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ABSTRACT

APPLICATION OF DYNAMIC PROGRAMMING
METHODS TO A PROBLEM OF IDENTIFICATION
BY SEQUENTIAL EXPERIMENTATION

by Robert Carl Juola

Suppose we are given n + 1 urns each containing n
balls of two types (to be specific we shall always refer to
the two types as black balls and white balls), and further
are given that the composition (the number of black balls
and the number of white balls) of each of the urns is
distinct from the composition of all of the other urns.

That is, one of the urns contains n black balls and no
white balls, a second contains n - 1 black balls and 1
white ball, a third contains n - 2 black balls and 2 white
balls, and so on until the last contains n white balls and
no black balls. However, we assume we are given no infor-
mation about which urn contains any of the compositions.

Consider now the problem of determining with certainty
the composition of all of the urns by drawing the balls
randomly, without replacement, one at a time from the col-
lection of urns. The draws are to be made from an urn of
the drawer's choice, but the choice of the urn from which to

draw is allowed to depend only on the numbers of black balls



Robert Carl Juola

and white balls which have been previously drawn from each
of the n + 1 urns.

The goal of these draws is to determine the composition
of all of the urns with the fewest possible expected number of
draws. The method of solution of this problem is a dynamic
program.

A theorem giving upper and lower bounds for the smallest
expected number of draws required to determine the composition
of all of the urns is given for all n. An explicit solution
is given for the smallest expected number of draws until the
composition of all of the urns is determined for n = 2,
n=3, and n = 4. These smallest expected numbers are:

3.5 for n =2, 7.528 for n =3, and 13.136 for n = 4.
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I. INTRODUCTION

Statistical problems are mainly of two types, estimation
or hypothesis testing. Here we are concerned with a third type,
identification. In an hypothesis testing problem, one formulates
an hypothesis and an alternative; and compares the distribution
of the observed data to the distribution which the data would
have if the hypothesis were true and to the distribution it
would have if the alternative were true. One then rejects the
hypothesis if the distribution of the observed data is not
sufficiently close to the distribution if the hypothesis were
true compared to the distribution if the alternative were
true. In an estimation problem, a class of probability dis-
tributions which contains unknown parameters is postulated
for the generation of the data, and those values of the para-
meters which best fit (in some pre-assigned sense) the observed
data are found. 1In our identification problem the data are

assumed to have been generated by one of a family of possible

Zenerating mechanisms and it is desired to know with certainty

which of the mechanisms is the true generating mechanism for
the observed data.
As stated above the problem of identification is not
P robabilistic at all. However if we consider the problem of

AmAassging the data necessary to make this certain identification






sequentially, having to choose one of a number of possible

experiments to obtain the next datum, the problem of finding
an optimal decision strategy for obtaining the next datum is
a dynamic programming problem. Further, if the experiments
which are performed to obtain the next datum have random out-
comes then this dynamic program has genuine stochastic elements.
We here propose a formal problem with finitely many
possible generating mechanisms and ask which of these is the
true mechanism. (This can be considered a special case of
the multiple decision problem, in which we require the
probability of making an error to be zero.)
Suppose that we are given n + 1 urns, each containing
n balls of two types (to be specific we shall always refer
to the two types as black balls and white balls), and further
are given that the composition (the number of black balls and
the number of white balls) of each of the urns is distinct
from the composition of all of the other urns. That is, one
of the urns contains n black balls and no white balls, a
second contains n - 1 black balls and 1 white ball, a third
contains n - 2 black balls and 2 white balls, and so on,
to the last, containing n white balls and no black balls.
Further, we assume we are given no information about which
Urn contains which composition.
Consider now the problem of collecting information on

the COmposition of all of the urns by drawing the balls






randomly, without replacement, one at a time from the col-

lection of urns. Each draw is to be made from an urn of the
drawer's choice, which is allowed to depend on his information
concerning the numbers of black balls and white balls which
have been already drawn from each of the n + 1 urns.

The goal of these draws is to determine exactly the
composition of all of the urns, with the smallest possible
expected number of draws. The method of solution of this
problem (which will be called an urn problem of order n)
will be dynamic programming. This method is explained in
chapter III and the solution of an urn problem of order n
is presented as a dynamic program in chapter IV. A FORTRAN
IV program is given in appendix 1 which utilizes the results
of chapter IV in order to give an explicit solution for the

urn problem of order n for small n (n < 4).






II. NOTATION

In order to approach a solution of the problem presented
above (which will be called an urn problem of order n), it
is necessary to develop a rather large set of notations which
will allow us to make the problem specific.

Since we will be recording the colors of the balls we
have seen from each urn and must choose the urn from which to
draw next, it is necessary to label the urns in some way. A
convenient identification of the urns is arbitrarily to call
one of them "0", one of them "1", another "2", and so on.
Formally we have:

Definition II.1 The n + 1 urns in an urn problem of

order n are indexed by 18 = {0,100 5n)%

The actual, but unknown, composition of the urn is
characterized by the number bj of black balls (n - bj’
whi te balls) contained in it. The reason for the choice of
indexing now becomes clear; because of the assumption that
the composition of each urn is distinct from that of all of
the o ther urns, the collection {bo,bl,...,hn] is a partic-
ular element of the permutation group of 18. The corre-
sponnd ing composition of white balls is

- By, a-b,.,n-01







Definition II.2 The set of all possible "true"

compositions of the urns is Sn+1’ the collection

of all permutations of T As is usual, we shall

n.
0
identify an element T € S“_"1 as T = (T]O,Tll,...,'fln).
At any time, to summarize the information which has
been obtained on past draws, we shall use a 2 X (nt+l)
matrix M whose (1,1)™ element is the total number of
black balls previously seen from the jth urn and whose (2,_1)th
element is the total number of white balls seen from the _1th
urn. Two extreme examples of M matrices are:

5052525

prior to the first draw and 2. M = @’n-i’f"’?) , repre-
> L.,

senting the information which could have resulted from draw-

1. M= (g,o,...,g) , representing the information obtained

ing all n(n+l) balls available in the urn problem of order
n, if the urns had been labelled so that their true composition
was indexed by (n,n-1,n-2,...,0).
In order to formalize the definition of information
matrices and to focus our attention on the particular sub-
set of the set of all the 2 X (n+l) matrices which we will
call information matrices, we need the following definitions.
Definition II.3 Let

b. w n 2 n
7Ib={H=[w]le X Ij,w€ X Ip, and
i=0 i=0
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b+w<e . n} where e is the vector

n+1l

of n 1's.

Definition I1.4 For each M = [:] € mb, HM) =

{me Sn+1|b <7 < n.e .- w} where T = (ﬂo,ﬂl,...,ﬂn)

is considered as an n+l-vector. H(M) will be called

the M-admissible permutations.

With these definitions, M € Wb is a 2 X (n+l) matrix

of non-negative integers whose columns total less than or equal

to n and for every such M, the M-admissible permutations

are the subset of Sn+1 which corresponds to the true compo-

sitions from which it is possible to have observed M.
We shall now prove a characteristic theorem for H(M),

namely:

b
Theorem II1.1 If M=[] €M, and M€ S _, _, then
n 7. n-1 W W% . n+l
MeHwM « 1 ( j)( j) >0 where ())
. b w, b
=0 j j
binomial coefficient.

is the usual

Proof: TMEHM ®b<TN<n.e , -w, where 1= (ﬂo,ﬂl,ﬂz,--

is considered an n+l wvector.

T, 2b, 20 and n -T, 2w, 20 for all j
nJ J TlJ J ]

m. n-ﬂj
® (,)) >0 and (_7) >0 forall j
h| k|
n T, n-M
=1 (He, h>o.
. . w.
=0 7j j

M)






Among the matrices in WQ), we shall restrict our attention

to the subclass of all those M with the property that H(M)
is non-empty. This is the set of matrices for which there
exists at least one true composition for which it is possible
to have observed, through draws from the urns, the b wvector
of black balls and the w vector of white balls.

Definition II.5 M 1is an information matrix if

H(M) # ¢. The set of all information matrices will

be denoted M.

If M€ M, we may now say that there exists at least
one actual, but possibly unknown, composition from which it
is possible to have observed the information matrix M and
then to identify H(M) as the set of permutations which
index true compositions that have not been ruled impossible
by observing M.

The choice of a prior distribution whose support is
the whole of Sn+1 will allow us to identify H(M) as the
support of the posterior distribution on Sn+l after observ-
ing M. We will choose a uniform prior distribution to re-
flect our initial assumption of complete uncertainty about
the actual composition of any of the urns.

Definition 1I1.6 Po(ﬂ) 1 for every T € Sn+1’

the uniform distribution on S .
n+1l






With this choice of a prior distribution, it is now

possible to give explicit formulae for the calculation of

the posterior distributions.

b.
Theorem II.2 If M= [w] €M, and T € S’ then

an n-T
nooag)( wh
P (M) = p(mlm = T o
b} I (bk)( Ve )
TEH (M) k=0

P (M| R (M)
Proof: Pu(") T PM T\>P0(ﬂ)
Tes

n+l
m, n-m
j 3
= (bj)(wj)

H —_—
3=0 (T ) (nt1)!
g

Ty The
(K ( )
b vy
pa [ n ——n—-——]
nes, k=0 ( ) (1) !
ot bk-l-wk

n T, n-T
b} 3
Eo(bj)( vy )

z [n (bb(wkk)]

TEH (M)Lk=0
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n T, n-m,
since m @ HM) © I (bl)(w,J) = 0.

J=0-" 4 s

It is not necessary to consider all of the matrices
in 7M. It often occurs that for a given matrix M € 7, it
is possible to immediately conclude that more is known about
the composition of the urns than is clearly shown by the matrix
. y 5 55 ) S,

M. For example, consider M = (0 00 0); it is known that

urn 3 contains all white balls since urns 0, 1 and 2 all con-

1110
=Goo3

exhibits the same knowledge about the composition of all of

tain at least one black ball. Thus, the matrix M'

the urns as does M, but M' exhibits this knowledge more
clearly.

If it were not for this possibility of immediately
concluding that more is known about the composition of the
urns than is clearly shown by the matrix M, there would be
no problem in minimizing the number of draws until the compo-
sition of all of the urns is known. We would be forced to
draw all of the balls in the entire system. However, this
is not the case; we know, in fact, that if the composition
of n of the urns is known, then the composition of the re-
maining urn is also known. This causes an immediate reduction
in the total number of draws until the composition of all the
urns is known from n(n+l) to at most nz.

The fact that this ability on our part to be able to

conclude more knowledge about the composition of the urns
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can and does occur at many other times in the process of
drawing the balls provides us with the basic tool to find
the minimum expected number of draws until the composition

of all of the urns is known.

131100,

The matrix M = (0 00 3) exhibits the same knowledge
about the composition of the urns as do the matrices (é é é g),

122050, 1110 P
(0 00 l)’ and (0 00 2), but it shows this knowledge more

4 Gl 22 A g 1110 3 [0 T ()
clearly. With this in mind we will call (o 00 0), (0 00 1),
1110

L1150
and (0 00 2) reducible matrices and call (0 003
irreducible matrix; and finally, we shall call (é
reduction of (é é‘ é g) and will denote this reduction by

®

) an
110
003) the

1110 141 150, o 2 E 90 51 RS T I ) TR
Goo03 “Rggoossimtlarly (5593 =R gy
R(é ‘])' é g). Formally, we have the following definition.

Definition II.7 An information matrix M = [:J is
reducible if there exists j € I; such that for every
permutation T in H(M), le is equal to some fixed
integer k, but bj + wj <n. If M is not reducible,
it will be called irreducible. The class of irreducible

*
matrices will be denoted 7 .

To illustrate this definition, let us consider the
following two examples:
Example 1. M= (¢ 10y we = (3,2,1,00, 3,1,2,0,
(2,3,1,0), (2,1,3,0), (1,3,2,0), (1,2,3,0)}. Each of the

permutations in H(M) has the last coordinate equal to

zero. But b3 + w3 < n, and so M is reducible. Similarly,







1110
M =
Qoo

) are reducible. But M'" =

is irreducible.

b' 3010 b 3000

s = [ P 8

Example 11. M' =[]0 = (53, and M =[]

BQM') = HMMM) = {(3,0,2,1), (3,0,1,2)}. If T € H(M'), then
= = ! ' = b! ' =

'no 3 and T]l 0, and bo + Yo l:v1 + Wy =m, and

" N o= v " o= ' " s

bO + w0 bl + w] =n, so that both M' and M" are irre

ducible, although they are different and induce the same

posterior distribution on Sn+1’ namely:

21(3,0,2,1)) =P ,((3,0,2,1)) =P ,(3,0,1,2)) =P, ((3,0,1,2)) = 1/2.

Every reducible matrix M, has corresponding to it an
irreducible matrix, R(M), which exhibits all of the knowledge
about the composition of the urns that M does. This re-
duction of a reducible matrix to an irreducible matrix pre-
serves the posterior distribution on Sn+1 induced by M, and
therefore, the conditional probability of drawing a black
(or white) ball from any of the urns whose composition is
not already known. This will be proven in the theorems
following the formal definition of the reduction of an in-
formation matrix.

Definition 11.8 1f =[] €7, then &M = AT

where:

1. If M 1is irreducible, b' =b, and w' = w.

2. If M is reducible, and for every T € H(M)
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there exist non-negative integers 10,1'1,...,1'J
and ko’kl""’k_r for 0 <J < n such that

T]ij = kj for . 3 = 1;245..553

Vi (T e ;
bl. b«', and wl’ WL for 4 # 11,12,...,1J and
{ = ' = n- j =

bij kj and wij n kj for j 3 e e T

The justification for considering only irreducible
matrices is that if we have an information matrix M which
has the property that every permutation in H(M) has the

same j':h coordinate (say T.) then no matter what the true

]
composition of all of the urns is, the jth urn is known to
have nj black balls and n - "j white balls. Since we
know the composition of the jth urn, there is nothing to be
lost by letting the information matrix reflect this additional
knowledge more completely.
Theorem II.3 M is an irreducible information matrix if and
only if M = R(M).
Proof: Direct verification of definitions II.7 and II.8.

The following two theorems will show that for any
M € M, the corresponding R(M) induces the same posterior
distribution on Sn+1 as M does.
Theorem II.4 If M= [i] €M then H(R(M)) = H(M).
Theorem I1.5 If M = [:] €M, then PM(TI) = PR(M) M for

every 1| € Sn+1.
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The proofs of these two theoremS Will be indirect as
there is a considerable overlapping if we prove both of them
directly. The proof will consist of three steps:

A. H(M) 2 HR(M)), B. Theorem II.5, and finally
C. HM) < HRM)).

Proof of A: 1. If M

R(M) the theorem is true.

2. If M

b b' .
= >
(] #RM =[] then b' 20
and w' 2w and T € HR(M)) =
' - ' .
b' 2T 2n. e 41 -V where T is
considered as an n + 1 vector.
2b<TN=<n. e w1 " V¥ where T is
considered as an n + 1 wvector.
=M €HM
Proof of B: 1. If M = R(M) the theorem is true.
2. If M#RM and TN ¢ HM), then T € H(R(M))
R (M) Mm =0

3. If M= [:] # R(M) and M €7, then there

and hence PM(ﬂ) =P

exists i € 18 and j € Ig such that

M. =j for every T € H(M), then for every

26 ()

1

nen(m[ i (29( l)]

N € H®M

P, (D =

=







3

n, ﬂ‘n{, ;|-
1 b b
#1 Vi
n-
z
EH(M) k#l }(

Lokl cgnc:;)
(oo (s 10 6

The proof of B is now complete since we may repeat

the above calculation for any other pair (L,p) such that

ﬂL =p for all T € H(M) and obtain the result

P (M = Py oy

Proof of C: If ME W{, then T € H(M) = PM(n) >0 =
P M >0="M€HRM).

The proof of both theorems is now complete.

Since we shall have a choice of the urn from which
to draw next, after observing the results of previous draws,
we shall denote by D(M,j) the act of drawing from the j':h
urn when the past information is M. We shall denote the
random variable resulting from D(M,j) by Dj[M]. D(M,j)
must result in one of two results, namely, either a black

ball is drawn or a white ball is drawn. For completeness of

definitions, if D(M,j) 1is chosen and if n balls have
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th

previously been drawn from the j Urn we will say D, (M) = M
g .

Definition I1.9 Let N =[6j,0’6]',1’“"6j,n] and
j

0 ,0 yeee,0

0 ,0 yeee,s0
BJ. =[6, 5 “"6j,n],where 61,j=0 if i#j

*
Definition II1.10 If M €7 and O < bj + wj < n,

then M’; = R[M + aj] and MJt = R[M + BJ,].

*
Theorem I1.6 If M = [:] €M and bj + wj < n, let
Pj (BlM) denote the conditional probability of drawing a
black ball from the jt:h urn, after the M matrix of black

balls and white balls have been previously drawn. Then

M. -b, n T n-1
z n-b, -w I (bk)( W k)
TE€H (M) j j k=0 "k k
n T, n-m
s n¢hHet

neHM) 4=0 P4 Y2

Pj(BIM) =
)

Z£9°_f= Pj (BlM) = p _.l__.l P ('n)

mes_ ., " i
and apply theorem II.2.

Definition II.11 A choice D(-,°) 1is a random mapping

* *
from M X 18 into M given by:
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12 (If M=[:]€7I(* and bj+w < n, then

i)

M;' with probability P[B|u]
Dj(M) =
M with probability 1 - PJ.[BlH],

*
or 2. If M=[:]€Wl and bj+wj=n, then

Dj (M) = M with probability one.

This chapter has provided us with the tools and con-

ventions which will now be used in order to present a tech-

nique for solving an urn problem of order n. This proposed
technique is dynamic programming and is discussed in chapter
III. Chapter IV then presents a specific dynamic program for
the urn problem of order n, which is used to solve the
several examples of an urn problem of order n, namely n = 2,

n=3, and n = 4.






III. DYNAMIC PROGRAMMING

Dynamic programming is a mathematical technique which
is often useful for making a series of interrelated decisions.
When it is applicable to a problem, it provides a systematic
procedure for determining the combination of decisions which
will maximize the overall effectiveness of those decisions

in striving for some fixed goal.

‘. P ™ m::ﬂ

There are a number of problem types for which a
dynamic programming formulation of the problem is useful.
We will state for our problem a specific set of conditions
under which a dynamic program is possible and at the same
time introduce the standard terminology of dynamic pro-
gramming.

Following Bellman [1], these conditions may be stated

for the urn problem as follows:

1. The decision problem may be divided into stages,
each of which can be characterized by a ''small" set of para-
meters called state variables. 1In the urn problem we are
concerned with, the information matrices M are the state

wvariables.

2. At each stage, the statistician has the choice

O f a number of possible experiments. In our case, he has

the choice of drawing from one of the n+l urns; the act

17
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of drawing from urn j is denoted D(-,j) for j =0,1,...,n.
3. The effect of a chosen experiment is a transformation
of the state variables. The act D(M,j) results in a trans-

formation of the state variables to either M; or Mj.

4. The past history of the system has no importance
in determining the future decisions, except through the
present.

5. The purpose of the decision process is to minimize
some fixed function of the state variables. In our case, the
goal is to minimize the expected number of experiments made
until a terminal state is reached.

In finite decision problems, those with only finitely
many possible decisions until termination, we have the addi-
tional parameter of time. This parameter manifests itself
in the form of the number of permissible decisions which re-
main to be made in the problem. In our problem, time is the

number of decisions to be made until a terminal state is

reached. It is usually helpful to separate the time para-
meter from the state variables as time usually plays a role
in the problem which is quite different from the state
~ariables. In our problem it is the parameter upon which
the objective function depends.

Standard terminology in dynamic programming is: a

PO licy is a rule for choosing, for each value of the state
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variables and the time parameter, an experiment.

An optimal policy is a policy which minimizes a pre-
assigned function of the state variables. This pre-assigned
function of the final state variables will be called the
criterion function and will be denoted G.

In the case that the decision results in a probability
distribution on the transformations, it is not possible to
minimize with certainty the criterion function after N steps.
Rather, the quantity which we will seek to minimize is the
expected value of the criterion function.

With the structure on the problem as above, the
possibility of constructing an optimal policy rests on the
following principle due to Bellman [1].

Bellman's Principle of Optimality: An optimal policy

has the property that whatever the initial values of the

state variables and the initial decision are, the remaining

decisions must constitute an optimal policy with regard to

the state resulting from the first decision, treated as new

initial values of the state variables.

Implementation of an optimal policy repeatedly utilizes

the principle of optimality to consider a series of decisions
backwards, evaluating each decision on the basis of proceeding
OPtimally from whatever state has resulted from previous

decisions. This works as follows: for each possible state of

L WTEW RSN !1
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nature prior to the final decision, we answer the question
"What is the best decision to make if we are forced to stop
now or to stop at whatever state results from our decision?"
This can be called the final-step decision problem. Knowing
the answer to the final-step decision problem for each state
of nature, we now ask "What is the best decision to make at
each stage from every state if we are permitted at most two
more decisions?'", and so on backward until we evaluate the
best decision to make if we are permitted N decisions.

In the urn problem of order n, with only n(n+l) balls
available in the system, and with each decision to draw a
ball removing one ball from the system, it is obvious that

N = n(n+l) will be a sufficiently large number to solve

the problem, since it exhausts the system.






IV. THE URN PROBLEM AS A DYNAMIC PROGRAM

The goal of determining the composition of all of the
urns can be expressed as an hypothesis testing problem as
follows: given the (nt+l)! a priori equally likely hypothesis
find a policy, i.e., a function from all information matrices
M* into {0,1,...,n}, to test the (nt+l)! hypotheses at size
zero and power one. The goal of testing these hypotheses
with minimum expected sample size is now: among all policies
which test the hypotheses at size zero and power one find a
policy whose expected sample size to termination is the
minimum.

In the following, all matrices M will be elements
of Wf and if M is not an element of Wf, we shall identify
M with R(M). This should cause no ambiguity or confusion
since it will not affect the posterior distribution or the
probabilities of drawing a black ball from any of the urns
whose composition is not already known.

Definition IV.1 M 1is a terminal information matrix

if H(M) 1is a singleton.

Definition IV.2 If P 1is any policy, let EP(vn)

be the expected number of draws until a terminal
information matrix is reached in an urn problem of

order n.

21
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Definition IV.3 0n - Mmé’EP(\)n) where € 1is the

class of all possible policies.

We can find an upper and a lower bound on On’ both of

the bounds being of the order of nz.

Theorem IV.1 (“;1) <o s n2,

Proof: The upper bound is immediate since if we know the
composition of n of the urns, we know the composition of
the remaining urn. The composition of n of the urns can
be found by simply drawing all of the balls in these urms.
This policy requires drawing n2 balls. To establish the
lower bound, we need a lemma.
Lemma IV.2 If X,Y are n+l vectors of integers between
O and n inclusive and is there exists one and only one
PPermutation T satisfying the inequalities

= . 0SX<sm<Y<e

. here T i id d as a
Y n+1n, wher is considere s

xx—41 vector, then

n

T . (Y, - x,) <@t
, i i 2
i=0
> x—cof of Lemma: Without loss of generality, m, = j since

3

i &+ it is not, we can reorder the X's and Y's, and
ra

= (Y, - X,) 1is independent of the order of the subscripts
i,=o 1 1

Ooxn The X's and Y's.

Now, if i < j, either Yi <j or XJ. > i, for if
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;]
mot, it is possible to interchange the i N and jth coordinates

of the permutation and preserve the inequalities of the Lemma.

Consider Yo, 0= YO =! Xl’XZ""

’XY are all greater
0

than 0, which may be a vacuous relationship.

Now, consider Yl’ 1< Y1 =, X2,X3,...,)§11 are all

greater than 1. Similarly, j < Yj =2

Xj+1’xj+2’ o ,ij are

all greater than j. Thus a block of Yj - j of the X's are

greater than or equal to j+l1 for
We then have
n n

T kl#K's
3= k=0

™
lal
[

n
T k[#x's
L=t

n
T k[#X's
k=0

n-1
z [ix's
k=0

n-1 C
P 3 b
k=0

v

- Y4
§ 1)

n n
T2 = rrce (Y, -X,) S T (Y
5 e

=0 4

=0,1,...,n-1.

= k]
n-1

2 k] - T k[#'s 2 k+l]
k=0

n-1
2 k] - £ (ktD)[#'s 2 k+1]
k=0

n-1
+ = [#'s 2 k+1]
k=0

2 k+1]
n

jl= =y, - i], since Y =n,
k=0 3 o

n
L el
5=0

T X2 i s completes the proof of the Lemma.

We shall be using the contrapositive of the Lemma in

th e Temainder of the proof.

ey
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Corollary I1v.3 If X and Y are n+l vectors of integers

n
O to n inclusive such that T (Yi - Xi) > (n-;-l) then the
i=0
set of permutations T € S 41 satisfying X < T <Y where

T is considered as an n+l vector is either empty or has at

least two elements.
n

Suppose M = [:J is a matrix such that I (bj + wj) < (n;:l)
n j=0

then X (n - wj - bj) > (n-;-l) which implies by the corollary
j=0

that either H(M) = ¢ or H(M) has at least two elements;
in either case M 1is not terminal.
The proof of the theorem is now complete since if fewer

than (n-gl) balls have been observed, the resulting information

matrix cannot be terminal.
We can now express the solution of the urn porblem of
order n as a dynamic program. For every information matrix
™M € 772*, define the function g(M) =0 if M is a terminal
matrix; and g(M) =1 if M is not a terminal matrix.

*
We would like to minimize for every MO €M the

N
«— xiterion function GN(M ) = ZgM,), for N 2 n(n+l), where
0 3=0 i
Mi is the state resulting from the ith act on the state Mi-l'

""" Ex is is impossible since the state resulting from the ith act

A == a random variable whose value depends on the entire sequence
t

S &  decisions which have been made prior to the i h gecision and

A& 1 = O on the randomness in the occurrence of a black ball or

WEa i te ball in drawing from any urn.
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We shall adopt the convention of using ;/Ij to denote
the random variable resulting from the jth decision on state
Mj-l' With this notation we shall minimize the following
criterion function

N A
fy () = By + ECT 8()) ¢

The principle of optimality requires that every optimal
policy satisfy the following recursion relation:

£,0D = g0 + mqin [£y_, QP (BW) + £ M) (P B[W] (@)

where q ranges from 0 to n inclusive and Pq(B lM) is
given by Theorem II.6.

Theorem IV.4 If P is an optimal policy which chooses the

act Dj(M) for an M = [z] such that bj + wj = n, then
M  is terminal,
> xoof: Consider fk(M) for k > n(nt+l). The optimality of
x= requires that fk(M) = g(M) + fk-l(M) but k is suffi-
«<— I ently large so that fk(M) = fk-l(M) which implies
= ) =0. But gM) =0 if and only if M is terminal.
This theorem allows us to reduce the number of acts
Y E= i ch have to be examined in order to find an optimal policy.

We Treed not look at those acts which would have us draw from

axe ®xrn whose contents are already known.
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In order to implement the dynamic program on a digital
computer, it was found convenient to further restrict the
class Wf of all irreducible information matrices and to
impose an ordering on this restriction of Wr. This order-

ing and restriction are of no value in deriving the dynamic
program but they do serve to reduce the amount of calculation
and the amount of core storage required to implement the

dynamic program on a computer.

R AR (T a5 A -..:1

b *
Convention IV.1 For every information matrix M = [w] €M
relabel the urns until the columns of M satisfy the follow-
ing conditions:
p-1 i = N
1. bi + w, bi+1 + wi+1 for i 0,1,2, ,n-1 and

2. if b, +w, = Db,
i i

i+l + wi

+1 then bi 2 b,l+1 for

i=0,1,2,...,n-1.
I nn the remainder, all information matrices will be written
d mx this way.

*
Definition IV.4 Let >> be the ordering on 7

given by:

*
* b b
M= () 5> w0 = [0

if for some integer k < n either

* *
1. b, +w, =D, +w for < k-1 and
TR T T ]
b. +w. <bX 4w
kT ¥ S P T Y
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or 2. b, +w =b*+wf for j=0,1,...,n and
h| h| h| J
bj=b;’ for 0 < j < k-1 and
b <b*.
k k

Let us use the case n = 2 as an example to illustrate this

ordering.
_,000 _ 000
M =Goo M;= (00
_,100 _,200
My = Goo Mg = G 10
= 00 _ 10
M3= (o0 My = (300
100 _,200
M= G 10 Mo=G 17
_¢200 _ 11
M5 = (o o M1=Go o
_,100 = (210
Me = (10 0 Mp = G 1 2
. 110 , . .
T he matrix (0 0 0) does not appear in the ordering since by
> revious conventions it is identified with R((l) 3 g) which is
110 011

CO 0 2) which is reordered to (2 0 0) by convention IV.1

<= mwrd now can be found in the ordering as Mll'

The value of these conventions in reducing the number

<> & matrices which must be considered can be demonstrated with
= FFew simple calculations.

The set 77(0 of all 2 X (n+l) matrices of non-negative

ire «< gers whose columns total less than or equal to n has

a4
= 1- 1)n+1 elements. This can be seen by observing that the
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number of ways that two non-negative integers whose sum is less

n k
than or equal to n can be chosen in £ I (,) ways and
k=0 j=0 J
e TS |
L ()= T2 =2 - 1. Since each of the columns of a
k=0 j=0 3 k=0 .
matrix in 7/10 can be chosen in 2 - 1 ways the total number
of elements in 7, is @™t oyt

The set M= {M € 71(0|H(M) # ¢} has at least ((n+l) !)2
elements. This is seen by observing that for every permutation
M= (M.s... ,'ﬂn) € Sn+1 the total number of ways that non-negative

n n
. . < <
integers {bi}i=0 and {wi}i=0 satisfying 0 < b, T\i and
0O<n - 'l'\i for i =0,1,...,n, can be chosen is

n

OTM. +1D@m-T. +1) ways.
3=0 ] J
The definition of 7 does not consider either the
reducibility of an M matrix or the relabelling of the columns
of the M matrix to eliminate redundancies caused by the initial
A abelling of the urns. The consideration of either of these
<a 1lone will result in fewer matrices to consider. It was found
#— « be difficult to calculate the magnitude of this reduction
«< =a used by either of these considerations alone. The imposition
«<>» & both reduction and relabelling leads us to the class 77(* of
A« F£inition II.7.
The number of elements in Wz* C7Ilo has been found empirically
foxr n = 2,3,4, by enumerating them. No general formula for the

*
D@ rmber of elements in N  is known.

The above calculations are summarized in the following table.
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n=2 n=3 n=4 n=k
Number of elements in 7 334 47,875 ep° @Ml
Number of elements in 7 >36 >576 >14,400  >((k+1) !)2
Number of elements in 77(* 12 122 1746 e

The dynamic program is now implemented by considering
first, candidates for the last M. It is a terminal position so
that fo(M) = 0. Now, consider the next to the last M. The
only possible image under any optimal policy is the last M
so that fl(M) = 1.

Since the ordering was chosen in such a way that for
any M EWI* all of the M; and MJT, for: §=.0,1,5.4: 50
are higher in the ordering than was M, fk+1(M) is calculable
as min_ [1 +Pj<B|M) - fk(M';) +( - pj(nlrm ERCRIE

j€1
o 000 2
When we have calculated fL(O 0 0), for some 4 2 n", we have

< alculated the minimum expected number of draws to reach the
%— erminal position.
Appendix 1 contains a FORTRAN IV computer program to
= = & ilize the above method to determine the minimum expected
== wamnber of draws to the terminal information matrix for small
- Cn = 2,3,4).
Table 1 at the end of this chapter (page 33 illustrates
this dynamic program for the case n = 2 and table 2 (page 34)

PXesents the case n =2 as a tree diagram.
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The dynamic program for n = 3 1is presented as a table in

Appendix 2. Since there are 122 information matrices for the case

n = 3, no tree diagram is presented.

It is a very difficult task to write down explicitly

an optimal policy for solving an urn model of order n.
However, it is possible to give a general rule for the first
(nal) + 1 moves of an optimal strategy, for all n. If we
use this strategy for the first (“El) + 1 moves it is

possible for small n, to give a complete description of an

optimal policy.
The rule goes as follows:
First, draw one ball from each of n wurns. Suppose

this results in k white balls and n - k black balls, then

draw 1 more ball from each of k - 1 wurns from which white

balls have been seen and 1 more ball from each of n-k-1

wurns from which a black ball has been seen. The urns from

which 2 balls have been drawn have 3 possible compositions:

WW , WB, or BB. Now from each of the urns of equally seen

Ccomposition, break all ties by drawing one more ball from
a1l 1 but one of tied urns, and continue this process of break-
ing ties until the observed composition of all of the urns
is  distinct.

The reason that this process is the start of an

OPtimal policy is two-fold: 1. no position is a terminal

POS i tjion if the observations from 2 urns are the same, and
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2. mno draws from a 3rd urn will ever distinguish between

two tied urns. Since the tie will eventually have to be

broken to result in a terminal position, and since no draw

except from one of the tied urns will ever distinguish them,

the rule of the preceeding paragraph is simply to break all -
ties as soon as possible.

This rule gives at least the first E(;;l)- + 1 moves
since, for every j, if we have drawn j balls from an urn
there are at most j + 1 possible distinct patterns of
black and white balls that can be observed. Drawing 1 ball
from each of n urns takes n draws, and at most two com-
positions can result (black ball seen or white ball seen).
Drawing one more ball from all but one of the urns from which
a black ball has been seen, and one more from all but one of
the urns from which a white ball has been seen requires at

least n - 2 draws (it is possible that all of the balls
=S een are the same color). Now there are at most 3 groups
of ties, and breaking them takes at least n-2-3 draws.
Continuing, we see that the total number of draws until all

ties are broken is at least

n-1
n+ I (n-j-1) = o+ n(n-1) - SLZD—[‘ -(n-1

3=1

The rule given above cannot be a complete policy since
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0, = Il&%ill by theorem IV.1, and if n 2 2

n(n+1) n(n-1)
7~ 2

+ 1.

With this rule above one can easily verify that an optimal policy
for n =2 is to draw from urn 0 and urn 1. Then, draw from urn
0 and if the resulting M is not terminal, draw from 1 again.
This strategy requires 3% draws on the average and is the smallest
possible.
For n = 3, this rule says to draw from urns 0, 1, and 2,

then break all ties, reduce all matrices to the corresponding
irreducible matrix and then reorder in accordance with convention

IV.1l. This will yield the following irreducible information

matrices:
2100 1100 0100
M=lo100d M=Lig10l> M=l 0]
0211 3100 3210
M,=l3010) s Ms=lg 5] and M =057 5,0

Re ferring to Appendix 2 the optimal policy for continuation
From each of these can be found, and it will be seen that

th e ninimum expected number of draws to determine the composition

Oof ajl of the urns is 7 ;—2

For n = 4, the computer printout of the dynamic pro-
8XrAam js available, on loan, from the Statistical Laboratory,
Mich igan State University, East Lansing, Michigan. There the

™Linimum expected number of draws to determine the composition

©f a 1] of the urns is found to be 13.136.
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V. THE URN PROBLEM AS AN INFORMATION THEORY PROBLEM

A different approach to solving the problem in the
first chapter is provided by treating it as a problem in
information theory. The essence of this different approach
was expressed by D.V. Lindley [4] as follows: "... although
indisputably one purpose of experimentation is to reach
decisions, another purpose is to gain knowledge about the
state of nature (that is, about the parameter) without
having specific actions in mind. This knowledge is measured
by the amount of information ..."

The following decision procedure presents itself:
choose at the first step to perform that experiment whose
expected information gain is the greatest, and from the
resulting state, perform next the experiment whose expected
information gain is the greatest, continuing in this way
until preassigned amount of information is achieved. This
strategy will be called the "maximum information strategy'.

As our measure of information we shall use the

Shannon information.

*
Definition V.1 For M €7 , let

i™m = I p,(mM log p, (M)
neH (M) M

35
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The reasons for using Shannon information as a measure of
information are well known; see [3], [4].

The following definition and the theorem are due to
Lindley [4] and are stated here in the notation we have
developed for the urn problem of order n

Definition V.2 (Lindley [4], Defn. 1) The expected

information provided by an experiment D(M,j) with

prior knowledge M is
1D, ),M) = L(MJMJ(BIM) + 1<M;>(1-Pj<sln>> -1

Theorem V.1 (Lindley [4), Thm. 1) I(D(M,j),M) 2 0 for all
jEIy and ME n.

The following theorem is a characterization of a termi-
nal set in terms of information
Theorem V.2 M is a terminal set if and only if I(M) = O.

Proof: If I(M) = 0, then

T PBy(m log B (m =0

€.
W;,Sn+1
which implies PM(H) =0 or 1 for all mE€ S+1 O°F that
. i
here exists ™ € Sn+1 such that

PM(HO) =1 and PM(n) =0 if m# no
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since

£ P (M) =1.
M
ﬂesn+1

H(M) is a singleton.
If M is terminal then there exists m  such that H() = (no]

and PM(rrO) =1 and PM(n) =0, for T # L therefore

T Py(m log B(m) = Py (m)) log P (mg) = 0

Rl
Sl

Heuristically, information provides a criterion function
which at the very least goes in the correct direction, in that,
greater information is "closer" to a terminal position and
further sampling will lead on the average to an increase in

information. Thus, the procedure which at each stage chooses

that experiment which has greatest expected information gain

is not an obviously bad strategy. For n = 2, it is one of

the optimal strategies.
An example from the urn model of size 3 will show
that the maximum information strategy is not a good strategy.

X ts expected number of draws until a terminal position is

S trictly greater than an optimal procedure. The tree diagram

For the first 3 draws of the maximum information strategy is

S hown in figure 3. The succeeding draws for the maximum

information strategy coincide with an optimal strategy.
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The first difference between the maximum information

2000
(0 00 0)'
th

strategy and an optimal strategy occurs at M =
The maximum information strategy is to draw from the 0O
urn, while the optimal strategy is to draw from any other
urn. The maximum information strategy has expected number
of draws until the composition of all of the urns is de-

termined equal to 7 ll, whereas the smallest expected number

27
of draws until the composition of all of the urns is determined
19
as 7 36"

The question of the optimality of the maximum infor-
mation strategy for an urn problem of order n for n >3
is unanswered. Also unanswered are questions of optimality
of the maximum information strategy for measures of infor-
mation other than the Shannon information and for criterion
functions other than the expected number of draws to deter-

mine the composition of all of the urms.
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APPENDIX 1

FORTRAN 1V program for the dynamic program to solve

the urn problem of order n.
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NFACT
z(1)

P(1,J)

PROB (I,J)

PP (I)

G(I)

DICTIONARY

the number of urns in an urn problem of order
n. N=n+1

(n+1) !

the information matrix MI in packed form

th .
the J coordinate of the Ith permutation on

18 in lexicographical order

Pj(B|M1)’ the conditional probability of draw-
ing a black ball from the jth urn given the

past observations MI

the posterior probability of the Ith permutation

n
of I0

the smallest expected number of draws to termi-

nation from information matrix MI
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DA 2006 yojon
ne: A8an 1910
T10=1 "% ([+1)

e STy =(Z(KK)y=(Z(KK)/T1M X110y /(110/10)

IF (S(J) +5(J4Ny = a1y 200242000,2200

2002 S(J) =S(U) + 1

“1n 4

2101

20y

INPDEX =1
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APPENDIX 2

The dynamic program for the urn problem of order 3.
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