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\ ABSTRACT

ON THE CHARACTERIZATION OF
INERTIAL COEFFICIENT RINGS

By
Ellen Elizabeth Kirkman

Let R be a commutative ring and A be an R-algebra
which is finitely generated as an R-module and has Jacobson
radical N. Ingraham defined R to be an inertial

coefficient ring if when A/N is a separable R-algebra

there exists a separable R-subalgebra S of A such that
A=S+N. (A,N) is called an L.I. pair (lifting idempotent
pair) if every idempotent in A/N is of the form e where
e 1is an idempotent of A. Ingraham has conjectured that if
for every finitely generated R-algebra A, (A,N) is an L.I.
pair, then R 1is an inertial coefficient ring. The main
result of Chapter II is that the converse of this conjecture
is true: If A is a finitely generated algebra over an
inertial coefficient ring R then (A,N) is an L.I. pair.
Let X(R) denote the Pierce decomposition space of
R and Rx denote the stalk of the sheaf over X(R) at the
point x € X(R). In Chapter III it is shown that R 1is an
inertial coefficient ring if and only if Rx is an inertial
coefficient ring for all x € X(R). This result is used to

show several rings are inertial coefficient rings.
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CHAPTER I

PRELIMINARIES

Chapter I contains historical material and a
description of the tools used in later chapters. We shall

also fix the notation which will be used throughout.

§1. Separable Algebras and Inertial Coefficient Rings

All rings we shall consider contain an identity
element; all subrings contain the identity of the overring:
all homomorphisms preserve the identity. Throughout R
denotes a commutative ring and A an R-algebra, where by
an R-algebra A we mean a ring A along with a ring homomor-
phism 6 of R into the center of A. This homomorphism
induces a natural R-module structure on A by defining
r-a = g(r)a for r € R and a €A. If ¢ is a monomorphism,
A is called a faithful R-algebra. An R-algebra is called

projective or finitely generated if it is projective or finitely

generated as an R-module. All R-algebras we shall consider
are finitely generated. If A is a commutative ring, A is

called a commutative R-algebra.

Example 1l.1. Let £(x) be a monic polynomial with

R{X
<f(x)>

faithful, free (as an R-module), commutative R-algebra. If

coefficients in R. Then A = is a finitely generated,



the degree of f(x) is n, then [l,x,...,xn-l] is a

free basis of A over R.
The notation rad B with be used to denote the
Jacobson radical of a ring B. Throughout N = rad A. The

following proposition relates the maximal ideals of R and

the radical of A.

Proposition 1.2. [11, Lemma 1.1, p.78] Let A be

a finitely generated R-algebra and let N mA denote the
intersection of the ideals mA as m runs over all maximal
ideals of R.
(i) rad(R):A € N.
(ii) There exists a positive integer n such
that N" c N maA.

(iii) If A 1is projective, rad(R)-.-A = N mA.

The following proposition due to Azumaya relates the

radical of A to the radical of a subalgebra.

Proposition 1.3. [2, Corollary, p.126] Let A be a

finitely generated algebra over R and B be an R-subalgebra

of A. Then N N B € rad B.

Our interest is in the relationship between properties
of R and the structure of finitely generated R-algebras. Our
technique is to take data from A/N and "pull it back" to A.

Our work here is concerned with pulling back two types of



structure-idempotents and separability - and the relationship

between them.

A finite dimensional algebra A over a field F is
called a separable F-algebra if and only if A is isomorphic
to a direct sum of full matrix rings over division rings having
centers which are separable field extensions of F. In 1908
Wedderburn proved (in the case F has characteristic 0) that
if A/N 1is separable over F then this separability can be

"pulled back" to a subalgebra of A:

Wedderburn Principal Theorem [24]. If A is a finite

dimensional F-algebra such that A/N is F-separable then there

exists a separable F-subalgebra S of A such that A =S + N.

The Wedderburn Principal Theorem decomposes A into two
parts: a separable algebra which is a direct sum of matrix

algebras and the radical which is nilpotent.

Azumaya (1951) obtained a generalization of Wedderburn's
Theorem for a class of rings called Hensel local rings (which

will be defined in the following section).

Azumaya's Theorem [2]. If A is a finitely generated

algebra over a Hensel local ring R with maximal ideal m and
if A/N 1is separable over R/m, then there exists an R-subalgebra

S of A such that A =S + N and S/mS is separable over R/m.



Auslander and Goldman (1960) [1l] generalized the
notion of a separable algebra to algebras over an arbitrary
commutative ring R. For finitely generated R-algebras

their definition is equivalent to the following:

Definition. A finitely generated R-algebra A is a

separable R-algebra if A/mA is a separable R/m-algebra for

every maximal ideal m of R.

Example 1l.4. Let A = Rnxn be the ring of nxn

matrices over a commutative ring R. A/mA = (R/h)nxn. and

thus A is separable.

Ingraham [11] has considered rings all of whose
finitely generated algebras satisfy the analogue of the
Wedderburn Principal Theorem under Auslander and Goldman's

generalized notion of separability:

Definition. A ring R 1is called an inertial coefficient

ring if for every finitely generated R-algebra A such that
A/N 1is a separable R-algebra, there exists a separable R-
subalgebra S of A such that A =S + N. S 1is called an

inertial subalgebra of A.

Known inertial coefficient rings include the following:
a field, a Hensel local ring, a von Neumann regular ring [4,
Theorem 1, p.370] (R is von Neumann reqular if and only if for

every r € R there exists an 8 € R such that rzs =1r), and

a Noetherian Hilbert ring [13, Corollary 2, p.553] (R is a



Hilbert ring if and only if every prime ideal is the intersection
of the maximal ideals containing it). In Chapter III we shall
give some new examples of inertial coefficient rings. The

following theorem of Ingraham motivated the work in Chapter II.

Theorem 1.5. (13, Theorem 2, p.554] If for any finitely

generated, commutative R-algebra A each idempotent in A/N
is the image of an idempotent in A, then if B 1is a finitely
generated, commutative R-algebra such that B/rad B is R-

separable then B contains an R-inertial subalgebra.

We shall next describe and relate two numerical tools,
rankR(A) and um(A), which will be used in Chapter II. For
any prime ideal p of R, let Rp denote the localization
of R at p. Rp is a local ring (a commutative ring with a
unique maximal ideal). Let M be a finitely generated, pro-
jective R-module. Since projective modules over a local ring

are free, the Rp-module M sh Rp =M is free of finite rank

)
rankp(M). If there is a fixed integer n such that rankp(M) =
n for all prime ideals p of R, we say the rank of M is

defined and equals n and we write rankR(M) = n. For reasons
which will become clear in section 3, in much of our work we

can assume the ring R has no idempotents but 0 and 1. (Such
a ring is called a connected ring). If R is a connected ring
and M is a finitely generated, projective R-module, then

rankR(M) is defined [6, Theorem 4.12, p.32].



Let A Dbe a finitely generated, faithful, commutative
R-algebra and let m be a maximal ideal of R. Then m has
only finitely many maximal ideals M of A such that M ANR =m,
so we can define Hm(A) = g (A/M:R/m], where [A/M:R/m] is
the dimension of the field extension A/M over the field R/m.
um(A) is easily evaluated for algebras A of the type in

Example 1.1:

Lemma 1.6. Let A = ZIEJ(_:% where f£f(x) is a monic
polynomial contained in R[x]. Let f(x) denote the polynomial
in R/m[x] obtained by reducing the coefficients of f£(x)
modulo m. Suppose f(X) = r[lI (f:o_:.:(';:')")ei is the factorization
of f(x) into positive inte;:i'. powers of monic polynomials

p; (x) which are irreducible in R/m[x]. Then um(A)
n

= 'Zl degree (pi (%)) .
i=

Proof: Any maximal ideal M of A such that M NR =

contains the ideal mA. Since A . R/m[x] ., then by the

mA n <E £ (x) >
Chinese Remainder Theorem — =@ Z —Bﬂ-[ﬁ— . Each
i=1 <p; CIREN

B, = —M%]— is a local ring with unique maximal ideal

<Pi ) >

<Pi 1X5>
M{ =— Thus the maximal ideals Mi/mA of A/mA are

<p; ) >

M.

of the form ﬁ

R4m|x| o -
A/M, —§— ' d [A/M.,:R/m] = degree (p; (X)).
/ i <p; (X)> 2 [A/M;R/m] *

B, ©...0B, ; ®M @B, , @...9 B,



Ingraham and W.C. Brown computed um(S) for inertial

subalgebras of certain algebras.

Proposition 1.7. [5, see proof of Lemma 1, p.1ll] Let

A Dbe a finitely generated, projective, faithful, commutative
R-algebra. If A has an inertial subalgebra S, then for

each maximal ideal m of R,

um(A) = um(S) = rankm[s].

The following properties will be used in Chapters II .

and III and are listed here for reference:

(I) Let 9% be an ideal of R. An R/¥-algebra A
has an R-algebra structure induced by the
homomorphism of R onto R/%. A is a
separable R-algebra if and only if it is a
separable R/%-algebra [6, p.45].

(II) If S is a separable R-algebra and I is a
two-sided ideal of S, then S/I is a
separable R-algebra [6, Proposition 1.11, p.46].

(I11) 1f S, and 82 are separable R-algebras then
S, ® Sz is a separable R-algebra [6, Proposition
1.13, p.47].

(Iv) Projective Lifting Property. If S is a

separable R-algebra, then every S-module which
is R-projective is S-projective [6, Proposition

2.3, p.48].



(v)

(v1)

(VII)

(VIII)

(IX)

(X)

Inertial subalgebras of finitely generated
algebras are finitely generated [21, Theorem 5,
p-5].

Inertial subalgebras of finitely generated,
commutative, projective R-algebras are pro-
jective [11l, Proposition 2.8, p.80].

Let R be an inertial coefficient ring. If R’
is a finitely generated, commutative, R-algebra,
where R’/rad R’ is a separable R-algebra,

then R’ is an inertial coefficient ring [11,
see proof of Proposition 3.3, p.85].

If R is an inertial coefficient ring and 9

is an ideal of R, then R/Y 1is an inertial
coefficient ring [11, Corollary 3.4, p.86].

If rankR(Ml) and rankR(Mz) are defined for
finitely generated, projective R-modules M1

and M2, then rankR(M1 ® M2) is defined and
equals rankR(Ml) + rankR(Mz).

If A is a commutative, finitely generated,
projective R-algebra and M is a finitely
generated, projective A-module such that rankA(M)
and rankR(A) are defined, then rankR(M) is
defined and equals rankR(A)-rankA(M) [6, Exercise
2, p.35].



§2. Hensel Rings and the Idempotent Lifting Property

Let f£(x) be a polynomial in R[x] and £(x) be
the polynomial in R/Y[x], where 9 is an ideal of R,
obtained by reducing the coefficients of £f(x) modulo 4.
Suppose f(x) = go(x)*hy(x) in R/U[x]. A problem histori-
cally of interest to algebraists is the existence of polynomials
g(x),h(x) € R[x] such that f£(x) = g(x)-h(x) and g(x) =
9o (%), hix) = hy(x). 1In 1902 Hensel proved a lemma [10]
stating that if R is the p-adic numbers and if ¥ is its
unique maximal ideal then certain factorizations, £(x) = )
= go(x)-ho(x), can be "lifted" to corresponding factorizations

of f(x) in R[x]

In 1951 Azumaya [2] called a local ring satisfying
Hensel's lemma a Hensel ring - i.e. a local ring R with
maximal ideal m 1is a Hensel ring if for every monic polynomial
£(x) € R[x] such that f(x) = 9o (x)hy(x) where g, (x),h,(x)
are monic, relatively prime polynomials in R/m[x], there
exist monic polynomials g(x),h(x) in R[x] such that £f(x) =
g(x)-h(x), g(x) = go(x), and hx) = hy(x). Azumaya considered
algebras over Hensel local rings and showed that the Hensel
property of the ring was entirely reflected in the algebras over
the ring; that is a local ring is Hensel if and only if idem-
potents can be lifted from A/I to A in all finitely
generated R-algebras A, for any two-sided ideal I of A.
This allows one to lift families of pairwise orthogonal

idempotents and matrix ring decompositions. Azumaya used these



10

results to determine the structure of finitely generated

algebras over a Hensel local ring.

In 1963 Lafon [15] extended the definition of a Hensel
ring to nonlocal rings. Greco (1968) [7,8,9] used Lafon's
definition to generalize certain results Azumaya had obtained

for Hensel local rings.

Definition. A ring R 1is a Hensel ring if for all

monic polynomials £(x) € R[x] and every decomposition f = g.-h

0 o)

. R . .

in $z3 g [¥] with g, and h; monic and <g,> + <hy> =
?Eg_ﬁ [x], there exists a pair of monic polynomials g,h € R[x]
such that f = gh and g = 9o h = h,. (It can be proved

that g and h are unique [15, Proposition 1, p.80]).

Any ring R having rad(R) = O is trivially a Hensel

ring. We now give another example.

Example 1.8. A commutative ring which is Hausdorff
and complete with respect to a linear topology in which rad R
is a closed ideal with every element topologically nilpotent
is a Hensel ring [3, Theorem 1, p.215-6]: e.g. rings with nil-
potent radical, the p-adic numbers, and the formal power series

rings over a Noetherian ring.

Definition. Let I be a two-sided ideal of a ring A.

We call (A,I) and L.I. pair (lifting idempotent pair) if every
idempotent of A/I is of the form e where e is an idempotent

of A. We say A has the idempotent lifting property if (A,N)
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is an L.I. pair. (In a commutative ring A, ¢if an idempotent
in A/N can be lifted to A there is exactly one lift in A

[7, Lemma 1.2, p.46].)

Example 1.9. Jacobson proved that if N is a nil

ideal of A, A has the idempotent lifting property [14,

Proposition 4, p.54].

Lemma 1.10.‘ Let 9 Dbe a two-sided ideal of A,

(i) If (A,4) and (A/9,N/¥Y) are L.I. pairs,
then A has the idempotent lifting property.

(ii) If A is a commutative ring having the
idempotent lifting property, then (A, %)

and (A/Y,N/¥) are L.I. pairs.

Proof: (i) is an immediate consequence of the
definition of L.I. pairs. See [7, Corollary 1.3, p.46] for

a proof of (ii).

The following theorem relates Hensel rings and L.I.

pairs.

Theorem 1l.11. [7, Theorem 4.1, p.55 and 8, Theorem 2.2,

pP-51] The following are equivalent properties of a commutative
ring R:
(i) R is a Hensel ring.
(ii) For every finitely generated R-algebra A,
(A,rad(R) -A) 1is an L.I. pair.
(iii) For every finitely generated, commutative, free

R-algebra A, (A,rad(R)-A) is an L.I. pair.
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Corollary 1.12. R 1is a Hensel ring if and only if

every finitely generated, projective R-algebra A has the

idempotent lifting property.

Proof: If R 1is a Hensel ring and A is a finitely
generated, projective R-algebra then (A,rad(R)-A) is an L.I.

pair by Theorem 1.11 (ii). By Proposition 1.2 (ii) and (iii)

——rr'radi 7 1s a nilpotent ideal of Hcﬂ%'-'i and by Example 1.9,

(rad(l;!)-A ’ radg'{)-A) is an L.I. pair. Thus by Lemma 1.10 (i),

(A,N) 1is an L.I. pair. Conversely, we shall show R 1is Hensel !
by proving that (iii) of Theorem 1.11 holds. Let A be a

finitely generated, commutative, free R-algebra. By the

hypothesis (A,N) 1is an L.I. pair. Since A is commutative,

(A,rad(R)‘A) 1is an L.I. pair by Lemma 1.10 (ii).

All finitely generated algebras over a Hensel ring need
not have the idempotent lifting property, e.g. let R = z(p)[x],

where z( is the subring of the rational numbers having

p)
denominators relatively prime to a fixed prime integer p. R
has rad(R) = O and therefore is a Hensel ring. Let
z, [x]
A= ——égl———-. Then X is an idempotent in A/N, but A has
<KX =-x+p>

no idempotents other than O and 1 [18, Theorem 43.14, p.184].

If A is a finitely generated algebra over a Hensel
local ring, a von Neumann regular ring, or a Noetherian Hilbert
ring, then idempotents can be lifted from A/N to A [13, see
proof of Corollary 2, p.553]. It is of interest to find

necessary and sufficient conditions on R such that every
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finitely generated R-algebra has the idempotent lifting
property. We have seen [Corollary 1.12] that such a ring

must necessarily be a Hensel ring, but that R being a

Hensel ring is not sufficient to guarantee that every finitely
generated algebra has the idempotent lifting property:; in
Chapter II we shall see that R being an inertial coefficient

ring is a sufficient condition.

We conclude this section with a new example of a ring
all of whose finitely generated algebras have the idempotent

lifting property.

Example 1.13. Let U be the ring of formal series

in one indeterminate over the rational numbers and S be the
subring of formal power series over the integers. Since U
and S are Noetherian rings, their radical topologies satisfy
the topological criteria of Example 1.8, and thus U and S
are Hensel rings. Let T and R be the subrings of U and
S, respectively, consisting of power series which are con-

vergent at zero (g(x) € U is called convergent at zero if

there exists an open interval N of the real line such that

O € N and g(r) is an absolutely convergent series for every
r € N [25, p.142]). It can be shown that the radicals of
U,S,T, and R are each generated by x, and it follows that
the canonical homomorphisms U -+ U/rad U, S =+ S/rad S,

T+ T/rad T, and R =+ R/rad R all can be described as evalua-

tion at x = 0. T is a Hensel ring [18, Theorem 45.5, p.193].
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We shall show that R is a Hensel ring. Let
f(y) € R[y] be a monic polynomial such that f(y) =

gov) hy(y) where g (y).hy(y) € R[y] are such that g (y),

ho(y) are monic polynomials in (R/radR)[y] with <goly)> +

<h y)> = (R/rad R)[y]. /U[y]\ since R[y] ¢ s[y]
Sly] T[y]

\R[y]/

and T(y], and since S and T are both Hensel rings, it is
easily seen that the factorization of f(y) in (R/radR)[y]
can be lifted to a corresponding factorization of f£f(y) in
both S[y] and T[y]. Since S[y] and T[y] are both con-
tained in U[y] and since U is a Hensel ring and thus the
lift of a factorization is unique, we therefore have a factor-

ization £(y) = g(y)-h(y) in S[y] Nn T(y] = R[y] where

gly) = go(Y) and h(y) = ho(Y). Thus R is a Hensel ring
and by Theorem 1.11 (ii) for any finitely generated R-algebra

A, (A,rad(R)-aA) 1is an L.I. pair.

Since R/rad R is isomorphic to the integers and the
integers form a Noetherian Hilbert ring, (A/rad(R)-A,N/rad(R)-A)
is an L.I. pair. Hence by Lemma 1.10 (i) for any finitely

generated R-algebra A, (A,N) is an L.I. pair.

§3. The Decomposition Space

The Pierce decomposition space X(R) of a commutative
ring R was first described by Pierce [20] using sheaf-theoretic

methods. The description of X(R) given here avoids the use
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of sheaf-theoretic language and is due to Villamayer and
Zelinsky [23] (they call X(R) the Boolean spectrum of R).
Magid's book [17] to which we will frequently refer is an

easily accessible, complete source on this approach to X(R).

The decomposition space X(R) is a tool useful in
proving that certain results which are known to hold for
connected, commutative rings also hold for arbitrary commutative
rings. The technique is to study certain connected homomorphic
images of R and ‘"patch together" these results to obtain {

the result for R.

Let Spec(R) denote the set of prime ideals of R
endowed with the 2ariski topology (a basis of closed sets of
Spec(R) is (v(I)} where I ranges over all ideals of R and
where V(I) = (p € Spec(R):p D I}). We define X(R) to be the
quotient space of Spec(R) obtained by identifying connected
components of Spec(R). It can be shown that X(R) is a totally
disconnected, compact, Hausdorff space or équivalently a

profinite space (an inverse limit of finite discrete spaces)

[17, Corollary II.4, p.26]. The space X(R) has the following

useful topological property.

Proposition 1.14. (The Partition Property) [17, Lemma

1.7, p.3] Any open cover of X(R) has a refinement which is
a partition (a finite family of disjoint open subsets of X(R)

which covers X(R)).



16

It can be shown that two prime ideals of R belong
to the same connected component of Spec(R) if and only if
they contain the same idempotents [17, Proposition II.3, p.26].
Thus if R has no idempotents but 0 or 1, Spec(R) is

connected (justifying our calling such a ring a connected ring).

Let e be an idempotent of R and let N(e) =
{x € X(R):x € V(R(1-e))}. The sets N(e) have the following

useful properties:

Proposition 1.15. [17, Proposition II.1l2, p.30]

(i) N(O)

g and N(1l) = X(R).

(ii) N(e) N N(f) = N(ef).

(iii) N(e) = N(f) if and only if e = £.

(iv) The sets (N(e)} form a basis of open, closed
sets for the topology on X(R). Furthermore,
any open, closed subset of X(R) is of the

form N(e) for some idempotent e of R.

Let I(x) be the ideal of R generated by the set of
idempotents in any prime ideal contained in a point x € X(R)
and define R, = R/I (x). R, is a connected ring [17,
Corollary II.21, p.34].

When computing X(R) and R, for a particular ring
R it is usually easier to view X(R) in an equivalent formu-
lation as the collection of maximal Boolean ideals of R [17,

Pp.27-28]. A set of idempotents x of R is called a
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maximal Boolean ideal if

(i) For every idempotent e of R either
e €Ex or 1l-e € x, but not both; and,
(ii) If e and f are idempotents of R then
ef € x if and only if e € x or f € x.
It can be shown that R, = R/I(x) where I(x) is the ideal
of R generated by the elements of x [17, Proposition II.9,
p.28].

Let M be an R-module and let m € M. Throughout
let m,o=m+ I(x)M denote the image of m in Mx =

Me R = M/1 (x)M.

Proposition 1.16. [17, Proposition II.16, p.32] Let
a and b belong to the R-module M, let x € X(R), and
suppose a, = bx' Then there exists a neighborhood N(e) of
x in X(R) for some idempotent e € R such that a_=b>

y Y
in MY for all y € N(e), e, = lx' and ae = be.

Proposition 1.17. [17, Proposition II.17, p.32] Let

a and b be elements of the R-module M such that a, = bx

for all x € X(R). Then a = Db.

Propositions 1.16 and 1.17 along with the Partition
Property will be the principal tools used to "patch together"

results from the connected rings Rx to obtain results for R.



CHAPTER I1I
INERTIAL COEFFICIENT RINGS AND THE
IDEMPOTENT LIFTING PROPERTY

E.C. Ingraham has conjectured that a ring R 1is an

inertial coefficient ring if idempotents can be lifted from
A/N to A in all finitely generated R-algebras A. Both I
he and Azumaya have used the technique of lifting idempotents

to produce inertial subalgebras. The main result of this

chapter is that idempotents can be lifted from A/N to A

in all finitely generated algebras A over an inertial co-

efficient ring, and thus the converse of Ingraham's conjecture

is true.

The result is proved in three steps. First it is shown
that if R 1is a connected inertial coefficient ring, idempotents
can be lifted from R/rad R to R. Next the decomposition
space is used to show idempotents can be lifted from R/rad R
to R in any inertial coefficient ring R. Finally we show
that idempotents can be lifted from A/N to A in any finitely

generated R-algebra A.

The first step will be proved by contradiction; we will
assume R has a nonliftable idempotent and produce a finitely
generated R-algebra A such that % is R-separable but A
contains no inertial subalgebra.

18
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Lemma 2.1. Let £(x) be a monic polynomial in R[x]
such that f(x) = x* (x-1)° for r,s positive integers,
where f(x) € (R/radR)[x]. Suppose there do not exist monic
polynomials go(x),ho(x) in R[x] such that £(x) = go(x)-ho(x)
with ESTET = x* and E;?ET = (x-1)°. Then XF(XJ =
xr+1(x-1)s, and there do not exist monic polynomials g(x),h(x)

in R[x] with xf(x) = g(x)h(x), g(x) = xr+1, and h(x) =

(x-1)5.
r+s  Tis-1 i
Proof: Let f£f(x) = x + X a;x” with a, €R .
i=0
r+s-1 .
Then xf(x) = xr+s+l + 7 aix1+1. Suppose xf(x) = g(x)h(x)
i=0

with g(x) = xr+l and h(x) = (x-l)s. Then g(x) = xr+1 +
< k s 521 s s-k k
Z nx with n €rad R and h(x) =x + Z[()(-1)°""+ nllx

k=0 k=0

with n’ € rad R. Equating constant terms of xf(x) = g(x)h(x)

gives no((-l)s+n6) = 0. (—l)s + n6 is a unit of R, and

(o]
X 1is not a zero divisor in R[x] we have £f(x) =

r
thus n. = 0. Therefore xf(x) = x(xr + 2 nkxk'l)'h(x). Since
k=1

X
x" + I nkxk'l) *h(x). Thus
k=1

r
r k-1
ga(x) =x" + T x
0 w2y Tk

and ho(x) = h(x) contradict the hypotheses.

Theorem 2.2. Let R be a connected ring. If R/rad R

has an idempotent not equal to O or 1 then R is not an

inertial coefficient ring.
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Proof: By [14, Proposition 4, p.54] there exists
a p € rad R such that x? - x + p € R[x] has no root in
rad R. Then x2 - X + p = Xx(x-1) modulo rad R. If there
exist monic polynomials g(x),h(x) contained in R[x] such
that x2 - x + p =g(x)-h(x) with g(x) =x and h(x) =x - 1
then g(x) =x +n for some n erad R and -n is a root

of x2 - X+ p in Rad R.

Let £(x) = x3 - x2 + px. Then f£(x) = xz(x-l), but

by Lemma 2.1 there do not exist monic polynomials g(x) and
h(x) contained in R[x] such that £(x) = g(x)-h(x) and
g(x) = x2, A(x) = x - 1.

Let A be the finitely generated, faithful, free,

commutative R-algebra A = §[x%, . Then A/(rad(R)-A) =
<X =X +px>

Lgégéézﬂéil, since <x> and <x-1> are comaximal ideals, the

<x” (x-1)> JeadR

Chinese Remainder Theorem gives A/(rad(R) -A) es(R rz Y x] ®

<x™>
(R/radR)x] . A ,.éé{EEQ{E}L&} =~ R/rad R @ R/rad R. There-

<x-1> N — N/(rad(R) *A
fore by Chapter I, properties II and III, p.7, A/N is R-

separable. Furthermore, for any maximal ideal m of R,

B (A) =2 [Lemma 1.6].

We will show that the assumption that A has an
inertial subalgebra S 1leads to a contradiction. By Chapter I,
property VI, p.8, if such an S exists, it must be a pro-

jective R-module.
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Case 1. Assume S 1is connected. Since R 1is
connected, rankR(s) is defined and by Proposition 1.7
um(A) = rankR(S). By the "projective lifting property"
(Chapter I, property 1V, p.7), A a projective R-module and
S a separable R-algebra imply that A is a projective S-
module. Since S 1is connected, rankS(A) is defined. But
then by Chapter I, property X, p.8, rank is multiplicative and

= rankR(A) = rankR(S)-ranks(A) = 2-rankS(A). Thus 2 divides

3
3, a contradiction.

To do the case when S is not connected, we need the

following lemmas:

Lemma 2.3. Let R be a connected ring and

A= grx; for p erad R. If A has an idempotent e,
<X =X +px>
e #0,1, then e or 1l - e is of the form a;x + a2x2
where a;, € rad R and 3; is an idempotent in R/rad R.
= ' 2
Proof: Let e = ag + a;x + ayx’, a; € R, represent

e 1in the free R-basis for A, [l,x,xz].

_ 2 _ .2 _ 2_ 2
O=e“ -e = (ao—ao) + (2aoa1 al)x + (al a2+2aoa2)x

3 2, 4
+ (2a1a2)x + (az)x .
. . 3 2 4 2
Now applying the relations, x~ = x“ - px and x = (l-p)x° - px,
we get
0 = (a2-a ) + (2a.a,-a,=-2a,a -a2 )x
0 %o 0%17317431%P3,5P

2 2 2
+ (aj-a,+2aja,+2a,a,+a; (1-p) ) x”.
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[l,x.x2] being a free basis of A over R implies the

following relations:

(-1-) ag = a,
(-2-) 2aoa1 -a; - 2a1a2p - agp =0
(-3-) ai - a, + 2aoa2 + 2ala2 + ag(l-p) = 0.
Since R 1is connected, equation (-1-) gives a. =0 or a, = 1.

o o
The conclusion follows by examining equations (-2-) and (-3-)

when a0 = 0 and when a0 = 1.

Lemma 2.4. Let R be a connected ring. If

A = 3Rantl
<X =xT4Hpx>
S such that S 1is not a connected ring, then S = Re ® R(1l-e)

., where p € rad R, has an inertial subalgebra

(as rings) for some idempotent e € A.

Proof: Since R is connected, um(A) is well

defined, and um(A) = 2 for any maximal ideal m of R.
Suppose A has an inertial subalgebra S. Then by Proposition

1.7, 2 = um(A) = rankR(S).

If S is not connected then S = Se ® S(l-e) for
some idempotent e € A, e ¥ 0,1. 1If rankR(Se) = 0 then
(Se)p = 0 for all prime ideals p of R and so Se = O and
e = 0. Similarly rankR(S(l-e)) # 0. Since rank of direct
sums is additive (Chapter I, property 1X, p.8), rankR(Se) =
rankR(s(l-e)) = 1. Since Se and S(l-e) are projective

modules over a connected ring, they are faithful R-modules.
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Se is thus a finitely generated, projective, faithful Re-
module. By [6, Corollary 1.11, p.8 and Corollary 4.2, p.56]
Re 1is an Re-direct summand of Se. Therefore there exists a
finitely generated Re-module U such that Se = Re @ U as
Re-modules. Localizing at each prime ideal p of R = Re
gives Up =0, and thus U = 0. Thus Se = Re as rings and
similarly S(l-e) = R(l-e), and therefore S = Re @ R(l-e)

(as rings).

Lemma 2.5. Let A = ——giE%————- for p € rad R. Let
<X"-xX"+px>

S be a subring of A, S = Re @® R(l-e) for e an idempotent

of A of the form e = alx + a x2 where al € rad R and a

2
is an idempotent of R/rad R. Then A =S + N implies

- _ =2 . A . .
e =X in EEEYETTK' and a2 is a unit of R.

- QRZradR)|x|

<XT-x>
A =S+ N implies there exist ry.r, € R and n € N such

2

Proof: N = <rad R,x(x-1)> and

2

that x = r,e + rz(l-e) +n=r, + (rl-rz)e + n. Since

- - =2 . - = = =4z 22 =
e = aXx” in A/(rad(R)-d), x = r, + (rl r2)a2x +n in

A/(rad(R) -A). Therefore in AN, X =T

r, = 0 and x = ria,X. Therefore 1 = ra,. Since a, is

both a unit and an idempotent of A/N, a. = 1. But then by

[7, Lemma 1.2, p.46], 52 =1 in A/(rad(R):A). Thus e = %2

and a, is a unit of R.



24

The following lemma is a generalization by Greco

of a result for local rings due to Nakayama [2, Lemma 3, p.134].

Lemma 2.6. [7, see proof of Theorem 3.1, p.54] Let
f(x) € R[x] be a monic polynomial. Suppose A = gfxx S =
Y DB for ideals U,B8 of A. Suppose further that
A/rad (R) ‘A = <go(x)> ® <ho(x)> for monic, coprime polynomials

go(x),ho(x) € (R/radR)[x] such that 9/(rad R-%) = <go(x)>

and 8/(rad R-8) = <ho(x)>. Then there exist monic, coprime

polynomials g(x),h(x) € R[x] such that £(x) = g(x)-h(x),
and g(x) = go(x), hix) = ho(x) in ;é%—i{x].

We can now complete the proof of Theorem 2.2:

Case 2. Assume S 1is not connected. By Lemmas 2.3,
2.4, and 2.5 S must be of the form S = Re @ R(1l-e), for
e an idempotent in A of the form e = a x + a2x2 where

€rad R, a, =1 in R/rad R. Thus

2 2

Ae @ A(l-e) = <a2x2+a1x> @ <a2x2+a1x-l>

-1 -1
2 2 4

A

<x2+a

2 -1
a1x> @ <x"+a x-a2 >.

Furthermore x2 + a-lalx s x2 modulo rad(R)+-A and

2
x2 + a'lalx - a-1 = x2 - 1 modulo rad(R)-A. Finally <x2-1> =

2 2
<x-1> in A/(rad(R)-A), since <x2-1>‘§ <x-1> and (x-1) =
(1-x) (xz-],) in A/(rad(R):A) implies <x-1> ¢ <x2-1>. Thus
by Lemma 2.6, there exist monic polynomials g(x),h(x) in
R[(x] such that x> - x% + px = g(x)*h(x) with g(x) = x? and

h(x) = x - 1 in (R/radR)[x]. This contradicts the choice of p.
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Theorem 2.2 states that if R is a connected,
inertial coefficient ring then R/rad R is connected and so
(R,rad R) trivially is an L.I. pair. We next use the
decomposition space to extend Theorem 2.2 to an arbitrary

inertial coefficient ring.

Proposition 2.7. Let A be a finitely generated R-

algebra. (A,N) 1is an L.I. pair if (Ax'Nk) is an L.I. pair

for all x ¢ X(R).

Proof: Let u € A Dbe such that u2 - u € N. We must !

find an idempotent e € A such that u - e € N.

Since R, is a flat R-module [17, Proposition I1I.18,
pP.33] without ambiguity we can let N, denote the image of
N under the canonical homomorphism A -+ A/I(x):A = A, . Now
u =u+ I(x)-A is an element of A, such that u,_ is an
idempotent element of Ax/N*. Since (Ax,Nx) is an L.I. pair
and since an idempotent in Ax can be lifted to an idempotent
in A [17, Proposition II.20, p.34], there exists an idempotent
£(x) € A such that u, = [f(x)]x + [n(x)]x for some n(x) € N.
By Proposition 1.16 for each x € X(R) there exists an idem-
potent e(x) € R such that u-e(x) = £(x)-e(x) + n(x).e(x)
and uy = [f(x)]y + [n(x)]y for all y € N(e(x)).

[N(e(x))}xex(R) is an open cover of X(R) and thus
by the partition property, Proposition 1.14, there

exists a finite refinement of disjoint open and closed sets
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Uys...,U . By Proposition 1.15 (iv), u; = N(ei) for some

idempotent e; €R. Since {N(ei)]T;l covers X(R) and

since N(ei)mn N(ej) = ¢, by Proposition 1.15 (i), (ii), and
(iii) 1 = ‘Ei e; and ej-ey = O for each i # j. Further-
more N(ei)f; N(e(xi)) for some Xy € X, and thus N(ei) n

N(e(xi)) = N(ei) implies ei-e(xi) = e;: hence u-e; =

f,'e; + n e, where f = f(xi) and n; = n(xi). Let
m

e = Z}(fi-ei). Since the e, are pairwise orthogonal and
i=1

each fi is an idempotent, e is an idempotent. Now
m m m

u= 2, ue, = 2, (f.e.+n.e.) = e + 2, n.e., and therefore
Phec T e T S qop 1d

u-e €N.

Corollary 2.8. If R is an inertial coefficient ring,

(R, rad R) is an L.I. pair.

Proof: Since a homomorphic image of an inertial

coefficient ring is an inertial coefficient ring (Chapter I,
property VIII, p.8) R, = R/I(x) 1is a connected inertial
coefficient ring for every x € X(R). By Theorem 2.2
(Rx,rad(Rx)) is an L.I. pair for every x € X(R). Since
(rad R)x = rad(Rx). by Lemma 1.10 (ii) (Rx,(rad R)x) is
an L.I. pair for every x € X(R): hence by Proposition 2.7

(R,rad R) is an L.I. pair.

We are now able to prove the general case:
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Theorem 2.9. Let R be an inertial coefficient

ring and A be a finitely generated R-algebra. Then (A,N)

is an L.I. pair.

Proof: R/'annihR A, being a homomorphic image of R,

is an inertial coefficient ring and A is a faithful R/énnihRA-
algebra. Thus replacing R/énnihRA by R we may assume A

is a faithful R-algebra.

Let ¢ € A Dbe such that c2 - c €N. We must find
an idempotent e € A such that ¢ - e € N. Let B = R[c]
denote the R-subalgebra of A generated by c¢. B is a
finitely generated, commutative R-algebra. By Proposition 1.3
N N B crad B. Let (R/radr)[c], where ¢ = c¢ + N, denote
the R/rad R-subalgebra of A/N generated by c. Define a
homomorphism ¥:B + (R/radR)[c] by H.‘nZ; rici) = ?‘: fi(c-:)i.

i=0 i=0

¥ is surjective and ker Yy € N N B € rad B. Now B/ker § =

(R/radR)[c] is a homomorphic image of (R/gadglxj = R/rad R @
<XT=-x>
R/rad R and therefore is a separable R-algebra. Since B/rad B =

B/ker V
rad B/ker ¥ '

I, property VII, p.8, B 1is an inertial coefficient ring,

B/rad B 1is a separable R-algebra. By Chapter

and thus by Corollary 2.8 (B,rad B) is an L.I. pair. By
Lemma 1.10 (ii), (B,N N B) is an L.I. pair. Then c2 -C €
N N B implies that there exists an idempotent e € B such

that ¢c - e e NNB. But then e €A and c¢c - e € N.
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Notice that in the preceding proof we showed that if
R is an inertial coefficient ring and if ¢ € A/N is idem-
potent, then there exists an idempotent e € B = R[c] 1lifting
€. Thus e is a polynomial over R in c¢. Furthermore,
the following result is a consequence of Corollary 1.12 and

the proof of Theorem 2.9.

Corollary 2.10. The following are equivalent properties

of a commutative ring R:
(i) All finitely generated R-algebras have
the idempotent lifting property.
(ii) All finitely generated, commutative R-

algebras are Hensel rings.

Any algebra A having the idempotent lifting property
must satisfy the two properties below. A consequence of
Theorem 2.9 is that these results hold for any finitely gen-

erated algebra over an inertial coefficient ring.

1) Any countable sequence of pairwise orthogonal
idempotents in A/N can be lifted to a
sequence of pairwise orthogonal idempotents
in A [1l6, Proposition 2, p.73].

2) If A/N = B yn’ the full nxn matrix ring
over a finitely generated R/rad R-algebra B,
then there exists a finitely generated R-

C =B and a=c__,

rad C nxn
the full nyn matrix ring over C [14, see

algebra C such that

proof of Theorem 1, p.55].
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Corollary 2.1l1l. If R 1is an inertial coefficient

ring then R/Y is a Hensel ring for any ideal % of R.

Proof: By Chapter I, Property VIII, p.8, R/Y is
an inertial coefficient ring and by Theorem 2.9 all finitely
generated R/Y-algebras have the idempotent lifting property.

Thus by Corollary 2.10 R/9 is a Hensel ring.

A consequence of Corollary 2.11 is that all homomorphic
images of an inertial coefficient ring have the following

properties of a Hensel ring R:

R -
Tad R module P

of rank n there exists a unique (up to

1) For every projective

isomorphism) projective R-module P of

P &2

rank n such that P = Tad R°P

Corollary 5.4, p.58].
2) The homomorphism ®8(R) +» 8(R/rad R) is
an isomorphism, where ®(R) denotes the

Brauer group of R [22].

Corollary 2.12. The following are equivalent properties

of a commutative ring R:

(i) For all finitely generated, commutative R-algebras
A such that A/N is R-separable, there exists
a separable R-subalgebra S of A such that
A =S + N.
(ii) All finitely generated, commutative R-algebras

have the idempotent lifting property.
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Proof: The fact that (ii) implies (i) follows
from Theorem 1.5. The proof of Theorem 2.9 shows that (i)

implies (ii).

If Ingraham's conjecture is true then it is un-
necessary to restrict the algebras A in Corollary 2.12 to
commutative R-algebras, for then the lifting of idempotents
from A/N to A in all finitely generated R-algebras A
is equivalent to the lifting of the separability of A/N to
a separable R-subalgebra S of A in all finitely generated

R-algebras.




CHAPTER III

NEW INERTIAL COEFFICIENT RINGS

In this chapter we shall show that a ring R is
an inertial coefficient ring if and only if for every
X € X(R) each connected ring R, is an inertial coeffi-
cient ring. We shall use this criterion to produce new

inertial coefficient rings.

W.C. Brown [4, Theorem 1, p.370] used the decomposition
space X(R) to show von Neumann regular rings are inertial
coefficient rings. Our result is a generalization of his
result, for when R is a von Neumann regular ring each Rx
is a field and therefore each Rx is an inertial coefficient
ring. Our proof is closely patterned after Brown's proof.

The technique is to show that an inertial subalgebra exists

if and only if a particular finite collection of equations
holds. To find an inertial subalgebra of an R-algebra A we
use the fact that certain equations hold in each Rx-algebra
A, and then using the topology on X(R) we patch together
elements of A to obtain equations in A which hold in every

Ax and therefore hold in A.

We shall use the following criterion for the separability

of a finitely generated R-algebra S.

31
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Lemma 3.1. Let S be an R-algebra generated as an

R-module by Syseees8 Then S 1is separable if and only

n.
if there exists bi,b{ €S i=1,...,m such that

m

(i) izi bibi =1, and
m

(ii) izi sjbi Gh bi

S @R So for j=1,...,n.

m
= iZi bi Gi bisj holds in

Proof: Proof follows from [6, Proposition 1.1 (iii),

p.40].

The main result of this chapter is the following

theorem.

Theorem 3.2. R 1is an inertial coefficient ring if

and only if R, is an inertial coefficient ring for all

x € X(R).

Proof: If R is an inertial coefficient ring then
R = R/I(x) is an inertial coefficient ring by Chapter I,

property VI1III, p.8.

Conversely, suppose R, is an inertial coefficient
ring for all x € X(R), and let A be a finitely generated
R-algebra such that A/N is R-separable. Then A, = A/(I(x)-Aa)
is a finitely generated Rx-algebra. Since R, is a flat R-
module [17, Proposition II.18, p.33] without ambiguity we can
let N, denote the image of N under the canonical homomorphism

A+ A/(I(x)-a) = A, . Furthermore, since 0O+ N4+ A-+A/N+0
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is an exact sequence of R-modules and R, is R-flat,

o (A/N)x is a separable Rx-algebra. Since each R,

N N

an inertial coefficient ring and N c rad(a ), for

every X € X(R) there exists a separable Rx-algebra gx

such that gx + Nx = Ax [12, corollary, p.3].

By Chapter I, property V, p.8, each gx is a finitely

generated Rx-algebra: for each x € X(R) 1let sl(x),...,s )(x)

n(x
(x))x are R _-module

€ A be such that (sl(x))x....,(sn(x)
Mx x _ o)
generators of S°. Let § = %} R-si(x) be the R-submodule
i=1
of A generated by [si(x)}n(x). Then (Sx)x = gx_
i=1

Let a;,...,a be R-module generators of A. Since

) of
for each x € X(R) gx = (sx)x is a separable Rx-algebra

X, _ .
such that Nx + (S )x = A, there exist elements rijk(x),
ri(x),tzj(x),rhj(x),rhj(x) € R, elements ZL(X) € N, and
elements by (x),b/(x) € s* for i,j,x=1,....n(x), £=1,...,p.

and h = 1,...,m(x) such that:

n (x
(-1-) (si(x))x(sj(x))x = kéi)(rijk(X))x(sk(X))x
for i,j=1,...,n(x).
n (x)
(-2-) 1 = i§1 (r; (x)), (s; (x)) .
n(x)
(F37) @y = (g B (kg5 (D) (e300,

for 4 =1,...,pP.

m(x)

(-4 L= Dy (0), (),
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m(x)

(-5-) h§1 [(sj(x))x(bh(xnx @Rx (b,;(x))x]

m(x) ,
= hZ:l [ (o, (x)), @Rx (bh(X))x(sJ(x)) ]
), B (s9)2 for j =1,....n(x).

n(x) n(x)

(-6-) bh(x) Z Thj (x)s (x) and bh(x) = Z rh (x)s (x)

for h = 1,...,m(x).

Using Proposition 1.16 and by intersecting the
appropriate neighborhoods of x if necessary, for each
X € X(R) there exists an idempotent e(x) € R such that
[e(x) ]x = 1x and equations 1-5 hold for all y ¢ N(e(x))

when we replace the subscript x with the subscript y (for
m(x)

example, Z ([s5(x)] [b; (x)], & [bi(x)] ) =

i=1 Y
m(x) ) . X sx (o}
iE;l ([bi (x) ]y @Ry [bi (x) ]y[sj (x) ]Y) holds in (S )Y QRy( )y) .

The neighborhoods {N(e(x))]} where each e(x)

x&X(R)’
is chosen as above, form an open cover of X(R). By Proposition

1.15 and the partition property (Proposition 1.14), there
exist pairwise orthogonal idempotents [ei]ti:=1 contained in
R such that (t‘I(e:.L)]]._t;:L is a disjoint open cover of X(R)

refining {N(e(x))]} Let x;, denote a point of X (R)

xeX(R) °
such that N(e.) EN(e(x.)), i=1,...,t. Let n =
maximum [n(x )] and m = maximum [m(x )}. For each k
—1poo-pt 1,.-.,t

define sj(x.k) = 0, rj (xk) = 0O, rijt
n(x.k) <i<n, n(xk) <jg<n, or n(x) < 4<n, define

(x.k) =0 for all 1i,3j, 4,
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ti,j(xk) =0 for all i,j, 0K i< p and n(xk) < j<n,
and define bj(xk) = bg(xk) = 0 for all 3, m(xk) < j<m.

We patch together the data from the stalks Rx by
defining the following:

sy = k:1 sj(xk)ek j=1,...,n
t
ry = kZ& rj(xk)ek j=1,...,n
t
ijp = kza rijt(xk)ek i,jo4=1,...,n
t
zy = kZé zj(xk)ek j=1,¢c.,pP
5= 5 . 0g)e, ~ +Z leeeesP
3 x=p 13 j=1,...,n
t
bJ = kzi bj(xk)ek j=1,...,m
t
b5 = kza bj(xk)ek j=1,c0.,m,

Any x € X(R) is contained in N(ei) for some i
and is not contained in N(ej) for j #i. Thus for all

). =1_.

prime ideals p € x, 1l - e, € p and therefore (ei x %

i
For all pe€ex and j #i, 1 - ey £ p and ej(l-ej) =0 €p

imply that ey € p, and therefore (ej)x = O,. Thus when

X € N(e) (sj)x = (sj(x.k))x. (rj)x = (rj(xk))x. (zj)x =

(zj(x-k))xa (rijl)x = (rlj‘(xk))x' (tij)x = (tij (xk))x' (bj)x =
(bj(xk))x. and (bj')x = (bg(xk))x'
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Let S Dbe the R-submodule of A generated by
n
{sj]j=1' For each x € X(R), x € N(e(x.k)) for some Kk,
so for each i,j=1,...,n
n

(s. (xk))x(sj(xk))x = :,El(rij“(x"))x(s‘(xk))x

(si)x(sj)x

Z (rlu) (s

and
n
1, = _Z (r; (%)) (s, (%)) = 1§1(ri) (8;),

Thus ;84 - El Ti5454 i,j=1,...,n and 1--15)11:51

are elements of A which equal o in Ax for all x € X(R).

By Proposition 1.17 sisj - El rlJ‘ 4= =0 for i,j=1,...,n
n

and 1 - X2 r.s, =0, so S is an R-algebra and §S_ = Sxk.
jop 1i x x

where x € N(ek) SN(e(xk)).

Setting previously undefined rij(xk) = 0 and using
equation (-6-) and the fact that {ei]ti:=1 are pairwise ortho-

gonal idempotents the following equalities show that bi € S:

t £ nig)
b, = Z b, (x,)e, = k§1 j§1 Tyy (xk)sj(xk)ek

%;3 n ) )

k=1 3-1 F13 05 %3 05
n t

- jgl k§1 rij(xk)ek sj(xk)ek
n t

= ?1(](? rlj(xk)e )(kz,l sj(xk)ek)
n

Similarly bi' € S.
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Now 1 - Z bb' is an element of S which is O

x
i=1 m
in s, for all x € X(R). Therefore 1l = X bibi' by
i=1
m

Proposition 1.17. Z‘ (s. b:. e b') - (bi e b{sj) is an
i=1

element of S GR S Whlch is 0x in (s QR So) & Rx =)

SxQR Sx S, &Rx(s where x eN(e.) CN(e(x.)). and
m

therefore by Proposition 1.17 X% (s b, & b‘) = Z‘, ®d, & b/s
i=1

in S8 QR S . Hence S 1is a separable R-algebra.

Finally since equatlon (-3-) holds in A, for all

x € X(R), a;, =z, + JZ& tlj j and A =N + S.

We have produced an inertial subalgebra of A and

have shown, therefore, that R is an inertial coefficient ring.

We shall next use Theorem 3.2 to produce three new
types of inertial coefficient rings. Our method will be to
compute X(R) and to show the Rx are inertial coefficient
rings. In the second and third examples we shall view X(R)

as the collection of maximal Boolean ideals.

Oour first new example of an inertial coefficient ring
is the ring S = C(X,R) of continuous functions from a pro-
finite space X to a connected, inertial coefficient ring

R endowed with the discrete topology.
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Proposition 3.3. Let S = C(X,R) be the ring of

continuous functions from a profinite space X to a
connected, inertial coefficient ring R having the discrete

topology. Then S is an inertial coefficient ring.

Proof: By [16, pp.40-1] for every x € X(S), Sy
is a homomorphic image of R and so is an inertial coefficient

ring. By Theorem 3.2 S 1is an inertial coefficient ring.

A particular example of the previous proposition is

the following:

Example 3.4. Let S = C(X,C) where X is the subspace
(1,%,%....,0} of the real numbers under the usual topology
and C is the complex numbers under the discrete topology. S
is isomorphic to the ring of eventually constant sequences in
C. Since X 1is a profinite space, by Proposition 3.3 S is

an inertial coefficient ring.

Our second new example of an inertial coefficient ring
is the polynomial ring R[yl,....ym], the formal power series
ring R[[yl,...,ym]], and the convergent power series ring
R<<y1,...,ym>> over a von Neumann regular ring R. We first
compute the stalks of these rings.

Lemma 3.5. Let f£f(y) = {) a.yj be an idempotent

j=0 J

in R[[y]]). Then f£f(y) = a, where a, is an idempotent of R.
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Proof: Equating constant terms and coefficients of

[ ] . () !
y in the equation ( 2 aij)2 = 2 aij gives the relations:
j=0 j=0

(-1-) a~. = a and (-2=) 2a a; = ay.

2
(o) 0 o)

By equation (-1-) a is an idempotent of R. We shall show

(o]
by induction that aj =0 for j > 1. Multiplying equation

(-2-) by aq and using equation (-1-) gives 2aoa1 = aja,
or aja; = 0: thus 2aoa1 = a; = 0. Now suppose aj =0
@ . 2 (] j
for j £ i. As before (ao + X a.yJ) = a, + X a.y
j=i+l I j=i+l J
implies that 2ai+1aO =a: and so 2ai+lao = a; .13 9iving
a;,13 = O and hence a;1 = 2ai+1ao = 0.

Proposition 3.6. If R 1is a ring such that

Rx[yl,...,ym] (respectively Rx[[yl,...,ym]], Rx<<y1....,ym>>)
is an inertial coefficient ring for all x € X(R) then
R[yl,...,ym] (respectively R[[yl,...,ym]], R<<y1,...,ym>>)

is an inertial coefficient ring.

Proof: Let S = R[yl....,ym], T = R[[yl,...,ym]].
and U = R<<y1,...,ym>>. Using Lemma 3.5 and induction on m
one can show that any idempotent in S,T, or U is an idem-
potent of R. Since the decomposition space of a commutative
ring A 1is the collection of maximal Boolean ideals of A, it
follows immediately that X(S) = X(T) = X(U) = X(R). Since for
each x € X(s), I(x) is the ideal of S generated by the

idempotents of x, and since idempotents of S are contained
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in R, then I(x) = 1I-S where I the ideal of R generated
by the idempotents of x, and S, = S/I(x) = R/I[yl,...,ym] =
Rx[yl,...,ym]. Similarly T, = Rx[[yl,....ym]] and

Ux = Rx<<y1,...,ym>>. The result now follows from Theorem 3.2.

Corollary 3.7. If R is a von Neumann regular ring,

R[yl....,ym], R[[yl,...,ym]], and R<<y1....,ym>> are

inertial coefficient rings.

Proof: For each x € X(R), Rx is a field and hence
Rx[yl....,ym] (13, cCorollary 2, p.553), Rx[[yl....,ym]]
(18, Theorem 30.3, p.l04), and Rx<<y1,...,ym>> (18, Theorem
45.5, p.193) are known to be inertial coefficient rings.
n
If s=0 L R, is a finite direct sum of rings R;

i=1
then for every x € X(S) sS_ = (Ri)x for some x4 € X(Ri).
i

x
This fact suggests that Theorem 3.2 might be of value in
studying infinite direct sums (with 1 adjoined) and direct
products. As our final example of a new inertial coefficient
ring we shall see that infinite direct sums (with 1 adjoined)

and a few very special direct products can be shown to be

inertial coefficient rings using the decomposition space.

Let R be a "ring" perhaps without an identity. R
can be embedded in a ring which has an identity element in the
usual manner: Let R* = R ® Z where 2Z denotes the integers.
Define addition in R* coordinatewise and multiplication by

(a,i)+ (b, j) = (ab+ib+ja,ij) for a,b € R and i,j € 2. The
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element (0,1) is the identity element of R'. The following
lemma follows easily from the definition of multiplication

. *
in R .

Lemma 3.8. All idempotents of R* are of the form

(e,0) or (-e,l) where e is an idempotent of R.

Let R =@ LR, be the direct sum of a collection of
commutative rings [Ra]. We next compute the points of x(R*)
and the stalks (R*)x by finding the maximal Boolean ideals
of R“r for this particular R. Any idempotent e of R has
only finitely many nonzero coordinates each of which must be

th

an idempotent. Let e, denote the a coordinate of e.

Lemma 3.9. All x ¢ x(R*) are of the form

Xy = {(e,0) :e an idempotent of R} or
B _ . ;
x, = ((e,0):e an idempotent of R and e, € xg € x(Ra)}

U {(-e,1) :e an idempotent of R and e, £ xB].

* *
(R) >~ Z, the integers and (R ) = (R.)_ .
X0 5 a’Xg

Proof: One can easily show that x and xg are

(o]
maximal Boolean ideals of R*. We shall show that any maxi-

mal Boolean ideal x of R* is one of these ideals.

Let x(a) = [eal(e,o) € x}. If for every a, 1 € x(a),

then x, cx implies X5 = X.
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Suppose there exists an a such that la £ x(a).
It is easily checked that x(a) is now a maximal Boolean
ideal of Ra and so x(a) ex(na), say x(a) =xB. If

a
(e,0) € xg. To show x € xg we shall show that (-£f,1l) ¢ x

(e,0) € x then by definition of x,, e_ € xB, whence

implies f £ Xg, Or equivalently that 1 - £ € Xg - Let
e= (0,...,0, la,O, ee.,0) € R. Since (e,0)-(-£f,1) =
(e-ef,0) € x and e - ef = (0,...,0,1a-fa,0,...,0), by the

definition of x‘3 we have 10. - fa € xB. Thus xg € x and

sO XB = X.
o)

It is clear that R; = Z. One can check that the
(o)
ring homomorphism @:R @ Z - (Ra)x given by o(r,j) =
-r(ra+3a). where j, = j-1, and T:R - (Ra) is the
canonical homomorphism, induces an isomorphism between

*
R = (R ® 2) and (R.) .
xg xg a xB

Proposition 3.10. If {Ra}ae:t is a collection of
*
inertial coefficient rings, then (& 2 Ra) is an inertial
ael
coefficient ring.

Proof: The result follows from Theorem 3.2, Lemma 3.9,

and the fact that the integers form an inertial coefficient ring.

[
Example 3.11. (& T z/pnz)* where Z denotes the
n=1l
integers is an inertial coefficient ring which has radical

which is nil but not nilpotent.
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Proposition 3.12. Let I R denote the direct
I
product of [Ra]ael’ where each R, is isomorphic to a fixed

finite, connected ring R. I R 1is an inertial coefficient
I

ring.

Proof: If I and R are given the discrete
topology, 01T R =C(I,R). Let PB(I) denote the stone—géch
compactificition of I. It is not hard to show that B(I) is
totally disconnected, and hence a profinite space. By Pro-
position 3.3 C(B(I),R) is an inertial coefficient ring, since
any finite ring is an inertial coefficient ring. The natural
ring homomorphism ¢:C(B(I),R) » C(I,R) given by restriction
is surjective since R is compact. Then C(I,R), being a
homomorphic image of an inertial coefficient ring, is itself
an inertial coefficient ring.

Corollary 3.13. Let 1 Ra denote the direct product

I
where each Ra is isomorphic to a finite ring

of cardinality less than some fixed integer n. 11 R, is an
I

inertial coefficient ring.

Proof: Since there are only a finite number of distinct

isomorphism classes of connected rings of cardinality less than

M
n and since 1 R, =@ > (n Ri)' a finite direct sum of rings
I i=1 Ii
IRy, where each 11 R, is a direct product of a collection of
I. I.
i i

rings each isomorphic to a fixed finite, connected ring R;.

then 1 Ra is an inertial coefficient ring.
I
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We have thus far been unable to use the decomposition
space to determine whether more general direct products, e.g.

NZ, are inertial coefficient rings.

The main result of this chapter, that R is an
inertial coefficient ring if and only if each R, is an
inertial coefficient ring, is parallel to a result which
follows from Proposition 2.7 in Chapter II, that all finitely
generated R-algebras A have (A,N) an L.I. pair if and only
if all finitely generated Rx-algebras B have (B,rad B) an
L.I. pair for all x € X(R). This result further suggests
the equivalence suggested by Ingraham of inertial coefficient
rings and rings R all of whose finitely generated R-algebras
A have the idempotent lifting property, since both these pro-
perties can be determined from the connected stalks R_ of

X
the ring R.
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