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- ABSTRACT

“SPECIALIZATIONS OF RESIDUAL CENTRALITY IN GROUPS

By

Roger D. Konyndyk

A group G 1is residually central if each non-identity
element g € G 1is not an element of [g,G]. An unsolved
problem is whether such groups must have a central series.
Some partial solutions to this problem are obtained. Resid-
ually central groups in which each element has only finitely
many conjugates are locally nilpotent and therefore have a
central series. Using group ring techniques, it is shown
that a finitely generated residually central abelian by nil-
potent group is residually nilpotent. The question of when
the standard wreath product W = AwrG of groups A and G
is residually central is also taken up. If A and G are
locally nilpotent, then W is residually central if and only
if either G 1is torsion-free or there exists a prime ©p such

that all elements of W of finite order have p-power order.
G

If g € G, define Ro(g) =g and Rn(g) = fRn_l(g),G]
for positive integers n. If for each g € G, N Rn(g) =1,
. n=0
then G 1is called a (*)-group. (*)-groups are ZD-groups whose

lower central series has length at most gy + 1, where y 1is
the first limit ordinal. Many classes of (*)-groups must be

residually nilpotent: wreath products of non-trivial groups,




.



Roger D. Konyndyk

nilpotent by cyclic groups, and cyclic by nilpotent groups.
Counterexamples show that property (*) 1is not equivalent
to residual nilpotence.

Let % be one of the following classes of groups:
residually nilpotent groups, (*)-groups, residually solvable
groups, residually finite groups. If G is a ¥-group, then
G/H is an % group if H meets any of the following con-
ditions:

a) H is maximal with respect to H < G and

Yo (H) = 1, where n > 2.
b) H is maximal with respect to H 4 G and
H(n) = 1, where n > 1.

c) H<G and H = CG(K) for some subset

K of G.
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CHAPTER I

BASIC DEFINITIONS AND RESULTS

Let G be a group, g,,...,9,. € G. Then the com-
1 n

1 -1

mutator of g, and 9, is fgl,gz] = gi g; 9,9, > and the

r

n-fold commutator is ‘gl,...,gn_l,gn] = [[91""’9n-l]’gn]
for n > 2. If A and B are subsets of G, then [A,B] =
<[a,blJ:a€ea and b e€eB>. If a is an ordinal greater

than 2, then

[[A,BB],B] if o has a predecessor B

(A, QB] =

ﬂ{[A,aB]:B <a} if a is a limit ordinal.

In the case A = {g}, it will be convenient to write [g, B]
for [igj,ap]. If in addition B = G, we set Ro(g) = gG,
the normal closure of g in G, and Rg(g) = [g,ag] for
ordinals a > O.

The following identities are routine to verify and

will be used repeatedly.
Lemma 1.1. Let x,y,z be elements of a group G. Then
(1) [x,yz] = [x,z][x,y]?

[x,2]¥[y,2].

(2) [xy,z]
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The next few results are corollaries of 1.1. Proofs may

be found in [17, pp. 43-44].

Lemma 1.2. Let A,B be non-empty subsets of a group such
that B is a subgroup. Then [A,B,B] < [A,B] and

[(A,B] 4 <A,B>.

Lemma 1.3 (The three subgroup lemma). Let A,B,C be sub-
groups of a group G. If any two of the subgroups [A,B,C],
[B,C,A], [C,A,B] are contained in a normal subgroup of G,

then so is the third.

The following definitions are taken from [17] and

[18]. For a group G and ordinal «, define
Yl(G) =G

[YB(G)’G] if @ has a predecessor B
Ya(G) =

ﬂ{YB(G):B < a} if @ is a limit ordinal.

G 1is said to be nilpotent of class <c if there is an in-
teger c¢ such that yc+1(G) = 1. The subgroups Ya(G) are
characteristic in G and form the lower central series of
G. There must be a first ordinal % such that Yab(G) =
Yab+1(G); this subgroup is called the hypocenter of G. If
for some Ays YGO(G) =1, then G 1is called a ZD-group (hypo-
central).

The elements of the upper central series of G are

defined by
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go(G)

Ql(G) = the center of G

ga(G)/QB(G) = gl(ZE%ET) if a has a predecessor B.
Cq(G) = U{CB(G):B < a} if a is a limit ordinal.
There is a first ordinal a, such that gab(G) = gab+l(G);

this subgroup is called the hypercenter of G. If for some

ordinal ab, Ca (G) = G, then G 1is called a ZA-group (hyper-
o

central). Another characterization of ZA-groups may be found

in [12, p. 219]:

Theorem 1.4. G 1is a ZA-group if and only if for every sequence
XysXgs oo of elements of G, there is an integer n such

that [xl,xz,...,xn] = 1.

A central series is a collection § of subgroups

{Gq:@ € I} of G such that
(i) I is a fully ordered set such that if a, B ¢ I
and o < B, then G, < Gg.

(ii) If Gy < Gﬁ’ a,B € I, and no element of § 1is
properly between G, and GB’ then [GB’G] £ G4 that is,
Ga/'GB < ¢y (6/Gg) .

(iii) For any subset A of 1I, U[Ga:a € A} € & and
N{G,:@ € A} € 3.

(iv) {1} ¢4 and G € 3.

A group which has a central series is called a Z-group; thus

ZA- and ZD-groups are 2Z-groups.







If P 1is a group-theoretic property, then the
group G has P residually if for every 1 # g € G, there
is a normal subgroup Ng of G such that g £ N and

9

G/Ng has P. It is an easy exercise to show that G is

residually nilpotent if and only if vy (G) = nZ\lYn(G) = 1.

(yw denotes the first infinite ordinal.) Following Kurosh
[12], a group G is said to have P 1locally if every

finitely generated subgroup of G has the property P. P

is called a local property if every group which has P locally

itself has P. Mal'cev has shown that the property of being

a Z-group is a local property. (For a proof, see [18, pp. 93-
99].)

A group G is residually central if for all 1 #
g €G, g £ [g9,6]. This is equivalent to the condition that
for all 1 # g € G, there is a normal subgroup Ng of G
such that g £ Ng and gNg € g(G/Ng); i.e. every non-trivial
element of G 1is residually in the center of G. Residually
central groups were first studied by Durbin in [3] and [4].
They have also been discussed by Ayoub [1], Slotterbeck [21],
and Stanley [22] and [23].

The following results may be found in [3] and [18,

pp. 6-8].

Proposition 1.5. If G is residually central and satisfies
Min-n (the minimal condition on normal subgroups), then G

satisfies Min and is hypercentral.



Proposition 1.6. G 1is residually central if any of the
following conditions holds:
(1) G 1is a subgroup of a residually central group.
(2) G 1is locally a residually central group.

(3) G 1is residually a residually central group.

Proposition 1.7. If G 1is finite, then G 1is residually

central if and only if G is nilpotent.

Proposition 1.8. Let G be a residually central group, and
let N be a normal subgroup of G contained in the hyper-

center of G. Then G/N is residually central.

Proposition 1.9. Elements of a residually central group

which have relatively prime, finite orders commute.

Stanley in [23] has obtained more information
concerning when homorphic images of residually central groups
are residually central. In general, however, the question
appears quite difficult and little progress has been made
beyond Proposition 1.8.

Residually central groups are discussed in chapters
IT and III. In chapter II, relationships between residual
centrality and other group-theoretical properties are dis-
cussed. The main result is Theorem 2.7: Let G be a finitely
generated residually central group with a normal abelian sub-
group A. If G/A is nilpotent, then G is residually
nilpotent. In chapter IIi we take up the question of when

the standard restricted wreath product W = AwrG 1is residually







central. The question is completely answered in the case
where G 1is orderable and in the case where A and G
are locally nilpotent.

If G 1is a Z-group with central series § =
{Gyla € 1}, and 1 # g € G, then N{G,|9 € G4} is an ele-

ment G, of &, and U{Ga‘g £ G,} is an element G

Qa

1 2
of §. No element Gq of & can satisfy Gy < G4 < Gy -
2 1

Thus [Gal,G] < Gaz, and [g,G] < [Gal,G] < Gaz. Since

g £ GGQ, g £ [9,G]. Thus any Z-group is residually central.
Whether or not the converse is true is unknown. The close
relationship between residually central groups and Z-groups
may be seen in the following theorem due to Hickin and Phillips

[10].

Proposition 1.10. G 1is a Z-group if and only if for every

finitely generated subgroup 1 # K of G, K £ [K,G].

In chapter IV a specialization of residual centrality
is examined: A group G is a (*)-group if for all g € G,

A Rn(g) = 1. It turns out that property -(*) is very close to
iggidual nilpotence: A (*)-group is a ZD-group whose lower
central series has length at most @y + 1 (Proposition 4.4).
Property (*) turns out to be equivalent to residual nil-
potence for wreath products of groups (Theorem 4.13), nil-
potent by cyclic groups (Proposition 4.15), and groups with
trivial center (Corollary 4.6).

Chapter V looks at homomorphic images of (*)-groups

and other classes of groups, and looks at descendance in

(*)-groups. We obtain




Corollary 5.4. Let % be one of the following classes of
groups: Residually nilpotent groups, residually solvable
groups, residually finite groups. If G 1is an %¥-group,
then G/H is an %-group if H satisfies any of the follow-
ing conditions:

(1) H is maximal with respect to H < G and

H(n) denotes the nth derived subgroup

(n)

H = 1, where
of H, n > 1.

(2) H 1is maximal with respect to H Jd G and
Y41 (H) = 1, where n > 1.

(3) H4G and H = CG(K) for some subset K of G.

Corollary 5.9. Let G be a (*)-group, H as in (1), (2),

or (3) of 5.4. Then G/H 1is residually nilpotent.

Results on descendance are found in 5.10: If G 1is a (*)-
group, and A 1is an abelian subgroup of G or if A < gw(G),
then A is descendant in G of order type at most @ + 1.

We close this section by stating two lemmas for future

use.

Lemma 1.11. If G is any group and g € G, then [g,G] =

G .
[97,G]. Hence if n > O, R ,q1(9) = [Rn(g), G].

Proof: Since gG =<qg> [g9,G],

[¢°,6] = [<g> [9,G],G]

(<9619 (qg,c],0] (by 1.1)

1A
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[<g9>G][g9,G,G] (since [<g>,G] 4 G)

A

[<g>,G][g,G] (by 1.2)

Thus it suffices to show that for any positive integer n

and element h € G, [g7,h] € [g,G] and [g ™,h] € [g9,G].

But [g"h] = [ga" 5,h] = (9,019 [¢"L,h] € [g,6] by in-
duction on n. Similarly, [g %,h] € [g'l,G]. Now [g"l,h]g =
g—lgh-l 1

[g,G].

g hg = [h,q] € [9,6]. since [g,6] 46, [g1,6] <

Lemma 1.12. If g;,...,9, €G, then '%l[gi’G] =
1=
(<g9y5--.59,>,G] 4G.

Proof: Since each [gi,G] < [<gl,...,gn>, G], it is clear
n
that 7 [gi,G] < [<gl, RN G]. Any element of

i=1
[<gl, cees9, >, G] 1is the product of finitely many elements of

+1
the form [gi ..... 95 ,h]™, where he€G, and 1 < ij < n. But
1 m g. ...9.
i i
= 2 m -
[gll(glz """ glm)’h] = [gll’h] [giz""'gim:h] =
gy eeees 9 95
2 n .
[9; »h] ™ ...lg; h] ™g; ,h] € T [g;,G], since

m-1 m i=1
each [gi,G] 4 G. Finally [<gl,...,gn>,G] is the product

of finitely many normal subgroups of G and therefore is

normal.







CHA PTER II

RESIDUALLY CENTRAL GROUPS

In this chapter relationships between residually
central groups and other classes of groups are examined.
An FC-group is a group in which each element has

only finitely many conjugates.

Proposition 2.1. A residually central FC-group is locally

nilpotent.

Proof: Let G be a residually central FC-group, and H =
«<hl,...,hnj> a finitely generated subgroup. It suffices

to show that H must be nilpotent. By 1.8, H/(;(H) is
residually central. Since each hi has only finitely many
conjugates in H, each [H:CH(hi)] < . gl(H) = iE&CH(hi)

is the intersection of finitely many subgroups each of finite
index in H and therefore has finite index in H. Thus

H/gl(H) is a finite residually central group, which must be

nilpotent, by 1.7. Then H itself is nilpotent.

Proposition 2.2. Let G be a residually central group with
a normal subgroup N such that G/N is nilpotent and N
satisfies the minimal condition on subgroups. Then G is a

ZA-group.
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Proof: Let XysXps e be any set of elements of G, and
let Y = [Xl,xz,...,xk]. By 1.4, it suffices to show that
some vy, = 1. Since G/N is nilpotent, there is an integer
n such that Yn(G) < N, and so Yp € N. Let i be a non-

negative integer. If vy = 1, there is nothing to prove.

n+i
If Yo4i # 1, then Yhti £ (¥, 44:6], since G is residually

central. 'y ;.1 = [¥pyio%n4i41) € [¥g446] 4G, and so

G . .
Yn+i+l < [yn+i’G] < yﬁ+i < N. Thus there is a descending
sequence of subgroups yg > Yﬁ+l > ... of F. Since F

G G

satisfies Min, for some Jj we must have yn+j = yn+j+l'

This can happen only if yn+j = 1.

Corollary 2.3. Let G be a finitely generated residually
central group. If G has a finite normal subgroup N such

that G/N is nilpotent, then G is nilpotent.

Proof: Since N is finite, N satisfies Min, and 2.2 applies.
Mal'cev [17, p. 50] has shown that ZA-groups are locally nil-

potent, completing the proof.

The necessity of the condition in 2.2 that the subgroup N
has Min is shown by the example of the infinite dihedral group.
This group has two generators, is metabelian, and is residually
nilpotent (hence residually central), but is not nilpotent. If
the group were a ZA-group, it would be locally nilpotent and
hence nilpotent.

If G 1is a group with a normal abelian subgroup A,

and T = G/A, then A may be viewed as a right ZT-module,
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where ZT is the integral group ring. Whenever this is

done, A will be written additively and T' will be written
n

multiplicatively. Thus if a € A and 2 zi(giA) € 2T,

i=1
where z, €2, g; €G, 1 {i < n, then the module action

n

a( o zi(giA)) is defined to be (in multiplicative notation)
i=1

n %;9; e .

m (a2 ) 7; the module multiplication is basically that of

i=1
group conjugation. It is routine to check that this is well-

defined. Note that submodules are subgroups of A which are
normal in G. Note also that for a €A, g € G, [a,g] = a~lad
may be written in module notation as -a + a(gA) = a(gAh-1).
The augmentation ideal A of 2T is defined to be the (two-
sided) ideal generated by {Y-l\y € T}. If B 1is any subset
of A, then [B,G] may be written as BA in module notation;
repeating this m times shows that [B,mG] = BA™ for positive

integers m. A may be characterized by the well-known

Lemma 2.4. If T 1is a group and ZI' the integral group
n

ring, then the augmentation ideal A = { 2 ziYi‘zi € 2,
i=1

n
Y; €T and ;EI z, = o}.

Proof: The containment < 1is clear. Conversely, suppose

n n n
that 2.Y. €2I' with 2 z, =0. Then Y z.Y. -0 =
i=1 ** i=1 * i=1 **

n n

z z. = .Z) zi(Yi-l) € A.

n
2, z.Y. -
. i'i o] 1 is1

i=1 i
Let R be a ring and I an ideal in R. Following

Roseblade [20], I is said to be a polycentral ideal of R

if there is a chain O = Ipn<I; £ ... LI=1 of ideals of
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R such that T /Ii is generated by one element in the

i+l
center of R/Ii, 0 < i < c. Roseblade has proved [20]
Theorem 2.5. Every ideal of the integral group ring 2T

is polycentral if and only if T is a finitely generated

nilpotent group.

Robinson in [19] uses the term polycentral to mean

that each I /Ii is generated by some subset of the

i+l
center of R. He shows, in Theorem 5 of a preprint of [19],
Theorem 2.6. Let R be a ring, I a polycentral ideal
of R, and M a noetherian R-module. Then a € ﬁ MI1"

n=1
if and only if a = ai for some i € I.

These two results give

Theorem 2.7. Let G be a finitely generated residually
central group with a normal abelian subgroup A. If G/A

is nilpotent, then G 1is residually nilpotent.

Proof: For some integer n, y (G) <A since G/A is nil-
potent. Let A; = y (G). By (2, Theorem 3.6], if G =

<gl"'°’gk> » then Al = <[gil:gi2"":gin]‘l < lJ <k> .

G/Al is nilpotent, and Al is finitely generated as a
ZT-module, where T = G/hl. Now G 1is residually nilpotent

if and only if N [Al,mG] = 1. If A 1is the augmentation
m=1 ®
ideal of 2T this condition is equivalent to n AlAm =0
m=1
in module notation. By 2.5, A 1is a polycentral ideal of
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ZT' in the senses of both Roseblade and Robinson. P. Hall
has shown [7, Theorem 1] that ZI" is a right-noetherian
ring. Since A, is a finitely generated right ZI-module,
Ay is a noetherian module. By 2.6, a € m§1 AlAm if and
only if a = as for some § € A. This means that a € aA,

which says that a € [a,G]. Thus a must be the identity,

since G 1is residually central.

Corollary 2.8. Suppose G 1is a semi-direct product of A
by F, where A 1is abelian and F 1is finite. If G is

finitely generated and residually central, then G 1is re-

sidually nilpotent.

Proof: Since F 1is finite and residually central, F is

nilpotent, and 2.7 applies.

Phillips and Roseblade recently have shown [15] that if in
2.8 G 1is merely an extension of A by F instead of a
semi-direct product, then G 1is a 2ZD-group, and Yw+d(G) =1

for some integer Ad.






CHAPTER III

RESIDUALLY CENTRAL WREATH PRODUCTS

Let A and G be non-trivial groups. For each
g € G, let By ~ B, and set A = z)(Ag|g € G}. BAny element
a of A can be thought of a function a:G 4 A such that
1

a(g) = for all but finitely many g € G. Map G into

1

Aut(d) by dh(g) = a(gh "), for g, h € G, @ € A. The re-

sulting semi-direct product W = A]JG is called the (standard
restricted) wreath product of A by G, written W = AwraG.

The subgroup A is called the base group. If a € A, we
g.
shall usually write a = a; 1 to mean that a(gi) = ay,
i=1
1<i<n, and a(g) =1 if g £ {9ys--+,9,)}. 1In this
n

3

notation, if g € G, then aJ = R aigig. If B Jd A, then
%wrG is a homomorphic image ofl=1]§. wrG in the obvious way;
the kernel of the homomorphism is B = B¢ = LMBg|g € G}.
More information about the structure of W may be found in
P. Neumann's paper [13].

Hartley [9] has determined which wreath products
are residually nilpotent. Motivated by this, we now turn
to the question of which wreath products are residually cen-

tal. In the sequel, W will always denote the wreath product

BwrG, and A will denote the base group. Note that A and

14
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G can be embedded in W. Since subgroups of residually
central groups are residually central, A and G must be

residually central if W is to be.

Proposition 3.1. Suppose that W = AwrG is residually

central. If G 1is infinite, then A is a Z-group.

Proof: Let ays-..5a €A, K= <al,...,anj>. By 1.10, it

n
suffices to show that K £ [K,A]. Let 9ys---,9, be

n 9. -
distinct elements of G, and let a= 2, a. * € A. Since

i=1 _l n g
W is residually central, a £ [a,W] > [a,B] = Z)[ai,A] 1
i=1
€

as a direct sum. Fix g € G, and let bi [ai,A], 1 <i<n.

-1
. g.

94 9j
Then bi € [ai,A]

n
[@,W]. Hence ( T [ai,A])g = [K,A]9 < [a,W] by 1.11. Since
i=1
g was arbitrary, ZK[K,A]g:g € G} < [a,w]. If KK [K,A],

g, n g;
e DIk, ¢
i=1

n
then a; € [K,A], 1 <i<n, and a= 2 a;
i=1

([a,W], a contradiction.

A group G 1is ordered if there is a total order <
on G such that if a <b in G and c¢,d € G, then cad <
cbd; that is, the order on G 1is preserved by right and left
multiplication. A group on which it is possible to impose
such an order is called orderable. Every orderable group G
must be torsion-free: If 1 # g € G, then either g > 1 or

g_1 > 1l. BAn easy induction then shows that gn >1 or

(g—l)n > 1 for every positive integer n. It is also clear

that subgroups of orderable groups are orderable. For further
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information, the reader may consult [11]. The following

facts are proved there.

Proposition 3.2.[1l1l, pp. 4,5] The cartesian product of
orderable groups is an orderable group, and any group which

is residually an orderable group is orderable.

Proposition 3.3.[11], p. 10] A group is orderable if and only
if every finitely generated subgroup is orderable; that is,

orderability is a local property.

Proposition 3.4.[11], p. 16] A locally nilpotent torsion-free

group is orderable.
Proposition 3.5.[11, p. 17] All free groups are orderable.

If g is an element of the ordered group G, let |g| =
max{g,g-l]. Then g 1is said to be infinitely small relative
to h, written g << h, if |g|n < |h| for all positive in-
tegers n. A subset K of G is convex if for all g € G,
h € K, |g| < |h| implies that g € K. The next result is in
[11, p. 14,15].

Proposition 3.6. Let G -be an ordered group, g,h € G. Then
(1) g << h if and only if there is a convex subgroup
containing g but not h.
(2) |[g,h]| << max{|g]|, |h|]}.
(3) If G is nilpotent, then |[g,h]| << |g].
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Lemma 3.7. If G 1is a Z-group with central series
{Ga‘a € I, I a totally ordered set}, then G is orderable

if G/Ga is torsion-free, for all o € I.

Proof: This is really a corollary of Theorem 2.2.3 in [11,

p. 16]. Each G, d4G, and if @,B € I such that Gg < Gg
and there is no Y € I for which Gg < G, < Gg, then [Gg,C]
< Gy, and GB/GG is a torsion-free abelian group, and

hence is orderable, by 3.4. Since GB/Ga_g gl(G/Ga), elements

of GB/Ga are fixed under conjugation by elements of G/G,.

Thus {G,|@ € I} meets the conditions of Theorem 2.2.3 of [11].

Lemma 3.8. Let A and G be residually central groups.
Then W = AwrG is residually central if for all 1 # a € 3,

a £ [a,6][a,A]C.

Proof: Since W is the semi-direct product AG, any element
of W can be written uniquely in the form Qag, where a ¢ A
and g €G. If g # 1, then ag £ A[g,G], since g £ [g,G].
Now [ag,w] < [o,W][g,W] < Alg,B6] < Al9,61(9,81° < Blg,6].
Thus ag £ [ag,W].

I1If g =1, then [a,W] = [a,BG] < [a,G][a,i]G. Thus

W is residually central if a £ [a,G][a,X]G.

Theorem 3.9. If G 1is a residually central ordered group,

and A is a Z-group, then W = AwrG is residually central.

m g.
s i
Proof: Let a = 2, a;
i=1l
i <m. By 3.8, it is enough to assume that «a € [a,G][a,Z]G

€ A, where g, €G, a; €A, 1¢
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and reach a contradiction. Let L = | <ajp,...,a >, A].

Since A is a Z-group, some a, £L, by 1.10. 1If L =
ZRLg:g € G} dW, then a £ L; however, a € gl(i/i), by
definition of L and L. 1If A, = A/L, then a € [a,W]
implies that aL e [aLlL ,Ww] in A, wrG. Because al ¢ gl(il),
a characteristic subgroup of 3, [eaLl,G] < gl(il). Let A, =
gl(il); then W2 = Azxer is not residually central; we may
assume that the base group is abelian.

Again, let a € A, where A is abelian. View A

as ZG-module. Then a € [Q,G] means, in module notation that

a € aA, where A 1is the augmentation ideal of 2G. Then
there is an element § € A such that ag=a. a and §

may be expressed in module notation as

j=1 11
n
5 = jza zjhj’ where a; €A, 9, €G, 1 <i<m,
n
zj € 2, jz> zj = 0, hj €G, 1 <j<n, and 9, < 9, < oo < 9
and hl < h2 < oo < hn in the ordered group G. Now,
m o -
ad = 7 Z}(z.a.)gihj = (zlal)glhl-f... +(znam)gmhn.

i=1 j=1 J*
Either hn >1 or hl <1, or both. (Note that n > 2, since
_2?)1 zj = 0.) We treat the case where hn > 1; the case hl <1
i; almost identical.

First, suppose that some a, has infinite order. Let

gio = max{gi‘ai has infinite order}. Then giohn >gio in G.
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th
Since a = ad, the element in the 94 h;- "slot" of «a,

o
say b, must be equal to 2 zjaigih.. By definition,
9ify = 95 Pn
b has finite order. However, z.a; has infinite order,
(0]

and no other summand of b has infinite order. Thus b has
infinite order, a contradiction.
Next, suppose that A3 = <a1,...,anl> is a finite

p-group, for some prime p. If for some =0,

Jo’ %j50%i

1<i<m let §’'= 2 zjhj‘ Then 0Q§’ = a§ = Q; we may
i#ig

therefore assume that for each j there is an 1 such that

253 # 0. Since 9y > 9; if i <m and h_ > hj if j < n,

. . . th -
gihj < gmhn if i <m or 3j < n. Thus the gmh;— position

in a§ is z Because g h >g,, 1 {i<m and a = a3,

a_ .
nm

a. # 0; not all the elements of

a_ = 0. For som i, z
z e s Zpay

A3 = <al,...,am:> can have the same order, and hence A3 has
exponent greater than p. Suppose the exponent of A3 is pk.
Let A, = A3/pk—lA3, and let ¢ be the natural map. O #

#(a), and
g(a) = g(ag) = g(a)s.

Since A, has exponent p, this is impossible.
Finally, suppose that A3 is a finite abelian group.
Then there are primes Pys -+ P, such that A3 = Blax..waBr,

where B is a p,-group, 1 {k r. As before, let Ag =

k
A3/(B2@ ..apBr) with Y the natural map. Then

0O # y(a) = ¥(ap) = y(a)sp

in the pP;-group Ay, which is impossible.
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This shows that if G 1is a residually central order-
able group, then W is residually central if and only if A
is a Z-group. Free groups are orderable (3.5) and are re-
sidually nilpotent [18, Theorem 9.11], and hence are Z-groups.
Thus the wreath product of two free groups is residually cen-

tral.

Lemma 3.10. Suppose that W = AwrG is residually central,
and G has an element g of prime order p. Then every

element of A and of G of finite order has p-power order.

Proof: Suppose a € A has prime order q # p. Identify a
with the element of the base group A defined by a(lG) = a
and a(h) =1, if h # l,- By 1.9, a and g commute, which
is impossible.

Suppose h € G has prime order q # p. By 1.9, h
and g commute, so that <h,g> is cyclic of order pg. Let
1 #ach. W, = <a>wr<g,h> 1is a finitely generated, met-
abelian, residually central group. By 2.7, W, is residually

nilpotent. However, Hartley [9] has shown that this is im-

possible.

Theorem 3.11. Suppose that A and G are locally nilpotent.

Then W = AwrG 1is residually central if and only if either

(1) G 1is torsion-free, or

(2) BAll elements of G finite order have p-power order,
where p is a prime, and all elements of A of finite

order also have p-power order.
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Proof: The necessity of (1) or (2) is clear from Lemma 3.10.
If (1) holds, then by 3.4, G is orderable, and
Theorem 3.9 applies.
Suppose (2) holds. Since residual centrality is a

local property, it suffices to consider a finitely generated

subgroup ‘<wl’°"’“%1> of W. Eagh gi = aigi, where

- _ ij
@, €A and g; €G. Each a, = jéa a;y- Hence <wy,...,w >
< <aij’gi’gij | 1 <idm 1 <Jj<n> < <aij >Wwr <gi’gij >

Thus we may assume that A and G are finitely generated and
therefore are nilpotent. By [2, Theorem 2.1], A can be em-
bedded in PA@TA, and G can be embedded in PGeTG, where
PA’PC are finite p-groups, and TA’TG are torsion-free fi-
nitely generated nilpotent groups.

By Lemma 3.8, it suffices to show that if a = 2!:‘, akgk €
A, then a £ [a,G][a,X]G. Suppose that there is an « k:ich
that a € [a,G][a,Z]G. Since A is nilpotent, there is an
integer r such that each a; € gr(A) and some a, £ gr_l(A).

Then

[0,8])° < [<ay,...,a,>,n]¢

L

< ¢, (),n]°
< g E.
W1==(A/gr_l(A))wr<3 is a homomorphic image of W in the obvious

way. Let @ denote the image of a in W,. Because a €

[0,6)(e,51%, @ € [8,6](85B/C,_®1° = [8,6] in W,. Let
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A = gr(A)/gr_l(A). Then A, wrG is a subgroup of W,

which contains a. Also, [Q,G] < Kl, since a € gl(A/Cr_l(A)),
a characteristic subgroup of A/gr_l(A). By [2, Corollary
2.11], every element of Ay of finite order has p-power order.
By [2, Theorem 2.2], Al and G are residually finite p-groups,
and hence are residually nilpotent p-groups of finite exponent.
Since a € [@,G], A, wrG is not residually central, and there-

fore not residually nilpotent. However, Hartley [9] has shown

that A, wrG is residually nilpotent, a contradiction.

Corollary 3.12. If A 1is abelian and G is locally nilpotent,

then W = AwrG 1is residually central if and only if W is

locally a residually nilpotent group.

Proof: The sufficiency of the condition is clear. Theorem 3.11

and Theorems Bl and B2 of [9] combine to prove the necessity.

Thus we have succeeded in classifying those restricted
wreath products W = AwrG which are residually central in the
case where G 1is orderable and in the case where A >and G
are locally nilpotent. 1In addition to this, Hartley's paper [9]
gives conditions for W to be residually nilpotent; his condi-
tions clearly are sufficient conditions for W to be residually
central. Necessary conditions are that A must be a Z-group if
G is infinite, G can have at most one relevant prime, and if
G has an element of prime order p, then every element of A

and of G of finite order has p-power order.

To expand our results to the case where A is not

locally nilpotent appears to be difficult. 1In order to use
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group ring techniques, as was done above, and as Hartley did
in [9], it is necessary to work within an abelian "slice" of
A and to know something about the orders of elements of that
slice. This is much more difficult if A is not locally
nilpotent. Thus it seems likely that different techniques
will be required to expand 3.11 significantly.

If the usual base group ZXAglg € G} is replaced by
W{Ag]g € G}, the resulting group is called the unrestricted
wreath product, denoted by AWrG. Because this is a much

"larger" group, one would expect that far more restrictive

conditions would be necessary to make AWrG residually central.
That this is indeed the case is illustrated by the following

result.

Proposition 3.13. Let W = AWrG. If G contains an element
g of infinite order, and A contains an element a, of
finite order or a 2-divisible subgroup, then W is not resid-

ually central.

Proof: Suppose A contains a 2-divisible subgroup Al. It
is enough to show that A, Wr<g> is not residually central.

Let 1 # a € A;. For each positive integer i, there

. 2i _ .2 .
is an element bi such that bi = a and bi = bi+1’ Define
a em{p; ,|n €2} by
g 3
21

b. if i <O.
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] -1 .
Then [a,9 Y1(gt) = (a7t ) (g?)

1 i +1

= (a(g}))ta(gia™)

(a(gh)) La(gitt)

i i+l
= (a2 )-1 a2 if we denote
-1
2
bi by a
i il
_ 2t
= a
= a(gh).
Hence [a,g—l] = a, and W 1is not residually central.

Suppose A has an element a; of finite order.
If the order of a; is odd, then A contains a subgroup
A, isomorphic to a cyclic group odd prime order. Such a
group is 2-divisible, and the above argument applies.

Suppose., A contains an element a,; of order two.
Again, it suffices to show that <a; >Wr <g> 1is not re-

sidually central. Define a in the base group by

a 1if 3 does not divide 1i

a(gh) =
1 if i is divisible by 3.
Then [a,9711(g%) = (a(g))"Ta(gi*t)
= a(gi)a(gi+l), since a =a !

{»a if i or i+l is divisible by 3

1 otherwise.
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Similarly, [a,g-z](gl) = a(gl)a(gl+2)

{:a if i or i+2 is divisible by 3

1 otherwise.

Then ([a,g_l]fa,g[z] (gi) =

1 if 1 1is divisible by 3
a otherwise.

Therefore [Q,g a, a € [a,G], and W is not

residually central.







CHA PTER 1V
A SPECIALIZATION OF RESIDUAL CENTRALITY
G

Recall that, for g € G, Ro(g) =g and Rn+l(g) =
[Rh(g),G] for non-negative integers n. If for each element
g of a group G, R Rn(g) = 1, then G is said to be a (*)-

n=0
group. Because each Rn(g) < Yn+l(G), every residually nil-
potent group is a (*)-group. Note also that if g ¢ [g,G],
-}

then R,(g) = [g9,G] = [9,G,G] = R,(g). Thus if N R (g) =1,

1 2 n=0 °
then [g9,G] > [9,G,G], and therefore every (*)-group is re-
sidually central. By 1.7, property (*) is equivalent to

nilpotence for finite groups.

Proposition 4.1. The class of (*)-groups is closed under the
taking of subgroups and Cartesian products; hence a residually

(*)-group is a (*)-group.

Proof: Let H be a subgroup of G, and let h € H. Since
-} - -]
for each n [h,nG]_2 [h,nH], 1l = nQl[h,nG] > nQl[h,nH].
Let {G;|i € I} be a collection of (*)-group, and

g = (gi)ieI € m G;. Then (g, T Gi] < [gi,Gi], and for

iel i€l i€l
each n, (g) < T R _(g.).
Ry(9) < T Ry (9;
@© ©®
Since N R (g.) =1 for each i €I, N R_(g) = 1.

26
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Suppose a group G is residually a (*)-group.
Then for each g € G, there is a normal subgroup Hg of
G such that g £ Hg and hg is a (*)-group. G can be
embedded in the Cartesian product W[G/H:g € G} by the map
g -+ (ng)xeG' The Cartesian product of the (*)-groups
[G/Hg:g € G} is a (*)-group, and so G is a (*)-group.

Free groups are residually nilpotent [18, p. 117]
and thus are (*)-groups. Since every group is a homomorphic
image of a free group, and, e.g., finite non-nilpotent groups

are not (*)-groups, a homomorphic image of a (*)-group need

not be a (*)-group. The symmetric group on three symbols is
metabelian but not a (*)-group; this shows that a (*)-group
extended by a (*)-group need not be a (*)-group.

The following lemma is a fairly well-known extension

of the three-subgroup Lemma 1.3.

Lemma 4.2. Let H and K be subgroups of a group G such
that [H,nK] < G for all positive integers n. Then for

any such n, [Yn(K),H] < [H’nK]'

Proof: 1Induct on n. The case n =1 is clear. Suppose

n > 2. Then

[H;nK] = [[H: (n—l)K]’K] 2 [[Y(n—l)(K)’H]’K] by

induction

= [Y(n_l)(K),H,K].

Similarly,
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[H, (K] =[[H,K], (n=-1)K] > [Y,_;)(K),[H,K]] by
induction
= [H,K, v 1) (K ].
By the three subgroup Lemma 1.3,
(8, (K] > [K, Y9y (K),H] = [v,(K),H].

We begin by exploring the relationships between

(*)-groups and some other classes of groups.

Proposition 4.3. A group G is hypercentral with the upper
central series having length at most ¢y if and only if for

each 1 # g € G, there is an integer ng such that Rn (g) =1.

g
In particular, such a group is a (*)-group.

Proof: Necessity. Suppose that G = gw(G) = G ¢, (G), and
n=1

let 1 #g €G. Let ng be the least integer such that

g € ¢, (G). For each positive integer n, [gn(G),G] < €h-1(6),

g
and so

R, () = [g9,, G] < [¢, (6),, (B)] L ¢5(G) = 1.
g g g g

Sufficiency. Suppose that for all g € G, there is

an integer ng such that R (g) = 1. Since Cn (G) =
9

9
(x € G:[x’n ()] =1},9 € ¢, (G). Thus G = § ¢y (G) -
g g n=1

However, a group can be hypercentral of length ®w + 1
and yet contain an element g such that Ra(g) #1 for all

ordinals a.
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(-]

Example 4.1. Let P be a 2 -group, and let a € Aut(P)

be defined by p° = p-l, where p € P. Let G = P]<a> =
Dih(Z(zm)). Let p € P. [a,p] = (p—l)ap = p2. Because

P 1is divisible, P2 = P; i.e., every element of P is the
square of some other element of P. Hence [a,P] = P2 = P,
and R,(a) = P for every ordinal a > 1.

To see that G has ZA-length gy + 1, view P as the

abelian group generated by {pi:i =1,2,3,...}, where pi =1

and p?

i41 = Py for i > 1. Suppose that piaJ € Cl(G),

where i > 1, j =0 or 1. (piaj)a = pzlaq = piaJ if and
. . _ -1 p,a _ ,a_ -1
only if i =1, for only P, = Py - Also, P, 1" = Py, = Py -
Thus (,(G) = {1,p;}. Note that G/(;(G) =G, and so (,(G) =
<py>. Similarly, gn(G) = <p,> for each integer n. Then
c(G) = Uc(6) = U<p.>=P
= ( —3 p — .
w n=1 " n=1 o
Since G/P is abelian, gw+l(G) = G.

Proposition 4.4. A (*)-group is a ZD-group whose lower central

series has length at most g + 1.

Proof: Let G be a (*)-group, and let g € G. By Lemma

-] @
3.2, nflg,v,(G)] < n R (g) =1. Thus
n=1 n=1

[9,Y,(6)]) = [9, A Y (®] < AR (9) = 1.

n=1 n=1

Th G trali G. Th G
us Yw( ) centralizes every g ¢ en Yw+1( )

[Yw(G),G] < ¢y (6),6] = 1.
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Combining this with 4.3 gives a result proved by

Hartley [8].

Corollary 4.5. A 2ZA-group of length at most  is also a

ZD-group of length at most @ + 1.

Corollary 4.6. If G is a (*)-group, and gl(G) =1,

then G 1is residually nilpotent.

Corollary 4.7. A (*)-group satisfying the minimal condition

on normal subgroups is nilpotent.

Corollary 4.8. A group G is residually nilpotent if and
only if G is a (*)-group and for all 1 # g € ¢,(G), there
is a normal subgroup Mg of G such that g £ M and

9
G/Mg is nilpotent.

Proof: The necessity of the condition is clear. Let 1 #

g € G. To show that G 1is residually nilpotent, it is ne-
cessary to find a normal subgroup Mg of G such that

g £ Mg and G/'Mg is nilpotent. If g € gl(G), this is true
by hypothesis. Suppose g £ ¢1(6). By 4.4, j Y, (6) < ¢, (@),
and so there is an integer n such that g én;i(G). Since

G/yn(G) is nilpotent, the result follows.

An obvious question now is whether property (*) is
equivalent to residual nilpotence (2D-length at most ) or
to having ZD-length at most g+ 1. The next two examples show

that it is equivalent to neither.
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> 2n-l a

Example 4.2. Let Dn = <an,bn: a, = l,bn =1, bn =
b;1'>, the dihedral group of order 2. It is easy to

n-2
check that gl(Dn) = <b§ > has order two and that

D /¢ (D) = D _; if n > 3. Since the nilpotency class

of D; is 2 (i.e., (,(D3) =Dy and (, ;(Dy) # Dj), the

3 3
nilpotency class of D, is n-1 if n > 3.

[-J
Let G= 2 D a group which has ZA-length ¢ and

n,

ZD-length . Let ¢m n:61 () + ¢, (@) by ¢m(b]m ) =
on-2 ’ o ]
b, , for mn >3. Let H= <z "¢ (2)|z € ¢;(D);

m,n > 3>, and set T = G/H, called the central product of
the Dn's.

Let L = (,(Dy). If m # n, then
HDn/H n HDm/H = LH/H ~L/(H NL) = L.

Thus ¢, (T) = LH/H has order two.
Since G has ZA-length g, I’ has ZA-length <y
and hence is a (*)-group. To show that T is not residually

nilpotent, the following well-known lemma is needed.

Lemma 4.9. If T 1is a 2A-group, then every non-trivial

normal subgroup of T intersects gl(r) non-trivially.

Proof: Suppose 1 #N QT and N n ¢1(r) = 1. since T

is a ZA-group, there is a least ordinal a such that

N N ¢(4(T) > 1. Clearly, @ cannot be a limit ordinal. Then
a@ has a predecessor B, and N n ¢g(T) = 1. since NnNg¢)(T)
=1, 1 # [NNn(y(T),T] < NN[¢y(r),T] < NNn(g(T), a contradic-

tion.




32

Since (,(I) has order two, every nontrivial normal
subgroup of T contains gl(r). Since T contains copies
of each D, T cannot have finite nilpotency class; no
Y,(T) can be the identity. Thus for each n, ¢;(T) < Y (T),
and

1 # ¢y (1) < nflvn(r).

Glu¥kov [6] has constructed a very similar class of
examples. He takes the central product of upper n xn uni-
triangular matrices over a finite field K. For n > 2, the

center of the group Mn of upper unitriangular n xn matrices

turns out to be

r 9
(1 o ..o al
o 1 o...0 O
< : a €K ? R
. (0]
O ..... ceeee 1
LL - y

which is isomorphic to the additive group K. Each Mn is
a nilpotent group, and so the central product has 2ZA-length
< w-

Let p Dbe the characteristic of K, and pp the
order of K. If the additive group K is generated by Kk,
then every non-trivial subgroup of K must contain <kpm-l>,
which is cyclic of order p. If %, is the central product
of the Mn's, by 3.8 every non-trivial normal subgroup of 7N
intersects cl(m) >~ K non-trivially, and therefore must

contain
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— -
m-1
1 0 0 o xP
1 0 .. O
O .. o 1 |

This subgroup is contained by Yn(w) for n > 1, and is
-}
therefore contained in N Yn(m). Thus 9% 1is not residu-
n=1
ally nilpotent.
The next example shows that property (*) is not

equivalent to having ZD-length at most ¢ + 1.

Example 4.3. Let H be the abelian group with presentation

i
‘<X,Y1,Y2,--- =X2 =1, yi =x>. (For a note on the exis-

tence of such a group see [5, p. 118 and Theorem 36.1, p.
121].) Define a € Aut(H) by h? = h-l, h € H, and set

G = H]<a>. YZ(G) = [HCa >, HCa>] = [H,<a>]. If h € H,

then [h,a] = h 1h? = h-z, and thus Y,(G) = H?. Now sup-
i-1
pose that Yi(G) = H2 . Then
i-1 i-1 i-1 i
i, 6 = [B2 LHca>] = (B2 ,<a>) = @ )% =@

Therefore

. i-1

Y, = Av,(@ = AE®  =<x>,

i=2 i=2

and

Y106 = [Y (6),H<Ca>] = [<x>,HCa>] = [<x>,<a>] = 1.

However, YZ(G) = [H,<a>] = Rl(a), and so
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¥;,1(6) = R (a) for i > 1.

(-]
Thus N R_(a) = Y (G) = <x>#1; G is not a (*)-group
n=1 " w

even though G is a ZD-group of length ¢ + 1.

All (*)-groups have ZD-length at most w + 1. The
interesting question now is when (*)-groups have 2ZD-length
w; that is, which (*)-groups are residually nilpotent. We

first investigate (restricted) wreath products.

Lemma 4.10. Let W = AwrG, where G is infinite. If W

has property (*), then W is residually nilpotent.

Proof: By 4.6 it is sufficient to show that cl(w) =1,

However, this is already well-known; see [13, p. 34].

Now it suffices to consider W = AwrG for finite
groups G. If W is to be a (*)-group, both A and G
must be (*)-groups, because both A and G are embedded
in W. Then the finite group G must be nilpotent, since
G 1is a 2ZD-group. If W is to be a (*)-group, W must be.
residually central; Lemma 3.10 now shows that G must be
a p-group for some prime p. Since for some finite c,
Y,(6) = 1, Y (W) is contained in the base group A; thus
W is residually nilpotent if and only if E [Z,nW] = 1,
If A is abelian, this reduces to the cond?Zion that
n;l[i,nG] = 1. BAs in the discussion of residually central

wreath products, A will be viewed as a module of the in-

tegral group ring 2G in this case.
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Let g € G have order p, and suppose that A is
abelian. Let W* = Awr<g>, and denote its base group by

A*. If n > 1, then

(2%, <g>] = [3%, 9], ,_1)<9>] < R (9).

If W is a (*)-group, so is W*, and thus

[a*, <g9>] < NR(9) =1,

n
=] n=1

n

and W* is residually nilpotent. By Lemma 8 of [9], A
is residually a p-group of finite exponent. By [9, Theorem

Bl], W is residually nilpotent. We have proved

Lemma 4.11. If A is abelian and G is finite, then W =
AwrG is a (*)-group if and only if W is residually nil-
potent. 1In this case, there is a prime p such that G

is a p-group, and A is residually a p-group of finite

exponent .

Lemma 4.12. Suppose W = AwrG 1is a (*)-group, where G
is finite. Then for some prime p, G is a p-group, and

A is residually a nilpotent p-group of finite exponent.

Since by Theorem Bl of [9] such a group is residually

nilpotent, this lemma and Lemma 4.10 complete the proof of

Theorem 4.13. The standard wreath product W = AwrG of
non-trivial groups has property (*) if and only if W is

residually nilpotent.
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Proof of 4.12. Suppose that W 1is a (*)-group, and let
1#a€hnA. Then <a>wrG is also a (*)-group. By 4.11
G 1is a p-group, and if a has finite order, then the order
of a 1is a power of p. Let g € G have order p, and let
A Dbe the augmentation ideal of' the group ring 2z<g>. What

follows is an adaptation of Lemma 8 of [9].

Claim. If n 1is a positive integer, then there is an element

r, of Z<g> such that

p"(1-g) = r_(1-g)n(P 1)+l (1).

Proof of claim: By [9, Lemma 6], p(l-g) € AP, For n =1,
then, there is an element r, €z<g> such that p(l-g) =
rl(l—g)p, since AP is generated by (1 -g)p. Now suppose
that (1) holds for some n > 1.

pn+l(l-g) n(p-1)+1

p(p"(1-g)) = p-r (1-gq)

r (1-g)" (P pa_g)

n(p-1)

rn(l-—g rl(l-g)p by the case n=1

(ryry) (1-g)P(B-D)*P

)(n+1) (p-1)+1

(rnrl) (1-g as desired.

Identify A with the subgroup of the base group given by

{f:G + A|f(q) = 1, if g # 1;}. write <a> additively,
and view the base group of <a>wr<g> as a 2<g>-module.
n

[aP ,g] may be written in module notation as p'a - (p alg =

a -pn(l-g). By (1), there is an element r, €2<g> such

n(p-1)+1 n(p-1)+1

that apn(l-g) = arn(l-g) € aA Thus
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n

[a® ,q9] € [a, 1<9>]

n(p-1)+
< [Kg>, A’n(p—l)<g >]

< Rn(p—l)+l(g) in WwW. (2).

Define A" =<a": a €A> for positive integers m. Let

n
a_=2aP (any

n n(p—1)+l(w))' Then

n
(3,591 < [aF ,q1(any 1 (W), g]

n(p-1)+

< Rn(p—1)+l(g)[Yn(p—1)+1(w)’g] by (2)

< Rn(p—l)+1(g) by 4.2. Thus

[anAn:g] < ngl[An’g] < ngl Rn(p—l)+l(g) =1

since W is a (*)-group. However, for any 1 # b € a,

@
[b,g] # 1. Thus [ ﬁ An,g] = 1 implies that n A = 1.
n=1 n=1

Since A contains the subgroup generated by all p?

powers of elements of A, A/'An has exponent dividing pn.

Because An contains 1(A), each A/An is also

Yn(p—l)+
nilpotent. Finally, if 1 # b € A, there is an integer n

such that b £ A, since A A =1, and A/'An is a nil-

n=1
potent p-group of finite exponent. Thus the lemma is estab-

lished.

Lemma 4.14. Suppose that the group G has a normal subgroup
B such that G/B = <aB> for some a € G. Then for each

positive integer n, Yn(G) = Yn(B)Rn-l(a)'
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Proof: Induct on n. For n =1,

Yl(B)RO(a) =Ba® =G = Y, (G).

Suppose that the lemma is true for some n > 1. Then

Yh+1(6) = [Y,(G),G]
= [yn(B)R(n_l)(a),G]
< (¥, (B),G[R s (2),6]
= [y,(B),B<a>]R (a)

s [v,(B), <a>1ly,(B),B] <2

Rn(a)

The opposite inclusion is trivial.

Proposition 4.15. A (*)-group G which is nilpotent by

cyclic is residually nilpotent.

Proof: There is a subgroup B ¢ G such that G/B = <aG>
for some a € G, and YC(B) =1 for some integer c¢. For

n > c, by Lemma 4.14.
Y (6) = Y (B)R _;(a) = R _;(a).

-] wm
Thus ny () = N R (a) = 1.
n=1 ° n=1 0-1

Proposition 4.16. A (*)-group G which is cyclic by nil-

potent is residually nilpotent.
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Proof: There is an element a € G such that <a > d G
and G/<a> is nilpotent. Thus for some integer c,

Yc(G) < <a>, and so for n > O, Yc+n(G) < [<a3>,ng] = Rn(a).

(-]
A Yoy (6) < N R (a) = 1. Note that if <a> is finite,
n=0 n=0

then G 1is nilpotent.

Proposition 4.17. Suppose that G has a normal subgroup B
such that G/B is nilpotent, and B satisfies the minimal
condition on normal subgroups. If G 1is a ZD-group, then

G 1is nilpotent.

Proof: For some integer c, YC(G) < B. The subgroups
Yo(G) > Y,41(6) > ... form a decreasing chain in B. Since

B satisfies Min-n, there is an integer n such that (G) =

Yec+n

Yc+n+1(G)’ Since G 1is a ZD-group, Yc+n(G) =1,

In example 4.2, (,(I') is cyclic and r/gl(r) =~

(-]
) b ., a residually nilpotent group. Since T is not
n=3

residually nilpotent, this shows that the hypotheses of the
last two propositions cannot be weakened to read, "G/<a>

of G/B is residually nilpotent".

Proposition 4.18. Let G be a (*)-group with a normal sub-
group H such that (;(6) NH =1 and G/H is residually

nilpotent. Then G is residually nilpotent.

N y_(6)
ny. (G
n=1 n

<H. By 4.4, 1 =y,,(6) = [v,(6),6]. Thus vy (G) < ¢, (G).

Proof: Since G/H 1is residually nilpotent, Y, (G) =

Since gl(G) NH=1, Yw(G) = 1.






CHAPTER V

DESCENDANCE AND HOMOMORPHIC IMAGES

Robinson in [16] has given a construction which can
easily be adapted to yield information about the factors
Rn(g)/Rn+l(g). Let N be a normal subgroup of G, and let

a € [N,(n-1),G] and b € G. Let

a[N, G] € [N, ,_7,6]/N, G]

a

b*

bY,(G) € G/Y,(G).
We first show that the function given by

(a,b*) » [a,b][ )G] € [N,nG]/[N: (n+l)G]

N’(n—l

is well-defined. Let r € [N’nG]’ s € Y2(G).

(3,b%) = (3%, (bs)*) w [ar,bs][N, .. G]

[ar,s][ar’b]s[N: (n+1)G]

[a:s]r[r’s][asb]rs[er]s[N: (n+l)G] .

Because r € [N,nG], (r,s] € [N’(n+l)G] and [r,b]° €

[N’(n+l)G]' Also,
[a,s]F € [N, (ho1)C) 5 Y (@) ] < [N, (46
by 4.2. Finally, [a,b] € [N,nG] implies that [a’b][N’(n+1)G]

40
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is in the center of G/[N,(n+l)G]. Therefore
(E, (bS)*) - [a,b][N,(n+l)G].

Next, we show that this function is bilinear. Let a;,a, €

[N,(n_l)G], and b € G.

(alaz,b*) [ [alaz’b][N’(n+l)G]
= [al’b][al’b’az][aZ’b][N’(n+l)G]
= [al,b][asz][N) (n+1)G]°
Now let a € [N’(n-l)G] and b;b, € G.
(3, (b1by)*) + [a,byb, ][N, 1G]

= [a:bz][a:bl][a:bl:bz][N:(n+1)G]

[a,b)1[a,b, ][N, ;1 11)C],

since [N,nG]/[N,(n+1)G] is abelian. Setting N = gG gives

Theorem 5.1. Let g € G, n a positive integer. Then there

is an onto homomorphism

R _;(9) G R (g)

6. : ®
n R (g) (G,c] R ,q(9)

Proof: The preceding work shows the existence of the homo-
morphism f,- Because each Rn(g) is generated by the ele-
ments [a,b], where a ¢ Rn-l(g) and b € G, the image of

A

, contains all the generators of Rn(g)/Rn+1(g)’ Thus

en 1s onto.
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Corollary 5.2. (a) If for some positive integer m, gm =1

or G/[G,G] has exponent m, then Rn(g)/R (g) is an

n+1l
abelian group of exponent dividing m, for n = 0,1,2,...

(b) If G 1is finitely generated and gG is fi-

nitely generated, then Rn(g)/R (g) 1is finitely generated,

n+1l
for n=0,1,2,... . If in addition g has finite order
m and ﬁ Rn(g) = 1, then gG = Ro(g) is residually a

n=0
finite group of order dividing a power of m.

(-]
(c) 1If n Rn(g) = 1 and gG and G are finitely
=0

generated, then gG is residually finite.

Proof: (c) 1is the only part requiring comment. Let h € gG. |
There is an integer k such that h £ R, (g). Each factor

Rn(g)/Rn+1(g) is a finitely generated abelian group. Thus

there exist subgroups H, d4 H q...4 Hz of gG such that

Hy = R (9), H, = gG, and each factor Hi+l/Hi is cyclic,

that is, gG/Rk(g) is polycyclic. Such groups are residually

finite [2, Corollary 1.21]. Hence there is a normal subgroup

K/kk(g) of gG/Rk(g) not containing th(g) and such that
[gG/Rk(g):K/Rk(g)] is finite. Then g £ K and gG/k is

finite.

Theorem 5.3. Let G be a group, n a positive integer,
and (N, :@ € I} a collection of normal subgroups of G such
that n{N, :a € I} = 1.

(a) If H is a subgroup maximal with respect to

(n) (n) th

HJIG and H = 1, where H denotes the n— derived

subgroup of H, then n{HN_ :@ € I} = H.






43

(b) If H is maximal with respect to H 4 G and
le(H) = 1, then n{HNa:a € I} = H.
(c) If H= CG(K) for some subset K of G, then

N{HN,:@ € I} = H.

Proof: 1In each case, let R = N{HN, :Q € I}.

(a) For each a € I, g(M) < (HN) (n). For O <

o) (k) is the product of normal subgroups H(k),

(1) g ana w3 s,

k < n, (HN
and commutators involving both H

where O < i, j <k -1, Any such commutator is contained
(n) < g™y

in the normal subgroup N,. Thus R(n) < (HNg) a

R(n)

N for each a € I. Therefore

@ < NNyi:@ eI} =1. R

is a normal subgroup containing H; by the maximality of H,
R = H.
(b) An argument similar to that in (a) shows that

for each a,

Yn+l(R) < Yn+l(HNa) < Yn+l(H)Na = Na'

Again Y _,;(R) <N{N,:a€I}=1. By the maximality of H, R=H.
(c) Let x € R = n{CG(K)Na:a € I}. For each QE€I,

X = where Cq € CG(K) and n, € Na' Let k € K.

Calq ?

For any a € I,

[x,k]

na
[Cana’k] = [Ca,k] [na’k]

= [na,k] € N, -
Thus [x,k] € N{N,:@ € I} = 1, so that x € C,(K).

Corollary 5.4. Let H be a normal subgroup as in (a), (b),

or (c) of 5.3, and let % be one of the following classes
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of groups: residually nilpotent groups, (*)-groups, residu-
ally solvable groups, residually finite groups. If G is

an %¥-group, then G/H is an %-group.

Proposition 5.5. Let H be a subgroup of G such that H
satisfies the minimal condition on subgroups normal in H.
If {Nili =1,2,3...) 1is a nested sequence of normal sub-

groups of G such that R Ni = 1, then anN = H.
i=1 i=

Proof: Because H satisfies Min-n, and H NN, > HAN, > ...

there is an integer K such that

H[WNk = H nNk+1 = ... = N (HrwN ) < D Nl = 1. |
i=1 i=1
Let x € n HN For each integer i, x can be written
i=1
X = hini’ where hi € H and n, € Ni. Let 3j > k. Then
_ _ . . -1 _ -1 _

hknk = X = hjnj’ implying that hj hk = njnk € H nNk = 1.

Thus if 3j > k, nj =ng i Ny € Nj for all j > k. But then

ny € iD N. = 1. Thus x = hk € H.

Corollary 5.6. Let H be a normal subgroup of G such that

H satisfies Min-n, and let % Dbe one of the following classes
of groups: residually nilpotent groups, (*)-groups, residually
solvable groups, countable residually finite groups. If G 1is

a Y-group, then G/H is a ¥Y-group.

Corollary 5.4 can be improved in the case that %

is the class of (*)-groups.

Proposition 5.7. Let G be a (*)-group, K any subset of G.

Then nl CG(K)Y (G) = CG(K).
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Proof: Let k € K, x € R CG(K)Yn(G). For each n, x
n=1

can be written as x = €9’ where S € CG(K) and 95 €

Yn(G). Furthermore,
[x,k] = [Cngn:k] = [gn,k] € [Yn(G):k]
< Rn(k) by 4.2.

Hence [x,k] € R Rn(k) = 1, forcing x to centralize k.
n=1

Corollary 5.8. Let G be a (*)-group. For any positive

integer n, G/gn(G) is residually nilpotent.
Proof: Set K =G in 5.7 and induct on n.

Corollary 5.9. Let G be a (*)-group, n a positive in-
teger. Then G/H 1is residually nilpotent if any one of
the following conditions holds:
(a) H is maximal with respect to H 4 G and
a® -1,
(b) H is maximal with respect to H 4 G and
(H) = 1.

Yn+l
(¢) H= CG(K), where K < G.

Proof: (c) follows immediately from 5.7. For (a) and (b),
note that (,(G) will be contained in any such maximal sub-
group H. Thus G/H is a homomorphic image of the residu-

ally nilpotent group G/gl(G). Now 5.4 applies.
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Petty [14] has shown that corollary 5.8 cannot be
extended to G/(,(G) for limit ordinals @. Let G be
as defined in example 4.3, and let ((G) denote the hyper-
center of G. He shows that G/Z(G) is not a ZD-group,
although it is a Z-group.

Beyond what is presented in chapter one, the only
information about homomorphic images of residually central
groups seems to be Stanley's result [23, Corollary 8] that
if G 1is a residually central group satisfying the minimal
condition on normal subgroups, then every homomorphic image
of G 1is residually central.

Let H be a subgroup of a group G, and ({B:B < Ob}

a set of ordinal numbers. If there is a collection

{KB:S < ab} of subgroups of G such that Ko =G, K, = H,
o

Kg,, 4 Kg for B+1<a, and K, = n{KB:B < a} for limit
ordinals @, then H is said to be descendant in G with
order type %,. For example, if % is finite, then the
definition is equivalent to saying that H is a subnormal

subgroup of G.

Concerning descendance in (*)-groups, we have

Theorem 5.10. Let G be a (*)-group.

(1) If A 1is an abelian subgroup of G, then A
is descendant of order type at most ¢y + 1.

(2) If g € G has finite order, then <g> is
descendant of order type at most .

(3) If H gw(G), then H is descendant of order

type at most g + 1.
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Proof: (1) Consider the descending series
G = ¥, (G)C5(B) > Y,(6)Ch(R) > ---

It is routine to verify that each Yi+l(G)CG(A) q Yi(G)CG(A),

and by Theorem 5.3(c), % Yi(G)CG(A) = CG(A). Since A is
i=1

abelian, A < CG(A), and the result follows.

(2) The series
ngG = <g> Rl(g) 2<g>R2(g) Z M

is a normal series, and ef: <g> Rn(g)= <g> by Proposition
n=1

5.5.
(3) Consider the series
®
G=vY,(GH> v,(G)H > -+ n Y (GH > H.
n=1
As in (1), each yn+l(G)H < Yn(G)H. It remains to show that

h q ?iyn(G)H. Let h € H. Since H < u ¢;(6), h € ¢ (G)
n=1 i=1

©
for some integer m. Thus Rm(h) =1. Let y € n Yn(G)H.

n=1
Then y can be written as y = g’h’, where g’ € Yn(G)

and h € H. Thus
hY = n[h,y] = h[h,g’h’] = h[h,h’][h,g’][[h,g’],h’].

Now [h,g’] € [h,Ym(G)] < Rm(h) =1 by 4.2. Hence nY =
h[h,h’] € H as desired.
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