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ABSTRACT

APPLICATION OF DYNAMIC PROGRAMMING

METHODS TO A PROBLEM OF IDENTIFICATION

BY SEQUENTIAL EXPERIMENTATION

by Robert Carl Juola

Suppose we are given n + l urns each containing n

balls of two types (to be specific we shall always refer to

the two types as black balls and white balls), and further

are given that the composition (the number of black balls

and the number of white balls) of each of the urns is

distinct from the composition of all of the other urns.

That is, one of the urns contains n black balls and no

white balls, a second contains n - 1 black balls and 1

white ball, a third contains n - 2 black balls and 2 white

balls, and so on until the last contains n white balls and

no black balls. However, we assume we are given no infor-

mation about which urn contains any of the compositions.

Consider now the problem of determining with certainty

the composition of all of the urns by drawing the balls

randomly, without replacement, one at a time from the col-

lection of urns. The draws are to be made from an urn of

the drawer's choice, but the choice of the urn from which to

draw is allowed to depend only on the numbers of black balls
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and white balls which have been previously drawn from each

of the n + 1 urns.

The goal of these draws is to determine the composition

of all of the urns with the fewest possible expected number of

draws. The method of solution of this problem is a dynamic

program.

A theorem giving upper and lower bounds for the smallest

expected number of draws required to determine the composition

of all of the urns is given for all n. An explicit solution

is given for the smallest expected number of draws until the

composition of all of the urns is determined for n = 2,

n = 3, and n = 4. These Smallest expected numbers are:

3.5 for n = 2, 7.528 for n = 3, and 13.136 for n = 4.
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I. INTRODUCTION

Statistical problems are mainly of two types, estimation

or hypothesis testing. Here we are concerned with a third type,

identification. In an hypothesis testing problem, one formulates

an hypothesis and an alternative; and compares the distribution

of the observed data to the distribution which the data would

have if the hypothesis were true and to the distribution it

would have if the alternative were true. One then rejects the

hypothesis if the distribution of the observed data is not

sufficiently close to the distribution if the hypothesis were

true compared to the distribution if the alternative were

true. In an estimation problem, a class of probability dis-

tributions which contains unknown parameters is postulated

for the generation of the data, and those values of the para-

tneters which best fit (in some pre-assigned sense) the observed

(iata are found. In our identification problem the data are

assumed to have been generated by one of a family of possible

ggénnerating mechanisms and it is desired to know with certainty
 

‘vwflich of the mechanisms is the true generating mechanism for

the observed data.

As stated above the problem of identification is not

PrObabilistic at all. However if we consider the problem of

an“iiSSing the data necessary to make this certain identification



 

 

 



 

 

sequentially, having to choose one of a number of possible

experiments to obtain the next datum, the problem of finding

an optimal decision strategy for obtaining the next datum is

a dynamic programming problem. Further, if the experiments

which are performed to obtain the next datum have random out-

comes then this dynamic program has genuine stochastic elements.

We here propose a formal problem with finitely many

possible generating mechanisms and ask which of these is the

true mechanism. (This can be considered a special case of

the multiple decision problem, in which we require the

probability of making an error to be zero.)

Suppose that we are given n + l urns, each containing

n balls of two types (to be specific we shall always refer

to the two types as black balls and white balls), and further

are given that the composition (the number of black balls and

the number of white balls) of each of the urns is distinct

from the composition of all of the other urns. That is, one

of the urns contains n black balls and no white balls, a

second contains n - 1 black balls and 1 white ball, a third

contains n - 2 black balls and 2 white balls, and so on,

to the last, containing n white balls and no black balls.

Further, we assume we are given no information about which

urn contains which composition.

Consider now the problem of collecting information on

the Cotnposition of all of the urns by drawing the balls



 

 



 

raxuiomly, without replacement, one at a time from the col-

lection of urns. Each draw is to be made from an urn of the

drawer's choice, which is allowed to depend on his information

concerning the numbers of black balls and white balls which

have been already drawn from each of the n + l urns.

The goal of these draws is to determine exactly the

composition of all of the urns, with the smallest possible

expected number of draws. The method of solution of this

problem (which will be called an urn problem of order n)

will be dynamic programming. This method is explained in

chapter III and the solution of an urn problem of order n

is presented as a dynamic program in chapter IV. A FORTRAN

IV program is given in appendix 1 which utilizes the results

of chapter IV in order to give an explicit solution for the

urn problem of order n for small n (n S 4).



 

 



 
II. NOTATION

In order to approach a solution of the problem presented

above (which will be called an urn problem of order n), it

is necessary to develop a rather large set of notations which

will allow us to make the problem specific.

Since we will be recording the colors of the balls we

have seen from each urn and must choose the urn from which to

draw next, it is necessary to label the urns in some way. A

convenient identification of the urns is arbitrarily to call

one of them "0", one of them "1", another "2", and so on.

Formally we have:

Definition 11.1 The n + 1 urns in an urn problem of

order n are indexed by 13 = {0,1,...,n}.

The actual, but unknown, composition of the urn is

claairacterized by the number bj of black balls (n - bj’

whi te balls) contained in it. The reason for the choice of

irlcieaaring now becomes clear; because of the assumption that

the composition of each urn is distinct from that of all of

the other urns, the collection {bo,b1,...,bn} is a partic-

ulsazr ealement of the permutation group of 13. The corre-

spond ing composition of white balls is

{n “ 13c), n - b1,..., n - bn}.

 



 

  



 

Definition 11.2 The set of all possible "true"

compositions of the urns is Sn+1’ the collection

of all permutations of 13- As is uSual, we shall

identify an element H E Sn+1 as n = (n0,n1,...,nn).

At any time, to summarize the information which has

been obtained on past draws, we shall use a 2 X (n+1)

matrix M whose (1,j)th element is the total number of

,th . th
black balls previously seen from the J urn and whose (2,3)

element is the total number of white balls seen from the jth

urn. Two extreme examples of M matrices are:

0,0,. .,0 . . . .
l. M = 0 0 , representing the information obtained

, :'°-2

prior to the first draw and 2. M = gym-1’7”?) , repre-
, l,...,

senting the information which could have resulted from draw-

ing all n(n+1) balls available in the urn problem of order

n, if the urns had been labelled so that their true composition

was indexed by (n,n—1,n-2,...,O).

In order to formalize the definition of information

matrices and to focus our attention on the particular sub-

set of the set of all the 2 X (n+1) matrices which we will

call information matrices, we need the following definitions.

Definition 11.3 Let

b n n n n

fig = {M = [WJIb 6 x 10, w E x 10, and

i=0 i=0



 

 

  
 

  

 



 

6

se .n where e isb +tw n+1 I n the vector

of n 1's.

 

Definition 11.4 For each M = [b] E.%%, H(M) =
w

S S - ={n E Sn+l|b H n.en‘+1 w} where n (n0,n1,...,nn)

is considered as an n+l-vector. H(M) will be called

the M-admissible permutations.

With these definitions, M E‘mb is a 2 X (n+1) matrix

of non-negative integers whose columns total less than or equal

to n and for every such M, the M-admissible permutations

are the subset of Sn+ which corresponds to the true compo-
l

sitions from which it is possible to have observed M.

We shall now prove a characteristic theorem for H(M),

namely:

b
Theorem 11.1 If M - [w] 6%, and T] e 5M1, then
 

n n n-n a

n G H(M) ” H (bj)( w j) > 0 where (b) is the usual

i=0 J J

binomial coefficient.

Proof: n E H(M) ” b S n S n.en+1 - w, where n = (n0,n1,fl2,...,n )

is considered an n+1 vector.

” . 2 b. 2 0 and n - . 2 w. 2 0 for all '

nJ J T1J J J

TI. n-TI.

” (b3) >0 and (WJ) >o for all j

J J'

n Rj n-Rj

e .H (1),“... > >0.

J=0 J J



 

 

 



 

Among the matrices in.‘Wk),‘We Shall restrict our attention

to the subclass of all those M with the property that H(M)

is non-empty. This is the set of matrices for which there

exists at least one true composition for which it is possible

to have observed, through draws from the urns, the b vector

of black balls and the w vector of white balls.

Definition 11.5 M is an information matrix if

H(M) # ¢. The set of all information matrices will

be denoted 7R.

If M 6 7%, we may now say that there exists at least

one actual, but possibly unknown, composition from which it

is possible to have observed the information matrix M and

then to identify H(M) as the set of permutations which

index true compositions that have not been ruled impossible

by observing MO

The choice of a prior distribution whose support is

the whole of Sn+1 will allow us to identify H(M) as the

support of the posterior distribution on Sn+1 after observ-

ing M. We will choose a uniform prior distribution to re-

flect our initial assumption of complete uncertainty about

the actual composition of any of the urns.

a o o
— ——1

Definition 11.6 P0(n) - (n+1)! for every H E Sn+1’

the uniform distribution on S .

n+1



   

 



 

With this choice of a prior diStribution, it is now

possible to give explicit formulae for the calculation of

the posterior distributions.

b
Theorem 11.2 If M - [w] E 77:, and n e Sn+1, then

PM(1T) = P(Tth) =
TI _

2 II (bk)( w

TIEH (M) k=0

P(MlTr)P0(TT)

Proof: P1401) ' z P(M 'II)P0(TI)

TIES
n+1

1'I'j tl-TTj

n (bj)( wj )

H _________—.

j=0 (b 1w.)(n+l)!

_ 1 L

TI n-TIk
( k)( w )

bk Wk

2 [-11 ——-fi———]

TIES k=O ( )(n+l)!

n+ bk-l-wk

n-TT

“ "j j
nj=0(bj)( wj )

II II n-T]

z [n (b:)(wkk)]

TIESn+1 k=0

 

n 17:] n-Tl'

H (b )(
3 Fe 3 “j

n T] n-TI

z [n (b:)( vb]

TrEH(M) k=0

3')
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n W. n-“.

Since 11 e H(M) e 11 (b4)( w.J) = 0»

J=0 J 3

It is not necessary to consider all of the matrices

in ”L It often occurs that for a given matrix M E ”L it

is possible to immediately conclude that more is known about

the composition of the urns than is clearly shown by the matrix

M. For example, consider M = (3 3 3 3); it is known that

urn 3 contains all white balls since urns 0, l and 2 all con-

. . . 1 l l 0
tain at least one black ball. Thus, the matrix M = (0 0 0 3)

exhibits the same knowledge about the composition of all of

the urns as does M, but M' exhibits this knowledge more

clearly.

If it were not for this possibility of immediately

concluding that more is known about the composition of the

urns than is clearly shown by the matrix M, there would be

no problem in minimizing the number of draws until the compo-

sition of all of the urns is known. We would be forced to

draw all of the balls in the entire system. However, this

is not the case; we know, in fact, that if the composition

of n of the urns is known, then the composition of the re-

maining urn is also known. This causes an immediate reduction

in the total number of draws until the composition of all the

urns is known from n(n+1) to at most n2.

The fact that this ability on our part to be able to

conclude more knowledge about the composition of the urns

 

 



 

 

 



 
1C)

can and does occur at many other times in the process of

drawing the balls provides us with the basic tool to find

the minimum expected number of draws until the composition

of all of the urns is known.

1 1 1 0

The matrix M = (o 0 0 3) exhibits the same knowledge

about the composition of the urns as do the matrices 1 1 1 0
(O 0 0 0)’

1 l l 0 1 l l 0 . .
(0 0 0 1), and (o 0 0 2), but it shows this knowledge more

. . . . . l 1 1 0 1 l 1 0
clearly. With this in mind we Will call (0 0 0 0), (0 O 0 1),

l l 1 0 . . l l l 0
and (0 0 0 2) reduCible matrices and call (0 O 0 3) an

irreducible matrix; and finally, we shall call (3 3 3 g) the

reduction of (3 3 g g) and will denote this reduction by

1 l 1 0 l 1 l 0 . . 1 l l 0 _ 1 1 1 0 _

o o o 3) ‘ R(o o o o)’ Similarly (o o o 3) ‘ R(o o o 1) ‘

R(é g 3 g)' Formally, we have the following definition.

Definition 11.7 An information matrix M = [2] is

reducible if there exists j E 13 such that for every

permutation n in H(M), “j is equal to some fixed

integer k, but bj + wj < n. If M is not reducible,

it will be called irreducible. The class of irreducible

*

matrices will be denoted WT.

To illustrate this definition, let us consider the

following two examples:

1 l l 0

May; M = (0 o 0 0); H(M) = {(3,2:1’0)9 (3:1)2:0))

(2,3,1,0), (2,1,3,0), (1,3,2,0), (1,2,3,0)}. Each of the

permutations in H(M) has the last coordinate equal to

zero. But b3 + w < n, and so M3 is reducible. Similarly,

  



 

 



 

11.

1110 1110 .
M‘ = H = redue b . J = 1 l l O

(0001’M (0002)are lle B” M" (0003)

is irreducible.

b' 3010 b" 3000
'- .= '= = -Example 11. M —[W.] (03 10) and M' [w"] (0 300),

H(M') = H(M") = [(3,o,2,1), (3,0,1,2)}. If T] e H(M'), then

= = I n = I l ___
“0 3 and n1 0, and b0 + w0 b1 + w1 n, and

b3 + wB = b; + w? = n, so that both M' and M" are irre—

ducible, although they are different and induce the same

posterior distribution on Sn+ , namely:
1

Pm.<(3.o,2,1)) = Pm..(<3.0.2.1>) = Pm.((3.o,1.2>) = Pm..<<3.o,1,2)) = 1/2.

Every reducible matrix M, has corresponding to it an

irreducible matrix, R(M), which exhibits all of the knowledge

about the composition of the urns that M does. This re-

duction of a reducible matrix to an irreducible matrix pre-

serves the posterior distribution on Sn+l induced by M, and

therefore, the conditional probability of drawing a black

(or white) ball from any of the urns whose composition is

not already known. This will be proven in the theorems

following the formal definition of the reduction of an in-

formation matrix.

Definition 11.8 If M = [:1 6772, then R[M] = [2:],

where:

1. If M is irreducible, b' = b, and w' = w.

2. If M is reducible, and for every n E H(M)
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there exist non-negative integers 10,11, . . . ,i

J

... S Sand ko,k1, ,k.J for 0 J n such that

Hi. = kj for J = 1,2,...,J,

J

‘= d '= . . III I

bL bL an WL WL for L # 11,12, ,iJ and

bf = k, and w! = n-k, for j = 1,2,...,J.

1j J lj J

The justification for considering only irreducible

matrices is that if we have an information matrix M which

has the property that every permutation in H(M) has the

same jth coordinate (say nj) then no matter what the true

composition of all of the urns is, the jth urn is known to

have ”j black balls and n - “j white balls. Since we

know the composition of the jth urn, there is nothing to be

lost by letting the information matrix reflect this additional

knowledge more completely.

Theorem 11.3 M is an irreducible information matrix if and

only if M = R(M).

Egggf: Direct verification of definitions 11.7 and 11.8.

The following two theorems will show that for any

M E Wu the corresponding R(M) induces the same posterior

distribution on Sn+1 as M does.

Theorem 11.4 If M = [:1 6771 then H(R(M)) = H(M).

Theorem 11.5 If M = 1:] E 771, then PMUT) = P (T1) for
R(M)

every R E Sn+l'
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The proofs of these two theorems Will be indirect as

there is a considerable overlapping if we prove both of them

directly. The proof will consist of three steps:

A. H(M) 2 H(R(M)), B. Theorem 11.5, and finally

0. H(M) C H(R(M))-

Proof of A: 1. If M R(M) the theorem is true.

2. If M [2] ii REM] =13] then b' 2 b

and w' 2 w and TI 6 H(R(M)) =’

'2 2 _I -

b T] n.en+1 w where T] is

considered as an n + 1 vector.

=bSIISn.en+1-w where T] is

considered as an n + 1 vector.

= ”II 6 H(M)

Proof of B: 1. If M = R(M) the theorem is true.

2. If M 1‘ R(M) and T] E H(M), then 11 E H(R(M))

and hence PM(TI) = PR (M) (TI) = 0

3. If M = [2] 75 R(M) and M EWZ, then there

exists 1 E 13 and j E 13 such that

Tli = j for every TI E H(M), then for every

11 E H(M)

(I? (”9
“t

13.4.3.6? ("3‘31

PMUI) =

 



 

 

 
 

 



 

“
:
3

  

“L n’IIL

H b b1

{1‘1 L

2 n“1‘31 111

{EH M)k#i wk

_£L#i:nWeMin“k

(.....2. w.“}© (33)

The proof of B is now complete since we may repeat

the above calculation for any other pair (L,p) such that

“L = p for all n E H(M) and obtain the result

PMm) = P1100 (11)

Proof of c: If M e 772*, then 11 e H(M) == PM(TI) > o =
 

PR(M) (TI) > 0 = TI 6 H(R(M))~

The proof of both theorems is now complete.

Since we shall have a choice of the urn from which

to draw next, after observing the results of previous draws,

we shall denote by D(M,j) the act of drawing from the jth

urn when the past information is M. We shall denote the

random variable resulting from D(M,j) by DjEM]. D(M,j)

must result in one of two results, namely, either a black

ball is drawn or a white ball is drawn. For completeness of

definitions, if D(M,j) is chosen and if n balls have
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(:11

previously been drawn from the j Urn we will say D, (M) = MJ .

Definition 11.9 Let a =[6j,0’6j,l"°"6j,n] and

J 0 ,0 ,...,0

O ,O ,...,0

B,=[ ],where 6,,=O if iafij

J 6j,0’6j,l’9°"6j,n 1,]

and 6. = 1

i

*

Definition 11.10 If M E 772 and 0 S bj + wj < n,

then M"; = R[M + aj] and M3 = REM + 5],].

*

Theorem 11.6 If M = [2] E 771 and bj + wj < n, let

Pj(B|M) denote the conditional probability of drawing a

black ball from the jth urn, after the M matrix of black

balls and white balls have been previously drawn. Then

n. - b. n Rk n-nk

 

2 H ( )( )
n-b,-w, b w

J n "L n-n{.

2 n (b )< w )

nEH(M) L=0 of, L

3.1.3.3231: P (BlM) = 2 Ill—:1 P (TD

j n-b -w M

RESH+1 J J

and apply theorem 11.2.

Definition 11.11 A choice D(°,°) is a random mapping

n
*

from WT X 10

a:

into 771 given by:
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b *

1. If M = [w] E W? and bj + wj < n, then

+

Mj with probability PjEBIM]

Dj(M) =

M]? with probability 1 - PjEBIM],

b *

or 2. If M = [w] E W? and bj + wj = n, then

Dj(M) = M with probability one.

This chapter has provided us with the tools and con-

ventions which will now be used in order to present a tech-

 

nique for solving an urn problem of order n. This proposed

technique is dynamic programming and is discussed in chapter

111. Chapter IV then presents a specific dynamic program for

the urn problem of order n, which is used to solve the

several examples of an urn problem of order n, namely n = 2,

n = 3, and n = 4.



 

 

 

 

 

 

 



 

III. DYNAMIC PROGRAMMING

Dynamic programming is a mathematical technique which

is often useful for making a series of interrelated decisions.

When it is applicable to a problem, it provides a systematic

procedure for determining the combination of decisions which

will maximize the overall effectiveness of those decisions

in striving for some fixed goal.

There are a number of problem types for which a

dynamic programming formulation of the problem is useful.

We will state for our problem a specific set of conditions

under which a dynamic program is possible and at the same

time introduce the standard terminology of dynamic pro-

gramming.

Following Bellman [1], these conditions may be stated

for the urn problem as follows:

1. The decision problem may be divided into stages,

(each of which can be characterized by a "small" set of para-

rneters called state variables. In the urn problem we are

cuoncerned with, the information matrices M are the state

variab 1es .

2. At each stage, the statistician has the choice

(>15 a number of possible experiments. In our case, he has

the choice of drawing from one of the n+1 urns; the act

17
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0f drawing from urn j is denoted D(~,j) for j = O,l,...,n.

3. The effect of a chosen experiment is a transformation

of the state variables. The act D(M,j) results in a trans-

formation of the state variables to either M; or Mj'

4. The past history of the system has no importance

in determining the future decisions, except through the

present.

5. The purpose of the decision process is to minimize

some fixed function of the state variables. In our case, the

goal is to minimize the expected number of experiments made

until a terminal state is reached.

In finite decision problems, those with only finitely

many possible decisions until termination, we have the addi-

tional parameter of time. This parameter manifests itself

in the form of the number of permissible decisions which re-

tnain to be made in the problem. In our problem, time is the

Trumber of decisions to be made until a terminal state is

reached. It is usually helpful to separate the time para-

nneeter from the state variables as time usually plays a role

ziri the problem which is quite different from the state

‘Iéilriables. In our problem it is the parameter upon which

the objective function depends.

Standard terminology in dynamic programming is: a

I>C>l¢icy is a rule for choosing, for each value of the state
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variables and the time parameter, an experiment.

An optimal policy is a policy which minimizes a pre-

assigned function of the state variables. This pre-assigned

function of the final state variables will be called the

criterion function and will be denoted G. F‘-

In the case that the decision results in a probability

distribution on the transformations, it is not possible to

‘
3
1

minimize with certainty the criterion function after N steps.

Rather, the quantity which we will seek to minimize is the

expected value of the criterion function.

With the structure on the problem as above, the

possibility of constructing an optimal policy rests on the

following principle due to Bellman [l].

Bellman's Principle of Optimality: An optimal policy

has the property that whatever the initial values of the

state variables and the initial decision are, the remaining

(decisions must constitute an optimal policy with regard to

t:he state resulting from the first decision, treated as new

illitial values of the state variables.

Implementation of an optimal policy repeatedly utilizes

tile principle of optimality to consider a series of decisions

backwards, evaluating each decision on the basis of proceeding

optimally from whatever state has resulted from previous

decisions. This works as follows: for each possible state of



 
20

nature prior to the final decision, we answer the question

"What is the best decision to make if we are forced to stop

now or to stop at whatever state results from our decision?"

This can be called the-final-step decision problem. Knowing

the answer to the final-step decision problem for each state

of nature, we now ask "What is the best decision to make at

each stage from every state if we are permitted at most two

more decisions?", and so on backward until we evaluate the

best decision to make if we are permitted N decisions.

In the urn problem of order n, with only n(n+1) balls

available in the system, and with each decision to draw a

ball removing one ball from the system, it is obvious that

N = n(n+1) will be a sufficiently large number to solve

the problem, since it exhausts the system.



  

  
 

 



 

IV. THE URN PROBLEM AS A DYNAMIC PROGRAM

The goal of determining the composition of all of the

urns can be expressed as an hypothesis testing problem as

follows: given the (n+1)! a priori equally likely hypothesis

find a policy, i.e., a function from all information matrices

M* into {0,1,...,n}, to test the (n+1)! hypotheses at size

zero and power one. The goal of testing these hypotheses

with minimum expected sample size is now: among all policies

which test the hypotheses at size zero and power one find a

policy whose expected sample size to termination is the

minimum.

In the following, all matrices M will be elements

of 771* and if M is not an element of 771*, we shall identify

M with R(M). This should cause no ambiguity or confusion

since it will not affect the posterior distribution or the

probabilities of drawing a black ball from any of the urns

whose composition is not already known.

Definition IV.1 M is a terminal information matrix
 

if H(M) is a singleton.

Definition IV.2 If P is any policy, let EP(vn)

be the expected number of draws until a terminal

information matrix is reached in an urn probleulof

order n.
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Definition IV.3 On - MIQQEP(VH) where 6’ 18 the

class of all possible policies.

We can find an upper and a lower bound on On’ both of

the bounds being of the order of n2.

n+1 2

Theorem IV.l ( 2 ) S On S n .

12323;: The upper bound is immediate since if we know the

composition of n of the urns, we know the composition of

the remaining urn. The composition of n of the urns can

be found by simply drawing all of the balls in these urns.

This policy requires drawing n2 balls. To establish the

lower bound, we need a lemma.

lLemma IV.2 If X,Y are n+1 vectors of integers between

C) and n inclusive and is there exists one and only one

[Dearmutation n satisfying the inequalities

‘63 . 0 S X S n S Y S e . n where n is considered as a

13r+1 n+1 ’

n-l-l vector, then

n

z .(Y.-X.)SM.
i=0 1 1 2

P roof of Lemma: Without loss of generality, Trj = j since

i f it is not, we can reorder the X's and Y's, and

ftjl

Z (Y. - X.) is independent of the order of the subscripts

j_===q:) 1 1

on the X's and Y's.

Now, if i < j, either Yi < j or Xj > i, for if



 

 

 

 

 



 

n n

hence 2(Y -X)SZ(Y ‘Y.+j)=2j=(

j=0 j J

23

.t .
“0t, it is possible to interchange the 1 h and 3th coordinates

Of the permutation and preserve the inequalities of the Lemma.

' sCon31der Y 0 Y = X1, 2,...,)glo are all greater
0’ 0

than 0, which may be a vacuous relationship.

' S =°Now, conS1der Y1, 1 Y1 X2,X3, ,lLfl are all

}{j_*_1,Xj_'_2,...,XYJ are

all greater than j. Thus a block of Yj - j of the X's are

greater than 1. Similarly, j S Yj =°

greater than or equal to j+1 for j = 0,1,...,n-l.

We then have

 

n n

g x. = z k[#x's = k]

j: 1 k=0

n n-l

= z k[#x's 2 k] - z k[#x's 2 k+l]

k=0 k=0

n n-l

= 2 k[#x's 2 kJ - 2 (k+1)[#x's 2 k+1]

k=0 k=0

n-l

+ z [#x's 2 k+l]

k=0

n-l

= 2 [#x's 2 k+1]

k=0

n-l n

2 2 [Y - j] = 2 [Y. - j], since Y = n,

k=0 j k=0 3 n

n n+1)

j=0 j j j=0 2

Th is completes the proof of the Lemma.

We shall be using the contrapositive of the Lemma in

remainder of the proof.
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gorollary IV.3 If X and Y are n+1 vectors of integers

n

0 to n inclusive such that Z (Yi - Xi) > (n31) then the

i=0

set of permutations 1T 6 Sn+l satisfying X S 11 S Y where

11 is considered as an n+1 vector is either empty or has at

leas t two elements .

n

Suppose M = [:3 is a matrix such that )3 (bj + wj) < (“‘51)

n j=0

then 2 (n - w. - bj) > (n31) which implies by the corollary

i=0

that either H(M) = Q) or H(M) has at least two elements;

in either case M is not terminal.

The proof of the theorem is now complete since if fewer

than (n31) balls have been observed, the resulting information

'matrix cannot be terminal.

We can now express the solution of the urn porblem of

(arder n as a dynamic program. For every information matrix

1!! € Wig define the function g(M) = 0 if M is a terminal

IIJEItrlx; and g(M) = 1 if M is not a terminal matrix.

*

We would like to minimize for every M0 6 772 the

N

c riterion function GN(MO) = Z g(Mi), for N 2 n(n+1), where

i=0

M1 is the state resulting from the ith act on the state Mi-l'

Th is is impossible since the state resulting from the ith act

1 s a random variable whose value depends on the entire sequence

. .t . .
of decisions which have been made prior to the 1 h decision and

a 18 0 on the randomness in the occurrence of a black ball or

“711 i te ball in drawing from any urn.
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We shall adopt the convention of using Mj to denote

the random variable resulting from the jth decision on state

Mj 1. With this notation we shall minimize the following

criterion function

N A

meo) = g<M0> + Eel; g(Mi» (1)

The principle of optimality requires that every optimal

policy satisfy the following recursion relation:

fN(M) = g(M) + min [fN_1(M:)Pq(B|M) + fN_1(MC'l)(l-Pq(BIM)] (2)

where q ranges from 0 to n inclusive and Pq(B |M) is

given by Theorem 11.6.

lheorem IVA If P is an optimal policy which chooses the

act Dj (M) for an M = [:7] such that bj + wj = n, then

M is terminal.

Proof: Consider fk(M) for k> n(n+1). The optimality of

P requires that fk(M) = g(M) + fk_1(M) but k is suffi-

c iently large so that fk(M) = fk-1(M) which implies

g (N) = 0. But g(M) = 0 if and only if M is terminal.

This theorem allows us to reduce the number of acts

wh 1 ch have to be examined in order to find an optimal policy.

We need not look at those acts which would have us draw from

an LII-n whose contents are already known.
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In order to implement the dynamic program on a digital

cxmnputer, it was found convenient to further restrict the

class WF. of all irreducible information matrices and to

'hnpose an ordering on this restriction of ‘mr. This order-

ing and restriction are of no value in deriving the dynamic

program but they do serve to reduce the amount of calculation

and the amount of core storage required to implement the

dynamic program on a computer.

. , b *

Convention IV.l For every information matrix M = [w] 61%
 

relabel the urns until the columns of M satisfy the follow-

ing conditions:

2 '= ... -1. bi + wi b1+1 +wi+1 for 1 0,1,2, ,n l and

2. if b. +'w. = b.

i i

21+1 +-wi then bi bi+ for

+1 1

i = O,1,2,...,n-l.

LIIIi the remainder, all information matrices will be written

in this way.

Definition IVA Let >> be the ordering on 722*

given by:

* *

M = [3*] >> M = [:7]

if for some integer k S n either

1k 1:

1. b. + w = b +-w, for j S k-l and

J j j J

b+ <b*+*
k wk k Wk

 

w
“

“
a
v
i
a
n
-
1
.
x

I
f
;

.
.
-

'
W
'



  

 

 

 



 

27

-k

or 2. bj+w =b +wj for j=0,l,...,n and

for 0 S j S k-l and

Let us use the case n = 2 as an example to illustrate this

ordering.

0 0 0 _ O O O

M1’(ooo) M7‘(2oo)

_ l O 0 _ 2 O 0

“2"(000) “8"(010)

_ O 0 = 1 O

M3’(1oo) M9 (200)

1 O 0 _ 2 O 0

M4 (010) Mio’( 11)

___ 2 0 0 _ l 1

M5 (000) M11’(2oo)

_ l 0 O _ 2 1 0

M6 " (1 o 0) M12 (0 1 2)

. 1 l O . . .
The matrix (0 0 0) does not appear in the ordering Since by

previous conventions it is identified with R(é’ 3 g) which is

1 1 O . . O l 1 .
(O O 2) which is reordered to (2 O 0) by convention IV.1

and now can be found in the ordering as M11.

The value of these conventions in reducing the number

Of matrices which must be considered can be demonstrated with

a few simple calculations.

The set 7(0 of all 2 X (n+1) matrices of non-negative

in t egers whose columns total less than or equal to n has

n—l—

( 2 1- 1)n+1 elements. This can be seen by observing that the
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number of ways that two non-negative integers whose sum is less

n k

than or equal to n can be chosen in 2 Z (If) ways and

k=0 j=0 J

“ k k n k n+1
2 Z ( ) = 2 2 = 2 - 1. Since each of the columns of a

k=0 j=0 j k=0

matrix in 7120 can be chosen in 2

of elements in 7720 is (2n+1 - ”n+1.

n+1 - 1 ways the total number

The set m = {M e woman 9‘ as} has at least ((n+1) 02

elements. This is seen by observing that for every permutation

T] = ('fl ,... ,Tln) E Sn+1 the total number of ways that non-negative

integers {bi}:=0 and {wi}2=0 satisfying 0 s bi S Ni and

O S n - n1 for i = O,1,...,n, can be chosen is

BU]. + l) (n - n. + 1) ways.

j=0 J J

The definition of 772 does not consider either the

reducibility of an M matrix or the relabelling of the columns

of the M matrix to eliminate redundancies caused by the initial

labelling of the urns. The consideration of either of these

a lone will result in fewer matrices to consider. It was found

to be difficult to calculate the magnitude of this reduction

caused by either of these considerations alone. The imposition

o :6 both reduction and relabelling leads us to the class 772* of

de finition 11.7.

The number of elements in 772* C7710 has been found empirically

f0)? n = 2,3,4, by enumerating them. No general formula for the

t“-1‘E1113er of elements in 77(* is known.

The above calculations are summarized in the following table.
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n=2 n=3 n=4 n=k

Number of elements in MO 334 47,875 (31)5 (21“‘1—1)k+1

Number of elements in 722 >36 >576 >l4,400 >((k+l) !)2

Number of elements in 772* 12 122 1746 ?

The dynamic program is now implemented by considering

first, candidates for the last M. It is a terminal position so

that f0(M) = 0. Now, consider the next to the last M. The

only possible image under any optimal policy is the last M

so that f1(M) = 1.

Since the ordering was chosen in such a way that for

any M€m* all of the M: and M3, for j = O,1,...,n,

are higher in the ordering than was M, fk+1(M) is calculable

as min [i +P (BIM) - f (MT) + (1 - P (BIM)) - f (M.)].
3.613 1 R J j k J

When we have calculated fL(g 8 g) , for some L 2 n2, we have

calculated the minimum expected number of draws to reach the

t erminal position.

Appendix 1 contains a FORTRAN IV computer program to

1.1 1: ilize the above method to determine the minimum expected

number of draws to the terminal information matrix for small

n a (n = 2,3,4) .

Table 1 at the end of this chapter (page 33) illustrates

th is dynamic program for the case n = 2 and table 2 (page 34)

Presents the case n = 2 as a tree diagram.
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The dynamic program for n = 3 is presented as a table in

Appendix 2. Since there are 122 information matrices for the case

n = 3, no tree diagram is presented.

It is a very difficult task to write down explicitly

an optimal policy for solving an urn model of order n.

However, it is possible to give a general rule for the first

(n51) + 1 moves of an optimal strategy, for all n. If we

use this strategy for the first (n21) + 1 moves it is

possible for small n, to give a complete description of an

optimal policy.

The rule goes as follows:

First, draw one ball from each of n urns. Suppose

this results in k white balls and n — k black balls, then

draw 1 more ball from each of k - l urns from which white

balls have been seen and 1 more ball from each of n-k-l

urns from which a black ball has been seen. The urns from

which 2 balls have been drawn have 3 possible compositions:

WW, WB, or BB. Now from each of the urns of equally seen

Composition, break all ties by drawing one more ball from

al 1 but one of tied urns, and continue this process of break-

ing ties until the observed composition of all of the urns

is distinct.

The reason that this process is the start of an

oPtitnal policy is two-fold: 1. no position is a terminal

908 1tion if the observations from 2 urns are the same, and
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2- no draws from a 3rd urn will ever distinguish between

two tied urns. Since the tie will eventually have to be

broken to result in a terminal position, and since no draw

except from one of the tied urns will ever distinguish them,

the rule of the preceeding paragraph is simply to break all F‘

ties as soon as possible. a

This rule gives at least the first 23%;12 + 1 moves

since, for every j, if we have drawn j balls from an urn

there are at most j + 1 possible distinct patterns of

black and white balls that can be observed. Drawing 1 ball

from each of n urns takes n draws, and at most two com-

positions can result (black ball seen or white ball seen).

])rawing one more ball from all but one of the urns from which

as black ball has been seen, and one more from all but one of

c11e urns from which a white ball has been seen requires at

Ileaast n - 2 draws (it is possible that all of the balls

seen are the same color). Now there are at most 3 groups

n-2-3 draws.(>1? ties, and breaking them takes at least

CIc>r1tinuing, we see that the total number of draws until all

ties are broken is at least

n-l

1%E_(n_1)
n + E (n-j-l) = n+ n(n-l) -

i=1

— 4—1““'1 + 1.

The rule given above cannot be a complete policy since
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0fl 2 1%)- by theorem IV.1, and if n 2 2

n(3+l) > ngE-lz + 1.

With this rule above one can easily verify that an optimal policy

for n = 2 is to draw from urn O and urn 1. Then, draw from urn

0 and if the resulting M is not terminal, draw from 1 again.

This strategy requires 3% draws on the average and is the smallest

possible.

For n = 3, this rule says to draw from urns 0, l, and 2,

then break all ties, reduce all matrices to the corresponding

irreducible matrix and then reorder in accordance with convention

IV.l. This will yield the following irreducible information

‘nuatrices:

_2100 _1100 =0100

M1‘[01oo]’Mz‘[1010]’Ma [2010]

_0211 _3100 _3210

M4’[3010]’M5‘[0121]’and M6—[0123]'

Referring to Appendix 2 the optimal policy for continuation

frorn each of these can be found, and it will be seen that

tikl<3 Ininimum expected number of draws to determine the composition

Of all of the urns is 7 31%.

For n = 4, the computer printout of the dynamic pro-

gram is available, on loan, from the Statistical Laboratory,

Mi ch igan State University, East Lansing, Michigan. There the

ml-‘-13°Ltnumexpected number of draws to determine the composition

of a~11 of the urns is found to be 13.136-
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V. THE URN PROBLEM AS AN INFORMATION THEORY PROBLEM

A different approach to solving the problem in the

first chapter is provided by treating it as a problem in

information theory. The essence of this different approach

was expressed by D.V. Lindley [4] as follows: "... although

indisputably one purpose of experimentation is to reach

decisions, another purpose is to gain knowledge about the

state of nature (that is, about the parameter) without

having specific actions in mind. This knowledge is measured

by the amount of information ...

The following decision procedure presents itself:

choose at the first step to perform that experiment whose

expected information gain is the greatest, and from the

resulting state, perform next the experiment whose expected

information gain is the greatest, continuing in this way

until preassigned amount of information is achieved. This

strategy will be called the "maximum information strategy".

As our measure of information we shall use the

Shannon informa t ion.

*

Definition V.l For M 6771 , let
 

1(M) = 2 p (H) log p (T!)

nEH(M) M M

.35
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The reasons for using Shannon information as a measure of

information are well known; see [3]; [4].

The following definition and the theorem are due to

Lindley [4] and are stated here in the notation we have

developed for the urn problem of order n

Definition V,2 (Lindley [4], Defn 1) The expected

information provided by an experiment D(M,j) with

prior knowledge M is

1(D(M.j),M) = 1(M:)Pj(B|M) + 1(M;)(l-Pj(BlM)) - 1(M)

Theorem v.1 (Lindley [4], Thm. 1) I(D(M,j),M) 2 0 for all

n v'c

jEIO and MEWZ.

The following theorem is a characterization of a termi-

nal set in terms of information.

Theorem v.2 M is a terminal set if and only if [(M) = 0,

Proof: If 1(M) = 0, then

2 PM(W) 10g PM(fi) = O

TTES
n+1

‘Vhich implies PM(fi) = O or 1 for all n E Sn+1 or that

t .
here exists n0 6 Sn+1 such that

PM(n0) = 1 and PM(n) = 0 if n i no
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since

2 PM(TT) = 1.

TTESn+1

H(M) is a singleton.

If M is terminal then there exists no Such that H(M) = {no}

and PM(fi0) = 1 and PM(n) = 0, for n # no therefore

2 PM(n) log PM(1'I') = PM(110) log PM(110) = 0

"ESn+1

Heuristically, information provides a criterionfunction

which at the very least goes in the correct direction, in that,

greater information is "closer" to a terminal position and

further sampling will lead on the average to an increase in

information. Thus, the procedure which at each stage chooses

that experiment which has greatest expected information gain

is not an obviously bad strategy. For n = 2, it is one of

the optimal strategies.

An example from the urn model of size 3 will show

t:hat the maximum information strategy is not a good strategy.

JIts expected number of draws until a terminal position is

E3 trictly greater than an optimal procedure. The tree diagram

15<2r the first 3 draws of the maximum information strategy is

sIlown in figure 3. The Succeeding draws for the maximum

iInformation strategy coincide with an optimal strategy.
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The first difference between the maximum information

2 O O O

(O O O O)°

th

strategy and an optimal strategy occurs at M =

The maximum information strategy is to draw from the 0

urn, while the optimal strategy is to draw from any other

urn. The maximum information strategy has expected number

of draws until the composition of all of the urns is de-

termined equal to 7 11, whereas the smallest expected number
27

of draws until the composition of all of the urns is determined

19

as 7 36’

The question of the optimality of the maximum infor-

mation strategy for an urn problem of order n for n > 3

is unanswered. Also unanswered are questions of optimality

of the maximum information strategy for measures of infor-

mation other than the Shannon information and for criterion

functions other than the expected number of draws to deter-

mine the composition of all of the urns.
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APPENDIX 1

FORTRAN IV program for the dynamic program to solve

the urn problem of order n.
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APPENDIX 2

The dynamic program for the urn problem of order 3.
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