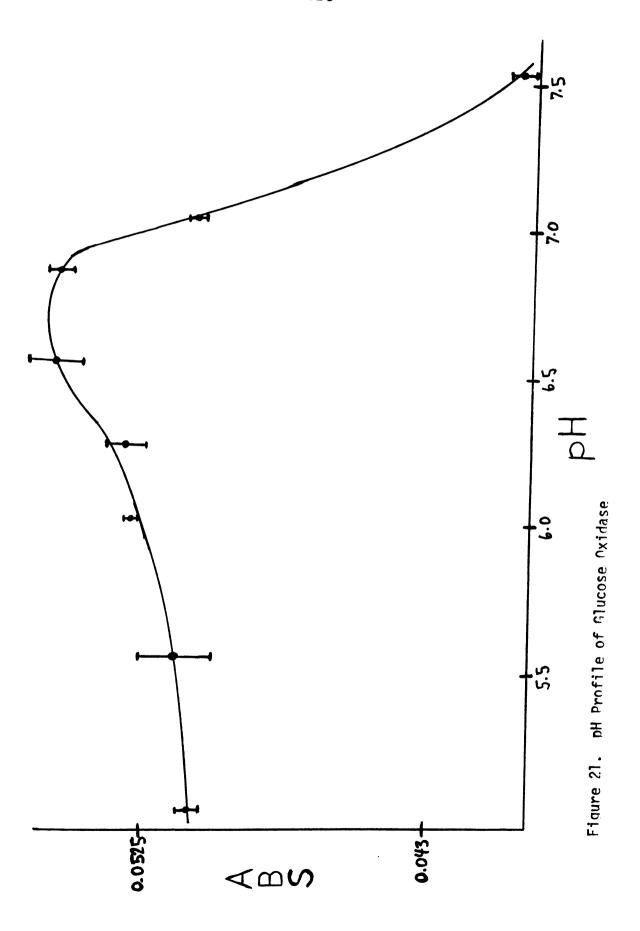
must be decreased. It is also intuitively obvious that as the rate of diffusion becomes slower than the rate of enzymatic conversion, the overall rate will decrease.

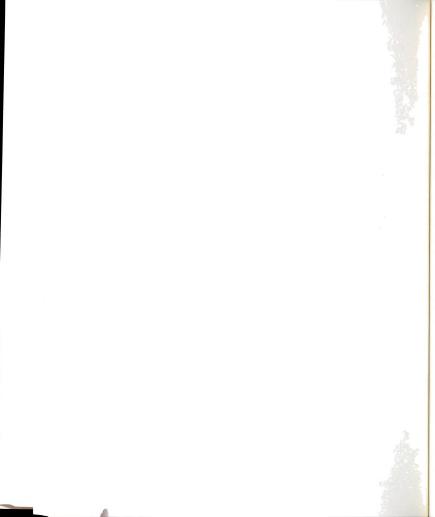
From experiments performed in this study, it is not apparent which process is actually rate determining. The slope of the percent reaction vs substrate concentration curves showed a bending toward the concentration axis at high substrate concentrations, as predicted from the Michaelis-Menten model. However, the diffusion rate also increased as the bulk solution concentration was increased, and may have eventually become greater than the rate of the enzymatic reaction. When diffusion was no longer rate-limiting, the observed rate would then be determined by the enzyme kinetics, and the rate curve would still be predicted to take on the observed shape.

3. Induction Period

Enzymatic reactions usually often show an induction period between the initial contact of reagents and the appearance of the product species. In the case of soluble glucose oxidase, the production of hydrogen peroxide is often not detected for approximately 30 s after mixing. The duration of the induction period may be dependent upon several factors, and is known to vary inversely with the substrate concentration (85). If the induction period is caused by an orientation process between enzyme and

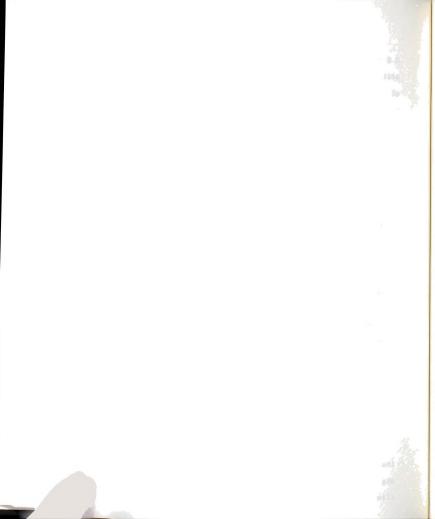

substrate (i.e. a build up of ES), it would follow that at higher concentrations the induction period should be shorter.

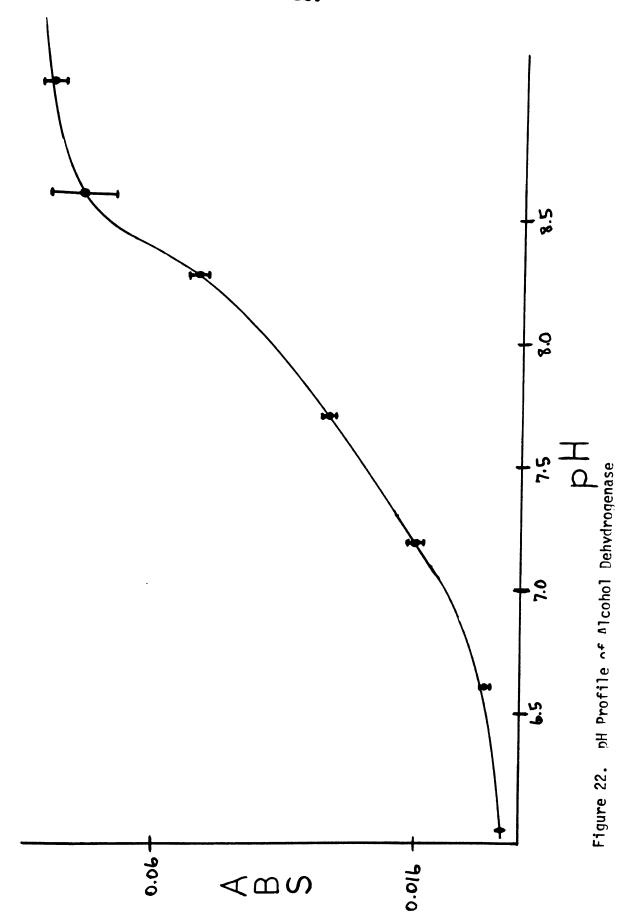

This phenomenon has been observed in the kinetics of the immobilized glucose oxidase reaction. In studies of the hydrogen peroxide produced as a function of reaction time (at a fixed substrate concentration), the observed curve does not pass through the origin but has a negative y-intercept (cf. Figure 18). The curve passes through the time axis (zero H_2D_2 detected) at approximately 20--30 s, which corresponds to the induction period. The magnitude of the x-intercepts (observed induction periods) for several different immobilized glucose oxidase columns were found to be quite varied, however, so no conclusions could be drawn.

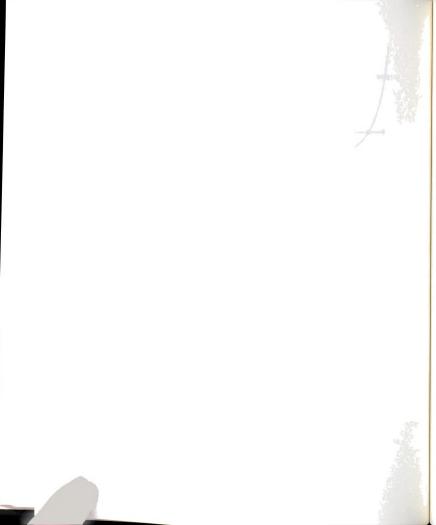

The fact that the induction period is inversely related to the substrate concentration resulted in glucose calibration curves which had a small negative y-intercept (see Chapter VIII). For the more concentrated samples, the production of hydrogen peroxide actually occurred over a larger fraction of the fixed incubation period, since the induction period was shorter for these samples. This behavior was not observed in the immobilized ADH reaction.

B. pH Profiles

Figure 21 illustrates the pH profile of the immobilized glucose oxidase reaction. For this study, a


O. 2 M phosphate buffer was adjusted to the desired pH by the addition of either NaOH or HCl and the final pH measured with a pH meter. This buffer was then used to dilute a stock solution of glucose to a final glucose concentration of 1.20 g/l.


The pH profile shows a typically broad, flat curve characteristic of glucose oxidase. The extent of reaction varied by only 8% from pH 5 to 7, and decreased dramatically above pH 7.5. Similar data have been presented by Bright and Appleby (86) for soluble glucose oxidase, which showed a pH maximum at 5.6.


The pH profile of the immobilized alcohol dehydrogenase reaction is shown in Figure 22. A pyrophosphate buffer (O.075 M) was adjusted to the desired pH and used to dilute a stock ethanol solution to a final ethanol concentration of 300 ppm. The solutions were incubated in the ADH reaction loop for 2.0 min at room temperature, after which the absorbance due to NADH was measured. Maximum activity was observed at a pH of 9.05

C. Long Term Stability and Storage Conditions

An important theoretical advantage of immobilized enzymes over their soluble forms is improved stability. The instability of enzymes in solution has been a major reason why enzymatic analysis has not become more prevalent in clinical laboratories. Glucose oxidase is an exception,

being one of the most stable enzymes in solution. Certain enzymes, however, denature so rapidly in solution that they have little value as analytical reagents.

In order to get an accurate evaluation of the stability of an immobilized enzyme, it should be subjected to continuous use, under the actual conditions of the analysis. This sort of rigorous testing was not possible in this work; however, an estimate of the stability of these immobilized enzymes under analysis conditions can be inferred from the stabilities observed here. The shelf life of these immobilized enzymes has also been evaluated.

When in use, the immobilized glucose oxidase and alcohol dehydrogenase loops were held at room temperature. All solutions drawn into the reaction loops were buffered at a mild pH to prolong the life of the enzymes. When the use of a loop was not anticipated for a few days or more, it was filled with a buffer solution and stored under refrigeration. However, if use was anticipated following day, it was not refrigerated. As a result, the enzymes were exposed to room temperature for approximately half of their total lifetime.

For the immobilized glucose oxidase, a small decrease in activity was usually observed when the loop was left at room temperature overnight. Occasionally, the activity was observed to have remained constant or even slightly increased the following day, probably due to a slight increase in the room temperature. When left unused for one

week at

4%.

During were a

oxidase

contin

conser

solut:

glucos

gluco

less the

buff

Unde

day,

week pH,

the

-116

pH the

MOT

week at room temperature, the activity had decreased by only

When used in this manner, the immobilized glucose exidase retained significant activity for over 6 months. Ouring that time, an estimated 500 aqueous glucose samples were analyzed with the loop. Based on these observations, a conservative estimate of the life of the enzyme under continuous use would be about 3 months.

No significant loss of activity was detected in a plucose oxidase loop which had been filled with a buffer solution and stored refrigerated for nearly 4 months. When stored under these conditions, the shelf life of immobilized plucose oxidase is estimated to be in excess of one year.

Immobilized alcohol dehydrogenase was found to be far less stable than the glucose oxidase. In early studies of the ADH reaction, the sample and wash solutions were suffered at a pH of 8.7, near the observed pH optimum. Under these conditions, when the enzyme was subjected to continuous use, the activity steadily decreased from day to day, and activity could not be detected at all after one week. Either the enzyme had become slowly denatured at that oft, or possibly the enzyme had slowly become detached from the support.

Subsequently, ethanol analyses were carried out at a pH of 7.7. At this pH, the activity was only about 50% of the observed optimum, but the enzyme was found to be far more stable. Also, to further increase the life of the ADH,

the loop not in the acti

and the

one mont

immobil that pH

These b

covalen

presenc

the loop was filled with a buffer solution of pH 6.5 when not in use. When used continuously under these conditions, the activity decreased by only about 3-4% from day to day, and the total lifetime of each loop was increased to about one month.

In choosing the pH and type of storage buffer for immobilized enzymes, one should consider both the effect of that pH on the enzyme itself and also its effect on the covalent bonds involved in its attachment to the support. These bonds may slowly break at certain pH values or in the presence of certain reactive species.

infor

ethan

evalu

react react

the

and p

The

finaj

is ev

and :

dete

CHAPTER VIII

PERFORMANCE OF THE INSTRUMENT AS A CLINICAL ANALYZER

Immobilized enzymatic analysis with the SFCA is evaluated in this chapter from the perspective of the clinical chemist. In order to be an effective clinical tool, especially in the demanding environment of a large clinical laboratory, the instrument must be able to withstand continuous use and still produce accurate analysis information. Data on the analysis of both glucose and ethanol samples are presented from this perspective.

First, the optimum analytical parameters evaluated, and the clinical chemist's choice of either reaction-rate or equilibrium method for both the enzymatic reaction and the indicator reaction is considered. the linearity and precision of the response are evaluated, and possible interferences to the analyses are considered. method of serum preparation is also considered. In the final sections, a proposed multi-reaction-loop configuration is evaluated in terms of its potential analysis throughput, and initial work on the enzymatic analysis of cholesterol is presented.

A. Optimum Analytical Parameters

The optimum working parameters used in the determination of both glucose and ethanol are presented in

this sec

been pr

immobi dilute

profi

Figur

obser 6. 30.

0. 00

phosi

the

this

dete

to

וחס

(1. ;

bas 69.

buf

this section. An evaluation of instrumental variables, such as the optical parameters and the data acquisition rate, has been presented in chapter VI.

1. Reagent Concentrations

a. Glucose Determinations

For the determination of glucose, the solution in the immobilized enzyme reaction loop consisted of the sample diluted with a phosphate buffer. As was shown in the pH profile of immobilized glucose oxidase (see chapter 7, Figure 21), the extent of the enzymatic reaction was observed to vary about 1-2% for a pH change of 0.1 around pH 6.30. As a result, in order to minimize imprecision caused by fluctuations in the rate of the enzymatic reaction, the phosphate buffer must control the pH at 6.30 +/- 0.01 during the reaction.

To calculate the buffer capacity required to achieve this control, a worst case example is considered. In determining glucose samples, we allow the enzymatic reaction to proceed to approximately 1-2% completion. If the most concentrated glucose sample is to be 250 ppm glucose (1.39 mM), the maximum expected hydrogen ion consumption, based on a 5% reaction in the loop, is calculated to be 69.4 uM. (More concentrated samles were diluted with the buffer before analysis.) A calculation of the pH change of

a 0.1 M and KH hydroge

Note th

reactio

be alte

to at m

0.1 M ₁

producthe pr

The the u

In or

reac

equi requ

Agai

250

hydr

four

0.0

a 0.1 M phosphate buffer, consisting of a mixture of K₂HPO₄ and KH₂PO₄ at pH 6.30, upon the consumption of 69.4 uM hydrogen ion shows the change to be only 0.001 pH units. Note that this expected pH change is based on a 5% enzymatic reaction. In practice the reaction was allowed to proceed to at most 2% completion. Hence, the pH is not expected to be altered significantly during the enzymatic reaction, in a 0.1 M phosphate buffer of pH 6.30.

In the indicator reaction, the hydrogen peroxide produced in the reaction loop reacts with excess iodide in the presence of the Mo(VI) catalyst to produce triiodide:

$$2H^{+} + H_{2}O_{2} + 3I^{-} \longrightarrow I_{3}^{-} + 2H_{2}O$$
 (1)

The triiodide formed is also in equilibrium with iodine and the unreacted iodide:

$$I_2 + I = I_3 = (Keq = 710)$$
 (2)

In order for the equilibrium absorbance of triiodide to be proportional to the hydrogen peroxide produced in the reaction loop, reaction (1) above must go to completion, and equilibrium (2) must lie far to the right. The latter requirement is met by the presence of an excess of iodide. Again using the worst case example of a 5% conversion of a 250 ppm glucose sample in the reaction loop, the maximum hydrogen peroxide concentration in the column effluent is found to be 69.4 uM. If the indicator reagent is made 0.05 M in iodide, the iodide concentration would essentially

remain O.
peroxide
thousand

produced

indicate

from M

triiodi

indicat

0.1 M p

condit

mixer

opselv

modera

enzym; phosp

react

cont

remain 0.05 M after a complete reaction with the 69.4 um peroxide. This concentration of iodide is nearly a thousand-fold greater than the concentration of triiodide produced.

The concentration of ammonium molybdate in the indicator reagent was 0.102 M, as in a similar procedure from Malmstadt (88). Increasing the concentration of this catalyst had no effect on the equilibrium absorbance of the triiodide.

The indicator reagent was buffered at pH 6.30 with a 0.1 M phosphate solution for several reasons. First, the indicator reaction is somewhat pH dependent (1). Second, the Mo(VI) can undergo side reactions under certain pH conditions. Third, as noted previously, the GCA-McPherson mixer is not very efficient, and schlieren effects are observed in the observation cell when two solutions of moderately different concentrations are mixed.

In summary, for the determination of glucose, the enzymatic reaction was buffered at a pH of 6.30 with 0.1 M phosphate. The indicator reagent, which was mixed with the reaction loop effluent, consisted of 0.05 M KI, 0.102 M ammonium molybdate, and 0.1 M phosphate, pH 6.30.

b. Ethanol Determinations

In the determination of ethanol, the buffered sample, containing ethanol and NAD, was allowed to react in the

reacti

the co

as a

of NA

340

flow

solut

the cont

fact

900

conv

The

whe

cor in

co re

u

Þ

reaction loop for a preset time, during which a fraction of the coenzyme NAD was converted to NADH. The concentration of NADH present at the end of the incubation period was used as a monitor of the reaction rate. Since the concentration of NADH could be determined directly by its absorbance at 340 nm, no indicator reaction was necessary. The stopped-flow system in this application served only to move the solution from the reaction loop to the observation cell for the absorbance measurement. The reagent drive syringe contained a buffer solution, which diluted the NAD by a factor of two in the stopped-flow.

From the stoichiometry of the ADH reaction, each conversion of an ethanol molecule to acetaldehyde is accompanied by the conversion of a molecule of NAD to NADH.

The rate equation for the reaction is

$$R = \frac{R_{max}CS}{(K_c + C)(K_m + S)}$$

where S is the concentration of ethanol and C is the concentration of NAD (83). If the concentration of NAD is in excess and the reaction time is short enough so that its concentration remains essentially unchanged during the reaction, the rate equation simplifies to

$$R = \frac{R_{\text{max}}S}{K_{\text{m}} + S}$$

where C and Kc have been included in the constant Rmax. Hence, under these conditions, the initial rate will be proportional to the initial concentration of ethanol.

reacti reacti increa increa 7.70

folle

optim

pH.

pH 6

To

con

rea

py:

wh

ωr 55

p

1

A pyrophosphate buffer was used for the the ADH reaction. As described in chapter 7, the pH chosen for this reaction was the result of a compromise between the increased activity observed as the pH approaches 9, and the increased stability observed at lower pH values. A pH of 7.70 was chosen. Although the activity was only 50% of the optimum, the enzyme was stable for at least a month at this pH.

Hydrogen ions are produced in the ADH reaction by the following equation:

$$CH_3CH_2OH + NAD^+ \xrightarrow{ADH} CH_3CHO + NADH + H^+$$

To evaluate the efficiency of the buffer in controlling the pH during the enzymatic reaction, a worst case example of a conversion of the most concentrated ethanol sample is considered. For a 150 ppm (3.26 mM) ethanol sample, 5% would produce 0.163 mM H⁺. In a 0.075 M reaction pyrophosphate buffer at pH 7.70, the addition of 0.163 mM of hydrogen ion will result in a shift of the pH to 7.69, which, according to the pH profile of ADH (chapter 7, Figure increase the rate of the enzymatic reaction by 22), should much less than 1%. Since in practice the enzymatic reaction was allowed to proceed to only 1-2% completion, the pyrophosphate buffer is quite adequate for pH control, as long as the ethanol samples are diluted to the O-150 ppm range.

In summary, the sample solution consisted of a

c on

bu⁴

(0

th

7

ė

composite reagent of ethanol (O-150 ppm; more concentrated samples were diluted), NAD (O.50 mM), and pyrophosphate buffer (O.075 M, pH 7.70). Semicarbazide hydrochloride (O.075 M) was also present in the sample solution to consume the acetaldehyde as it formed.

2. Mode of the Enzymatic Reaction

The design of the stopped-flow clinical analyzer permits the enzymatic reaction to be monitored in either a reaction-rate mode or an equilibrium mode. A discussion of the theoretical advantages and disadvantages of each mode has been presented in Chapter VI. In this section, the alternatives are considered for applications in clinical determinations.

In evaluating the potential of this instrument in a clinical environment, one must consider the time involved in each analysis. It has been shown in these studies that a 2 min incubation period in the reaction loop resulted in approximately 2% conversion of substrate to product, for both the glucose oxidase and alcohol dehydrogenase catalyzed reactions. As predicted by the Michaelis-Menten model, reaction to completion would require a prohibitive amount of time. When the analysis time is crucial, the equilibrium mode is no longer a viable choice for enzymes immobilized on nylon tubing, unless an immobilization procedure which produces much more activity is developed.

Also, in the case of the glucose oxidase reaction, another restriction on monitoring the enzymatic reaction after equilibrium is the fact that dissolved oxygen in the sample solution enclosed in the reaction loop will limit the extent of the reaction.

3. Mode of the Indicator Reaction

Since the indicator reaction in the determination of glucose takes place in the observation cell of the stoppedflow module, it also can be monitored either continuously for reaction-rate analysis, or after equilibrium has reached. Monitoring the reaction after equilibrium has several advantages, especially when considering analyses performed in a clinical lab. First, since the indicator reaction (iodide-peroxide) is fast (half life of a seconds), the equilibrium method requires little or no more analysis time than the rate method. Also, the equilibrium method involves simpler data acquisition and calculation of the final result, although when done on a computer the difference is minimal. Finally, a reaction-rate method on this short a time scale is not feasible with the GCA-McPherson stopped-flow module as it is currently designed. Incomplete mixing in the mixing chamber results in continuation of mixing in the observation cell after the flow has stopped. For slower indicator reactions, with half

lives of 30 s or more, reaction-rate monitoring may be superior. However, for the very rapid iodide-peroxide reaction used in this scheme, the equilibrium mode is better suited in a clinical application.

B. Linearity of Calibration Curves

1. Glucose Determinations

A calibration curve obtained for glucose using a 2.0 min incubation time is shown in Figure 23. A linear least-squares analysis of the data yielded a slope of 1.60x10(-3) A/ppm, with a relative standard deviation of 0.24%. The y-intercept was found to be -6.39x10(-3) with a relative standard deviation of 8.3%. The correlation constant was .099990. The linearity is shown to extend to 250 ppm glucose, which encompasses the expected concentration range in clinical samples.

2. Ethanol Determinations

The response linearity obtained for ethanol is illustrated in Figure 24. The absorbance data were obtained after the samples had been incubated for 2.0 min in the reaction loop. A linear least squares analysis of the data yielded a slope of $6.77 \times 10(-4)$ A/ppm (relative standard

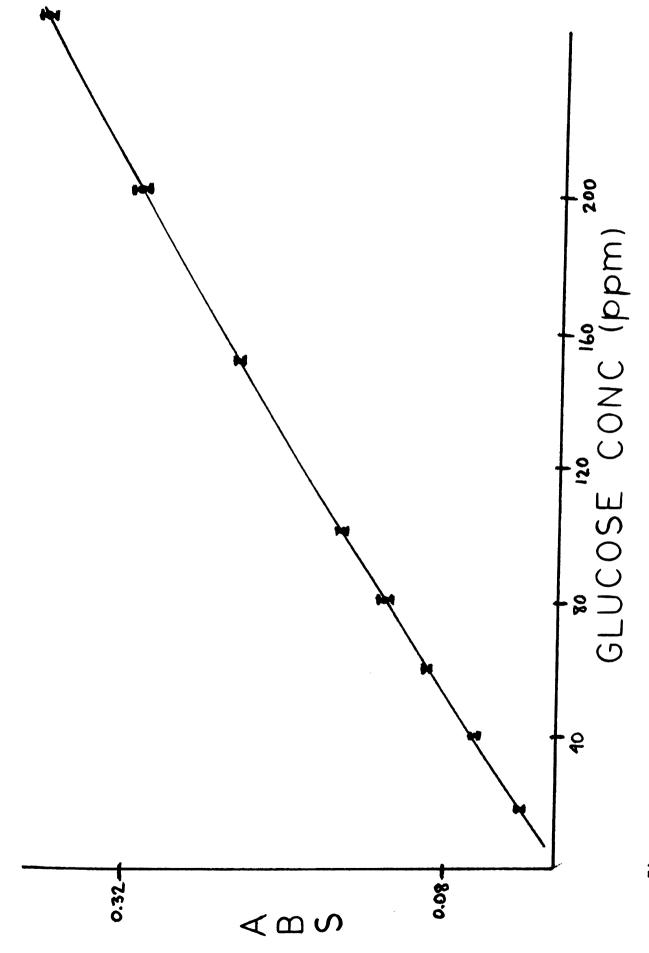


Figure 23. Calibration Curve for Glucose Determinations

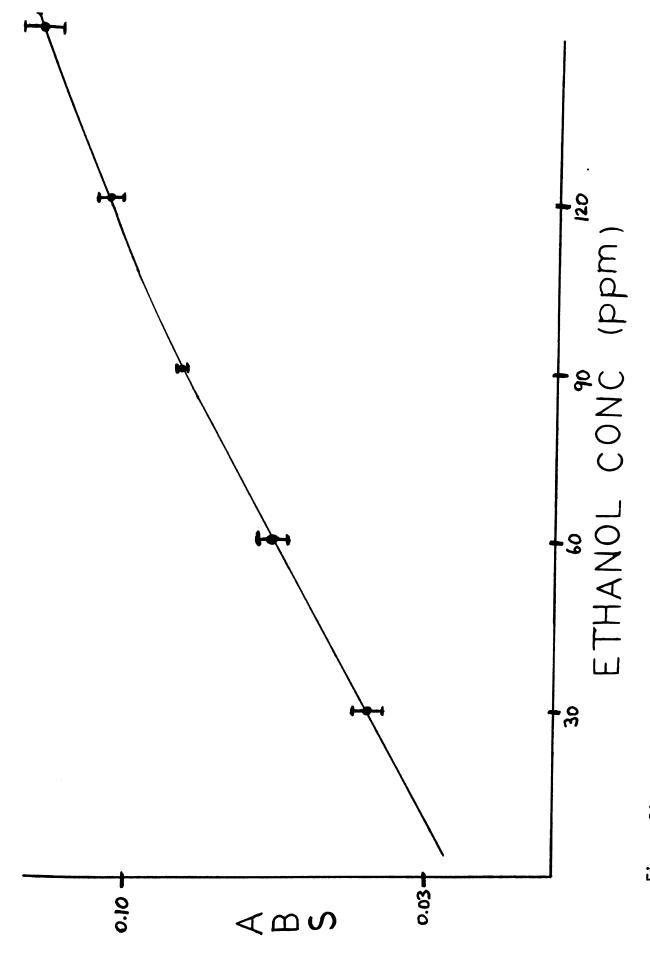


Figure 24. Calibration Curve for Ethanol Determinations

deviation 6.64%), and a y-intercept of 0.0273 (relative standard deviation 0.1%). The correlation coefficient was found to be 0.9942. Excellent linearity was obtained to about 100 ppm ethanol, above which the slope decreased slightly. This curvature at high substrate concentrations may be due to the fact that the substrate concentration was approaching the apparent Km for the immobilized enzyme, and the reaction was no longer pseudo-first order in ethanol. These data correspond to approximately 1% conversion.

C. Precision

To evaluate the precision of glucose determinations, a 200 ppm aqueous solution of glucose was analyzed 10 times. The relative standard deviation of the absorbance was found to be 2.24% (S/N = 45). For the determination of ethanol, the relative standard deviation of 6 determinations was 2.95% (S/N = 39). The precision of these methods is limited mainly by fluctuations in the rate of the enzymatic reaction caused by variations in room temperature.

D. Interferences

In the determination of serum glucose with immobilized glucose oxidase, Kunz and Stastny (37) evaluated some interferences which may hinder the analysis when a reaction—rate method is used. They found that oxalate and

fluoride ions, in concentrations up to 20 g/l, did not did not interfere in interfere, and also that albumin concentrations up to 100 g/l. Malmstadt and Hadjiioannou (88) found that oxalate, citrate, fluoride, and heparin did not interfere with a rate method for glucose which used soluble glucose oxidase. Similarly, Willis and Hill noted that heparin, oxalate, and fluoride ions do not interfere with the ADH reaction. Thus, these substances are not expected to interfere in these determinations.

E. Serum Preparation

Since the protein substituent of serum samples absorbs at the monitoring wavelength and since other substituents in serum may interfere in the enzymatic reaction, it is necessary to deproteinize the serum samples before analysis.

First attempts at deproteinization involved the precipitation of the protein with a 10% trichloroacetic acid followed by adjustment of the solution pH by the solution, dropwise addition of concentrated NaOH and dilution with the buffer. It was found that the pH of the solution could be accurately controlled or measured, since the volume was so small. As a result the final pH was imprecise, demonstrated Ьų large fluctuations in the absorbances.

The method of coprecipitation of the enzyme proved to

be most effective. In this method, 0.5 ml of serum was pipetted into a centrifuge tube, and chemically equivalent amounts of barium hydroxide and zinc sulfate (approximately 0.125 M each) were added. The required volume ratio of these two reagents was determined by titrating the $\mathrm{Ba(OH)}_2$ with the ZnSO_4 to pH 7.0. The protein precipitated as the insoluble BaSO_4 and $\mathrm{Zn(OH)}_2$ formed. After centrifugation, the supernatant was a clear solution, and was assumed to be free of the ions added. One ml of the supernatant was then pipetted into 3.0 ml of the phosphate buffer, mixed, and taken for analysis.

This method is attractive in that essentially all of the Ba(OH)₂ and ZnSO₄ are removed from solution via precipitation, which results in deproteinization without the addition of possible interferences and without any change in pH. Multiple analyses of serum samples prepared by this method showed excellent accuracy and precision, as shown in Table 2 of Appendix B.

F. Proposed Multi-Reaction-Loop SFCA

From a clinical standpoint, a major disadvantage of the SFCA as it is currently designed is that a great deal of the analysis time is spent waiting for the enzymatic reaction to proceed to the desired degree. It has been shown that excellent sensitivity can be obtained with these immobilized enzymes by allowing the sample to react for as

short a time as 2 min. In certain applications, the resulting throughput rate of 20-30 samples/hr is adequate. However, the throughput rate can be vastly improved if the stopped flow mixing system could be utilized to monitor one completed reaction while others were in progress.

The proposed multi-reaction-loop SFCA would optimize the use of the detection system by multiplexing several reaction loops into the stopped-flow mixing system. Two different configurations are possible. In one, the reaction loops would all contain the same immobilized enzyme, and the determination of one used in particular would bе In another configuration, substrate. each 100p would contain a different enzyme, and would be used to analyze rapidly for several different substituents of each serum sample. In either configuration, the initiation enzymatic reaction in each loop would be staggered, so that the detection system (stopped-flow spectrophotometer) would be available as each reaction was terminated.

The operation of the multi-loop system is described here for a system which contains six reaction loops. the example, it is assumed that each enzymatic reaction is to allowed to proceed for 2 min, and that the spectrophotometric detction of the reaction product requires 10 s. In this case, the reaction loops would be filled with sample at intervals of 20 s. If the first enzumatic reaction is started at t=0 s, the second would be started at t=20 s, and so on. At t=120 s, the reaction in the

loop would be terminated by driving its contents into the stopped-flow observation cell. Then, at t=130 s, the first loop would again be filled with the next sample. At t=140 s, the reaction product in the second loop would be measured, and so on. This alternating sequence of push and fill would then continue at 10 s intervals. With this sequencing, samples could be analyzed at the rate of 180 per hr.

The proposed design for this six-loop SFCA is shown in Figure 25. The configuration is essentially the same as the single loop system with the exception of a pair of 6-to-1 valves located on each side on the reaction loops. The automatic switching of these 6-to-1 valves can be initiated by TTL-compatible signals generated by the microcomputer interface.

The sequencing of the 3-way sample valves and the stopped-flow module is exactly as previously described. The only addition to the entire sequence involves switching the 6-to-1 valves to the proper position before either filling a loop with sample or driving the reacted solution into the stopped-flow module to initiate the indicator reaction.

9. Initial Study of Cholesterol Determinations

The determination of serum cholesterol has become increasingly important because of the implied relationship between high cholesterol levels and cardiovascular disease

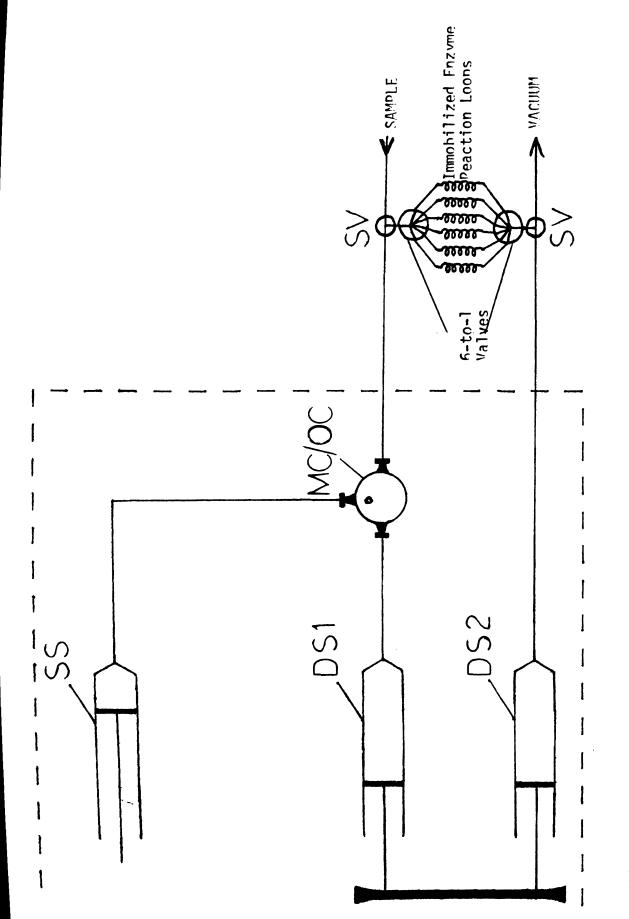


Figure 25. Proposed Multi-Reaction-Loop SFCA

(90,91), and also because abnormal cholesterol levels are of diagnostic value in several other diseases (92,93). Non-enzymatic determinations of serum cholesterol are in general use in clinical laboratories, but suffer from poor specificity, difficulty in standardization, unstable or corrosive reagents, and many interferences (94-97). Recently, the specificity of certain enzymes in the determination of cholesterol has been studied (98-100).

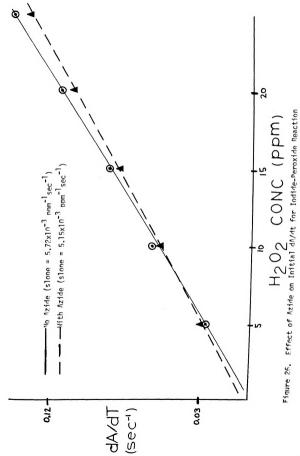
In the enzymatic determination of total serum cholesterol, the following sequence of reactions is used:

cholesterol +
$$0_2$$
 cholest-4-en-3-one + H_2 0_2

The total cholesterol (cholesterol and cholesterol esters) has been indicated by the comsumption of oxygen (101), or by the reaction of the peroxide to produce a chromophore (100, 102) or fluorophore (103).

In this study, the peroxide was monitored in the stopped-flow apparatus by allowing it to react with iodide in the presence of a Mo(VI) catalyst. Cholesterol oxidase (Miles Labs, Elkhart, IN) was immobilized on a nylon tube, by the procedure described in chapter III. However, the immobilized enzyme proved to be either highly unstable or had become detached, since activity lasted for only a few

days. Perhaps the immobilization at a different pH, or in the presence of cholesterol may improve the stability.


Studies of the peroxide-indide indicator reaction chalesterol determination scheme demonstrated the versatility of the SFCA design. In reported procedures for enzymatic determination of serum cholesterol, reagents included sodium azide (approximately 1 g/l) to inhibit the consumption of peroxide by the enzume catalase, which is an impuritu in cholesterol oxidase preparations. Unfortunately, N is a serious interferent in the peroxideindide reaction When N was present, the absorbance of triodide in the indicator reaction was observed to increase rapidly over the first 5-10 s of the reaction, and then to decrease slowly over the next 5 min to approximately half the absorbance maximum.

The peroxide-iodide reaction was studied with and without the presence of azide, with the use of a stoppedflow spectrophotometer developed by Beckwith (104), and later modified by Notz (105), Holler (71), and Gall (106). This sustem was used because its mixing sustem is superior to that of the GCA-McPherson stopped-flow, and because fast data acquisition and analysis are computer controlled. Buffered solutions of hudrogen peroxide οf concentrations, with and without 0.015 M sodium azide, placed in one reagent syringe, and a buffered solution of 0.5 M KI and 0.102 M Mo(VI) was placed in the other syringe. The buffer in both cases was O. 1 M phosphate, adjusted to a

pH of 7.50. After driving the reagents through the mixer into the observation cell, the reaction was monitored at 365 nm for 5 min. The data were then displayed, and initial slones were calculated.

Plots of the observed initial slope (dA/dT over the first few seconds) with and without azide present vs the concentration of hydrogen peroxide are shown in Figure 26. The slope of the curve is only slightly decreased when azide present, which demonstrates that the potential interference due to azide can be eliminated by the use of a reaction-rate method. In both cases, the linearity extends to 25 uM peroxide, which encompasses the range of peroxide concentrations to be determined in the SFCA. The peak height of the absorbance vs time curve could also be used to generate a linear calibration curve. Thus, by being able to observe the time dependence of the absorbance in the indicator reaction, the interference from azide can be eliminated. The microcomputer can either calculate the initial slope of the observed absorbance vs time curve, or simply on-line determine the peak absorbance, which occurred 12-15 s after the flow stopped.

This initial study demostrates the feasibility of serum cholesterol determinations with the stopped-flow clinical analyzer. In order to develop the procedure completely, the immobilization of cholesterol oxidase and cholesterol esterase would have to be studied further, in order to improve stability.

CHAPTER IX

SUMMARY AND FUTURE PROSPECTS

The major goal of this work was to demonstrate the potential of a stopped-flow analyzer in clinical analyses, and to this end the project was entirely successful. Rapid, accurate determinations of both glucose and ethanol were carried out on the SFCA with as little as 100 ul of serum. The technique uses microliter quantities of inexpensive reagents for each analysis, while the enzyme itself can be used in hundreds or thousands of determinations. Thus the main clinical objectives of speed, accuracy, and low cost have been realized.

Another important aspect of this research has been the application of computers to analytical chemistry. The 6100 microcomputer has great potential for completely automating the analysis scheme. The ability of the micro to share the facilities of a powerful minicomputer has been made possible by the development of a hierarchical network.

The development of the enzyme immobilization procedure was geared toward the discovery of a practical procedure. During this development and subsequent characterizations of the immobilized enzymes, some important aspects of the procedure were discovered, such as the effect of the hydrolysis conditions and the pH during the glutaraldehyde attachment. Certainly, if the entire immobilization sequence were better characterized,

conditions for each step could be intelligently chosen for each different enzyme.

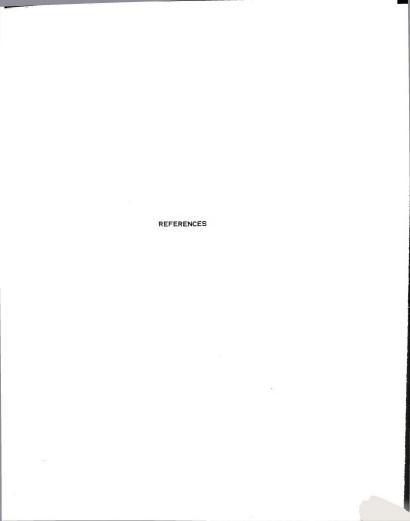
The initial hydrolysis of nylon may be accomplished very mild conditions, with comparable resultant under In these studies, nylon tubes were reused activitu. after enzyme had become inactive. The supports an immobilization was started with the hydrolysis step. This hydrolysis presumably detached the previous enzyme cross-link from the nylon wall, but did not significantly further hydrolyze the surface, since comparable activity could be attained. These tubes could possibly be reused indefinitelu.

The presence of substrate or product, competitive inhibitor, during enzyme attachment may result enhanced activity. Also, the time required to complete the entire procedure might be shortened tremendously by reacting the enzyme in the final step for a much shorter This reaction may actually be complete in an hour might also be instructive to determine the less. Ιt efficiency of this step, both in terms of the fraction of soluble enzyme actually attached, and the fraction of attached enzyme which is actually active. A similar studu was carried out in our lab (107) for the immobilization of glucose oxidase on controlled-pore glass, where it was found that 44% of the enzume in solution had been attached.

Since the rate of conversion in the reaction loop could be controlled by diffusion of substrate to the active

surface, a means of agitating the solution during this reaction might result in improved sensitivity.

The multi-reaction-loop system proposed in chapter VIII is expected eventually to burden the operator, since samples must be delivered to the loops frequently. An automated sample delivery system, such as a rotating turner, could be developed, and also placed under the control of the microcomputer. The potential throughput rate of the multi-loop system is also limited by the existing 4K of memory in the microcomputer. By expanding the memory, software for the micro could be written in FORTRAN-II, and be designed to carry out more, if not all, of the calculations. Calibration curve data for each loop could be stored in memory and recalled to calculate final concentration data, which then could be printed immediately on the console or linearinter.


Another valuable addition to the 6100 microcomputer would be a real time clock. With the use of interrupts to signal a clock overflow condition, the CPU would be free to perform calculations or input/output operations during the execution of a timed operation.

The precision of the enzymatic reaction could be improved by thermostatting the reaction loop. For the glucose oxidase-catalyzed reaction, thermostatting the reaction at a temperature above room temperature (e.g. 37°C) would also result in enhanced activity (87). If the indicator reaction is monitored after equilibrium, the

temperature in the stopped-flow module is not critical.

The use of different indicator reactions warrants investigation. Deproteinization of serum samples could possibly be eliminated if the monitoring wavelength were such that serum substituents did not absorb. Fluorescence monitoring of the indicator reaction could also be implemented. Bostick and Hercules (108) have employed the chemiluminescence of luminol to detect hydrogen peroxide production in the glucose oxidase reaction.

Rapid characterization of a patient's blood chemistry could be carried out in a hospital emergency room or in a physician's office if the entire instrument could miniaturized. The stopped-flow mixing system and detection system would be designed specifically for this application. The size could be drastically reduced, since a simple tungsten lamp, filters, and a PM tube would suffice. dead time of the stopped-flow system would not be critical, 50 the syringe drive pressures and flow rates could diminished to decrease size. The software for complete instrument sequencing, calibration, and calculation of the final results could be stored permanently in memory, and the microcomputer itself could also be miniaturized. instrument were made portable, it could be used in neighborhood mass screening programs.

References

- L. D. Bowers and P. W. Carr, Anal. Chem., <u>48</u>, 544A (1976).
- 2. H. H. Weetall, Anal. Chem., 46, 602A (1974).
- D. Zaborsky, "Immobilized Enzymes", CRC Press, Cleveland, 1973.
- 4. G. J. H. Melrose, Rev. Pure Appl. Chem., 21, 83 (1971).
- D. N. Gray, M. H. Keyes, and B. Watson, Anal. Chem., <u>49</u>, 1067A (1977).
- 6. K. J. Skinner, Chem. and Eng. News, Aug. 18, 1975.
- G. R. Stark, "Biochemical Aspects of Reactions on Solid Supports", Academic Press, New York, 1971.
- B. H. H. Weetall, Separ. Purification Methods, 2, 199 (1973).
- A. D. McLaren and L. Packer, Advan. Enzymol. Relat. Areas Mol. Biol., 33, 245 (1970).
- J. M. Nelson and E. G. Griffin, J. Amer. Chem. Soc., <u>38</u>, 1109 (1916).
- M. L. Green and G. Crutchfield, Biochem. J., <u>115</u>, 183 (1969).
- I. Langmuir and V. J. Schaefer, J. Amer. Chem. Soc., <u>60</u>, 1351 (1938).
- M. D. Dayhoff, "Atlas of Protein Sequence and Structure", National Biomedical Research Foundation, Maryland, 1969.
- A. Bar-Eli and E. Katchalski, J. Biol. Chem., <u>238</u>, 1690 (1963).
- 15. A. Bar-Eli and E. katchalski, Nature, <u>188</u>, 856 (1960).
- H. I. Silman, D. Wellner, and E. Katchalski, Isr. J. Chem., <u>1</u>, 65 (1963).
- 17. H. Ozawa, J. Biochem., <u>62</u>, 419 (1967).
- S. A. Bernhard and G. L. Rossi, in "Structural Chemistry and Molecular Biology", (A. Rich and N. Davidson, eds.), Freeman Press, San Francisco and London, 1968.

- E. K. Bauman, L. H. Goodson, G. G. Guibault, and D. N. Kramer, Anal. Chem., <u>37</u>, 1378 (1965).
- G. P. Hicks and S. J. Updike, Anal. Chem., <u>38</u>, 726 (1966).
- T. Wieland, H. Determan, and K. Buenning, Z. Naturforsch, 21, 1003 (1966).
- A. D. McLaren and G. H. Peterson, Soil Sci. Amer. Proc., 22, 239 (1958).
- 23. P. Bernfeld and J. Wan, Science, 142, 678 (1963).
- 24. C. Wilson, Anal. Biochem., 31, 506 (1969).
- 25. M. A. Mitz and L. J. Summaria, Nature, 189, 576 (1961).
- N. Grubhofer and L. Schleith, Naturwissenschaften, 40, 508 (1953).
- 27. A. Habeeb, Arch. Biochim. Biophys., 119, 264 (1967).
- H. Weetall and N. Weliky, Jet Propulsion Laboratory Programs Summary No. 37-26, 4, 160 (1965).
- 29. H. H. Weetall, Nature, 223, 1969.
- H. H. Weetall and L. S. Hersh, Biochim. Biophys. Acta, 185, 464 (1969).
- 31. H. H. Weetall, Science, 166, 615 (1969).
- H. H. Weetall and L. S. Hersh, Biochim. Biophys. Acta, 206, 54 (1970).
- L. S. Hersh, H. H. Weetall, and I. W. Brown, J. Biomed. Mater. Res., 3, 471 (1969).
- T. L. Newirth, M. A. Diegelman, E. K. Pye, and R. G. Kallen, Biotech. and Bioeng., <u>15</u>, 1089 (1973).
- W. E. Hornby, H. Filippusson, and A. McDonald, FEBS Lett., 9, 8 (1970).
- 36. L. Goldstein, Biochim. Biophys. Acta, 315, 1 (1973).
- 37. H. J. Kunz and M. Stastny, Clin. Chem., <u>20</u>, 1018 (1974).
- P. S. Bunting and K. J. Laidler, Biotech. Bioeng., <u>16</u>, 119 (1974).
- H. Filippusson, W. E. Hornby, and A. McDonald, FEBS Lett., 20, 291 (1972).

- W. E. Hornby, D. J. Inman, and A. McDonald, FEBS Lett., 23, 114 (1972).
- P. V. Sundram and W. E. Hornby, FEBS Lett., 10, 325 (1970).
- 42. W. E. Hornby and H. Filippusson, Biochim. Biophys. Acta, 220, 343 (1970).
- 43. S. J. Updike and G. P. Hicks, Nature, 214, 986 (1967).
- H. Huang, S. S. Kuan, and G. G. Guibault, Clin. Chem., 23, 671 (1977).
- G. G. Guibault and J. Montalvo, J. Amer. Chem. Soc., 91, 2164 (1969).
- G. G. Guibault and J. Montalvo, Anal. Lett., 2, 283 (1969).
- G. G. Guibault and J. Montalvo, J. Amer. Chem. Soc., 92, 2533 (1969).
- D. Williams, A. Doig, and A. Korosi, Anal. Chem., 42, 118 (1970).
- T. Anfalt, A. Granelli, and D. Jagner, Anal. Lett., 9, 713 (1969).
- D. S. Papasthathopoulas and G. A. Rechnitz, Anal. Chim. Acta, 79, 17 (1975).
- 51. B. Watson and M. H. Keyes, Anal. Lett., 9, 713 (1969).
- G. Johansson and L. Ogren, Anal. Chim. Acta, 84, 23 (1976).
- W. J. Blaedel, T. R. Kissel, and R. C. Boguslaski, Anal. Chem., <u>44</u>, 2030 (1972).
- S. W. May and N. N. Li, Biochem. and Biophys. Res. Com., 47, 1179 (1972).
- R. S. Schifreen, D. A. Hanna, L. D. Bowers, and P. W. Carr, Anal. Chem., 49, 1929 (1977).
- L. D. Bowers and P. W. Carr, Anal. Chem., 48, 544A (1976).
- L. D. Bowers, L. M. Canning, C. N. Sayers, and P. W. Carr, Clin. Chem., <u>22</u>, 1314 (1976).
- B. Mattiasson, B. Danielsson, and K. Mosbach, Anal. Lett., 9, 217 (1976).

- 59. L. D. Bowers and P. W. Carr, Clin. Chem., <u>22</u>, 1427 (1976).
- 60. J. A. Burns, Cereal Foods World, 21, 594 (1976).
- D. J. Hanson and N. S. Bretz, Clin. Chem., 23, 477 (1977).
- 62. L. P. Leon, et al., Clin. Chem., 22, 1017 (1976).
- K. Mosbach and B. Danielsson, Biochim. Biophys. Acta, 364, 140 (1974).
- L. P. Leon, M. Sansur, L. D. Snyder, and C. Horvath, Clin. Chem., 23, 1556 (1977).
- 65. K. S. Chua and I. K. Tan, Clin. Chem., 24, 150 (1978).
- D. J. Inman and W. E. Hornby, Biochem. J., <u>129</u>, 255 (1972).
- F. M. Richards and J. R. Knowles, J. Mol. Biol., <u>37</u>, 231 (1968).
- P. M. Hardy, A. C. Nicholls, and H. N. Rydon, J. Chem. Soc. D., 10, 565 (1969).
- 69. Skeggs, Am. J. Clin. Pathol., <u>28</u>, 311 (1957).
- F. J. Holler, S. R. Crouch, and C. G. Enke, Anal. Chem., 4B, 1429 (1976).
- F. J. Holler, Ph.D. Thesis, Michigan State University, East Lansing, MI, 1977.
- 72. R. E. Dessey, Anal. Chem., <u>49</u>, 1100A (1977).
- GCA McPherson Stopped-Flow Module Preliminary Operators Manual, QCA McPherson Co.
- J. D. Ingle, Ph.D. Thesis, Michigan State University, East Lansing, MI, 1971.
- L. Michaelis and M. L. Menten, Biochem. Z., <u>49</u>, 333 (1913).
- G. E. Briggs and J. B. S. Haldane, Biochem. J., <u>19</u>, 338 (1925).
- Q. H. Gibson, B. E. P. Swoboda, and V. Massey, J. Biol. Chem., <u>239</u>, 3927 (1964).
- J. Livingston, R. Morgan, and A. H. Richardson,
 J. Phys. Chem., <u>34</u>, 2356 (1961).

- 79. H. Lineweaver and D. Burke, J. Amer. Chem. Soc., <u>56</u>, <u>658</u> (1934).
- 80. W. E. Hornby, M. D. Lilly, and E. M. Crook, Biochem. J., 107, 669 (1968).
- 81. K. Kusai, Ann. Rept. Sci. Works, Fac. Sci. Osaka Univ., 8, 43 (1960).
- 82. W. H. Fischer, A. Roedig, and K. Rauch, Liebigs Ann., 552, 203 (1942).
- 83. Hayes and Velick, J. Biol. Chem., <u>207</u>, 225 (1954).
- 84. W. J. Moore, "Physical Chemistry", 4th Ed., Prentice-Hall, Englewood Cliffs, NJ, 1972.
- H. V. Malmstadt and S. R. Crouch, J. Chem. Educ., 43, 340 (1966).
- 86. H. J. Bright and M. Appleby, J. Biol. Chem., 244, 3625 (1969).
- 87. R. H. Smith and J. Kilford, Int. J. Chem. Kinetics, B. 1 (1976).
- 88. H. V. Malmstadt and S. I. Hadjiioannou, Anal. Chem., 34, 452 (1962).
- F. W. Willis and J. B. Hill, Clin. Chem., <u>15</u>, 91 (1969).
- 90. G. Pincherle, J. Chron. Dis., 24, 289 (1971).
- 91. D. Zilversmit, Am. J. Cardiol., <u>35</u>, 449 (1975).
- 92. R. C. Neerhout, Clin. Chem. Acta, <u>41</u>, 347 (1972).
- 93. C. Hirayama and T. Isira, Clin. Chem. Acta, <u>71,</u> 21 (1976).
- 94. L. L. Abell and B. B. Levy, Stand. Methods Clin. Chem., 2, 26 (1958).
- 95. D. B. Tonks, Clin. Biochem., <u>1</u>, 12 (1967).
- 96. W. D. Brown, Aust. J. Exp. Biol. Med. Sci., <u>39</u>, 209 (1961).
- 97. B. Zak, Clin. Chem., 23, 1201 (1977).
- 98. W. Richmond, Clin. Chem., 19, 1350 (1973).
- 99. H. Flegg, Ann. Clin. Biochem., <u>12</u>, 79 (1973).

- 100. C. C. Allain, L. S. Poon, and C. S. G. Chan, Clin. Chem., 20, 470 (1974).
- 101. A. Noma and K. Nakayama, Clin. Chem., <u>22</u>, 336 (1976).
- 102. M. A. Pearse and S. H. Bodourian, Clin. Chem., <u>23</u> 280 (1977).
- H. Huang, J. W. Kuan, and G. G. Guibault, Clin. Chem., 21, 1605 (1975).
- 104. P. M. Beckwith, Ph.D. Thesis, Michigan State University, East Lansing, MI, 1972.
- 105. P. K. Notz, Ph.D. Thesis, Michigan State University, East Lansing, MI, 1976.
- 106. R. S. Gall, Current Research (1978).
- 107. P. Roth, unpublished results.
- 108. D. Bostick and D. Hercules, Anal. Chem., 47, 447 (1975).

APPENDIX A

Selected Program Listings

/+2 PARAMETER DEFINITIONS FOR SFCA PALS-V10A 12-JUL-78 PAGE 2

POINTERS TO FREQUENTLY CALLED SUBROUTINES

```
9020
                       *20
00020
        1200
              DECIN.
                       XDECIN
00021
        1335
              TXOUT.
                       XTXOUT
00022
        1400
              TYPE,
                       XTYPE
60022
        1600
              READ.
                       XBEAD
00024
        1416
              NOUT,
                       XNOUT
00025
        1423
              OCTOUT,
                       XOCTOR
00026
        1450
              DECOUT,
                       XDECOU
00027
        1527
              HDIV.
                       AT CHX
00030
       2322
              XHSUM.
                       HSUM
00031
       2323
              XLSUM,
                       LSUM
00032
       2324
              XAVCT.
                       AVCNT
              SAMPLE, XSAMPL
00033
       2290
00034
       2231
              CRLF.
                       XCRLF
00035
       2242
              AVCLR.
                      XAVCLR
00036
       2256
              AVADD.
                       XAVADD
00037
       2262
              AVER.
                       MAVER
00040
       2333
              DELAY.
                       XDELAY
00041
       2660
              MONITR.
                      MONIT
             MANUAL.
00042
       2460
                      XMANUA
00043
       2000
              SCALE.
                       XSCALE
              CYCLE,
00044
       2120
                      XCYCLE
00045
       1631
              IDATA,
                      XIDATA
              ODATA,
00046
       1707
                      XODATA
00047
       1345
             LST,
                      XLST
/+2
        PARAMETER DEFINITIONS FOR SFCA
                                             PAL8-V10A 12-JUL-78 PACE 1
                      PARAMETER DEFINITIONS FOR SFCA
             /STOPPED-FLOW CLINICAL ANALYZER
             SUBBOUTINE ONE
             SFCA.SI CONTAINS PARAMETER DEFINITIONS
                  AND PAGE ZERO POINTERS
             SFCA.S2 CONTAINS FREQUENTLY CALLED SUBROUTINES
                  WHICH LOAD BEGINNING AT THE PAGE FOLLOWING THE
                  EXECUTIVE ROUTINE, AND OCCUPY 7 PAGES.
             /DATA STORAGE BEGINS AT THE PAGE FOLLOWING SFCA.S2
                  AND EXTEND TO LOCATION 7777.
             /PGR: M.D. JOSEPH
             /DATE: 27-MAY-78
             /VER: 1B
             /FILE: SFCA.S1
      4400
                     CALL=
                              JMS I 0
      4421
                      WRITE=
                              CALL TXOUT
      4434
                     CR=
                              CALL CRLF
      6500
                     OPEN=
                              6500
      6501
                     CLOSE=
                              6501
      6502
                     EMPTY=
                              6502
      6503
                     FILL=
                              6503
      6564
                     PUSH=
                              6504
      6505
                     SFS=
                              6505
      6596
                     RESET=
                              6596
      6507
                              6507
                     CETSR=
      6510
                     CONVRT= 6510
      6511
                     SCD=
                              6511
```

6512

6513

GETAD=

SETDA= 6513

6512

/ EQUILIBRIUM MODE SFCA

PAL8-V10A 12-JUL-78 PAGE 3

```
/ EQUILIBRIUM MODE SFCA

/PGR: M.D. JOSEPH

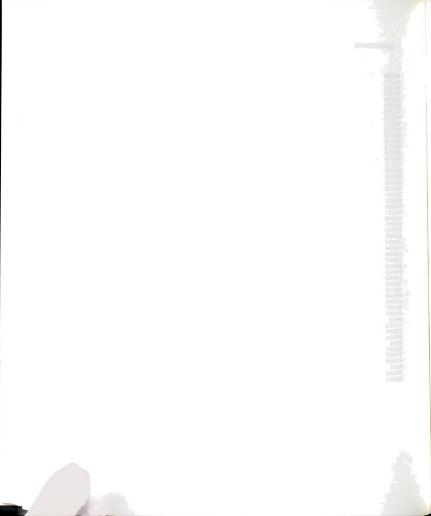
/DATE: 29-MAY-78

/VER: 1C

/FILE: SFCAEQ.EX
```

/PAGE ZERO DATA

0150	*150


00150	9999	TSAMP.	0	/TOTAL	NO. SAMPLES	
00151	0000	CSAMP.	0	/-(CUR	RENT SAMPLE NO.)	
00152	9909	TRUNS.	0	/TOTAL	RUNS EA SAMPLE	
00153	0000	CRUN.	0	/-(CUR	RENT)	
06154	6366	RTIME.	0	/POINT	ER TO REACTION TIMES	3
00155	6399	ECTIME.	0	/DELAY	TO EQUILIBRIUM	
00156	6000	DATA.	0	/POINT	ER TO DATA TABLE	
00157	6000	MDARK.	0	Z-CDAR	IO OI	
69160	0300	REF.	0	/REF-D	ARK	
00161	0000	IFLAG.	0	/=0 FO	R TTY SETUP	
00162	3000	DATAB,	DATAT	/START	OF DATA TABLE	
	0170		*170			
00170	0000		ZBLOCK	10	REACTION TIMES	

1750 0305 0002	DECIMAL ISAMP=1000 ISAMPT=5 IFILLT=2 OCTAL	/NO. AVERAGES/DATA POINT /SAMPLE VALVE OPEN TIME (SEC) /SYRINGE EQUILIBRIUL TIME

/ EQUILIBRIUM MODE SFCA

PAL8-V10A 12-JUL-78 PAGE 4

	0200		*200
00200 00201	7300 4434	START,	CLA CLL /RESTART ENTRY CR; CR
00202 00203	4434 4421		WRITE; "E; "Q; "U; "I; "L; "I; "B; "R; "I; "U; "M; " ; "M; "O; "D; "E
00204	0305		
00205	0321		
00206	0325		
00207	03:1		
00210	0314		
00211	0311		
00212	0362		
00213 00214	0322 0311		
00215	0325		
00216	0315		
00217	0240		
00220	0315		
00221	0317		
00222	0304		
00223	0305		";"S;"F;"C;"A;";"V;"4;"A;0
60224	6240		" ; "S; "!; "C; "A; " ; V; T; A; V
00225 60226	0323		
00227	0306 0303		
00230	0303		
00231	0240		
00232	0326		
00233	0264		
00234	6 301		
00235	0990		an an
00236	4434		CR; CR
00237	4434		WRITE; "S; "E; "T; "; "U; "P; "; "F; "R; "O; "M; "; "T; "T; "Y; "?; "; 9
00240 00241	4421 0323		MILLIE, E, E, Y,
00241	0365		
00243	0324		
00244	0240		
00245	0325		
00246	0320		
00247	0240		
00250	0306		
00251	0322		
00252 00253	0317 0315		
00254	0240		
00255	0324		
00256	0324	•	
00257	0331		
00260	0277		
00261	0240		
00262	0000		CALL READ
00263	4423		CALL TERM

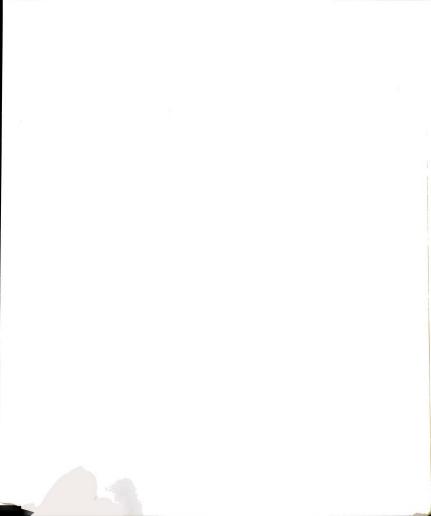
PALS-V10A 12-JUL-78 PAGE 4-1

```
/ EQUILIBRIUM MODE SFCA
                       TAD (-"N
00264
       1377
                      SNA CLA
60265
       7650
       7001
                       IAC
00266
                       DCA IFLAG
                                       /=0 FOR TTY SETUP
00267
       3161
       1161
                       TAD IFLAG
00270
                       SZA CLA
00271
       7640
                                       SET UP FROM MINI
                      CALL MONITR
00272
       4441
                       CR
00273
       4934
                       WRITE: "N; "0; ".: " : "S; "A; "M; "P; "L; "E; "S; " ; "(; "1; "-; "8; "); 0
00274
       4421
       9316
00275
00276
       6317
00277
       0256
       0240
00300
00301
       0323
       0301
00302
60303
       0315
00304
       0320
00305
       0314
00305
       0305
60307
       0323
00310
       0240
00311
       0250
00312
       0261
00313
       0255
00314
       0270
60315
       0251
00316
       0200
                       TAD IFLAG
00317
       1161
                       SZA CLA; JMP A1
       7640
00320
00321
       5327
                                               /GET NUMBER OF SAMPLES
                       CALL DECIN: 0
00322
       4420
00323
       0000
                       TAD .-1
DCA TSAMP
00324
       1323
00325
       3150
                       JMP A2
00326
       5331
                       TAD (TSAMP
00327
        1376
             A1.
                                        /INPUT FROM MINI
                       CALL IDATA
00330
       4445
                       WRITE; "N; "0; ".; " ; "R; "U; "N; "S; " ; "E; "A; 0
       4421
              A2.
00331
00332
       0316
00333
       9317
       0256
00334
00335
       0240
00336
       0322
00337
       0325
00340
        0316
00341
        0323
00342
        0240
00343
        6365
00344
        0301
00345
        0000
                       TAD IFLAG
00346
        1161
                       SZA CLA; JMP A3
00347
        7640
                                                NUMBER RUNS EACH SAMPLE
00350
        5356
                       CALL DECIN; 0
00351
        4420
00352
        0000
                                              PALS-V19A 12-JUL-78 PAGE 4-2
/ EQUILIBRIUM MODE SFCA
00353
        1352
                       TAD .-1
                       DCA TRUNS
JMP P400
00354
        3152
        5775
00355
                       TAD (TRUNS
        1374 A3,
                                                 /INPUT FROM MINI
00356
                       CALL IDATA
00357
        4445
                                                  /PAGE ESCAPE
                       JMP P400
00360
       5775
00374
        0152
 00375
        0400
 00376
        0150
 00377
        7462
                       PAGE
        04001
```

```
/ EQUILIBRIUM MODE SFCA
                                             PALS-V16A 12-JUL-78 PACE 5
00400
       7360
             P400.
                       CLA CLL
                       TAD (170
                                        /INITIALIZE DATA
00401
       1377
                       DCA RTIME
99492
       3154
                       TAD TSAMP
00403
       1150
             A4.
                       CIA; DCA CSAMP
00404
       7041
00405
       3151
00466
             CETSEC. WRITE: "I: "E: " : "T: "I: "M: "E: "(;0
       4421
99497
       0311
00410
       9395
00411
       0240
00412
       9324
00413
       9311
00414
       9315
00415
       0365
00416
       0250
66417
       9000
00420
       1150
                      TAD TSAMP
00421
                      TAD CSAMP; IAC
       1151
00422
       7691
00423
       4426
                       CALL DECOUT
00424
       4421
                       WRITE; "); 0
00425
       0251
00426
       0300
00427
       1161
                      TAD IFLAG
                       SZA CLA: JMP A5
00430
       7640
00431
       5237
                                                PENZYMATIC INC TIME
                       CALL DECIN; 0
00432
       4420
00433
       0000
00434
       1233
                       TAD .-1
                       DCA I RTIME
00435
       3554
                       JMP A6
TAD RTIME
00436
       5241
00437
       1154
            A5,
                                                /INPUT FROM MINI
00440
       4445
                       CALL IDATA
       2154
                       ISZ RTIME
00441
            A6,
                       ISZ CSAMP
JMP GETSEC
00442
       2151
00443
       5296
                       WRITE; "E; "Q; " ; "T; "I; "M; "E;0
00444
       4421
00445
       0305
00446
       0321
00447
       0240
00450
       0324
00451
       03 F 1
00452
       0315
00453
       0305
00454
       0000
                       TAD IFLAG
00455
       1161
                       SZA CLA; JMP A7
00456
       7640
69457
       5265
                                                 /DELAY TO FIRST DATA PT
                       CALL DECIN; 0
00460
       4420
```

TAD .-1 DCA EQTIME

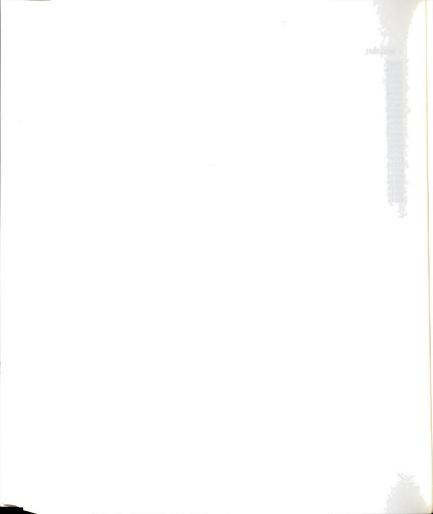
TAD (EQTIME


CALL IDATA

/FROM MINI

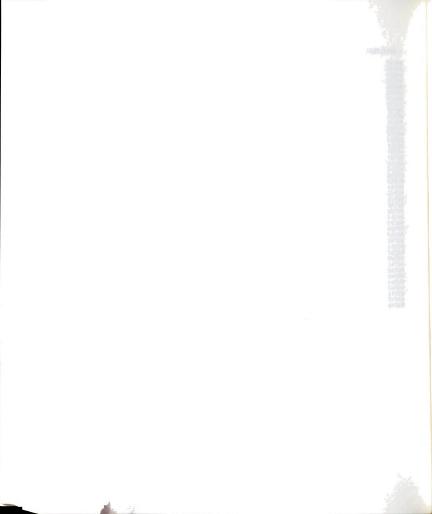
JMP OPER

1376 A7.


```
PALS-VIGA 12-JUL-78 PAGE 6
/ EQUILIBRIUM MODE SFCA
                                        /OPERATE
                      CLA CLL
TAD TSAMP
      7300 OPER.
99467
66470
       1150
                      CIA; DCA CSAMP
       7941
00471
00472
       3151
                       TAD (170
00473
       1377
                      DCA RTIME
                      WRITE; "R; "E; "-; "I; "N; "I; "T; " ; "D; "A; "T; "A; "?; 0
       3154
00:274
00475
       4421
       6322
00476
00477
       0305
60500
       0255
00501
       0311
00502 0516
00503 0311
06394
00503
00506
       0324
       6240
       6304
00507
       6301
00510
       6324
       0301
00511
00512 0277
00513 0000
                       CALL READ
00514
       4423
                       TAD (-"N
SNA CLA
60315
       1375
00316
       7650
                        JMP SSCALE
                                         TO DESTROY OLD DATA
00317
        5322
                        TAD DATAB
DCA DATA
        1162
00520
00521
        3156
                                         /SET 0,100
        4443 SSCALE, CALL SCALE
                                         /LOOP HERE FOR EA SAMPLE
 96522
        4434 SAMP,
                        CR
 00523
                        TAD TRUNS
        1152
 00524
                        CIA; DCA CRUN
 06525
        7041
 60526
        3153
                                         HERE FOR EA RUN
                        CETSR
        6507
               RUN.
 60527
                        AND (2000
 00530
        9374
                                         OPTIONALLY RESET 0,100% T
                        SZA CLA
 00531
        7640
                        CALL SCALE
                        WRITE; "S; "A; "M; "P; " ;0
 00532
        4443
 00533
        4421
 00534
        0323
 00535
        0001
        0315
 00536
        0320
 00537
 60540
         0240
 00541
         0000
                        TAD TSAMP
         1150
 00542
                        TAD CSAMP; IAC
         1151
                                                  WRITE CURRENT SAMP NO
 00543
         7001
 00544
                        CALL DECOUT
                        WRITE; "; "; "R; "U; "N; " :0
 00545
         4426
 00546
         4421
  60547
         0240
  00550
         0240
         0332
  00551
  00552
         0325
  00353
         0316
  00554
         0240
  00555
         0000
```


/ EQUI	LIBRIUM MO	DE SFCA	PAL8-V10A 12-JUL-78 PAGE 6-1
00556	1152	TAD TRUNS	
00557	1153	TAD CRUN; IAC	
00560	7601	•	
0 0561	4:126	CALL DECOUT	AND RUN NO
00562	6507	CETSR	
00560	0373	AND (4000	
60364	765 0	SNA CLA	
00565	4423	CALL READ	/WAIT KB BEFORE OPEN SAMP VALVES
0 0366	7200	CLA	
00567	4440	CALL DELAY; 2	
00570	0002	·	
09371	5772	JMP I (CYC	/PAGE ESCAPE
00572	0600		
0 0573	4000		
€€574	2000		
00575	7462		
00376	0:55		
00377	0170		
	0600	PAGE	

```
PAL8-V10A 12-JUL-78 PAGE 7
/ EQUILIBRIUM MODE SFCA
                                               /COMPLETE CYCLE
                      CALL CYCLE
      4444 CYC.
99699
                      TAD EQTIME
      1155
00601
      3204
                      DCA .+2
00602
                                               /WAIT FOR THINGS TO SETTLE
                      CALL DELAY: 0
00603
      4440
      0000
00604
                                               /SAMPLE AND AVERAGE ADC
                     CALL SAMPLE; ISAMP
      4433
00605
00605
      1750
                                               SUBET DARK CURPENT
                      TAD MDARK
      1157
00607
                                               STORE IN THE TABLE
                      DCA I DATA
00610
      3556
                      GETSR
00611
      6507
                      AND (1060
SZA CLA
00612
      0377
                                       /IMMEDIATE OUTPUT?
00613
      7640
                                       NO
      5227
                      JMP A8
00614
                      WRITE; " ; "I; "-; "D; "=; " ;0
00615
      4421
00616
      0240
00617
      0311
00620
      0255
06621
      0304
00622
      0275
00623
      0240
00624
      9000
                      TAD I DATA
      1556
00625
                      CALL DECOUT
00626
       4426
                      CR: ISZ DATA
00627
       4434
             A8,
00630
      2156
                                                /CHECK DATA TAB OVFL
                      SKP; JMP I (DAOVFL
00631
       7410
00632
      5776
                      TAD REF
                                                STORE CURRENT REF
00633
      1160
                      DCA I DATA
00634
       3556
                      ISZ DATA
00635
       2156
                      SKP; JMP I (DAOVFL
00636
       7410
00637
       5776
                                                /MORE RUNS THIS SAMP?
                      ISZ CRUN
00640
      2153
                                       /YES
                      JMP RUN
ISZ RTIME
00641
       5775'
                                       /ADV POINTER
00642
       2154
                                        /MORE SAMPLES?
                      ISZ CSAMP
00643
       2151
                                        /YES
                      JMP
00644
       5000
                      CR: CR
       4434 ALIST,
00645
                      WRITE; "L; "I; "S; "T; " ; "D; "A; "T; "A; "?;0
00646
      4434
00647
       4421
00650
       0314
00651
       0311
00652
       0323
00653
       0324
00654
       0240
00655
       0304
00656
       0301
00657
       0324
00560
       0301
00661
       0277
00662
       0000
                       CALL READ
00663
       4423
                       TAD (-"N
00664
       1374
                       SNA CLA
00665
       7650
                       JMP I (NOLIST
00666
       5777
```


/ EQUILIBRIUM MODE SFCA PAL8-V10A 12-JUL-78 PAGE 7-1 00667 4434 00670 4434 00671 4421 CR; CR WRITE; "S; "A; "M; "P; " ; " ; "I; "-; "D; "/; "R; "-; "D; 0 00672 0323 00673 0301 00674 0315 00675 0320 00676 0240 00677 0240 00700 0311 00701 0255 00702 0304 60703 0257 00704 0322 00703 0255 00705 0364 00707 0000 CR; CR 00710 4434 00711 4134 00712 1162 TAD DATAB /RESET DATA PTR 00713 3156 DCA DATA TAD TSAMP 00714 1150 00715 7041 CIA; DCA CSAMP 00716 3151

/ EQUILIBRIUM MODE SFCA

PALE-V10A 12-JUL-78 PACE 8

00717	1373	SAMPL,	TAD (-6
00720	3370		DCA M6 /SET COUNT
00721	1152		TAD TRUNS
00722	7041		CIA; DCA CRUN
00723	3153		
00724	4434		CR
	1150		TAD TSAMP
90725	1151		TAD CSAMP; IAC
00727	7601		,
00739	4426		CALL DECOUT
	4421	RUNL,	WRITE; "; ";0
00732	0240	2003.23,	, , ,
00733	0240		
00734	0000		
	1556		TAD I DATA
00735	2156		ISZ DATA
	4426		CALL DECOUT
00740	4421		WRITE: "/:0
	0257		HILLID, - , O
00742	200 0		
			TAD I DATA
	1556		ISZ DATA
00744	2156		CALL DECOUT
	4426		ISZ CRUN
00746	2153 7410		SKP
00.11	• 1 - 0		JMP A11
00750	5365		ISZ M6
00751	2370		
00753	5331		JMP RUNL
	1373		TAD (-6
00754	3370		DCA M6
	4434		CR WRITE; "; "; "; "; 9
00756	4421		WRITE; "; "; "; "; 0
	6240		
00760	0240		
00761	0249		
0 0762	0240		
00763	ଡ଼୦୧ଡ		TAM DITAIL
00764	5331		JMP RUNL
03765	2151	A11,	ISZ CSAMP
00766	5317		JMP SAMPL
00767	5245		JMP ALIST
00770	0000	M6,	0
00773	7772		
00774	7462		
60775	0527		
00776	1653		
00777	1000		DAGE.
	1000		PAGE


```
PAL8-V10A 12-JUL-78 PAGE 9
/ EQUILIBRIUM MODE SFCA
       4434 NOLIST, CR; CR
01000
01901
       4434
                       WRITE; "X; "M; "I; "T; " ; "D; "A; "T; "A; "?; 0
01002
       4421
01003
       0330
       0315
01004
C1005
       0311
       0324
01006
61697
       0240
       0304
01010
       0361
01011
01012
       0324
       0301
01013
01014
       0277
01015
       0000
                       CALL READ
01016
       4423
                       TAD (- "Y
       1377
01017
                                         XMIT DATA TO MINI?
                       SZA CLA
01920
       7640
                                        NO: RESTART
SET UP MINI
                       JMP I (START
0102i
       5776
01022
                       CALL MONITR
       4441
                       TAD DATAB
01023
       1162
01024
                       DCA DATA
       3156
                       TAD TSAMP
01025
       1150
                       CIA; DCA CSAMP
01026
       7041
01027
       3151
                       TAD TSAMP
01030
       1150
                       CALL ODATA
       4446
01031
                       TAD TRUNS
01032
       1152
                       CALL ODATA
01033
       4446
                       TAD TRUNS
CIA; DCA CRUN
              SAMPX,
01034
       1152
01035
       7041
01036
       3153
                       TAD I DATA
ISZ DATA
       1556 RUNX,
01037
01040
       2156
                                         /SAMPLE-DARK
                       CALL ODATA
01041
       4:246
                       TAD I DATA
ISZ DATA
01042
       1556
01043
       2156
                                         /REF-DARK
                       CALL ODATA
01044
       4446
                        ISZ CRUN
01043
       2153
                       JMP RUNX
ISZ CSAMP
01046
       5237
01047
       2151
                       JMP SAMPX
01050
       5234
                                         TRANS MODE TO INIT MINI
                        CALL MONITR
01051
        4441
                       JMP I (START
01052
       5776
                                          /DATA TABLE FULL (THRU 7777)
        7300 DAOVFL, CLA CLL
01053
                        TAD (-3
01034
        1375
                        CALL MONITR
01053
        4441
                       JMP I (START
01056
        5776
01175
        7?75
        0260
01176
01177
        7447
                       PAGE
```

/+3 FREQUENTLY CALLED SUBROUTINES PALS-V10A 12-JUL-78 PAGE 10

```
/+3 FREQUENTLY CALLED SUBROUTINES
/
STOPPED-FLOW CLINICAL ANALYZER
/SUBROUTINE TWO
/
/SFCA.S1 CONTAINS PARAMETER DEFINITIONS
/ AND PAGE ZERO POINTERS.
/
/SFCA.S2 CONTAINS FREQUENTLY CALLED SUBROUTINES
/ WRICH LOAD BEGINNING AT THE PAGE FOLLOWING THE
/ EXECUTIVE ROUTINE, AND OCCUPY 7 CORE PAGES.
//
/DATA STORAGE BEGINS AT THE PAGE FOLLOWING SFCA.S2
/ AND EXTEND TO THE END OF MEMORY.
/PGR: M.D. JOSEFH
/DATE: 28-MAY-78
/VER: 18
/FILE: SFCA.S2
```

```
GENERAL PURPOSE SUBROUTINES
SUMMARY OF SUBROUTINE CALLS
/DECIN - KB INPUT A DECIMAL NUMBER IN THE RANGE 0-3999,
         RETURN THE OCTAL EQUIVALENT AN CALL+1
         CALL DECIN
         OCTAL
         < RETURN>
/TXOUT - TYPE ASCII TEXT, PACKED ONE 8-BIT CHAR/WORD, TERHINATED WITH A ZERO
         CALL TYOUT
         TEXT...
         < RETURN>
TYPE - TYPES CHAR IN AC, LEAVES AC UNAFFECTED
         CALL TYPE (AC=CHARACTER)
         < RETURN>
/READ - KB INPUT AN 8-BIT CHARACTER, RETURNS IN AC CAUSES JMS MONITR
ALTMODE CAUSES JMS MANUAL
/
         CALL READ
         <RETURN> AC=8-BIT CHARACTER
NOUT - TYPES CHARACTER IN AC AS AN ASCII NUMERIC
         CHARACTER SHOULD BE IN THE RANGE 0-11(8)
AC IS CLEARED BEFORE RETURN
         CALL NOUT (AC=CHARACTER)
/
         < RETURN>
OCTOUT - TYPES NUMERIC IN AC AS OCTAL RETURNS AC CLEARED
         CALL OCTOUT (AC=OCTAL NUMERIC)
/
         < RETURN>
DECOUT - TYPES CHARACTER IN AC AS DECIMAL NUMERIC
         RETURNS AC CLEARED
         CALL DECOUT (AC=NUMERIC)
         <RETURN>
```

```
/+3 FREQUENTLY CALLED SUBROUTINES PALS-V10A 12-JUL-78 PAGE 12
```

SUMMARY OF SUBROUTINE CALLS, CONT /SAMPLE - SAMPLES AND AVERAGES A/D UP TO 4096 TIMES RETURNS AVERAGE IN AC CALL SAMPLE NO. POINTS TO AVERAGE (RETURN) (AC=AVERAGE) /CRLF - OUTPUTS CR.LF RETURNS AC CLEARED CALL CRUE < RETURN> AVCLR - INITIALIZE DOUBLE PRECISION AVERAGER RETURNS AC CLEARED CALL AVCLR < RETURN> /AVADD - ADD AC TO ONGOING SUM CLEARS AC CALL AVADD (AC=INTEGER) (RETURN) AVER - CALCULATE AVERAGE, RETURN AVG IN AC

CALCULATE AVERAGE, RETURN AVG IN ACC

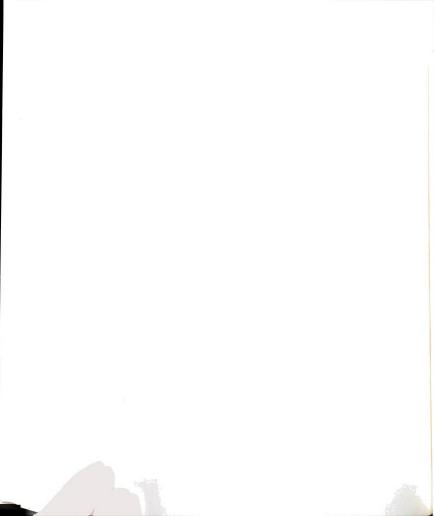
ERROR = AVERAGE > 7777

(RETURN) (AC=AVERAGE)

/DELAY - DELAY N SECONDS WHILE MONITORING KB

CALL DELAY SECONDS TO DELAY (OCTAL) <RETURN>

MANUAL - MANUAL OPERATION OF SFCA ^R FORCES RETURN

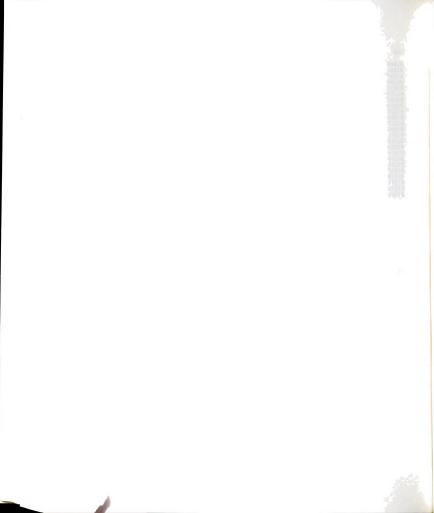

CALL MANUAL

MONITR - TRANSPARENT MODE AND ERROR HANDLING

^A CHAINS TO *290 ^R FORCES RETURN

CALL MONITR

/+3 FREQUENTLY CALLED SUBROUTINES PALS-V19A 12-JUL-78 PAGE 13


FREQUENTLY CALLED SUBROUTINES PAL8-V10A 12-JUL-78 PAGE 14 /+3 /DECIMAL INPUT DECIMAL INTEGER (0-9999); RETURN OCTAL EQUIV (4096=0, 4097=1, ETC.) /CALL DECIN; OCTAL; RETURN XDECIN, 0 CLA TAD (-4 DCA N4 TAD (DCA DIG1 DCA STO DCA DIG1; DCA DIG2; DCA DIG3; DCA DIG4 DCA OCT CALL THOUT; ";"=;";0 CALL READ GETD, CALL TYPE MAKE SURE IT'S A NUMERIC JMS CHK DCA DIG1 /WILL CHANGE STO, ISZ STO /DO ONLY 4 ISZ N4 JMP GETD /NOW ALLOW A CR CALL READ TAD (-215 /NONE OF THE ABOVE SZA CLA; JMP IERR CALL CRLF CVRT, TAD DIG1 L1, SNA; JMP L2 TAD (-1 /DECREMENT DCA DIG1 TAD (1750

/ADD 1090(10)


TAD OCT

DCA OCT JMP L1

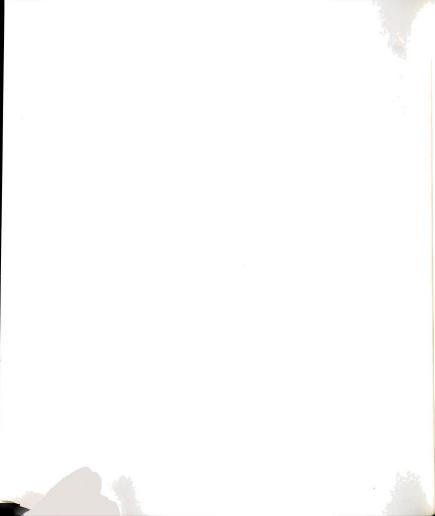
/+3	FREQ	UENTLY	CALLED	SUBROUTINE	S	PALS-VIOA	12-JUL-78	PAGE	15
01245	1332	L2,	TAD 1	DIC2					
01246	7450		SNA;	JMP L3					
01247	5256								
01250	1374		TAD (
01251	3332		DCA I						
01252	1372		TAD						
	1330		TAD 6						
	3330				/ADD	100(10)			
01255	5245		JMP I						
	1333	L3,	TAD 1						
	7450		SNA;	JHP L4					
01260	5267								
	1374		TAD						
01262	3333		DCA I						
	1371		TAD						
	1330		TAD 0	OCT					
01265	3330		DCA C		/ADD	10(10)			
01266	5256		JMP I						
	1334	L4,	TAD 1						
	1330		TAD (a near mo	CALLED		
01271	3500			1 XDECIN		S BACK TO			
	2200			XDEC IN	/P01	NT TO RETU	PUN		
01273	5660		JMP	I XDECIN					
01274	0000	CHK,	9						
01275	1375			(-215	CR.	TERMINATES			
01276	7450		SNA;	JMP XCV					
01277	5310					= LOWEST	OCTAL		
01300	1370		TAD		/260	= LUNESI	OCIAL		
01301	7510		SPA;	JMP IERR					
01302	5322					= HIGHEST			
01303	1367		TAD		/271	= niGHES1			
01304	7500		SMA;	JMP IERR					
01305	5322		man.	/ 10	/DEC	TORE AND S	TRIP ASCII		
01395	1371		TAD		/100	TOTAL MIND B	IIII AGGII		
01307	5674		JIP	I CHK					


```
PAL8-V10A 12-JUL-78 PAGE 16
        FREQUENTLY CALLED SUBROUTINES
/+3
                                        MOVE DIGITS ACCORDING TO
                      TAD DIG3
01310
       1333
             XCV,
                                        /HOW MANY WERE INPUT
                      DCA DIG4
TAD DIG2
01311
       3334
       1332
01312
                       DCA DIG3
       3333
01313
                      TAD DIG1
DCA DIG2
01314
       1331
       3332
01315
                      DCA DIG!
01316
       3331
                       ISZ N4
JMP XCV
01317
       2327
01320
       5310
                       JMP CVRT
01321
       5233
                       CALL TXOUT; "?;0
              IERR.
01322
       4421
01323
       0277
01324
       0000
                       CALL CRLF
       4434
01325
                       JMP XDECIN+1
01326
       5201
01327
       0000
              OCT.
                       0
       0000
01330
                       0
              DIG1,
01331
       0000
                       0
              DIG2.
01332
       0000
              DIG3,
                       Ø
01333
       0000
                       0
01334
       0000
              DIG4,
              /ASCII TEXT OUTPUT
              /ONE 8-BIT CHAR/WORD; O TERMINATES
                                         /CALL TXOUT; TEXT; 0; RET
              XTXOUT, 0
01335
       0000
                       CLA
01336
       7200
                       TAD I XTXOUT
01337
        1735
                       ISZ XTKOUT
01340
       2335
                       SNA; JNP I XTXOUT /0 TERM
01341
       7450
01342
       5735
                       CALL TYPE
       4422
01343
                       JMP XTXOUT+1
01344
       5336
              /LST - OUTPUTS CHARACTER IN AC TO LPT (DEV 14);
                       LEAVES AC UNCHANGED
                                         /CALL LIST (AC=CHAR); RETURN
                       a
01345
        0000
              XLST,
                       6146
01346
        6146
                       6141
01347
        6141
                       JMP .-1
JMP I XLST
        5347
01350
01351
        5745
01367
        7766
01370
        7735
01371
        0012
01372
        0144
01373
        1750
01374
        7777
01375
        7563
01376
        3331
01377
        7774
                        PAGE
        1400
```




```
PALS-V19A 12-JUL-78 PAGE 17
        FREQUENTLY CALLED SUBROUTINES
/+3
             /TYPEOUT; CHAR IN AC; AC NOT CLEARED
01400
      9909
             XTYPE.
                       TLS
       6946
01401
                       TSF
01402
       6641
                       JMP .-1
01403
       5202
                                        ACHECK KB
                       KSF
01404
       6331
                       JMP I XTYPE
01405
       5500
                                        /SAVE TEMP
                       DCA XNOUT
01405
       3216
4423
                       CALL READ
01407
                                        /^S MEANS WAIT
                       TAD (-223
       1377
01410
                       SNA CLA
       7650
01411
                       CALL READ
CLA CLL
01412
       4423
       7300
1216
01413
                       TAD XNGUT
01414
                       JMP I XTYPE
01415
       5660
              NOUT OUTPUTS AC AS ASCII NUMERIC
                                        CALL ROUT (NUM IN AC); RETURN
01416
       0000
              XNOUT,
                       TAD (269
        1376
01417
                       CALL TYPE
        4422
01420
                       CLA
       7200
01421
                       JMP I XNOUT
01422
       5616
              OCTOUT OUTPUTS NUMERICS IN OCTAL
                                        /CALL OCTOUT (OCTAL IN AC); RET
              XOCTOU,
                       0
01423
        0000
                       DCA XO
TAD XO
        3247
61424
01425
        1247
                       RTL; RTL
01426
        7906
01427
        7006
                       AND (7
61430
        0375
                       CALL NOUT
        4424
 01431
                       TAD XO
 01432
        1247
                       BSW
 01433
        7902
                        AND (7
 01434
        0375
                       CALL NOUT
TAD XO
 01435
        4424
 01436
        1247
                        RTR: RAR
 01437
        7912
 01440
        7010
                        AND (7
 01441
        0375
                        CALL NOUT
        4424
 01442
                        TAD XO
         1247
 01443
```

AND (7

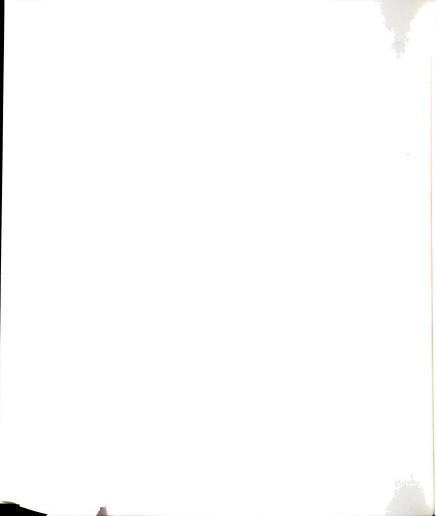

CALL NOUT JMP I XOCTOU

01447 0900 XO.

/+3 FREQUENTLY CALLED SUBROUTINES PAL8-V19A 12-JUL-78 PAGE 18 /DECOUT CONVERTS OCTAL-DECIMAL AND OUTPUTS A1450 9960 VDECOU 9 /CALL DECOUT (OCTAL IN AC); RET

01450	0000	XDECOU,		CALL DECOUT (OCTAL IN AC); RET
01451	3325		DCA TEMP	
01452	3326		DCA DIG	
01453	1325		TAD TEMP	
01454	1374		TAD (-1750	/SUBTR 1000(10)
01455	7510		SPA	
01456	4311		JMS XDOC	
01457	2326		ISZ DIG	/INCR THOUS
01460	5254		JMP4	
01461	1373		TAD (1750	·PD GMODE
01462	3325	XDOD,	DCA TEMP	/RESTORE
01463	4317		JIIS TNUM	
01464	1325		TAD TEMP	-arman 100(10)
01465	1372		TAD (-144	/SUBTR 100(10)
61456	7510		SPA	
01467	5272		JMP .+3	/INCR HUNDREDS
01470	2326		ISZ DIG	/ INCR HONDIELDS
01471	5265		JMP4	
01472	1371		TAD (144	/RESTORE
01473	3325		DCA TEMP	/ AUS I OILL
01474	4317		JMS TNUM TAD TEMP	
61475	1325			/SUBTR 10(10)
01476	1370		TAD (-12 SPA	/ Gobin 10 (10)
01477	7510		JMP .+3	
01500	5303		ISZ DIG	
01501	2326		JMP4	
01502	5276 136 7		TAD (12	
01503 01504	3325		DCA TEMP	
01504	4317		JMS TNUM	
01506	1325		TAD TEMP	
01507	4424		CALL NOUT	
01510	5650		JMP I XDECOU	
01511	0000	XDOC.	0	DON'T SKIP IF ALREADY NEG
01512	1373	ADOU,	TAD (1750	
01513	7500		SMA; JMP XDOD	
01514	5262		2.22,	
01515	1374		TAD (-1750	
01516	5711		JMP I XDOC	
01517	0300	TNUM,	0	
01520	1326		TAD DIG	
01521	4424		CALL NOUT	
01522	7200		CLA	
01523	3326		DCA DIG	
01524	5717		JMP I TNUM	
- 10m F	~ • • •			
01525	0000	TEMP,	0	
01526	0300	DIG,	9	
-	_			

/+3 FREQUENTLY CALLED SUBROUTINES PALS-V10A 12-JUL-78 PAGE 19


/HDIV - DIVISION WHERE QUOT< 1 /RETURNS QUOT*1000

01527 01530	0900 7200	XEDIV,	0 CLA	/CALL HDIV; DIVIDEND; DIVISOR; OVFL; RET
01531	1374		TAD (-1750	
01532	3357		DCA XHDC	
01532	4435		CALL AVCLR	
01534	1727	VET OOP	TAD I XHDIV	GET DIVIDEND
01505	7012	MILLOUI,	RTR; RAR	VOLI DIVIDENS
01536	7019		itiit; italit	
01537	0366		AND (777	
01540	4436		CALL AVADD	ADD TO SUNS 1000 TIMES
01541	5356		JMP XIIDRLT	AND TO DOIL TOOU TIME
01542	2357		ISZ XIDC	
01543	5334		JMP XHLOOP	
01544	2327		ISZ XIIDIV	
01545	1727		TAD I XHDIV	GET DIVISOR
01546	7312		RTR; RAR	7 021 21712011
01547	7010		It It, Itali	
01559	0336		AND (777	
01551	0482		DCA I XAVCT	
01552	2327		ISZ KHDIV	
01558	4437		CALL AVER	
01534	7410		SKP	ZERROR RETURN
01555	2327		ISZ XHDIV	NORMAL RETURN
01556	5727	XFDRET.	JMP I XHDIV	
01557	0000	XHDC,	0	
0100.	0 300	mino,	· ·	
01566	0777			
01567	6912			
01570	7766			
01571	0144			
61572	7634			
01573	1750			
01574	6930			
01575	6007			
01576	0260			
01577	7555			
01011	1690		PAGE	
	1000			

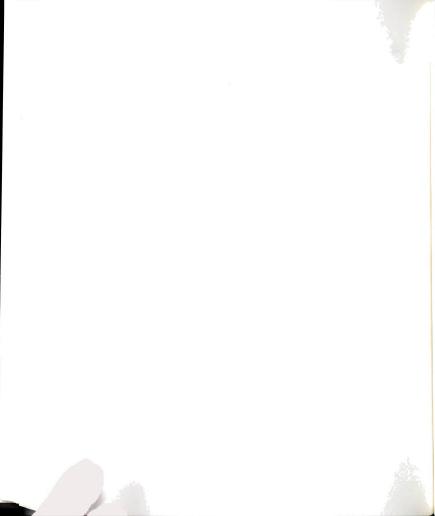
/+3 FREQUENTLY CALLED SUBROUTINES PALS-V10A 12-JUL-78 PAGE 20

/READ; 8-BIT CHAR RETURNED IN AC /^C CHAINS TO MONITOR (JMS) /ALTMODE CHAINS TO MANUAL MODE (JMS)

01600	9 999	XREAD,	0	
01601	6931	·	KSF	
01602	5201		JMP1	
01603	6036		KRE	
01604	1377		TAD (-203	/^C CHAINS TO MONITOR
01605	7450		SNA; JMP XMON	
0 1606	5214			
01607	1376		TAD (-30	ALTMODE CHAINS TO MANUAL
01610	7450		SNA; JMP XMAN	
01611	5222			
01612	1375		TAD (233	/RESTORE
01613	5600		JMP I XREAD	
01614	1200	XMON,	TAD XREAD	
01615	3230		DCA XRRET	
01616	4441		CALL MONITR	
01617	1230		TAD XRRET	
01629	3290		DCA XPEAD	
01621	5291		JMP XREAD+1	RETURN FROM MONITOR
01622	1260	XMAN,	TAD XREAD	
01623	3230		DCA XRRET	
01624	4442		CALL MANUAL	
01625	1230		TAD XRRET	
01626	3200		DCA XREAD	
01627	5201		JMP XREAD+1	
0 1630	6 660	XRRET,	0	

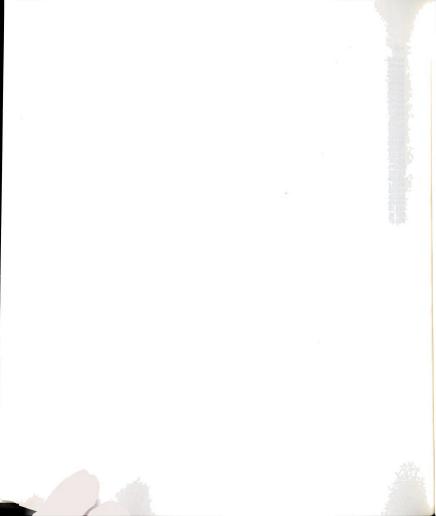
/+3 FREQUENTLY CALLED SUBROUTINES PAL8-V10A 12-JUL-78 PAGE 21

/IDATA - INPUT 12 BITS FROM MINI


```
/CALL IDATA (AC=POINTER); RETURN
             XIDATA, 0
01631
       0000
                                        STORE POINTER
01632
       3266
                       DCA XIDP
                                        /WAIT FOR SPECIAL CHARACTER
                       6131
       6131
             XIDW1,
01633
                                        /ALSO WATCH KB
/READ MINI
                       JMP XIKB
01634
       5302
       6136
                       6136
01635
                       TAD (-100
01636
       1374
                                        /SPECIAL?
                       SZA CLA
01637
       7640
                       JMP XIDWI
TAD (100
                                        /NOPE
01649
       5233
01641
       1373
                                        /SEND IT BACK
                       6146
01642
       6146
                       6141
01643
       6141
                       JMP .-1
01644
       5243
                       CLA
01645
       7200
                                        /CET 6 BIT BYTE
                       JMS XIDIN
01646
       4270
                       BSW
01647
       7602
                       DCA XIDTEM
01650
       3267
                       JMS XIDIN
01651
       4270
                       TAD XIDTEM
DCA I XIDP
                                        /COMBINE BYTES
01652
       1267
                                        ∕STORE
       3666
01653
                                                 / ( INDICATES INPUT FROM MINI
                       WRITE; "; "=; "; "(;0
01654
       4421
01655
       0240
01656
       0275
       0240
01657
01660
       0250
01661
       0990
                       TAD I XIDP
01662
       1666
                                         ÆCEO TO TERMINAL
                       CALL DECOUT
01663
       4426
                       CR
       4434
01664
                       JMP I XIDATA
01665
       5631
              XIDP.
01666
       0000
              XIDTEM,
                       0
01667
       0000
              XIDIN,
                       a
01670
       0000
                       6131
              XIDW2,
01671
       6131
                       JMP .-1
       5271
01672
                                         READ MINI
                       6136
01673
       6136
                       TAD (-100
       1374
01674
                                         /ANOTHER SPECIAL
       7450
                       SNA
01675
                                         YEP; LOOK AGAIN
NUST BE DATA
                       JMP XIDW2
       5271
01676
                       TAD (100
AND (77
01677
        1373
        0372
01700
                       JMP I XIDIN
01701
        5670
                       KSF
        6931
              XIKB,
01702
                       JMP XIDWI
        5233
01703
                                         THE TYPED SOMETHING
                       CALL READ
01704
        4423
                       CLA
        7200
01705
                       JMP XIDWI
01706
       5233
```


/+3 FREQUENTLY CALLED SUBROUTINES PALS-V10A 12-JUL-78 PAGE 22

/ODATA - SEND 12 BITS TO MINI


01707	0000	XODATA,	0	/CALL ODATA (AC=DATA); RETURN
01710	3352	22021212,	DCA XODTEM	
•	6131	XODW1,	6131	/WAIT FOR SPECIAL
	5345		JMP XOKB	/ALSO WATCH KB
-	6136		6136	/READ IT
	1371		TAD (-101	
	7640		SZA CLA	/SPECIAL?
	5311		JMF XODW1	✓NOPE
	1370	XOPR,	TAD (101	/SEND IT BACK
	4337		JMS XOOUT	
	6131		6131	/ANY RESPONSE YET?
01722	5317		JMP XOPR	NOT YET
01723	6136		6136	HERE IT IS
01724	1371		TAD (-101	
01725	7640		SZA CLA	SPECIAL AGAIN?
01726	5317		JMP XOPR	NOT YET BUT HE WILL
01727	1352		TAD XODTEM	/OK - GET THE GOOD STUFF
01730	7002		BSW	
	0372		AND (77	THE PARTY PARTY
01732	4337		JMS XOOUT	SEND FIRST BYTE
	1352		TAD XODTEM	
01734	0372		AND (77	CROWN PIMT
01735	4337		JMS XOOUT	SECOND BYTE
01736	5707		JMP I XODATA	/RETURN
01737	୭ ୦୦୧	XOOUT,	0	
01749	6146		6146	
	6141		6141	
01742	5341		JMP1	
01743	7200		CLA	
	5737		JMP I XCOUT	
01745	6931	XOKB,	KSF	
01746			JMP XODW1	HE TYPED SOMETHING
01747	4423		0.,,,,,,,,	THE THED BUILDING
01750			CLA	
01751	5311		JMP XODW1	
01752	0000	XODTEM,	0	
01770	0101			
01771	7677			
01772	0077			
01773	0190			
01774	7700			
	0233			
01776	7750			
01777	7575		DAGE.	
	2000		PAGE	


```
PAL8-V10A 12-JUL-78 PAGE 23
       FREQUENTLY CALLED SUBROUTINES
/+3
             SCALE - OPTIONALLY SAMPLE 0, 100%
                    0000
02000
             XDARK,
      442 E
02001
      0322
62002
      0305
02903
      0323
62004
      0395
02005
62006
       0324
       0240
02007
       0304
32010
       0301
62011
       0322
02012
02013
       0313
       0277
02014
       6000
62015
                      CALL READ
       4423
02016
                      TAD (-"N
02017
       1377
                      SNA CLA
02020
       7650
                      JMP XREF
62021
62622
       5245
                      CR
       4434
                      WRITE; "C; "L; "O; "S; "E; 0
02023
       4421
       0303
02024
62925
       9314
02026
       9317
62927
       6323
02030
       0305
       0000
02031
                      CALL READ; CR
62032
       4423
                                               /AVERAGE ISAMP READINGS
       4434
4433
02033
                      CALL SAMPLE; ISAMP
62034
                                               /STORE -(DARK)
       1750
62035
                      CIA; DCA MDAPK
02036
       7041
       3157
02037
                      TAD MDARK; CIA
02040
        1157
02041
       7941
                      CALL DECOUT
       4426
62042
                       CR
        4434
02043
                       JMP XDARK
02044
       52¢1
                       WRITE; "R; "E; "S; "E; "T; " ; "R; "E; "F; " ; "?;0
              XREF,
02045
        4434
        4421
0322
 02046
 02047
        0305
 02950
        0323
 02051
 02052
        0305
        0324
 02053
        0240
 02054
 02055
        0322
        0395
 62056
        0306
 02057
 02060
        0240
        0277
 02061
 @2062
        6669
                       CALL READ
```

```
/+3
       FREQUENTLY CALLED SUBROUTINES PALS-V10A 12-JUL-78 PAGE 23-1
02064 1377
                      TAD (-"N
 02065
                      SNA CLA
JNP XSCRET
       7650
 02066
       5316
 92967
       4434
                      CR
02070
       4421
                      WRITE; "O; "P; "E; "N; 0
02071
       0317
02072
       0320
02073
       0395
92074
       0316
62075
       0000
62976
       4-123
                      CALL READ
02077
       4444
                      CALL CYCLE
02100
                      TAD EQTIME
       1155
62101
                     DCA .+2
CALL DELAY: 0
       3363
02102
      6440
      0090
4480
1750
02103
62104
                      CALL SAMPLE; ISAMP
62135
02105
       3160
                      DCA REF
02107
       1160
                      TAD REF
02110
                      CALL DECOUT
       4426
       4434
02111
                      CR
                                             /STORE REF-DARK
02112
                      TAD REF; TAD MDARK
       1160
02113
       1157
02114
       3160
                      DCA REF
02115
       5245
                      JMP XREF
02116
       4434 XSCRET, CR
                      JMP I XSCALE
02117
       5600
             /CYCLE - ONE CYCLE OF SFCA
02129 0000 XCYCLE, 0
                                      /CALL CYCLE; RETURN
      6502
6500
                      EMPTY
62121
02122
                      OPEN
€2123
      6503
                      FILL
02124 4440
                      CALL DELAY: ISAMPT
02123
      0995
                      CLOSE
02126
       6301
                      TAD I RTIME
                                     GET REACTION TIME
02127
       1554
02130
                      DCA .+2
CALL DELAY; 0
      3332
02131
       4440
02132
      6000
                      PUSH
02133
      6504
02134
       6505
                      SFS
02135
                      JMP .-1
       5334
                      JMP I XCYCLE
02136
       5720
02177 7462
```

PAGE

/+3 FREQUENTLY CALLED SUBROUTINES PAL8-V10A 12-JUL-78 PAGE 24 /SAMPLE A/D UP TO 4096 TIMES AND /RETURN THE AVERAGE IN AC 02200 0000 XSAMPL, 0 /CALL SAMPLE; NPTS AVG; RET (AVG IN AC) 02201 7200 CLA 02202 1600 TAD I XSAMPL /GET NPTS TO AVERAGE 02293 7041 CIA 02204 3231 DCA XCRLF ISZ XSAMPL CALL AVELR 02205 2200 02206 ∠CLEAR THE AVERAGER 4435 02207 6510 SLOOP, CONVRT /START A/D 02210 SCD 651**1** /WAIT FOR DONE FLAG 02211 5210 JMP .-1 62212 GETAD 6512 /READ A/D 02213 7040 CMA 02214 4436 CALL AVADD /ADD TO AVERAGE 02215 JIMP SERRI /AVADD OVFL 5223 62216 2231 ISZ XCRLF 02217 JMP SLOOP 5207 /CALC THE AVERAGE CALL AVER 02220 4437 02321 JMP SERR2 /AVER OVERFLOW 5.226 JMP I XSAMPL 02222 5600 02223 7240 SERR1, CLA CMA 62224 CALL MONITR 4441 02225 5600 JMP I XSAMPL CLA CLL CNA RAL CALL MONITR 02226 SERR2, 7344 02227 4441 JMP I XSAMPL **02230** 5600 /CRLF OUTPUTS CR, LF /CALL CRLF; RET (AC CLEAR) 02231 0000 XCRLF, CLA 02232 7200 TAD (215

02233

02234

02235

02236

02237

02240

02241

1377

4422

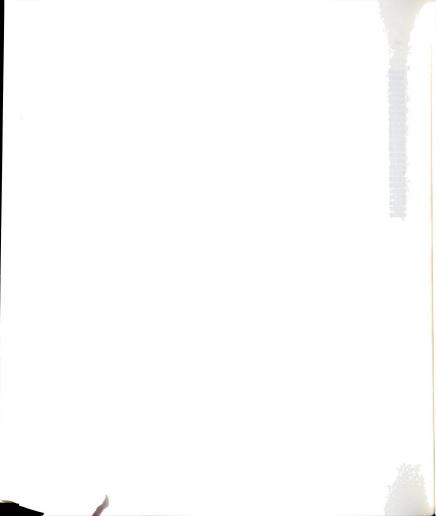
7260

1376

4422

7260

5631

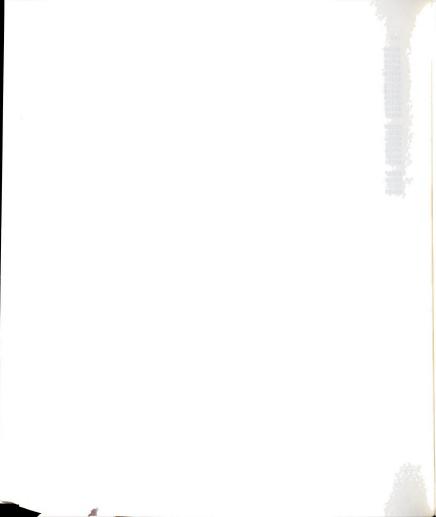

CALL TYPE

CALL TYPE

JMP I XCRLF

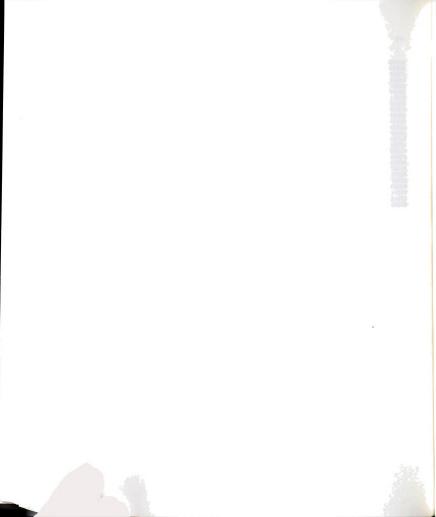
CLA TAD (212

CLA

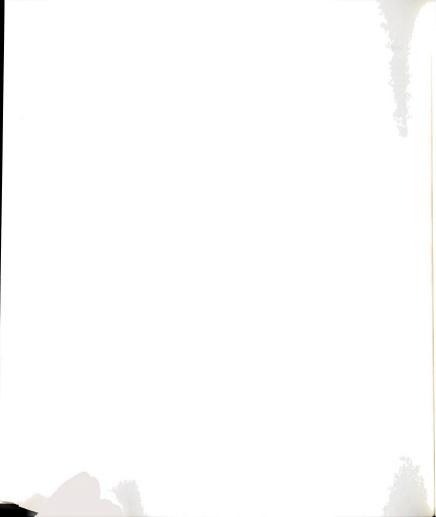


/+3 FREQUENTLY CALLED SUBROUTINES PAL8-V10A 12-JUL-78 PAGE 25

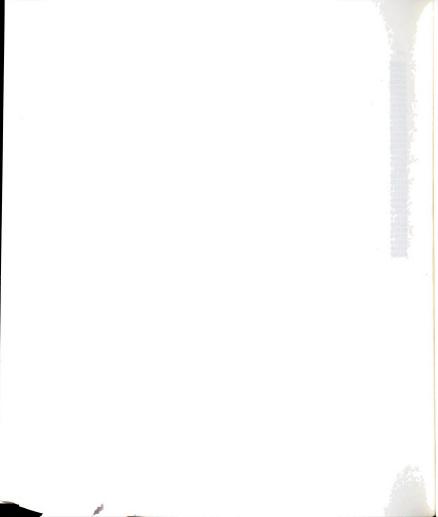
/DOUBLE PRECISION AVERAGER /MAX 4095 INTEGERS (0-4095 EACH)


92242 92243 92244 92245 92246 92247	0000 7200 3322 3323 3324 5642	XAVCLR,	CLA DCA ESUM DCA LSUM DCA AVGNT JMP I XAVCLR	/CALL AVCLR; RET
02250 02251 02252 02253	0000 7100 1828 3823	XAVADD,	0 CLL TAD LSUM DCA LSUM	/CALL AVADD (INTEGER IN AC); OVFL ERR; RET
62254	7004		RAL	CARRY TO LINK
02255 02236 02257	1322 3322 2324		TAD HSUM DCA ESUM ISZ AVONT	VUPDATE HIGH SUM
02260 02261	2250 5650		ISZ XAVADD JMP I XAVADD	NORMAL RETURN
02262	9999	XAVEB.	a	CALL AVER: ERR (OVFL); RET (QUOT IN AC)
02262 02263	0000 7200	XAVER,	0 CLA	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02262 02263 02264	7200	XAVER,	0 CLA TAD HSUM	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263		XAVER,	CLA	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263 02264	7200 1322	XAVER,	CLA TAD HSUM	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263 02264 02265	7200 1322 3325	XAVER,	CLA TAD HSUM DCA HSUM2	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263 02264 02265 02266	7200 1322 3325 3326	XAVER,	CLA TAD HSUM DCA HSUM2 DCA QUOT	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263 02264 02265 02266 02267 02270 02271	7200 1322 3325 3326 1324	XAVER,	CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVENT CIA; DCA MDIVS	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263 02264 02265 02266 02267 02270 02271 02272	7200 1322 8325 3326 1824 7041 3320 1323	XAVER,	CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVCRT CIA; DCA MDIVS TAD LSUM	/CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263 02264 02265 02266 02267 02270 02271 02272 02273	7200 1322 3325 3326 1324 7041 3320 1323 3321		CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVCRT CIA; DCA MDIVS TAD LSUM DCA DIVD	CALL AVER; ERR (OVFL); RET (QUOT IN AC)
02263 02264 02265 02266 02267 02271 02271 02272 02273	7200 1322 8325 3326 1824 7041 3820 1823 3321 1321	XAVER,	CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVENT CIA; DCA MDIVS TAD LSUM DCA DIVD TAD DIVD	
02263 02264 02265 02266 02267 02271 02272 02272 02274 02274	7200 1322 8325 3326 1324 7041 3320 1323 3321 1321 1320		CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVENT CIA; DCA MDIVS TAD LSUM DCA DIVD TAD DIVD TAD MDIVS	CALL AVER; ERR (OVFL); RET (QUOT IN AC) SUBTR DIVISOR
02263 02264 02265 02266 02267 02271 02272 02272 02273 62274 62275	7200 1322 3325 3326 1324 7041 3320 1323 3321 1320 7510		CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVENT CIA; DCA MDIVS TAD LSUM DCA DIVD TAD DIVD TAD DIVD TAD MDIVS SPA	SUBTR DIVISOR
02263 02264 02265 02266 02267 02271 02272 02272 02273 02274 02276 02277	7200 1322 3325 3326 1824 7041 3320 1323 3321 1321 1320 7510 5304		CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVENT CIA; DCA MDIVS TAD LSUM DCA DIVD TAD DIVD TAD DIVD TAD DIVD TAD MDIVS SPA JMP BORROW	
02263 02264 02265 02266 02267 02271 02272 02273 62274 62275 02276 02277	7200 1322 3325 3324 7341 3321 1321 1321 75304 3321	AVLOOP,	CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVENT CIA; DCA MDIVS TAD LSUM DCA DIVD TAD DIVD TAD DIVD TAD MDIVS SPA JMP BORROW DCA DIVD	SUBTR DIVISOR
02263 02264 02265 02266 02267 02271 02272 02272 02273 02274 02276 02277	7200 1322 3325 3326 1824 7041 3320 1323 3321 1321 1320 7510 5304		CLA TAD HSUM DCA HSUM2 DCA QUOT TAD AVENT CIA; DCA MDIVS TAD LSUM DCA DIVD TAD DIVD TAD DIVD TAD MDIVS SPA JMP BORROW DCA DIVD	SUBTR DIVISOR

/+3	FREQ	UENTLY C	ALLE	D SUBROUTINES	PAL8-V19A 12-JUL-78 PAGE 26
02304 02305 02306 02307 02310 02311 02312 02313 02314 02315	3321 1320 7041 1321 7710 5301 1325 7450 5327 1375 3325	BORROW,	TAD CIA TAD SPA JMP TAD SNA JMP TAD	MDIVS	/DON'T BORROW IF DIVD WAS ALREADY NEC /ANYTHING LEFT TO BORROW? /NOPE /DECREMENT HIGH SUM
02317	5301			XAVRET	CONTINUE
02320 02321 02322 02323 02324 02325 02326	0000 0000 0000 0000 0000 0000	MDIVS, DIVD, HSUN, LSUM, AVCNT, HSUN2, QUOT,	0 0 0 0 0		
02327 02330 02331 02332	7300 1326 2262 5662	AVDONE,	TAD	CLL QUOT XAVER I XAVER	∕RETURN


/+3 FREQUENTLY CALLED SUBROUTINES PAL8-V10A 12-JUL-78 PAGE 27 /DELAY DELAYS N SECONDS WHILE MONITORING KB 02333 0000 XDELAY, 0 /CALL DELAY; NSEC; RETURN 02334 CLA 7200 TAD I XDELAY 02335 1733 /GET N SECONDS ISZ XDELAY 62336 2333 02337 7459 SNA; JMP I XDELAY /0=NO DELAY 02340 5733 02341 7041 CIA; DCA XNSEC 02342 3364 XSEC, ✓CHECK KB 02343 6031 KSF JMP XCOUNT 02344 5351 /NO 02345 4423 CALL READ TAD (-222 /^R FORCES RETURN 02346 1374 SNA CLA JMP I XDELAY 02347 7650 02350 5733 XCOUNT, TAD XMC2 DCA XDC2 TAD XMC1 /WAIT A SEC 02351 1367 02352 3370 62353 1365 02334 3366 DCA YDC1 02353 2366 ISZ XDC1 02356 5355 JMP, .-1 ISZ XDC2 02357 2370 02360 5353 JMP .-5 ISZ XNSEC JMP XSEC 02361 2364 ✓ENOUGH? 02362 5343 02363 5733 JMP I XDELAY 02364 0000 XNSEC, 240 02365 0240 XMC1, XDC1, 02366 0000 02367 XMC2, -3 7775 02370 0000 XBC2. 02374 7556 02375 7777 02376 0212

PAGE


/+3 FREQUENTLY CALLED SUBROUTINES PAL8-V10A 12-JUL-78 PAGE 28

```
/MANUAL CONTROL
              ∠COMMAND
                               FUNCTION
                               OPEN SAMPLE VALVES
                               CLOSE
                 E
                               EMPTY STOPPING SYR
                 F
P
                               FILL DRIVE SYRINGES
                               PUSH
                 R
                               RESET
                 D
                               SET D/A
                               SAMPLE A/D
                 A
              / ^R
                               RETURN
             XMANUA, 0
02400 0000
                                        /CALL MANUAL; RETURN
                       CALL CRLF
CALL TXOUT; "M;":;0
02401
       4434
02492
       4421
02403
       0315
02404
       6272
02405
       0990
02466
                       CALL READ
       4423
                                        ✓CR = CRLF
02407
       1077
                       TAD (-215
                       SNA; JMP XMANUA+1
62410
       7450
62411
       5201
                       TAD (-5
02413
                                       /^R FORCES RETURN
       1376
                      SZA; JMP XMA2
02413
       7440
62414
       5224
                      CALL TXOUT; "R; "E; "T; 0
02415
       4:21
02416
       0322
02417
       0305
62420
       9324
02421
       6999
                       CALL CRLF
02422
       4434
                      JMP I XMANUA
TAD (-61
62423
       5600
                                                /CLOSE
02424
              XMA2,
       1375
                       SZA; JMP XMAS
02425
       7440
02426
       5240
                       CALL TXOUT; "C; "L; "O; "S; "E; 0
02427
       4421
02430
       0303
02431
       0314
02432
       0317
02433
       0323
02434
       9305
02435
       0900
62436
                      CLOSE
       6501
                       JMP XMANUA+1
02437
      5201
```

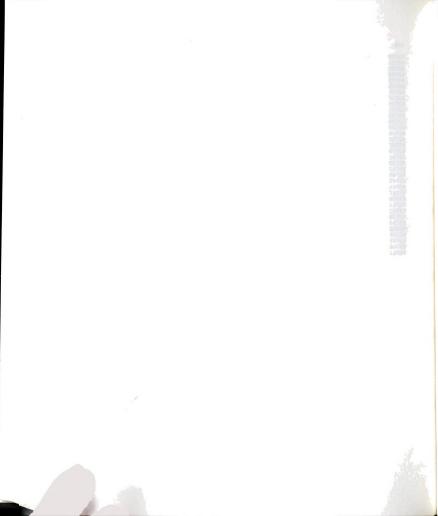

/+3	FREQU	UENTLY	CALLED	SUBI	ROUTIN	ES	PAL8-V19A	12-JUL-78	PACE	29
62440	1374	XMA3,	TAD C			/D				
02441	7440		SZA;	JIP	XMA4					
62442	5255									
02443	4421		CALL	TXOU	JT; "D;	"/; "A;	0			
02444	0364									
02445	0257									
02446	6361									
02447	0000									
62450	4420		CALL	DEC.	IN;0					
02431	0000									
02432	1251		TAD .	-1						
62433	6513		SETDA	1						
02434	5201		JMP 2		UA+1					
02433	1374	XMA4,	TAD			/E				
02456	7440		SZA;	JMP	XMA5					
02457	5271						-m			
02460	4421		CALL	TXO	UT; "E;	"M; "P;	"T; "Y; 0			
62461	0395									
02452	0315									
02460	6320									
02464	0324									
02465	0331									
02466	0000									
02467	6592		EMPT							
62470	5201		JMP :		UA+1					
02471	1374	XMA5,	TAD			F				
02472	7449		SZA;	JMP	XILA6					
62473	5304						nr . A			
02474	4421		CALL	TXO	UI; "F;	"I; "L;	L; o			
02475	0396									
62476	0311									
02477	0314									
62500	0314									
02301	0000									
02502	6503		FILL JMP	SURMA NI	TIAL 1					
02503	5291		TAD			/0				
02304	1373	XMA6,	1 AD	(-11	XMA7	, ,				
02503	7440		BZA;	JIM	MIDI.					
02506	5317		CATI	TVO	пт. "О.	"P; "E;	"N:0			
02507	4421		CALL	ino	01, 0,	., -,				
02510	0317									
02311	0320									
02512	0005									
02513	0316									
02514	0000		OPEN							
02515	6500		JMP	XMAN	UA+1					
02516 02517	5201 1374	XMA7.	TAD	(-1)		/P				
02520	7440	70.D1+ +	SZA:	JMP	XMA8					
02521	5332									
02522	4421		CALL	TXC	UT; "P;	; "U; "S	; "H; 0			
02523	0320									
02524	9325									
02525	0323									
02526	0310									
	0010									

```
FREQUENTLY CALLED SUBROUTINES
                                         PAL8-V10A 12-JUL-78 PAGE 29-1
/+3
02527
       0000
                      PUSH
       6504
02530
02531
       5201
                      JMP XMANUA+1
             XMA3,
                      TAD (-2
                                       /R
02532
       1372
                      SZA; JMP XMA9
02533
       7440
02534
       5346
                      CALL TXOUT; "R; "E; "S; "E; "T; 0
02535
       4421
02536
       0322
       0305
02537
02540
       0323
02541
       0305
02542
       0324
02543
       0000
02544
       6506
                      RESET
                      JMP XMANUA+1
       5201
02545
             XMA9,
92546
       1371
                      TAD (21
                      SZA; JMP XMANUA+1
02547
       7440
02550
       5201
                      WRITE; "A; "/; "D; "; "=; "; 0
02551
       4421
02552
       0301
       0257
62553
02554
       0304
02355
       0240
02556
       0275
02557
       0240
02560
       0000
                      CONVRT
02561
       6510
                      SCD
02562
       6511
                      JMP .-1
02563
       5362
                      GETAD
02564
       6512
                      CMA
02565
       7940
                      CALL DECOUT
       4426
02566
                      JMP XMANUA+1
02367
       5201
02571
       0021
02572
       7776
02573
       7767
02574
       7777
02575
       7717
02376
       7773
02577
       7563
                      PACE
       2600
```


/+3 FREQUENTLY CALLED SUBROUTINES PALG-V10A 12-JUL-78 PAGE 30

/MONITOR /TRANSPARENT MODE AND ERROR HANDLING

02600	0000	XMONIT,			/CALL MO	NITR	(AC< > 6	MEAN	S ERROR)	; RET
02 691	7440		SZA; JMP E	ERROR						
02 602	5245									
02 603	4434		CR							
02604	4421		CALL TXOUT	r: 207; '	'O; "N; " ;	"L;"	I; "N; "E	E; 0		
02605	0297									
02 606	0317									
02 607	0316									
02610	0240									
02611	0314									
02612	0311									
02613	0316									
02 614	0305									
0 2615	0960									
02616	4434		CALL CRLF							
02617	7200	XMKB,	CLA							
02620	6931		KSF							
02621	5236		JMP XMINI							
02622	6036		KRB							
02623	1377		TAD (-291		/^A FROM	KB (CHAINS	TO *2	200	
02624	7450		SNA							
02625	5776		JMP I (200)						
02626	1375		TAD (-21		/^R FROM	KB.	FORCES	RETUF	JN .	
02627	7450		SNA							
02630	5600		JMP I XMON	TI						
02631	1374		TAD (222		/RESTORE	CHA	ጺ			
02632	6146		6146							
02633	6141		6141							
02634	5233		JMP1							
02635	5217		JIP XILB							
02636	6131	XMINI.	6131							
02637	5217	•	JIMP XMKB							
02640	6136		6136							
02641	6946		TLS							
02642	6041		TSF							
02643	5242		JMP1							
02644	5217		JMP XMKB							




```
FREQUENTLY CALLED SUBROUTINES
                                             PAL8-V10A 12-JUL-78 PAGE 31
/+3
              ZERROR CODES:
              / -1
                               TOO MANY ARGS TO AVERAGER
              / -2
/ -3
                               AVERAGE OVERFLOW
                               DATA TABLE OVERFLOW
SYNC ERROR ON TRANSMISSION
02645
       7991
              ERROR,
                       IAC
                      SNA; JMP XADOVF
02646
       7450
02647
       5270
                       IAC
02650
       7001
                       SNA; JMP XAVOVF
02651
       7450
02652
       5307
                       IAC
02653
       7961
                      SNA: JMP XDAOVF
02634
       7450
02655
       5326
       7001
                       IAC
02656
                      SNA; JMP XSYNC
62657
       7450
02660
       5346
              /CHECK FOR OTHER ERROR ENTRIES HERE
                       CALL TXOUT; "U; "E; " ; "@; 0
02661
       4421
02662
       0325
02663
       9305
       0249
02664
       0000
02665
       0000
02666
                       JMP XMONIT+3
02667
       5203
              XADOVF, CALL TXOUT; "S; "U; "M; "; "O; "V; "F; "L; "; "@; 9
       4421
02670
       0323
02671
92672
       0325
62673
       0315
       0240
02674
02675
       0317
02676
       0326
02677
       0366
       0314
02760
02701
       6240
02702
       0300
02703
       0000
                       TAD XMONIT
02794
       1240
                       CALL OCTOUT
       4425
02703
                       JMP XMONIT+3
              XAVOVF, CALL TXOUT; "A; "V; "G; " ; "O; "V; "F; "L; " ; "@; 0
02706
       5203
       4421
02707
02710
       0301
02711
       0326
02712
       0397
02713
       0249
62714
       6317
02715
       0326
02716
       0306
       0314
```



```
FREQUENTLY CALLED SUBROUTINES
                                              PALS-V10A 12-JUL-78 PAGE 31-1
/+3
02720
       0240
       0360
02721
02722
       0000
                       TAD XMONIT
02723
       1200
                       CALL OCTOUT
02724
       4425
02725
       5203
                       JMP XMONIT+3
              XDAOVF, WRITE; "D; "A: "T; "A; "; "O; "V; "F; "L; "; "@; 0
02726
       4421
02727
       0394
02730
       0301
02731
       0324
02732
       0301
02733
       0240
02734
       0317
02735
       0326
02736
       0306
02737
       0314
02740
       0240
02741
       0300
02742
       0000
                       TAD XMONIT
02743
       1290
                       CALL OCTOUT
JMP XMONIT+3
02744
       4425
62745
       5293
                       WRITE: "S; "Y; "N; "C; "; "E; "R; "R; "; "@;0
02746
       4421
              XSYNC.
02747
       0323
02750
       0331
02751
       0316
02752
       0363
02753
       0240
02754
       0305
02755
       0322
02756
       0322
02757
       0240
02760
       0360
02761
       0000
02774
       0222
02775
       7757
02776
       0200
02777
       7577
                       PAGE
       3990
                       DATAT=.
       3000
                                                                            $
                                $
                       $
```

. . . .

/+3	FREQUENTI	LY CALLI	ED SUBROUT	INES	PALB-V10A	12-JUI	-78 PAGE 32	
ALIST	0345	IFLAG	0161	XAVCLR	2242	XOXB	1745	
AVADD	6926	ISAMP	1750	XAVCT	0032	XOOUT	1737	
AVCLR	0035	ISAMPT	0025	XAVER	2262	XOPR	1717	
AVCN'T	2324	LST	0047	XAVOVT		XREAD	1600	
AVDONE		LSUM	2323	XAVEET		XREF	2045	
AVER	6037	L1	1234	XCOUNT		XRRET	1630	
AVLOOP		L2	1245	XCRLF	2231	XSAMPL		
AI	0327	L3	1255	XCV	1310	XSCALE XSCRET		
A11	0765	L4	1267	XCYCLE XDAOVF		XSEC	2343	
A2 A3	0301	MANUAL MDARK	0157	XDARK	2001	XSYNC	2746	
A3 A4	0356 040 3	MDIVS	2320	XDC1	2366	TUCKIK		
A5	0487	MONITR		XBC2	2370	XIYPE	1400	
A6	0441	M6	0770	MDECIN				
A7	0465	NOLIST		XDECOU	1430			
AS	0627	HOUT	0024	XDELAY				
EORROW	2894	N4	1327	XDOC	1511			
CALL	4400	T30	1330	CCCK	1462			
CHK	1274	OCTOUT		XEDC	1557			
CLOSE	6301	ODATA	0046	VICHX	1527			
CONVET		OPEN	6509	TERCHK				
CR	4:234	OPER	0457		1534 0 930			
CFLF	0984	PUSH	6504	XESUM XIDATA				
CRUP	0153	P4@0	0400 2326	XIDIN	1670			
CSAMP OVER	0151	QUOT READ	0623	XIDIR	1666			
CVRT CYC	1288 0590	REF	0160	XIDTEM				
CYCLE	6944	RESET	65 06	MULX	1633			
DAOVEL		RTIME	0154	XIDW2	1671			
DA'TA	0156	RUN	0527	XIKE	1702			
DATAB	0162	RUNL	0731	TELK	1345			
DATAT	3000	RUNX	1037	XLSUM	0031			
DECIN	0020	SAMP	0523	XMAN	1622			
DECOUT	0026	SAMPL	0717	XIIANUA				
DELAY	0 040	SAIPLE		XMA2	2424 2440			
DIG	1526	XTIME	1034	XMA3 XMA4	2455			
DIGI	1331	SCALE	0043	XM45	2471			
DIG2	1382	SCD	6511 2223	XIVA6	2504			
DIG3	1888	SERRI SEPR2	2226 2226	XMA7	2517			
DIG4	1334	SETDA	6513	XMA8	2532			
DIVD EMPTY	2321 6502	SFS	6505	XMA9	2546			
EQTIME		SLOOP	2297	XMC1	2355			
ERROR	2645	SSCALE		XMC2	2367			
FILL	6593	START	0200	XMINI	2636			
GETAD	6512	STO	1223	XMXB	2617			
GEJ.D	1220	TEMP	1525	XMON	1614			
CETSEC		TNUM	1517	MONIT				
GETSR	6507	TRUNS	0152	XNOUT	1416			
HDIV	6927	TSAMP	0150	XNSEC	2364 1447			
HSUM	2322	TXOUT	0021	XO XOCTOU				
HSUM2	2325	TYPE	0022	MODATA	1707			
IDATA	6945	WRITE	4421 2670	XODATA	1752			
IEER	1322	XADOVF XAVADD	2010	XODW1	1711			
IFILLT	000Z	ABIAUU	U V					

APPENDIX B

A Stopped-Flow Clinical Analyzer in Which Immebilized Enzyme Reaction Loops are Used

Reprinted with permission from <u>Clinical Chemistry</u>, Vol. 23, Page 1033, June, 1977, Copyright 1977 by the American Association of Clinical Chemists. [Reprinted from CLINICAL CHEMISTRY, 23, 1033 (1977).]
Copyright 1977 by the American Association of Clinical Chemists and reprinted by permission of the copyright owner.

A Stopped-Flow Clinical Analyzer in Which Immobilized-Enzyme Reaction Loops Are Used

Martin D. Joseph, Daniel J. Kasprzak, and S. R. Crouch¹

A stopped-flow clinical analyzer is described that makes use of a reaction loop containing immobilized enzyme(s) for the determination of the analyte/substrate. The analyzer has been evaluated by determining glucose with immobilized glucose oxidase. The stopped-flow mixing system was constructed at a current cost of less than \$500. The analyzer separates the enzymatic reaction from a followup, spectrophotometric indicator reaction. This separation allows the enzymatic reaction to be used in either a fixed-time, kinetic mode or in an equilibrium mode. Likewise, the indicator reaction can be used in either mode. Results for glucose in blood serum indicate that good precision and accuracy can be obtained.

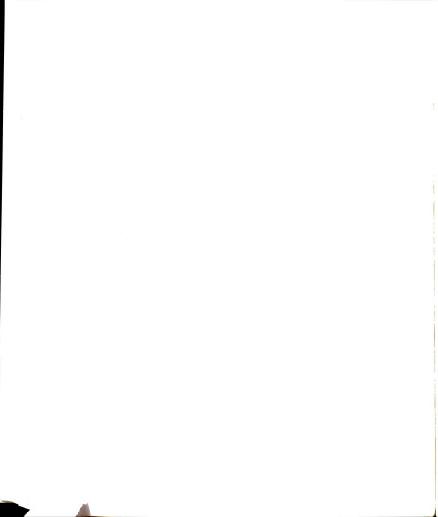
In recent years immobilized enzymes have become increasingly useful as specific catalysts for determining clinically important substrates (1-4). Immobilized enzymes are attractive as reagents in the clinical laboratory because they possess the usual specificity and sensitivity of soluble enzymes and can be re-used, often in hundreds or thousands of determinations, thus greatly reducing the cost of routine use of an enzymatic kinetic or equilibrium method. In addition, immobilized enzymes are often more stable than they are in solution; calibration is thus simpler and less frequently required.

In this report, a stopped-flow clinical analyzer is described that combines the advantages of immobilized enzymes with the speed, mixing efficiency, and ease of automation of the stopped-flow mixing technique. The system utilizes a simple, low-cost, stopped-flow sampling and mixing unit together with a reaction loop that contains the immobilized enzyme. The reaction loop is similar in principle to the sample loop described by Pardue et al. (5, 6) except that the enzyme-catalyzed reaction occurs in the loop. After a suitable incubation period in the loop, the sample solution is rapidly mixed by the stopped-flow unit with any desired reagent(s) and sent to an observation cell for spectrophotometric monitoring of the appropriate indicator reaction. The separation of the enzyme-catalyzed reaction from the

Department of Chemistry, Michigan State University, East Lansing, Mich. 48824

sing, Mich. 48824

¹ To whom reprint requests should be addressed.
Received Feb. 28. 1977; accepted Mar. 30, 1977.


indicator reaction provides extreme versatility. The enzyme-catalyzed reaction can be allowed to go to completion (equilibrium method) or it can be incubated for only a short, fixed time interval (kinetic method). Likewise, either the reaction rate or the equilibrium absorbance of the spectrophotometric indicator reaction can be used in the final measurement. Because of stopped-flow mixing, measurements can be made on time scales ranging from milliseconds to hours.

The semi-automated stopped-flow clinical analyzer described below illustrates the measurement principle and chemical flexibility of the system. We evaluated the analyzer by determining glucose in blood serum with a reaction loop containing immobilized glucose oxidase (EC 1.1.3.4). Possible extensions of the system to multiple determinations of the same substrate or to near-simultaneous determinations of multiple substrates are discussed.

Materials and Methods

Instrumentation

The instrumentation we used to determine glucose is schematically represented in Figure 1. This system, except for the enzyme reaction loop, was constructed completely from commercially available items. Two 1-ml gas syringes with threaded ends, A and B in Figure 1 (from Glenco Scientific, Houston, Tex. 77007), are used to deliver indicator reagent and push liquid, respectively. Valves 1 through 4 are 0.060-inch bore, three-way slider valves complete with accuator-return mechanisms C and D and solenoid controllers S_2 and S₃ (from Altex, Berkeley, Calif. 94710). The syringes are driven by a 2-inch stroke pneumatic cylinder, PC, with solenoid controller S₁ (Scovill, Wake Forest, N. C. 27587). Solutions are mixed by forcing them through E, a KEL-F tee (Altex). The indicator reaction is monitored in a 250-µl micro flow cell (F) with 10-mm light path (Thomas, Philadelphia, Pa. 19105). The flow cell is fitted into a single-beam uv-visible spectrophotometer (GCA McPherson EU-700, Acton, Mass. 01720). All tubing except for the enzyme reaction loop is 1.5 mm i.d., 3 mm o.d. Teflon with appropriate connector fittings (Altex).

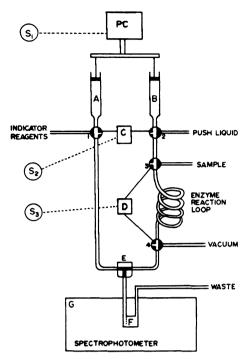


Fig. 1. Diagram of stopped-flow clinical analyzer

The heart of the system is the enzyme reaction loop, prepared as described below and fitted with plastic high-pressure liquid chromatography connectors. The enzymatic reaction that occurs in the loop for the determination of glucose is:

Glucose +
$$O_2$$
 + $H_2O_{\text{oxidase}}^{\text{glucose}}$ gluconic acid + H_2O_2

The extent of this reaction is determined outside the loop by allowing the H_2O_2 produced to mix with and rapidly oxidize iodide to triiodide in the presence of a molybdate catalyst (7). The indicator reaction is:

$$H_2O_2 + 3I^- + 2H^+ \xrightarrow{M_0(V1)} 2H_2O + I_3^-$$

Triiodide, measured spectrophotometrically at 365 nm, indicates the concentration of glucose in the sample. The indicator reaction is followed by an equilibrium method in this case, because the absorbance of triiodide is measured at equilibrium. The enzymatic reaction, however, is of the fixed-time reaction-rate type. The enzymatic reaction time is fixed by the incubation time of the sample in the loop. This time is kept short (2 min) to ensure that the enzymatic reaction is pseudo-zero order. This combination of reaction-monitoring methods exemplifies the flexibility of the system.

The actual function of the enzyme reaction loop in the system is best described in terms of a typical sequence of events for the determination of glucose in a sample.

First, syringes A and B are filled with KI/molybdate

reagent and a push liquid (phosphate buffer), respectively, by simultaneous switching of valves 1 and 2 to the fill position and retraction of PC. Valves 1 and 2 are then switched to the "push-ready" position, as are valves 3 and 4 (positions shown in Figure 1). Next, PC is caused to push the contents of A and B through the system lines and out to the waste. This is repeated several times to remove air bubbles and fill all lines with solution. With A and B filled and valves I and 2 ready, valves 3 and 4 are simultaneously switched to the fill position, and a buffered glucose sample is aspirated into the enzyme reaction loop by a gentle negative pressure. Then valves 3 and 4 are switched to the "push-ready" position, which terminates sample introduction. The sample is incubated for a controlled time until PC is caused to push the contents of the enzyme loop through the mixer. Here the H₂O₂ produced by the enzymatic reaction is rapidly mixed with the KI/molybdate reagent, and the mixture is transported to the flow cell for observation and detection of I₃-. The flow is stopped upstream when the drive syringes reach the ends of their

The system described above was constructed at a cost of less than \$500, not including the specific flow cell and spectrophotometer mentioned here, for which there are suitable substitutes. The instrument can be assembled within a day or two due to the ease with which the valves and tubing can be connected via plastic fittings rated at 3450 kPa (500 psi). The simplicity, low cost, and versatility of this system make it an attractive analyzer for clinical determinations.

Reagents

Buffer. A 0.2 mol/liter solution of dibasic potassium phosphate in de-ionized water was adjusted to pH 6.30 \pm 0.02 by use of a Heath pH meter (Model EU-302A) by adding concentrated hydrochloric acid. This buffer was then used to prepare all other solutions except where noted.

Indicator reagents. A sodium molybdate stock solution, 90 g/liter, was prepared and allowed to equilibrate for 48 h. The iodide/molybdate indicator reagent was then prepared daily by adding a fresh solution of potassium iodide to molybdate stock, resulting in a solution containing, per liter, 18 g of sodium molybdate and 0.5 mol of iodide.

Glucose standards. A glucose stock solution was prepared by dissolving 1.00 g of anhydrous granular D-glucose and diluting to 1.0 liter with de-ionized water. This solution was allowed to stand at room temperature for 24 h to ensure complete mutarotation, and was then stored at 5 °C. Aqueous glucose standards were then prepared by appropriately diluting this stock with the buffer.

Deproteinization reagents. We deproteinized the serum samples by adding chemically equivalent amounts of barium hydroxide and zinc sulfate. A barium hydroxide solution (20 g/liter) was titrated with zinc sulfate (20 g/liter) to a pH of 7 to determine the required volume ratio of the two reagents.

Preparation of serum samples. A control serum ("Montrol"; Dade Division, American Hospital Supply Corp., Miami, Fla. 33152) was reconstituted according to the manufacturer's instructions, and 0.5 ml of the solution was pipetted into a centrifuge tube. The chemically equivalent amounts of barium hydroxide and zinc sulfate were added, and the contents of the tube were thoroughly mixed, centrifuged for 3 min, and 1.0 ml of the supernatant fluid was pipetted into 3 ml of the phosphate buffer. This solution was then drawn into the enzyme reaction loop for analysis.

Immobilization of glucose oxidase. A procedure reported by Inman and Hornby (8) was modified for immobilizing glucose oxidase on the inner surface of nylon tubing, 100 cm long and 0.86 mm i.d. Most of the immobilization steps were accomplished by slowly pumping the required reagent through the tube with the use of a Technicon AutoAnalyzer pump to provide a constant stream of fresh reagent. Amorphous nylon was first removed by filling the tube with a 200 g/kg solution of CaCl2 in methanol and incubating at 50 °C. The nylon was then mildly hydrolyzed by pumping 1.0 mol/liter HCl through the tube at room temperature, followed by rinsing with water. Glutaraldehyde, 125 ml/liter in 0.1 mol/liter tris(hydroxymethyl)methylamine buffer, pH 9.2, was then attached to the hydrolyzed nylon at 0 °C, followed by rinsing with the buffer. An 8 g/liter solution of glucose oxidase (Sigma, Type II) in 0.1 mol/liter phosphate buffer, pH 6.3, was then pumped through the tube at 0 °C for 4 h in a closed loop, during which time covalent linkages were formed between the glutaraldehyde and free amino groups on the enzyme (8). Finally, the tube was rinsed with 0.1 mol/ liter sodium chloride to remove any physically adsorbed enzyme. The enzyme reaction loop was filled with buffer and stored at 5 °C when not in use.

Results and Discussion

The analytical capabilities of the analyzer system were evaluated by determining glucose in aqueous samples and in blood serum, with use of a reaction loop containing immobilized glucose oxidase. The first generation analyzer we used in these studies was manually sequenced. That is, the solenoid controllers for each of the valves in Figure 1 were actuated in the appropriate sequence by a series of manual toggle switches, which applied or disconnected the ac line voltage from the controllers. The spectrophotometric readout was obtained from a strip-chart recorder, linear in transmittance. Thus, the final absorbance values recorded for I₃- were obtained by converting chartrecorder readings from transmittance to absorbance. The temperature of the enzyme reaction loop was not controlled.

The optimum push volume of the stopped-flow system was determined to be 0.78 ml per syringe by filling a dummy reaction loop with dye (p-nitrophenol). This volume ensured thorough purging and refilling of the observation cell, but prevented significant dilution of the observed solution by the push liquid. The incuba-

Table 1. Results for Aqueous Glucose Standards

Glucose	Absorbance,	
conon, mg/liter	•	CV, %
20	0.0249	2.0
40	0.0610	3.0
60	0.0960	2.1
80	0.127	4.7
100	0.162	1.8
150	0.240	0.8
200	0.314	0.1
250	0.388	1.3

Slope = 1.60×10^{-3} A per mg/liter (CV, 0.24%)

Intercept = $-6.39 \times 10^{-3} A$

Correl. coeff. (r) = 0.99990

tion time for the enzymatic reaction was fixed at 2 min. Shorter incubation times did not provide adequate precision because of decreased response and also because of imprecision in manual sequencing; longer incubation times only added to analysis time without greatly enhancing the signal-to-noise ratio. Hence, transmittance was directly read out slightly over 2 min after the sample was introduced into the reaction loop.

A calibration curve for glucose was prepared in the range 20-250 mg/liter by running aqueous standards in triplicate. Table 1 shows the results. The observed negative intercept is expected in such a fixed-time method, because the enzymatic reaction is known to exhibit an induction period that is inversely proportional to glucose concentration (9), and hence a twopoint calibration should be done periodically. The results in Table 1 indicate the excellent linearity and precision which may be obtained with this simple analyzer. Each determination requires only 1 ml of sample (about 100 µl of blood serum). The major sources of imprecision in this simple system appear to be variations in incubation time due to manual control, fluctuations in reaction rate due to variations in room temperature, and imprecision in reading the transmittance from the chart recorder.

For determining glucose in blood-serum samples, we prepared a two-point calibration curve, using the 20 and 200 mg/liter aqueous glucose standards. Two reconstituted Monitrol samples were analyzed, and the results (Table 2) agree well with the reported values. Note that the first two values reported for sample 1 were obtained on a different day from the second two values, although the same two-point calibration was used. Clearly, because of the high stability of the immobilized enzyme loop, the same calibration curve may be useful for several days. A reaction loop prepared earlier than the one used in these determinations showed excellent activity for six months before the enzyme was de-activated inadvertently by incubation with a highly acidic solution. Research is underway to determine more precisely the activity loss of immobilized enzyme loops with time under various conditions of storage and use.

Table 2. Results of Determination of Glucose in Serum

	Glucose concn, mg/liter	
Determined Sample 1	Reported	Difference ^a
•		
690)		2.8
725		2.1
703 🕻	690, ^b 730 ^c	0.9
673 <i>)</i>		5.2
Sample 2		
2006 լ	2090 b	4.0
2078)		0.6

- * % difference from the av reported value
- Beckman "Glucose Analyzer"
- ^c American Monitor "Programachem"

In this study we have demonstrated the potential of the analyzer for the determination of glucose in serum samples. Although the system was evaluated by using one particular enzyme/substrate couple, many other clinically useful enzyme/substrate couples are obviously applicable. Versatility is inherent, not only in the enzyme chosen for the reaction loop, but also in the reagent chosen for the indicator reaction. Furthermore, any of several combinations of methods (kinetic or equilibrium) may be used to follow the separate enzymatic and indicator reactions. We are now undertaking investigations on the capabilities of this new system in the clinical laboratory. New immobilization techniques are being studied for bonding other, more expensive enzymes to various inert supports. The multiplexing potential inherent in the system will be used, to allow several reaction loops containing the same or different

enzymes to be used nearly simultaneously, thereby minimizing the time lost in incubation and maximizing the use of one detection system. The entire system will then be automated by interfacing it to a minicomputer or microprocessor for sample handling, instrument control, and data acquisition and subsequent processing. A more extensive paper describing this work will be submitted at a later date.

We thank Mr. Robert Lantz for his initial work on immobilization procedures and Mr. F. J. Holler for his assistance in constructing the stopped-flow apparatus. This work was supported in part by National Science Foundation grant No. CHE76-81203.

References

- 1. Weetall, H. H., Immobilized enzymes: Analytical applications. Anal. Chem. 46, 602A (1974).
- 2. Bowers, L. D., and Carr, P. W., Applications of immobilized enzymes in analytical chemistry. *Anal. Chem.* 48, 544A (1976).
- 3. Leon, L. P., Narayanan, S., Dellenbach, R., and Horvath, C., Immobilized glucose oxidase used in the continuous-flow determination of serum glucose. *Clin. Chem.* 22, 1017 (1976).
- 4. Bowers, L. D., and Carr, P. W., An immobilized-enzyme flow-enthalpimetric analyzer: Application to glucose determination by direct phosphorylation catalyzed by hexokinase. Clin. Chem. 2, 1427 (1976).
- 5. Sanderson, D., Bittikofer, J. A., and Pardue, H. L., Computer controlled stopped-flow studies—application to simultaneous kinetic analyses. *Anal. Chem.* 44, 1934 (1972).
- 6. Mieling, G. E., Taylor, R. W., Hargis, L. D., et al., Fully automated stopped-flow studies with a hierarchical computer-controlled system. *Anal. Chem.* 48, 1686 (1976).
- 7. Malmstadt, H. V., and Pardue, H. L., Quantitative analysis by an automatic potentiometric reaction rate method. *Anal. Chem.* 33, 1040 (1961).
- 8. Inman, D. J., and Hornby, W. E., The immobilization of enzymes on nylon structures and their use in automated analysis. *Biochem. J.* 129, 255 (1972).
- 9. Malmstadt, H. V., and Crouch, S. R., Systems for automatic direct readout of rate data. J. Chem. Educ. 43, 340 (1966).

