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ABSTRACT

HIGH THROUGHPUT PARAMETRIC STUDIES OF THE STRUCTURE OF

COMPLEX NANOMATERIALS

By

Peng Tian

The structure of nanoscale materials is difficult to study because crystallography,

the gold-standard for structure studies, no longer works at the nanoscale. New tools

are needed to study nanostructure. Furthermore, it is important to study the evo-

lution of nanostructure of complex nanostructured materials as a function of various

parameters such as temperature or other environmental variables. These are called

parametric studies because an environmental parameter is being varied. This means

that the new tools for studying nanostructure also need to be extended to work quickly

and on large numbers of datasets. This thesis describes the development of new tools

for high throughput studies of complex and nanostructured materials, and their ap-

plication to study the structural evolution of bulk, and nanoparticles of, MnAs as a

function of temperature.

The tool for high throughput analysis of the bulk material was developed as part

of this PhD thesis work and is called SrRietveld. A large part of making a new

tool is to validate it and we did this for SrRietveld by carrying out a high-throughput

study of uncertainties coming from the program using different ways of estimating the

uncertainty. This tool was applied to study structural changes in MnAs as a function

of temperature. We were also interested in studying different MnAs nanoparticles

fabricated through different methods because of their applications in information

storage. PDFgui, an existing tool for analyzing nanoparticles using Pair distribution

function (PDF) refinement, was used in these cases. Comparing the results from the

analysis by SrRietveld and PDFgui, we got more comprehensive structure information



about MnAs.

The layout of the thesis is as follows. First, the background knowledge about ma-

terial structures is given. The conventional crystallographic analysis is introduced in

both theoretical and practical ways. For high throughput study, the next-generation

Rietveld analysis program: SrRietveld, is coded in Python. The details of SrRietveld

are provided in the thesis. More importantly, two real applications of SrRietveld are

demonstrated to show its use cases. For the error analysis on Rietveld refinement, it

is found that the results from two popular Rietveld programs are very sensitive to the

input errors and the subset sampling method is particularly useful when the errors

on diffraction pattern are unknown. In order to show the power of SrRietveld, I did

the parametric study on MnAs bulk and nanoparticles. It is found that the magneto-

structural property exists in bulk and one type of MnAs nanoparticles. However,

when I want to probe the other type of MnAs nanoparticles that has smaller size,

the conventional Rietveld method doesn’t work and I turn to PDF for help. Using

PDF approach, the structures of bulk and nanoparticle MnAs have been explored.

Finally the conclusion is that I can either retain or modify the bulk properties by

using different synthesis methods.



To my family

iii



ACKNOWLEDGMENTS

At the time when I finish my PhD thesis, I would like to thank those who have

helped me to accomplish this important goal in my life.

First of all, I want to give my deepest thanks to my advisor, Professor Simon J.

L. Billinge, for guiding me through my PhD study with his expertise, insights and

great patience. My future work will continuously benefit from what I have learned

from him.

I am grateful to all professors in my PhD guidance committee, Prof. Phillip

Duxbury, Scott Pratt, Subhendra D. Mahanti and James T. Linnemann, for all the

help and advice they have offered me.

I would also like to acknowledge all my officemates. I learned many things about

scientific research and computer techniques from working with Jiwu Liu, Wenduo

Zhou, Pavol Juhas, Chris Farrow and Emil Bozin. Chris Farrow and Yingrui Shang

gave me suggestions on my thesis writing. And Timur Dykhne, Xiaohao Yang, Hrishi

Tiwar and many other visiting scholars make the office an enjoyable place to work

in. Thanks to all my friends in graduate school, Jiwu Liu, Teng Yang, He Huang,

Wenduo Zhou, Chuan Lu, Jiping Li, Yingjie Li and many others, for standing by me

and giving me help whenever I need.

Most importantly, my great gratitude to my grandparents, my parents and my

fiancee. You have given me enormous support and love. This work is dedicated to

you.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction to material structure and diffraction method . . . . 1
1.1 Basics of Crystal system . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bragg’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Diffraction Method . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Crystallographic Analysis . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Rietveld Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Next-generation Rietveld analysis: SrRietveld . . . . . . . . . . . 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Application of SrRietveld I: NaCl . . . . . . . . . . . . . . . . . . 25
3.5 Application of SrRietveld II: Error estimations . . . . . . . . . . . 30

4 The total scattering and atomic pair distribution function method 46
4.1 Theory of PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Corrections of PDF derivation . . . . . . . . . . . . . . . . . . . . 50
4.3 Cases of PDF calculation . . . . . . . . . . . . . . . . . . . . . . . 53

5 MnAs: Diverse structural and magnetic properties . . . . . . . . 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



List of Tables

3.1 Refined values, estimated standard deviations for LaMnO3 from the
GSAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Difference in the values of refined parameters between FullProf refine-
ments on data converted from time-map format using the SE and NSE
methods, respectively. The numbers in the parethese are the standard
deviations on the differences, calculated as the square-root of the sum
of the variances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 The refined structural parameters for bulk and type-A nanoparticles
at 295 K and 335 K using α (P63mc) and β (Pnma) model. All models
are refined with isotropic thermal factor Uiso. . . . . . . . . . . . . . 62

5.2 The refined structural parameters for type-B nanoparticles at 295 K
and 335 K using the α (P63mc) and β (Pnma) model. All models are
refined with isotropic thermal factor Uiso. . . . . . . . . . . . . . . . 65

vi



List of Figures

1.1 Bragg diffraction [1, 2]. Two beams with the same wavelength and
phase approach the sample and are scattered by two different atoms
inside it. The lower one travels an length of 2d sin θ longer. . . . . . . 4

1.2 Ewald construction [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 SrRietveld software architecture. The User Interface, SrRietveld, HDF5
Data Structure, PyGSAS, and PyFullprof are python packages in the
SrRietveld project. The GSAS and Fullprof represent the underlying
refinement engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Temperature dependence of SrRietveld refinement results for NaCl us-
ing FullProf (blue dots) and GSAS (red squares) engines. (a) lattice
parameter, a, and (b) atomic displacement parameters, Uiso, at Na
(crosses for FullProf, plus markers for GSAS) and Cl (dots for Full-
Prof, squares for GSAS) sites. Dashed lines mark fitted Debye model
curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 (a) TOF neutron powder diffraction pattern on LaMnO3 (blue circles)
with the best fit calculated pattern from FullProf (red line). The low
d-spacing, short TOF, region to the left of the dashed line has been
zoomed in 6 times for clarity. The green line offset below is the differ-
ence between the calculated and measured patterns. The black markers
indicate the peak positions. (b) As (a) but the red curve is calculated
using GSAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 The probability distribution functions of refined lattice parameters
from FullProf based on data converted using the SE and NSE methods.
(a), (b) and (c) show the distributions of lattice parameters a, b and c,
respectively. For each subfigure, red, green and black symbols are from
the NSE method; blue, orange and brown are from the SE method.
Diamonds are from Monte Carlo resampling, squares are from subset
sampling and circles are from the standard Hessian matrix method. . 39

vii



3.5 The probability distribution functions of thermal factors Uiso. (a) is
for La, (b) is for Mn, (c) is for O1 and (d) is for O2. All colors and
symbols have the same meanings as Fig. 3.4. . . . . . . . . . . . . . . 40

5.1 TEM images and particle size distributions of type-A (a) and type-B
(b) MnAs nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 PDF refinements on bulk (left) and type-A nanoparticle (right) MnAs
data. For each subfigure, the bulk circles represent the PDF from
the experimental data and the red solid line is the calculated PDF
after refinement. The green curve offset below is the difference curve
between data and model. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 (a) comparison of the difference (orange curve) between 295 (blue line)
and 335 K (red line) diffraction pattern for bulk MnAs. (b) same as
(a) but for type-A nanoparticles with violet-colored difference curve.
(c) comparison of the difference curves from (a) and (b). The orange
is the same as the difference curve in (a) and the violet is the result of
scaling the curve in (b) by a factor of 4 for comparison. . . . . . . . 72

5.4 (a) comparison of the difference (orange curve) between 295 (blue line)
and 335 K (red line) PDF for bulk MnAs. (b) same as (a) but for type-
A nanoparticles with violet-colored difference curve. (c) comparison of
the difference curves from (a) and (b). The orange is the same as the
difference curve in (a) and the violet is the result of scaling the curve
in (b) by a factor of 4 for comparison. The simliar comparison based
on diffraction pattern is shown in Fig. 5.3. . . . . . . . . . . . . . . . 73

5.5 Lattice parameters ((a), (b)) and atomic displacement factors ((c),
(d)) from PDF refinements on bulk and type-A samples using α phase
structure model. (a) and (b) are for lattice parameter a and c in unit
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each subfigure, the blue and red are for bulk MnAs on the cooling and
heating runs respectively. The cyan and magenta are for type-A MnAs
nanoparticles on cooling and heating runs. . . . . . . . . . . . . . . . 74

5.6 PDF refinements on data acquired on type-B nanoparticles at 295
((a), (b)) and 335 K ((c), (d)) using the α ((a), (c)) and β ((b), (d))
phase model, respectively. For each subfigure, the symbol and color
representations are the same as Fig. 5.2. . . . . . . . . . . . . . . . . 75

5.7 Same as 5.3 but for type-B nanoparticles. In (c) the difference curve
(violet) of type-B nanoparticles is scaled by a factor of 10 since its
amplitude is too small to compare with the bulk one. . . . . . . . . . 76

viii



5.8 Same as 5.4 but for type-B nanoparticles. In (c) the difference curve
(violet) of type-B nanoparticles is scaled by a factor of 10 since its
amplitude is too small to compare with the bulk one. The simliar
comparison based on diffraction pattern is shown in Fig. 5.7. . . . . . 77

5.9 Real part of the AC magnetization (a) and unit cell volume (b) in
bulk, type-A and type-B nanoparticles. All of the unit cell volumes
are based on the results of α-model refinements. The blue (cooling)
and red (heating) are for the bulk sample; cyan (cooling) and magenta
(heating) are for type-A nanoparticles; and the green (cooling) and
orange (heating) are for type-B. The dashed lines at 303 K and 317 K
show the temperature range of the structural transitions in bulk MnAs
as reported in the literature as we mention in the text. . . . . . . . . 78

ix



Chapter 1

Introduction to material structure

and diffraction method

All materials are made of atoms. There are about 100 kinds of atoms based on

the periodic table. The universe is composed of them. The properties of the materials

are determined by the atoms of which they consist and how the atoms are bonded

together [4].

The structures of the materials have to be studied so that the researchers can

understand the properties of useful materials [5]. Studies of material structures can

also help chemists in synthesis and modification of materials with desired proper-

ties [6, 7]. In general, solid materials are the most commonly studied by scientists

because of their applications [8, 9, 10], for example in the technology of transistors

and semiconductors.

Diffraction techniques, including X-ray diffraction, neutron diffraction and elec-

tron diffraction, have been developed to investigate the structures of different mate-

rials, especially for the crystalline solids where the atoms are composed in an ordered

fashion. More details about this topic can be found in many good books [11, 12, 13].

This thesis focuses on high throughput parametric study on the structure of complex
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nanomaterials.

A brief introduction to the structure of materials is given in the following three

sections, with emphases on issues that are relevant to this thesis. Section 1.1 covers

some basic knowledge about crystal structure, such as it description and classification.

In section 1.2, the foundation of crystallography: Bragg’s law is introduced. The

last section describes the relationship between the diffraction pattern and material

structure.

1.1 Basics of Crystal system

The structures of the materials appear differently in nature. The simplest one of

these structures normally is the one with clearly repeated pattern of atomic positions.

The material with such structure is called crystal [8, 9, 10], e.g.NaCl and diamond.

Scientists who study them are focus on their inside geometry. The crystallography [14,

15] is the field that people study the crystal.

The structure of a crystal is made up of a number of points (atoms or molecules)

arranged in a ordered way. Inside a crystal, a lattice (a repeated pattern of atoms or

molecules) exhibits long-range order and symmetry. The so-called unit cell is formed

by the points. The lengths of the edges in the unit cell and the angles between them

are called the lattice parameters [8]. The space group [8] is used to represent the

symmetry property of the structure. It is a mixture of the translational symmetry

of a unit cell, the point group symmetry operations of reflection, rotation, the screw

axis and glide plane symmetry operations [16]. In summary, there are seven lattice

systems: triclinic, monoclinic, orthorhombic, rhombohedral, tetragonal, hexagonal,

and cubic, which includes 14 unique ones. Normally scientists use one of 230 unique

space groups to describe the crystal symmetry[17].

The Miller index is usually used to determine the atomic plane. If we choose
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the three lattice vectors a1, a2 and a3 to determine the unit cell, the corresponding

primitive reciprocal lattice vectors are given by [8]

b1 =
2πa2 × a3

a1 ⋆ (a2 × a3)
(1.1)

b2 =
2πa3 × a1

a2 ⋆ (a3 × a1)
(1.2)

b3 =
2πa1 × a2

a3 ⋆ (a1 × a2)
(1.3)

Using the three Miller indices l, m and n, we can define the plane orthogonal to the

lattice vectors:

glmn = lb1 +mb2 + nb3 (1.4)

The perpendicular distance d between two closest lattice planes is determined by:

d =

∣

∣

∣

∣

2π

glmn

∣

∣

∣

∣

(1.5)

In order to understand the structures, it is necessary to know the arrangement

of atoms relative to each other, the number of the nearest neighbors, a list of inter-

atomic distances and etc.. To detect the structure information in atom level, people

have been relying on diffraction technique since about 100 years ago. In the following

section, I will describe the basics of the diffraction theory.

1.2 Bragg’s Law

Bragg’s Law is the fundamental rule of modern diffraction theory. It is also the

milestone where people start to understand the diffraction in more profound way. It

was discovered by physicist Sir William L. Bragg in 1912 [1, 2], who later won the

Nobel Prize with his son because of their work in determining crystal structures [18].
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Since then, the X-rays became a power tool to investigate the structure of crystals

and other forms of materials.

Figure 1.1: Bragg diffraction [1, 2]. Two beams with the same wavelength and phase
approach the sample and are scattered by two different atoms inside it. The lower
one travels an length of 2d sin θ longer.

X-rays can force the cloud of atom’s electrons to move when they are incident on

an atom. If the cloud movement results that the same-frequency waves are radiated,

this phenomenon is known as elastic scattering [19]. In such case, the new waves can

be scattered but it is often negligible for the high-order scattering. If the incident

beam is made up of neutrons, elastic scattering could also happen when it hit on

the nuclei or it flies through the electronic magnetic field around the nuclei. The big

difference between these two type of beams is that X-ray scattering is not sensitive

to the atom with few number of electrons, e.g., hydrogen, especially when there are

heavy atoms with many electrons while neutron scattering does. The fields produced

by the scattered waves can interfere with each other. Sometimes it produces stronger

signals while other times it could cancel out each other. Therefore, the diffraction

pattern are formed and can be observed through a detector or film, which is usually

the experimental result. It serves as the first step of diffraction analysis. In general,
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the constructive interference happens when the following formula is satisfied:

nλ = 2d sin θ (1.6)

where n is an integer representing the given order, λ is the wavelength of the incident

wave, d is the spacing between two planes, and θ is the angle between the incident

beam and the planes. It is called the Bragg’s law. As shown in Fig. 1.1, the diffraction

pattern is determined by the parameters mentioned in Eq. 1.6. When the equation is

satisfied, there will be strong peak appearing in the diffraction pattern. The strength

of those peaks relative to each other are determined by the order parameter n.

1.3 Diffraction Method

Diffraction method is one of the most popular scientific techniques to probe the

structures of materials. Normally the X-ray, neutron, or electron beam is used as

the probed beam. In particular, for the study in this thesis, I am focus on powder

diffraction, which was first used by Debye and Scherrer in 1916 [20]. It has advantage

over other diffraction techniques because it is relatively easy to prepare the powder

sample for common cases. Meanwhile it can still provide the comparable structure

information from analyzing the diffraction pattern.

The most common type of radiation used in powder work is X-radiation since the

technique was developed a century ago. For later study in this thesis, I also use the

X-ray powder diffraction method as the experimental tool. The X-ray we refer here is

a high energy electromagnetic radiation with corresponding wavelength in the order

of 1 Å. In order to access high energy X-ray source, we usually go to synchrotron at

national laboratory (e.g., Advanced Photon Source at Argonne National Laboratory

or National Synchrotron Light Source at Brookhaven National Laboratory) to perform

our powder diffraction experiments.
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As we know, the powder sample is made of large number of crystals with random

orientations. In order to understand the basis of X-ray powder diffraction, we have

to study the interaction of X-ray and crystal first. As I mentioned earlier in this

chapter, X-rays can be diffracted from crystals since their electric fields interact with

the electron clouds of atoms in the crystals. The X-rays scattered from adjacent

atoms interfere and a diffraction pattern is produced. In this section, I will introduce

the X-ray diffraction on crystal and later powder diffraction in general.

1.3.1 Reciprocal space and Ewald construction

Figure 1.2: Ewald construction [3]

Assume the incident X-ray beam targeting on the crystal has a momentum ~ki,

and the diffracted beam has a momentum ~kf . Therefore the momentum difference

between these beams is defined as

~Q = △~k = ~kf − ~ki (1.7)
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where ~Q is known as the scattering factor (the change of momentum). It defines

the so-called reciprocal space that the bright spots are shown on in the diffraction

experiments. There is direct relationship between reciprocal space and real space that

I will talk about later. It is another basis of diffraction theory.

If the amplitude of ~ki is 2π/λ, where λ is the wavelength, and the diffraction is

elastic, then we can calculate the amplitude of ~Q by the following equation:

| ~Q| = 2k sin θ = 4π sin θ/λ (1.8)

where |~ki| = |~kf | = k = 2π/λ. The angle between |~ki| and |~kf | is 2θ, which is shown

on Fig. 1.2. In fact respective to ~ki, for the elastic diffraction, the ~kf will always fall

on the surface of the sphere in the figure. The sphere is called Ewald sphere.

When Bragg condition is satisfied, it means Eq. 1.6 is established. By substi-

tuting it into Eq. 1.5 and comparing it with Eq. 2.11, we can clearly see that the

scattering vector ~Q is equal to a reciprocal lattice vector ~glmn when the order is

1. More importantly, it implies that the diffraction signals can only appear on the

surface of the Ewald sphere as shown in Fig. 1.2.

1.3.2 Basic theory of crystal diffraction

For X-ray diffraction, we can use ~ki to define the momentum of the incident wave.

Based on classical wave theory [12], the incident wave can be totally represented by

Aei
~ki·~r, where ~r is the position with the sample. Notice here, we only consider the

static case, where the momentum vector doesn’t depend on the time. If we also

assume that the electron density as ρ(~r) and ignore constant term here, then the

diffracted wave is determined by

amplitude of diffracted wave = Aei
~ki·~rρ(~r)dV (1.9)
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where dV is the volumn that is filled by electron cloud around the position ~r.

For simplicity, we always consider the elastic diffraction case first. It means

for both incident and diffracted wave, they have the same amplitude of momentum

vector, as |~ki| = |~kf |. Assume that the diffracted wave hits at the position ~rd on the

detector, the phase change of the wave is given by

e
i~kf ·(~rd−~r) (1.10)

Since there is no change on the amplitude of diffracted wave after the diffraction, the

total wave that arrive at detector is determined by

A

∫

d~rρ(~r)ei
~ki·~rei

~kf ·(~rd−~r) = Ae
i~kf ·~rd

∫

d~rρ(~r)e
i(~ki−~kf )·~r (1.11)

Plugging Eq. 1.7 into the above equation, we get

Ae
i~kf ·~rd

∫

d~rρ(~r)e
i(~ki−~kf )·~r = Ae

i~kf ·~rd
∫

d~rρ(~r)e−i ~Q·~r (1.12)

If we define

F ( ~Q) =

∫

d~rρ(~r)e−i ~Q·~r (1.13)

which means the F ( ~Q) is the Fourier transform of ρ(~r). The Eq. 1.12 can be simplified

as

Ae
i~kf ·~rd

∫

d~rρ(~r)e−i ~Q·~r = Ae
i~kf ·~rdF ( ~Q) (1.14)

Finally the intensity of the diffraction peak is determined by

A2|F ( ~Q)|2 (1.15)

where F ( ~Q) is called structure factor. Furthermore, the structure factor is the one to

connect the real space (~r) to reciprocal space ( ~Q). Because of this one-to-one direct
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relationship, the reciprocal and real space analysis potentially can give us the same

set of structure information.

For perfect crystal, its electron density ρ(~r) is periodic. Then its counterpart in

reciprocal space, F ( ~Q), has non-zero values only when the Bragg condition is satisfied.

It implied that there are only Bragg peaks appearing in the diffraction pattern on

the detector. However, in real experiment, all crystals are not perfect. They have

different defects and heterogeneity in their configuration. Therefore, Bragg peaks

have a finite width and there may be significant diffuse (inelastic) scattering that fall

between the Bragg peaks [21].

1.3.3 Powder diffraction

In our experiments, we use the powder samples, which usually contain large

number of randomly oriented crystals. By saying that, we assume that each possible

orientation is equally represented in the powder sample. For some crystals in the

sample, the Bragg condition will be satisfied and the Bragg peak will appear. Because

of homogeneity in crystalline orientation, the azimuthal angle of the incident beam

doesn’t matter in powder case. Therefore, in powder diffraction pattern, we can’t

directly obtain the phase information but we can get the magnitude from the intensity

of the peaks.

For instance, when Bragg’s condition is satisfied for any hkl plane, the reflections

from all crystals in the sample lie on a cone, which is called Debye-Sherrer cone. From

the perpendicular view of the detector area, we can see the smooth circles formed

on the powder pattern because many bright spots from crystals are continuously

connected. The obvious result is that the information from the three-dimensional

reciprocal space has been compressed into one dimension. Due to the complexity of

such powder patterns, it is usually very difficult to interpret them without further

information.
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Chapter 2

Crystallographic Analysis

Crystallographic analysis [14] is a method based on diffraction techniques to

study the structure information inside crystals [22]. The method for studying crystal

structure has been developing since last century [23, 24]. It is focus on analyzing the

diffraction patterns coming from the certain sample. In particular, powder diffraction

pattern is one of such cases that many scientists are working on. Since most materials

can not form large crystals, the powder diffraction [25] overcomes the single crystal

technique and becomes one of the most popular techniques to characterize the crys-

tallographic structure, crystallite size, and preferred orientation in polycrystalline or

powdered solid samples [26]. There are several databases [17, 23, 27] existing now

for scientists to index their diffraction pattern in order to find new phases in the

sample. However, it was hard to do when the databases didn’t contain many known

structures. So powder diffraction was not popular until Rietveld method [28, 29] was

developed in 1960s. Rietveld method is also one of the techniques I have been using

for the high throughput parametric study during my PhD research.

This chapter focuses on the Rietveld method only as one of major crystallographic

analysis methods. Firstly, section 2.1 provides an overview of powder diffraction

pattern, as the basis of the crystallographic analysis. Then in section 2.2, The detailed
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introduction of Rietveld method is presented.

2.1 Theoretical Background

In this section, I will focus on introducing the background knowledge of pow-

der diffraction data. Usually a diffraction histogram is used to present the powder

diffraction data. As we discuss in chapter 1, the intensity I in diffraction pattern

is a function of the structure factor, which can be the function of scattering vector

~Q or scattering angle 2θ eventually. Normally people use the scattering vector ~Q

as the independent variable since it contains the effects of the scattering angle and

wavelength λ. Another advantage to use ~Q is that we can measure our diffraction

data under different experimental setup, e.g., different scattering angles and different

wavelengths. Finally we can compare them in the same space, reciprocal space [25].

As noted in many books [30] on powder diffraction, the total intensity detected

from diffracted X-ray or neutron beam, IT , is composed of the following parts:

IT = Ic + IIC + IMC + IBG (2.1)

where Ic is the intensity of coherent scattering, IIC is the intensity of incoherent

scattering, IMC is the intensity of multiple-scattering and IBG is the intensity of the

background. Next I will explain them one by one in more details.

Normally the intensity of coherent scattering, Ic, is the largest term in Eq. 2.1.

Coherent Scattering refers to the elastic scattering. It usually results all the Bragg

peaks in the diffraction pattern as function of 2θ in X-ray diffraction or time of

flight in neutron diffraction. As the intensity is determined by structure factor as

we see in chapter 1, it contains the information about atom and lattice, e.g., atomic

coordinates, lattice parameters and etc. According to classical books [12, 31] about

the coherent scattering, its intensity is determined by scattering cross section, dσc
dω ,
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the absorption factor A, and polarization factor P as following the equation below:

Ic = APC
dσc
dω

(2.2)

where C is to used for normalizing the cross section term in the unit of intensity

per atom. The cross section term, dσc
dω , can be computed directly given the charge,

mass of the particle in the sample and scattering angle of the incident beam. The

analytical determination form for it can be found in many other books [12, 31].

Comparing with coherent scattering, the incoherent scattering is the inelastic

scattering. For X-rays, the incoherent scattering is also called Compton scattering [12]

while for neutrons it is from nuclear spin scattering [32]. Since it is inelastic, the

energy of scattered beam always is less than the energy of incident beam, which means

that there is energy transferred from incident beam to targeted atoms. It may lead

atoms to diffuse. So it is also part of diffuse scattering, which generally includes all

intensity that is outside Bragg reflections. It is usually difficult to directly separate the

intensity of incoherent scattering from multiple-scattering and background although

it can be calculated approximately in some cases, e.g., if the multiple-scattering is

ignored.

Multiple-scattering [33] is very complex process in general. Since it is the term

only giving greater contribution to the total intensity than the background, people

usually ignore it although it happen in most scattering process. However for some

application, e.g., X-ray absorption Spectroscopy data analysis, it becomes especially

important. Scientists develop different modeling such as diffusion process [34] to sim-

ulate it. Because it is computationally intensive, it also attracts computer scientists

to apply different algorithms to solve it numerically [35].

The intensity of the background in Eq. 2.1 refers to all scattering without the

sample, e.g., the scattering from the sample holder, air and etc. In the experiments,
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people always try to get as less background as possible in order to make the data

analysis easier. Usually high background implies certain problem and we have to

change the condition to solve it. For example, it could be because of the strong

fluorescence and then we have to choose different wavelength to do the measurement.

If the sample is in amorphous phase, it is likely to produce strong background that

make the data analysis more difficult [36]. It is the case where the conventional

crystallographic analysis may not work. In common cases, we model the background

by using different type of polynomial functions.

From the powder diffraction data, we can extract the structure and phase infor-

mation [37]. For example, For each diffraction peak, it represents a particular plane

denoted by Miller index as we discuss in the first chapter. The peak position contains

the information of the size and shape of the unit cell for the crystalline sample [25].

The peak width depends on more factors: the size of the crystallites, the strain in

the sample and instrumental parameters. Combining the information of diffraction

peaks including their relative intensities, we can identify the sample and determine

its structure. More importantly, for high throughput parametric study, we can con-

trol the certain parameter, e.g., doping or temperature, to do the powder diffraction

experiments in order to see how the sample system response. As one of the possible

results, we could discover a new phase appearing during this process. In this way,

the insitu measurement can help us understand new science in a complex material

system.

Overall, powder diffraction is very useful technique in characterizing the structure

information of the sample. However, it usually produces highly overlapped diffraction

peaks, which leads the analysis on the data becomes very challenging.
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2.2 Rietveld Method

2.2.1 Introduction

Rietveld method is a technique to extract structure information based on the ex-

perimental diffraction data and given structure model. It was developed by Hugo Ri-

etveld to analyze the experimental data from either X-ray or neutron powder diffrac-

tion [28, 29]. It accounts for the instrumental effect and structural factors into the

regression model, which make itself very complex. Theoretically, Rietveld method

is a non-linear least square optimization process and provides the values of physical

parameters by matching the experimental pattern with calculated pattern based on

the predetermined structure model [38]. By varying the values of refined parameters

during the process, the best fit can be obtained. In this section, I will introduce the

mathematical model of Rietveld method and how it is implemented in order to solve

real problems.

2.2.2 Mathematics

Within the weighted least square framework, Rietveld method is to minimize the

following function based on all the intensities in the experimental dataset [39].

My =

N
∑

i=1

wi(yoi − yci)
2 (2.3)

where yoi refers the ith data point in measured dataset and yci is the calculated

intensity for the point based on given structure model. The wi is equal to the inverse

of the variance on the ith data point and N is the number of data points in the

experimental dataset.

Since Rietveld method itself is a structure refinement method rather than struc-

ture solution [26], as part of the setup, it requires the structure model that make both
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physical and chemical sense and a set of reasonable initial values for the parameters

inside the model.

Rietveld method models the intensity at ith point of the diffraction pattern by

the following equation, according to Young’s book [38]:

yci = As
∑

g

LgPg|Fg|2φ(2θi − 2θg) + ybi (2.4)

where A is an absorption factor, s is the scale factor. The g represents the Miller

indices, hkl. Lg is a function that contains the factors of Lorentz, polarization and

multiplicity. Pg is the preferred orientation function that depends on g.Fg is the

structure factor as we discuss in the first chapter. φ is the peak profile function that

can be selected from a set of available functions based on the sample and experimental

setup. As the last one, ybi is the intensity of the background at the ith point, which

is often fitted by one of several polynomial functions.

The absorption factor, A, is usually a constant for flat sample in X-ray diffraction.

In this configuration, it depends on the wavelength and the scattering angle. Since the

absorption factor varies for different instrument and sample geometry, many Rietveld

programs provides different functions to calculate it in different setting [40, 41]. For

example, normally a exponential polynomial function is used to model the absorption

factor for cylindrical sample in the Debye-Sherrer geometry, which I have been used

for all the experiments in my PhD study, while there are other nonlinear functions

for other instrumental setup in order to consider the surface effect.

Unlike the absorption factor, the Lorentz and polarization factors are rather

modelled differently for different type of radiation. The polarization factor only ap-

plies to X-rays and the Lorentz factor depends on it while for time-of-flight (TOF)

neutrons it depends on the d-spacing and scattering angle [40, 41].

Among all the parameters that are defined above in Eq. 2.4, the peak profile part
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is the most popular topic that scientists have been discussing [42, 28, 29, 43, 44, 45]

even before Rietveld method was developed since it plays the most important role

in Rietveld refinement. Different peak profile functions are provided to deal with

time-of-flight neutron diffraction, constant wavelength neutron and X-rays diffraction,

respectively [38]. The simplest profile function is Gaussian function although it is

proper only when there are no particle size and inhomogeneous strain effects [43].

Specifically, the Gaussian peak function is a function of peak width and scattering

angle, which is widely used in the model of X-ray and neutron diffraction profiles. In

reality, the peak function is usually asymmetric because of the instrument geometry

and strain inside the sample. Lorentzian function is applied to fit the asymmetric

feature in the peaks. Combining Gaussian and Lorentzian function, Pseudo-Voigt

function is the most useful one among all peak profile functions [45]. It consistently fits

better than pure Gaussian or Lorentzian function for diffraction patterns up to now

although there may be better function for certain sample and instrument setup [43].

After introducing the structure model, now let us focus on the weighting factor

at data point i, wi, in Eq. 2.3. As we mention above, wi is the inverse of the

variance on observed data point i [39, 46]. For ideal case, we assume the observation

is independent of each other and for each point its statistical fluctuation has the

Poisson distribution since it is the counting number on certain position of detector

screen. As in Eq. 2.3, the probability that we have observed intensity yoi at point i

is

P (yoi) = λyoiexp(−λ)/yoi! (2.5)

where λ is the expected value of the observed intensity at ith point. Furthermore, it

is also the variance of yoi. So to get better weighting factor now, we need to estimate

the λ. On the other hand, Eq. 2.5 can be view as the the probability distribution

of parameter λ given the known intensity yoi. In this case, we can get the unbiased

estimation of λ by calculating its mean, which is yoi+1 if we assume λ is a continuous
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variable [47]. It is the application of Bayesian inference [48]. However, the estimates

from Bayesian approach heavily depends on the prior distribution. In the literature,

Rainwater et al. [49]use an unbiased estimate of λ based on the assumption of the

prior distribution is uniform over all possible values.It also leads to the same result

as yoi+1. However, Box et al. [38] argue that the prior distribution as λ−0.5 is more

proper, which results that the estimate of λ is equal to yoi+0.5. Overall, considering

the yoi is much larger positive number from experimental data, yoi is good enough to

use as the estimate and still widely used in conventional Rietveld softwares [40, 41].

With understanding the means of all parameters in Eq. 2.3, I am going to de-

scribe how Rietveld method works as the following. The purpose of the method is to

find the refined values of all variables by matching the calculated pattern with the

experimental pattern. In other words, we need to find the minimum of Eq. 2.3. In

order to do so, we take the derivative of it respect to parameter pk and set it to zero

if we assume the calculated model is a function of parameters pk, k = 1, ..., n:

∂M

∂pk
= −2

N
∑

i=1

wi(yoi − yci)
∂yci
∂pk

= 0 (2.6)

Since the model to calculate yci is non-linear, it has no analytic solution. So we can

apply Taylor series expansion about al for parameter pl to approximate it to the first

order:

yci(pl) = yci(al) +
∑

l

∂yci
∂pl

△pl (2.7)

If we assume that

△yi = yoi − yci(al) (2.8)

Then Eq. 2.6

2

N
∑

i=1

wi(△yi −
∑

l

∂yci
∂pl

△pl)
∂yci
∂pk

= 0 (2.9)
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By rearranging the above equation, we get

N
∑

i=1

wi
∂yci
∂pk





∑

l

∂yci
∂pl

△pl



 =
N
∑

i=1

wi△yi
∂yci
∂pk

(2.10)

Here we get the matrix form

~x = ~A−1~b (2.11)

where the element xl of vector ~x is equal to△pl. The element Akl of matrix ~A is equal

to
∑N

i=1wi
∂yci
∂pk

∂yci
∂pl

, and the element bk of vector ~b is equal to
∑N

i=1wi△yi
∂yci
∂pk

.

The matrix A is so-called the Hessian matrix [26, 40, 41]. Given an initial values of

every refined parameters, Hessian matrix can be calculated explicitly. Based on final

equation 2.11, the increment of the parameter value can be obtained and then the

current value of parameter is recalculated. The whole process will run repeatedly until

it doesn’t decrease the residual M any more or it reaches the termination criterion.

This approach is called Gauss-Newton method [50]. Because of the probability of

divergence [51, 52], there is a shift factor, f , to control the absolute value of the

increment as

pm+1
l = pml + f△pl (2.12)

where m is the iteration number. In this way, it avoids some failed cases by decreasing

the increment systematically. Still if the initial values of parameters are far from the

right ones, it may still come to divergent point.

As one of more efficient ways, Levenberg-Marquardt method is widely used [26,

40, 41]. It has the same procedure as Gaussian-Newton method but instead uses the

shift factor it employs the damping factor based on Eq. 2.10. By using this factor,

it can force the incremental vector to move along the direction of steepest decent.

Although it is implemented in many existing Rietveld programs [53, 54, 40, 41, 55,

56, 57, 58], it can’t ensure that the found result is the global minimum of function
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M [51, 52]. Usually people always want to plot experimental and calculated patterns

during Rietveld refinement to see whether the problems appear.

In practice, Rietveld refinement needs a lot of human effort to get as better

result as possible. First we want to check whether there are a lot of sharp peaks in

diffraction pattern in order to use the method [38]. Normally Rietveld can’t work

with the pattern with only broad background that can be obtained from amorphous

material. Next an initial structure model that is close to the right model and initial

values for parameters in the model are required . Furthermore, we need to select

proper peak profile and background functions as I mentioned earlier. During the

refinement, we have to consider how to refine so many parameters (in which order

or how to group them). Overall for high throughput parametric study, these become

especially problematic.
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Chapter 3

Next-generation Rietveld analysis:

SrRietveld

3.1 Introduction

Currently, many computer programs have been developed for Rietveld refine-

ment [40, 41, 55, 56, 57, 58]. However, most software programs of this type require

intensive user inputs and there is also a sharp learning curve for new users. The

high data throughput from new generation diffractometers [59, 60, 61, 62], such as

POWGEN at the Spallation Neutron Source (SNS) at Oak Ridge National Labora-

tory, is more than the conventional Rietveld refinement software can easily handle.

Poor convergence of current programs is another obstacle for accurate determination

of refined parameters and conventional refinement software often diverges, requiring

significant human intervention to find the optimal structure solution. SrRietveld is

designed to improve the user experience in computer aided Rietveld refinement.

The new software makes use of the existing refinement programs GSAS [40] and

FullProf [41], which are already widely used. These programs are used by SrRietveld

as refinement engines and SrRietveld provides an automation layer and a graphical
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user interface. The new functionalities are implemented in Python packages that can

manipulate and communicate with the refinement engines. The refinement process

can be controlled from SrRietveld and the results can be displayed and analyzed. This

architecture separates the controlling scripts from the refinement engines and also

allows the implementation of other engines in the future. Using SrRietveld, average

users can set up high-throughput refinement quickly and save time in analyzing large

numbers of data-sets. Meanwhile, advanced users are still able to customize the

refinement routines, create their own Python scripts, or even develop new software

applications based on SrRietveld’s functionalities. The SrRietveld codes are open

source and delveloped by a team (in Alphabet order): Chris Farrow, Jiwu Liu, Pavol

Juhas, Peng Tian, Simon Billinge, Wenduo Zhou and Yingrui Shang.

3.2 Design Principles

SrRietveld has been developed as part of the NSF-funded distributed data analy-

sis for neutron scattering measurements (DANSE) project in the Python language [63]

using object oriented programming (OOP) concepts. Python is extensively used in

scientific software development. It is cross-platform and suitable for fast develop-

ment. Also there are many well designed packages for scientific programming and

visualization, such as Matplotlib [64], NumPy [65] and SciPy [66]. The OOP design

enables SrRietveld to be easily maintained and extended.

The philosophy of the SrRietveld design is to improve user efficiency during a

typical work flow by controlling existing Rietveld refinement engines. For example,

human intensive steps to guide a refinement to a local minimum can be automated,

and multiple (hundreds or thousands) of refinements can be carried out using the

same refinement template. Refinement information and results are stored in a flexi-

ble HDF5 data structure [67] allowing easy organization of a large number of refine-
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ments. SrRietveld also provides powerful tools for visualizing refinements. Fits can

be plotted in real-time during refinement, as can selections of refined parameters plot-

ted against refinement number or some other meta-parameter such as temperature.

Pre-written scripts are provided for automating common tasks, such as refining from

coarse guesses of initial parameters, sequential refinement, etc. It is also possible for

advanced users to develop their own macro scripts and contribute to the development

of SrRietveld. Users are supported through an online community where features can

be requested and bugs reported.

3.3 Implementation

The architecture of SrRietveld is shown in Figure 3.1. SrRietveld consists of

several programmatic units, indicated by boxes in Figure 3.1. The SrRietveld user

interface is a full-featured graphical user interface (GUI) that enables the user to

conveniently configure the refinement routines, modify inputs, and investigate and

analyze the results. The GUI interacts with a control layer that coordinates com-

munication with the refinement engines, PyGSAS and PyFullProf. PyGSAS and

PyFullProf are Python libraries that give programmatic access to GSAS and Full-

Prof. The implementation of PyFullProf, PyGSAS and the control layer ensures that

SrRietveld has consistent behavior even while using different engines, allowing refine-

ments to be readily carried out on the same data using either engine. The HDF5

data structure has been designed to be relatively small in size and quick to load, even

when handling thousands of datasets.

As one of the developers, I lead the development of PyGSAS, which is comparable

with the earlier developed PyFullProf by Wenduo Zhou. As a team, Jiwu Liu, Yingrui

Shang and I have been involving the design and development of SrRietveld control

layer and the GUI. Specifically, Jiwu Liu developed the HDF5 data structure and
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Figure 3.1: SrRietveld software architecture. The User Interface, SrRietveld, HDF5
Data Structure, PyGSAS, and PyFullprof are python packages in the SrRietveld
project. The GSAS and Fullprof represent the underlying refinement engines.
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Yingrui Shang is more focus on the GUI while I coded most of the SrRietveld control

layer. SrRietveld incorporates most of the major functionality supported by the

current versions of FullProf and GSAS. However, some features, such as the refinement

of magnetic phases, are not implemented, though this is planned for a later release.

SrRietveld is easy to use. It uses automation processes and intelligent control of

the work flow whereby users are relieved of a large number of repetitive inputs. Tools

are also provided in SrRietveld for extending and interrogating refinement results.

Users are able to carry out a series of Rietveld refinements on one or more data sets

automatically. The program captures errors and attempts to recover automatically

when a refinement diverges, and thus increases the robustness of this sequential re-

finement process. In addition to the ease-of-use, SrRietveld provides flexibility and

extensibility to advanced users. Since SrRietveld is modular and designed with focus

on extensibility, the default behavior of the software can be redefined. Advanced

user scripts can be written in Python to give new functionalities. Such a script is

demonstrated below, which fits a Debye model for the lattice dynamics to the tem-

perature dependence of the refined thermal parameters. In future releases we will

allow easy incorporation of user-defined scripts into the program for easy sharing.

Scientific programmers can also implement the application programming interfaces

provided in SrRietveld into their own applications so SrRietveld’s functionality can

be incorporated into other programs.

SrRietveld is open source software distributed under the BSD License [68]. It

is free to use, subject to the copyright restrictions and disclaimer, though we ask

that papers published from work done using SrRietveld cite our work, as well as

the paper describing the particular refinement engine used (FullProf or GSAS). More

information can be obtained from the project web pages [69] or by contacting professor

Simon Billinge (sb2896@columbia.edu).

SrRietveld is under active development and we encourage users to post bug re-
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ports and feature requests on the SrRietveld online community group (details in the

documentation). The plans for future releases include support for parallel computa-

tion, magnetic diffraction, and features for engineering diffraction analysis.

3.4 Application of SrRietveld I: NaCl

To demonstrate a typical use case, sequential refinements were carried out on x-

ray powder diffraction patterns measured from NaCl at a series of temperatures. The

data were collected at beamline 11-ID-B of the Advanced Photon Source (APS) at Ar-

gonne National Laboratory (ANL). The NaCl powder was obtained from PuratronicR©

with 99.999%, 5N grade purity. To demonstrate the ability to handle data from a

high throughput instrument, many data-sets were collected using a low-resolution

high throughput mode [70]. The sample was contained in a 1 mm diameter kapton

tube mounted perpendicular to the synchrotron beam and cooled using an Oxford

cryostream liquid nitrogen cooler. Data were collected at 307 temperature points

between 155 K and 500 K on a 2D Perkin-Elmer amorphous silicon detector mounted

128 mm behind the sample and perpendicular to the beam. The beam energy was

58.26 keV giving an x-ray wavelength of 0.2128 Å. The temperature was ramped

continuously at 3 K/min during data collection.

To improve the convergence during the sequential refinement, the refined results

from the previous temperature point were used as initial values in the refinement on

the data set at the following temperature point. The first point to be refined was

the lowest temperature point. A refinement scheme was used whereby parameters

were turned on in turn according to normal practice [38] beginning with a Lebail

refinement [71] of the lattice parameters and the background, followed by Rietveld

refinements where the scale parameter, zero shift parameters, lattice parameter, etc.,

were switched on in turn. This procedure is automated in SrRietveld and requires no
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user input after initial setup. Although in principle in a sequential refinement it should

not be necessary to follow this scheme at every step since the initial parameters from

the previous refinement are used and are already close to the minimum in practice we

find that at some temperature points the refinement will still diverge if this scheme is

not followed. However, SrRietveld provides great flexibility. For example, if speed of

refinement is an issue the scheme could be changed so that all parameters are switched

on at once after the first refinement, and the step-by-step scheme only turned on if

a refinement diverges. Because SrRietveld controls the engines with scripts, there is

great flexibility for automating such a procedure.

In the NaCl refinements, the full-set of refinable parameters used was the scale

factor, the zero shift factor, the lattice parameter, the background parameters, the

peak profile parameters, and the isotropic thermal displacement parameters. The

starting model was taken from the literature [72]. Refinements were carried out

on the same data using both GSAS and FullProf engines within SrRietveld. Both

temperature series refinements used the same SrRietveld script, with the refinement

engine changed from FullProf to GSAS by simply loading a different type of of tem-

plate in the GUI. The ease of refining using both GSAS and FullProf engines is one

of the great strengths of SrRietveld as we show here. Although GSAS and FullProf

models are highly similar, there are subtle differences in how they handle experi-

mental effects. For example, the way they handle the background function is quite

different. In the FullProf example, user defined points are imported and a linear

interpolation is applied between them for background correction. In the GSAS case,

the background function is fitted to the data together with Rietveld profile. We have

used the background function 6, a power series with negative power terms [40]). Also,

the peak profiles are slightly different. The pseudo-Voigt peak profile function was

used in the FullProf case. The GSAS refinements used profile function 3, which is

also a pseudo-Voigt, but parametrized in a slightly different way [40]. These model
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Figure 3.2: Temperature dependence of SrRietveld refinement results for NaCl using
FullProf (blue dots) and GSAS (red squares) engines. (a) lattice parameter, a, and
(b) atomic displacement parameters, Uiso, at Na (crosses for FullProf, plus markers
for GSAS) and Cl (dots for FullProf, squares for GSAS) sites. Dashed lines mark
fitted Debye model curves.
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differences result in slight differences in the physical parameters refined from the data

from each engine, as evident in Fig. 3.2.

Another feature of SrRietveld is that the parameters from many refinements are

retained in the Python data-structure, allowing post-processing scripts of arbitrary

complexity to be written. Here this feature is illustrated by writing a script to fit the

Debye model to the refined Debye-Waller factors from Na and Cl from each of the

engines. It is possible for advanced users to make plug-ins for SrRietveld, which can

be saved and reused by the user, and also readily shared with other users.

The theoretical values of Uiso are calculated from [73]

Uiso (T ) =
1

8π2

{

6h2

MkBθD

[

1

4
+

(

T

θD

)2 ∫ θD/T

0

xdx

ex − 1

]}

+ σo (3.1)

where the refinable parameters are θD and σo, the Debye temperature and offset,

respectively. Additionally, T is temperature in Kelvin, M is the mass of the ion in

question, kB and h are the Boltzmann and Planck constants, respectively. The fitting

to the refined Uiso data is carried out with the least square optimization algorithm

available in the SciPy Python scientific computing package [66]. The best-fit lines are

shown in Fig. 3.2 as dashed lines through the data.

The differences between the Debye temperatures and offsets refined from each

engine are much larger than the estimated standard deviations. The esds give a

measure of the precision of the fit, and not the accuracy of the Debye temperatures. To

understand this, note that the dashed lines fit well to the Uiso curves, but the slopes

and offsets of the curves are clearly different. The differences in slopes and offsets come

from differences in the mathematical model for the line-shapes and backgrounds used

in FullProf and GSAS, respectively. This illustrates the advantage of being able to

refine data using two refinement engines. If the FullProf and GSAS models are equally

valid and we cannot say one or the other is inferior, then the dispersion of results from
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the two engines gives a realistic estimate of our uncertainty in the accuracy of the

refined parameters. In this case we may take into account the result from both engines

to get estimate of ΘD,Na = 305± 17 K and ΘD,Cl = 257± 9 K where the estimated

uncertainties now reflect accuracy rather than precision. The corresponding offset

parameters obtained by combining the Rietveld and GSAS results are 30 ± 50 Å−1

and 20 ± 40 Å−1 for Na and Cl, respectively. Therefore there is no evidence for a

static offset in the Debye model that would indicate a significant number of static

defects in the structure.

In other experiments, the Debye temperature of NaCl can be determined either

by measuring the elastic constant or by fitting the specific heat data. The ΘD values

measured with these two methods are 321.2± 1.6 K and 320.6± 1.5 K, respectively,

reported by Lewis et. al. [74]. Broadly speaking the Debye temperatures measured

here are in good agreement. Because of the simplicity of the Debye model, and

the different way that different measurements weight the phonon density of states,

the different approaches are not expected to yield the same Debye temperatures.

Furthermore, the thermodynamic measurements give some average of the full density

of states whereas the diffraction measurement differentiates the behavior of Na and

Cl. The agreement between the values determined from diffraction and those obtained

from other methods are therefore quite acceptable.

The refinement engines used in the current release of SrRietveld are FullProf

and GSAS. Along with many others in the community, we would like to thank Juan

Rodriguez-Carvajal and the other FullProf developers and Robert B. Von Dreele,

Brian H. Toby and the other GSAS developers, for their enormous efforts in devel-

oping FullProf and GSAS. We would also like to thank the other developers in the

DANSE project for useful advice and help. We appreciate the cooperation and valu-

able suggestions from Emil Božin, Jason Hodges, Ashfia Huq, Ke An, Paolo Radaelli

and Laurent Chapon. We thank Timur Dykhne for help with the documentation. In
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addition to their suggestions, Aziz Daoud-Aladine, Jon Hanson, Vanessa Peterson,

and Andrew Studer shared data for testing which we are grateful for. The authors

also would thank Christos Malliakas for providing the NaCl sample and assistance on

the measurements on this sample. SrRietveld was developed as part of the DANSE

(distributed data analysis of neutron scattering experiments) project, which is funded

by the National Science Foundation under grant DMR-0520547. Use of the Advanced

Photon Source was supported by the U.S. Department of Energy, Office of Science,

Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

3.5 Application of SrRietveld II: Error estimations

In Rietveld refinement [75], a non-linear least squares method is applied to refine

model parameters in order to give a best fit to experimental data. It is also important

to get accurate estimations of the uncertainty on the corresponding parameter val-

ues, for example, to differentiate between competing structural models based on the

refined parameters. This section explores three different methods for estimating un-

certainties, applied using two different popular refinement programs, GSAS [40] and

FullProf [76, 41]. To facilitate this process we use the SrRietveld program [77] that

automates GSAS and FullProf using Python [63] scripts and a graphical user inter-

face. The bootstrap error estimation methods required many thousands of Rietveld

refinements to be carried out which was straightforward in SrRietveld.

Based on the standard least-square weighting schemes built into most of the

Rietveld refinement programs, the estimated standard deviations (esd) of refined pa-

rameters are calculated through the Hessian matrix [75]. Since the Rietveld method

forms a nonlinear multivariate model, it is not possible to get a closed form Hes-

sian matrix and an iterative optimization procedure is used to refine parameters and

calculate their standard deviations.
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Estimates of uncertainties from Rietveld refinements are widely thought to be

problematic. For example, the model is approximate and includes things such as

peak profile and details of how the background is calculated, which are often not

ideal. It is difficult to tell whether the refinement is converged at the global mini-

mum point, which is a requirement for the estimated uncertainties to reflect the real

uncertainty [78, 27, 79]. Even at a global minimum, if the model is inadequate to

reproduce all the features in the diffraction pattern, the correct standard deviations

cannot be calculated by statistical methods [80].

In this section, in addition to the normal uncertainty estimation coming directly

from the least-squares minimization procedure we use a Monte Carlo resampling

and a subset sampling approach where we use a pseudo random number generator

through SrRietveld [77] to do uncertainty estimation for refined parameters. This

is done on LaMnO3 data from the neutron powder diffractometer, NPDF, at Los

Alamos National Laboratory. In the Monte Carlo resampling method, an ensemble

of equivalent data-sets are created by fluctuating the intensity on each data-point

using a random number generator consistent with the known measurement errors.

In subset sampling a subset of data-points is selected randomly and the fit is made

to that reduced data-set. This is done many times to determine the distribution of

refined parameter values from the many subsets. It works because the number of

independent measured points greatly exceeds the number of refined parameters. This

method has the advantage that it can estimate uncertainties on refined parameters

even when the measurement error is not known.

We find that all three methods yield uncertainty estimates that are comparable

to each other. For all parameters we find that GSAS and FullProf yield the same

refined values. Therefore, model errors coming from subtle differences in how GSAS

and FullProf parameterize peak profiles and backgrounds don’t result in larger errors

than those from the statistical fluctuations in the data. We also carry out a sensitivity
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analysis of refined values when different statistical weights are used in the least-squares

equation. This is done by setting different, though reasonable, estimated errors on

the data-set before refining the data in FullProf. Applying different weights to the

same data-set resulted in a number of parameters refining values that sometimes

exceed five standard deviations from the values with the correct weights, and so we

note a high sensitivity of refined values to the statistical weights used in the least

squares equation. The use of both GSAS and FullProf within SrRietveld has yielded

a very complete picture of precision and accuracy of all refined parameter values. We

also summarize the subtle differences between how GSAS and FullProf calculate and

report standard deviations and reconcile the two approaches.

3.5.1 Methods

We carried out the refinements on previously published data [81, 82]. The data

are neutron powder diffraction data from LaMnO3 measured at 300 K on the NPDF

diffractometer at the Lujan Center of Los Alamos National Laboratory. The data

were refined using the GSAS [40] and FullProf [76, 41] programs controlled by the

SrRietveld program [77]. SrRietveld is a highly automated program for Rietveld

refinement. It not only can do the conventional refinement by using GSAS and

FullProf as the engines but also can automate the refinement of large numbers of

datasets with minimal human effort.

The original diffraction data are stored in GSAS time-map format [40]. These

files can be read by GSAS but not FullProf. In order to use both engines to refine the

data we therefore must transform the data so that it can be recognized by FullProf. To

convert the data we used functions in rawplot, part of the GSAS package, controlled

by SrRietveld. Rawplot does not propagate the errors on the data and so we estimated

the uncertainties using
√

Iobs/Ii, where Iobs is the observed intensity and Ii is the

incident spectrum intensity. During the conversion in rawplot the incident spectrum
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is smoothed, and our approach assumes that after smoothing the incident spectrum

does not contribute error to the normalized intensities, but without having access to

details of how this was done we took this as being a reasonable starting point. We

refer to this as the no-spectrum-error (NSE) method.

The problem with this calculation is that it doesn’t consider the errors on the

incident intensity. On the other hand, GSAS uses a fitted function with a few parame-

ters to describe this spectrum. When GSAS carries out a refinement, the variance and

covariances obtained from the fitting of the spectrum are used by GSAS to propagate

the estimated uncertainty for each point in the incident spectrum and this is then

included in the calculation of the statistical weight used in the least-squares equation

for each time of flight (TOF) channel. However, this is happening during a GSAS fit

but not in Rawplot, which suggests a two step approach is needed for converting time-

map data to FullProf compatible data while propagating the errors correctly. First,

run rawplot to get the intensities. Then, carry out a GSAS refinement to generate

the .LST file [40] which includes the weights for each point in the diffraction pattern.

The standard deviation on each point in the .LST file of normalized intensities is the

square-root of the inverse weight. Finally, a data file in (x, y, σ) format is created

using these values. We refer to this as the spectrum-error (SE) method for converting

the time-map data.

The SE method gives more accurate estimates of the standard errors on the data,

but it requires a GSAS refinement to be carried out as part of the steps in generating

a FullProf input file from the Los Alamos time-map data. It would be preferable if

the NSE method works sufficiently well to be used. However, as we see below, this

is not the case. The results of Rietveld refinements are highly sensitive to the values

used as weights in the least-squares equation. Automated versions of the conversion

program for converting GSAS-time-map to FullProf compatible data will be included

in future releases of SrRietveld.
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Before the refinement, instrumental parameters were calibrated using standard

nickel data. The standard orthorhombic structure [81, 83] was used for LaMnO3 in

the Pbnm space-group. The refinable structural parameters were a, c, La’s X and Y

fractional coordinates, O1’s X and Y , O2’s X , Y and Z fractional coordinates and

all isotropic thermal factors. The profile used was time of flight convolution pseudo-

Voigts with back-to-back exponential function (TOF profile function 3 in GSAS and

Npr= 9 in FullProf) and the background function used was a polynomial function

for both engines. SrRietveld allows parameters to be turned on sequentially to im-

prove convergence. The refinement strategy used was to turn on scale factor, then

background (polynomial function with 6 coefficients), zero shift, lattice parameters,

peak profile parameters (sigma1, sigma2), all allowed atom fractional coordinates and

finally isotropic thermal factors. Examples of Rietveld fits to the data from GSAS

and FullProf are shown in Fig. 3.3.

Standard Uncertainty Estimation in Rietveld refinement

The standard Rietveld method is to calculate the diffraction pattern ycalc,k(pi),

on a grid of N points that match the data points, from a model with n parameters,

pi, and vary the parameters in such a way as to minimize the properly weighted sum

of squared differences,

M =
N
∑

k=1

wk(yobs,k − ycalc,k)
2, (3.2)

between the calculated function ycalc,k and a measured one yobs,k. Here wk is a

weighting factor that depends on the statistical uncertainties on the measured data as

we discuss below. If we find the minimum value of the above function, we find the best

fit. As described in standard textbooks [75, 30], the minimum is found by taking the

first derivative of Eq. 3.2 with respect to the parameters, pi, and setting it to zero. The
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Figure 3.3: (a) TOF neutron powder diffraction pattern on LaMnO3 (blue circles)
with the best fit calculated pattern from FullProf (red line). The low d-spacing, short
TOF, region to the left of the dashed line has been zoomed in 6 times for clarity.
The green line offset below is the difference between the calculated and measured
patterns. The black markers indicate the peak positions. (b) As (a) but the red
curve is calculated using GSAS.
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resulting system of equations that must be solved can be written in the matrix form

as Ax = b where A is the Hessian matrix and Aij =
∑

w
∂ycalc
∂pi

∂ycalc
∂pj

. Inverting this

matrix equation, we get x = A−1b. The estimated standard deviation for parameter

pi, σi, can be determined from the diagonal elements of the variance-covariance matrix

that is the properly normalized form of A−1, thus, σi ∝
√

(A−1)ii [30].

The standard deviation on refined parameters pi are calculated using the same

formula in both FullProf and GSAS,

σi =

√

(A−1)iiχ
2
ν , (3.3)

where χ2ν = M/(Nobs − Nvar) and Nobs is the number of observations in all his-

tograms and Nvar is the number of variables in the least-squares refinement.

As the FullProf manual mentions, it reports two different χ2ν values. One is

computed by considering all points in the fit and the other is computed by summing

over only those points that are under Bragg peaks [76, 41]. This latter definition

results in slightly larger χ2ν values since it gives greater weight to regions of the

pattern where the fit is less good. For example in our fits this resulted in χ2ν,FP = 1.77

compared to 1.63 for the conventional definition that includes all points in the fitted

spectrum. It is this definition of χ2ν,FP that FullProf uses in its estimation of the

parameter uncertainties in Eq. 3.3, which increases the estimated errors reported by

FullProf compared to those from GSAS.

Monte Carlo Resampling of Data Probability Distribution

In a powder diffraction experiment, each observation is assumed to come from a

Poisson distribution due to the random nature of the scattering processes. If more

than around 20 counts have been measured at a particular point, the Poisson distribu-

tion is well approximated by a Gaussian and least-squares analysis is the appropriate
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minimization procedure for fitting the diffraction pattern [84]. The Gaussian distri-

bution of counts, d, at the ith point in the diffraction pattern, with mean µi and

standard deviation σi, is given by

pi(d) =
1

σi(2π)
1/2

exp

[

−(d− µi)
2

2σ2i

]

. (3.4)

In the absence of a model, our best estimate for µi is the measured number of counts.

Given that we know σi by propagating errors from the raw counts [75], we can cre-

ate duplicate data-sets that are consistent with the measured data-set by choosing a

different value of d from pi(d) using a pseudo-random number generator. This is not

strictly correct since the measured d on the ith point is not equal to µi. However,

when we apply this to a large number of independent points we expect that on aver-

age the approximation will hold quite well. An ensemble of 5000 new data-sets was

generated in this way. Each data-set in the ensemble was then refined using SrRi-

etveld. A histogram was then made of the refined values for each parameter yielding

its probability distribution. The mean and standard deviation of the distribution was

then calculated for each parameter. The results are shown in Table 3.1, which show

the probability distributions for representative refined parameters. The values in

the table for the refined parameters and the standard deviations from the MC re-

sampled data are the values of the mean and standard deviation, respectively, of the

probability distributions. The reported profile weighted agreement factor, Rw, and

χ2ν ’s were calculated by determining the diffraction pattern using the mean values

of the parameters from the probability distributions (the ones reported in the table)

and comparing this to the original, non-fluctuated, data-set.
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Table 3.1: Refined values, estimated standard deviations for LaMnO3 from the GSAS.
Parameter Standard Monte Carlo Subset

value σH σ
′
H value σM σ

′
M value σS σ

′
S

a (Å) 5.537938 1.17 0.91 5.537974 1.18 0.91 5.537972 2.24 1.83
b (Å) 5.741537 1.28 1.00 5.741540 1.34 1.04 5.741548 2.09 1.71
c (Å) 7.697324 1.76 1.37 7.697319 1.76 1.36 7.697400 2.82 2.30
La X -0.007697 2.15 1.67 -0.007699 2.21 1.71 -0.007665 2.64 2.16

Y 0.047808 1.80 1.40 0.047801 1.85 1.43 0.047704 2.44 1.99

Uiso (Å2) 0.00595 2.1 1.6 0.00594 2.1 1.6 0.00609 2.3 1.9
O1 X 0.073758 2.42 1.88 0.073745 2.38 1.84 0.073741 2.88 2.35

Y 0.488184 2.45 1.91 0.488180 2.52 1.95 0.488044 3.46 2.83

Uiso (Å2) 0.00743 3.2 2.5 0.00743 3.2 2.5 0.00790 3.3 2.7
O2 X 0.725351 1.86 1.45 0.725352 1.82 1.41 0.725243 1.98 1.62

Y 0.306210 1.80 1.40 0.306211 1.78 1.38 0.306252 2.45 2.00
Z 0.038524 1.27 0.99 0.038526 1.27 0.98 0.038540 1.65 1.35

Uiso (Å2) 0.00769 2.1 1.6 0.00769 2.2 1.7 0.00764 2.5 2.0

Mn Uiso (Å2) 0.00422 3.4 2.7 0.00422 3.5 2.7 0.00445 3.6 2.9
Rw 4.86% 4.89% 4.43(2)%

χ2ν 1.65 1.67 1.49(2)

Table 3.2: Difference in the values of refined parameters between FullProf refinements
on data converted from time-map format using the SE and NSE methods, respec-
tively. The numbers in the parethese are the standard deviations on the differences,
calculated as the square-root of the sum of the variances.

Parameter Standard MonteCarlo Subset

a (Å) 0.0014(2) 0.0014(2) 0.0014(3)
b (Å) 0.0014(2) 0.0014(2) 0.0014(3)
c (Å) 0.0019(2) 0.0019(2) 0.0019(4)
La X 0.0001(3) 0.0001(2) 0.0001(4)

Y 0.0003(3) 0.0003(2) 0.0003(3)

Uiso (Å2) 0.0015(3) 0.0017(2) 0.0016(4)
O1 X 0.0001(4) 0.0001(3) 0.0001(4)

Y 0.0002(4) 0.0001(3) 0.0001(5)

Uiso (Å2) 0.0011(5) 0.0012(4) 0.0012(5)
O2 X -0.0001(3) -0.0001(2) -0.0001(2)

Y -0.0001(3) -0.0001(2) -0.0001(3)
Z 0.0000(2) 0.0000(2) 0.0000(2)

Uiso (Å2) 0.0011(3) 0.0012(3) 0.0011(4)

Mn Uiso (Å2) 0.0010(5) 0.0011(4) 0.0010(5)
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Figure 3.4: The probability distribution functions of refined lattice parameters from
FullProf based on data converted using the SE and NSE methods. (a), (b) and
(c) show the distributions of lattice parameters a, b and c, respectively. For each
subfigure, red, green and black symbols are from the NSE method; blue, orange and
brown are from the SE method. Diamonds are from Monte Carlo resampling, squares
are from subset sampling and circles are from the standard Hessian matrix method.
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Figure 3.5: The probability distribution functions of thermal factors Uiso. (a) is for
La, (b) is for Mn, (c) is for O1 and (d) is for O2. All colors and symbols have the
same meanings as Fig. 3.4.
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Subset Sampling

In subset sampling we remove some percentage of the measured data-points be-

fore carrying out the refinement. This is done by using a pseudo-random number gen-

erator to randomly select which data-points to discard. It is done in such a way that

sufficient data are retained to carry out a stable refinement. In our case we removed

50% of the data-points to create each sub-sampled data-set. We tested discarding

more data-points but it led to unstable refinements. In this way we created 5000

sub-sampled data-sets. We carried out a Rietveld refinement on each sub-sampled

data-set using GSAS and FullProf, respectively, running under SrRietveld. In the

same way as for the Monte Carlo method described above, the probability distri-

bution for each refined parameter is shown in Figs. 3.4 and 3.5 and the means and

standard deviations of the resulting probability distributions are listed in Tables 3.1.

In this case we report in the table the average Rw and χ2ν values from 5000 refine-

ments. We also report the standard deviations of the distributions, which are sharply

peaked around the mean value.

3.5.2 Results and Discussion

We first compare the three different methods for assessing uncertainties on the

refined parameters by considering the results of the GSAS refinements in Table 3.1.

No bias is introduced into the refined values themselves by using the resampling meth-

ods as evidenced by the fact that the refined values are the same for each method

within the standard deviations. None of the average values are more than one stan-

dard deviation from the values refined using a different method. Furthermore, we see

excellent agreement between the unweighted (primed) standard deviations obtained

from the Hessian matrix and the MC resampling method. The computationally ef-

ficient use of the variance-covariance matrix gives the same error estimates as the

computationally expensive MC resampling method. The unweighted σ
′
s from the
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sub-sampling method are significantly higher. This is expected because only half of

the data has been used in each of these refinements, so we expect that the uncertainty

on our results will be higher by roughly
√
2 since half the data have been removed (it

won’t be an exactly
√
2 change since not exactly half the counts have been removed

in the sub-sampling). The average value of σ
′
S/σ

′
H = 1.38, which is close to

√
2 as

expected.

The subset sampling method gives good unbiased estimates of the uncertainties

but at the expense of yielding lower precision estimates of the refined values them-

selves. The information content in the data is being used to estimate each number

(the mean and standard deviation) independently whereas in the Hessian and MC

resampling we are using additional information (the counts and the uncertainties on

the counts) to estimate the refined parameters and their standard deviations. If the

data uncertainties are known accurately then the standard Hessian matrix approach

is best. In principal, the sub-set sampling method is preferable in the case where the

data uncertainties are not well known. However, as we discuss later, incorrect weights

in the least squares equation result in biased estimates of the refined parameters and

in practice it is important to have good uncertainty estimates on the data, as well as

good data.

The same overall behavior is seen when we consider the FullProf refinements.

There is excellent agreement between the unweighted esd’s of the Hessian Matrix

and MC resampling methods, with enlarged values on the subset sampled esd’s. Of

greater interest is to compare the GSAS and FullProf refinement results to check for

consistency by comparing the corresponding values in Table 3.1. We see that there is

excellent agreement in all the values between the tables, including the refined values

and their esds. Despite using subtly different parameterizations for backgrounds and

peak parameters, the two refinement methods give excellent agreement with each

other.
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Here we show the results of refinements to the data when reasonable, but incor-

rect, weights have been applied in the least-squares equation. In all other respects

the refinements are identical to those. The esd’s on the refined values from both the

Hessian and MC methods are smaller than the those on GSAS and FullProf refine-

ments on SE converted data. This is because the esd’s on the data points are smaller

in the NSE converted data, where no error was propagated from the spectrum nor-

malization. In this case the Hessian and MC methods under-estimate the true esd’s

on the refined parameters. However, interestingly the sub-sampling method returns

esd’s on the refined parameters that are in good agreement with those obtained from

from the GSAS and FullProf refinements on the SE converted data. This can be

seen by comparing the unweighted σ
′
S ’s with those in Tables 3.1. This is because the

sub-sampling method uses the refinements to sample the real fluctuations in the data

and does not use the propagated esd values on the data in its estimates of refined

parameter esd’s (although it does use them as weights in the least-squares equa-

tion). The subset sampling method can be relied upon to report unbiased estimates

of uncertainties in the data even when the data uncertainties have not been properly

propagated, as before at the expense of yielding less precise estimates of the refined

values themselves. However, we show below that the sub-sampling method does not

prevent biased estimates of the refined values being obtained if the data uncertainties

are incorrectly propagated.

The values that are refined using FullProf for the SE and NSE converted data can

be compared. For a number of parameters the refined values are significantly different

(by more than 5 standard deviations) even though the refinements were done with

the same model on the same data. The only difference was the values of the weights

used in the least squares equation. This is highlighted in Table 3.2 which shows these

differences, and the esd’s on the differences, for a number of structural parameters.

This effect can also be seen in Figs. 3.4 and 3.5 where the probability distributions
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for refinements to the NSE and SE converted data are clearly offset.

This result shows a clear sensitivity of refined parameter values to using the

correct weights in the least-squares equation. Not only is it essential to have a good

model, but also to have accurate uncertainty estimates on the data, in order to refine

unbiased values for parameters. An interesting question is whether it is possible to test

for the situation that the esd’s quoted in a data file are accurate or not. This is possible

in principle by comparing the uncertainties obtained from the Hessian and sub-set

sampling methods. As we showed above, the ratio of the uncertainties estimated using

these two methods should be roughly
√

1/R where R = Nsubsampled/Ntotal. If this

criterion is significantly violated it may indicate the data esd’s are not accurate.

3.5.3 Conclusion

We have compared three ways of estimating uncertainties on refined parameters

in a Rietveld refinement using two different Rietveld programs, GSAS and FullProf:

the estimated standard deviations obtained from the programs themselves, and by

resampling the data in two different ways using a pseudo random number generator.

There is no apparent advantage of using the computationally expensive Monte Carlo

resampling method with respect to using the standard deviations obtained directly

from the variance-covarience matrix. However, in certain circumstances the use of the

sub-sampling method is warranted. These uncertainty estimation methods will be in-

cluded as features in future versions of the SrRietveld Rietveld refinement automation

program.

We have demonstrated that there is a significant sensitivity of refined parameters

to the use of correct data-esd’s as weights in the least squares equation. Significantly

biased refined values result when incorrect weights are used even when the same model

is fit to the same data-set. This underscores the importance in Rietveld refinements

of having accurate data-esd’s propagated from the raw data or estimated in some
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other way. The use of the sub-sampling method yields accurate estimates of standard

deviations on refined parameters even when the data-esd’s are incorrect or unknown.

However, it does not correct for the biased values of the refined parameters themselves

that result in this case. Comparing the esd’s from the sub-sampling method to the

values obtained from the variance-covariance matrix may be a useful diagnostic, indi-

cating situations when there may be a problem with the reported data-esd’s. In this

case, the accuracy of the refined values is certainly lower than the precision which

should be reported. This is generally true because of model errors and parameter

correlations that are not included in these, but we note an additional contribution

due when data uncertainties are uncertain.
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Chapter 4

The total scattering and atomic

pair distribution function method

Due to the emerging demand for the alternative energy and electronic applica-

tions, the more complex materials are synthesized and characterized. They are made

of multiple elements, have large unit cells and often low dimensional or incommensu-

rate structures [30, 32]. Commonly, they have aperiodic disorder: some aspect of the

structure that is different from the average crystal structure. In the case of nanopar-

ticles, the concept of crystal is invalid as the approximation of infinite periodicity is

no longer a good one. It is often critical important to know their structure details

in order to explain their special properties. Nevertheless, powder diffraction is an

important method for characterizing these materials, but we have to go beyond the

Bragg equation and crystallographic analysis.

In this chapter, we present an alternative approach which treats both the Bragg

and diffuse scattering on an equal basis, the so-called total scattering technique.

Data from throughout reciprocal space, over a wide range of Q-values, are utilized.

The technique is both straightforward and intuitively easy to comprehend. Fourier

transformation helps us translate the reciprocal space information into real space. For
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total scattering, Fourier analysis of the data is known as pair distribution function

(PDF) analysis.

This chapter will give the background knowledge of PDF and the physical mean-

ing of it. Finally I will introduce the interesting cases for calculating the PDFs that

will be used later in the thesis.

4.1 Theory of PDF

Recently, the work of Chris Farrow in Prof. Simon Billinge’s group resolves a

long-standing ambiguity in the PDF literature by deriving the PDF equations from

the beginning. Since the full derivation is not reproduced even in many textbooks

on the subject and it leads the precise relationship between the measured correlation

function in an X-ray or neutron total-scattering experiment and the underlying model.

So this section will briefly go through the procedure as the following to give the clear

ideas about the PDF and its application and for more details please refer to Chris’s

paper [85].

From classical wave theory [12], the scattering amplitude from a set of i atoms

at points ~ri is:

ψ( ~Q) =
∑

i

ψi

=
∑

i

fi(Q)e
i ~Q·~ri .

(4.1)

Assume there is no inter-atom contribution on the intensity, the incoherent intensity
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is calculated as the following:

Iinc =
∑

i

ψ∗i ψi

=
∑

i

f∗i (Q)fi(Q)

= N〈f2〉,

(4.2)

where ∗ means the complex conjugate. Also we can define the square of the average

scattering power as

〈f〉2 =
1

N2

∑

ij

f∗j fi. (4.3)

On the other hand, the coherent scattering intensity is given by

Ic =
∑

i

∑

j

f∗j fie
i ~Q·(~ri− ~rj)

=
∑

i

f∗i fi +
∑

i6=j

f∗j fie
i ~Q· ~rij

= N〈f2〉+
∑

i6=j

f∗j fie
i ~Q· ~rij

(4.4)

From the classical book [32] about PDF, the total scattering structure function

is defined as

S( ~Q) =
Ic

N〈f〉2
− 〈(f − 〈f〉)2〉

〈f〉2
. (4.5)

Based on Eq. 4.4, we get

S( ~Q)− 1 =
1

N〈f〉2
∑

i6=j

f∗j fie
i ~Q· ~rij . (4.6)
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For a powder sample, since there is equal probability for all direction, thus we

have

e
i ~Q· ~rij =

∫ 2π
0 dφ

∫ π
0 dθe

iQrij cos θr2ij sin θ
∫ 2π
0 dφ

∫ π
0 dθr2ij sin θ

=
−2πr2ij

[

e
iQrij cos θ

]π

0

4πr2ij iQrij

=

[

e
iQrij − e

−iQrij
]

2iQrij

=
sin(Qrij)

Qrij
.

(4.7)

Therefore, based on Eq. 4.6, the reduced total scattering structure function, F (Q) =

Q[S(Q)− 1], is

F (Q) =
1

N〈f〉2
∑

i6=j

f∗j fi
sin(Qrij)

rij
. (4.8)

Since we have the following relationship according to Fourier transformation on

F (Q)

f (r) =
2

π

∫ ∞

0
F (Q) sin(Qr)dQ. (4.9)

This is the common definition of the PDF. Substituting F (Q) by Eq. 4.8 we get

f (r) =
2

π

∫ ∞

0

1

N〈f〉2
∑

i6=j

f∗j fi
sin(Qrij)

rij
sin(Qr)dQ

=
2

πN〈f〉2
∑

i6=j

f∗j fi
rij

∫ ∞

0
sin(Qrij) sin(Qr)dQ

=
1

N〈f〉2
∑

i6=j

f∗j fi
rij

[δ(r − rij)− δ(r + rij)]

(4.10)
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Assume we have only positive axis, then it becomes

f (r) =
1

rN〈f〉2
∑

i6=j

f∗j fi δ(r − rij). (4.11)

According to Chris’s paper [85], we can interpret f (r) by the radial distribution

function (RDF), R(r). It means the number of atoms in the shell at a distance r when

the thickness of shell is one. So R(r) = 4πr2ρ(r). On the other hand, by integrating

f (r)r along r direction, we also can get the number of atoms as shown in the paper.

Therefore, we have

f (r) =
R(r)

r

= 4πrρ(r).

(4.12)

In our experiments, we can only measure Q down to certain value, Qmin due to

the experimental setup. So we should consider f (r;Qmin) function as the following:

f (r;Qmin) =
2

π

∫ ∞

Qmin

F (Q) sin(Qr)dQ

= 4πrρ(r)− 2

π

∫ Qmin

0
F (Q) sin(Qr)dQ.

(4.13)

4.2 Corrections of PDF derivation

First we consider the simplest case: RDF of an infinite scatterer with uniform

density, ρ0. In this system the intensity will be a delta function atQ = 0, which results

f (r) = 0 based on Eqs. 4.6 and 4.9. This shows the conflict with the assumption as

pointed out by the paper [85]. As mentioned in chapter 1, the scattering amplitude

can be expressed as ψ = 〈f〉ei ~Q·~rρ0d~r. In this simple system, the intensity is given

by

Ic( ~Q) = ρ20〈f〉
2
∫ ∫

ei
~Q·(~r−~r′)d~rd~r′, (4.14)
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where the integrals are over all space.

Considering the shape of the scatter, we define a shape function s(~r) such that

inside the shape s = 1 and outside the shape s = 0. Then,

Ic( ~Q) = ρ20〈f〉
2
∫ ∫

s(~r)s( ~r′)ei ~Q·(~r−~r′)d~rd~r′. (4.15)

We redefine variables so that ~r′′ = ~r − ~r′, and d ~r′′ = d~r, in which case we have

Ic( ~Q) = ρ20〈f〉2
∫

d ~r′′ei ~Q· ~r′′
∫

s(~r′)s(~r′ + ~r′′)d~r′. (4.16)

If we define

γ0(~r) =
1

V

∫

s(~r′)s(~r′ + ~r)d~r′, (4.17)

where V =
∫

s(~r)d~r is the volume. This γ0(~r) is the characteristic function of the

shape [86], and is also called the nanoparticle form factor in the PDF literatures [82,

87, 88]. With the above definition and Eq. 4.16, we have

Ic( ~Q) = ρ20〈f〉
2V

∫

γ0(~r)e
i ~Q·~rd~r. (4.18)

Substituting the above equation into S( ~Q)− 1 = Ic
N〈f〉2 − 〈f2〉

〈f〉2 , we get

S( ~Q)− 1 =
1

N〈f〉2
ρ20〈f〉

2V

∫

γ0(~r)e
i ~Q·~rd~r − 〈f2〉

〈f〉2

= ρ0

∫

γ0(~r)e
i ~Q·~rd~r − 〈f2〉

〈f〉2
.

(4.19)

The second term,
〈f2〉
〈f〉2 , is very small compared to the first term and can be ignored

normally.

Since we assume it is isotropic scatter, we can use the result from Eq. 4.7 as the
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following

S(Q)− 1 = ρ0

∫ ∞

0
dr

∫ 2π

0
dφ

∫ π

0
dθγ0(~r)e

i ~Q·~rr2 sin θ

= ρ0

∫ ∞

0
dr

∫ 2π

0
dφ

∫ π

0
dθγ0(~r)e

i ~Q·~rr2 sin θ

= ρ0

∫ ∞

0
dr

∫ 2π

0
dφ

∫ π

0
dθγ0(r)

sin(Qr)

Qr
r2 sin θ

= ρ0

∫ ∞

0
γ0(r)

sin(Qr)

Qr
4πr2dr.

(4.20)

This gives

F (Q) =

∫ ∞

0
4πρ0rγ0(r) sin(Qr)dr. (4.21)

Then we take the inverse Fourier transform to get

fu(r) =
2

π

∫ ∞

0
F (Q) sin(Qr)dQ

= 4πρ0rγ0(r),

(4.22)

where the subscript u indicates that this result is based on the assumption that it is

an uniform density system.

As Chris’s paper [85] shows, for a macroscopic crystal, in the region of Q below

the first Bragg peak, the distinct scattering is zero except at very low-Q where small

angle scattering region is reached. The small angle scattering intensity, Isas from the

crystal is identical to that from the solid with uniform density: Isasu = Isascrystal. The

small and wide angle scattering regions are well separated in Q and Isas decays to

zero before Qmin is reached in the crystal. Thus,

fsas(r) =
2

π

∫ Qmin

0
F (Q) sin(Qr)dQ

= fu(r)

(4.23)
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and therefore

2

π

∫ Qmin

0
F (Q) sin(Qr)dQ = 4πρ0rγ0(r).

(4.24)

Finally, by substituting Eq. 4.24 into Eq. 4.13, we get

f (r;Qmin) = 4πrρ(r)− 4πrρ0γ0(r). (4.25)

4.3 Cases of PDF calculation

4.3.1 Calculation of PDF for bulk crystals

In the case of bulk crystals, the region of interest in the PDF is usually r ≪ D,

where D is the smallest dimension of the crystal. In this region, γ0(r) ≈ 1. Thus,

f (r;Qmin) = G(r)

= 4πr(ρbulk(r)− ρ0),

(4.26)

The pair density function, ρbulk(r), is calculated from a model with periodic boundary

conditions [89, 90], or from a box of atoms that is much larger in extent than the

range of r of interest [91]. The average number density ρ0 is given by the number of

atoms per unit volume, which in the case of crystals is the number of atoms in the

unit cell divided by the unit cell volume.

4.3.2 Calculation of PDF for nanoparticles modeled as at-

tenuated bulk crystals

The pair density, ρ(r), in Eq. 4.25 is the function for the nanoparticle, which

can be approximated as γ0(r)ρbulk(r) [92]. In this case ρbulk(r) is determined in the
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same way as in the above section. Thus,

f (r;Qmin) = 4πrγ0(r)(ρbulk(r)− ρ0). (4.27)

If there is a distribution of nanoparticle sizes and shapes, the characteristic func-

tion, γ0(r) can be replaced with an appropriately averaged characteristic function

γ(r) =

∫

γ0(r;R1, R2, . . .)p(R1, R2, . . .)dR1dR2 . . . . (4.28)

Here, p(R1, R2, . . .) is the normalized distribution of nanoparticle shapes parameter-

ized byR1, R2, . . .. For example, for spherical nanoparticles of radius R, p(R1, R2, . . .) =

p(R), the distribution of nanoparticle radii. Finally, we replace Eq. 4.27 with

f (r;Qmin) = 4πrγ(r)(ρbulk(r)− ρ0). (4.29)

4.3.3 Calculation of PDF from the normalized Debye Func-

tion

For this case, the F (Q) function is evaluated using Eq. 4.8 and then Fourier

transformed to obtain the desired real-space function. To account for thermal and

zero-point motion in reciprocal-space calculations, Eq. 4.8 is replaced using Debye-

Waller effects,

F (Q) =
1

N〈f〉2
∑

i6=j

f∗j fi

(

e
−1
2σ

2
ijQ

2
)

sin(Qrij)

rij
. (4.30)

Here, σ2ij is the correlated broadening factor for the atom pair [90, 93, 94]. There are

more details and other cases presented in Chris’s paper [85] that is a good guide on

this material.
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Chapter 5

MnAs: Diverse structural and

magnetic properties

Discrete nanoparticles of MnAs with distinct magnetostructural properties have

been prepared by small modifications of solution-phase arrested precipitation reac-

tions. Rietveld and X-ray atomic pair distribution function based approaches were

used to explore the evolution of the structure of the samples with temperature and

these data were compared to the magnetic response measured with AC susceptibility.

Relative to a bulk standard, one type of MnAs nanoparticles was found to demon-

strate similar but smaller structural transitions and corresponding magnetic changes.

However, both magnetic and structural transitions in the second type of nanoparticles

are strongly suppressed.

5.1 Introduction

MnAs has been noted as an attractive candidate for information storage and en-

ergy applications due to its interesting magnetic and structural properties. [95, 96, 97]

Bulk MnAs has a magneto-structural phase transition in which a first-order magnetic

transition occurs from a high-spin ferromagnetic to a low-spin paramagnetic state
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with a concommitant structural transition from the hexagonal α phase (NiAs-type)

to the orthorhombic β phase (MnP-type) [98]. The transition occurs at 315 K upon

warming. At a higher temperature 400 K, a reentrant second-order phase transition

takes place back to the α phase, but the high-spin state is now paramagnetic. This

sequence of transitions is shown in the following.

In studies on bulk MnAs, scientists observed that the structural transition can

be driven by the application of a magnetic field [95], which confirms that the coupling

between the magnetic transition and structural transition is strong. These properties

result in a tunable magnetocaloric effect in bulk MnAs which could be applied in

microelectronic circuit [99, 100] applications. A number of theoretical studies [101, 98]

have discussed the correlation between structure and magnetism though there is no

clear understanding of the details of the relationship.

Compared to bulk materials, nanoscale materials exhibit size and shape tunable

physical properties such as electronic, magnetic and catalytic properties. Research

on nanoscale MnAs has been largely focused on epitaxially grown MnAs particles or

disks on semiconducting thin films [102] or nanowires [103]. Such nanoscale MnAs is

a promising material for thermally assisted magnetic recording [102]. However, these

epitaxial structures are subject to external pressure due to lattice strain from the sub-

strate, resulting in significant shifts in the magnetostructural transition temperatures.

Recently, a method for preparing MnAs as discrete unsupported nanoparticles [104]

enables the effect of size on the first order transition to be probed in the absence of

external stress. Particles of size 9-23 nm were prepared in solution by reaction of

dimanganesedecacarbonyl (Mn2(CO)10) and triphenylarsine oxide ((C6H5)3As=O)

in coordinating solvents at temperatures ranging from 523-603 K. Intriguingly, small

changes in the synthetic method led to two distinctly different products, as detected

by powder X-ray diffraction conducted at room temperature. Notably, in one case, the

metastable β structure, rather than the thermodynamic α structure, was observed.
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Despite the presence of a magnetic transition consistent with the magnetostructural

transformation in bulk MnAs, no evidence was observed of a corresponding struc-

tural transition in temperature dependent powder X-ray diffraction measurements

for either material [104].

Here we perform a detailed structural evaluation of the two types of MnAs

nanoparticles using an advanced nanostructure determination method, the atomic

pair distribution function (PDF) technique [32, 105, 106, 88], as a function of tem-

perature in the region of the expected magnetostructural transition. The obsesrva-

tions from these data are correlated with AC magnetic susceptibility data acquired

over the same temperature range. We show that nanoparticles synthesized using one

approach behave like the bulk, albeit at a reduced level. Nanoparticles synthesized

by the other method appear to be kinetically trapped and do not undergo a magne-

tostructural transition. This is a dramatic example of the modification of a material’s

structural and magnetic properties at the nanoscale.

5.2 Methods

5.2.1 Synthesis

The bulk MnAs we used for this study was purchased from Pfaltz and Bauer

Chemicals. A chemical etching process was performed to eliminate impurities. Briefly,

1 g of ground bulk MnAs was combined with 20 ml concentrated HCl solution, slowly

heated to 80 ◦C, and kept at that temperature for 20 minutes. The sample was then

washed with 50 ml de-ionized water several times to remove the soluble impurities.

The synthesis of MnAs nanoparticles is done by our collaborators, Prof. Stephanie

Brock’s group at Wayne State University. It can be achieved by either a slow heat-

ing method, or a high temperature fast injection method. We call these approaches

method A and method B, respectively. The resulting nanoparticles are called type-A
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and type-B. In method A, 0.256 mmol of Mn2(CO)10 is combined with 0.528 mmol

Ph3As=O, 8.0 - 10.0 ml of 1-octadecene (ODE) and 5 g of trioctylphosphine oxide

(TOPO) in a Schlenk flask under argon. The mixture is gradually heated up to

250 ◦C over 2 hours, changing from yellow to orange to black, and then maintained

at this temperature for 18 h. The as-prepared nanoparticles are then isolated by

centrifugation after dispersing in chloroform and precipitating in absolute ethanol.

This dispersion/reprecipitation process is repeated several times to ensure complete

removal of TOPO and reaction byproducts.

For method B, the fast-injection method, the same amount of Mn2(CO)10,

Ph3As=O and 1-octadecene are combined together in a Schlenk flask under argon.

The mixture is heated slightly using a heatgun until the powder precursors are dis-

solved. This mixture is then cannulated under inert conditions into hot TOPO (5.0 g)

maintained at 330 ◦C in a second Schlenk flask. The reaction is maintained at 330 ◦C

for 18 hours. The nanoparticles are isolated using the procedure described for type-A

MnAs.

Particle size and morphology were assessed using transmission electron microscopy

studies performed on a JEOL 2010 HRTEM operating at 200 kV. Samples were pre-

pared by dispersion of solid precipitates in chloroform and then a drop of the colloidal

solution was deposited on a carbon-coated copper grid and allowed to air-dry.

5.2.2 Diffraction experiments

Total scattering powder diffraction experiments were performed at the 11-ID-B

beam-line at the Advanced Photon Source at Argonne National Laboratory, with

58.26 keV x-rays using the rapid acquisition (RaPDF) mode [70]. A large area 2D

GE Revolution 41RT flat panel detector [107] was mounted orthogonal to the beam

path. Each sample was packed in a kapton capillary 1 mm in diameter and measured

in the temperature range of 295 K - 335 K during heating and cooling. In the heating
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(cooling) procedure we continuously increase (decrease) the temperature at 1 K/min

rate and collect data frames every 30 s, i.e., every 0.5 K. In the measured range of

295-335 K, this results in ∼ 80 data sets for both the heating and cooling runs. The

raw 2D data were integrated and converted to intensity versus 2θ using the software

Fit2D [108], where 2θ is the diffraction angle.

Rietveld refinements were carried out on the data using the GSAS [40] and Full-

Prof [41] programs controlled by the SrRietveld program [77]. SrRietveld is a highly

automated program for Rietveld refinement. It not only can do the conventional

refinement by using GSAS and FullProf as the engines but also can automate the

refinement of large numbers of datasets with minimal human effort. As the first step

of the Rietveld refinement, instrument parameters were calibrated using standard sil-

icon data. There are two structural models for the MnAs samples: the α phase model

in the P63mc spacegroup and the β phase model in the Pnma spacegroup. The re-

finable structural parameters were a, b and c, Mn’s X and Z fractional coordinates,

As’s X and Z fractional coordinates and isotropic thermal factors on each symmetry-

independent atomic site. The peak profile used was the Thompson-Cox-Hastings

pseudo-Voigt function (CW profile function 2 in GSAS and Npr=7 in FullProf). The

background function used was a Chebyschev polynomial in GSAS and linear interpo-

lation in FullProf. The refinement strategy used was to turn on scale factor, then zero

shift, background coefficients, lattice parameters, peak profile parameters, all allowed

atom fractional coordinates and finally, isotropic thermal factors.

The PDF, G(r), was obtained by Fourier transformation of the reduced total

scattering structure F (Q) = Q(S(Q)− 1) according to the following equation [32].

G (r) =
2

π

∫ Qmax

Qmin
Q[S(Q)− 1] sinQr dQ, (5.1)

where S(Q) is obtained from a diffraction experiment. The maximum range of Q
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used in the Fourier transform was Qmax = 23.0 Å−1. The value of Qmax chosen

to optimize the PDF was selected by choosing the largest Qmax possible without

introducing too much statistical noise into the data. The PDFs were modelled using

PDFgui [109]. The structural models and refinable parameters are the same as Ri-

etveld refinement discussed above, but the PDF refinements yield information about

the local structure rather than the average crystal structure probed by Rietveld re-

finement. Because of the relatively large size [88] of the nanoparticles in this study,

the results from average and local structural refinements matched each other well for

all the MnAs samples.

5.2.3 Magnetization measurements

The magnetic measurement of MnAs is done by our collaborators, Prof. Gavin

Lawes’s group at Wayne State University. AC magnetic susceptibility measurements,

which are more sensitive to small changes in magnetization arising from possible im-

purity phases than dc measurements, were carried out at 10 kHz using a standard

option on a Quantum Design Physical Properties Measurement System. The mag-

netic susceptibility was measured on heating and cooling from 280 K to 340 K at an

AC excitation field of 10 Oe with zero DC field. Bulk, type-A, and type-B MnAs

nanoparticles were prepared by sealing loose powders in evacuated quartz tubes. The

data were normalized to total Mn quantity based on chemical analysis data acquired

by atomic absorption spectroscopy using a Perkin-Elmer Analyst 700 instrument.

Solid samples were dissolved in nitric acid, diluted, and compared to a calibration

curve created using a series of Mn standards (High-Purity Standards).
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5.3 Results and Discussion

Discrete nanoparticles of MnAs were prepared from arrested precipitation re-

actions using either a slow-heating method (method A, yielding type-A particles)

or a high-temperature rapid-injection method (method B, yielding type-B parti-

cles) [104]. Electron micrographs of the particles are shown in Fig. 5.1, along with

a size-distribution histogram. Type-A nanoparticles are well-dispersed and faceted

in shape with a size of 22.3 ± 3.9 nm, measured along the small axis. In contrast,

type-B nanoparticles show a strong tendency to aggregate and are slightly smaller,

at 17.8 ± 3.1 nm. The aggregation of Type-B MnAs particles revealed in the TEM

image is not a universal phenomenon for nanoparticles of Type-B MnAs [104] and

may be a consequence of surfactant loss due to vigorous washing.

First, I used the Rietveld analysis using α model on bulk MnAs. To compare

the quality of the refinements, I plot the zoomed-in figures for both temperatures. It

is clearly shown that the 335 K fit is much worse than 295 K at least in the range of

8-16o as we know from Rw. It implies that bulk MnAs stays at α phase at 295 K but

not at 335 K.

In order to know what the transition is for bulk MnAs during the temperature of

295 to 335 K, I do the Rietveld sequential refinements using α model on all datasets

of bulk MnAs that we collected. The obvious result is that there is structural phase

transition in the temperature range based on the hysteresis shown in the figure. The

transition starts at 303 K and ends at 317 K for heating run, which matches the

observations in the literature [98]. As we know from Fig. 5.1, the type-A MnAs

nanoparticles have relative large particle size so we can still use Rietveld refinement

to analyze them. Similarly, we see the transition also happens in type-A nanoparticles

for the same temperature range. For the sake of brevity, I only present the results of

lattice parameter a together with the ones from bulk. Interestingly, we see the change

in type-A is smaller than bulk and dies out broader. However when I want to analyze
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Table 5.1: The refined structural parameters for bulk and type-A nanoparticles at
295 K and 335 K using α (P63mc) and β (Pnma) model. All models are refined with
isotropic thermal factor Uiso.

Parameter bulk Type-A nanoparticles
295 K α 335 K β 295 K α 335 K β

a (Å) 3.724(2) 5.734(3) 3.686(5) 5.728(4)
b (Å) 3.724(2) 3.684(3) 3.686(5) 3.686(5)
c (Å) 5.712(5) 6.378(4) 5.731(13) 6.379(9)
Mn X - 0.0021(2) - 0.0063(5)

Z -0.00014(9) 0.271(7) 0.009(2) 0.27(2)

Uiso (Å2) 0.014(3) 0.015(5) 0.021(12) 0.019(9)
As X - 0.231(7) - 0.23(2)

Z 0.25(2) 0.92(9) 0.24(3) 0.9(2)

Uiso (Å2) 0.009(2) 0.009(3) 0.013(9) 0.009(7)
Rw 0.096 0.084 0.203 0.189

the type-B nanoparticles, Rietveld refinement doesn’t work well since there are less

sharp peaks in the pattern. Therefore, we turn to pair distribution function (PDF)

for help.

For comparison purpose later on, I repeat the analysis on bulk and type-A MnAs

as the first steps here by using PDF technique. Examples of typical total scattering

powder diffraction patterns in the form of PDFs are shown in Fig. 5.2. We first

verify that our results for the structure of the bulk material are in agreement with the

literature [98], i.e., just below room temperature the samples are in the α phase and at

just above room temperature in the β phase. In Fig. 5.2(a), we see a good agreement

between the best-fit α model and the bulk MnAs data at 295 K, as additionally

indicated by the low Rw = 0.096. Similarly, there is a good fit of the β model to the

bulk data at 335 K as shown in Fig. 5.2(c) and by an Rw = 0.084. For comparison,

the best fit of the α model to the data at 335 K gives Rw = 0.196 and is shown

in Fig. 5.2(b). The poor fit shows that the PDF is clearly capable of differentiating

between these phases. The refined values of the good fits are presented in Tab. 5.1.

Our PDF refinements of the bulk are in excellent agreement with crystallographic

results from the literature. [98]
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We next consider type-A nanoparticles. In Fig. 5.2(d)-(f) we show the fits of

the bulk structural models to the PDFs of the type-A nanoparticles. The fits are

good overall indicating that these nanoparticles have similar structures to the bulk

material. For the 335 K data (Fig. 5.2(e), (f)) the fit of the β structural model is

significantly better than the α model, as in the bulk. The Rw = 0.189 for the β

model and Rw = 0.217 for the α model and the improved fit is evident by comparing

the difference curves of (e) and (f) in the figure. However, the overall fit of the β

model to the 335 K data is less good than for the bulk material. This is evident

from the larger Rw (0.189 vs. 0.084) and the clear features in the difference curves.

This shows that there are structural modifications from the purely β structure in the

nanoparticles, possibly from the surface region.

Fig. 5.2(d) shows the fit of the α model to the type-A nanoparticle data collected

at 295 K. There is a good overall fit, but the Rw = 0.203 is somewhat high, and there

is some residual in the difference curve in the Figure. However, the β model also fits

the 295 K data quite well (Rw = 0.187). This could be because the structure is still

in the β-form at this temperature and the sample has not transformed. However,

another possibility is that the structure has transformed to the α-phase but the β

structural model fits better because it has more refinable prameters (12 for β vs. 9

for α). This is possible because the α phase is similar to β and can be obtained in a

continuous manner from β by adding some symmetry elements and moving atoms onto

special positions. Thus, the observation of a lower Rw is not sufficient to establish

that the material is in the α phase and we need to look further. In order to establish

definitively whether a structural transition is taking place in the type-A nanoparticles

similar to that in MnAs bulk, we consider the change in the PDF of the material as

its temperature is reduced from 335 to 295 K, shown in Fig. 5.4. The difference

curve in Fig. 5.4(a) shows the changes in the PDF of bulk MnAs due to the structural

transition and Fig. 5.4(b) shows the same for the type-A nanoparticles. It is clear
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that the structural changes in the nanoparticles are smaller than those in the bulk.

However, close inspection of the difference curves in Fig. 5.4(a) and (b) shows that

they are highly correlated and have similar features. To test the degree of correlation

we plot the two difference curves on top of each other in Fig. 5.4(c), multiplying the

curve from the nanoparticles by a factor of 4 to account for the smaller amplitude of

those changes. Based on the data in Fig. 5.4(c), we calculate the Pearson correlation

coefficient [110, 111] to show the degree of correlation between two difference curves.

The value of the correlation can fall in the range from 1 (fully correlated) to -1

(anticorrelated), with the middle value zero meaning there is no correlation. For our

case, the Pearson correlation coefficient between the two difference curves is 0.959,

which clearly shows that the structural changes between 335 K and 295 K of the

bulk and type-A nanoparticles are the same. Thus, the type-A nanoparticles are

undergoing the same structural phase transition as the bulk, although the amplitude

of the changes is less.

Having established that the type-A nanoparticles are undergoing the same tran-

sition as the bulk, we next sought to compare the evolution of the transition with

temperature and measure the structural hysteresis curves of the two samples. The

changes in a and c lattice parameters, and in Uiso for Mn and As of bulk and type-A

samples are shown in Fig. 5.5. The hysteresis curves are very similar between the bulk

and the type-A nanoparticles. For example, on cooling, the onset temperature of the

structural transition is very similar. However, the hysteresis curves of the nanoparti-

cles are less square than those of the bulk, and the size of the structural modifications

(for example, the change in lattice parameters) are smaller in the nanoparticles. We

conclude that the structural response of the type-A nanoparticles are very similar to

the bulk in most respects, but of a smaller magnitude, and the transition is smeared

out in temperature on the low-T side. This transition broadening may be expected

due to finite size effects of the nanoparticles.
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Table 5.2: The refined structural parameters for type-B nanoparticles at 295 K
and 335 K using the α (P63mc) and β (Pnma) model. All models are refined with
isotropic thermal factor Uiso.

Parameter 295 K α 295 K β 335 K α 335 K β

a (Å) 3.669(6) 5.702(3) 3.675(6) 5.713(3)
b (Å) 3.669(6) 3.664(4) 3.675(6) 3.672(5)
c (Å) 5.719(12) 6.344(9) 5.724(11) 6.356(9)
Mn X - -0.0023(3) - -0.0011(2)

Z 0.008(2) 0.224(12) 0.008(7) 0.227(13)

Uiso (Å2) 0.03(2) 0.018(16) 0.03(2) 0.019(16)
As X - 0.27(7) - 0.27(7)

Z 0.24(3) 0.91(2) 0.24(3) 0.91(2)

Uiso (Å2) 0.017(14) 0.009(7) 0.016(13) 0.009(5)
Rw 0.305 0.201 0.275 0.197

In our previous published MnAs paper [104], we have described the synthesis

of Type-B MnAs with different sizes and compared the structural properties. Type-

B MnAs nanoparticles have been prepared in sizes up to 26 nm by this synthetic

method by adjusting the reactant concentrations and reaction times. The size in the

reported range does not appear to be a primary determiner for the structure being

probed. It is also true for this study as we observe that the behavior of the type-B

nanoparticles is very different. Structural results from representative temperature

points are presented in Tab. 5.2. Fig. 5.6(c) and (d) show the fits of the α and β

structural models to the type-B nanoparticle PDFs at 335 K. The β model clearly

provides a better fit to the data and a lower Rw (0.197 vs. 0.275) suggesting that

at high temperature the material is in the β phase. However, as is the case for

the type-A nanoparticles, the fit is far from ideal suggesting additional structural

relaxations. Fig. 5.6(a) and (b) show the fits of the two structure models to the

295 K data. The β model provides a significantly better fit than the α model (Rw =

0.201 and 0.305, for β and α-models, respectively), which suggests that the structural

transition may have been suppressed in these nanoparticles. As with the type-A

nanoparticles, we test this hypothesis by looking at the change in the PDF between
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335 K and 295 K for the type-B nanoparticles and compare it to the bulk. The

result is shown in 5.8. The first observation is that the overall changes in the

PDFs of the β nanoparticles are very small. The changes are comparable to the

noise, with some small features that might be explained by a small change in lattice

parameter due to thermal expansion. However, there is no indication of any structural

phase transition on cooling for these samples. To make sure there is not a smaller

magnitude phase transition as was observed in the type-A nanoparticles, we again

look for correlations in the difference curves between 335 K and 295 K compared

to the bulk, which are plotted on top of each other in Fig. 5.8(c), after scaling up

the type-B difference curve by a large factor of 10 to match the amplitude of the

fluctuations. Visually there is no evidence of correlation and the Pearson correlation

coefficient is -0.197 which indicates the difference curves are essentially uncorrelated.

This result indicates that the structural transition has been completely suppressed in

the type-B nanoparticles. Furthermore, plots of the temperature dependence of the

structural parameters from type-B nanoparticles (not shown) do not show hysteresis

similar to those of the bulk and type-A nanoparticles. Interestingly, the unit cell

volume of the type-B nanoparticles is significantly less than the bulk or the type-A

nanoparticles as shown in Fig. 5.9(b). For example, the cell volume is decreased by

0.89% at 335 K and by 2.71% at 295 K, compared to the bulk. This synthesis method

has clearly produced nanoparticles that, although similar in size and composition, are

structurally distinct.

Finally, we would like to establish the relationship between the magnetic and

structural transitions. This comparison is shown in Fig. 5.9. In agreement with the

literature [98] we see a strong correlation between the structural and magnetic tran-

sitions in the bulk as can be seen by comparing the red and blue curves in Fig. 5.9(a)

(magnetic) and 8(b) (structural), where the structural parameter we choose to plot

is the unit cell volume. The cyan and magenta curves show the same comparison
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for the type-A nanoparticles. Again, the magnetic and structural transitions appear

to be coupled, although the hysteresis in the magnetic data is far smaller than that

observed in the structural data. The increase in the magnetization on cooling is

decreased in the type-A nanoparticles, relative to the bulk, and this correlates to a

smaller increase in cell volume. Most significantly, the width of the thermal hystere-

sis in the magnetization is much smaller for the type-A nanoparticles, on the order

of only 1 K, than for the bulk sample, close to 10 K. This is observed despite the

structural hysteresis being broader in the nanoparticles than in the bulk. Thus, the

structural and magnetic transitions are related, but not completely dependent on

each other.

The volume of the type-A nanoparticles in the low-spin β phase is the same as

for the bulk material, though the increase in the volume on entering the α phase

is less, consistent with the decreased magnetization in that phase. The small sup-

pression in the magnetic signal can perhaps be attributed to surface effects in the

nanoparticle sample. This suggestion is supported by the observation that the high

temperature susceptibility in the type-A nanoparticles is smaller than that of the bulk

sample, so that the relative change in magnetic susceptibility, χ′(T = 295K)−χ′(T =

335K)/χ′(T = 335K), is approximately equal. These measurements support the

conclusion that the magnetostructural transition in the type-A nanoparticles is qual-

itatively similar to that occurring in bulk MnAs, but involving a smaller amount of

distortion.

The temperature dependence of the magnetic susceptibility for the type-B nanopar-

ticles, also plotted in Fig. 5.9, differs strikingly from the behavior of the type-A

nanoparticles and bulk MnAs. The type-B nanoparticles have a negligible magnetic

susceptibility at 335 K, consistent with a weakly paramagnetic low-spin state. There

is a small, but distinct increase in susceptibility at lower temperatures. This transition

can be seen most clearly in the data collected on warming, which suggest a transition
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from a weakly ferromagnetic to paramagnetic state at a temperature similar to what

is observed in the type-A nanoparticles. In addition to the magnitude of the suscep-

tibility being greatly suppressed from that of the type-A nanoparticles, the thermal

hysteresis in the susceptibility is also much broader for the type-B nanoparticles,

extending over at least 30 K. The fact that the susceptibility in the type-B nanopar-

ticles is a significant fraction of that found in the type-A nanoparticles together with

the different temperature dependence of the two samples makes it unlikely that the

magnetic response in the type-B nanoparticles arises from some type-A impurity that

was not detected by our other techniques.

This magnetic transition in the type-B nanoparticles does not appear to be linked

to a structural transition but may be connected to an observed irreversibility in the

unit cell volume on cooling. This evidence for a magnetic transition in the type-

B nanoparticles in the absence of any clear structural transition suggests that the

interplay between magnetism and crystal structure in MnAs may be more complex

than previously believed.

5.4 Conclusion

Structurally distinct samples of MnAs nanoparticles have been prepared using

either slow-heating (method A) or high-temperature rapid-injection (method B) ar-

rested precipitation reactions, and their temperature-dependent structure and mag-

netic characteristics have been probed. Using Rietveld and PDF methods, we confirm

that the structure transition in bulk MnAs is highly correlated with the magnetic

transition, as previously reported. Type-A nanoparticles have a similar structural

transition that happens in the same temperature region as bulk, but the changes are

smaller in amplitude. Once again, a clear magnetic transition correlates with what is

happening structurally. This is in contrast to previous reports wherein no structural
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transformation was observed for type-A nanoparticles by traditional temperature-

dependent powder X-ray diffraction methods, despite the persistent observation of

a magnetic transition [104] and highlights the sensitivity of the PDF approach in

probing structural transformations in nanoscale materials. Type-B nanoparticles are

distinct from both the bulk and type-A nanoparticles adopting the β structure over

the entire temperature range. The fact that type-A particles predictably cycle be-

tween α and β, whereas type-B nanoparticles are kinetically trapped, suggests the

structure is pinned, possibly by impurity ion inclusion during the rapid nucleation

inherent in the method B synthesis. Previous studies have demonstrated a slow con-

version over time to the thermodynamic α phase. Partial conversion during the data

acquisition could explain some of the irreversibility observed in both the structural

and magnetic data. A detailed study of the kinetic stability of type-B nanoparticles

as a function of particle size is underway.
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Figure 5.1: TEM images and particle size distributions of type-A (a) and type-B (b)
MnAs nanoparticles.
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Chapter 6

Conclusion

This thesis work has been motivated by the following quote that was publish

in Science magazine by Prof David Waltz and Bruce G. Bruchanan [112]: ”The

main goals of automation in science have been to increase productivity by increasing

efficiency (e.g., with rapid throughput), to improve quality (e.g., by reducing error),

and to cope with scale, allowing scientific treatment of topics that were previously

impossible to address.” By automating scientific activities and making them high

throughput, it is possible to understand new science about a system. In material

science, one such problem is the study of the structure of complex material, the topic

of this thesis.

New powerful X-ray and neutron source are now becoming available allowing

us for the first time to do high throughput parametric studies on the structure of

complex material. For example, the most intense pulsed neutron beams are available

at Spallation Neutron Source (SNS) at Oak Ridge, TN. Inside SNS, as one of world-

class diffractometers, POWGEN, has been built to target for such research studies

through powder diffraction method.

Powder diffraction method was first used nearly a century ago. However, until the

introduction in 1967 by Rietveld of a method for the refinement of crystal structures
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from powder data, interest in powder methods increased dramatically. However,

the main problem of Rietveld method is that it is non-linear least squares and is

notoriously convergent. To find the minimum, you have to carry out a complex

set of refinement steps, manually guiding the refinement to the minimum. For high

throughput studies, this become especially problematic.

To overcome the above problem, a new Rietveld analysis program: SrRietveld,

was developed in Prof. Billinge’s group. SrRietveld is a python program that wraps

two legency Rietveld refinement programs: GSAS and FullProf. By using hierarchic

data structure, it allows more flexibility and it is easy to use. As one of the developers,

I lead the development of PyGSAS and involve the development of other components.

The detailed description of SrRietveld has been described in the chapter 3 of the thesis.

As part of this research, I use SrRietveld to do bootstrap error estimation in

Rietveld analysis in order to test the accuracy of the error estimation in Rietveld

method. I have compared three ways of estimating uncertainties on refined parameters

in a Rietveld refinement using two different Rietveld programs, GSAS and FullProf:

the estimated standard deviations obtained from the programs themselves, and by

resampling the data in two different ways using a pseudo random number generator.

There is no apparent advantage of using the computationally expensive Monte Carlo

resampling method with respect to using the standard deviations obtained directly

from the variance-covarience matrix. However, in certain circumstances the use of

the sub-sampling method is warranted. These uncertainty estimation methods will

be included as features in future versions of the SrRietveld.

Besides I have demonstrated that there is a significant sensitivity of refined pa-

rameters to the use of correct data-esd’s as weights in the least squares equation.

Significantly biased refined values result when incorrect weights are used even when

the same model is fit to the same data-set. This underscores the importance in Ri-

etveld refinements of having accurate data-esd’s propagated from the raw data or
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estimated in some other way. The use of the sub-sampling method yields accurate

estimates of standard deviations on refined parameters even when the data-esd’s are

incorrect or unknown. However, it does not correct for the biased values of the

refined parameters themselves that result in this case. Comparing the esd’s from

the sub-sampling method to the values obtained from the variance-covariance matrix

may be a useful diagnostic, indicating situations when there may be a problem with

the reported data-esd’s. In this case, the accuracy of the refined values is certainly

lower than the precision which should be reported. This is generally true because of

model errors and parameter correlations that are not included in these, but I note an

additional contribution due when data uncertainties are themselves uncertain.

Finally, applying next-generation Rietveld and PDF analysis softwares that I

mentioned above, the bulk and nanoscale MnAs have been studied. It is confirmed

that the structure transition in bulk MnAs is highly correlated with the magnetic

transition as reported in the literature [101, 98]. Type-A nanoparticles have a similar

structural transition that happens in the same temperature region as bulk, but the

changes are smaller in amplitude. Type-B nanoparticles are distinct from both the

bulk and type-A nanoparticles adopting the β structure over the entire temperature

range. The fact that type-A particles predictably cycle between α and β, whereas

type-B nanoparticles are kinetically trapped, suggests the structure is pinned, pos-

sibly by impurity ion inclusion during the rapid nucleation inherent in the method

B synthesis. A detailed study of the kinetic stability of type-B nanoparticles as a

function of particle size is underway.

I believe that the high throughput Rietveld tool: SrRietveld, can contribute

more to the community by providing a way to probe the phase transition and other

scientific problems. The error estimation methods that I develop here have potential

application in PDF or other methods. More importantly, combining these techniques,

more new structure information from complex materials can be discovered in the
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future.
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and S. J. L. Billinge. PDFfit2 and PDFgui: Computer programs for studying
nanostructure in crystals. J. Phys: Condens. Mat., 19:335219, 2007.

[110] Jerome L. Myers and Arnold D. Well. Research Design and Statistical Analysis.
Hillsdale: Lawrence Erlbaum Associates, 3 edition, 2010.

[111] Timur Dykhne, Ryan Taylor, Alastair Florence, and Simon J. L. Billinge. Data
requirements for the reliable use of atomic pair distribution functions in amor-
phous pharmaceutical fingerprinting. Pharmaceut. Res., 28:1041–1048, 2011.

[112] David Waltz and Bruce G. Buchanan. Automating science. Science, 324(5923):
43–44, 2009.

91


