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12 ABSTRACT

\"SPECIALIZATIONS OF RESIDUAL CENTRALITY IN GROUPS

BY

Roger D. Konyndyk

A group G is residually central if each non—identity

element 9 E G is not an element of [g,G]. An unsolved

problem is whether such groups must have a central series.

Some partial solutions to this problem are obtained. Resid—

ually central groups in which each element has only finitely

many conjugates are locally nilpotent and therefore have a

central series. Using group ring techniques, it is shown

that a finitely generated residually central abelian by nil—

potent group is residually nilpotent. The question of when

the standard wreath product W = Avan of groups A and G

is residually central is also taken up. If A and G are

locally nilpotent, then W is residually central if and only

if either G is torsion-free or there exists a prime p such

that all elements of W of finite order have p-power order.

. _ G _
If g E G, define Ro(g) — g and Rn(g) - TRn_1(g),G]

for positive integers n. If for each 9 6 G, D Rn(g) = l,

. n:O

then G is called a (*)—group. (*)-groups are ZD—groups whose

lower central series has length at most w + l, where w is

the first limit ordinal. Many classes of (*)-groups must be

residually nilpotent: wreath products of non-trivial groups,

 





Roger D. Konyndyk

nilpotent by cyclic groups, and cyclic by nilpotent groups.

Counterexamples show that property (*) is not equivalent

to residual nilpotence.

Let x be one of the following classes of groups:

residually nilpotent groups, (*l-groups, residually solvable

groups, residually finite groups. If G is a I-group, then

G/H is an 1 group if H meets any of the following con—

ditions:

a) H is maximal with respect to H g G and

Yn(H) = l, where n‘g 2.

b) H is maximal with respect to H Q G and

H(n) = 1, where n.) l.

c) H G G and H = CG(K) for some subset.

K of G.

 





SPECIALIZATIONS OF RESIDUAL CENTRALITY IN GROUPS

BY

(“\U/

Roger D. Konyndyk

 

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirement

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1975



ACKNOWLEDGMENTS

I wish to thank Professor R.E. Phillips for his

helpful suggestions and advice. I must also thank my

wife for her encouragement and love.

 

ii





TABLE OF CONTENTS

I . BASIC DEFINITIONS AND RESULTS . . . . . . . . . 1

11:. RESIDUALLY CENTRAL GROUPS . . . . . . . . . . . 9

III. RESIDUALLY CENTRAL WREATH PRODUCTS . . . . . . 14

IV. A SPECIALIZATION OF RESIDUAL CENTRALITY . . . . 26

v . DESCENDANCE AND HOMOMORPHIC IMAGES . . . . . . 41

BIBLIOGRAPHY . . . . . . . . ; . . . . . . . . 49

 
iii





CHAPTER I

BASIC DEFINITIONS AND RESULTS

Let G be a group, 91,...,gn E G. Then the com—

mutator of 91 and g2 is {91,92] = 9119319192, and the

F

n—fold commutator is 191,...,gn_1,gn] = [[gl’°"’gn-l]’gn]

for n > 2. If A and B are subsets of G, then [A,B] =

<[ a,b]:a E A and b 6 B:>. If a is an ordinal greater

 

than 2, then

[[A,BB],B] if a has a predecessor 5

[Ads] =

n{[A,BB]:B < a} if a is a limit ordinal.

In the case A = {9}, it will be convenient to write [g,aB]

for [lg},a3]. If in addition B = G, we set Ro(g) = gG,

the normal Closure of g in G, and 'Ralg) = [9,OG] for

ordinals a > O.

The following identities are routine to verify and

will be used repeatedly.

Lemma 1.1. Let x,y,z be elements of a group G. Then

[x,21[x,ylz(l) [X.y2l

(2) [Xi/,2] ix,ZJY[y,ZJ-





The next few results are corollaries of 1.1. Proofs may

be found in [17, pp. 43-44].

Lemma 1.2. Let A,B be non—empty subsets of a group such

that B is a subgroup. Then [A,B,B] g [A,B] and

[A,B] <1 <A,B >.

Lemma 1.3 (The three subgroup lemma). Let A,B,C be sub-

groups of a group G. If any two of the subgroups [A,B,C],

[B,C,A], [C,A,B] are contained in a normal subgroup of G,

then so is the third.

 

The following definitions are taken from [17] and

[18]. For a group G and ordinal a, define

yl(G) = G

[YB(G)’G] if a has a predecessor B

Ya(G) =

DIYB(G):B < a} if a is a limit ordinal.

G is said to be nilpotent of class .gc: if there is an in—

teger c such that yc+l(G) = 1. The subgroups ya(G) are

characteristic in G and form the lower central series of

G. There must be a first ordinal ab such that Yab(G) =

Yab+l(G); this subgroup is called the hypocenter of G. If

for some do, yab(G) = 1, then G is called a ZD-group (hypo-

central).

The elements of the upper central series of G are

defined by



l

|
-
‘

gO(G)

gl(G) = the center of G

Qa(G)/QB(G) = §1(ZE%ET) if a has a predecessor B.

QQKG) = U{CB(G):B < a} if a is a limit ordinal.

There is a first ordinal do such that gab(G) = gab+1(G);

this subgroup is called the hypercenter of G. If for some

ordinal ab, gu (G) = G, then G is called a ZA-group (hyper—

0

central). Another characterization of ZA-groups may be found

in [12, p. 219]:

Theorem 1.4. G is a ZA—group if and only if for every sequence

xl,x2,... of elements of G, there is an integer n such

that [xl,x2,...,xn] = l.

A central series is a collection Q of subgroups

{Ga:a E I} of G such that

(i) I is a fully ordered set such that if a, B 6 I

and a < B, then Ga-3 65'

(ii) If Ga.< GB’ a,B E I, and no element of Q is

properly between Ga and GB’ then [GB’G]-S G07 that is,

Ga/GB g g1(G/GB).

(iii) For any subset A of I, U[Ga:a E.A} E Q and

fifGafiI E A} E Q.

(iv) [1} es and G e e.

A group which has a central series is called a Z-group; thus

ZA- and ZD-groups are Z-groups.

 



 



If P is a group-theoretic property, then the

group G has P residually if for every 1 ¥ 9 6 G, there

is a normal subgroup N9 of G such that g A'N and

9

G/Ng has P. It is an easy exercise to show that G is

G)

residually nilpotent if and only if yw(G) = n Yn(G) = l.

(w denotes the first infinite ordinal.) FolIgiing Kurosh

[12], a group G is said to have P locally if every

finitely generated subgroup of G has the property P. P

is called a local property if every group which has P locally

itself has P. Mal'cev has shown that the pr0perty of being

a Z—group is a local property. (For a proof, see [18, pp. 93-

99].)

A group G is residually central if for all 1 #

g e G, g E [g,G]. This is equivalent to the condition that

for all 1 #'g 6 G, there is a normal subgroup N9 of G

such that g £ Ng and gNg E g(G/Ng); i.e. every non-trivial

element of G is residually in the center of G. Residually

central groups were first studied by Durbin in [3] and [4].

They have also been discussed by Ayoub [1], Slotterbeck [21],

and Stanley [22] and [23].

The following results may be found in [3] and [18,

pp. 6-8].

Proposition 1.5. If G is residually central and satisfies

Min-n (the minimal condition on normal subgroups), then G

satisfies Min and is hypercentral.

 



Proposition 1.6. G is residually central if any of the

following conditions holds:

(1) G is a subgroUp of a residually central group.

(2) G is locally a residually central group.

(3) G is residually a residually central group.

Proposition 1.7. If G is finite, then G is residually

central if and only if G is nilpotent.

Proposition 1.8. Let G be a residually central group, and

let N be a normal subgroup of G contained in the hyper-

center of G. Then G/N is residually central.

Proposition 1.9. Elements of a reSidually central group

which have relatively prime, finite orders commute.

Stanley in [23] has obtained more information

concerning when homorphic images of residually central groups

are residually central. In general, however, the question

appears quite difficult and little progress has been made

beyond Proposition 1.8.

Residually central groups are discussed in chapters

II and III. In chapter II, relationships between residual

centrality and other group_theoretical properties are dis-

cussed. The main result is Theorem 2.7: Let G be a finitely

generated residually central group with a normal abelian sub-

group A. If G/A is nilpotent, then G is residually

nilpotent. In Chapter III we take up the question of when

the standard restricted wreath product W = Avan is residually

 





central. The question is completely answered in the case

where G is orderable and in the case where A and G

are locally nilpotent.

If G is a Z-group with central series Q =

[Gaia e I], and l ¥'g 6 G, then rflGa]g 6 Ga] is an ele—

ment G of Q, and U[Ga[g 5 Ga] is an element G

“1 “2

of Q. No element Ga of Q can satisfy Ga < Go. < Ga .

2 1

Thus [Gal,G] g Gaz, and [9,6] g [Gal,G] g Gaz. Since

9 ('Ga , g £ [g,G]. Thus any Z-group is residually central.

2

Whether or not the converse is true is unknown. The close

 

relationship between residually central groups and Z—groups

may be seen in the following theorem due to Hickin and Phillips

[10].

Proposition 1.10. G is a Z-group if and only if for every

finitely generated subgroup 1 ¥ K of G, Kié [K,G].

In Chapter IV a specialization of residual centrality

is examined: A group G is a (*)—group if for all g e G,

% Rn(g) = 1. It turns out that property .(*) is very closetx>

iegidual nilpotence: A (*)-group is a ZD-group whose lower

central series has length at most w + 1 (Proposition 4.4).

Property (*) turns out to be equivalent to residual nil-

potence for wreath products of groups (Theorem 4.13), nil-

potent by cyclic groups (Proposition 4.15), and groups with

trivial center (Corollary 4.6).

Chapter V looks at homomorphic images of (*)-groups

and other classes of groups, and looks at descendance in

(*)—groups. We obtain



Corollary 5.4. Let I be one of the following Classes of

groups: Residually nilpotent groups, residually solvable

groups, residually finite groups. If G is an x-group,

then G/H is an z—group if H satisfies any of the follow-

ing conditions:

(1) ‘H is maximal with respect to H <16 and

H(n) th
H(n) - denotes the n derived subgroup— l, where

of H, nig l.

(2) H is maximal with respect to H 4 G and

yn+1(H) = l, where n.2 1.

(3) H 4 G and H = CG(K) for some subset K of G.

Corollary 5.9. Let G be a (*)-group, H as in (l), (2),

or (3) of 5.4. Then G/H is residually nilpotent.

Results on descendance are found in 5.10: If G is a (*)-

group, and A is an abelian subgroup of G or if Aug gw(G),

then A is descendant in G of order type at most w + 1.

We close this section by stating two lemmas for future

use .

Lemma 1.11. If G is any group and g e G, then [g,G] =

G .
[g ,G]. Hence If n 2 o, Rn+l(9) = [Rn(g), G].

Proof: Since gG = <9 > [g,G],

[96,6] [<9 > [9.61.61

"
A [<9>,G][9’G][[9,G],G] (by 1.1)

 





[<9 >,G][9,G,G] (since [<g>,G] <1G)

H
A

[<9>.G][9,G] (by 1.2)

Thus it suffices to show that for any positive integer n

and element h 6 G, [gn,h] 6 [9,6] and [g-n,h] E [g,G].

But [9“.h] = [ggn’1.h1 = [g,hlgn-l[9n-l,h] e [9.6] by in-

duction on n. Similarly, [g_n,h] 6 [g_l,G]. Now [g-l,h]g =

9-1 9 h-l l

[9,6]-

g‘ hg = [11.9] e [9.6]. Since [9.6] <16, [9'1,G] 3

Lemma 1.12. If 91,...,gn 6 G, then % [gi,G] =

i=1

 

[<gl"'°’gn>’ G] <1 C"

Proof: Since eaCh [gi,G]_g [<gl,...,gn)x,G], it is clear

n

that w [g.,G] g L<gl,...,g )x,G]. Any element of

i=1 1 n '

[<gl,...,gn:>,cfl is the product of finitely many elements of

+1

the form [gi ..... gi ,h]", where h.€G, and 1.3 ij g_n. But

1 m g. ...g.
1 1
2 m

[g (9- ----- 9- ),h] = [9 ,h] [9- ---~g- ,hl =
11 12 1m 11 12 1m

gi2 ..... gi gi n

[91 ,h] m ...[gi ,h] m[gi ,h] e W [91.6], since
1 m—l m i=1

each [gi,G] <1 G. Finally [<gl,...,gn>, G] is the product

of finitely many normal subgroups of G and therefore is

normal.





CHAPTER II

RESIDUALLY CENTRAL GROUPS

In this chapter relationships between residually

central groups and other classes of groups are examined.

An FC—group is a group in which each element has

only finitely many conjugates.

Proposition 2.1. A residually central FC—group is locally

nilpotent.

Proof: Let G be a residually central FC—group, and H =

<h1,...,hn > a finitely generated subgroup. It suffices

to show that H must be nilpotent. By 1.8, H/gl(H) is

residually central. Since each hi has only finitely many

conjugates in H, each [H:CH(hi)] < a. gl(H) = iEHCH(hi)

is the intersection of finitely many subgroups each of finite

index in H and therefore has finite index in H. Thus

H/§1(H) is a finite residually central group, which must be

nilpotent, by 1.7. Then H itself is nilpotent.

Proposition 2.2. Let G be a residually central group with

a normal subgroup N suCh that G/N is nilpotent and N

satisfies the minimal condition on subgroups. Then G is a

ZA—group.

 



10

Proof: Let xl,x2,... be any set of elements of G, and

let yk = [X1,x2,...,xk]. By 1.4, it suffices to show that

some yk = 1. Since G/N is nilpotent, there is an integer

n such that Yn(G) g.N, and so yn E N. Let i be a non-

negative integer. If y = 1, there is nothing to prove.
n+i

If yn+i # 1, then yn+i é [yn+i’G]’ since G is residually

central. yn+i+l = [Yn+i’xn+i+l] E [yn+i’G] <JG’ and so

G G . .
yn+i+1 g [Yn+i’G] < yn+i 5; N. Thus there is a descending

sequence of subgroups y: > yfi+l > ... of F. Since F

G G
satisfies Min, for some j we must have yn+j = yn+j+l°

This can happen only if yn+j = 1.

Corollary 2.3. Let G be a finitely generated residually

central group. If G has a finite normal subgroup N such

that G/N is nilpotent, then G is nilpotent.

Proof: Since N is finite, N satisfies Min, and 2.2 applies.

Mal'cev [17, p. 50] has shown that ZA-groups are locally nil-

potent, completing the proof.

The necessity of the condition in 2.2 that the subgroup N

has Min is shown by the example of the infinite dihedral group.

This group has two generators, is metabelian, and is residually

nilpotent (hence residually central), but is not nilpotent. If

the group were a ZA-group, it would be locally nilpotent and

hence nilpotent.

If G is a group with a normal abelian subgroup A,

and F = G/A, then A may be viewed as a right ZF-module,
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where Z? is the integral group ring. Whenever this is

done, A will be written additively and P will be written

n

multiplicatively. Thus if a E A and Z) zi(giA) e 2?,

i=1

where 2i 6 Z, 9i 6 G, 1.3 1.3 n, then the module action

n

a( Z) zi(giA)) is defined to be (in multiplicative notation)

i=1

n zi 91 . .
W (a ) ; the module multiplication lS basically that of

i=1

group conjugation. It is routine to check that this is well—

defined. Note that submodules are subgroups of A which are

normal in G. Note also that for a e A,-g E G, [a,g] = a-lag

may be written in module notation as —a + a(gA) = a(gA-—l).

 

The augmentation ideal A of zr is defined to be the (two-

sided) ideal generated by {y-—1]Y E F}. .If B is any subset

of A, then [B,G] may be written as BA in module notation;

repeating this m times shows that [B,mG] = BAm for positive

integers m. A may be characterized by the well-known

Lemma 2.4. If F is a group and Z? the integral group

n

ring, then the augmentation ideal A = [ Z) ziYi‘zi 6 Z,

n i-l

Yi E T, and Z) zi = 0].

i=1

Proof: The containment : is clear. Conversely, suppose

n n n

that z.Y. E Z? with Z) z. = 0. Then. 2) z.Y. - O =

i=1 1 1 i=1 1 i=1 1 1

n n

= z. = .Z) zi(Yi-l) E A.
ll . 1 1 1:1

i=1 1

Let R be a ring and I an ideal in R. Following

Roseblade [20], I is said to be a polycentral ideal of R

if there is a chain 0 = 10.3 11.5 ... g IC = I of ideals of
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R such that I /Ii is generated by one element in the
i+1

center of R/Ii, 0.3 i < c. Roseblade has proved [20]

Theorem 2.5. Every ideal of the integral group ring ZF

is polycentral if and only if F is a finitely generated

nilpotent group.

Robinson in [19] uses the term polycentral to mean

that each I /Ii is generated by some subset of the
i+1

center of R. He shows, in Theorem 5 of a preprint of [19],

Theorem 2.6. Let R be a ring, I a polycentral ideal

of R, and M a noetherian R—module. Then a 6 3 MIn

n=l

if and only if a = ai for some i E I.

These two results give

Theorem 2.7. Let G be a finitely generated residually

central group with a normal abelian subgroup A. If G/A

is nilpotent, then G is residually nilpotent.

Proof: For some integer n, yn(G).g.A since G/A is nil-

potent. Let A1 = yn(G). By [2, Theorem 3.6], if G =

<<gl,...,gk)>, then A1 = <[gil,giz,.. ,gin]‘l S lj.s k:>

G/A1 is nilpotent, and A1 is finitely generated as a

zremodule, Where T = G/Al. Now G is residually nilpotent

if and only if n [A1,mG] = 1. If A is the augmentation

m=1
an

ideal of zr this condition is equivalent to n AlAm = o

m=l

in module notation. By 2.5, A is a polycentral ideal of
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Zr in the senses of both Roseblade and Robinson. P. Hall

has shown [7, Theorem 1] that Z? is a right-noetherian

ring. Since Al is a finitely generated right zrbmodule,

A1 is a noetherian module. By 2.6, a 6 fil AlAm if and

only if a = a5 for some 5 e A. This mggns that a E aA,

which says that a e [a,G]. Thus a must be the identity,

since G is residually central.

Corollary 2.8. Suppose G is a semi-direct product of A

by F, where A is abelian and F is finite. If G is

finitely generated and residually central, then G is re—

 

sidually nilpotent.

Proof: Since F is finite and residually central, F is

nilpotent, and 2.7 applies.

Phillips and Roseblade recently have shown [15] that if in

2.8 G is merely an extension of A by F instead of a

semi—direct product, then G is a ZD-group, and yw+d(G) = 1

for some integer d.





CHAPTER III

RESIDUALLY CENTRAL WREATH PRODUCTS

Let A and G be non-trivial groups. For each

9 E G, let Ag =.A, and set A =,LKAg|g 6 G}. Any element

a of A can be thought of a function a:G q.A such that

l“(9) = for all but finitely many 9 e G. Map G into

1
Aut(A) by dh(g) = a(gh- ), for g, h 6 G, a E A. The re-

sulting semi-direct product W = A]G is called the (standard

restricted) wreath product of A by G, written W = Avan.

The subgroup A is called the base group. If a 6 A, we

shall usually write a = E) aigi to mean that a(gi) = ai,

lIg i.g n, and a(g) = l 1;; g t [91,...,gn]. In this

n

notation, if g E G, then 09 = Z) aigig. If B G.A, then

i=1

AwrG is a homomorphic image of AwrG in the obvious way:
B

the kernel of the homomorphism is A = BG = LHBg'g e G].

More information about the structure of W may be found in

P. Neumann's paper [13].

Hartley [9] has determined which wreath products

are residually nilpotent. Motivated by this, we now turn

to the question of which wreath products are residually cen—

tal. In the sequel, W will always denote the wreath product

AIer, and A will denote the base group. Note that A and

14
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G can be embedded in W. Since subgroups of residually

central groups are residually central, A and G must be

residually central if W is to be.

Proposition 3.1. Suppose that W = AIer is residually

central. If G is infinite, then A is a Z-group.

Proof: Let al,...,an e A, K e <a1, ...,an > . By 1.10, it

suffices to show that K g [K,A] . Let gl, .. .,gn be

. n . _

distinct elements of G, and let a = Z a. 1 E A. Since
_ 1

. . 1’1 - A 91
W is reSIdually central, 0 A [a,w].2 [a,A] = L,[ai,A]

6

i=1

as a direct sum. Fix 9 E G, and let bi [ai,A], 1‘3 iig n.

Then hi 1 e [ai,A] 1 _<_ [a,w] <1w; thus bi = (bi 1) 1 g e

n

[a,w]. Hence ( Ir [ai,A])g = [K,A]9 _<_ [a,w] by 1.11. Since

i=1

9 was arbitrary, Z)[[K,A]g:g 6 G} g [a,W]. If K g [K,A],

n g. n g.

1 6.2[181111 sthen aie[K,A], 1_<_ign, and a: 23 a.

i=1 i=1
1

[a,W], a contradiction.

A group G is ordered if there is a total order <

on G such that if a < b in G and c,d e G, then cad <

cbd: that is, the order on G is preserved by right and left

multiplication. A group on which it is possible to impose

such an order is called orderable. Every orderable group G

must be torsion—free: If 1 # g e G, then either 9 > 1 or

g-1 > 1. An easy induction then shows that gn > 1 or

(g_1)n > 1 for every positive integer n. It is also clear

that subgroups of orderable groups are orderable. For further
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information, the reader may consult [11]. The following

facts are proved there.

Proposition 3.2.[11, pp. 4,5] The cartesian product of

orderable groups is an orderable group, and any group which

is residually an orderable group is orderable.

Proposition 3.3.[11, p. 10] A group is orderable if and only

if every finitely generated subgroup is orderable: that is,

orderability is a local property.

Proposition 3.4.[11, p. 16] A locally nilpotent torsion-free

 

group is orderable.

Proposition 3.5.[ll, p. 17] All free groups are orderable.

If g is an element of the ordered group G, let ‘9‘ =

max[g,g—1}. Then 9 is said to be infinitely small relative

to h, written 9 << h, if |g|n < [h] for all positive in-

tegers n. A subset K of G is convex if for all g 6 G,

h 6 K, lg‘ < [h] implies that g 6 K. The next result is in

[11, p. 14,15].

Proposition 3.6. Let G .be an ordered group, g,h E G. Then

(1) 9 << h if and only if there is a convex subgroup

containing 9 but not h.

(2) l[g,h]l << max{]g[,‘h[}.

(3) If G is nilpotent, then [[g,h]] << ‘9].
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Lemma 3.7. If G is a Z-group with central series

{Ga[a E I, I a totally ordered set}, then G is orderable

if G/Ga is torsion-free, for all a e I.

Proof: This is really a corollary of Theorem 2.2.3 in [11,

p. 16]. Each GQL<1G’ and if a,B e I such that Ga.< GB

and there is no Y e I for which Ga < G < GB, then [G5,G]

Y

.g Ga’ and GB/Ga is a torsion-free abelian group, and

hence is orderable, by 3.4. Since GB/Gaflg gl(G/Ga), elements

of GB/Ga. are fixed under conjugation by elements of G/Ga.

Thus {Gaia E I} meets the conditions of Theorem 2.2.3 of [11].

 

Lemma 3.8. Let A and G be residually central groups.

Then W = Avan is residually central if for all 1 # a e A,

a g [a.s][a.£]G.

Proof: Since W is the semi-direct product AG, any element

of W can be written uniquely in the form 0g, where a 6 A

and g 6 G. If g # 1, then 09 A A[g,G], since g £ [g,G].

Now [09.17] s [a,w][g,W] g Herbie] s itg,G][9.AJG s A[9:G]-

Thus 09 £ [ag,W].

If g = 1, then [a,W] = [a,AG] g [a,G][a,A]G. Thus

W is residually central if 0 £ [a,G][a,A]G.

Theorem 3.9. If G is a residually central ordered group,

and A is a Z-group, then W = Avan is residually central.

m 9' _

Proof: Let a: E, aileA, where giEG, aiEA, l_<_

i g’m. By 3.8, it is enough to assume that a E [a,G][a,A]G



I
.
‘
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and reach a contradiction. Let L = [<<a1,...,am>,.A].

Since A is a Z-group, some ai A L, by 1.10. If L =

ZKLg:g 6 G} <IW, then a £ L; however, a E gl(A/L), by

definition of L and L. If A = A/L, then a e [a,w]
1

implies that die [aL,W] in AlwrG. Because (II-.6 g1(Al),

a characteristic subgroup of .A, [aI:,G] g gl(A1). Let A2 =

gl(Al); then W2 = szan is not residually central: we may

assume that the base group is abelian.

Again, let a e A, where A is abelian. View A

as ZG-module. Then a e [a,G] means, in module notation that

a 6 dis, where A is the augmentation ideal of ZG. Then

 

there is an element 6 6 A such that ag = a. a and 6

may be expressed in module notation as

m

01:14:31 61191

n

5 =j§1 zjhj’ where aiEA, giEG, lgigm,

n

zj 6 Z, .2) zj = O, hj 6 G, 1.3 3.3 n, and 91 < 92 < ... < 9m

and hl < h2 < ... < hn in the ordered group G. Now,

In D -
a6 = L: Z)(z.a.)gihj = (zlal)glhl-+...-+(znam)gmhn.

i=1 j=l 3 1

Either hn > 1 or hl < l, or both. (Note that n.2 2, since

2?. 23° = 0.) We treat the case where hn > 1: the case h1 < l

iglalmost identical.

First, suppose that some ai has infinite order. Let

gig = max[gi[ai has infinite order}. Then giohnj>gi0 in c,
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th

Since a = a6, the element in the 91 h;— "slot" of a,

0

say b, must be equal to Z) z.a.g.h.. By definition,

.h = g h 3 1 1 3
91 j iO n

b has finite order. However, znai has infinite order,

0

and no other summand of b has infinite order. Thus b has

infinite order, a contradiction.

Next, suppose that A3 ==<:a1,...,anl> is a finite

p—group, for some prime p. If for some = O,
30’ zjoai

lgigm, let 5’: szhj. Then a5’=a5=a; we may

mo

therefore assume that for each j there is an i such that

zjai # 0. Since gm > gi 1f 1 < m and hn > hj if j < n,

. . . th . .
gihj < gmhn 1f 1 < m or 3 < n. Thus the gmhn p051tion

in G5 is znam. Because 9mhn > gi, 1‘3 1 g_m, and a = a6,

znam = O. For some i, znai ¥ 0: not all the elements of

A3 = <al, . . .,am > can have the same order, and hence A3 has

exponent greater than p. Suppose the exponent of A3 is pk.

Let A4 = A3/pk-1A3, and let G be the natural map. 0 #

¢(a), and

¢(a) = ¢(a5) = ¢(a)5.

Since A4 has exponent p, this is impossible.

Finally, suppose that A is a finite abelian group.
3

Then there are primes p1,...,pr such that A3 = 314:..49Br,

where B is apkfl-QI‘OUP: 1 _<_ k S. r. AS before, let A5 =k

A3/(BZG>..AaBr) with Y the natural map. Then

0 ¥ 1(a) = 1(05) = Y(G)6

in the pl-group A5, ‘which is impossible.
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This shows that if G is a residually central order-

able group, then W is residually central if and only if A

is a Z-group. Free groups are orderable (3.5) and are re-

sidually nilpotent [18, Theorem 9.11], and hence are Z-groups.

Thus the wreath product of two free groups is residually cen-

tral.

Lemma 3.10. Suppose that W = Avan is residually central,

and G has an element 9 of prime order p. Then every

element of A and of G of finite order has p-power order.

Proof: Suppose a E A has prime order q # p. Identify a

with the element of the base group A ,defined by a(lG) = a

A

is impossible.

and a(h) = 1 if h ¥ 16. By 1.9, a and g commute, which

Suppose h E G has prime order q ¥ p. By 1.9, h

and g commute, so that (they) is cyclic of order pq. Let

1 74 a e A. Wl = <a >wr<g,h> is a finitely generated, met-

abelian, residually central group. By 2.7, W1 is residually

nilpotent. However, Hartley [9] has shown that this is im-

possible.

Theorem 3.11. Suppose that A and G are locally nilpotent.

Then W = Avan is residually central if and only if either

(1) G is torsion-free, or

(2) All elements of G finite order have p—power order,

where p is a prime, and all elements of A of finite

order also have p-power order.
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Proof: The necessity of (l) or (2) is clear from Lemma 3.10.

If (1) holds, then by 3.4, G is orderable, and

Theorem 3.9 applies.

Suppose (2) holds. Since residual centrality is a

local property, it suffices to consider a finitely generated

subgroup <wl, . . .,wm > of W. Eagh :1 = Gigi , where

_ _ ij

ai e A and 9i 6 G. Each (11 - j§l aij . Hence <w1, ...,wm>

Thus we may assume that A and G are finitely generated and

therefore are nilpotent. By [2, Theorem 2.1], A can be em—

bedded in PAGTA, and G can be embedded in PGQTG, where

PA’PG are finite p-groups, and TA’TG are torsion—free fi—

nitely generated nilpotent groups.

By Lemma 3.8, it suffices to show that if a = Z“, akgk 6

A, then a A [a,G][a,A]G. Suppose that there is an a.k:tch

that a e [a,G][a,A]G. Since A ,is nilpotent, there is an

integer r such that each ai 6 gr(A) and some ai é gr_l(A).

Then

[a,A] g [<a1,....a >,A]G
A

[gr(A).A]GI
A

gr_1(A)G.

I
A

Wl= (A/gr_1(A)) wrG isa homomorphic image of W in the obvious

way. Let 3 denote the image of a in W1. Because a e

 

[a,G][a»A]G, a 6 [a,G][a,A/gr_l(A)]G = [B,G] in W1. Let
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A1 = gr(A)/gr_l(A). Then Alvan is a subgroup of Wl

which contains 6. Also, [B,G] 3 A1, since a E QILA/Cr_l(A)),

a characteristic subgroup of A/§r_l(A). By [2, Corollary

2.11], every element of A1 of finite order has p-power order.

By [2, Theorem 2.2], A1 and G are residually finite p—groups,

and hence are residually nilpotent p—groups of finite exponent.

Since a e [B,G], Alvan is not residually central, and there-

fore not residually nilpotent. However, Hartley [9] has shown

that Alrer is residually nilpotent, a contradiction.

Corollary 3.12. If A is abelian and G is locally nilpotent,

then W = Avan is residually central if and only if W is

locally a residually nilpotent group.

Proof: The sufficiency of the Condition is clear. Theorem 3.11

and Theorems Bl and B2 of [9] combine to prove the necessity.

Thus we have succeeded in classifying those restricted

wreath products W = AIer which are residually central in the

case where G is orderable and in the case where A hand G

are locally nilpotent. In addition to this, Hartley's paper [9]

gives conditions for W to be residually nilpotent: his condi-

tions clearly are sufficient conditions for W to be residually

central. Necessary conditions are that A must be a Z-group if

G is infinite, G can have at most one relevant prime, and if

G has an element of prime order p, then every element of A

and of G of finite order has p—power order.

To expand our results to the case where A is not

locally nilpotent appears to be difficult. In order to use
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group ring techniques, as was done above, and as Hartley did

in [9], it is necessary to work within an abelian "slice" of

A and to know something about the orders of elements of that

slice. This is much more difficult if A is not locally

nilpotent. Thus it seems likely that different techniques

will be required to expand 3.11 significantly.

If the usual base group E{Ag|g E G} is replaced by

W[Ag|g 6 G], the resulting group is called the unrestricted

wreath product, denoted by AthsG. Because this is a much

"larger" group, one would expect that far more restrictive

 

conditions would be necessary to make Aler residually central.

That this is indeed the case is illustrated by the following

result.

Proposition 3.13. Let W = AVhrG. If G contains an element

9 of infinite order, and A contains an element a1 of

finite order or a 2-divisible subgroup, then W is not resid—

ually central.

Proof: Suppose A contains a 2-divisib1e subgroup A1. It

is enough to show that A1Wr<g > is not residually central.

Let 1 ¥ a 6 A1. For each positive integer i, there

. 21_ _2 .
is an element bi such that bi — a and bi - bi+l° Define

a e W{A1 n‘n E Z] by

9

2i

a if 1.2 0

b. if i < O.
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-1 i —1 g'1 1
Then [0,9 1(9 ) = (a a )(9 )

1 1 +1

= (a(91))‘ 0(9 g )

l i+1)

(a(gi))'

-1‘ 2
a

0(9

i+1

if we denote

a(gi).

Hence [a,g-l] = a, and W is not residually central.

Suppose A has an element a1 of finite order.

If the order of al is odd, then A contains a subgroup

A isomorphic to a cyclic group odd prime order. Such a
1

group is 2-divisible, and the above argument applies.

Suppose, A contains an element a1 of order two.

Again, it suffices to show that <a1 >Wr (g > is not re—

sidually central. Define a in the base group by

a if 3 does not divide i

i

0(9 ) =

1 if i is divisible by 3.

Then [a,g‘1](g1> = (a(g1))‘1a(g1+1>

= a(g1)a(gl+l), since a = a-1

{:a if i or i+1 is divisible by 3

1 otherwise.
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. ' _ . . .+

Slm11arly, [0,9 21(91) = a(91)a(g1 2)

{:a if i or i+2 is divisible by 3

1 otherwise.

-1 [2 i 1 if i is divisible by 3

Then ([a,9 lia,g 1(9 ) = 8 otherwise.

Therefore [a,g“ a, a 6 [0,6], and W is not

residually central.

 



 



CHAPTER IV

A SPECIALIZATION OF RESIDUAL CENTRALITY

Recall that, for g E G, Ro(g) = 96

[Rn(g),G] for non—negative integers n. If for each element

9 of a group G, A Rn(g) = 1, then G is said to be a (*)-

n=0 4

group. Because each Rn(g) g Yn+1(G), every residually nil-

potent group is a (*)—group. Note also that if g 6 [g,G],

a

then Rl(g) = [g,G] = [g,G:G] = R2(g). Thus if n Rn(9) =1:

n=0

then [g,G] > [g,G,G], and therefore every (*)-group is re-

sidually central. By 1.7, property (*) is equivalent to

nilpotence for finite groups.

Proposition 4.1. The Class of (*)-groups is closed under the

taking of subgroups and Cartesian products: hence a residually

(*)-group is a (*)-group.

Proof: Let H be a subgroup of G, and let h 6 H. Since

G a

for each n [h’nG1-2 [h,nH], 1 = n21[h’nG]'2 n21[h’nH1'

Let {Gi|i E I] be‘a collection of (*)-group, and

1] .g N [91,61], and for

161 iEI iEI

each n, Rn(g) g N Rn(gi)'

161

Since n Rn(gi) = 1G for each i 6 I, % Rn(g) = 1.

n=0 i n=0

26
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Suppose a group G is residually a (*)-group.

Then for each 9 6 G, there is a normal subgroup Hg of

G such that g é'Hg and hg is a (*)-group. G can be

embedded in the Cartesian product W[G/H:g E G] by the map

9 a (ng1xeG' The Cartesian product of the (*)-groups

[G/Hg:g 6 G} is a (*)-group, and so G is a (*)-group.

Free groups are residually nilpotent [18, p. 117]

and thus are (*)-groups. Since every group is a homomorphic

image of a free group, and, e.g., finite non-nilpotent groups

are not (*)-groups, a homomorphic image of a (*)-group need

not be a (*)-group. The symmetric group on three symbols is

metabelian but not a (*)—group: this shows that a (*)-group

extended by a (*)-group need not be a (*)-group.

The following lemma is a fairly well-known extension

of the three-subgroup Lemma 1.3.

Lemma 4.2. Let H and K be subgroups of a group G such

that [H,nK] < G for all positive integers n. Then for

any such n, [Yn(K),H] S [H,nK].

Proof: Induct on n. The case n = l is clear. Suppose

n.2 2. Then

[H.nK] = [[H,(n_l)K],K] 2 [[Y(n_1)(K),H],Kl by

induction

= [Y(n_l) (K),HJK] °

Similarly,
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[H1nK] =[[H,K],(n-1)K].2 [Y(n_1)(K),[H,K]] by

induction

= [H,K,y(n_l)(K)].

By the three subgroup Lemma 1.3,

[H,nK].2 [K,Y(n_1)(K),H] = [Yn(K),H]-

We begin by exploring the relationships between

(*)-groups and some other classes of groups.

Proposition 4.3. A group G is hypercentral with the upper

central series having length at most T if and only if fOr

each 1 # g 6 G, there is an integer ng such that R.n (9)==1.

9

In particular, such a group is a (*)—group.

Q

Proof: Necessity. Suppose that G = gw(G) = U gn(G), and

n=l

let 1 ¥ g e G. Let ng be the least integer such that

g E gn (G). For each positive integer n, [gn(G),G] g gn_1(G),

9

and so

Rn (9) = [9,n G].S [Qn (G),n (6)] S 90(G) = 1.

9 9 9 9

Sufficiency. Suppose that for all g E G, there is

an integer n such that R (g) = 1. Since g (G) =

9 n9 n9

[x e G:[x,n (G)] = 1],,9 e gn (G). Thus G = U gn(G).

9 9 n=1

However, a group can be hypercentral of length m + 1

and yet contain an element 9 such that Ra(g) # l for all

ordinals a.
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an

Example 4.1. Let P be a 2 -group, and let a E Aut(P)

be defined by pa = p-1, where p 6 P. Let G = P]<El> m

Dih(Z(2m)). Let p e P. [a,p] = (p_l)ap = p2. Because

P is divisible, P2 = P; i.e., every element of P is the

square of some other element of P. Hence [a,P] = P2 = P,

and Ra(a) = P for every ordinal a.2 1.

To see that G has ZA-length w + 1, view P as the

abelian group generated by {pi:i = l,2,3,...}, where pi = 1

and p?1+1 = pi for i 2,1. Suppose that piaJ 6 gl(G),

where i 2 1, j = 0 or 1. (piaj)al = pJT-l a:I = piaJ if and

only if i = l, for only p1 = p11. Also, pzpla = p3 = p31.

Thus gl(G) = [1,pl}. Note that G/gl(G) e—G, and so g2(G)=

<:p2:>. Similarly, gn(G) = <Ihl> for each integer n. Then

§(G)=UC(G)=U<p>=P.

0’ n=ln n=l 1‘

Since G/P is abelian, gw+l(G) = G.

Proposition 4.4. A (*)—group is a ZD-group whose lower central

series has length at most w + 1.

Proof: Let G be a (*)—group, and let 9 E G. By Lemma

m CD

3.2, n [g,Yn(G)] _<_ n Rn(g) = 1. Thus

n=l n=l

[gm (6)] = [9, 7% Y (G)] _<_ 312(9): 1.

w n=l n n=l n

Thus G ntr 1' G. Th GYw( ) ce a izes every 9 6 en Yw+1( )

[Yw(G),G] _g [gl(G),G] = 1.
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Combining this with 4.3 gives a result proved by

Hartley [8].

Corollary 4.5. A ZA-group of length at most w is also a

ZD-group of length at most w + 1.

Corollary 4.6. If G is a (*)-group, and g1(G) = 1,

then G is residually nilpotent.

Corollary 4.7. A (*)-group satisfying the minimal condition

on normal subgroups is nilpotent.

Corollary 4.8. A group G is residually nilpotent if and

only if G is a (*)-group and for all 1 fl 9 e g1(G), there

is a normal subgroup Mg of G such that 9 AIM and

9

G/Mg is nilpotent.

Proof: The necessity of the condition is clear. Let 1 #

g 6 G. To show that G is residually nilpotent, it is ne-

Cessary to find a normal subgroup Mg of G such that

g A'Mg and G/Mg is nilpotent. If g e g1(G), this is true

by hypothesis. Suppose g £ C1(G). By 4.4, nEEYn(G).S 91(3),

and so there is an integer n such that g A Yn(G). Since

G/yn(G) is nilpotent, the result follows.

An obvious question now is whether preperty (*) is

equivalent to residual nilpotence (ZD-length at most w) or

to having ZD-length at most w+-l. The next two examples show

that it is equivalent to neither.
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Example 4.2. Let Dn = <an’bn : an = l’bn = 1, bn =

b;1:>, the dihedral group of order 2n. It is easy to

n-2
2

check that §1(Dn) = (b!1 > 'has order two and that

Dn/g1(Dn) a'Dn-l if n.2 3. Since the nilpotency class

of D is 2 (i.e., g2(D3) = D and g2_l(D3) ¥'D3), the
3 3

nilpotency class of Dn is n-l if n‘z 3.

G

Let G = Z)l%1, a group which has ZA-length w and

ZD—length to. Let em nzglwm) 4 gl(Dn) by (5mmm ) =
’

bn , for m,n 2 3. Let H = <z emu) [z e c1(Dm);

m,n 2 33>, and set F = G/H, called the central product of

the Dn's.

Let L = g1(D3). If m ¥ n, then

HDn/H n HDm/H = LH/H =- L/(H n L) = L.

Thus §1(F) = LH/H has order two.

Since G has ZA-length w, P has ZA-length Iggn

and hence is a (*)-group. To show that r is not residually

nilpotent, the following well-known lemma is needed.

Lemma 4.9. If r is a ZA-group, then every non-trivial

normal subgroup of F intersects §1(F) non-trivially.

Proof: Suppose l #'N G r .and N n gl(r) = 1. Since I

is a ZA-group, there is a least ordinal a such that

IN 0 §a(P) > 1. Clearly, a cannot be a limit ordinal. Then

a ‘has a predecessor B, and N n QB(F) = 1. Since Nl1g1(r)

= 1, 1 31‘ [N nga(r),r] _<_ N n[ga(1‘),r] _<_ N ngBU‘), a contradic-

tion.
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Since gl(P) has order two, every nontrivial normal

subgroup of F contains g1(r). Since F contains c0pies

of each Dn’ F cannot have finite nilpotency Class; no

Yn(F) can be the identity. Thus for each n, €l(r)-S Yn(F),

and

1#c(r)_g Fix/(1‘).
1 . n=l n

Glugkov [6] has constructed a very similar class of

examples. He takes the central product of upper n.xn. uni—

triangular matrices over a finite field K. For n.2 2, the

center of the group Mn of upper unitriangular n xn matrices

turns out to be

 

[i o ...o a]

0 l 0 ... 0 0

° a E K ,

0

0 .......... l

L. .1 

which is isomorphic to the additive group K. Each M.n is

a nilpotent group, and so the central product has ZA-length

.3 mo

Let p be the Characteristic of K, and pp the

order of K. If the additive group K is generated by k,

then every non—trivial subgroup of K must contain (kw-.1 > ,

which is cyclic of order p. If w; is the central product

of the Mn's, by 3.8 every non-trivial normal subgroup of m

intersects CICM) e K non-trivially, and therefore must

contain
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,- H

m—l

1 o o o kp

o 1 o ...... o

_o ......... o 1 -  

This subgroup is contained by Yn(W) for n'2 l, and is

co

therefore contained in n Ynom). Thus m is not residu-

n=l

ally nilpotent.

The next example shows that property (*) is not

equivalent to having ZD-length at most w + 1.

Example 4.3. Let H be the abelian group with presentation

1

<<x,yl,y2,... :x2 = l, y: = x:>. (For a note on the exis-

tence of such a group see [5, p. 118 and Theorem 36.1, p.

121].) Define a 6 Aut(H) by ha = h_1, h E H, and set

G = H]<a>. Y2(G) = [H<a>, H<a>] = [H,<a>]. If h EH,

then [h,a] = h-lha = hm2 , and thus Y2(G) = H2. Now sup-

i-l

pose that Yi(G) = H2 . Then

i-l i-l i-l i
2

Yi+1(G)=[H2 ,H<a>] = [H2 ,<a>] = (H2 > = H2

Therefore

a , 2i-l

YU,(G)= nYi(G)= nH =<x>,
i=2 i=2

and

Ywflm) = [Yw(G),H<a>] = [<x>,H<a>] = [<x>,<a>] = 1.

However, Y2(G) = [H,<ea>] = R1(a), and so

 





34

Yi+l(G) = Ri(a) for 1.2 l.

a

Thus n R (a) = Y (G) = <J<> #11: G is not a (*)-group

n=1 n w

even though G is a ZD-group of length w + 1.

All (*)-groups have ZD-length at most w + l. The

interesting question now is when (*)-groups have ZD—length

m: that is, which (*)-groups are residually nilpotent. We

first investigate (restricted) wreath products.

Lemma 4.10. Let W = Avan, where G is infinite. If W

has property (*), then W is residually nilpotent.

Proof: By 4.6 it is sufficient to show that C1(W) = 1.

However, this is already well-known: see [13, p. 34].

Now it suffices to consider W = AIer for finite

groups G. If W is to be a (*)—group, both A and G

must be (*)-groups, because both A and G are embedded

in W. Then the finite group G must be nilpotent, since

G is a ZD—group. If W is to be a (*)-group, ‘W must be-

residually central; Lemma 3.10 now shows that G must be

a p-group for some prime p. Since for some finite c,

YC(G) = l, YC(W) is contained in the base group A: thus

W is residually nilpotent if and only if FILA,fiW] = 1.

If A is abelian, this reduces to the condItion that

n:1[A,nG] = 1. As in the discussion of residually central

wreath products, A will be viewed as a module of the in—

tegral group ring ZG in this case.
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Let g 6 G have order p, and suppose that A is

abelian. Let W* = Awr <g >, and denote its base group by

A7; If n'2 1, then

[717, 1n<q>l = [313 g].(n_1)<g>] g 131.1(9).

If W is a (*)-group, so is ‘W*, and thus

[A , <g>]_<_ FR(g)=1,

1 n n=l nI
M
D
B

n

and W* is residually nilpotent. By Lemma 8 of [9], A

is residually a p~group of finite exponent. By [9, Theorem

Bl], W is residually nilpotent. We have proved

Lemma 4.11. If A is abelian and G is finite, then W =

AIer is a (*)-group if and only if W is residually nil-

potent. In this case, there is a prime p such that G

is a p-group, and A is residually a p—group of finite

exponent.

Lemma 4.12. Suppose W = Arer' is a (*)-group, where G

is finite. Then for some prime p, G is a p—group, and

A is residually a nilpotent p-group of finite exponent.

Since by Theorem B1 of [9] such a group is residually

nilpotent, this lemma and Lemma 4.10 complete the proof of

Theorem 4.13. The standard wreath product W = AwrG of

non-trivial groups has preperty (*) if and only if W is

residually nilpotent.
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Proof of 4.12. Suppose that W is a (*)—group, and let

1 a! a 6 A. Then <a>wrG is also a (*)-group. By 4.11

G is a p—group, and if a has finite order, then the order

of a is a power of p. Let g E G have order p, and let

A be the augmentation ideal of the group ring Z<§;>. What

follows is an adaptation of Lemma 8 of [9].

Claim. If n is a positive integer, then there is an element

rn of Z<g> such that

pn(l-g) = rn<1-g)n‘P‘1’+1 (1).

Proof of claim: By [9, Lemma 6], p(1-g) 6 AP. For n = 1,

then, there is an element r1 6 Z<§3> such that p(l-g) =

rl(l-g)p, since Ap is generated by (l-g)p. Now suppose

that (1) holds for some n‘z l.

n(p—l)+l

Pn+l(l-9) p(pn(l—9)) = p-rn(l-g)

rn(l-g)n(p_1)p(l-g)

n(p-l)
rn(l"9 r1(1-9)p by the case rl=].

(rnrl) (1 _ g)n(p-l)+l>

l)(1__g)(n+l)(p---l)+l
= (rnr , as desired.

Identify A with the subgroup of the base group given by

[f:G 4 A|f(g) = 1A if g a! 16}. Write <a> additively,

and view the base group of <a >wr <g > as a Z<g >-module.

n

[ap ,9] may be written in module notation as pna - (pna)g =

a ~pn(l-g). By (1), there is an element rn e Z<gJ> such

n(p—l)+1 n(p—l)+l
that apn(l-g) = arn(1-g) E aA Thus
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n

[ap ,9] E [a:n(p_1)+1<g >]

s [<9>,A,n(p_1)<9>]

_<_ Rn(P_1)+1(g) in w. (2).

Define Am = <29“: 3 e Aj> for positive integers m. Let

n

A =Ap(AnYn Then

n(p—l)+l(w))°

pn

[An,9] 51A ,9][A nY l(w),9]
n(p-1)+

.3 Rn(p—l)+l(g) by 4.2. Thus

[nAn,9]<n- 1 n [An ,9] < nnl Rn(p—1)+1(g) = 1

n=1

since W is a (*)-group. However, for any 1 # b E A,

[h,g] #11. Thus [ n .An,g]= implies that A .An = 1.

n=1 n=1

Since An contains the subgroup generated by all pa“—

powers of elements of A, A/An has exponent dividing pn.

Because An contains Yn(p—1)+1(A)’ each A/An is also

nilpotent. Finally, if 1 ¥ b E A, there is an integer n

such that b é‘An’ since 0 An = l, and A/An is a nil-

n=1

potent p—group of finite exponent. Thus the lemma is estab-

lished.

Lemma 4.14. Suppose that the group G has a normal subgroup

B such that G/B = <aB> for some a 6 G. Then for each

positive integer n, Yn(G) = yn(B)Rn_1(a).
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Proof: Induct on n. For n = l,

Yl(B)RO(a) = 33 = G = Y1(G).

Suppose that the lemma is true for some n.2 1. Then

Yn+l(G) = [Yn(G),G]

= [Yn(B)R(n_1)(a):G]

V
\

[Yn(B):G][R(n_1)(a):G]

[Yn(B),B <61 > JRn(a)

M Hum), <a >][Yn(B),B] <3 >linen)

S'Yn+l(B)Rn(a) by 4.2.

The opposite inclusion is trivial.

Proposition 4.15. A (*)-group G which is nilpotent by

cyclic is residually nilpotent.

Proof: There is a subgroup B <1 G such that G/B = <aG>

for some a E G, and YC(B) = l for some integer C. For

n.) c, by Lemma 4.14.

Yn(G) = Yn(B)Rn_1(a) = Rn-1(a)°

a: Q

Thus n Yn(G) = n R (a) = 1.

n=1 n n-l1

Proposition 4.16. A (*)-group G which is cyclic by nil-

potent is residually nilpotent.
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Proof: There is an element a 6 G such that (21> Q G  
and G/<Ei> is nilpotent. Thus for some integer c,

YC(G) g <a>, and so for n2 0, Yc+n(G) g [<a>,nG] = Rn(a).

a:

(G) g n Rn(a) = 1. Note that if <21) is finite,

n=0

0 Y +

n=0 C n

then G is nilpotent.

Proposition 4.17. Suppose that G has a normal subgroup B

such that G/B is nilpotent, and B satisfies the minimal

condition on normal subgroups. If G is a ZD—group, then

G is nilpotent.

 

Proof: For some integer C, YC(G)'S B. The subgroups

YC(G).2 Yc+l(G)'2 --- form a decreasing chain in B. Since

B satisfies Min-n, there is an integer n such that (G)==
Yc+n

Yc+n+1(G)' Since G is a ZD-group, Yc+n(G) = 1.

In example 4.2, g1(r) is cyclic and T/§l(F) a

D

3

residually nilpotent, this shows that the hypotheses of the

n’ a residually nilpotent group. Since I is not

A
b
fl
e

last two propositions cannot be weakened to read, "G/<al>

of G/B is residually nilpotent".

Proposition 4.18. Let G be a (*)-group with a normal sub-

group H such that gl(G) n H = l and G/H is residually

nilpotent. Then G is residually nilpotent.

Q

Proof: Since G/H is residually nilpotent, Yw(G) = nlyn(G)

n:

13 H. By 4.4, 1 = Yw+l(G) = [y (G),G]. Thus Yw(G) S 51(6).
(.0

since gl(G) n H = 1, Yw(G) = l.



 



CHAPTER.V

DESCENDANCE AND HOMOMORRHIC IMAGES

Robinson in [16] has given a construction which can

easily be adapted to yield information about the factors

Rn(g)/Rn+l(g). Let N be a normal subgroup of G, and let

a 6 [N,(n-l),G] and b 6 G. Let

a a[N,nG] e [N,(n_l)G]/N,nG]

b* bY2(G) e G/Y2(G) .

We first show that the function given by

' *
(a.b ) ++ [a.b][N,(n_l)G] e [N,nGJ/[N,(n+1)G]

is well—defined. Let r 6 [N’nG]’ s 6 Y2(G).

(§,b*) = (3?,(bs)*) I» [ar,bs][N,(n+l)G]

[ar,s][ar,b]S[N,(n+l)G]

[a.s]r[r,s][a,b]rs[r,b]S[N s].
’(n+1)

Because r E [N,nG], [r,s] € [N’(n+l)G] and [r,b]S E

[N’(n+1)G]° Also,

[a.s]r e [[N.(n_1)G]..Y2(G)] g;[N.(n+l)G]

 

by 4.2. Finally, [a,b] E [NtnG] implies that [a,b][N,(n+l)G]

4O
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is in the center of G/[N,(n+l)G]. Therefore

(at, (bs)*) 4 [a,b][N,(n+l)G].

Next, we show that this function is bilinear. Let a1,a2 6

[N,(n_l)G], and b e G.

(ala2,b*) 1+ [ala2,b][N,(n+l)G]

[al:b][al:b:az][a2:b][N:(n+l)G]

[a13b][azib][N:(n+l)G]°

Now let a e [N,(n_l)G] and blb2 e G.

(5, (blbzm H [a,blb2][N, (n+1)G]

[a)bl][a:b2][N:(n+l)G]:

since [N,nG]/[N,(n+l)G] is abelian. Setting N = gG gives

Theorem 5.1. Let 9 6'6, n a positive integer. Then there

is an onto homomorphism

Rn-1(g) G Rn(g)

1n ‘ Rn(g) “’[G,G] *’Rn+1(g)

Proof: The preceding work shows the existence of the homo—

morphism en. Because eaCh Rn(g) is generated by the ele-

ments [a,b], where a E Rn_1(g) and b 6 G, the image of

9n contains all the generators of Rn(g)/Rn+1(g). Thus

i n .9n s o to
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Corollary 5.2. (a) If forsome positive integer m, gm = l

or G/[G,G] has exponent m, then Rn(g)/Rn+1(g) is an

abelian group of exponent dividing m, for n = 0,1,2,...

(b) If G is finitely generated and 9G is fi-

nitely generated, then Rn(g)/Rn+l(g) is finitely generated,

for n = 0,1,2,... . If in addition 9 has finite order

m and mfg Rn(g) = 1, then 96 = R0(g) is residually a

finite group of order dividing a power of m.

G

(C) If n Rn(g) = l and 9G and G are finitely

=o

generated, then 9G is residually finite.

Proof: (c) is the only part requiring comment. Let h E 96.

There is an integer k such that h t Rk(g). EaCh factor

Rn(g)/Rn+l(g) is a finitely generated abelian group. Thus

there exist subgroups HO QIHl Q ... QJHL of 9G such that

G . .

HO = Rk(g), Hz = g , and each factor H /H1 is cyclic,
i+1

that is, gG/Rk(g) is polycyclic. Such groups are residually

finite [2, Corollary 1.21]. Hence there is a normal subgroup

K/Rk(g) of gG/Rk(g) not containing th(g) and such that

[gG/Rk(g):K/Rk(g)] is finite. Then g A K and gG/K is

finite.

Theorem 5.3. Let G be a group, n a positive integer,

and {Na:0 6 I} a collection of normal subgroups of G such

that ana:a 6 I] = 1. 4

(a) If H is a subgroup maximal with respect to

H <IG and H(n) = 1, Where H1n) denotes the nsh derived

subgroup of H, then rfiHNa:a E I} = H.
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(b) If H is maximal with respect to H G G and

Yn+l(H) = 1, then anNa are I] = H.

(C) If H = CG(K) for some subset K of G, then

n{HNa:a E I] = H.

Proof: In each case, let R = n{HNa:a e I}.

(a) For each a 6 I, R(n) g (HNa)(n). For 0 <

k.S n, (HNa)(k) is the product of normal subgroups H(k),

(k) (j).
a , (11's and Na. 3,N and commutators involving both H

where 0 g_i, j‘g k - 1, Any such commutator is contained

(n)n) N =

s (1%)“) $.13 0,in the normal subgroup Na' Thus R(

N for each a e I. Therefore R(n)a _<_ ana:(1 E I] = l. R

is a normal subgroup containing H: by the maximality of H,

R = H.

(b) An argument similar to that in (a) shows that

for each a,

Yn+1(R) _<_ Yn+l(HNa) g Yn+l(H)Na = Na.

Again Yn+l(R) _<_ n[Na:aeI]= 1. By the maximality of H, R=H .

(c) Let x e R = n[CG(K)Na:G e I}. For each Gel,

x = C n where Ca 6 CG(K) and n 6 N Let k E K.
a a’ a a'

For any a E I,

na

[x,k] [cana’k] = [ca’k] [nayk]

= [na,k] 6 110'

Thus [x,k] 6 n[Na:a E I] = 1, so that x 6 CG(K).

Corollary 5.4. Let H be a normal subgroup as in (a), (b),

or (c) of 5.3, and let x be one of the following Classes
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of groups: residually nilpotent groups, (*)-groups, residu-

ally solvable groups, residually finite groups. If G is

an z-group, then G/H is an z—group.

Proposition 5.5. Let H be a subgroup of G such that H

satisfies the minimal condition on subgroups normal in H.

If [Nili = 1,2,3...) is a nested sequence of normal sub-

co

groups of G such that 3 Ni = 1, then n HNi = H-

Proof: Because H satisfies Min-n, and Hl‘N1.2 H‘1N2.2 ...,

there is an integer K such that

D

HnNk = HnNk+1 = = on (HnNi) _<_ .nNi = 1.

i=1 i=1

Let x e A HNi' For each integer i, x can be written

i=1

x = hini’ where hi 6 H and ni 6 Ni' Let j > k. Then

_ _ . . -l _ -l _

hknk — x — hjnj’ implying that hj hk — njnk 6 HtfiNk - 1.

Thus if j > k, nj = nk'; nk E Nj for all j > k. But then

nk E iLHNi = 1. Thus x = hk 6 H.

Corollary 5.6. Let H be a normal subgroup of G such that

H satisfies Min-n, and let y be one of the following Classes

of groups: residually nilpotent groups, (*)—groups, residually

solvable groups, countable residually finite groups. If G is

a y-group, then G/H is a y-group.

Corollary 5.4 can be improved in the case that z

is the Class of (*)-groups.

Proposition 5.7. Let G be a (*)-group, K any subset of G.

Then n21 CG(K)Yn(G) = CG(K) .
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Q

Proof: Let k e K, x e n CG(K)Yn(G). For each n, x

n=1

can be written as x = Cngn’ where Cn E CG(K) and 9n 6

Yn(G). Furthermore,

[x,k] = [cn9n,k] = [9n,k] 6 [Yn(G),k]

.3 Rn(k) by 4.2.

Hence [x,k] E A Rn(k) = l, forcing x to centralize k.

n=1

Corollary 5.8. Let G be a (*)-group. For any positive

integer n, G/gn(G) is residually nilpotent.

Proof: Set K = G in 5.7 and induct on n.

Corollary 5.9. Let G be a (*)-group, n a positive in-

teger. Then G/H is residually nilpotent if any one of

the following conditions holds:

(a) H is maximal with respect to H 4 G and

H(n) = 1.

(b) H is maximal with respect to H <16 and

Yn+l(H) = 1'

(c) H = CG(K), where K <IG.

Proof: (C) follows immediately from 5.7. For (a) and (b),

note that gl(G) will be contained in any such maximal sub-

group H. Thus G/H is a homomorphic image of the residu—

ally nilpotent group G/g1(G). Now 5.4 applies.
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Petty [14] has shown that corollary 5.8 cannot be

extended to G/ga(G) for limit ordinals a. Let G be

as defined in example 4.3, and let 2(6) denote the hyper-

center of G. He shows that G/Z(G) is not a ZD-group,

although it is a Z-group.

Beyond what is presented in Chapter one, the only

information about homomorphic images of residually central

groups seems to be Stanley's result [23, Corollary 8] that

if G is a residually central group satisfying the minimal

Condition on normal subgroups, then every homomorphic image

of G is residually central.

Let H be a subgroup of a group G, and [5:5 g qb}

a set of ordinal numbers. If there is a collection

{KB:B-S do} of subgroups of G such that Kb = G, Ka = H,

O

KB+1 Q KB for B + 1.3 db, and Ka = n[KB:B < a} for limit

ordinals a, then H is said to be descendant in G with

order type a . For example, if a is finite, then the
O 0

definition is equivalent to saying that H is a subnormal

subgroup of G.

Concerning descendance in (*)-groups, we have

Theorem 5.10. Let G be a (*)-group.

(1) If A is an abelian subgroup of G, then A

is descendant of order type at most w + l.

(2) If g E G has finite order, then <91) is

descendant of order type at most w.

(3) If H's gw(G), then H is descendant of order

type at most w + l.
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Proof: (1) Consider the descending series

G = Y1(G)CG(A).2 Y2(G)CG(A),2 ---

It is routine to verify that each Yi+1(G)CG(A) q Yi(G)CG(A),

and by Theorem 5.3(c), E Yi(G)CG(A) = CG(A). Since A is

i=1

abelian, A‘g CG(A), and the result follows.

(2) The series

C329G = <9> R1(g) 2<g> R2(g) Z

Q

is a normal series, and n (g > Rn(g)= (g > by Proposition

n=1

 

5.5.

(3) Consider the series

G=Y(G)H2Y(G)H2°°° nY(G)H2H.
l 2 n=1 n

As in (1), each Yn+1(G)H < Yn(G)H. It remains to show that

a Q

h <1 n Yn(G)H. Let h e H. Since H _<_ u gi(G), h 6 gm(G)

n=1 i=1

' O

for some integer m. Thus Rm(h) = 1. Let y E n Yn(G)H.

n=1

Then y can be written as y = g’h", where g’ 6 yn(G)

and h E H. Thus

11" = h[h,y] = hth,g'h'] = hth.h'][h.g'][[h.g'].h'1.

Now [h,g’] E [h,Ym(G)] S Rm(h) = 1 by 4.2. Hence hy =

h[h,h’] E H as desired.
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