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ABSTRACT

ON THE CHARACTERIZATION OF

INERTIAL COEFFICIENT RINGS

BY

Ellen Elizabeth Kirkman

Let R be a commutative ring and A be an R—algebra

which is finitely generated as an R—module and has Jacobson

radical N. Ingraham.defined R to be an inertial

coefficient ring if when A/N is a separable R—algebra

there exists a separable R—subalgebra S of A such that

A = S + N. (A,N) is called an L.I.ypair (lifting idempotent

pair) if every idempotent in .A/N is of the form 5 where

e is an idempotent of A. Ingraham has conjectured that if

for every finitely generated R-algebra' A. (A,N) is an L.I.

pair,then R is an inertial coefficient ring. The main

result of Chapter II is that the converse of this conjecture

is true: If A is a finitely generated algebra over an

inertial coefficient ring R then (A.N) is an L.I. pair.

Let X(R) denote the Pierce decomposition space of

R and Rx denote the stalk of the sheaf over X(R) at the

point x E X(R). In Chapter III it is shown that R is an

inertial coefficient ring if and only if R.x is an inertial

coefficient ring for all x E X(R). This result is used to

show several rings are inertial coefficient rings.



ON THE CHARACTERIZATION OF

INERTIAL COEFFICIENT RINGS

BY

Ellen Elizabeth Kirkman

A DISSERTATION

Submitted to

.Michigan State university

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1975



ACKNOWLEDGMENTS

I am deeply indebted to Professor E.C. Ingraham

for introducing me to interesting topics in ring theory and

for his thoughtful guidance and encouragement in the

preparation of this dissertation. I would also like to

thank Professor W.C. Brown for several useful conversa-

tions. Finally, I am very appreciative of the careful

and efficient typing of Mary Reynolds.

ii



TABLE OF CONTENTS

Chapter Page

I. PRELIMINARIES 1

§1. Separable Algebras and Inertial

Coefficient Rings . . . . . . . . . l

§2. Hensel Rings and the Idempotent

Lifting Property . . . . . . . . . 9

§3. The Decomposition Space . . . . . . 14

II. INERTIAL COEFFICIENT RINGS AND THE

IDEMPOTENT LIFTING PROPERTY 18

III. NEW INERTIAL COEFFICIENT RINGS 31

BIBLIOGRAPHY 45

iii



CHAPTER I

PRELIMINARIES

Chapter I contains historical material and a

description of the tools used in later chapters. we shall

also fix the notation which will be used throughout.

§l. Separable Algebras and Inertial Coefficient Rings

A11 rings we shall consider contain an identity

element: all subrings contain the identity of the overring:

all homomorphisms preserve the identity. Throughout R

denotes a commutative ring and A an R-algebra, where by

an R-algebra A we mean a ring A along with a ring homomor-

phism e of R into the center of A. This homomorphism

induces a natural R-module structure on A by defining

r-a = 9(r)-a for r E R and a E A. If e is.a monomorphism,

A is called a faithful R-algebra. An R-algebra is called

projective or finitelyggenerated if it is projective or finitely

generated as an R—module. All R—algebras we shall consider

are finitely generated. If A is a commutative ring, A is

called a commutative R-algebra.

Example 1.1. _Let f(x) be a monic polynomial with

coefficients in R. Then A = <§ : > is a finitely generated.

faithful, free (as an R-module), commutative R-algebra. If



the degree of f(x) is n. then {l,x,...,xn-l] is a

free basis of A over R.

The notation rad B 'with be used to denote the

Jacobson radical of a ring B. Throughout N = rad A. The

following proposition relates the maximal ideals of R and

the radical of A.

Proposition 1.2. [11, Lemma 1.1, p.78] Let A be

a finitely generated R-algebra and let rlmA denote the

intersection of the ideals mA as m runs over all maximal

ideals of R.

(i) rad(R) -A E N.

(ii) There exists a positive integer n such

that N“ g. n mA.

(iii) If A is projective, rad(R)-A = n mA.

The following proposition due to Azumaya relates the

radical of A to the radical of a subalgebra.

Proposition 1.3. [2, Corollary, p.126] Let A be a

finitely generated algebra over R and B be an R-subalgebra

of A. Then NntradB.

Our interest is in the relationship between properties

of R and the structure of finitely generated R—algebras. Our

technique is to take data from A/N and "pull it back" to A.

Our work here is concerned with pulling back two types of



structure-idempotents and separability - and the relationship

between them.

A finite dimensional algebra A over a field F is

called a separable F-algebra if and only if A is isomorphic

to a direct sum of full matrix rings over division rings having

centers which are separable field extensions of F. In 1908

wedderburn proved (in the case F has characteristic 0) that

if A/N is separable over F then this separability can be

"pulled badk" to a subalgebra of A:

wedderburn Principal Theorem [24]. If A is a finite

dimensional F—algebra such that A/N is F-separable then there

exists a separable F-subalgebra S of A such that A = S + N.

The wedderburn Principal Theorem decomposes A into two

parts: a separable algebra which is a direct sum of matrix

algebras and the radical which is nilpotent.

Azumaya (1951) obtained a generalization of wedderburn's

Theorem for a class of rings called Hensel local rings (which

will be defined in the following section).

Azumaya's Theorem [2]. If A is a finitely generated

algebra over a Hensel local ring R 'with maximal ideal m and

if A/N is separable over R/m, then there exists an R-subalgebra

S of A such that A = S + N and S/mS is separable over R/m.



Auslander and Goldman (1960) [l] generalized the

notion of a separable algebra to algebras over an arbitrary

commutative ring R. For finitely generated R-algebras

their definition is equivalent to the following:

Definition. A finitely generated R—algebra A is a

separable R-algebra if A/mA is a separable R/m-algebra for

every maximal ideal m of R.

Example 1.4. Let A = Rnxn be the ring of nxn

matrices over a commutative ring R. A/mA e:(R/m)nxn. and

thus A is separable.

Ingraham [11] has considered rings all of Whose

finitely generated algebras satisfy the analogue of the

wedderburn Principal Theorem under Auslander and Goldman's

generalized notion of separability:

Definition. A ring R is called an inertial coefficient

ring if for every finitely generated R-algebra A such that

A/N is a separable R-algebra, there exists a separable R-

subalgebra S of A such that A = S + N. S is called an

inertial subalgebra of A.

Known inertial coefficient rings include the following:

a field, a Hensel local ring, a von Neumann regular ring [4,

Theorem 1, p.370] (R is von Neumann regular if and only if for

every r 6 R there exists an s 6 R such that r28 = r), and

a Noetherian Hilbert ring [13, Corollary 2, p.553] (R is a



Hilbert ring if and only if every prime ideal is the intersection

of the maximal ideals containing it). In Chapter III we shall

give some new examples of inertial coefficient rings. The

following theorem of Ingraham motivated the work in Chapter II.

Theorem 1.5. [13, Theorem 2, p.554] If for any finitely

generated, commutative R—algebra A each idempotent in A/N

is the image of an idempotent in A, then if B is a finitely

generated, commutative R-algebra such that B/rad B is R-

separable then B contains an R-inertial subalgebra.

we shall next describe and relate two numerical tools,

rankR(A) and uh(A), which will be used in Chapter II. For

any prime ideal p of R, let Rp denote the localization

of R at p. R.p is a local ring (a commutative ring with a

unique maximal ideal). Let M: be a finitely generated, pro-

jective R-module. Since projective modules over a local ring

are free, the RP-module M GR RP 2:Mb is free of finite rank

rankp(M). If there is a fixed integer n such that rankP(M) =

n for all prime ideals p of R, ‘we say the rank 9: M is

defined and equals n and we write rankR(M) = n. For reasons

which will become clear in section 3, in much of our work we

can assume the ring R has no idempotents but 0 and 1. (Such

a ring is called a connected ring). If R is a connected ring

and M is a finitely generated, projective R-module, then

rankR(M) is defined [6, Theorem 4.12, p.32].



Let A be a finitely generated, faithful, commutative

R-algebra and let m be a maximal ideal of R. Then m has

only finitely many maximal ideals M of A such that M n R = m,

so we can define Hm(A) = E. [A/M:R/m], where [A/M:R/m] is

the dimension of the field extension A/M over the field R/m.

um(A) is easily evaluated for algebras A of the type in

Example 1 . 1 :

_ R x . .
Lemma 1.6. Let A — (f(x > where f(x) is a monic

polynomial contained in R[x]. Let f(x) denote the polynomial

 

in R/m[x] obtained by reducing the coefficients of f(x)

n e.

modulo m. Suppose f(x) = [I (pi(x)) 1 is the factorization

i=1

of f(x) into positive integer powers of monic polynomials

pi(x) which are irreducible in R/m[x]. Then um(A)

1:

n

= 23 degree (pi(x)).

Proof: Any maximal ideal M of A such that M n R = m

 

 

 

contains the ideal mA. Since $7- 2 319135.]. . then by the

n <f—(3'c'l'>

Chinese Remainder Theorem £5 a- e Z R/m[:] . Each

i—l (mix 1)

Bi - R/ml':] is a local ring with unique maximal ideal

<53")? 1>

<pi 1X5) . .

Mi’ = e. . Thus the max1ma1 ideals Mi/mA of A/mA are

<pilx) ">

M.

of the form ’m'iT = Bl one Bi_1 (9 Mi’ 9 Bi+1 s...e an.

a A mA 9‘ R m x : = . .

A/Mi .. Kjfi _ _LLJ-(p.x > , and [A/Mi R/m] degree (_yp1(x )

l



Ingraham and W.C. Brown computed um(S) for inertial

subalgebras of certain algebras.

Proposition 1.7. [5, see proof of Lemma 1, p.11] Let

A be a finitely generated, projective, faithful, commutative

R-algebra. If A has an inertial subalgebra S, then for

each maximal ideal m of R,

um(A) = um(s) = rankm[s].

The following prOperties will be used in Chapters II .

and III and are listed here for reference:

(I) Let :1 be an ideal of R. An R/SI-algebra A

has an R—algebra structure induced by the

homomorphism of R onto R/fl. .A is a

separable Realgebra if and only if it is a

separable R/u-algebra [6, p.45].

(II) If S is a separable R-algebra and I is a

two—sided ideal of S, then 8/1 is a

separable R—algebra [6, Preposition 1.11, p.46].

(III) If S1 and S are separable R-algebras then
2

S1 6’82 is a separable Realgebra [6, Proposition

1.13, p.47].

(IV) Projective Lifting Property. If S is a

separable R-algebra, then every S-module which

is R—projective is S-projective [6, PrOposition

2.3, p.48].



(v)

(VI)

(VII)

(VIII)

(Ix)

(x)

Inertial subalgebras of finitely generated

algebras are finitely generated [21, Theorem 5,

p.5].

Inertial subalgebras of finitely generated,

commutative, projective R-algebras are pro-

jective [11, Preposition 2.8, p.80].

Let R be an inertial coefficient ring. If R’

is a finitely generated, commutative, R-algebra,

where R’/rad R’ is a separable R-algebra,

then R’ is an inertial coefficient ring [11,

see proof of Proposition 3.3, p.85].

If R is an inertial coefficient ring and u

is an ideal of R, then R/fl is an inertial

coefficient ring [11, Corollary 3.4, p.86].

If rankR(M and rankR(M2) are defined forl)

finitely generated, projective Remodules M1

and M2, then rankR(M1 @lM2) is defined and

equals rankR(M1) + rankR(M2).

If A is a commutative, finitely generated,

projective R-algebra and M is a finitely

generated, projective A-module such that rankA(M)

and rankR(A) are defined, then rankR(M) is

defined and equals rankR(A)-rankA(M) [6, Exercise

2. p.35].



§2. Hensel Rings and the Idempgtent Lifting Property

Let f(x) be a polynomial in R[x] and fTiT. be

the polynomial in R/u[x], where u is an ideal of R.

obtained by reducing the coefficients of f(x) modulo u.

Suppose foT.= go(x)-ho(x) in R/fl[x]. A problem histori-

cally of interest to algebraists is the existence of polynomials

g(x),h(x) 6 R[x] such that f(x) = g(x)-h(x) and §T§T'=

go(x), 3757 = h0(x). In 1902 Hensel proved a lemma [10]

stating that if R is the p-adic numbers and if u is its

unique maximal ideal then certain factorizations, ITET = ‘

= go(x)-ho(x), can be "lifted" to corresponding factorizations

of f(x) in R[x]

In 1951 Azumaya [2] called a local ring satisfying

Hensel's lemma a Hensel ring — i.e. a local ring R ‘with

maximal ideal m is a Hensel ring if for every monic polynomial

f(x) 6 R[x] such that ETET = go(x)h0(x) where go(x),ho(x)

are monic, relatively prime polynomials in R/m[x], there

exist monic polynomials g(x),h(x) in R[x] such that f(x) =

g(x)-h(x), §Y§T = go(x), and h7§7'= ho(x). Azumaya considered

algebras over Hensel local rings and showed that the Hensel

pr0perty of the ring was entirely reflected in the algebras over

the ring: that is a local ring is Hensel if and only if idemp

potents can be lifted from A/I to A in all finitely

generated R-algebras A, for any two-sided ideal I of A.

This allows one to lift families of pairwise orthogonal

idempotents and matrix ring decompositions. Azumaya used these
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results to determine the structure of finitely generated

algebras over a Hensel local ring.

In 1963 Lafon [15] extended the definition of a Hensel

ring to nonlocal rings. Greco (1968) [7,8,9] used Lafon's

definition to generalize certain results Azumaya had Obtained

for Hensel local rings.

Definition. A ring R is a Hensel ring if for all

monic polynomials f(x) 6 R[x] and every decomposition f = gO-hO

in EaTg-R [x] with go and ho manic and (go) + (ho) =

Egg—R [x], there exists a pair of monic polynomials g,h E R[x]

such that f = g-h and g = go, 5 a ho. (It can be proved

that g and h are unique [15, Proposition 1, p.80]).

Any ring R having rad(R) = 0 is trivially a Hensel

ring. we now give another example.

Example 1.8. A commutative ring which is Hausdorff

and complete with respect to a linear t0pology in which rad R

is a closed ideal with every element tOpologically nilpotent

is a Hensel ring [3, Theorem 1, p.215-6]: e.g. rings with nil-

potent radical, the p-adic numbers, and the formal power series

rings over a Noetherian ring.

Definition. Let I be a two-sided ideal of a ring A.

we call (A,I) and L.I. pair (lifting idempotent pair) if every

idempotent of A/I is of the form. 5 where e is an idempotent

of A. we say A has the idempotent liftinggproperty if (A,N)
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is an L.I. pair. (In a commutative ring A, ‘if an idempotent

in A/N can be lifted to A there is exactly one lift in A

[7, Lemma 1.2, p.46].)

Example 1.9. Jacobson proved that if N is a nil

ideal of A. A has the idempotent lifting pr0perty [14,

Proposition 4, p.54].

Lemma 1.10.. Let u be a two-sided ideal of A,

(i) If (A,N) and (A/sl,N/21) are L.I. pairs.

then A has the idempotent lifting pr0perty.

(ii) If A is a commutative ring having the

idempotent lifting property, then (A,fl)

and (A/fl,N/fl) are L.I. pairs.

Proof: (i) is an immediate consequence of the

definition of L.I. pairs. See [7, Corollary 1.3, p.46] for

a proof of (ii).

The following theorem relates Hensel rings and L.I.

pairs.

Theorem 1.11. [7, Theorem 4.1, p.55 and 8, Theorem 2.2,

p.51] The following are equivalent prOperties of a commutative

ring R:

(i) R is a Hensel ring.

(ii) For every finitely generated Realgebra A,

(A,rad(R)-A) is an L.I. pair.

(iii) For every finitely generated, commutative, free

R-algebra A, (A,rad(R)-A) is an L.I. pair.
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Corollary 1.12. R is a Hensel ring if and only if

every finitely generated, projective R-algebra A has the

idempotent lifting property.

Proof: If R is a Hensel ring and A is a finitely

generated, projective R-algebra then (A,rad(R)-A) is an L.I.

pair by Theorem 1.11 (ii). By Pr0position 1.2 (ii) and (iii)

E53%%TTX' is a nilpotent ideal of E35€§TTX’ and by Example 1.9,

(Fa—$75.. , $367163) 18 an L.I. pair. Thus by Lemma 1.10 (i),

(A,N) is an L.I. pair. Conversely, we shall show R is Hensel ,
 

by proving that (iii) of Theorem 1.11 holds. Let A be a

finitely generated, commutative, free R-algebra. By the

hypothesis (A,N) is an L.I. pair. Since A is commutative,

(A,rad(R)-A) is an L.I. pair by Lemma 1.10 (ii).

All finitely generated algebras over a Hensel ring need

not have the idempotent lifting prOperty, e.g. let R = Z(p)[x].

where 2(p) is the subring of the rational numbers having

denominators relatively prime to a fixed prime integer p. R

has rad(R) = 0 and therefore is a Hensel ring. Let

Z [x] _

A = ——éEl—-—-. Then x is an idempotent in A/N, but A has

<x -x+p>

no idempotents other than 0 and l [18, Theorem 43.14, p.184].

If A is a finitely generated algebra over a Hensel

local ring, a von Neumann regular ring, or a Noetherian Hilbert

ring, then idempotents can be lifted from A/N to A [13, see

proof of Corollary 2, p.553]. It is of interest to find

necessary and sufficient conditions on R such that every



l3

finitely generated R-algebra has the idempotent lifting

property. we have seen [Corollary 1.12] that such a ring

must necessarily be a Hensel ring, but that R being a

Hensel ring is not sufficient to guarantee that every finitely

generated algebra has the idempotent lifting preperty: in

Chapter II we shall see that R. being an inertial coefficient

ring is a sufficient condition.

we conclude this section with a new example of a ring

 
all of whose finitely generated algebras have the idempotent

lifting prOperty.

Example 1.13. Let U be the ring of formal series

in one indeterminate over the rational numbers and S be the

subring of formal power series over the integers. Since U

and S are NOetherian rings, their radical topologies satisfy

the topological criteria of Example 1.8, and thus U and S

are Hensel rings. Let T and R be the subrings of U and

S, respectively, consisting of power series which are con-

vergent at zero (g(x) e U is called convergent at zero if

there exists an Open interval N of the real line such that

0 6 N and g(r) is an absolutely convergent series for every

r e N [25, p.142]). It can be shown that the radicals of

U,S,T, and R are each generated by x, and it follows that

the canonical homomorphisms U 4 U/rad U, S 4 S/rad S,

T 4 T/rad T, and R a R/rad R all can be described as evalua-

tion at x = o, T is a Hensel ring [18, Theorem 45.5, p.193].
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we shall show that R is a Hensel ring. Let

f(y) E R[y] be a monic polynomial such that 'fF;T==

WW where 90(Y).hO(Y) €R[y] are such that W,

W are monic polynomials in (R/rad R)[y] with (W) +

W> = (R/rad R)[y1- /U[y]\ Since R[y] s S[y]

S[y] T[y]

\Rlyl/

and T[y], and since S and T are both Hensel rings, it is

easily seen that the factorization of nyT' in (R/radIU[y]

can be lifted to a corresponding factorization of f(y) in

both S[y] and T[y]. Since S[y] and T[y] are both con-

tained in U[y] and since U is a Hensel ring and thus the

lift of a factorization is unique, we therefore have a factor-

ization f(y) = g(Y)-h(y) in S[y] n T[y] = R[y] where

W =W and W = W. Thus R is a Hensel ring

and by Theorem 1.11 (ii) for any finitely generated R-algebra

A, (A,rad(R)-A) is an L.I. pair.

Since R/rad R is isomorphic to the integers and the

integers form a NOetherian Hilbert ring, (A/rad(R)-A,N/rad(R)-A)

is an L.I. pair. Hence by Lemma 1.10 (i) for any finitely

generated R-algebra A, (A,N) is an L.I. pair.

§3. The Decomposition Space

The Pierce decomposition space X(R) of a commutative

ring R ‘was first described by Pierce [20] using sheaf-theoretic

methods. The description of X(R) given here avoids the use



15

of sheaf-theoretic language and is due to Villamayer and

Zelinsky [23] (they call X(R) the Boolean spectrum of R).

Magid's bodk [17] to which we will frequently refer is an

easily accessible, complete source on this approach to X(R).

The decomposition space X(R) is a tool useful in

proving that certain results which are known to hold for

connected, commutative rings also hold for arbitrary commutative

rings. The technique is to study certain connected homomorphic

images of R and "patch together" these results to Obtain ‘.

the result for R.

Let Spec(R) denote the set of prime ideals of R

endowed with the Zariski tapology (a basis of closed sets of

Spec(R) is {V(I)} where I ranges over all ideals of R and

where V(I) = [p 6 Spec(R):p 2 1]). We define X(R) to be the

quotient space of Spec(R) obtained by identifying connected

components of Spec(R). It can be shown that X(R) is a totally

disconnected, compact, Hausdorff spaoelor equivalently a

pgofinite space (an inverse limit of finite discrete spaces)

[17, Corollary 11.4, p.26]. The space X(R) has the following

useful tOpological property.

Preposition 1.14. (The Partition Property) [17, Lemma

1.7, p.3] Any open cover of X(R) has a refinement which is

a partition (a finite family of disjoint open subsets of X(R)

which covers X(R)).
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It can be shown that two prime ideals of R belong

to the same connected component of Spec(R) if and only if

they contain the same idempotents [17, Proposition 11.3, p.26].

Thus if R has no idempotents but 0 or 1, Spec(R) is

connected (justifying our calling such a ring a connected ring).

Let e be an idempotent of R and let N(e) =

[x 6 X(R) :x _c_ V(R(1-e))}. The sets N(e) have the following

useful prOperties:

Proposition 1.15. [17, Proposition II.12, p.30]

(1) N(0) {I and N(l) =X(R)-

(ii) N(e) ONCE) = N(ef).

(iii) N(e) N(f) if and only if e = f.

(iv) The sets {N(e)} form a basis of Open, closed

sets for the tOpology on X(R). Furthermore,

any Open, closed subset of X(R) is of the

form N(e) for some idempotent e of R.

Let I(x) be the ideal of R generated by the set of

idempotents in any prime ideal contained in a point x E X(R)

and define Rx = R/1(x). Rx is a connected ring [17.

Corollary 11.21, p.34].

When computing X(R) and R.x for a particular ring

R it is usually easier to view X(R) in an equivalent formu-

lation as the collection of maximal Boolean ideals of R [17,

pp.27-28]. A set of idempotents 1c of R is called a
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maximal Boolean ideal if

(i) For every idempotent e of R either

e 6 x or l-e e x, but not both: and,

(ii) If e and f are idempotents of R then

ef E x if and only if e E x or f E X.

It can be shown that Rx = R/1(x) where I(x) is the ideal

of R generated by the elements of x [17, Proposition II.9,

p.28].

Let M. be an R-module and let m 6 M. Throughout

let m.x = m + I(x)M. denote the image of m in Mk =

M GR Rx 2.M/I(x)M.

Proposition 1.16. [17, Proposition 11.16, p.32] Let

a and b belong to the R-module M, let x G X(R), and

suppose ax = bx“ Then there exists a neighborhood N(e) of

x in X(R) for some idempotent e e R such that a = b

Y Y

In My for all y E N(e), ex = 1x, and as = be.

Proposition 1.17. [17, Proposition 11.17, p.32] Let

a and b be elements of the R-module M such that ax = bx

for all x 6 X(R). Then a = b.

PrOpositions 1.16 and 1.17 along with the Partition

Pr0perty will be the principal tools used to "patch together"

results from the connected rings Rx to Obtain results for R.



CHAPTER II

INERTIAL COEFFICIENT RINGS AND THE

IDEMPOTENT LIFTING PROPERTY

E.C. Ingraham has conjectured that a ring R is an

inertial coefficient ring if idempotents can be lifted from

A/N to A in all finitely generated R-algebras A. Both I

he and Azumaya have used the technique of lifting idempotents

 
to produce inertial subalgebras. The main result of this

chapter is that idempotents can be lifted from A/N to A

in all finitely generated algebras A over an inertial co-

efficient ring, and thus the converse of Ingraham's conjecture

is true.

The result is proved in three steps. First it is shown

that if R is a connected inertial coefficient ring, idempotents

can be lifted from R/rad R to R. Next the decomposition

space is used to show idempotents can be lifted from R/rad R

to R in any inertial coefficient ring R. Finally we show

that idempotents can be lifted from A/N’ to A in any finitely

generated R—algebra A.

The first step‘will be proved by contradiction; we will

assume R has a nonliftable idempotent and produce a finitely

generated R-algebra A such that g is R-separable but A

contains no inertial subalgebra.

18
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Lemma 2.1. Let f(x) be a monic polynomial in R[x]

such that fTRT = xr(x-1)s for r,s positive integers,

where f(x)-6 (R/rad R)[x]. Suppose there do not exist monic

polynomials go(x),h0(x) in R[x] such that f(x) = go(x)-ho(x)

with 337;) = xr and h37§7 = (x-l)s. Then 'EITET =

xr+1(x-l)s, and there do not exist monic polynomials g(x),h(x)

in R[x] ‘with xf(x) = g(x)h(x), g(x) = xr+l, and h(x) =

 

(x-l)s.

r+s r+s-l i
Proof: Let f(x) = x + Z) aix with ai e R. -

i=0

r+s-1 .

Then xf(x) = xr+s+l + Z) aix1+1. Suppose xf(x) = g(x)h(x)

i=0

with g(x) = xr+1 and h(x) = (x-l)s. Then g(x) = x1"”. +

E} nkxk with 6 rad R and h(x) = x8 + s£31H8)(-1)s-k+ ’]xk

k=0 nk k=0 k nk

O

with nk E rad R. Equating constant terms of xf(x) = g(x)h(x)

gives no((-1)S+n6) = 0. (-1)8 + n6 is a unit of R, and

r

thus n = 0. Therefore xf(x) = x(xr + Z) nkxk'1)-h(x). Since

0 k=l

x is not a zero divisor in R[x] ‘we have f(x) =

r

(Xr + Z} nka-1)'h(x). Thus

k=1

r

90(x) = xr + k2: nkik’l

and ho(x) = h(x) contradict the hypotheses.

Theorem 2.2. Let R be a connected ring. If R/rad R

has an idempotent not equal to 5 or I then R is not an

inertial coefficient ring.
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Proof: By [14, Proposition 4, p.54] there exists

a p 6 rad R such that x2 - x + p E R[x] has no root in

rad R. Then x2 - x + p e x(x-l) modulo rad R. If there

exist monic polynomials g(x),h(x) contained in R[x] such

that x2 — x + p = g(x)-h(x) 'with g(x) = x and h(x) = x - 1

then g(x) = x + n for some n e rad R and -n is a root

of x2 - x + p in Rad R.

 

Let f(x) = x3 - x2 + px. Then f(x) = x2(x-l), but

by Lemma 2.1 there do not exist monic polynomials g(x) and

h(x) contained in R[x] such that f(x) = g(x)-h(x) and

g(x) = x2, h(x) = x - 1.

Let A be the finitely generated, faithful, free,

commutative R-algebra A = —%B{';]>——' Then A/(rad (R) -A) =

(x -x +px>

W; since <x> and <x-l> are comaximal ideals, the

<x2(x-1)> / (11!

Chinese Remainder Theorem gives A/(rad (R) 'A) s: Q: r: lxl O

(x >

W. Thus 5 a:We.- R/rad R e R/rad R. There-
<x-l> N _'N rad R

fore by Chapter 1, properties 11 and III, p.7, A/N is R-

separable. Furthermore, fer any maximal ideal m of R,

Hm(A) = 2 [Lemma 1.6].

we will show that the assumption that A has an

inertial subalgebra 8 leads to a contradiction. By Chapter 1,

property VI, p.8, if such an S exists, it must be a pro-

jective R-module.
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Case 1. Assume S is connected. Since R is

connected, rankR(S) is defined and by PrOposition 1.7

um(A) = rankR(S). By the "projective lifting property"

(Chapter 1, property IV, p.7), A a projective R-module and

S a separable R-algebra imply that A is a projective S-

module. Since S is connected, rankS(A) is defined. But

then by Chapter 1, property X, p.8, rank is multiplicative and

= rankR(A) = rankR(S)-rankS(A) = 2-rankS(A). Thus 2 divides3

3, a contradiction.

To do the case when S is not connected, we need the

following lemmas:

Lemma 2.3. Let R be a connected ring and

 

A = R[x] for p e rad R. If A has an idempotent e,
3 2

(x -x +px>

e # 0,1, then e or 1 - e is of the form alx + a2x2

where a1 6 rad R and 33' is an idempotent in R/rad R.

_ ' 2
Proof. Let e — a0 + alx + a2x , ai E R, represent

e in the free Rebasis for A, {l,x,x2}.

2 2
0 — e - e — (aO-ao) + (2aoa1 a1)x + (a1 a2+2aoa2)x

3 2 4

3 4
Now applying the relations, x = x2 - px and x = (l—p)x2 - px,

we get

0 = (aZ-a ) + (2a a -a -2a a p—a2 )x
o o o 1 1 1 2 2p

2 2 2
+ (al-a2+2a0a2+2a1a2+a2(l-p))x .
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[l,x,x2] being a free basis of A over R implies the

following relations:

2
(-1-) a0 = a0

(-2-) Zaoa1 - a1 - 2a1a2p - agp = 0

(-3-) ai - a2 + 2aoa2 + Zala2 + a§(l-p) = 0.

Since R is connected, equation (-l-) gives a0 = 0 or a0 = 1.

The conclusion follows by examining equations (-2-) and (-3-)

when a0 = 0 and when a0 = 1.

Lemma 2.4. Let R be a connected ring. If

A = 3R[:2cl

(x -x +px>

S such that S is not a connected ring, then S a.- Re e R(1-e)

, where p e rad R, has an inertial subalgebra

(as rings) for some idempotent e e.A.

 

Proof: Since R is connected, um(A) is well

defined, and um(A) = 2 for any maximal ideal m of It.

Suppose A has an inertial subalgebra S. Then by Proposition

1.7, 2 = um(A) = rankR(S).

If S is not connected then S = Sele S(l-e) for

some idempotent e €,A, e # 0,1. If rankR(Se) = 0 then

(Se)P = 0 for all prime ideals p of R and so Se = 0 and

e = 0. Similarly rankR(S(l-e)) # 0. Since rank of direct

sums is additive (Chapter 1, property IX, p13), rankR(Se) =

rankR(S(1—e)) = 1. Since Se and S(l-e) are projective

modules over a connected ring, they are faithful Remodules.
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Se is thus a finitely generated, projective, faithful Re-

module. By [6, Corollary 1.11, p.8 and Corollary 4.2, p.56]

Re is an Re-direct summand of Se. Therefore there exists a

finitely generated Re—module U such that Se 2 Re 9 U as

Re-modules. Localizing at each prime ideal p of R aeRe

gives UP = 0, and thus U = 0. Thus Se esRe as rings and

similarly S(l-e) a R(l-e), and therefore S 9-. Re a R(l—e)

(as rings).

 

Lemma 2.5. Let A = __§l§%____. for p e rad R. Let

(x -x +px>

S be a subring of A, S = Re e>R(l-e) for e an idempotent

of A of the form e = alx + a x2 where a1 6 rad R and a

2

is an idempotent of R/rad R. Then A = S + N implies

zen-.21.. A

2

and a is a unit of R.
rad(R)-A 2

a (R(radRzlxl

<x -x>

A = S + N implies there exist r1,r2 e R and n 6 N such

Proof: N = <rad R,x(x-l)> and

2
|
?

that x = rle + r2(l-e) + n = r2 + (rl-r2)e + n. Since

- _ - -2 . - _ - - _- - -2 - .
e — a2x in A/(rad(R) A), x - r2 + (r1 r2)a2x + n In

A/(rad(R)-A). Therefore in A/N, R = I2 + (I1-?2)§2§. Thus

r2 = 0 and x = rlazx. Therefore 1 = rlaz. Since a2 18

both a unit and an idempotent of A/N, :2 = I. But then by

-2
[7, Lemma 1.2, p.46], 52 = I in .A/(rad(R)-A). Thus 5 = x

and a2 is a unit of R.
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The following lemma is a generalization by Greco

of a result for local rings due to Nakayama [2, Lemma 3, p.134].

Lemma 2.6. [7, see proof of Theorem 3.1, p.54] Let

f(x) 6 R[x] be a monic polynomial. Suppose A = Efxx > =

91 O n for ideals 91,515 of A. Suppose further that

A/rad (R) -A a: (go (x)> @ (ho (x)> for monic, c0prime polynomials

90(X).ho(x) 6 (R/radR)[x] such that QI/(rad R-QI) = (go(x)>

 

and B/(rad R-B) = (ho (x)>. Then there exist monic, coprime

 

polynomials g(x),h(x) 6 R[x] such that f(x) = g(x)-h(x).

and g(x) =go(x), h(x) =ho(x) in FEET—R[XJ'

We can now complete the proof of Theorem 2.2:

Case 2. Assume S is not connected. By Lemmas 2.3,

2.4, and 2.5 S must be of the form S = Re 0 R(l-e), for

e an idempotent in A of the form e = alx + a2x2 where

a1 6 rad R, 52 = l in R/rad R. Thus

A = Ae @ A(1-e) = <a2x2+a1x> e <a2x2+a1x-1>

= <x2+a31alx> e <x2+a31a1x-a;1>.

Furthermore x2 + aglalx a x2 modulo rad(R) -A and

x2 + aglalx - age-1 2 x2 - 1 modulo rad(R) -A. Finally <x2-l> =

<x—l> in A/(rad (R) ~A), since <x2-1> E <x-l> and (x—l) =

(1-x)(x2-l) in A/(rad(R).A) implies <x-l> 5<x2-1>. Thus

by Lemma 2.6, there exist monic polynomials g(x),h(x) in

R[x] such that x3 - x2 + px = g(x) 'h(x) with 3T2?)- = x2 and

h(x) = x - l in (R/radR)[x]. This contradicts the choice of p.
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Theorem 2.2 states that if R is a connected,

inertial coefficient ring then R/rad R is connected and so

(R,rad R) trivially is an L.I. pair. we next use the

decomposition space to extend Theorem 2.2 to an arbitrary

inertial coefficient ring.

Proposition 2.7. Let A be a finitely generated R-

algebra. (A,N) is an L.I. pair if (Ax,N*) is an L.I. pair

for all x e X(R).

Proof: Let u E A be such that u2 - u E N. We must
 

find an idempotent e 6 A such that u - e €,N.

Since Rx is a flat R-module [17, Proposition 11.18,

p.33] without ambiguity we can let Nk denote the image of

N under the canonical homomorphism. A 4 A/1(x)-A = Ax. Now

ux = u + I(x)-A is an element of A.x such that fix is an

idempotent element of Ax/Nk. Since (Ax,N*) is an L.I. pair

and since an idempotent in Ax can be lifted to an idempotent

in A [17, PrOposition 11.20, p.34], there exists an idempotent

f(x) €.A such that ux = [f(x)]x + [n(x)]x for some n(x) e_N.

By Preposition 1.16 for each x e.X(R) there exists an idem,

potent e(x) e R such that u-e(x) = f(x)-e(x) + n(x)-e(x)

and uy = [f(x)]y + [n(x)]y for all y e N(e(x)).

(N(e(x))}x€x(R) Is an Open cover of X(R) and thus

by the partition property, PrOposition 1.14, there

exists a finite refinement of disjoint Open and closed sets
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U1,...,Um. By Pr0position 1.15 (iv), Ui = N(ei) for some

idempotent ei €,R. Since {N(ei)}T;1 covers X(R) and

since N(ei) n N(ej) = ¢, by Proposition 1.15 (i), (ii), and

m

(iii) 1 = Z) ei and ei-ej = 0 for each i # j. Further-

i=1

more N(ei) EN(e(xi)) for some xi EX, and thus N(ei) n

N(e(xi)) = N(ei) implies ei-e(xi) = ei: hence u-ei =

fi°ei + ni-ei where fi = f(xi) and n1 = n(xi). Let

m

e = Z)(fi-ei). Since the ei are pairwise orthogonal and

i=1

each fi is an idempotent, e is an idempotent. New

m m m

u = .Z uei = .23 (fiei+niei) = e + .23 niei, and therefore

i=1 i=1 i=1

u - e E N.

Corollary 2.8. If R is an inertial coefficient ring,

(R,rad R) is an L.I. pair.

gggog: Since a homomorphic image of an inertial

coefficient ring is an inertial coefficient ring (Chapter 1,

property V111, p.8) Rx = R/1(x) is a connected inertial

coefficient ring for every x e X(R). By Theorem 2.2

(Rx,rad(Rx)) is an L.I. pair for every x E X(R). Since

(rad R)x _C._'. rad(Rx), by Lemma 1.10 (ii) (Rx, (rad R)x) is

an L.I. pair for every x e X(R): hence by Proposition 2.7

(R,rad R) is an L.I. pair.

we are now able to prove the general case:
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Theorem 2.9. Let R be an inertial coefficient

ring and A be a finitely generated R-algebra. Then (A,N)

is an L.I. pair.

 

Proof: R/annihR A, being a homomorphic image of R,

is an inertial coefficient ring and A is a faithful R/annihRA-

algebra. Thus replacing R/annihRA by R 'we may assume A

is a faithful R-algebra.

Let c €.A be such that c2 - c 6 N. we must find

an idempotent e €.A such that c - e €.N. Let B = R[c]

denote the R-subalgebra of A generated by c. B is a

finitely generated, commutative R-algebra. By Pr0position 1.3

N n B _c; rad B. Let (R/radR)[5], where E = c + N, denote

the R/rad Resubalgebra of A/N’ generated by 5. Define a

n . n .

homomorphism ¢:B +(R/radR)[E] by H 2 ricl) = Z Ei(<-:)1.

i=0 i=0

I) is surjective and ker W E N n B c_: rad B. Now B/ker w e-

(R/radR)[E] is a homomorphic image of (R/gadlfil’Lx] a R/rad R e

(x -x>

R/rad R and therefore is a separable R-algebra. Since B/rad B a

rgékgikzrw , B/rad B is a separable R-algebra. By Chapter

I, prOperty VII, p.8, B is an inertial coefficient ring,

and thus by Corollary 2.8 (B,rad B) is an L.I. pair. By

Lemma 1.10 (ii), (B,N’rlB) is an L.I. pair. Then c2 - c e

N n B implies that there exists an idempotent e 6 B such

that c - e €,N n B. But then e e.A and c - e 6 N.
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Notice that in the preceding proof we showed that if

R is an inertial coefficient ring and if E €.A/N is idem-

potent, then there exists an idempotent e e B = R[c] lifting

5. Thus e is a polynomial over R in c. Furthermore,

the following result is a consequence of Corollary 1.12 and

the proof of Theorem 2.9.

Corollary 2.10. The following are equivalent prOperties

of a commutative ring R:

(i) All finitely generated R-algebras have

the idempotent lifting property.

(ii) All finitely generated, commutative R—

algebras are Hensel rings.

Any algebra A having the idempotent lifting property

must satisfy the two prOperties below. A consequence of

Theorem 2.9 is that these results hold for any finitely gen-

erated algebra over an inertial coefficient ring.

1) Any countable sequence of pairwise orthogonal

idempotents in A/N. can be lifted to a

sequence of pairwise orthogonal idempotents

in A [16, Proposition 2, p.73].

2) If .A/N a ann' the full nxn matrix ring

over a finitely generated R/rad R-algebra B,

then there exists a finitely generated R-

C: 2 B and A esc .
rad C nxn

the full nxn matrix ring over C [14, see

algebra C such that
 

proof of Theorem 1, p.55].
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Corollaryo2.11. If R is an inertial coefficient

ring then R/u is a Hensel ring for any ideal u of R.

Proof: By Chapter I, PrOperty VIII, p.8, R/fl is

an inertial coefficient ring and by Theorem 2.9 all finitely

generated R/fl-algebras have the idempotent lifting property.

Thus by Corollary 2.10 R/u is a Hensel ring.

A consequence of Corollary 2.11 is that all homomorphic

images of an inertial coefficient ring have the following

properties of a Hensel ring R:

R .-

rad R - module P

of rank n there exists a unique (up to

1) For every projective

isomorphism) projective R-module P of

P [7’
rank n such that P =m

Corollary 5.4, p.58].

2) The homomorphism $(R) 4 8(R/rad R) is

an isomorphism, where 8(R) denotes the

Brauer group of R [22].

Corollary 2.12. The following are equivalent properties

of a commutative ring R:

(i) For all finitely generated, commutative R-algebras

A such that A/N is R-separable, there exists

a separable Resubalgebra S of A such that

A=S+N.

(ii) All finitely generated, commutative R-algebras

have the idempotent lifting property.
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Proof: The fact that (ii) implies (i) fellows

from Theorem 1.5. The proof of Theorem 2.9 shows that (i)

implies (ii).

If Ingraham's conjecture is true then it is un-

necessary to restrict the algebras A in Corollary 2.12 to

commutative R-algebras, for then the lifting of idempotents

from A/N to A in all finitely generated R-algebras A

is equivalent to the lifting of the separability of A/N to

a separable R-subalgebra S of A in all finitely generated

R—algebras.
 



CHAPTER III

NEW INERTIAL COEFFICIENT RINGS

In this chapter we shall show that a ring R is

an inertial coefficient ring if and only if for every

x e_X(R) each connected ring Rx is an inertial coeffi-

cient ring. we shall use this criterion to produce new

inertial coefficient rings.

WQC. Brown [4, Theorem 1, p.370] used the decomposition

space X(R) to show von Neumann regular rings are inertial

coefficient rings. Our result is a generalization of his

result, for when R is a von Neumann regular ring each Rx

is a field and therefore each Rx is an inertial coefficient

ring. Our proof is closely patterned after Brown's proof.

The technique is to show that an inertial subalgebra exists

if and only if a particular finite collection of equations

holds. To find an inertial subalgebra of an R-algebra A ‘we

use the fact that certain equations hold in each Rx-algebra

A.x and then using the topology on X(R) 'we patch together

elements of A to obtain equations in A. which hold in every

A.X and therefore hold in A.

we shall use the following criterion for the separability

of a finitely generated R—algebra S.

31



32

Lemma 3.1. Let S be an Realgebra generated as an

R-module by 81.....8 Then S is separable if and onlyn.

if there exists biibi e S i = l,...,m such that

m,

(1) .23 bibi = l. and

i=1

m m

(11) 1:31 sjbi oR bi = 1:31 bi 0R bisj holds m

S 0 So for j = l,...,n.
R

Proof: Proof follows from [6, Preposition 1.1 (iii),

p.40].

The main result of this chapter is the following

theorem.

Theorem 3.2. R is an inertial coefficient ring if

and only if R.x is an inertial coefficient ring for all

x e X(R).

Proof: If R is an inertial coefficient ring then

Rx = R/1(x) is an inertial coefficient ring by Chapter 1,

property VIII, p.8.

Conversely, suppose Rx is an inertial coefficient

ring for all x E X(R), and let A be a finitely generated

R—algebra such that A/N is R-separable. Then Ax =.A/(1(x)-A)

is a finitely generated Rx—algebra. Since Rx is a flat R-

module [17, PrOposition 11.18, p.33] without ambiguity we can

let Nk denote the image of N under the canonical homomorphism

A 4 A/(1(x)-A) = Ax. Furthermore, since 0 4 N 4 A 4 A/N 4 0
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is an exact sequence of R—modules and Rx is R—flat,

a (A/N)x is a separable Rx—algebra. Since each Rx

'5
'
l
e
x
n
’

an inertial coefficient ring and NK 5 rad (Ax), for

every x 6 X(R) there exists a separable Rx-algebra S“

such that Sx + Nx = Ax [12, Corollary, p.3].

By Chapter 1, property V, p.8, each 3x is a finitely

generated Rx-algebra: for each x 6 X(R) let sl(x), . . .,sn (x) (x)

E A be such that (sl(x) )x' . . . , (sn (x) (x) )x are Rx—module

A.. x W"
generators of S . Let S = 2') R-s:.L (x) be the R-submodule

i=1

of A generated by {si(x)}n(x). Then (Sx)x=SS‘.

i=1

Let a1, ...,ap be R-module generators of A. Since

for each x 6 X(R) ’3‘): = (Sx)x is a separable Rx-algebra

such that Nx + (Sx)x = Ax, there exist elements rijk (x),

ri (x),t£'j (x),rhj (x),r1;j (x) E R, elements z‘(x) 6 N, and

elements bh(x),b1;(x) e 8" for i,j,k = l,...,n(x), 1. = l,...,p,

and h = l,...,m(x) such that:

n(x

(—1-) (si(x))x(sj(x))x = kEi (r (x))x(sk(X))x
ijk

for i,j = l,...,n(x).

n(x)

(-2-) 1x = i2; (ri(X))x(si(x))x.

n(X)

(-3-) (31.)): = (z‘(x))x + 3.51 (tfl'j(x))x(sj(x))x

for 1. = l,...,p.

m(x)

<-4-> 1x = I31 (bhmnxcngnx.
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m(x)

(-5-) 131 [(ssjlx))x(bh(X))x 8h): (b1;(X))x]

m(x)

=h231 [(bh(x))x cRx (1013M)x (8 (x)) x]
j

x x 0x . _
in (S )x th (S )x for j — l, ...,n(x).

n(x) n(x)

(-6-) b (X) = 2'} rhjj(x)s (x) and bh(x) = 231 rh.(x)sj (x)

1‘ i=1 i=1

for h = l,...,m(x).

Using Preposition 1.16 and.by intersecting the

apprOpriate neighborhoods of x if necessary, for each

x 6 X(R) there exists an idempotent e(x) 6 R such that

[e(x)]x = 1x and equations 1-5 hold for all y E N(e(x))

when we replace the subscript x 'with the subscript y (for

m(x)

example, 131 ([sj(x)]y[bi(x)]y shy [bi(x)]y) =

m(X) o . X SK 0

1:: ([bi(x)]y Ghy [bi(X)]y[8j(X)]y) holds in (S )y Chy( )Y)-

The neighborhoods [N(e(x))} where each e(x)

x€X(R) '

is chosen as above, form an Open cover of X(R). By PrOposition

1.15 and the partition property (PrOposition 1.14), there

exist pairwise orthogonal idempotents {ei]1=l contained in

R such that [N(eiH:=1 is a disjoint Open cover of X(R)

refining [N(e(x))} Let xi denote a point of X(R)
x€X(R)'

such that N(ei)sN(e(xi)), i=1,...,t. Let n=

maximum {n(xi )] and m = maximum [m(xi )}. For each k

i=1, ...,t =l,...,t

define sj(xk) = 0, rj(xk) = 0, rij£(xk) = 0 for all i,j,n,

n(xk) < i gn, n(xk) < j gn, or n(xk) < ign, define
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ti,j(xk) =0 for all i,j. 0313p and n(xk) (jgn,

and define bj(xk) = b5(xk) = 0 for all j, m(xk) < j g;m.

We patch together the data from the stalks Rx by

defining the following:

t

33 = E; sj(xk)ek j = 1. . .n

t

r3:111:31 rj(xk)ek 3:1" 'n

t

rijz=k=1rij£(xk)ek i,j,l.= l,...,n

t

23 = kEa zj(xk)ek j = l,...,p

_ E: t ( ) = l,...,p

1] k=1 ij xk ek j = 1,...,n

1:

b3 = RE: bj(xk)ek j = l,...,m

t

bj=k§1bj(xk)ek j=l,...,m.

Any x e X(R) is contained in N(ei) for some i

and is not contained in N(ej) fer j # i. Thus for all

prime ideals p e x, 1 - e1 6 p and therefore (ei)x = 1 .

x

For all p €,x and j # i, 1 - ej £ p and ej(l-ej) = 0 e,p

imply that e3. 6 p, and therefore (ej)x = 0%. Thus when

x ems.) (sj)x = (sj<xk))x. (rj)x = (rj(xk))x. (234x -.-

(23(xk))x' (riji’x = (rij£(xk))x' (tij)x 3 (tij‘xk”x' “5):: =

(bj(xk))x' and (bj)x = (b§(xk))x.
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Let S be the R—submodule of A generated by

[sj]2=1. For each x e X(R), x 6 N(e(xk)) fer some k,

so for each i,j = l,...,n

n

(Si)x(sj)x = (si(xk))x(sj(xk))x = ‘Ei(rijl(xk))x(s£(xk))x

n

= yEa(rij£)x(s£)x

and

n n

1x = i231(ri(xk))x(si(xk))x = i231(ri)x(si)x.

n n

Thus Sisj - El rij‘s‘ i,j = l,...,n and 1 - 1:31 risi

are elements of A which equal 0x in Ax for all x 6 X(R).

= 0 for i,j = l,...,n

”k
n

and 1 - iii risi = 0, so S is an R-algebra and Sx = 8x .

where x e N(ek) §N(e(xk)).

n

By PrOposition 1.17 sisj - Z) rij‘s‘

£=1

Setting previously undefined rij(xk) = 0 and using

equation (-6-) and the fact that {ei}§=1

gonal idempotents the following equalities show that bi E S:

are pairwise ortho-

t t ““‘k’

bi = k§l 131(xk)e.k = k§1 j§1 rJ.-j(xk):sj(xk)ek

t n

= k§1 jg]. rij ("k’sjbck)ek

n t

= jg 1:51 rij(xk)ek s].(xk)ek

n t t

= jgl(kE1 rij(xk)ek)(kgi 8j(xk)ek)

n t

= 351(k51 rijb‘knkmj'

Similarly hi 6 S.
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New 1 - 2) b.lbi’ is an element of S ‘which is 0

i=1 m x

in Sx for all x E X(R). Therefore 1 = Z) bib{' by

i=1

m

Proposition 1.17.1231(s.jbi an bi’) - 23 (b1 GR bi’sj) is an

i=1

. 0
element of ::SR S0 which is 0x in (S QR S ) GR Rx _

Sx eRx Sx= aRx (S:i where x 6N(ei) §N(e(xi)), and

m

therefore by PrOposition 1.17 E (83'ib QR bi’) =121Cbi®R bi’s

i=1

in S sh SO. Hence S is a separable R-algebra.

Finally since equation (—3- ) holds in Ax for all

x e X(R), ai = 21 + jZfi tiij3j and A = N + S.

we have produced an inertial subalgebra of A and

have shown, therefore, that R is an inertial coefficient ring.

we shall next use Theorem 3.2 to produce three new

types of inertial coefficient rings. Our method will be to

compute X(R) and to show the R.x are inertial coefficient

rings. In the second and third examples we shall view X(R)

as the collection of maximal Boolean ideals.

Our first new example of an inertial coefficient ring

is the ring S = C(X,R) of continuous functions from a pro-

finite space X to a connected, inertial coefficient ring

R endowed with the discrete topology.
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Proposition 3.3. Let S = C(X,R) be the ring of

continuous functions from a profinite space x to a

connected, inertial coefficient ring R having the discrete

tOpology. Then S is an inertial coefficient ring.

Proof: By [16, pp.40—1] for every x E X(S), Sx

is a homomorphic image of R and so is an inertial coefficient

ring. By Theorem 3.2 S is an inertial coefficient ring.

A particular example of the previous proposition is

the following:

Example 3.4. Let S = C(X,C) where x is the subspace

{l,%,%,...,0} of the real numbers under the usual topology

and C is the complex numbers under the discrete topology. S

is isomorphic to the ring of eventually constant sequences in

C. Since X is a profinite space, by Proposition 3.3 S is

an inertial coefficient ring.

Our second new example of an inertial coefficient ring

is the polynomial ring R[y1,...,ym], the formal power series

ring R[[y1,...,ym]], and the convergent power series ring

R<<y1,...,ym>> over a von Neumann regular ring R, we first

compute the stalks of these rings.

Lemma 3.5. Let f(y) = i a.yj be an idempotent

i=0 3

in R[[y]]. Then f(y) = a0 where a0 is an idempotent of R.
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Proof: Equating constant terms and coefficients of

O . O .

y in the equation ( Z] ajyj)2 = Z) ajyJ gives the relations:

j=o j=0

(—1-) a = a and (—2-) 2a a1 = a1.
2

O 0

By equation (-1-) a is an idempotent of R. we shall show
0

by induction that aj = O for j.2 1. .Multiplying equation

(-2-) by a0 and uSing equation (-l-) gives 2aoa1 = aoa1

or aoa1 = 0: thus Zaoa1 = a1 = 0. Now suppose aj = 0

C 0 2 a j

for j S i. As before (a0 + Z‘, a.yj) = a0 + 2'} a.y

j=i+1 j j=i+1 3

implies that 2ai+1ao = ai+1 and so 2ai+1aO = ai+1ao giv1ng

ai+1ao = o and hence ai+1 = 2ai+1aO = 0.

Proposition 3.6. If R is a ring such that

Rx[y1,...,ym] (respectively Rx[[y1,...,ym]], Rx<<y1,...,ym>>)

is an inertial coefficient ring for all x €.X(R) then

R[y1,...,ym] (respectively R[[y1,...,ym]], R<<y1,...,ym>>)

is an inertial coefficient ring.

m: Let S=R[y1,...,ym], T=R[[y1,...,ym]].

and U = R<<y1o...,ym>>. Using Lemma 3.5 and induction on m

one can show that any idempotent in S,T, or U is an idemr

potent of R. Since the decomposition space of a commutative

ring A is the collection of maximal Boolean ideals of A, it

follows immediately that X(S) = X(T) = X(U) = X(R). Since for

each x 6 X(S), I(x) is the ideal of S generated by the

idempotents of x, and since idempotents of S are contained
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in R, then I(x) = 1-8 where I the ideal of R generated

by the idempotents of x, and 8x = S/I(x) = R/I[y1,...,ym] =

Rx[y1,...,ym]. Similarly Tx = Rx[[y1,...,ym]] and

U* = Rx<<y1,...,ym>>. The result now follows from Theorem 3.2.

Corollary 3.7. If R is a von Reumann regular ring,

R[y1,...,ym], R[[yl,...,ym]], and R<<y1,...,ym>> are

inertial coefficient rings.

Proof: For each x e X(R), Rx is a field and hence

Rx[y1,...,ym] (13, Corollary 2, p.553), Rx[[y1""'ym]]

(18, Theorem 30.3, p.104), and Rx<<y1,...,ym>> (18, Theorem

45.5, p.193) are known to be inertial coefficient rings.

n

If S = e 23 R1 is a finite direct sum of rings Ri

i=1

then for every x 6 X(S) S = (Ri)x for some xi 6 X(Ri).

i
x

This fact suggests that Theorem 3.2 mdght.be of value in

studying infinite direct sums (with 1 adjoined) and direct

products. As our final example of a new inertial coefficient

ring we shall see that infinite direct sums (with 1 adjoined)

and a few very special direct products can be shown to be

inertial coefficient rings using the decomposition space.

Let R ‘be a "ring" perhaps‘without an identity. R

can be embedded in a ring which has an identity element in the

usual manner: Let R"Ir = R e Z where Z denotes the integers.

Define addition in R* coordinatewise and multiplication by

(a,i)-(b.j) = (ab+ib+ja,ij) for a,b 6 R and i,j E z. The
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element (0,1) is the identity element of R*. The following

lemma follows easily from the definition of multiplication

. *

in R.

Lemma 3.8. All idempotents of R* are of the form

(e,0) or (-e,1) where e is an idempotent of R.

Let R = e E Ra be the direct sum of a collection of

commutative rings {Ra}. we next compute the points of X(R*)

and the stalks (R*)x by finding the maximal Boolean ideals

of R* for this particular R. Any idempotent e of R has

only finitely many nonzero coordinates each of which must be

th
an idempotent. Let ea denote the a coordinate of e.

Lemma 3.9. All x e:x(R*) are of the form

x0 = {(e,o):e an idempotent of R} or

B

a
x [(e,0):e an idempotent of R and ea 6 xB e X(RaH

U {(-e,1) :e an idempotent of R and ea ,é x6}.

(R*) a z, the integers and (Rf)xfi 22(Ru)

x0 x5'

and x2 are

a

Proof: One can easily show that xo

maximal Boolean ideals of R*. we shall show that any maxi-

mal Boolean ideal x of R* is one of these ideals.

Let x(o) = {eaI-(e,0) e x}. If for every 0., 1a e x(a).

then x0 5 x implies x0 = x.
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Suppose there exists an a such that lo. A x(a) .

It is easily checked that x(a.) is now a maximal Boolean

ideal of Rd and so x(o.) e X(Ra)' say x(a) = xB. If

(e,0) e x then by definition of x , ea 6 xfi, whence

(e,0) 6 x2. To show x 5 x2 we shall show that (-f,1) e x

implies fa. ,é xB, or equivalently that 1a - fa 6 xB. Let

e = (0, . . .,0,1a,0, .. .,0) e R. Since (e,0) - (-f,l) =

(e-ef,0) E x and e - ef = (0,...,0,1a-fa,0,...,0), by the

definition of x£3 we have 1a - fa 6 x5. Thus x2 5x and

so xB=x.
o.

It is clear that R; = Z. One can check that the

O

ring homomorphism cp:R @ Z -0 (Ra)x given by cp(r,j) =

T(ra+3a). where = 3'10 and -r:Ra 4 (Ra) is theJ'
a

canonical homomorphism, induces an isomorphism between

*

R = (R 9 Z) and (R ) .

x5 x2 0. XS

Proposition 3.10. If {Ra}oa is a collection of

*

inertial coefficient rings, then (9 23 Rd) is an inertial

C161

coefficient ring.

Proof: The result follows from Theorem 3.2, Lemma 3.9,

and the fact that the integers form an inertial coefficient ring.

D

Maple 3.11. (e Z Z/an)* where Z denotes the

n==l

integers is an inertial coefficient ring which has radical

which is nil but not nilpotent.
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PrOposition 3.12. Let n,R denote the direct

product of (Ro}ael' where eachI Rd is isomorphic to a fixed

finite, connected ring R. n R is an inertial coefficient

ring. I

‘grgggg If I and R are given the discrete

tOpology, n R e:C(I,R). Let B(I) denote the Stone-gech

compactificition of I. It is not hard to show that 9(1) is

totally disconnected, and hence a profinite space. By Pro-

position 3.3 C(B(I),R) is an inertial coefficient ring, since

any finite ring is an inertial coefficient ring. The natural

ring homomorphism ¢:C(B(I),R) 4 C(I,R) given by restriction

is surjective since R is compact. Then C(I,R), being a

homomorphic image of an inertial coefficient ring, is itself

an inertial coefficient ring.

Corollary 3.13. Let n Ra denote the direct product

I

of {RaIaEI' where each Rd is isomorphic to a finite ring

of cardinality less than some fixed integer n. n Ra is an

I

inertial coefficient ring.

Proof: Since there are only a finite number of distinct
 

isomorphism classes of connected rings of cardinality less than

.M

n and since [I Ra a a Z (11 R1), a finite direct sum of rings

I i=1 Ii

n Ri' where each n Ri is a direct product of a collection of

I. I.
i 1

rings each isomorphic to a fixed finite, connected ring Ri'

then H Rd is an inertial coefficient ring.

I
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we have thus far been unable to use the decomposition

space to determine whether more general direct products, e.g.

IIZ. are inertial coefficient rings.

The main result of this chapter, that R is an

inertial coefficient ring if and only if each R.x is an

inertial coefficient ring, is parallel to a result which

follows from Proposition 2.7 in Chapter II, that all finitely

generated R-algebras A have (A,N) an L.I. pair if and only

if all finitely generated Rx-algebras B have (B,rad B) an

L.I. pair for all x e X(R). This result further suggests

the equivalence suggested by Ingraham of inertial coefficient

rings and rings R all of whose finitely generated R—algebras

A have the idempotent lifting prOperty, since both these pro-

perties can be determined from the connected stalks R of
x

the ring R.
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