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ABSTRACT

PROJECTION AND CLUSTERING BY SIMULATED ANNEALING

By

Raymond W. Klein

Simulated annealing is a stochastic relaxation algorithm which has been used suc-

cessfully to optimize functions of many variables. This thesis analyzes the simulated

annealing algorithm when applied to the minimization of functions from two common

problems encountered in exploratory pattern analysis, projection and clustering. The

projection is a nonlinear mapping of patterns in high dimension to two dimensions. The

simulated annealing mapping is compared to eigenvector projection as well as gradient

descent minimization of the same objective function. The simulated annealing clustering

is compared to a k-means algorithm.

Formal experiments are performed using analysis of variance to determine the

effects of simulated annealing and data parameters on independent measures of mapping

and cluster validity. The structure of clustered data sets is analyzed in the mapping prob-

lem using measures developed in the thesis. Standard cluster validity measures are used

for the clustering problem.

Empirical results show that simulated annealing can produce results as good as

those obtained by conventional methods, but are impractical for small data sets because

of the high computational cost. Simulated annealing does, in the case of the mapping

problem, yield a better optimization and better retained structure for large data sets con-

taining tight gaussian clusters.
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Chapter 1

Introduction

 

This thesis examines two problems from exploratory data analysis requiring optimi-

zation of functions of many variables. One problem is the mapping of data to a two-

dimensional space by a nonlinear method and the other is the clustering of data. The

goal of this thesis is to determine whether simulated annealing provides a practical solu-

tion to these problems. Simulated annealing has provided good solutions to several other

problems involving the optimization of multi-variate functions as discussed in Chapter 2.

In the first two sections of this chapter the nonlinear projection and clustering problems

are presented and some of the difficulties discussed. The next section contains a state-

ment of the goals of the thesis, and the final section outlines the remainder of the thesis.

1.1. Motivation - Nonlinear Projection

We assume the subjects of study are measured along several features that character-

ize them. The data collected for one subject along these features comprise one pattern.

Patterns can be viewed as vectors in a high dimensional space, where each dimension

corresponds to one feature. One type of exploratory data analysis maps a set of patterns

onto a two-dimensional space to allow visual inspection of the projected patterns for

structure. The mapping, however, is useful only if the structure present in the high

dimensional space is preserved in the two-dimensional representation.



Many mapping algorithms have been developed, all of which may be categorized as

being either linear or nonlinear. Linear algorithms such as eigenvector projection [BIS

81] and projection pursuit [FRI 74] vary in complexity, but are generally simpler to

implement than nonlinear algorithms. However, linear algorithms may be unable to

preserve complex structures present in the data [BIS 81]. Sammon [SAM 69] proposed a

popular nonlinear mapping algorithm that preserves structure in the data by trying to

maintain the interpoint distances of the high dimensional data in the plane. This algo-

rithm has been shown to be a special case of multidimensional scaling [KRU 71]. This

thesis studies the advantages and disadvantages of using simulated annealing to define

the mapping.

The Sammon algorithm is as follows:

Begin with N patterns {x1, x2, xN} in a feature space ofL dimensions.

Generate an initial random configuration of N points {y1, y2, ' - - , m} in an

I—dimensional space, I <L. (We consider the case 1:2.)

Define d}; = I Ix,- —x,- I I to be the distance between patterns x; and xj in the L-

space and dij = I Iy; — y1- l I to be the distance between the corresponding

points in the l—space.

Define an error (herein called stress) in the l-dimensional configuration as a

function of(yl, yz, - - ° , yN).

Reconfigure the l—space points and use a steepest descent algorithm to search

for a minimum stress.

Stress is minimized as a function of IN coordinates, {yij},i=1,...,N and j=1,...,l. These

coordinates are not restricted, so the solution space is continuous. The value of an

acceleration coefficient (called the Magic Factor) and an upper bound on the number of

iterations to be performed by the steepest descent algorithm must be supplied. The algo-

rithm terminates when no significant decrease in stress is obtained over the course of

several iterations. Computation times using Sammon’s algorithm may become large

when N is large [BIS 81]. Chang and Lee [CHA 73] propose a modification to



Sammon’s algorithm whereby fewer points are moved to obtain a new configuration.

Here, the following stress function is used to perform the mapping.

1 2——"’""'.""' (1)
\lE—dij i<j dij

i<j

 

E(yl -----yN)=

Minimizing E tends to preserve interpoint distances between dimensions. Sammon’s

stress replaces the absolute difference in equation (1) with a square. Simulated annealing

can be used with any type of stress function whereas gradient descent is limited to

"smooth" functions whose gradients can be estimated. We feel that using absolute differ-

ence is somewhat more natural than using squared differences.

One drawback to Sammon’s method has to do with the specifics of the steepest des-

cent algorithm. The algorithm terminates when a minimum stress is found, but there is

no way to know whether this is a local or global minimum. It is therefore necessary to

run the algorithm several times, with different initial configurations. The run returning

the smallest value for the stress is chosen as the best mapping. It is important to

remember that some data, especially unstructured data, cannot be truly represented in 1-

dimensions. An ill-fitting l-dimensional configuration is difficult to detect.

1.2. Motivation - Square Error Clustering

Cluster analysis is one of the most prevalent tools in exploratory data analysis

[AND 73] [DUB 76] [GOR 81]. We again begin with N patterns in L dimensions, but

now wish to partition the patterns into g groups or clusters. Many different algorithms

for performing clustering have been proposed, but algorithms that minimize a square

error criterion have many theoretical and practical advantages. Gordon and Henderson

[GOR 77] formalize a square error clustering algorithm as follows:

X = [x0] is an NXL pattern matrix.
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Y = [m] is an ng cluster membership matrix where yik 8 {0,1}; yik=1 if pattern 1'

is in cluster k and sz=0 otherwise.

N N

Z = [2,9] is a ng matrix of cluster centers where zkj = Zyikxij / 2y”,

i=1 i=1

N g L 2 _

S (y 11,...,yNg) = 2 2y”, 2 [xgj — 219] rs the square error. (2)

i=1k=l j=1

The problem is to minimize S with respect to the entries of 1’ under the constraints:

8

2M7: = 1, yikz 0, and for all k, yik=1 for at least one value of i.

k=l

The constraints ensure that every pattern belongs to exactly one cluster and that no

cluster is empty. Gordon and Henderson [GOR 77] reformulate the problem as an

unconstrained optimization problem so that a gradient descent approach can be used to

locate the minimum for S. The same computational difficulties described in Section 1.1

are encountered here. However, the optimization problem has a discrete nature because

Y is known to be a binary matrix. The number of possible Y matrices is a stirling number

of the second kind [AND 73].

) — L2" _ -k g N

S” — m! k=0( 1): [k] k (3)

Although finite, this number is much too large to permit an exhaustive search. For even

the small problem of sorting 25 patterns into 5 groups the number of possible clusterings

is

$93 = 2,436,684,974,110,751.

Fuzzy c-means algorithms [BEZ 81] also minimize square error criteria, but permit

ya; to be any value on the unit interval. This class of algorithms will not be examined in

this thesis, but could be attacked by simulated annealing.



1.3. Statement of Thesis Problem

In this thesis simulated annealing will be used to minimize the objective functions E

and S. These two problems provide good tests of whether simulated annealing is a prac-

tical solution procedure; the projection problem has a continuous solution space and the

clustering problem, a discrete one. The simulated annealing solution to the nonlinear

projection problem will be compared to the gradient descent solution, and the simulated

annealing solution to the square error clustering problem will be compared to the Forgy

algorithm for K-means clustering [DUB 76]. The focus will be on the selection of

parameters in the simulated annealing algorithm. These parameters are discussed in

Chapter 2, but only a few of them will be examined in detail.

The specific goal of this thesis is to study the effects of changes in problem parame-

ters and simulated annealing parameters on solutions and to compare solutions using

simulated annealing to those using standard methods. Only a few parameters and a few

kinds of data are examined. Results are studied empirically and an analysis of variance is

used to determine the significance of the effects observed.

1.4. Outline of Thesis

Chapter 2 discusses the details of the simulated annealing algorithm and defines all

parameters. Chapter 3 defines how comparisons between algorithms are made in this

thesis and how validity is measured. Chapters 4 and 5 report the experiments performed

using the simulated annealing versions of the mapping and clustering algorithms. Ana-

lyses of the experiments are included with the description of the experiments. Finally,

Chapter 6 summarizes the thesis and suggests future work.



Chapter 2

Simulated Annealing

 

Simulated annealing is a method of function optimization that tries to avoid the pit-

falls inherent in other optimization methods, such as the steepest descent approach; i.e., it

seeks the global or near global minimum of a function without getting trapped in a local

minimum. Simulated annealing is one algorithm in the class of stochastic relaxation

algorithms designed to optimize functions of several hundred variables or more, and is

especially attractive when the functions are not smooth [ROM 85]. Based on a method

for simulating physical systems with large numbers of particles [MET 53], simulated

annealing has been used in solving circuit routing problems [KIR 83], image processing

[CAR 85] [GEM 84] [SMI 83], traveling salesman problems [AAR 85] [VAN 86] [RAN

86] [ROS 86] [REE 87], and in ergonomic design [O'l'l‘ 84]. Simulated annealing is

referred to as statistical cooling in some of the recent literature [AAR 86B]. This chapter

discusses the algorithm, defines all parameters, and explains the effects of each parame-

ter.

2.1. Background

Simulated annealing derives its name from analagous processes in both glassblow-

ing and metallurgy. When working a glass or metal object, local areas are heated until

the material is pliable enough to bend into the desired shape. The object, however, will

be extremely fragile due to the internal stresses produced by the bending. The object is

brought to a stable configuration by annealing, which heats the object to a temperature

6



just below its melting point, and then cools it very slowly to allow the molecules to align

themselves and crystallize.

Simulated annealing was proposed independently by Kirkpatrick, et a1. [KIR 83]

and by Cemy [CER 85] as a method for minimizing functions of many variables, includ-

ing NP-hard problems. The idea was derived from an algorithm proposed by Metropolis,

et al. [MET 53] who simulated molecular processes. The annealing algorithm models the

minimization of a function of many variables as a Markov chain [KIR 85] of many states,

where the state corresponding to minimum energy, a stable state, is sought The Markov

chain is simulated and allowed to run until it reaches steady state. Sampling a state then

produces an optimal or near Optimal solution.

In the mapping problem, one state of the Markov chain corresponds to one arrange-

ment of the points in the l-dimensional space. In the clustering problem, one state

corresponds to one Y matrix, or labelling of the patterns being clustered. The state space

is the set of all possible states, so the mapping problem presents us with an infinite

number of states, while the clustering problem exhibits a finite but extremely large

number of states.

The optimization problem begins with a cost function of many variables, C, such as

stress or square error which has known analytical form but is otherwise unrestricted. The

minimum corresponds to the most stable state of the underlying system of variables.

Only state changes corresponding to decreases in cost are accepted using a standard algo-

rithm, such as steepest descent. Simulated annealing also accepts such state changes but,

in addition, accepts states which increase cost with a probability determined by a new

parameter called temperature. The simulated annealing algorithm is stated below as a

generalization of the Metropolis [MET 53] algorithm.



Set k = 0

Choose initial temperature ck.

Choose initial random configuration of points in l-space; (for mapping).

Choose initial Y matrix as a random configuration of clusters; (for clustering).

repeat

repeat

perturb configuration 1' with cost C,- to configuration j with cost C -;

if (AC;j=Cj—C,~) S 0 then

accept configuration j

else

accept configuration j with probability exp(—AC,-j/ck)

until quasi-equilibrium at ck is reached;

ck“ =f (ck), where f is monotone decreasing.

until Ck.” S cf indicating the system is frozen.

The control parameter c is analagous to temperature in physical annealing and C is the

cost function, such as stress. The steps of updating the control parameter c through func-

tion f, determining quasi-equilibrium at each temperature, and determining stopping cri-

teria, are collectively referred to as the cooling schedule. The crucial parts of the algo-

rithm are the cooling schedule and the definition of "move", or the way in which the

configuration is perturbed. The choice of cooling schedule is a very difficult problem

and one for which there is no "best" choice for all problems. The most definitive work to

date on the subject is presented by van Laarhoven and Aarts [VAN 86]. The definition of

move depends on the data and corresponds to movement in the solution space. Thus, a

discrete space, as in the clustering problem, requires a different definition of move than a

continuous space, as in the mapping problem.

Convergence of the annealing algorithm with various cooling schedules has been

proven [VAN 86] [GID 85] [LUN 86] [MAF 86] [MIT 86] [ROM 84] [ROM 85]. Con-

vergence at each temperature, or control parameter, means that a Markov chain has



reached steady state [HAM 64]. Convergence of the entire algorithm means that an

optimum state, or cost value, has been reached. An exponentially long time may be

required for convergence, depending on the size of the problem. Various heuristics in

addition to the physical analogy must therefore be used in determining the cooling

schedule. A polynomial time algorithm is presented in [AAR 85]. Because of the rela-

tionship of configurations of the points to physical states, van Laarhoven and Aarts [VAN

86] define a Markov chain to describe the set of configuration states reached at one tem-

perature. The relationship of Markov chains to simulated annealing is also discussed in

[VAN 86] [GID 85] and [KIR 85]. Background material on Markov chains and statisti-

cal mechanics, as well as a proof of convergence at one temperature are available in

[HAM 64].

The simulated annealing algorithm as presented is quite simple to implement. Care-

ful implementation, however, is important. The implementation used in this thesis is not

optimal, but simple time saving measures are employed. Computation of the cost func-

tions is expensive. Computation of the change in cost after one move, however, is much

cheaper if properly implemented.

2.2. Simulated Annealing Parameters

The two main parts of simulated annealing are the cooling schedule and the

definition of perturbation, or move. The parameters of the cooling schedule are starting

temperature, the rule for decreasing temperature, the run length at each temperature, and

stopping temperature. This thesis concentrates on all but the choice of starting tempera-

ture. This section describes all the parameters and explains our choice of parameters for

study.

2.2.1. Moves

The first simulated annealing parameter considered here is the definition of "move",

or perturbation of the data. When deciding how to perturb a configuration, it is helpful to

remember the analogy to physical annealing. A move should select a next state that is

close to the current state in the state space. Most of the research in simulated annealing
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has involved problems that have discrete states, as in the clustering problem. A move in

the clustering problem will move a randomly chosen pattern from its present cluster to a

different, randomly chosen cluster. This corresponds to changing the state of a randomly

selected entry in Y, subject to the constraints on Y. For the clustering problem it is hard

to visualize what a "large" or "small" move is.

The mapping problem has continuous variables and therefore an uncountable

number of states. Vanderbilt and Louie [VAN 84] suggest that, for continuous problems,

it is necessary to make relatively large moves through the state space at high tempera-

tures to avoid wasting time searching a small area, but to make smaller moves through

the state space at low temperature to avoid missing the global solution. A move in the

continuous problem will relocate a randomly chosen point a random distance up to a cer-

tain fraction of the projection window, where the projection window is a region in the the

l-dimensional space. The nature of moves in the mapping problem requires that the algo-

rithm make smaller moves as the system cools. When an annealing is started at high

temperature, essentially all moves, large and small, are accepted. As the system cools,

fewer large moves and eventually only small moves are accepted [WHI 84].

The algorithm used in this thesis ties the maximum size of a move to the rate of

accepted moves. Initially, moves are defined to be a random distance in the interval

[—fract, fract] where 2-fract is a fraction (usually around 0.1) of the projection window

in the dimension in which the window is largest. When the percentage of rejected moves

exceeds 50% for any Markov chain, flaw is adjusted to be 0.9 times the previous value

of fract. This allows smaller moves to be made at lower temperatures. The cutoff of

50% and the interval change of 0.9 are arbitrary values and no attempt is made to optim-

ize them.

2.2.2. Cooling Schedule

The cooling schedule is discussed in the remainder of this chapter. A summary of

some effective cooling schedules is presented in [VAN 86], and individual schedules are

available in [AAR 85] [BUR 84] [O'l'I‘ 84] and [WHI 84]. The initial value of the con-

trol parameter c0 should be large enough to allow the algorithm to accept any new
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configuration regardless of the change in stress. The decrement rule ci+1 =f (6;) controls

the outer loop and should cool the system slowly enough to provide an accurate solution

without running an excessively long time. The value of the final parameter cf determines

when the system should halt processing, usually when very little improvement in the

optimization has been made over the most recent Markov chains. The quantity very little

must be specified by the user and must be determined empirically such that solutions are

accurate and terminate in a reasonable amount of time.

The time required for individual Markov chains to reach quasi-equilibrium controls

the inner loop and is another parameter of the cooling schedule. Again, the trade off is

between time and accuracy. For convergence, every state must be visited infinitely often.

The algorithm used here creates the opportunity for every state to be visited. The Mar-

kov chains should run long enough to provide a good solution, but not so long as to pro-

vide little extra information for the time spent. Theory [VAN 86] provides us with an

upper bound on Markov chain length for which the solution will be acceptable, but the

numerical bound depends on the number of possible states a configuration may reach —

a prohibitively large number. Therefore, some heuristic must determine Markov chain

length.

The cooling schedule used in this thesis follows van Laarhoven and Aarts [VAN 86]

and was chosen for its relative simplicity and promise. The parameters are as follows:

Markov chain length ~ the number of accepted moves at one temperature

co - the initial value of control parameter

Ck+l =f (ck) - the decrement rule

cf - the final value of control parameter

6 - a number close to zero that controls the rate of cooling

8 - a number close to zero that controls the freezing point

The notation C;(ck) refers to the cost (stress or square error) of configuration or state i

when the control parameter is ck. Note that cost depends on ck algorithmically, not
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functionally. The term C(ck) approximates the statistical expectation of cost at tempera-

ture ck and is the average cost over It accepted moves, achieved after the chain has

reached equilibrium.

5(6):) = iiCth) (4)

i=1

Similarly, C—‘z—(ck) approximates the second moment of cost.

5%.) = fie-2(a). (5)
i=1

The sample variance of cost is defined as

oztct)=67<c.>-[E<cr)12. (6)

The initial value of the control parameter is

C o = 0(°°) (7)

where 57(00) and C(00) are computed from an initial Markov chain at a very high value

of c. Only a rough approximation to co is needed because co need only be large enough

to allow almost all moves to be accepted.

The decrement rule f is established by equation (8).

moan-Q] ’1 (8)

c = -k+l Ck[1+ 30(0):)

The smaller 5, the slower the system cools. Also note the dependence on o(ck); the

larger the variance of costs for the chain, the slower the system cools. Parameter 8 is one

of the parameters studied in this thesis.

The final value of the control parameter, cf, is taken to be the first value of the con-

trol parameter that satisfies

02(Cf)

Cf'(C(C o) - C(67))

 < e (9)

for some small value of e. The smaller 8, the longer the algorithm runs. We also
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examine the choice of 8.

Note that both the decrement rule and stopping rule are affected by 0', which is in

turn affected by the Markov chain length. Chains that are too short will have a large 0.

The interdependence of Markov chain length and e is examined.

No practical, theoretical method of determining Markov chain length is provided in

any of the literature. Chain lengths for the mapping and clustering problems are based on

the number of points in the data set. For the mapping problem, chain length is taken to

be roughly twice the cardinality of the data set. In the clustering problem, the initial

chain length is based on the cardinality of the data set, but chains are allowed to grow

shorter as the annealing proceeds. As an annealing run approaches a solution, few moves

are accepted. Allowing the minimum acceptable chain length to get smaller decreases

the running time.

The choices for 8 and e are quite important and must be determined empirically.

Some experimentation is necessary to strike a balance between speed and accuracy.



Chapter 3

Methodology

 

Stress, equation (1), and mean square error, equation (2), are the cost functions to be

minimized by simulated annealing. Of interest are the effects of varying the simulated

annealing parameters. For the projection problem in which stress is minimized, an

emphasis is placed on analyzing how well the structure present in the data is preserved in

the mapped configuration. For the clustering problem that minimizes square error, the

validity of the clusterings obtained is examined. This chapter describes the methodology

employed and the specifics of the experiments.

Although convergence of the annealing algorithm in finite time has been proven

[GID 85] [MIT 86], convergence can be quite slow, as demonstrated in empirical studies

[KIR 84] [VAN 86]. This thesis reports an empirical study on the effectiveness of simu-

lated annealing using two different types of cost functions, one continuous and one

discrete.

Data sets of varying sizes containing different structures are described in Section

3.2. Most of the work to date uses the final value obtained for the cost function as the

measure of the quality of the minimization. In this thesis, the measures of validity are

independent of the cost function. These measures are discussed in Section 3.3. The

description of the analysis of variance is in Section 3.4 and the individual experiments

are described in Section 3.5.

14
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3.1. Problems and Parameters to Study

The cooling schedule defined in Section 2.2.2 contains many parameters, all of

which influence the solution. Equations (8) and (9) in Section 2.2.2 show that the cool-

ing schedule parameters are interrelated. This thesis is concerned with analyzing the

effects of a few of these parameters on the quality of the mappings and clusterings

obtained on particular data sets. Because of the large number of possible combinations

of parameters to study, only a subset will be considered.

The effects of the cooling speed on the final value of the cost function have been

studied [RAN 86] [REE 87] [WHI 84] and it is known that cooling too quickly results in

a sub-optimal solution. In this thesis, cooling speed is controlled by the parameter 8.

Experiments with the mapping algorithm were performed in order to study how the value

of 8 interacts with parameters of the data.

The effects of Markov chain length on final cost have also been studied [AAR 85].

Markov chains should be long enough to allow the system to reach quasi-equilibrium at

each temperature. The importance of choosing good values of co and of of has been

demonstrated [WHI 84]. If Co is too low or if cf is too high, then the annealing will ter-

minate in a sub-optimal solution. The effects of Markov chain length and of e, which

controls cf, are examined in an experiment using the clustering algorithm. The parame-

ter Co is not examined in any experiment in this thesis, but slightly different calculations

are required for the mapping algorithm than for the clustering algorithm. The formula

given in Section 2.2.2 is used by the mapping algorithm and two times the formula is

used by the clustering algorithm.

Previous analyses of annealing parameters have not included any kind of Monte

Carlo study. In this thesis each experiment is conducted as a formal study using an

analysis of variance to determine the significance of the effects observed. In order to per-

form an in-depth study, analysis of some parameters must necessarily be neglected. The

experiments reported here study one annealing parameter and one data parameter. The

annealing parameter 8 is chosen because it is easier to select conservative values of 8 and

Markov chain length and still have a run terminate in a reasonable period of time. The 8,
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e, and Markov chain length are, however, all related. The relationship is shown in equa-

tions (8) and (9) if it is understood that differences in Markov chain length affect 0(ck).

In order not to neglect other parameters one of the experiments examines e and Markov

chain length.

Data parameters not formally studied in this thesis are cluster overlap, the number

of true clusters in the data, the number of elements per cluster, and relative cluster size.

The effects of dimensionality are not examined, but sample runs are performed using

data from different dimensions. The size of the data set is not examined either, but the

only real effect is that Markov chains must be longer to allow the system to reach quasi-

equilibrium. Consequently, the run times increase with the size of the data set.

Although continuous problems have been studied [VAN 84], specific applications

with continuous parameters, such as the mapping problem, have not. By including

results from a discrete problem such as the clustering problem, it is expected that more

will be learned about the application dependencies of simulated annealing. Few theoreti-

cal claims can be made in the mapping and clustering problems. The shapes of the cost

functions and the distributions of the independent measures discussed in Section 3.3 are

unknown. What is important are the actual solutions obtained and whether or not they

are reliable.

3.2. Data

In the experiments that follow, several different types of data are used. All four

mapping experiments use clustered data; the experiments differ in the size of the data

sets and in the kind of local structure present in the clusters. There are two clustering

experiments, one using clustered data, the other, random data. The random data sets con-

sist of points in a unit plane generated from a uniform'distribution.

For the experiments using clustered data, the data parameter examined is the cluster

spread, o, or the standard deviation of the clusters. This (I should not be confused with

the o in Chapter 2. The clusters with small spread do not overlap, and the cluster centers

are generated at random. Data sets of three different cluster shapes are used. Cluster
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shape refers to the distinction between different types of local structure. A gaussian

cluster consists of points generated from a multidimensional normal distribution with

covariance matrix 021 where I is the identity matrix. A simplex cluster is a set of points

equidistant from one another. Although high dimensional data are hard to visualize, we

do have some idea of how a simplex mapped to two dimensions should look. The cluster

spread in this case is the common interpoint distance. A lattice cluster is composed of

points arranged on a regular 3x3x3 grid. The cluster spread in this case is twice the dis-

tance between two adjacent points on one edge of the cube outlined. Lattice clusters and

simplex clusters are both examples of data sets that have very regular local structure.

Lattice clusters are used in place of simplex clusters in the larger experiment that maps

data with regular shape. Large simplex clusters can only occur in high dimensional

spaces, but lattice clusters fit the dimensionality within the scope of this thesis.

3.3. Measures of Comparison

In order to objectively examine the results of the annealing algorithms it is neces-

sary to use some independent measures of performance. Many measures currently are

available to evaluate cluster validity, or measure the goodness of the partition. For the

experiment involving clustered data, the true class labels are known so an external meas-

ure is needed. The modified Rand coefficient [HUB 85] [DUB 86] is used in this thesis.

This coefficient compares the way pairs of patterns are treated by two partitions, one par-

tition being defined by true class labels and the other being assigned by the algorithm. A

value of 1 means the cluster labels match the prior labels and values near 0 correspond to

a random labelling of the patterns. The formulation of this statistic is in Appendix B.

In the experiment that clusters random data, an internal measure of validity is

needed since there are no true labels for the data. The modified Hubert index [DUB 86]

is used here (Appendix B). This index is a correlation between the matrix of dissimilari-

ties for the patterns and a model matrix, and is based on a Mantel statistic [MAN 67]

[HUB 76].
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The experiments on the mapping algorithm use the measures of local and global

structure presented in Appendix A. The phrase local structure refers to the relationship

among points in individual clusters. The statistic alocal measures the similarity between

two clustered data sets by concentrating on how well small interpoint distances are repro-

duced. Global structure refers to the relative placement of clusters and is measured by

the statistic adist.

3.4. Analysis of Variance

Analysis of variance is concerned with measuring the effects of various experimen-

tal factors. The measures of comparison discussed in Section 3.3 are used in the analysis.

Statistical tests of hypothesis assess the effect of the parameters being examined on these

measures. A two-way fixed effects analysis [AFI 72] is performed for each experiment.

Each parameter in an analysis is called a factor. In the two-way analysis the factors are

called A and B. In general, there are I levels of factor A, J levels of factor B and K obser-

vations or replications of the experiment for each of the 11 cells. Table 3-1 shows the

layout of a sample, generic experiment in which factor A has 4 levels and factor B has 5

levels. The number in each cell is the average of the validity measure over the K replica-

tions. Pooling of the sum of squares [AFI 72] is not done.

Table 3-1 Sample ANOVA Table

 

 

 

 

 

 

        

Levels of Levels of Factor B

Factor A 1 2 3 4 5

1 0.0129 0.0313 0.0257 0.0021 0.0021

2 0.0339 0.0403 0.0129 0.0084 0.0082

3 0.0620 0.0765 0.0932 0.0722 0.0718

4 0.0620 0.0765 0.0932 0.0722 0.0718

Three null hypotheses are tested:

1. No main effects due to factor A are present.

2. No main effects due to factor B are present.
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3. No interaction effects of factors A and B are present.

Values of the Fisher F statistic are calculated as in [AFI 72] and evaluated on the scale of

an F distribution. In Table 3-2 we can see that factor A exhibits significant variability at

the 90% level, factor B exhibits no variability, and no significant interaction between fac-

tors is present.

Table 3-2 Sample F test table

 

 

 

 

     

F-test Validity Measure F 90%

FA (3.20) 2.836 2.38

F3 (4.20) 0.105 2.25

FAB (1120) 0.165 1.89
 

3.5. Experiments

Six experiments were performed to evaluate simulated annealing algorithms. Many

factors may affect the outcomes of the mappings and clusterings, but because simulated

annealing is slow, only a few of these factors can be examined. The mapping experi-

ments (M1 through M4) use data whose structure is known so the success of the algo-

rithm can be assessed. The analysis concentrates on the recovery of structure in data sets

of varying size and of different cluster shapes. Two types of local structure are exam-

ined, random and regular, and experiments are performed using both large and small data

sets. We do not expect cluster shapes to affect the quality of the mapping. All mapping

experiments examine the same two factors in the analysis of variance, the cooling param-

eter, 8 (Factor B), and cluster spread, 6 (Factor A). Results are in Chapter 4.

A clustering algorithm should recover the clusters of naturally clustered data, but it

is also of interest to see how an algorithm performs when there are no true clusters. Two

clustering experiments (C1 and C2) are therefore performed with simulated annealing,

one in which the clusters are known and one with random data in which the true clusters

are not known. The clustering experiments are performed for two-dimensional data so
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that the actual patterns can be plotted. Results are in Chapter 5.

The simulated annealing mapping algorithm is compared to a gradient descent

optimization of the same stress function, and the clustering by simulated annealing is

compared to a standard K-means algorithm. The objective here is to assess the practical-

ity of simulated annealing algorithms from a computational viewpoint. The best of 100

runs is compared to one simulated annealing run in experiments Cl, and C2. The best of

100 gradient descent mapping runs is compared to one simulated annealing run in experi-

ment M1 and, following Sammon [SAM 69], the best of 20 runs is compared to one

simulated annealing run in experiments M2, M3, and M4. Additionally, the mapping

experiments include a comparison to mappings calculated by eigenvector projection, a

non-iterative method. The benefits of the nonlinear mapping over eigenvector projection

have been shown visually [SAM 69], but this thesis uses independent measures of vali-

dity.

Experiment M1 — Mapping of Small Gaussian Clusters

Each data set contains 15 patterns in five dimensions with three gaussian clusters of

five points each. There are 3 levels of 8 and of cluster spread (I = J = 3) and 3 replica—

tions per cell (K = 3). An effect due to 8 is expected. However, this experiment is so

small that experimental factors may overwhelm the results.

Experiment M2 — Mapping of Small Simplex Clusters

As in experiment M1, the data sets each contain three clusters of five patterns each.

The difference here is that each cluster is a simplex, whose local structure is well defined

and different from that of a gaussian cluster. Both factors are examined at 3 levels

(1 :1 = 3) and K = 3. Since all simplexes of N dimension are the same, replications are

made by running the mapping with a different random number seed.

Experiment M3 — Mapping of Large GaussiaLClusters

This is a larger experiment than M1, but is similar to M1. Each data set contains

five gaussian clusters of 15 patterns each and 1 =1 =K = 3. The cost function of the

larger sets will have more local minima than the small sets and it is expected that more of
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an effect do to 8 will be observed here than in M1.

Experiment M4 — Mapping of Large Lattice Clusters

Each data set contains five clusters of 27 patterns each in four dimensions and

1 =1 = K = 3. The clusters in this experiment are lattices. The local structure is similar

to that from M2, but this experiment is larger and therefore the results should be more

reliable than those in M2. This experiment differs from M3 primarily in the shape of the

data being mapped, and may identify mapping algorithm dependencies on cluster shape.

Experiment Cl — Clustering of Gaussian Data

The effects of the number of clusters requested from the algorithm (factor A) and

cluster spread (Factor B) are examined. Each data set contains four gaussian clusters of

13 points each in two dimensions. The number of clusters in the partition requested from

the algorithm is varied between two and eight, so J = 7. Four levels of cluster spread are

examined (1 = 4) and K = 10. It is expected that the clusterings will deteriorate as the

cluster spreads increase. We know the number of true clusters for the data and varying

the number of clusters lets us assess the effects of selecting an incorrect number of clus-

ters.

Experiment C2 — Clustering of Random Data

The data in this experiment are random, so there are no data parameters to choose as

factors in the analysis of variance. Two annealing parameters, a (factor A) and Markov

chain length (factor B) are studied. Runs are performed at 3 levels for each factor

(I = J = 3) with five replications (K = 5). Each data set contains 50 random points in two

dimensions. Since there is no true partitioning of the data, this is a difficult clustering

problem and should "wor " the algorithm harder than in experiment C1. It is expected

that these two factors interact a great deal.



Chapter 4

Mapping Experiments

 

The results of experiments using the simulated annealing mapping algorithm are

presented in this chapter. These experiments involve analysis of the cooling parameter,

8, and cluster spread, 0. Objectives are discussed in Chapter 3. The experimental

parameters for each experiment are defined, some graphical and numerical results are

shown, and explanations of the results are offered. Results are summarized at the end of

the chapter.

4.1. Experiment Ml - Small Gaussian Clusters

In this first experiment, several small data sets were generated and the quality of the

mapping was measured while varying cooling parameter 8, defined in Section 2.2.2, and

cluster spread, 0, defined in Section 3.2. The statistics alocal and adist, defined in

Chapter 3, measure the quality of the mapping by assessing local and global structure.

Factor A in the analysis of variance was cluster spread o with levels {0.01, 0.07,

0.20} while factor B was cooling parameter 8 with levels {0.02, 0.1, 0.5}. Recall that 8

controls how much the temperature of the system is lowered at each new Markov chain;

the smaller 8, the slower the cooling. All other parameters are held constant with 6 fixed

at 10‘10 and Markov chain length fixed at 30.

The data sets all consist of three 5-dimensional gaussian clusters of 5 points per

cluster. Three data sets were generated for each level of o. Gradient descent was

22
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performed for two different values of the Magic Factor, MF. The average alocal and

adist values are in Table 4-1 and Table 4-2. The Fisher F values from the fixed effects

analysis of variance are in Table 4-3. Results for the eigenvector projection are also

included in the column labelled ’Eigen’. Each cell is the average ofK = 3 replications.

Table 4-1 Experiment M1, Average Local Structure

 

 

 

 

 

8 (B) MF
0' (A) Eigen

0.02 0.1 0.5 0.3 0.6

0.01 0.0129 0.0313 0.0257 0.0021 0.0021 0.0312

0.07 0.0339 0.0403 0.0129 0.0084 0.0082 0.1720

0.20 0.0620 0.0765 0.0932 0.0722 0.0718 0.4418           

Table 4-2 Experiment M1, Average Global Structure

 

 

 

 

 

 

8 (B) MF

0' (A) Eigen

0.02 0.1 0.5 0.3 0.6

0.01 0.0018 0.0442 0.1541 3.47x10'4 l.48x10‘4 1.06x10'5

0.07 0.0027 0.0274 0.0180 0.0046 0.0032 1.63x10'4

0.20 0.0076 0.3022 0.0422 0.0426 0.0415 0.0277           

Table 4-3 Experiment M1, Analysis of Variance

 

 

 

 

F-test alocal adist F 90%

FA (2.18, 2.136 0.810 2.62

F3 (2.13) 0.105 1.153 2.62

FAB (4.13) 0.165 1.122 2.29
       

These F values indicate there is no significant effect due to either cluster spread 0' or

8, and no interaction between the two factors for either the alocal or the adist statistic.

Figure 4-1 shows the final stresses for every run of this experiment and Figure 4-2 shows
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the values of adist for every run. The stress does, however, increase with increasing 8 for

tightly clustered data. This is plausible since it is known that cooling too quickly can

trap the annealing in a local minimum and, intuitively, the tighter the clusters, the deeper

the local minima of the stress function. That is, many more moves that increase stress

must be accepted to move a poorly placed, small cluster than to move a poorly placed,

large cluster.

The eigenvector projections for the tightly clustered data retained over 99% of the

variance. This is not unusual since three tight clusters occupy little more than two

dimensions. The variance retained with the larger cluster spreads was about 96% and

80%.

Table 4-1 indicates that the annealing reproduces local structure better than gradient

descent, relatively, as cluster spread increases. This is most likely an effect of the statis-

tics themselves. The definition of alocal in Appendix A indicates that small changes in

within cluster spread, S, will result in relatively large changes in alocal. Since the clus-

ters are very small it is likely that small differences in within cluster spreads are not visu-

ally noticeable. Consequently, the differences between the observed values of the statis-

tics for simulated annealing and for gradient descent are probably artifacts of cluster size.

The values of adist with tight clusters are much better for gradient descent than they are

for annealing. This too is probably an effect of the construction of the statistics.

Figure 4-3 shows various features of one annealing run with 8 = 0.02 in addition to

the resultant mapping. Figure 4-4 provides the stress curves and final mappings obtained

for 8 values of 0.1 and 0.5. The final stresses of the tightly clustered data are correlated

with the corresponding values of the adist statistic. Figures 4-3a, 4-4a, and 4-4c show

the mappings obtained for 8 values 0.02, 0.1, and 0.5, respectively, taken from one of the

tightly clustered data sets. Note that the scales of these figures are not all the same.

Although the cluster spreads appear about the same in every instance, the relative loca-

tions differ with the differing 8 values. This confirms what is known about 8 and indi-

cates that adist is useful as an independent measure of the quality of these mappings.
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Figure 4-3b plots the value of the control parameter c versus consecutive Markov

chain number and Figure 4-3c shows the size of a move as a fraction of the projection

window versus Markov chain number. Both the control parameter and move size

decrease logarithmically. This is true for all runs of the mapping algorithm in this thesis.

Figure 4-3d shows the maximum and minimum stresses reached at each Markov chain.

The two curves overlap quite a lot because there are so many chains for this run. Notice

that in every case the separation between stress curves slowly decreases until the run

stops.
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Figure 4-1 - Experiment Ml. Plots showing final stress for all runs.
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Figure 4-2 - Experiment Ml. Plots showing adist for all runs.
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Figure 4-3 - Annealing curves for tightly clustered data.
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Figure 4-4 - Annealing curves for tightly clustered data.

Even though the slowest cooling produces a good mapping of the data, it is no better

than that produced by the gradient descent mapping. One significant difference, how-

ever, is the run time. The slowest cooling requires almost 2000 Markov chains (tempera-

tures) to converge and takes approximately 1100 seconds of CPU time. Even the fastest
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cooling takes approximately 90 seconds, while the 100 gradient descent runs take 400

seconds for the tightly clustered data. The loosely clustered data requires approximately

half as long to map under gradient descent as the tightly clustered data. The annealing is

a little faster when mapping loosely clustered data than with tightly clustered data, but is

still very slow. Eigenvector projection, which is not an iterative procedure, is the fastest

of all, although the solutions obtained do not retain local structure well for the loosely

clustered data. Values of adist for the eigenvector projection are lower than for other

methods, but these differences are probably not significant for reasons previously dis-

cussed. A summary of approximate run times is in Table 4—4. The simulated annealing

solution is as good as that obtained by gradient descent, but the run time is much longer,

making simulated annealing impractical for such small data sets. The run times are also

a function of the type of cooling schedule employed and of the specific implementation,

which is a test program rather than a production program. Larger problems are discussed

in Sections 4.3 and 4.4.

Table 4-4 Experiment M1, Run times

 

 

 

 

 

 

Projection Approx. Run time (seconds)

8 = 0.02 1100

8 = 0.1 270

8 = 0.5 90

Gradient Descent 400

Eigenvector Proj 0.5     

4.2. Experiment M2 - Small Simplex Clusters

This experiment again looks at the quality of the mappings obtained for several

small data sets while varying the annealing parameter, 8, and the data parameter, cluster

spread. Factor A in the analysis of variance was cluster spread o with levels {0.10, 0.20,

0.30}; factor B was cooling parameter 8 with levels {0.02, 0.1, 0.5}. The value of e was

fixed at 10’9 and Markov chain length was fixed at 30. The data sets all consist of three
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simplex clusters of 5 points per cluster in five dimensions.

The values of statistics alocal and adist averaged over the K = 3 replications are

shown in Table 4-5 and Table 4-6. Replications are made by running the annealing with

different random number seeds. Results for gradient descent and eigenvector projections

are shown for comparison. Table 4-7 contains the Fisher F values for the analysis of

 

 

 

  
 

        
 

 

 

 

 

 

variance.

Table 4-5 Experiment M2, Average Local Structure

5 (B) MF

0' (A) Eigen

0.02 0.1 0.5 0.3 0.6

0.10 2.68x10‘2 1.37x10-3 2.16x10-2 1.06x10‘3 1.37><10-3 1.12x10’7

0.20 6.49x10‘4 8.39><10-3 2.54x10-3 4.03x10‘3 4.70><10-3 0

0.30 9.64x10“4 4.74x10'3 5.07x10-3 8.89x10‘3 8.86x10‘3 0

Table 4-6 Experiment M2, Average Global Structure

8 (B) MF

0 (A) Eigen

0.02 0.1 0.5 0.3 0.6

0.10 8.98x10‘4 1.26x10‘3 2.93x10‘3 4.16x10‘4 6.56x10"5 9.5x10’7

0.20 8.90x10'4 9.74x10'4 1.79x10‘3 1.28x10-5 6.58x10‘5 1.0x10’5

0.30 7.66x10‘4 1.97x10'3 1.77x10‘3 7.69x10'4 7.64x10‘4 6.5x10”5        
 

Table 4-7 Experiment M2, Analysis of Variance

 

 

 

 

 

 

F-test alocal adist F 90% F 99%

FA (213) 6.028 0.708 2.62 6.01

F3 (2‘ 13) 0.829 5.254 2.62 6.01

F33 (4.13) 3.257 1.094 2.29 4.58         
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Table 4-7 indicates that there is a significant effect on local structure due to o and

significant interaction between 0 and 8. A significant effect on global structure occurs

due to 8. This effect, however, is not visually detectable. Although not pictured, the

apparent local and global structure looks about the same in mappings run with different

8.

The final stress values for each run are shown in Figure 4-5. The final stress does

not vary much with 8. The 8 value of 0.5 probably provided a slow enough annealing for

this data. Larger values should result in higher final stress and smaller values, in longer

run times. Figure 4-5 also shows that there is almost no difference in final stress between

replicated runs for one value of 0, so annealing is relatively stable with respect to random

number seed.

Figure 4-6 shows the values of adist for each run of the experiment. There is less

correspondence between 8 and the final stress values than in experiment M1 (Figure 4-2).

All of the adist values are, however, very small and all of the mappings produced look

like fairly good representations of the original data. The difference in alocal values

observed between different methods used in this experiment is probably not significant

even though the analysis of variance indicates that there are significant effects. As

explained in Section 4.1, this is probably due to the small size of the data set and the way

alocal is constructed.

The final stress values obtained by gradient descent are slightly higher than those

obtained by simulated annealing, although the values of adist are about the same or

lower. Values of alocal are roughly the same as those obtained by simulated annealing

except when 0 is smallest, in which case gradient descent has smaller values of alocal.

The final mappings again look like fair representations of the data, although the gradient

descent mapping looks a little better because the shape of the clusters is more regular.

This result is curious and indicates a fault in either the local structure statistic or of the

choice of stress as the criterion function. A similar result occurs in experiment M4.

The variance retained in the eigenvector projection of the tightly clustered data is

98%. As mentioned in experiment M1, we should expect three tight clusters to fit well in



33

two dimensions. The larger clusters have somewhat less of the variance retained, 94%

and 89%. The values of alocal and adist for the mappings made by eigenvector projec-

tion are zero or almost zero. The mappings, however, are not very good representations

of the data, since many of the points in the mappings project to the same point. This hap-

pens because the clusters are simplexes. Because each cluster of the mapping is exactly

the same, alocal is zero, even though the mapping is not a good representation.

Figure 4-7 shows mappings obtained by all three methods for a 0 value of 0.10.

Since the original data contains clusters in which the points are all equidistant from one

another, the mapped clusters should look roughly like pentagons. The gradient descent

and the simulated annealing mappings look like good representations of the data,

although one of the simulated annealing mappings (Figure 4-7b) contains two closely

spaced points (14 and 15). This condition is not detected by alocal.
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Figure 4-5 - Experiment M2. Plots showing final stress for all runs.
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Figure 4-6 - Experiment M2. Plots showing adist for all runs.
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Figure 4-7 - Experiment M2, Assorted Mappings.

 
The annealing curves for the mappings in this experiment are similar in character to

those from experiment M1 (Figure 4-3). The approximate run times are shown in Table

4-8. It is interesting to note that, at a fixed value of 8, the run times tend to increase as 0

decreases. Because simulated annealing is so slow and the results are no better than
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those obtained by gradient descent, it is not practical to use simulated annealing for such

small data sets.

Table 4-8 Experiment M2, Run times

 

 

 

 

 

 

Projection Approx. Run time (seconds)

8 = 0.02 850

8 = 0.1 230

8 = 0.5 80

Gradient Descent (20 runs) 25

Eigenvector Projection 0.5     

4.3. Experiment M3 - Large Gaussian Clusters

This experiment looks at the quality of the mappings obtained for several large data

sets. Factor A in the analysis of variance was cluster spread o with levels {0.01, 0.07,

0.21} and factor B was cooling parameter 8 with levels {0.1, 0.5, 2.5}. The value of e

was fixed at 10'9 and Markov chain length was fixed at 150. The data sets all consist of

five gaussian clusters of 15 points per cluster in six dimensions. There are three data sets

for each level of o.

The values of statistics alocal and adist are shown in Table 4-9 and Table 4-10,

averaged over K = 3 replications per cell. Results for gradient descent and eigenvector

projection are shown for comparison. Table 4-11 contains the Fisher F values for the

analysis of variance.
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Table 4-9 Experiment M3, Average Local Structure

 

8 (B) MF .

O (A) E1gen

0.1 0.5 2.5 0.3 0.6

0.01 0.0080 0.0305 22.6086 0.3876 0.1384 0.0692

0.07 0.0114 0.0139 0.0107 0.0134 0.0135 0.0597

0.21 0.0432 0.0301 0.0586 0.0393 0.0395 0.0191

 

 
 

 

 

 

            

Table 4-10 Experiment M3, Average Global Structure

 

8 (B) MF

0 (A) Eigen

0.1 0.5 2.5 0.3 0.6

0.01 0.1 162 0.6080 0.4957 0.0690 0.0780 0.4038

0.07 0.0375 0.0401 0.0510 0.0496 0.0496 0.1696

0.21 0.0690 0.0708 0.0790 0.0531 0.0528 0.1799

 

 

 

 

            

Table 4-11 Experiment M3, Analysis of Variance

 

F-test alocal adist F 90% F 99%

FA (2.18) 0.999 20.167 2.62 6.01

F3 (2.18) 1.003 3.824 2.62 6.01

F33 (4.13) 1.000 3.571 2.29 4.58

 

 

 

 

        

Table 4-11 indicates very significant effects on global structure due to o and

significant effects due to 8 and factor interaction, but no significant effects on local struc-

ture. The effect due to 8 confirms results of experiment M1. The cell to cell variation is

particularly evident in Tables 4-9 and 4-10 for tightly clustered data. When 8 is too large

the relative distances between clusters are not reproduced well in the mapping. How-

ever, it is not necessarily the case that the larger 8, the worse the results. A mapping

made with too large a value of 8 may occasionally produce adequate results.
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The effect on global structure due to cluster spread can be traced to the stress func-

tion. Intuition dictates that stress functions corresponding to data sets with tight clusters

have deeper local minima than those for more loosely clustered data. More annealing

moves that increase stress are necessary to relocate an entire cluster to another minimum

in the stress function for tightly clustered data than for loosely clustered data. Figure 4-8

shows the final stress values and Figure 4-9 shows the values of adist for each run of this

experiment. The final stress values and adist values seem to correlate for the tightly

clustered data as they did in experiment M1.

The results of the gradient descent mappings are, for the most part, comparable to

the results from annealing, but in a few instances, the results from annealing are actually

better. The values of alocal for each run in the experiment are shown in Figure 4—10.

Although no significant effects on alocal were observed from the analysis of variance,

the values of alocal for the mappings with small 8 of the tightly clustered data are lower

than for the corresponding gradient descent mappings. Additionally, the final stress

obtained for the tightly clustered data was lower than that obtained by gradient descent,

and the values of adist for the tightly clustered data were comparable to gradient descent

in two of the three runs. The apparently poor performance of simulated annealing for 8

of 0.1 and o of 0.01 compared to gradient descent is caused by one run with a particu-

larly large adist. This can be seen in Figure 4-9.

It is not surprising that simulated annealing performs relatively better for this large

experiment than for the small data sets of experiments M1 and M2. The stress functions

of the larger data sets are functions of more variables, and therefore have more complex

shapes, probably containing more local minima.

The mappings made by eigenvector projection were not as good as those made by

minimizing stress. The variances retained for the tightly clustered data, loosely

clustered, and very loosely clustered data were approximately 75%, 82%, and 67%. The

alocal and adist values were also larger in almost every case. Figure 4-11 shows final

mappings of the tightly clustered data produced by each of the three methods. The simu-

lated annealing clusters appear to have better local structure than those by gradient
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descent. Remember that the clusters are very tight and that each cluster contains fifteen

points.
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Figure 4—8 - Experiment M3. Plots showing final stress for all runs.
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Figure 4-9 - Experiment M3. Plots showing adist for all runs.
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Figure 4-10 - Experiment M3. Plots showing alocal for all runs.
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Figure 4-11 - Experiment M3, Assorted Mappings.

 
The approximate run times for this experiment are shown in Table 4-12. Both the

simulated annealing and gradient descent take longer when mapping the tightly clustered

data than when mapping other, more loosely clustered data, although the annealing can

take up to 50% longer to map tight clusters than to map loose clusters. Simulated
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annealing is still significantly slower than gradient descent, but takes only five times as

long as gradient descent. In experiment M2, simulated annealing was about 35 times

slower than gradient descent. There seems to be some evidence that simulated annealing

may be practical for large problems.

Table 4-12 Experiment M3, Run times

 

 

 

 

 

 

 

_ . Approx. Run time (seconds)

Pr0jectron

0 = 0.01 0’ > 0.01

8 = 0.1 11000 7200

8 = 0.5 2700 2500

8 = 2.5 1500

Gradient Descent (20 runs) 2200 1500

Eigenvector Projection 0.5      

4.4. Experiment M4 - Large Lattice Clusters

This experiment looks at the quality of the mappings obtained for three large data

sets. Factor A in the analysis of variance was cluster spread o with levels {0.2, 0.4, 0.6)

and factor B was cooling parameter 8 with levels {0.1, 0.5, 2.5}. The value of e was

fixed at 10'9 and Markov chain length was fixed at 200. The data sets all consist of five

lattice clusters of 27 points per cluster in four dimensions. Replications were made by

running the annealing on a single data set while varying the random number seed.

The values of statistics alocal and adist averaged over the K = 3 replications are

shown in Table 4-13 and Table 4-14. Results for gradient descent and eigenvector pro-

jection are shown for comparison. Table 4-15 contains the Fisher F values for the

analysis of variance.
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Table 4-13 Experiment M4, Average Local Structure

 

8 (B) MF

0 (A) Eigen

0.1 0.5 2.5 0.3 0.6

0.20 0.0032 0.0026 1.9488 0.0022 0.0022 0.0077

0.40 0.0025 0.0041 1.2555 0.0020 0.0021 0.0075

0.60 0.0118 0.0128 0.5412 0.0063 0.0063 0.0065

 

 
 

 

 

 

            

Table 4-14 Experiment M4, Average Global Structure

 

8 (13) MF

0 (A) Eigen

0.1 0.5 2.5 0.3 0.6

0.20 0.0332 0.0332 0.0359 0.0491 0.0493 0.3454

0.40 0.0377 0.0413 0.0373 0.0493 0.0491 0.7018

0.60 0.0672 0.1363 0.1143 0.0931 0.0925 2.4519

 

 

 

 

            

Table 4-15 Experiment M4, Analysis of Variance

 

F-test alocal adist F 90% F 99%

FA (2.13) 0.6707 5.8786 2.62 6.01

F3 (2.13) 6.4399 0.5593 2.62 6.01

FA3 (4.18) 0.6982 0.4822 2.29 4.58

 

 

 

 

        

Significant effects occur on global structure due to o at the 90% level and on local

structure due to 8 at the 99% level. A significant effect on global structure due to cluster

spread was also observed in experiment M3, and is most likely related to the shape of the

stress function. That is, the stress function of the more tightly clustered data set has

deeper local minima than that for the loosely clustered data. The effect on local structure

due to 8 has to do with the type of sub-optimal mapping obtained by cooling too quickly.

In experiments M2 and M3, cooling too quickly produced mappings in which the points

were correctly mapped into clusters, but inter-cluster distances were not reproduced
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correctly. Several of the sub-optimal mappings in this experiment contain clusters with

outliers. The presence of an outlier significantly changes the local structure of a cluster.

The final stress for each run of this experiment is in Figure 4-12. Values of adist are

shown in Figure 4-13. The minimization is as usual most reliable for the smallest 8.

There is also correspondence between the final stress and the value of adist. The worst

values of alocal were obtained with a 8 of 2.5, due to outliers in the mappings. The high

values of alocal in Figure 4-14 correspond to the higher values of stress.

Figure 4-15 shows mappings of the tightly clustered data obtained by all three map-

ping methods. The visual quality of the mappings obtained by simulated annealing is

about the same as that of those obtained by gradient descent, but the local structure is not

quite as nice. The final stress and adist values are slightly lower for simulated annealing,

but the alocal values are slightly lower for gradient descent. The lower stress indicates

that simulated annealing is the better optimization, although the local structure is not

preserved as well as with gradient descent. As mentioned in Section 4.2, this is either a

fault of the local structure statistic or of the choice of the stress criterion function.

The results of the eigenvector projection were significantly worse than in either of

the other mappings. The retained variances for the increasing cluster spreads are 83%,

79%, and 75%. These data sets of five clusters in four dimensions can not be very well

represented in two dimensions by using only the principal components.
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Figure 4-12 - Experiment M4. Plots showing final stress for all runs.
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Figure 4-13 - Experiment M4. Plots showing adist for all runs.
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Figure 4-14 - Experiment M4. Plots showing alocal for all runs.
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Figure 4-15 - Annealing curves for run pts-al.

 

 

 
Approximate run times for the various mapping methods are summarized in Table

4-16. The results of the simulated annealing and gradient descent mappings are compar-

able, but have slightly different character. Both can be considered to produce reasonably

good quality mappings. However, the simulated annealing takes approximately five
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times longer than the gradient descent approach.

Table 4-16 Experiment M4, Run times

 

 

 

 

 

 

 

 

Projection Approx. Run time (seconds)

8 = 0.1 31000

8 = 0.5 10000

8 = 2.5 6400

Gradient Descent (20 runs) 6000

Eigenvector Projection 0.5

   

4.5. Mapping Experiment Summary

The experiments of this chapter have confirmed the effect of cooling speed on the

outcome of the minimization that has been described in the literature [WHI 84]; slower

cooling produces a more reliable result, particularly for tightly clustered data.

Experiments M1 and M2 showed some interesting effects, but served primarily as a

guide to the larger experiments, M3 and M4. The most interesting artifact of sample size

is the run time. In experiment M1 simulated annealing took about three times longer

than gradient descent, but about five times more runs than suggested by Sammon [SAM

69] were used. Section 4.3 shows that the simulated annealing provides a better optimi-

zation than gradient descent, but gradient descent is still faster.

Simulated annealing produced mappings in experiments M3 and M4 with slightly

better global structure than did gradient descent or eigenvector projections. The global

structure is rather closely tied to the actual minimization problem taking place since the

distances between patterns in different clusters comprise the largest component of the

stress function. The local structure reproduced in the mappings depends on the type of

local structure present in the data. For the highly structured lattice clusters, gradient des-

cent produced mappings with better local structure than did simulated annealing. For the

gaussian clusters, simulated annealing produced mappings with better local structure than



52

did gradient descent. This behavior may be an artifact of the stress criterion function or

of the local structure statistic.

One of the biggest problems with simulated annealing for the mapping problem is

the long run time. Simulated annealing takes five times as long as gradient descent for

large data sets, and the mapping is not significantly better, considering the structure

statistics obtained and visually inspecting the mappings produced. Eigenvector projec-

tion takes almost immeasurably less time, and the mappings produced, while not as good

as those obtained by minimization, are adequate in some circumstances. An argument

may be made in some applications that the results obtained for large data sets using the

simulated annealing mapping algorithm are worth the extra computational cost.



Chapter 5

Clustering Experiments

 

Two experiments using the simulated annealing clustering algorithm are discussed

in this chapter. Of particular interest is the behavior of the algorithm on clustered data of

varying spread and on random data. The experimental parameters are discussed, some

graphical and numerical results are shown, and then an explanation of the results is

offered. Results for the clustering experiments are summarized at the end of the chapter.

5.1. Experiment Cl - Clustered Data

This experiment examines clustered data having four values of cluster spread. All

data sets consist of four gaussian clusters in two dimensions with thirteen points per clus-

ter. Factor A in the analysis of variance is the number of clusters requested with levels

{2, 3, 4, 5, 6, 7, 8}. Factor B is the cluster spread with levels {0.05, 0.10, 0.15, 0.20}.

The value of 8 is fixed at 0.05, e is fixed at 0.001, starting Markov chain length is fixed at

100 and minimum Markov chain length is fixed at 10.

Table 5-1 shows the values of the modified Rand statistic averaged over K =10

replications per cell using simulated annealing. The additional column in Table 5-1

labelled ’Slow’ show results with conservative choices of annealing parameters. The

column is incomplete because of the long run times required. The ’slow’ annealing is

made with 8 = 0.02, 8 = 0.0001, starting Markov chain length = 500, and minimum Mar-

kov chain length = 20. Table 5-2 shows the modified Rand when Forgy’s algorithm is
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used on the same data sets. Each cell in the table is the average of ten replications.
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Table 5-3 shows the F statistics from the analysis of variance.

Table 5-1 Experiment C1, Simulated Annealing

 

 

 

 

 

 

 

  
 

         

 

 

 

 

 

 

 

 

 

       

Cluster Spread (B)

23:: (A)0f Fast Annealing Slow

3 0.05 0.10 0.15 0.20 0.05

2 0.372 0.386 0.338 0.338

3 0.654 0.603 0.560 0.486

4 0.727 0.786 0.609 0.500 0.956

5 0.777 0.722 0.575 0.451 0.879

6 0.679 0.645 0.474 0.412

7 0.604 0.541 0.461 0.364

8 0.553 0.500 0.407 0.348

Table 5-2 Experiment C1, Forgy

Number of Cluster Spread (B)

Clusters (A) 0.05 0.10 0.15 0.20

2 0.386 0.395 0.349 0.346

3 0.699 0.636 0.571 0.452

4 0.995 0.888 0.655 0.509

5 0.898 0.812 0.575 0.457

6 0.81 1 0.746 0.530 0.412

7 0.742 0.676 0.496 0.372

8 0.672 0.570 0.435 0.356
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Table 5-3 Experiment C1, Analysis of Variance

 

 

 
 

 

     

F-test Annealing Forgy F 99% F 99.9%

FA (6.252) 30.99 65.07 2.80 3.74

F3 (3,252) 46.98 159.51 3.78 5.42

FA3 (13,252) 1.57 4.96 2.04 2.51  

Table 5-3 indicates highly significant effects due to both the cluster spread and

number of partitions for both clustering algorithms. The Forgy algorithm produced

better results in almost every cell in Tables 5-1 and 5-2. If more conservative values of

the annealing parameters 8 and 8 were used, as in the rightmost column of Table 5-1, the

results would probably exceed those obtained for the Forgy clustering at the cost of

significantly longer run times.

All the values in the Tables 5-1 and 5-2 produce significantly better clusterings than

random labellings, since the modified Rand values are 15 to 40 standard deviations

greater than the mean of zero under randomness [HUB 85]. Within each column, the

values of the modified Rand statistic are best for partitions of four clusters, the true value,

with one exception. For a fixed clustering the Rand values get better as the cluster spread

decreases. These results agree with intuition. The exception is in Table 5-1, where the

tightly clustered data groups into five clusters better than into four clusters. This appears

to be a result of poor annealing parameters. The results obtained from the ’slow’ cooling

are quite significant. If we were to look at the Rand statistic for the tightly clustered data

(0 = 0.05) to try to determine the true number of clusters, we would make a correct deci-

sion based on the numbers obtained from the slow cooling but an incorrect decision from

the faster cooling.

Figure 5-1 shows an example of how clusterings differ with annealing schedules for

the tightly clustered data. Figure 5-1 shows scatter plots of the patterns and exhibits the

maximum and minimum square error values from each Markov chain. The numerals

indicate the labels assigned by the algorithm. The clustering in Figure 5-la has a

modified Rand value of 0.413. It is one of the worst of the ten replications for
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partitioning the tightly clustered data into four clusters. Figure 5-lb contains the plot of

the same data set when clustered by more conservative cooling parameters. It

corresponds to a Rand value of l.
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Figure 5-1 - Experiment C1, Assorted Plots.
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These results again demonstrate the importance of choosing good values of the

annealing parameters. Unfortunately, the problem with choosing adequate parameters

values is that the run times may become so long that a run will not finish between

machine downtirnes. Approximate run times for the clustering algorithms used in this

experiment are summarized in Table 5-4. The run times tend to increase as the cluster

spread of the original data gets larger. Clearly, the simulated annealing algorithm is not

practical for clustering these small data sets.

Table 5-4 Experiment C1, Run times

 

 

 

 

 

 

 

 

 

 

 

    

Problem Approx. Run time (seconds)

2 clusters (fast) 160

3 clusters (fast) 320

4 clusters (fast) 450

5 clusters (fast) 500

6 clusters (fast) 550

7 clusters (fast) 550

8 clusters (fast) 600

4 clusters (slow) 8200

5 clusters (slow) 10500

Forgy (100 runs) 20

 

5.2. Experiment C2 - Random Data

This experiment examines the effects of simulated annealing parameters 8 and Mar-

kov chain length with random data. Factor A in the analysis of variance is stopping

parameter 8 with levels {0.0001, 0.001, 0.01}. Factor B is Markov chain length with lev-

els {50, 100, 200]. Parameter 8 is fixed at 0.05. Five different random data sets are gen-

erated; each contains 50 points in two dimensions. The data are always clustered into

seven partitions, which is a reasonable number for 50 points.
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Table 5-5 contains the average (modified Hubert) gamma statistic over the K = 5

replications per cell. The final square errors are listed in Table 5-6. Slightly different

results are obtained from square error than from the gamma statistic. Table 5—7 contains

the F statistics from the analysis of variance.

Table 5-5 Experiment C2, Gamma Statistics

 

Markov Chain Length (B) Forgy

50 100 200

0.0001 0.841 0.837 0.749

0.001 0.738 0.763 0.749 0.853

0.01 0.526 0.634 0.527

 8 (A)

 

 

 

        
 

Table 5-6 Experiment C2, Square Error

 

Markov Chain Length (B) Forgy

50 100 200

0.0001 0.934 0.909 0.912

0.001 1.399 1.073 0.912 0.905

0.01 2.408 1.632 1.353

 8 (A)

  

 

 
 

 
 

      
 

Table 5-7 Experiment C2, Analysis of Variance

 

 

 

 

 

F-test Gamma Square Error F 99.9%

FA (236) 22.07 64.16 8.50

F3 (236) 1.64 21.99 8.50

F33 (4,36) 0.66 7.27 5.90      
 

Table 5-7 shows highly significant effects on gamma and square error due to 8.

There are also effects on square error due to Markov chain length, and significant factor

interaction with square error. The effects on square error are not surprising, since square
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error is the objective function being minimized, but the presence of these effects confirms

our knowledge of how Markov chain length and termination of the annealing affect the

minimization of the criterion function.

The gamma statistics in Table 5-5 are significant since they are all 8 to 14 standard

deviations above the mean of zero. The gamma statistic seems to be affected by only 8

with 8 = 0.05. It therefore makes little sense to use the larger values of Markov chain

length, since larger values require more run time without enhancing results. The reason

Markov chain length has a significant effect on square error and not on gamma may be

that labelling a few patterns ’incorrectly’ produces larger changes in square error than in

gamma. Gamma and square error cannot be compared directly because they do not have

the same scale.

Figures 5-2, 5-3, and 5-4 show scatter plots and annealing curves for some of the

data clustered in this experiment. Figure 5-2 shows the resultant clustering and annealing

curves for one of the worst clusterings obtained with e = 0.01 and Markov chain length =

50. Figure 5—3a shows a better clustering of the same data set with e = 0.0001 and Mar-

kov chain length = 50, and Figure 5-3b shows the best clustering of the same data set

obtained with e = 0.0001 and Markov chain length = 200. Figure 5—4 shows the above

mentioned plots along with the result from Forgy’s algorithm for comparison. Notice

that Figure 5-4a and 5—4d are the same except for cluster numbering. Visually, the clus-

terings obtained with the smallest e and largest Markov chain length are the best,

although some of the others are not bad. The clusterings obtained with large 8 and small

chain length are the worst ones of all.
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Figure 5-2 - Experiment C2, Annealing curves.
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Figure 5-3 - Experiment C2, Annealing curves.
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Figure 5-4 - Experiment C2, Comparison of Clusterings

The importance of choosing good annealing parameters is again demonstrated in

this experiment. If e is very small, run times may be very large. A reason for this is dis-

cussed in the next section.
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The simulated annealing run times in this experiment ranged from about 150

seconds to about 5000 seconds. In general, the faster times are associated with large 8

and short Markov chain length, and the longer times are associated with small 8 and long

Markov chain length, but occasionally a run will require an exceptionally long time to

finish when 8 is small and Markov chain length is large. It is not possible to determine in

advance when this will happen. Because the variation in the run times is so large, they

can not be easily represented in a table. The results from this experiment are not very

promising. The simulated annealing clustering algorithm did not perform very well in a

reasonable amount of time.

5.3. Clustering Experiment Summary

The simulated annealing clustering algorithm performed at least as well as the

Forgy clustering algorithm when conservative parameter values are used. The simulated

annealing, however, requires exceptionally long run time, whereas Forgy takes only

about 20 seconds to get the best of 100 groupings of these small data sets.

One problem that occurs with clustering by annealing that did not occur with the

mapping algorithm has to do with the termination parameter, 8. Decreasing 8 will usu-

ally decrease final cost, but run time will increase. Parameter 8 usually has a predictable

effect on the run time with mapping, but not with clustering. Large values of 8 produced

predictable run times, but small values made the run time marginally longer or very

much longer. This is probably due to the discrete nature of the clustering problem. The

labelling gets to a point where few moves will be accepted because the points are almost

partitioned into a minimum square error configuration and the temperature is low, but the

stopping criterion, based on 8, has not yet been reached.

These studies show that even though simulated annealing works, it is so slow that

simulated annealing can not be considered practical for this particular problem. Existing

algorithms are significantly faster.



Chapter 6

Conclusions

 

Simulated annealing has been applied to two representative optimization problems

from exploratory data analysis, nonlinear mapping and square error clustering. Empirical

results were presented in Chapters 4 and 5. This chapter draws conclusions about the use

of simulated annealing for these two problems and suggests future work.

6.1. Summary and Conclusions

The simulated annealing mapping algorithm has been examined in four experi-

ments, focussing on the effects of cooling speed, sample size, and data shape. It is not

surprising that slow cooling is more reliable than fast cooling, but much more computa-

tionally expensive. Both large and small data sets can be adequately mapped, but map-

ping small data sets takes much more time, relatively, than mapping large data sets, when

compared to the gradient descent algorithm.

The effects of data shape were the most interesting. The choice of cooling speed

parameter was more important for tightly clustered data than for loosely clustered data.

When mapping large sets containing gaussian clusters (experiment M3), simulated

annealing reproduced local structure better than gradient descent, but when mapping

large sets containing lattice clusters (experiment M4), gradient descent reproduced local

structure better than simulated annealing. This result may be a problem with simulated

annealing when mapping highly structured data or may be an artifact of the local
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structure statistic.

Using final stress as the performance criterion, simulated annealing performed

better than gradient descent in experiments M3 and M4 indicating that simulated anneal-

ing is more practical for mapping large data sets than for small ones. The run time of the

simulated annealing algorithm increased slower with sample size than did gradient des-

cent when mapping large data sets.

The annealing parameters 8 and Markov chain length of the clustering algorithm

were examined using both clustered and random data. In general, annealing can perform

as well as Forgy’s algorithm, but the run times are very long. Of particular interest is the

effect that 8 can have on run time. If 8 is chosen too conservatively, some runs never

finish because few or no moves are accepted at low temperatures. When this happens in

the mapping problem the algorithm makes the moves smaller as suggested by [VAN 84].

There is no analagous technique for the clustering problem.

The run times in this thesis suggest that simulated annealing holds more promise in

optimizing the stress function than in optimizing the square error function. This is most

likely due to the difference in the number of accepted moves between the continuous and

the discrete problem. It is important to remember that this is only one of many cooling

schedules and there may be one with termination criteria that are better suited to the clus-

tering problem. As implemented the simulated annealing mapping algorithm shows

promise for projecting large data sets containing gaussian clusters.

De Soete, et a1. [DES 87] have studied a problem similar to the mapping problem

and report that although simulated annealing works, run times are too long to make simu-

lated annealing worthwhile. There are, however, many problems reported where simu-

lated annealing has shown promising results [KIR 83] [CAR 85] [VAN 86]. The choice

of cooling schedule and parameter values is certainly very important as is the definition

of move. Efficient implementation is also important, although not a primary concern in

this thesis.

The major contribution of this thesis lies in the formal examination of the perfor-

mance of the simulated annealing mapping and clustering algorithms. The algorithms
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were judged not by the rninimizations, but by independent measures of validity. This

methodology has not previously been used in simulated annealing research. In order to

examine the mapping algorithm objectively, it was necessary to develop measures of

local and global structure. This is a minor contribution. The new results from this for-

mal study indicate that simulated annealing is not appropriate for small data sets. The

mapping algorithm, however, performs well on large data sets containing tight gaussian

clusters.

6.2. Future Work

The simulated annealing algorithm in this thesis uses one of many possible cooling

schedules and the data sets contain just a few of the many possible parameter variations.

Another variation on the idea of simulated annealing has been presented by Bohachev—

sky, et a1. [BOH 86]. Their algorithm minimizes a continuous function and differs in the

interpretation of the cooling schedule and should be considered for the mapping problem.

One of the problems with simulated annealing is the time spent on calculating the

cost for moves that are eventually rejected, particularly with small values of the control

parameter. Some work has been done to design an algorithm with fewer rejected moves

[GRE 84]. This thesis handled the problem of too many rejected moves in the mapping

problem by decreasing the size of the move made at lower values of the control parame-

ter. The solution to the clustering problem contains no such time saving measures, but

there are several ideas which may be worth investigating.

Most of the patterns have been assigned to correct partitions toward the end of a

simulated annealing clustering run, yet the annealing continues for a long time because

patterns to be moved are picked at random and very few patterns remaining need to be

reassigned to other clusters. One way to make the annealing algorithm more efficient

might be to move only those patterns that are in the wrong partition. It is reasonable to

expect that the misclassified patterns are those nearest the border between partitions. The

actual implementation used in one set of test runs consisted of limiting the possible can-

didate patterns when the number of rejected moves became too large. Only those
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patterns whose nearest neighbor currently has a different partition'label were considered.

Preliminary trials using this technique were not successful for small data sets. Another

possibility worth trying is to use some k-nearest neighbor choice of candidates.

Research in developing parallel implementations of the simulated annealing algo-

rithm has been reported [AAR 86B]. The main problem here is that simulated annealing

is inherently sequential, although the objective functions used in this thesis lend them-

selves to parallel operations. A near linear speedup using parallel processors could not

be expected, but these new algorithms may allow large problems to terminate that previ-

ously could not do so.

Certainly, simulated annealing is not practical for all optimizations, but from the

limited number of experiments made here it is fairly safe to say that simulated annealing

is worth trying on problems for which there are currently no other good minimization

techniques. Cooling schedules other than the one used here also bear investigation and

may yield better results. A nice feature of simulated annealing is that the choice of cri-

terion function to optimize is unlimited. The definition of move may cause some

difficulty. Production algorithms may require ’clever’ implementations and should use

efficient data structures.



Appendix A

Structure Statistics

 

This appendix defines the statistics used to measure the structure present in

clustered data and to judge the performance of projection algorithms.

A.1. Local Structure Statistic

The statistic alocald defined below was designed to measure the local structure in a

clustered data set in d dimensions. The statistic alocal is defined to be

lalocalL— alocal, I and determines how well a mapping from L to 1 dimensions preserves

the local structure of clustered data. Values close to zero imply that local structure is

preserved well.

 

nclu (‘0

alocal, = 1 [2285‘fl”

nclu (nclu - l) ‘11:“

Here, S5") is the within cluster spread of cluster 1', d is the dimensionality of the data, and

nclu is the number of clusters.

55d) =
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where x1,“- is the kth feature of the 1th pattern of the ith cluster, and n,- is the number of

L
I
M
m

patterns in cluster 1'. Note that the clusters are specified by the generating process so the

notation is different from that in Section 1.2.
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The statistic is composed of the sum of all possible combinations of ratios of within

cluster spread. This number distinguishes between data sets whose clusters have the

same spread and those whose clusters vary in their spread. The normalization constant of

alocald is the reciprocal of the number of terms in the summation. This makes it possible

to interpret alocald independent of the number of clusters in the data. The closer the

value is to one, the more similar are the clusters of the data set.

The statistic alocald is now shown to be invariant to scale changes. Scale all pat-

terns by factor K to obtain
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Clearly a K2 term can be factored from both numerator and denominator.

The statistic alocald is also invariant to translation since 55‘” is invariant to transla-

tion. Suppose all patterns are translated by ck.
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It can also be argued that alocald does not vary greatly with dimensionalin since

the summation over dimension is present in both numerator and denominator.
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A.2. Global Structure Statistic

The statistic adist was designed to measure the global structure in a clustered data

set of gaussian clusters in (1 dimensions. The phrase "global structure" refers to the rela-

tive placement of the clusters. The statistic adist is defined to be ladistL - adist,! and

measures the degree to which global structure is preserved in a mapping from L to 1

dimensions. As with alocal, values close to zero imply that global structure is preserved

well.

The statistic adist,, is composed of the sum of all possible combinations of ratios of

distances between pairs of clusters. Values close to one imply that the clusters are

equally spaced.

The statistic adistd is defined as follows:

4 nclu

l

(nclu + 1) nclu (nclu - 1) (nclu - 2) £223.33: Du

adist,, = 

(Iii

where Dij is the distance between cluster centers 2,- and zj and is given by the following

formula:

1 "" 1 "i 2
—zqui _ n— 2x”,

"i p=l 1 p=l
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The statistic adist,, can be shown to be invariant to scale and translation, and argued not

to vary greatly with dimensionality as was alocald.



Appendix B

Cluster Validity Measures

 

This appendix contains the formulation of the cluster validity statistics that are used

to judge the performance of clustering algorithms.

8.1. External Measure - The modified Rand statistic

For the experiment involving clustered data, the true class labels are known so an

external measure is needed. The modified Rand coefficient [HUB 85] [DUB 86] is used.

Let {L (1')} be the set of n cluster labels assigned to the (1 patterns by the clustering

algorithm and {T (1')] be the apriori cluster labels. The Rand coefficient is defined to be

a

a+b

where

a = |{(i.j): i>j. [L(i)=L(I'). T(i)=T(i)l V [L(i)¢L (i), T(i)¢TU)I}|

b = |{(i.J'):i>J', [L(i)=L(i). T(i)¢TU')I V[L(i)¢L(i). T(i)=T(J')l}|

and a + b = ["] . The statistic a is the number of pairs of patterns which are treated the
2

same by both labellings. That is, the number of pairs which either have the same label in

both labellings or have different labels in both partitions; b is the number of pairs of pat-

terns which have the same label in one partition and different labels in the other partition.
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The modified Rand statistic [HUB 85] contains a correction factor that accounts for

random labellings of the data. The modified Rand is defined

Rand — Expected Rand

Maximum Rand — Expected Rand

 

where Maximum Rand is taken to be one, and the expected Rand is computed from

721421 an 121I

n 2 n

2 2

Expected Rand = 1 +

where n,- is the number of patterns in group i of the clustering, and m,- is the number of

patterns in group i of the true labelling. This statistic has a value of 1 when b = O and

should be around 0 when the cluster labels are assigned randomly. Some special cases of

the statistic for the 52 point data sets used in experiment C1 are 0.948 when any one pat-

tern is classified in the wrong cluster, and 0.975 when one pattern is placed in a singleton

cluster.

B.2. Internal Measure - Modified Hubert’s Gamma

For the experiment involving random data, the true class labels are not known so an

internal measure of cluster validity is needed. The modified Hubert gamma statistic

[DUB 86] is based on the Mantel statistic [MAN 67] and Hubert’s gamma statistic [HUB

76]. The statistic is the point serial correlation coefficient between proximity matrix for

the n patterns, {x,-, 1 51' S n} and a "model" matrix. The cluster centers from the cluster-

ing are considered to be the "true" locations of the patterns, so the model matrix is the

proximity matrix in which proximity between patterns is indicated by distance between

centers of clusters containing these patterns. Let L denote the label function that maps

the set of patterns to the set of cluster labels.

L, =k if ya, =1

Let {z,-, 131' Sg} be the cluster centers and M be a shorthand notation for

n(n-1)

2 . Denote the euclidean distance between vectors a and b by
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L

8(a,b) = [(a — b)T(a 413 2

Note that this function 8 is not related to the simulated annealing cooling parameter. The

modified Hubert statistic, MH, will be a function of the following components.

n-l (I

8(x ,x)5(z ,z )

rzMigljmzH I L. L

1,..-1

M =— 5(x,-,xj)

P M i§1j=12+1

M “'1 S: 5( 1=— z ,z

M1=ljd+l L‘ L

0-2=__._1_i1 i 520..x) M2

0? M1=lj=i+l

n—l u

02: i: 2 82(214, ZL’)- M2

M1=1ja+l

The statistic MH is defined:

MH = I‘_Mr"_‘_c_
(5ch

Since this statistic is a correlation, values close to 0 indicate a poor clustering and

values close to 1 indicate a good clustering.
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