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ABSTRACT

HIGH DIMENSIONAL STATISTICAL METHODS FOR
GENE-ENVIRONMENT INTERACTIONS

By

Cen Wu

The genetic influences on complex disease traits generally depends on the joint effects of

multiple genetic variants, environment factors, as well as their interplays. Gene×environment

(G×E) interactions play vital roles in determining an individual’s disease risk, but the under-

lying genetic machinery is poorly understood. Traditional analysis assuming linear relation-

ship between genetic and environmental factors, along with their interactions, is commonly

pursued under the regression-based framework to examine G×E interactions. This assump-

tion, however, could be violated due to nonlinear responses of genetic variants to environ-

mental stimuli. As an extension to our previous work on continuous traits, we proposed a

flexible varying-coefficient model for the detection of nonlinear G×E interaction with binary

disease traits. Varying coefficients were approximated by a non-parametric regression func-

tion through which one can assess the nonlinear response of genetic factors to environmental

changes. A group of statistical tests were proposed to elucidate various mechanisms of G×E

interaction. The utility of the proposed method was illustrated via simulation and real data

analysis with application to Type 2 Diabetes.

It has been increasingly recognized the power of genetic variant set based association

analysis over the single variant based approach. We develop a variant set based approach to

examine how variants in a genetic system mediated by a common environment factor to affect

the phenotype response. The problem can be approached from a high dimensional variable

selection perspective. In particular, we can select genetic variants with varying, non-zero



constant and zero coefficients, which are corresponding to cases of G×E interactions, no G×E

interactions and no genetic effects, correspondingly. The procedure was implemented in a

two stage iterative framework via Smoothly Clipped Absolute Deviation (SCAD) penalty.

With proper regularity conditions, we can establish the consistency in variable selection and

effect separation of our two stage iterative estimator, as well as the optimal convergence

rates of the estimates for varying effect. In addition, it can be shown that the estimate of

non-zero constant coefficient enjoys the oracle property. The utility of our procedure will be

demonstrated through extensive simulation study and real data analysis.

Due to the drawback of local quadratic approximations in the aforementioned two-stage

framework, the approach is not efficient in handling cases when the dimension p is very

large. A group coordinate descent (GCD) based approach was proposed within the frame-

work, which is computationally efficient particularly for high dimensional problems where

p > n, because the computational complexity increases only linearly with the number of pre-

dictor groups after basis expansion. The advantage of our method is demonstrated through

extensive simulation study and real data analysis.
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Chapter 1

Introduction

1.1 A review of basic genetics

Genes are the basic functional units where the biological characteristics can be passed from

parents to offspring. The genes of each cell are arranged in linear order on chromosomes.

Majority of the multicellular organisms have duplicate copies of each gene, hence they are

diploid. The number of paired chromosomes varies across different species. For instance,

Brassica Oleracea has 9 pairs of chromosomes, Zea Mays has 10 pairs, Mus musculus has 20

pairs and human beings have 23 pairs. The entire set of chromosomes form the genome of a

particular organism and organelles.

Each gene resides on certain site, or locus of the chromosomes. For diploid organisms,

the genes corresponding to the locus take two forms (say A and a), called alleles. The

three genetic compositions of the two alleles, AA, Aa, and aa, are genotypes. The pair of

identical alleles (AA or aa) and different alleles (Aa) are called homozygous and heterozygous

respectively. One or several loci may determine the observable characteristics or phenotypic

traits, such as eye color, body weight, blood pressure, and so on.

The traits that can be continuously measured are defined as quantitative traits, like the

aforementioned body weight and blood pressure. The investigation of the genetic basis of a

quantitative trait is the major task of quantitative genetics. In classical quantitative genetics,
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the phenotypic value (P) is due to genetic factors (G) and environment factors (E):

P = G+ E (1.1)

By assuming the independence of the terms in (1.1), the phenotypic variance of a quanti-

tative trait (VP ) can be decomposed into its genetic (VG) and environmental (VE) variance

components:

VP = VG + VE (1.2)

Based on the three modes of gene actions(additive, dominance and epistasis), we can further

partition VG as

VG = VGa + VGd + VGe (1.3)

where VGa, VGd, VGe are additive, dominance and epistatic(or interaction) genetic variance

respectively. VGd and VGe are referred to as nonadditive genetic variance. In quantitative

genetics, heritability characterizes the relative importance of the role genetic variance plays in

determining the phenotypic variance. The two types of heritability, broad-sense heritability

(H2) and narrow-sense heritability (h2) , are defined separately as:

H2 =
VG

VG + VE
(1.4)

and

h2 =
VGa

VG + VE
(1.5)

The degree of overall genetic control over the quantitative trait can be measured by the two

heritability parameters H2 and h2 [1, 2].
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1.2 Genetic mapping of complex traits

The past decades witnessed waves of breakthroughs in genetic mapping of complex diseases

(traits). The family-based linkage study prevails as conventional means of locating disease

genes. Transmission disequilibrium test (TDT)[3], the most popular association test in

family based study, was proposed to test the linkage between a genetic marker and disease

susceptibility. However, large pedigrees are needed for fine-mapping in linkage study, so the

utility of the study is confined when such information is not available.

While the linkage study predominated in discovering disease variants with major effects,

the population based association study gained advantage in detecting genes with modest

effects [4], which is of particular significance for complex human diseases[5]. The rapid

progress in the high-throughput genotyping technologies made possible the large scale, highly

dense genome-wide association studies (GWAS) for millions of genetic variants, such as

single-nucleotide polymorphism (SNP) across the entire human genome[6].

The GWAS has thus identified a large number of susceptibility variants associated with

the complex human diseases, including asthma[7], breast cancer [8, 9], coronary heart disease

[10, 11] and Type 2 Diabetes[12, 13]. A detailed list is given in [14]. Despite the huge success

achieved in GWAS, the disease etiology is still not clearly elucidated since a substantial pro-

portion of the heritability remains obscure. Therefore, there are pressing needs to investigate

the part of unexplained heritability.

There are a number of potential sources of missing heritability, such as rare variants,

structural variation, gene-gene (G×G) interactions and gene-environment (G×E) interac-

tions [15]. For example, the ‘Common Disease, Common Variants’ hypothesis is commonly

adopted in GWAS, assuming that majority of the genetic risk of common complex dis-
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eases can be attributed, at least partially, to common disease variants which is of more

than 5% minor allele frequency (MAF) [16, 17]. The rare (MAF<0.5%) and low frequency

(0.5%<MAF<5%) variants cannot be well captured by GWAS commercial genotyping ar-

rays which are aimed at covering common genetic variants [18]. Detection of such rare and

low frequency variants using next generation sequencing technologies [19, 20, 21, 22]on either

the genome regions of interest or the whole genome will lead to a better interpretation of

heritability.

Compared to the detection of main effects of genetic variants in GWAS, the discovery of

high order effects, like G×G and G×E interactions, requires much higher statistical power

and thus impinges on the effort to better understand the missing heritability not attributable

to the identified disease variants [15, 23]. Therefore investigations on G×G, G×E interac-

tions will help make the best use of GWAS, improving disease prediction, prevention and

treatment.

1.3 Gene-environment (G×E) interactions

1.3.1 Basics of G×E interactions

G×E interactions can be traced back to [24, 25] and were formulated by Falconer in [26],

which refers to how phenotypes are reactive to different genotypes under various environmen-

tal conditions. It has been widely acknowledged that not only the genetic and environmental

factors themselves, but also the interactions between them, are involved in the genetic basis

of complex diseases [27]. A growing number of evidence of G×E interactions have been

found in a wide range of complex diseases, such as colorectal cancer[28], chronic beryllium

lung disease[29], skin cancer[30], cardiovascular diseases [31]and psychiatry diseases [32].
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The environment factor in a G×E interaction study design can be defined either continu-

ously or discretely. For instance, in a study of G×E interaction on skin cancer, the intensity

of sunlight to which the skins are exposed could be defined as an environment condition

with a continuous measure, and the risk of developing skin cancer triggered by a specific

gene might be quite different given various amount of sunlight. For a G×E interaction study

design related to myocardial infarction, drinking status can be defined as an environment

factor with 2 categories, coded as 1 (drinking alcohol) and 0 (not drinking alcohol).

Study designs for G×E interaction mainly fall into two categories: the family-based

study and the population-based association study[27]. In family-based studies, direct es-

timations on particular G×E interaction are possible if the environmental information is

integrated into designs, such as the pedigree or sib-pair designs. Compared to the asso-

ciation studies in unrelated subjects, the family-based study may demand more effort to

gather information needed in the design. Depending on the timing of information collection

on environmental,dietary and lifestyle variables, the typical case-control association studies

could be further categorized into retrospective (data collection after disease diagnosis) and

prospective studies (data collection at the beginning of study). Refer to [27] for a detailed

discussion on pros and cons for all these designs.

1.3.2 Challenges and issues in G×E interactions

The major challenges in the study of G×E interactions are how to appropriately model and

test G×E effects. The multifactor dimensionality reduction (MDR)-based approach, a data

mining method for identifying interactions among independent variables, was proposed in

[33] to examine gene-environment interactions. While MDR can be considered as a model-

free approach, other statistical methods were developed within the traditional regression
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framework, such as the parametric [34] and semi-parametric methods [35, 36].

A common issue in current parametric models for G×E interactions, as pointed out in

[37], is that a strong linear assumption on G×E interactions is demanded. Recall that the

linear regression model below is the starting point to examine G×E interactions:

Y = α0 + α1X + α2G+ α3GX + ε (1.6)

Here Y is the continuous response, α0 is the overall mean, α2, α3, α4 are the effects of

environmental factor(X), genetic factor(G), and their interactions (G × X) respectively.

The error term ε is distributed with mean 0 and finite variance σ2.

The G×E interaction is modeled as a product term between G and X in (1.6). A

rearrangement of (1.6) results in

Y = α0 + α1X + (α2 + α3X)G+ ε (1.7)

(1.7) explicitly conveys the message that the variation in response Y caused by the genetic

effect G is a linear function of environment X. However, the genetic effect may not nec-

essarily take a linear format in practice. Positing such linear form might lead to model

mis-specification and inflated bias. A varying coefficient model approach, together with a

group of goodness-of-fit tests, were thus proposed in [37] to investigate the non-linear ma-

chinery of G×E interactions for continuous phenotypic response. Extensions of [37] to binary

response is urgently needed as majority of complex human diseases are casted in the case-

control association study framework where the response are of two categories, disease(case)

or no disease(control).
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The recent success of set-based GWAS, such as in the pathway-based [38] and gene-centric

study [39, 40, 41], in bringing novel interpretations to the disease signals, motivates us to

coin G×E interaction within a set-based association framework. When multiple variants

within a genetic system, such as the pathway or gene set, are involved, we can jointly model

their effect with an environment factor, especially if any non-linear effects are present, by

proposing an additive varying-coefficient model:

Y = α0(X) + α1(X)G1 + . . .+ αd(X)Gd + ε (1.8)

where Y is the phenotypic response, d is the total number of SNP variants in a genetic

feature and Gj refers to the jth SNP, and ε is the random error. The model has particular

power to help us understand how multiple genetic variants in a system are mediated by a

common mediator X to affect disease risk. When d is relatively large, the problem can be

approached from a high dimensional variable selection perspective.

1.4 Objectives and organization of the dissertation

Due to the crucial roles G×E interactions played in elucidating the genetic basis of complex

diseases, the objective of this dissertation will be on developing novel statistical methodology

and powerful computational tools to tackle the challenges originated from high dimensional

G×E interaction analysis.

The dissertation is organized as follows. In chapter 2, the dissection of the nonlinear

penetrance effect of the genetic variants with regard to the environmental factor will be

extended from continuous phenotypic response in [37] to case-control association study within
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the varying coefficient model framework with an application to Type 2 Diabetes. The varying

coefficients are estimated through nonparametric regression spline techniques. A group of

statistical tests was proposed to elucidate the machinery of G×E interactions. In chapter 3,

a set-based method examining G×E interactions will be developed. We propose a penalized

additive varying coefficient model to select genetic variants with varying effects (the presence

of G×E interactions), constant effects (no G×E interactions), and zero effects (no association

with phenotype). The selection consistency of this approach and the oracle property of the

corresponding penalized estimator will be rigorously established. In chapter 4, we further

extend the framework in chapter 3 to the scenario where the number of genetic variants

exceeds the sample size, the so called “large p,small n”, via group coordinate descend (GCD)

algorithms. A thorough investigation on the performance of different penalty functions

within this framework will be conducted. Concluding remarks and outline of the future

work will be given in chapter 5.
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Chapter 2

A Novel Method For Identifying

Nonlinear Gene-Environment

Interactions In Case-Control

Association Studies

2.1 Introduction

It has been increasingly recognized that the predisposition of many complex diseases is not

purely triggered by genetic factors. They are also influenced by environmental exposures,

due to potential gene-environment interactions. For example, Type 2 Diabetes mellitus is a

typical complex human disease whose incidence is heavily contingent on the environmental

exposures such as behavioral and dietary factors, in addition to genetic susceptibility [42,

43]. Studies on gene×environment (G×E) interactions will shed novel light on the genetic

responses to environment dynamics and how environment changes mediate gene expression

to increase disease risks. Such phenomenon that disease risk or genetic expression varies

under different environment conditions is also termed phenotypic plasticity [44].

G×E interactions were historically pursued by evaluating the gene effect under different
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environment conditions. Figure 2.1A shows the case of G×E interaction under two dis-

crete environment conditions, protective and predisposing such as non-smoking and smok-

ing. When environment conditions are measured in a continuous scale, more information is

available to assess the gradient/dynamic change of genetic effect under subtle environment

changes. For example, adult bone mineral density changes with age and vitamin D intake

[45]. Figure 2.1B-D display several scenarios where the environment mediator is measured in

a continuous scale. Example of continuous environment could be age for age related diseases

such as Alzheimer, or body mass index for Type 2 Diabetes or hypertension. In Figure

2.1B, no G×E interaction is observed since the genetic effects of the three genotypes are

parallel to each other. Figure 2.1C shows a typical example of linear G×E interaction, while

Figure 2.1D displays a non-linear G×E interaction pattern assuming the Aa genotype is the

baseline. As will seen in the following section, most current G×E interaction model assumes

the case displayed in Figure 2.1C. Few statistical analysis has considered the case shown in

Figure 2.1D.

In fact, many literature work supports the view of nonlinear G×E interaction. Sparrow et

al. [46] found that mutations in gene HES7 and MESP2 caused congenital scoliosis, and the

risk was highly related to transient hypoxia during mice pregnancy. The rate of risk increase

was non-linearly correlated with increasing hypoxic levels. Laitala et al. [47] reported that

the reaction of personal genetic effects on coffee consumption showed a non-linear relationship

with age. Martinez et al. [48] found that women carrying Gln27Glu genotype in ADRB2

gene had higher probability for obese and the obesity rate was nonlinearly correlated with

the amount of carbohydrate intake. Even though these empirical evidences are limited to

small-scale observational studies, they underscore the importance of further exploration on

non-linear G×E interaction when searching for genetic roots of complex diseases.
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Figure 2.1: Different models of gene-environment interaction: (A) the interaction of gene
and environment in discrete environmental conditions; cases with (B) no G×E interaction;
and (C) linear and (D) non-linear G×E interactions. AA, Aa and aa represent three different
genotypes in a gene, and environment mediator represents a continuous environment variable.

Within the statistical framework, G×E interactions in human diseases have been inves-

tigated mainly through model-based approaches, ranging from the standard linear model

with interaction in diverse design settings, such as the case-control design, the case only

design and the two-stage screening design, to more sophisticated models, such as profile

likelihood-based semi-parametric models, empirical Bayesian models and Bayesian model

average (reviewed in Mukherjee et al. [48]). However, as pointed out in Ma et al. [37],

the model-based regression framework generally needs strong model assumptions between

genetic effects and environmental influences, which cannot be directly applied to the above
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mentioned empirical studies in which non-linear interaction exists.

In this chapter, we extended the varying-coefficient (VC) model proposed in Ma et al.

[37] for continuous quantitative responses to binary disease responses. We first laid out

the VC modeling framework for binary responses, with details on parameter estimation

and hypothesis testing. The utility of our approach was demonstrated through extensive

simulations. Finally, we applied our method to two case-control Type 2 Diabetes cohorts

data sets, followed by discussions.

2.2 Statistical method

For a sample of n unrelated individuals collected from a population, let n1 and n2 be the

number of affected (cases) and unaffected (controls) individuals, respectively with n = n1 +

n2. All individuals in the sample could be genotyped either based on candidate genes or on

a whole genome-wide scale. Let Yi = 1 if the ith individual is affected and 0 otherwise. Let

G be the genetic variable which is coded as 0, 1, 2 corresponding to genotype aa, Aa and AA

where allele A is the minor allele. This coding scheme assumes an additive disease model,

although a genetic variant may show dominant or recessive action mode. In reality we can

do a model selection to choose which one is the optimal one using AIC or BIC criterion.

Suppose in addition to the genetic variables, the disease risk is also affected by environ-

mental factors as well as the interaction between them. Let X be the environmental variable

which is measured in a continuous scale. Throughout this chapter, we are only interested

in environment changes that display in a continuous scale (e.g., geographical location or

temporal changes). Traditional analysis for G×E was commonly pursued by discretizing an

environmental variable into different groups (e.g., old vs young), as shown in Figure 2.1.

12



However, we can have more information to assess the G×E relationship when a continuously

measured environment factor is treated in a continuous scale. Thus, the purpose of the work

is to model the genetic responses under different environmental stimuli, and further assess

in what form genes respond to these changes.

For a continuous phenotype Y , the general form of an additive VC model to investigate

the non-linear G×E interaction between X and G can be expressed as,

Y = α(X) + β(X)G+ σ(X)ε (2.1)

where the error term ε satisfies E(ε|X,G) = 0 and V ar(ε|X,G) = 1. Ma et al. [37] evaluated

the performance of the model by assuming α(X) = α0+α1X. The key components of the VC

model lie in proper estimation of the smoothing function β(X) and the variance function

σ2(X), through which the effect of the genetic variant can be evaluated as a function of

environment exposures. Various tests have been proposed to assess the linear or non-linear

mechanisms via likelihood ratio test. When inhomogeneous variance (i.e., σ(X) varies with

X) and no parametric distribution are assumed for the error term, wild bootstrap is a

common choice to assess the significance of the likelihood ratio statistic.

In human genetics, many diseases are displayed as discrete qualitative traits. The focus

of this work is to extend the above model to responses that do not follow continuous distri-

bution. In a generalized linear model set up, the relationship between the mean of a response

variable Y and the independent variables (X,G) under the varying-coefficient model can be

expressed as

E(Y |X,G) = µ = g−1 {α(X) + β(X)G}

where g is a link function. When Y is measured as counts (e.g., tumor numbers), a log link
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function can be assumed. When Y is a binary variable (i.e., affected vs unaffected), then a

logit link function is commonly applied. In the later case, the logit varying-coefficient model

is given by,

logit(p) = α(X) + β(X)G (2.2)

where p=Pr(Y = 1|X,G). In this work, we allow the intercept function α(X) varies with

X instead of assuming a linear structure, to make it more flexible to capture the underlying

mean function when there is no genetic contribution (i.e., β(X) = 0).

If we allow β(X) = β1, the logistic VC model is reduced to a logistic linear predictor

model without G×E interaction (denoted as LM). If we allow β(X) = β1 +β2X, the logistic

VC model is reduced to a logistic linear predictor model with linear G×E interaction (denoted

as LM-I), i.e.,

logit(p) =α(X) + (β1 + β2X)G

=α(X) + β1G+ β2XG

(2.3)

One can also put structures on the function of α(X). For example, we can let α(X) =

α0 +α1X. Such a model like logit(p) = α0 +α1X+β1G+β2XG is often applied in assessing

G×E interactions in a typical logistic regression analysis by testing H0 : β2 = 0. It can also

be seen that this model assumes a linear G×E interaction structure, that is, the function

β(X) is linear in X. Thus, without assuming specific structure on the linear predictors, the

VC model has much flexibility to capture the underlying interaction mechanism via fitting

β(X) using smoothed nonparametric functions. The VC interaction model can be considered

as a generalization to the linear interaction model.
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2.3 Estimating β(X) function

The nonparametric estimation of varying coefficients has undergone intensive investigations

in the last two decades and falls generally into three categories: the local kernel polynomial

smoothing, polynomial spline, and smoothing spline (Fan and Zhang [49]; Huang et al. [50]).

Huang et al. [50] approximated the varying-coefficient functions via B-spline basis expansion.

Using the B-spline technique, the authors further established the relevant asymptotic prop-

erties of the estimators, such as consistency, convergence rates and asymptotic normality.

In addition, the estimation of B-spline estimators is computationally fast and numerically

stable. These merits are especially important in the context of high-dimensional genetic

data analysis, which make it a natural choice for us to choose when estimating the varying-

coefficient functions α(X) and β(X).

Let h be the degree of B-splines and N be the corresponding interior knots. Further

assume that the knots are equally distributed for the B-spline basis matrix {Bs : 1 ≤ s ≤

(N+h+1)}. Ideally we can select h and N for α(X) and β(X) separately using the B-spline

technique when fitting each SNP variant. This process involves a search of optimal degree

and knots through a list of possible combinations for both functions. This, however, could

incur heavy computation burden when the estimation is done for each SNP given that the

number of SNP variants to be tested could be huge. Thus, the degree h0 and knots N0

for α(X) are selected first by fitting a logistic VC model without the genetic components.

Once the degree and knots for function α(X) are selected, they will be fixed when estimating

degree and knots for function β(X) for each SNP. The selection is done by using the Bayesian
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Information Criterion (BIC) criteria defined as,

arg min
N,h

BIC(N, h) = arg min
N,h

`(γ1) + (N + h) log(n)/n,

where `(γ1) refers to the log-likelihood function. A grid search for possible combinations of

N and h can be done and the values corresponding to the minimum BIC are the “optimal”

ones.

Once the degree and knots for α(X) are determined, the function α(X) can be estimated

by α̂(X) = γ̂1
TB1(X) =

∑N0+h0+1
k=1 γ̂1kB1k(x). The degree h1 and the number of knots

N1 for β(X) are also selected using the same BIC criterion defined above. The estimator for

β(X) is given by β̂(X) = γT2 B2(X) =
∑N1+h1+1
k=1 γ2kB2k(x). Regular Newton-Raphson or

Fisher scoring algorithm can be applied to estimate the parameters.

2.4 Assessing G×E interaction

Our goal is to assess if a genetic variant is sensitive to environment changes. If it does, then

in what form, linear or nonlinear. For this purpose, we first propose to assess if the genetic

effect is a constant by testing 
HC

0 : β(·) = β

HC
a : β(·) 6= β

(2.4)

where β is an unknown constant and logit(p) = α(X) + βG is the corresponding reduced

model under the null hypothesis. Under the H0, the genetic effect is a constant and its

contribution to disease risk has nothing to do with environmental changes. If we fail to

reject the null, then association can be assessed via testing H0 : β = 0 by fitting the reduced

model. Rejecting the null hypothesis leads to the conclusion that the G×E interaction exists.
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We next test the linear effect of G×E interaction by formulating,


HL

0 : β(·) = β1 + β2X

HL
a : β(·) 6= β1 + β2X

(2.5)

where β1 and β2 are unknown constants. Under the H0, the reduced model is given by

logit(p) = α(X)+β1G+β2XG. If we fail to reject the null, then association can be assessed

via testing H0 : β1 = β2 = 0 by fitting the reduced model. If the null is rejected, it indicates

nonlinear G×E interaction effect and next we fit model 2.2 to assess genetic association.

The above tests are sequential. At each step if we fail to reject the null, we stop and fit

the null model and assess the genetic effect by a likelihood ratio test. When HL
0 is rejected, a

nonlinear G×E interaction effect is implied and we allow the data tell the shape of the effect

by fitting the above described nonparametric B-spline functions. The nonlinear effect is then

assessed by testing H0 : β(X) = 0 using a likelihood ratio test which asymptotically follows

a chi-square distribution with the degrees of freedom equal the number of fitted B-spline

coefficients for function β(X).

2.5 Simulation

The statistical behavior of the proposed approach was evaluated through extensive Monte

Carlo simulations. When using B-spline functions to estimate the varying-coefficients, a uni-

form distribution on X is generally assumed. In real application, the environment measure

(X) may not be uniformly distributed as in the Type 2 Diabetes data analyzed later in the

chapter. Instead, it is often normally distributed. To mimic real situations, we generated

a continuous environment measure X∗ from a normal distribution, and subsequently trans-
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formed it by X = Φ(X
∗−X̄∗
SX∗

), to make X∗ evenly distributed on the B-spline subintervals,

where Φ(·) is the standard normal cumulative distribution function and X̄∗ and SX∗ are the

sample mean and sample standard deviation of X∗, respectively. The B-spline basis matrix

was constructed on the transformed values. For a given minor allele frequency (MAF) pA

and assuming Hardy-Weinberg equilibrium, SNP genotypes AA, Aa and aa were simulated

from a multinomial distribution with frequencies p2
A, 2pA(1 − pA) and (1 − pA)2 for the

three genotypes, respectively. We coded the genetic variable Gi as (2, 1, 0) corresponding

to genotypes (AA, Aa, aa).

2.5.1 False positive control

We fist evaluated the false positive control for the VC model at the nominal 0.05 level.

For comparison purpose, we also reported the error rate for the linear predictor model

with and without interaction. Under the null of no genetic effects, the disease phenotypes

were simulated with logit(p) = α0 + α(x) where α(x) was generated via the B-spline basis

function, i.e., α(x) =
∑4
k=1 γkB(x) for given spline coefficients γ1 = 6.162, γ2 = 5.948,

γ3 = 3.858, γ4 = 3.640. The spline coefficients were obtained by fitting the real data

(described later) without fitting the genetic effect. We added a constant α0 in order to

control the simulated proportion of case:control ratio to approximately 1:1 (by varying the

size of α0). A total of 10,000 simulation replicates were taken under all the combinations of

sample size (n = 500, 1000, 2000) and MAF (pA = 0.1, 0.3, 0.5).

The results were summarized in Figure 2.2. As we can observe, the false positive rates

were estimated sensibly from the simulated data. The VC model slightly overestimated the

false positive rate under low allele frequency (pA=0.1). But the performance improved as

MAF increases for a fixed sample size. In addition, the performance improved as sample
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size increased under a fixed MAF. In general, there were no significant deviations from the

nominal 0.05 level for all the 3 models, except in some cases under low MAF and small

sample size.
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Figure 2.2: The false positive rate of different models at the 0.05 level.(For interpretation
of the references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation.)

2.5.2 Power evaluation

For given genetic effects, the disease status was simulated from a Bernoulli trial. The varying-

coefficient function β(·) was estimated through β̂(x) ≡
∑N1+h1+1
s=1 γ̂sB(x). In a typical

simulation study with VC models, people generally simulate data assuming a nonlinear

function such as a sin or exponential function. As SNPs do not function in such form, we

simulated data according to the fit calculated from the real data to make it more realistic.

Three scenarios were considered. Scenario 1 assumed that the true G×E interaction was
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nonlinear and the data were generated with the VC model. In scenario 2, we assumed

there was no G×E interaction, while in scenario 3 we assumed linear G×E interaction. The

simulated data were then analyzed using the VC, LM-I and LM models, to compare the

performance under model mis-specification.

For a given MAF, the data assuming nonlinear G×E interaction were generated with the

following VC model,

logit(pi) = α0 + α(Xi) + β(Xi)Gi

where pi = p(Y = 1|X,G), and α0 was a constant used to control the case:control ratio to

make it close to 1. The varying coefficient functions α(X) and β(X) were computed based

upon the quadratic B-spline basis matrix with α(X) = γ
′
1B1(X) and β(X) = γ

′
2B2(X),

where γ1 = (7.287, 7.146, 3.917, 3.413)T and γ2 = (0.080,−0.460,−0.201, 0.465)T were ob-

tained from real data fit, namely SNP rs4506565 on chromosome 10 of the Nurses’ Health

Study (NHS) data in GENEVA consortium (described later). The binary responses were

then generated from a Bernoulli trial with case probability pi.

The likelihood ratio test was applied to assess the significance of each test illustrated

in previous section. The comparison results were shown in Figure 2.3. As we expected, a

common trend for the three models is that the power increases as MAF and sample size

increase. Under the same sample size or MAF, the VC model always has the best power

among the three, which is not surprising since the phenotypes were generated from a VC

model. In addition, the LM-I model performs better than the LM model since structurally

it is more close to the VC model.
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Figure 2.3: The power of different models under different MAFs and sample sizes when data
were generated with the VC model.

We also simulated data assuming no G×E interaction using the following model,

logit(pi) = α0 + α(Xi) + β1Gi

where α(x) was generated from the B-spline basis function with α(X) = γ
′
0B0(X). The

spline coefficient vector was given by γ̂0 = (5.977, 6.011, 3.843, 3.668)T , and the genetic

coefficient was set as β1 = 0.271 (corresponding to an odds ratio of 1.3). These coefficients

were obtained by fitting the real data with a linear predictor without interaction for SNP

rs12255372 on chromosome 10. α0 was used to adjust the case:control ratio as described

before under different sample sizes and MAFs. The results shown in Figure 2.4 demonstrate

that the LM model outperforms the other two models in all the scenarios, since data were

analyzed with the true data generating model. As MAF increases, the power differences
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among the three models diminishes for larger sample sizes. For example, the power difference

among the three models is very small under pA = 0.5 and n = 2000.
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Figure 2.4: The power of different models under different MAFs and sample sizes when data
were generated with the LM model.

The following linear interaction model (LM-I) was assumed to generate the linear G×E

interaction data,

logit(pi) = α0 + α(Xi) + β1Gi + β2XiGi

where α(X) = γ
′
0B0(X) with spline coefficients γ̂0 = (6.358, 6.481, 4.232, 4.113)T . The

genetic coefficient β1=0.226 and interaction coefficient β2=-0.787. All the coefficients were

obtained by fitting model 2.3 to SNP rs17537178 on chromosome 10. Figure 2.5 shows

that the linear interaction model has the best performance among the three. In addition,

the power of the VC model is more close to the linear interaction model since it is more

structurally close to the linear interaction model. As sample size and MAF increase, the
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power difference between the VC and LM-I model vanishes quickly.
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Figure 2.5: The power of different models under different MAFs and sample sizes when data
were generated with the LM-I model.

In summary, when the true G×E interaction is linear or when there is no interaction at

all, the model assuming linear or constant coefficient outperforms the VC model. However,

the VC model outperforms the other two when the true interaction in nonlinear. In addition,

the LM or LM-I models suffer more from power loss when the underly true interaction is

nonlinear in comparison to the case when the underlying truth is linear or no interaction.

This is not surprising since the B-spline estimator is consistent for large samples. Under large

sample sizes, the VC model should perform similar to the LM and LM-I model. However,

one has to be careful in finite samples. The simulation results suggest that one should assess

the function β(X) first before testing β(X) = 0. In practice, one can test if β(X) = β or

β(X) = β1 + β2X, then fit the appropriate model depending on the test result.
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2.6 Real data analysis

The fast increase in global prevalence of Type 2 Diabetes draws worldwide attentions for the

disease. About 50 novel loci have been reported in association with Type 2 Diabetes so far

(Perry et al. [52]. However, only a small proportion of disease heritability has been explained

by these loci, leaving the question of how to effectively accounting for gene-environment in-

teraction in the search of T2D susceptibility variants with the hope to capture the missing

heritability. We applied our model to two nested case-control cohort studies of Type 2

Diabetes, the Nurses’ Health Study (NHS) and the Health Professionals Follow-up Study

(HPFS), from the Gene, Environment Association Studies Consortium (GENVEA) (Cornelis

et al. [53]). The two data sets are well-characterized cohorts of genome-wide association stud-

ies investigating a set of hypotheses about the dietary and lifestyle factors to the triggering

of a series of diseases, including Type 2 Diabetes, for women and men. Details of the two

cohorts can be found from Colditz et al. [54] and Rimm et al. [55]. The data sets from

the two cohort studies originally contain 3,391 females (NHS) and 2,599 males (HPFS) with

European ancestry. After data cleaning by removing subjects with unmatched phenotypes

and genotypes, excluding SNPs with MAF< 0.05 and deviation from Hardy-Weinberg equi-

librium, the final data contain 3,391 females (1,646 cases and 1,745 controls) with 635,748

SNPs in the NHS set and 2,570 males (1,300 cases and 1,270 controls) with 636,764 SNPs

in the HPFS set.

Body mass index (BMI), calculated as the quotient between an individual’s mass (kg)

and the square of height (m2), is an indicator of human obesity. It is widely recognized that

the risk of Type 2 Diabetes could be potentially influenced by obesity condition evidenced

by strong association between them for both women and men (Holbrook et al. [56]; Carey
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et al. [57]; Chan et al. [58]). Therefore, individual’s BMI can be regarded as a type of

environmental condition pivotal in evaluating the incidence of Type 2 Diabetes. Individuals

carrying the same gene may have different risks of Type 2 Diabetes under different obese

conditions. The phenomenon could be elucidated, at least partially, by the complicated

interaction mechanism between the carrier’s gene and the environment (measured by BMI).

Thus, we can treat the genetic sensitivity to obese as a dynamic process which can be

captured by the proposed VC model, if any.

We analyzed the male and female data sets separately in order to find sex-specific genes

responsible for T2D risk. Figures 2.6–2.8 showed the Manhattan plot of the -log10(p-values)

for the male data. To compare the performance of the three models (VC, LM, LM-I), we

plotted all the signals at each SNP locus. It can be seen that the overall signals for the three

models are quite consistent. The dashed red line corresponds to the genome-wide Bonferroni

threshold (7.9E-8) and the dotted blue line corresponds to the suggestive threshold (5E-6).

Table 2.1 tabulated SNPs that passed both threshold. Seven SNPs passed the Bonferroni

threshold are marked by ∗. Testing constant coefficient showed that the majority of SNPs

has constant coefficients, which indicated they are not sensitive to obese condition. This also

explained why the LM model gives relatively stronger signals than the other two models.

Columns with P CON and P LIN showed the p-values for testing H0 : β(X) = β and

H0 : β(X) = β1 + β2X. The smaller p-values for testing constant and linear coefficients in

the top panel showed that the effects of those SNPs were neither constant nor linear, thus

the VC model gave the strongest signals evidenced by smaller P VC than P LM and P LMI.

For example, SNP rs4635456 had P CON=9.5E-07 and P LIN=0.0117 which indicated the

coefficient of this SNP is varying over BMI. Thus, fitting a VC model gave the strongest

signal (P VC=3.05E-06 vs P LM=0.6299 and P LMI=1.58E-05).
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Table 2.1: List of SNPs with p-value < 5E-06 in the HPFS (Male) data set

SNP ID GeneName Chr P VC P CON P LIN

fitted with VC model
rs4635456 SEMA6B 19 3.05E-06 9.49E-07 0.0117
rs4972250 Unknown 2 3.99E-06 2.21E-06 1.65E-06
rs4842244 RXRA 9 4.18E-06 1.25E-06 2.91E-06

fitted with LM model
rs2371765 ADAMTS9-AS2 3 6.82E-09 0.2909 -
rs7901695 TCF7L2 10 1.49E-06 0.8638 -
rs7991210 PCCA 13 2.80E-07 0.2234 -
rs12243326 TCF7L2 10 1.14E-06 0.6896 -
rs4132670 TCF7L2 10 1.64E-06 0.8560 -
rs12255372 TCF7L2 10 1.89E-06 0.7372 -
rs4506565 TCF7L2 10 2.66E-06 0.8546 -
rs11013381 C10orf67 10 7.83E-05 0.8865 -
rs6893115 Unknown 5 9.19E-05 0.8287 -

fitted with LMI model
rs699253 PDE4B 1 3.93E-05 0.0108 0.6792

SNP ID GeneName Chr P LM P LMI P I

fitted with VC model
rs4635456 SEMA6B 19 0.6299 1.58E-05 2.91E-06
rs4972250 Unknown 2 0.2772 0.1982 0.1516
rs4842244 RXRA 9 0.7146 0.0886 0.0299

fitted with LM model
rs2371765 ADAMTS9-AS2 3 2.38E-10∗ 1.88E-09 0.8140
rs7901695 TCF7L2 10 1.72E-08∗ 1.06E-07 0.5633
rs7991210 PCCA 13 1.81E-08∗ 7.07E-08 0.2655
rs12243326 TCF7L2 10 1.87E-08∗ 8.88E-08 0.3570
rs4132670 TCF7L2 10 1.94E-08∗ 1.07E-07 0.4632
rs12255372 TCF7L2 10 2.93E-08∗ 1.49E-07 0.4076
rs4506565 TCF7L2 10 3.31E-08∗ 1.87E-07 0.4967
rs11013381 C10orf67 10 1.32E-06 7.74E-06 0.7106
rs6893115 Unknown 5 1.79E-06 1.11E-05 0.9266

fitted with LMI model
rs699253 PDE4B 1 1.5E-04 4.21E-06 0.00125
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Figure 2.6: The Manhattan plot of -log10(p-values) for testing H0 : β(X) = 0 when fitting
the VC model to the male data set.

The mid-panel in the table listed SNPs with the strongest signals fitted with the LM

model. The Pconst values for the SNPs were all large (>0.05), which suggests that β(X) was

a constant and there was no G×E interaction for these SNPs. Hence the LM model assuming

no interaction gave the strongest signals. The bottom SNP in the table had the strongest

signal when data were fitted with the LM-I model since we rejected constant coefficient
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Figure 2.7: The Manhattan plot of -log10(p-values) for testing H0 : β = 0 when fitting the
LM model to the male data set.

(P CON=0.0108) but failed to reject linear coefficient (P LIN=0.6792).

Among the SNPs listed in the table, some have been reported in other studies. For

example, transcription factor 7-like 2 (TCF7L2) is an intensively examined gene associated

with a broad categories of diseases, including Type 2 Diabetes. The causal genetic association

between SNPs of the gene and the Type 2 Diabetes was first reported in Grant et al. [59] and
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Figure 2.8: The Manhattan plot of -log10(p-values) for testing H0 : β1 = β2 = 0 when fitting
the LM-I model to the male data set.

was subsequently replicated in many ethnic groups (Jin and Liu [60]). As the SNPs in this

gene are not sensitive to obesity, it is not surprise that they can be identified in other studies

by using methods assuming a linear relationship. But our method identified three more that

show nonlinear G×E relationship, even though they did not pass the genome-wide Bonferroni

threshold. We also did QQ plot of the p-values for data fitted with the three models. The
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p-values are quite uniformly distributed and only a few showing departure from the expected

values (see the QQ plot). This indicates that the models have no serious inflation of false

positives and the strong signals are likely to be true.

Figure 2.9: The QQ plot of genome-wide p-values for the male data, when data are fitted
with the VC model
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Figure 2.10: The QQ plot of genome-wide p-values for the male data, when data are fitted
with the LM model

Figure 2.11: The QQ plot of genome-wide p-values for the male data, when data are fitted
with the LM-I model
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Figure 2.12: The QQ plot of genome-wide p-values for the female data, when data are fitted
with the VC model

Figure 2.13: The QQ plot of genome-wide p-values for the female data, when data are fitted
with the LM model
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Figure 2.14: The QQ plot of genome-wide p-values for the female data, when data are fitted
with the LM-I model
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Figure 2.15: The Manhattan plot of -log10(p-values) for testing H0 : β(X) = 0 when fitting
the VC model to the female data set.

Figures 2.15–2.17 showed the Manhattan plot of the -log10(p-values) for the female data.

Even though no SNPs passed the genome-wide Bonferroni threshold, we did see stronger

signals fitted by the VC model. Those SNPs that passed the suggestive threshold are listed

in Table 2.2. Again, gene TCF7L2 does not show sign of sensitivity to obesity to affect
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Figure 2.16: The Manhattan plot of -log10(p-values) for testing H0 : β = 0 when fitting the
LM model to the female data set.

T2D risk. Gene GLI2 shows sign of interaction with obese to affect T2D risk. Two SNPs

in gene NRIP1 located on chromosome 21 show sign of nonlinear interaction with obese to

affect T2D risk. In comparison to the male data, it is clear that SNP effects are stronger in

the male population than in the female population. Moreover, the genetic effects in females

are relatively more sensitive to obesity to affect T2D risk. In summary, strong sex-specific
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Figure 2.17: The Manhattan plot of -log10(p-values) for testing H0 : β1 = β2 = 0 when
fitting the LM-I model to the female data set.

genetic effects were observed, for example, those SNPs on chromosome 2, 3, 4, and 21.

To further demonstrate the utility of the method, we plotted the dynamic effect of SNP

rs13050325 on chromosome 21 from the female data (upper panel) and SNP rs4635456 on

chromosome 19 from the male data (lower panel). The two curves on the left side of Figure

2.18 showed the estimated dynamic genetic effect as a function of BMI fitted with the B-
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Table 2.2: List of SNPs with p-value < 5E-06 in the NHS (Female) data set

SNP ID GeneName Chr P VC P CON P LIN

fitted with VC model
rs13050325 NRIP1 21 3.79E-07 3.77E-06 0.0016
rs2331061 LANCL2 7 8.60E-07 1.30E-06 5.26E-07
rs1466042 GLI2 2 1.10E-06 3.48E-06 0.0389
rs11145373 VPS13A 9 2.63E-06 8.41E-04 2.56E-04
rs3775043 UNC5C 4 2.95E-06 0.0018 6.96E-04
rs12627409 NRIP1 21 4.00E-06 2.38E-05 0.0441

fitted with LM model
rs10519107 RORA 15 4.84E-05 0.8381 -
rs809736 RORA 15 4.96E-05 0.8145 -
rs4506565 TCF7L2 10 4.35E-05 0.4953 -
rs7901695 TCF7L2 10 4.42E-05 0.4895 -
rs12255372 TCF7L2 10 1.2E-04 0.5576 -
rs4368343 Unknown 2 1.88E-04 0.7537 -

fitted with LMI model
rs2677528 GLI2 2 2.63E-06 2.62E-05 0.0732
rs7978946 Unknown 12 3.09E-05 0.0117 0.6078
rs887370 TSHZ2 20 3.63E-05 1.45E-05 0.5868

SNP ID GeneName Chr P LM P LMI P I

fitted with VC model
rs13050325 NRIP1 21 0.0062 1.23E-05 1.0E-04
rs2331061 LANCL2 7 0.0703 0.1456 0.4471
rs1466042 GLI2 2 0.0241 1.61E-06 3.37E-06
rs11145373 VPS13A 9 1.27E-04 6.2E-04 0.7679
rs3775043 UNC5C 4 6.11E-05 2.56E-04 0.4929
rs12627409 NRIP1 21 0.0119 5.60E-06 2.38E-05

fitted with LM model
rs10519107 RORA 15 8.52E-07 3.72E-06 0.3802
rs809736 RORA 15 9.22E-07 5.84E-06 0.8961
rs4506565 TCF7L2 10 1.69E-06 4.66E-06 0.2018
rs7901695 TCF7L2 10 1.75E-06 4.30E-06 0.1729
rs12255372 TCF7L2 10 4.47E-06 9.73E-06 0.1543
rs4368343 Unknown 2 4.75E-06 2.53E-05 0.6320

fitted with LMI model
rs2677528 GLI2 2 0.0064 2.16E-06 1.55E-05
rs7978946 Unknown 12 1.04E-04 3.62E-06 0.0016
rs887370 TSHZ2 20 0.4492 4.46E-06 9.30E-07
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spline function. We can see clear nonlinear genetic effects over BMI, which indicates nonlinear

interaction between BMI and the variants. The figures in the right panel show the plot of

fitted probabilities against individual BMI values corresponding to different genotypes. We

coded the heterozygote as 0 in our model. This implies that the green curves in the two plots

correspond to the mean fitted probability when G = 0. In general, the risk of T2D increases

as BMI increases. This is consistent with our prior knowledge that the disease prevalence is

strongly associated with body weight (McCarthy[61]).

For SNP rs13050325 on chromosome 21, the allele frequency for the minor allele G is

0.2587. For SNP rs4635456 on chromosome 19, the allele frequency for the minor allele G

is 0.3771. In both cases, the overall trend for T2D risk for the baseline (corresponding to

genotype AG) increased as BMI level increases (green curve). However, individuals carrying

AA genotype had much higher chance to develop T2D than those carrying AG or GG

genotype. Man with genotype AA had the lowest risk of conferring T2D susceptibility when

BMI level was below 28 in male and below 33 in female. After the transition points, the

AA genotype triggers larger effect, resulting in higher risk of T2D. The association signals

for both LM and LM-I model are weaker than the one fitted with the VC model, leading

to potential mis-identification of these variants. The results offered personalized preventive

suggestions based upon our findings fitted with the VC model. For example, man carrying

genotype AA at this SNP locus should pay more attention to control their body weight if

their BMI level is above 28 to avoid the risk of T2D.
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Figure 2.18: The estimated varying-coefficient function and fitted probability of SNP
rs13050325 (upper panel) on chromosome 21 of female population and SNP rs4635456 (lower
panel) on chromosome 19 of male population

2.7 Discussion

It is broadly recognized that naturally occurring variations in most complex disease traits

have a genetic basis. However, the degree of variability is believed to have a strong envi-

ronmental component in addition to genetic causes for many disease traits such as obesity

and Type 2 Diabetes (Qi and Cho [62]). Recent efforts on epigenetics study reveals the

importance of epigenetic modification on complex diseases (Liu et al. [63]). These epige-
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netic changes involve major chromatin remodeling processes such as DNA methylation and

histone modification. Being the environmentally driven plasticity at the DNA level, these

structural changes at the DNA level reveal the interplay of gene-environment interaction

in the regulation of phenotype, which is increasingly recognized as the epigenetic basis of

many complex diseases (Liu et al. [63]). Large efforts have been devoted to the exploration

of epigenetic mechanisms for a better understanding of the molecular machinery underlying

complex diseases (Feinberg and Irizarry [64]). However, how environment mediates epige-

netic changes to affect phenotypic plasticity is still poorly understood, largely due to the

lack of powerful statistical methods to dissect this complicated process.

In this chapter, we proposed a novel statistical method by modeling the genotypic effect

on disease risk as a dynamic function of environment mediators. Our model is built upon

well-studied statistical varying-coefficient model implemented with the nonparametric spline

technique to estimate the varying coefficients. The model extends out previously developed

method on continuous traits to a case-control population-based design. Simulation studies

show dramatically improved power when the underlying genetic penetrance behaves nonlin-

early under certain environmental stimulus. Our model can capture the dynamic changes of

the gene functions over environmental changes, hence has particular power to tackle long-

standing genetic questions regarding gene action and phenotypic plasticity (Feinberg [44]).

Our simulation studies indicate that model mis-specification is an issue in G×E study.

The power to detect genetic signals is heavily dependent upon the models to fit the data.

Simple models are always the first choice due to their simplicity to interpret. However, if

they cannot capture the underlying functional mechanism, they suffer tremendously from

power loss. For example, if the true genetic effect does vary nonlinear across environmental

changes, fitting a simple linear model would loss power (Figure 2.3). On the other hand,
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complex models always suffer from large degrees of freedom for testing. We proposed a

sequential testing procedure to assess if a simpler model fits the data better. The real data

analysis confirms that this strategy works. For example, when testing constant shows that

there is no G×E interaction, the model with linear predictor and without interaction term

gives the smallest testing p-values (see Table 2.1 and Table 2.2). In real data analysis, one

should always start by assessing constant coefficient first, then move to test linear or varying

coefficients.

We applied our model to two Type 2 Diabetes data sets. Cornelis et al. [65] evaluated

seven statistical models to dissect G×E interactions using the same data sets. Both Cor-

nelis et al. [65] and our work treated BMI as the environmental factor. Cornelis et al. [65]

claimed that specifying BMI as a continuous covariate will lead to inflated type 1 error,

which has consequence in detecting increased number of false positives as the true signal.

They converted the continuous environment factor BMI into a binary variable prior to fur-

ther comparisons of all the 7 models. However, this conversion will result in information

loss, which might be the reason that no G×E interaction signals passed the genome-wide

significance levels for all the seven models in both data sets in their analysis (Cornelis et al.

[65]). In our approach, we allowed the nonlinear effect of BMI on Type 2 Diabetes (modeled

by function α(X)) rather than treating it as a linear function (i.e., α0 + α1X). This greatly

alleviated the type 1 error inflation compared to a model fitted with a linear function in

BMI (data not shown). In our analysis, several signals reached the genome-wide significance

level, which is a piece of convincing evidence for keeping the continuous BMI measure as an

environmental variable.

In the real data analysis, we observed strong sex-specific variants associated with T2D.

There were not much overlap between genes identified in both data sets except for SNPs
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in gene TCF7L2. Identification of SNPs in gene TCF7L2 on the pathogenesis of Type 2

Diabetes has been successfully replicated from different populations (Grant et al. [59]).

This information indicates the robustness of our model. In addition, we observed stronger

signals in the male data evidenced by seven SNPs from three genes reaching the genome-

wide significance threshold (cutoff=7.9E-8), as shown in Table (2.1). However, we observed

stronger BMI×G interaction to affect T2D in females than in males evidenced by more

nonlinear G×E interaction in the female data set (Table 2.2). We could miss these signals if

we only focused on linear predictor models. In a recent investigation of a Italian population,

Vaccaro et al. [66] found a significantly higher average BMI levels in diabetes women. So

possibly certain genes may be sensitive to high BMI level to increase T2D risk. Our model

provides a testable framework to identify the underlying genetic blueprint sensitive to obese

changes to affect T2D risk. The results obtained by our model can be applied to pathway

or gene-set enrichment analysis to identify potential sex-specific pathways for T2D.

In this chapter, we generalized the VC model for continuous quantitative response to the

case-control binary response. There is several ongoing work worthy of further investigation.

First, the model can be easily extended to other types of phenotype data, such as count data

or survival data by applying different link functions. Second, more replication studies are

needed by applying our approach to Type 2 Diabetes of different ethnic groups to further

confirm the robustness of the method. Third, it is worth noting that the interesting result

reported by Perry et al. [52] that stratification on the Type 2 Diabetes patients based on

BMI might help enrich the significance of potential susceptibility loci. We could also try

to carry out analysis to test if this hypothesis leads to any new discoveries based on the

VC model. Finally, our model can easily incorporate population stratification (PS) effect by

first doing a principle component analysis using software such as EIGENSTRAT (Price et
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al. [67]), then incorporate those PCs as covariates into the model to account for the effect

of PS.
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Chapter 3

High Dimensional Variable Selection

In Gene-Environment Interactions

3.1 Introduction

Gene-environment (G×E) interaction has been traditionally examined by assessing genetic

responses corresponding to various environmental stimuli, which provides novel insight in

elucidating the genetic basis of complex diseases, because the disease risk is not only contin-

gent on genetic risk factors, but also on the environmental pressures, as well as the interplay

between them. The environmental pressure could be either discrete or continuous. When

it comes to a G×E interaction study related to asthma, the environmental factor could be

discrete, such as smoking status (smoking v.s. non-smoking). A much more clear picture

on the interaction will be tangible if the environmental factor is evaluated on a continu-

ous scale, since we can trace the varying patterns of genetic effect responsive to changes in

environment.

Conventional statistical modelling of G×E interaction often requires a linear relationship

assumption between genetic and environmental factors, which could be violated in practice,

as pointed out in Ma et al [37] and Wu and Cui [68]. Consequently, a varying coefficient

(VC) model framework, together with a sequence of goodness-of-fit tests, were proposed in
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[37] and [68] for continuous and binary responses respectively, to track down the dynamic

features of genetic responses to environmental pressures. Because of the particular power and

flexibility of VC models to capture the variations in regression coefficients, the framework

demonstrated significant advantage over the conventional methods especially in the presence

of non-linear G×E interaction

Unlike the predominant single genetic variant based approaches dissecting G×E inter-

actions, such as the parametric methods in Guo [34], non-parametric methods in Ma et al

[37] and Wu and Cui [68], and semi-parametric methods in Chatterjee et al [69] and Maity

et al [70], we propose a variant set based framework to investigate how variants in a set

are mediated by a common environment factor to affect the phenotypic response, since it

has been increasing acknowledged the merit of set based association analysis, such as in the

gene-centric analysis in Cui et al [39] and Wu and Cui [40], gene-set analysis in Schaid et

al [71] and Efron and Tibshirani [72], as well as the pathway based analysis in Wang et al

[38]. When the number of variants within the genetic system is large, the problem can be

approached from the entry point of high dimensional variable selection. In particular, we

can select genetic variants with varying, non-zero constant and zero coefficients, which are

corresponding to scenarios of G×E interactions, no G×E interactions and no genetic effects,

respectively. To the best of our knowledge, this is the first time that the problem is tackled

from the angle of high dimension variable, on the contrary to the popular single genetic

variant based approaches coined in a hypothesis testing framework.

Through B spline basis expansion, the varying coefficient function can be separated into

constant and varying portions, respectively. Then the distinction of the 3 effects could

be achieved by penalizing the 2 portions in a two-stage iterative framework, as shown in

Tang et al.[73]. Though the asymptotic properties of the two stage estimator with adaptive

45



LASSO penalty were established in [73], the finite sample performance still has a large

margin to improve. Therefore we proposed a Smoothly Clipped Absolute Deviation (SCAD)

based approach to examine the separation of varying, non-zero constant and zero coefficient

functions. Our approach has significantly improved percentages of choosing the exact true

model and reduced error in parameter estimation. Assuming suitable regularity conditions,

we can establish the consistency in variable selection and effect separation of our estimator,

as well as the optimal convergence rates of the estimates for varying effect. Furthermore, it

can be shown that the estimate of non-zero constant coefficient enjoys the oracle property,

that is, the asymptotic distribution of the non-zero constant coefficient function is the same

as that when the true model is known in priori.

In this chapter, we describe the penalized least square estimation procedure via basis

expansion and SCAD penalty, as well as the computational algorithms. Next we present the

theoretical results including consistency in variable selection and oracle property. The merit

of the proposed approaches were demonstrated through extensive simulation study and real

data analysis. Discussions will be given at the end of the chapter. We relegate technical

proofs to the Appendix.

3.2 The proposed variable selection method

3.2.1 The penalized estimation via SCAD

Let (Xi, Yi, Zi), i = 1, . . . , n be independent and identically distributed (i.i.d.) random

vectors, then the varying coefficient (VC) model, proposed by Hastie and Tibshirani [74],

46



has the form

Yi =
d∑
j=0

βj(Zi)Xij + εi (3.1)

where Xij is the jth component of (d+1)-dimensional vector Xi with the first component Xi0

being 1, βj(·)’s are unknown varying-coefficient functions, Zi’s are the scalar index variable,

and εi is the random error such that E(ε|X,Z) = 0 and V ar(ε|X,Z) = σ2 <∞ .

The smooth functions {βj(·)}dj=0 in (3.1) can be approximated by polynomial splines.

Without loss of generality, suppose that Z ∈ [0, 1]. Let wk be a partition of the interval

[0,1], with kn uniform interior knots

wk = {0 = wk,0 < wk,1 < . . . < wk,kn < wk,kn+1 = 1}

Let Fn be the collection of functions on [0,1] satisfying (3.1) the function is a poly-

nomial of degree p or less on subintervals Is = [wk,s, wk,s+1), s = 0, . . . , Nn − 1 and

INn = [wj,Nn , wj,Nn+1). (2) the functions are p− 1 times continuous differentiable on [0,1].

Let B̄(·) = {B̄jl(·)}
Lj
l=1 be a set of normalized B spline basis of Fn. Then for j = 0, . . . , d,

the VC functions can be approximated by basis functions βj(Z) ≈
∑Lj
l=1 γ̄jlB̄jl(Z), where

Lj is the number of basis functions in approximating the functions βj(Z). By changing of

equivalent basis, the basis expansion can be reexpressed as

βj(·) ≈
Lj∑
l=1

γjlBjl(·)
.
= γj1 + B̃Tj (·)γj,∗

the spline coefficient vector γj
.
= (γj,1,γ

T
j∗)

T , and B̃j(·) = (Bj2(·), . . . , BjLj (·))
T . γj,1 and

γj∗ correspond to the constant and varying part of the coefficient function respectively. We

treat γj∗ as a group. If ‖γj∗‖2=0, then the jth predictor only has a non-zero constant effect
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and moreover, if γj,1=0, then the predictor is redundant.

To carry out variable selection separating the varying, non-zero constant, and zero effects,

we minimize the penalized least square function

Q(γ) =
1

n

n∑
i=1

Yi − d∑
j=0

L∑
l=1

γjlXijBjl(Zi)

2

+
d∑
j=1

pλ1
(‖γj∗‖2)

+
d∑
j=1

pλ2
(|γj1|)I(‖γj∗‖2 = 0)

(3.2)

where λ1 and λ2 are the penalization parameters, pλ(·) is the SCAD penalty function, defined

as

pλ(x) =


λx if 0 ≤ x ≤ λ

− (x2−2aλx+λ2)
2(a−1)

if λ < x ≤ aλ

(a+1)λ2

2 if x > aλ

(3.3)

To express (3.2) by vectors and matrices, we redefine

Q(γ) =(Y −Uγ)T (Y −Uγ) + n
d∑
j=1

pλ1(‖γj∗‖2)

+ n
d∑
j=1

pλ2(|γj1|)I(‖γj∗‖2 = 0)

(3.4)

where Y = (Y1, . . . , Yn)T , γ = (γT0 , . . . ,γ
T
d )T , Ui = (Xi0B(Zi)

T , . . . , XidB(Zi)
T )T , and

U = (UT1 , . . . , U
T
n )T . The function of the 2nd term of Q(γ) is to separate the varying and

constant effects by penalizing the L2 norm of the varying part of the coefficient functional.

The indicator functions in the 3rd term helps to penalize the variables of the constant effects.

Both γj,1 and γj,∗ will be shrunk to zero if the predictor Xj has no effect.
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3.2.2 The computational algorithms

The SCAD penalty function is singular at the origin, and do not have continuous 2nd order

derivatives, therefore the regular gradient-based optimization cannot be applied. In this

section, we develop an iterative two-stage algorithm to minimize the penalized loss function

using local quadratic approximation to the SCAD penalty. Following Fan and Li [75], in a

neighbourhood of a given positive x0 ∈ R+,

pλ(x) ≈ pλ(x0) +
p
′
λ(x0)

2x0
(x2 − x2

0)

where p
′
λ(x) = λ{I(x 6 λ) +

(aλ−x)+
(a−1)λ

I(x > λ)} for a=3.7 and x >0. Here we use a similar

quadratic approximation by substituting x with ‖γj∗‖2 and |γk1| in LQA, for k = 0, ..., d.

Therefore we have

pλ(‖γj∗‖2) ≈ pλ(‖γ0
j∗‖2) +

p
′
λ(‖γ0

j∗‖2)

2‖γ0
j∗‖2

(‖γj∗‖22 − ‖γ
0
j∗‖

2
2) (3.5)

and

pλ(|γj,1|) ≈ pλ(|γ0
j,1|) +

p
′
λ(|γ0

j,1|)
2|γ0

j,1|
(|γj,1|2 − |γ0

j,1|
2) (3.6)

The sets of predictors with varying, non-zero constant, and zero effects are termed as

V , C and Z respectively. We implement the iterative algorithm in the following two-stage

procedure. At stage 1, using the LQA (3.5) and dropping the irrelevant constant terms, we

minimize

Q1(γ) = (Y −Uγ)T (Y −Uγ) +
n

2
γTΩλ1

(γ0)γ (3.7)

where the initial spline vector γ0 is the unpenalized estimator, Ωλ1
(γ0)=diag{Ω0,Ω1, . . . ,Ωd},
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where Ω0 = 0L, Ωj =

{
0,
pTλ1(‖γ0

j∗‖2)

‖γ0
j∗‖2

, . . . ,
pTλ1(‖γ0

j∗‖2)

‖γ0
j∗‖2

}
L

for j = 1, . . . , d. Hence the esti-

mator can be iteratively obtained as

γ̂
(m)
VC =

{
UTU +

n

2
Ωλ1

(γ̂
(m−1)
VC )

}−1
UTY (3.8)

Suppose that all the predictors are in V at the beginning. The jth predictor will be moved

to C if ‖γ̂VCj∗ ‖2=0, otherwise it will stay in V .

At stage 2, using the LQA (3.6) and dropping the irrelevant constant terms, we minimize

the penalized loss only for the predictors in C:

Q2(γ) = (Y −Uγ)T (Y −Uγ) +
n

2
γTΩλ2

(γ̂VC)γ (3.9)

where Ωλ2
(γ̂VC)=diag{Ω0,Ω1, . . . ,Ωd} with Ω0 = 0L,

Ωj =

{
pTλ2(|γ̂VCj,1 |)

|γ̂VCj,1 |
I(‖γ̂VCj∗ ‖L2

= 0), 0, . . . , 0

}
L

. The estimator can be iteratively obtained

as

γ̂
(m)
CZ =

{
UTU +

n

2
Ωλ2

(γ̂
(m−1)
CZ )

}−1
UTY (3.10)

If the jth predictor is in C, then it will be moved to Z if |γ̂CZk,1 |=0, otherwise it stays in C.

We can obtain the estimator γ̂ at convergence from the iterative procedure between

the above two stages, and the estimated coefficient function in (3.1) as β̂j(z) = BT (z)γ̂j .

β̂j(z) will be a varying function in z, non-zero constant and zero if γ̂j is in V , C and Z

correspondingly.
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3.2.3 Selection of tuning parameters

In this section, we choose the tuning parametersN ,p, λ1 and λ2 from a data driven procedure.

N is the number of interior knots uniformly spaced on [0,1], p is the degree of the spline

basis. here p and N control the smoothness of the coefficient functions, while λ1 and λ2

determine the threshold for variable selection.

At the beginning, we use BIC in Schwarz [76] to choose N and p. The range for N is

[max(b0.5n
1

(2p+3) c, 1), b1.5n
1

(2p+3) c], where bxc denotes the integer part of x. The optimal

pair of N and p can be achieved via a two-dimensional grid search, according to the following

criterion:

BICN,p = log(RSSN,p) +
(N + p+ 1)

n
log(n)

where RSSN,p = (Y − Uγ̂)T (Y − Uγ̂)/n, γ̂ = (γ̂T0 ,0
T , . . . ,0T )T . Conditional on the

selected N and p, λ1 is the minimizer of

BICλ1
= log(RSSλ1

) +
dfλ1

n
log(n)

where RSSλ1
= (Y −Uγ̂λ1

)T (Y −Uγ̂λ1
)/n, γ̂λ1 is the minimizer of (3.7), and dfλ1

is the

effective degree of freedom, defined as the total number of predictors in V and C.

Conditional on γ̂λ1
, λ2 is the minimizer of

BICλ2
= log(RSSλ2

) +
dfλ2

n
log(n)

where RSSλ2
= (Y − Uγ̂λ2

)T (Y − Uγ̂λ2
)/n, , γ̂λ2

is the minimizer of (3.8), and dfλ2
is

the effective degree of freedom, defined similarly as dfλ1
.
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3.3 Asymptotic results

Here we establish the asymptotic properties of the penalized least square estimators. Without

loss of generality, we assume there are v varying coefficients as βj(·) ≡ βj(z),j = 1, . . . , v,

(c − v) non-zero constant coefficients as βj(·) ≡ βj > 0, j = v + 1, . . . , c, and (d − c) zero

coefficients as βj(·) ≡ 0, j = (c+1), . . . , d. Our asymptotic results are based on the following

assumptions.

(A1) Let Hr be the collection of all functions on the compact support [0,1] such that

the r1th order derivatives of the functions are Hölder of order b with r = r1 + r2, i.e.,

|hr1(z1)− hr1(z2)| ≤ C0|z1− z2|r2 where 0 ≤ z1, z2 ≤ 1 and C0 is a finite positive constant.

Then βj(z) ∈ Hr, j = 0, 1, . . . , v, for some r ≥ 3
2 .

(A2) The density function of the index variable Z, f(z), is continuous and bounded away

from 0 and infinity on [0, 1], i.e., there exist finite positive constants C1 and C2 such that

C1 ≤ f(z) ≤ C2 for all z ∈ [0, 1].

(A3) Let λ0 ≤ . . . ≤ λd be the eigenvalues of E[XXT |Z = z]. Then λj (k = 0, . . . , d) are

uniformly bounded away from 0 and infinity in probability. In addition, the random design

vector are bounded in probability.

(A4) For wj , the partition of the compact interval [0,1] defined as {0 = wj,0 < wj,1 <

. . . < wj,kn < wj,kn+1 = 1}, j = 0, . . . , d, there exists finite positive constant C3 such that

max(wj,k+1 − wj,k, k = 0, . . . , kn)

min(wj,k+1 − wj,k, k = 0, . . . , kn)
≤ C3

(A5) The tuning parameters satisfy k
1
2
nmax{λ1, λ2} → 0 and n

1
2k−1
n min{λ1, λ2} → ∞.

(A6) maxj{|p
′′
λ1

(|γj∗|)| : γj∗ 6= 0} → 0 as n → ∞ and maxj{|p
′′
λ2

(|γj1|)| : γj1 6= 0} → 0
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as n→∞

(A7) lim infn→∞lim infθ→0+λ
−1
1 p
′
λ1

(θ) > 0 and lim infn→∞lim infθ→0+λ
−1
2 p
′
λ2

(θ) > 0

The above assumptions are commonly used in literature of polynomial splines and variable

selections. The assumption similar to (A1) could be found in Kim [77] and Tang et al [73].

(A1) guarantees certain degrees of smoothness of the true coefficient function in order to

improve goodness of approximation. (A2) and (A3) are similar to those in Huang et al

[50, 51] and Wang et al [78]. (A4) suggests that the knot sequence is quasi-uniform on [0,1],

by Schumaker [79]. (A5-A7) are conditions on tuning parameters, of which (A5) could be

found in Tang et al [73]; (A6) and (A7) are similar to those in Fan and Li [75] and Wang et

al [78].

Theorem 1. Under the assumptions (A1-A7) and suppose kn = Op

(
n

1
2r+1

)
, then we

have

(1) β̂j(z) are nonzero constant, j = v + 1, . . . , c and β̂j(z) = 0, j = c + 1, . . . , d, with

probability approaching 1;

(2) ‖β̂j − βj‖2 = Op(n
−r

2r+1 ), j = 0, . . . , v.

Denote β∗ = (βv+1, . . . , βc)
T as the vector of true nonzero constant coefficients.

Theorem 2. Under the assumptions (A1-A7) and suppose kn = Op(n
1

2r+1 ), then with

n→∞,

√
n(β̂∗ − β∗) d−−−−→ N(0, σ2Σ−1)

where Σ is defined in the Appendix.
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3.4 Simulation

The performance of our proposed approach is demonstrated through extensive simulation

study in this section. We use the percentage of choosing the true model out of total R

replicates, or oracle percentage, to evaluate the accuracy of variable selection by identify-

ing varying, non-zero constant and zero effects. The precision of estimation is assessed by

integrated mean squared error (IMSE).

Let β̂
(r)
j be the estimator of a nonparametric function βj in the rth (1 6 r 6 R) replica-

tion, and {zm}
ngrid
m=1 be the grid points where β̂

(r)
j is evaluated. We use the integrated mean

squared error (IMSE) of β̂k(x), defined as IMSE(β̂j(z))= 1
R

∑R
r=1

1
ngrid

∑ngrid
m=1 {β̂

(r)
k (zm) −

βj(zm)}2, to evaluate the estimation accuracy of coefficient βj , and the total integrated mean

squared error (IMSE) of all the d coefficients (TIMSE), defined as TIMSE=
∑d
j=1 β̂j(z), is

used to evaluate the overall estimation accuracy. Note that IMSE(β̂j) will be reduced to

MSE(β̂j) when β̂j is a constant.

Example 3.1. We simulate data from the following VC model

Yi = β0(Zi) +
d∑
j=1

βj(Zi)Xij + εi

where the index variable Zi ∼Uniform(0,1), and the predictors Xi are generated from a

multivariate normal distribution with mean 0 and Cov(Zij , Zij′
) = 0.5|j−j

′
| for 0 ≤ j, j

′ ≤ d.

The performance is evaluated under both d=10 and 50. X
j
i , j = 0, 1, 2 are of varying

effects, X
j
i , j = 3, 4 are of non-zero constant effects, and the rest variables are redundant.

The random error εi were generated from standard normal distributions and t distribution

with 3 degrees of freedom respectively. The coefficients were set as: β0(z) = sin(2πz),

β1(z) = 2 − 3 cos{(6z − 5)π/3}, β2(z) = 3(2z − 1)3, β3(z) = 2, β4(z) = 2.5, and βj(z) = 0
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for j = 5, . . . , 10. The results are listed in Figure 3.1 and Table 3.1.
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Figure 3.1: The selection ratio of Example 3.1
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Figure 3.1 shows the selection ratio for predictors under different groups of d and error

distributions. The height of bars on the top panel of Figure 3.1 denote the selection ratio for

true positives for the first 5 predictors, and false positives for the rest predictors. Under both

standard normal and and t(3) error, compared with the method based on adaptive LASSO,

our method is capable of correctly identifying significant effect with high percentages, and

has kept a very small percentages of choosing false positive predictors. In addition, our

method has relative stable performance in terms of correct selection ratio when dimension

grows.

The oracle percentage and parameter estimation results are summarized in Table 3.1. In

Tang et al [73], MSE was computed for constant coefficients only when the corresponding

predictor is chosen with non-zero constant effect. To reflect the overall estimation precision,

we compute IMSEs for all predictors, including β4 and β5. When βj (j = 4, 5) is selected

as non-zero constant, IMSE reduces to MSE. The IMSEs will be calculated if βj (j = 4, 5)

incorrectly identified as varying. In all the pairs of d and error distribution type, the SCAD

approach demonstrates superior performance over the adaptive LASSO approach.

Example 3.2. Now we consider the simulation in genetics settings from the following VC

model

Yi = β0(Zi) +
d∑
j=1

βj(Zi)Xij + εi

where the SNP Xi was coded with 3 categories (1,0,-1) for genotypes (AA,Aa,aa) respec-

tively. We simulate the SNP genotype data based on the pairwise linkage disequilibrium(LD)

structure. Suppose the two risk alleles A and B of two adjacent SNPs have the minor allele

frequencies (MAFs) qA and qB , respectively, with LD denoted as δ. Then the frequencies

of four haplotypes can be expressed as qab = (1 − qA)(1 − qB) + δ, qAb = qA(1 − qB) − δ,
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Table 3.1: Simulation results of Example 3.1

N(0,1) error t(3) error

SCAD ALASSO Oracle SCAD ALASSO Oracle

d=10 Oracle Perc. 0.972 0.82 1 0.92 0.315 1

IMSE

β0(u) 0.0214 0.0243 0.0216 0.0398 0.0448 0.1929

β1(u) 0.0902 0.0930 0.0951 0.1166 0.1254 0.3392

β2(u) 0.0365 0.1018 0.0431 0.0764 0.2211 0.5859

β3(u) 0.0122 0.2405 0.0032 0.0753 0.6248 0.1775

β4(u) 0.0045 0.0405 0.0031 0.0183 0.1713 0.1100

TIMSE 0.1648 0.5075 0.1661 0.3282 1.3000 0.4017

d=50 Oracle Perc. 0.945 0.635 1 0.8 0.012 1

IMSE

β0(u) 0.0221 0.0230 0.0219 0.0431 0.0612 0.0426

β1(u) 0.0878 0.0896 0.0927 0.1230 0.1477 0.1253

β2(u) 0.0404 0.0551 0.0428 0.1042 0.0969 0.0751

β3(u) 0.0478 0.0776 0.0027 0.1727 0.0771 0.0105

β4(u) 0.0101 0.0165 0.0029 0.0239 0.0608 0.0083

TIMSE 0.2086 0.2966 0.1631 0.5146 2.4926 0.2619

qaB = (1− qA)qB− δ, and qAB = pApB + δ. With the Hardy-Weinberg equilibrium assump-

tion, the SNP genotype at locus A can be simulated assuming a multi-nomial distribution

with frequencies p2
A,2pA(1 − pA) and (1 − pA)2 for genotypes (AA,Aa,aa) correspondingly.

We can subsequently generate the SNP2 genotypes conditional on SNP1 can be simulated

based on the conditional probability matrix in Cui et al. [39]. The non-zero coefficients of

the model are the same as those in Example 1. The simulation with sample size 500 were

performed 500 replicates.

Figure 3.2 show the selection ratio when d=10, under different combinations of MAF and

error distributions. The height of bars is defined similarly as that in Example 1. When the

random error is standard normal, our approach has higher proportions to choose true positive

SNPs, especially those with no effect on G×E interactions, and lower proportions to choose
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false positive SNPs. When MAF increases, both approaches lead to higher selection ratios

for true positive SNPs and lower selection ratios for false positive SNPs. A similar pattern

can be observed when the error distribution follows a t(3) distribution. The performance of

both approaches is better when the error is normal. An analogous conclusion can be reached

in Figure 3.3 when d=50.

Table 3.2 presents the oracle proportions and estimation results for d=10. Under the

standard normal error, we observe the superior performance of our approach over the adap-

tive LASSO based approach in terms of both oracle percentage and estimation precision.

The estimation accuracy of our approach is pretty close to that of the true model. The

accuracy of all the 3 methods improves as MAF increases from 0.1 to 0.5. The performance

of our method under t(3) error are still comparable to that under the standard normal error,

while the ALASSO method did much worse for the t(3) error. A similar pattern can be

observed for the high dimensional case (d=50) in Table 3.3. Our approach is still powerful

in high dimensional scenario, especially under the N(0,1) random error, while the ALASSO

approach barely select the correct model.
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Figure 3.2: The selection ratio of Example 3.2, d = 10
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Figure 3.3: The selection ratio of Example 3.2, d = 50
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Table 3.2: Simulation results of Example 3.2, d = 10

N(0,1) error t(3) error

SCAD ALASSO Oracle SCAD ALASSO Oracle

pA=0.1 Oracle Perc. 0.976 0.784 1 0.72 0.268 1

IMSE

β0(u) 0.0863 0.1250 0.0891 0.3078 1.6608 0.2247

β1(u) 0.1611 0.1601 0.1667 0.3285 0.3947 0.3557

β2(u) 0.1264 0.1358 0.1238 0.4890 1.2776 0.2932

β3(u) 0.0270 0.1183 0.0192 1.3307 2.8155 0.0643

β4(u) 0.0191 0.0433 0.0174 0.2943 2.1633 0.0475

TIMSE 0.4205 0.6106 0.4162 2.9342 9.2044 0.9855

pA=0.3 Oracle Perc. 0.992 0.84 1 0.91 0.33 1

IMSE

β0(u) 0.0268 0.0297 0.0273 0.0607 0.0975 0.0601

β1(u) 0.1071 0.1074 0.1174 0.1600 0.2065 0.1746

β2(u) 0.0561 0.0551 0.0637 0.1360 0.1373 0.1320

β3(u) 0.0086 0.0271 0.0084 0.1111 0.1216 0.0237

β4(u) 0.0066 0.0118 0.0065 0.0443 0.1125 0.0222

TIMSE 0.2007 0.2404 0.2233 0.5311 1.3069 0.4126

pA=0.5 Oracle Perc. 0.98 0.846 1 0.894 0.34 1

IMSE

β0(u) 0.0213 0.0214 0.0214 0.0431 0.0485 0.0451

β1(u) 0.1044 0.1043 0.1106 0.1581 0.1721 0.1725

β2(u) 0.0497 0.0507 0.0604 0.1101 0.3270 0.1170

β3(u) 0.0077 0.0210 0.0077 0.0439 0.7984 0.0192

β4(u) 0.0063 0.0103 0.0063 0.0240 0.3082 0.0135

TIMSE 0.1895 0.2177 0.2065 0.4072 1.8768 0.3673
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Table 3.3: Simulation results of Example 3.2, d = 50

N(0,1) error t(3) error

SCAD ALASSO Oracle SCAD ALASSO Oracle

pA=0.1 Oracle Perc. 0.908 0.542 1 0.435 0.025 1

IMSE

β0(u) 0.1929 0.9911 0.0884 0.5687 1.2335 0.2209

β1(u) 0.2064 0.1988 0.1684 0.3851 0.3484 0.3340

β2(u) 0.5235 0.8382 0.1218 0.6934 0.4432 0.2614

β3(u) 2.0918 2.0345 0.0196 2.4522 0.7892 0.0484

β4(u) 0.3475 0.4798 0.0158 0.5996 0.4671 0.0445

TIMSE 3.3644 4.7239 0.4140 5.7021 8.9145 0.9092

pA=0.3 Oracle Perc. 0.986 0.642 1 0.745 0.06 1

IMSE

β0(u) 0.0289 0.0732 0.0278 0.0860 0.1970 0.0599

β1(u) 0.1107 0.1124 0.1137 0.1858 0.1974 0.1742

β2(u) 0.0817 0.1834 0.0646 0.2205 0.1768 0.1301

β3(u) 0.1083 0.4072 0.0075 0.3865 0.2018 0.0254

β4(u) 0.0229 0.0748 0.0068 0.0840 0.1099 0.0220

TIMSE 0.3526 0.9334 0.2204 1.2288 3.3013 0.4117

pA=0.5 Oracle Perc. 0.988 0.706 1 0.8 0.07 1

IMSE

β0(u) 0.0215 0.0232 0.0216 0.0450 0.0560 0.0434

β1(u) 0.1048 0.1073 0.1123 0.1551 0.1716 0.1608

β2(u) 0.0608 0.1269 0.0579 0.1754 0.1525 0.1085

β3(u) 0.0470 0.2846 0.0078 0.1681 0.1501 0.0167

β4(u) 0.0120 0.0444 0.0053 0.0480 0.0889 0.0190

TIMSE 0.2461 0.6426 0.2050 0.6492 2.8755 0.3484
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3.5 Real data analysis

We applied the method to a real dataset from a study conducted at Department of Obstetrics

and Gynecology at Sotero del Rio Hospital in Puente Alto, Chile. The initial objective of

the study was to pinpoint genetic variants associated with a binary response indicating large

for gestational age (LGA) or small for gestational age (SGA) depending on new born babies’

weight and mother’s gestational age. After data cleaning by removing SNPs with MAF less

than 0.05 or deviation from Hardy-Weinberg equilibrium, the dataset contains 1536 new

born babies with 189 genes covered by 660 single nucleotide polymorphisms (SNPs).

Mother’s body mass index (MBMI), defined as mother’s body mass (kg) divided by the

square of their height (m2), is a measure for mothers’ body shape and obesity condition.

The environment factor for a baby inside mother’s body is defined through the mother, such

as mother’s obesity condition (MBMI) or age. Due to the complicated interaction between

fetus’s genes and mother’s obesity level, the birth weight might be different for a fetus with

the same gene but under different environment conditions. The phenomenon of regular

variation in birth weight could be explained by corresponding genetic variants and how they

respond to different MBMI.

We applied both methods to the Janus kinase/signal transducers and activators of tran-

scription (JAK/STAT) signaling pathway, which has 68 SNPs covering 24 genes in our real

data. JAK/STAT signaling pathway is the main signaling mechanism for a broad range of

cytokines and growth factors in mammals [80]. Our method select the model

Y = β0(z) + βkXk + ε

where Xk corresponds to SNP 2069762, and βk is a constant, while the ALASOO method
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only identifies the varying intercept. SNP 2069762 is of non-zero constant effect, therefore

this one is a genetic risk factor associated with birthright but not sensitive to MBMI to

influence birth weight.

To further validate our result, we conducted the single SNP based analysis in Ma et al

[37] and tabulate SNPs with p-value less than 0.001 when fitting the candidate models (LM,

LMI and VC). The p-values for the overall genetic association test with the LM, LMI and

VC model are denoted as P CON, P LIN and P VC. It follows from the test on constant

coefficient that SNP 2069885 does not vary across MBMI (PP CON¡ 0.05). Consequently,

the p-value obtained from test with LM model is less than those obtained from VC and LM

model.

Table 3.4: List of SNPs with p-value < 0.001 from the Jak-STAT signaling pathway

SNP ID GeneName Location P VC P CON P LIN P LM P LMI P I

LM model

2069885 IL9 exon 0.0014 0.0913 - 7.32E-05 8.93E-05 0.0875

3.6 Discussion

The significance of G×E interactions in complex traits has stimulated waves of discussion.

A diversity of statistical models have been proposed to assess the gene effect under different

environmental exposures, as reviewed in Cornelis et al [65]. The success of genetic variant

set based association analysis, as shown in Wang et al [38], Cui et al [39], Wu and Cui

[40] and Schaid et al [71], motivates us to propose a high dimensional variable selection

approach to understand the mechanism of G×E interactions associated with complex traits.

We adopt a penalized regression method within the VC model framework to investigate how
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multiple variants within a genetic system, like the pathway, were mediated by a common

environmental factor to influence the phenotypic response.

Variable selection and parameter estimation can be achieved simultaneously within the

framework. The varying coefficient function are divided into 2 parts after B spline basis

expansion, for the non-zero constant and varying effect. We can determine if a particular

genetic variant is sensitive to environmental stimuli by examining the status of the coeffi-

cient function. Specifically, the presence of G×E interactions, no G×E interactions and no

association with the phenotype are corresponding to varying, non zero constant and zero

effects of the coefficients. A two-stage iterative procedure was developed in Tang et al [73]

to distinguish different effects. Here, we adopted the framework and carried out the separa-

tion with SCAD penalty. Asymptotic properties of the two-stage estimator were established

under suitable regularity conditions.

A comprehensive comparison between our method and that in Tang et al [73] was con-

ducted in the simulation session, in terms of two criteria, the percentage of choosing the

exact true model and the precision in parameter estimation. The estimation accuracy was

calculated as IMSE for varying coefficients and MSE for constant coefficients. In Tang et

al [73], for the predictors with non-zero constant coefficients, MSE was calculated when the

predictor is corrected identified. However, this won’t reveal the error caused by failure to

classify the coefficient as non-zero constant. Instead, we suggest calculating IMSE for all

the predictors, since IMSE reduces to MSE when the coefficient is a constant. A much more

accurate assessment on assessing the performance of the model can thus be achieved. The

advantage of our approach has been endorsed by the extensive simulation study and real

data analysis.

Both algorithms are based on local quadratic approximations (LQA) to the penalty func-
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tions, which suffers from the efficiency loss caused by repeated factorizations of large matri-

ces. LQA limits the power of the framework to dissect G×E interactions when the dimension

is large, especially in cases where p > n. We will integrate group coordinate descent (GCD)

approach into the current framework and demonstrate the merit of the new scheme in next

chapter.

3.7 Technical proofs

3.7.1 Useful notations and lemmas

For convenience, the following notations are adopted :

Ȳ = E(Y |X, T ), γ̄ = (UTU)−1UT Ȳ , β̄ = Bγ̄

γ(v) = (γT0 , . . . ,γ
T
v )T , γ(c) = (γTv+1, . . . ,γ

T
c )T , γ(d) = (γTv+1,1, . . . , γ

T
d,1)T ,

γ̃(v) = (γ̃T0 , . . . , γ̃
T
v )T , γ̃(c) = (γ̃Tv+1, . . . , γ̃

T
c )T , γ̃(d) = (γv+1,1, . . . , γd,1)T ,

Gn = (B(z1), . . . , B(zn))(B(z1), . . . , B(zn)T , ε = (ε1, . . . , εn)T

Φn = n−1∑n
i=1U(v)iU

T
(v)i

, Ψn = n−1∑n
i=1U(v)iU

T
(c)i

, Λi = U(c)i −ΨT
nΦ−1

n U(c)i

First we provide several lemmas to facilitate the proofs of Theorems 1 and 2.

Lemma A.1. Under assumptions (A1-A3), there exists finite positive constants C1 and

C2 such that all the eigenvalues of (kn/n)Gn fall between C1 and C2, and therefore, Gn is

invertible.

Lemma A.2. Under assumptions (A1-A3), for some finite constant C0, there exists

γ̃ = (γ̃T0 , . . . , γ̃
T
d )T satisfying

(1) ‖γ̃j∗‖L2
> C0, j = 0, . . . , v; γ̃j1 = βj , ‖γ̃j∗‖L2

= 0, j = v + 1, . . . , c; γ̃j = 0,

j = c+ 1, . . . , d

(2) supt∈[0,1]|βj(z)−B(z)T γ̃j | = Op(k
−r
n ), j = 0, . . . , d, where γ̃j = (γ̃j,1, γ̃

T
j∗)

T
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(3) sup
(t,x)∈[0,1]×Rd+1|XTβ(z)−U(X)

′
γ̃| = Op(k

−r
n )

3.7.2 Proofs of Theorem 1.

(A) Proof of Theorem 1(1) (Part 1)

Here we first show β̂j(z) is constant for j = v + 1, . . . , d in probability, which amounts to

demonstrating ‖γ̂vcj∗‖j = 0, j = v + 1, . . . , d with probability tending to 1, as n→∞. For

Q1(γ) =
n∑
i=1

(
Yi −UT

i γ
)2

+ n

d∑
j=1

pλ1
(‖γj∗‖) (3.11)

Let αn = n−
1
2kn + an and γ̂vc = γ̃ +αnδ. We want to show that for any given ε > 0, there

exists a large constant C such that

P
{

inf‖δ‖=CQ1(γ̂vc) ≥ Q1(γ̃)
}
≥ 1− ε (3.12)

This suggests that with probability at least 1 − ε there exists a local minimum in the ball

{γ̃ + αnδ : ‖δ‖ ≤ C}. Hence, there exists a local minimizer such that ‖γ̂vc − γ̃‖ = Op(αn).

A direct computation yields

Dn(δ) = Q1(γ̂vc)−Q1(γ̃)

= −2αnδ
n∑
i=1

[
εi +XT

1 r(zi)
]
UT
i + α2

nδ
2

n∑
i=1

UT
i Ui

+ n
d∑
j=1

[
pλ1

(‖γ̂vcj∗‖)− pλ1
(‖γ̃j∗‖)

]
≡ ∆1 + ∆2 + ∆3

(3.13)
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where rj(z) = B(z)T γ̃j − βj(z), j = 1, . . . , d and r(z) = (r1(z), . . . , rd(z))T . By the fact

E(εi|U , zi) = 0, we obtain that

1√
n

n∑
i=1

εiU
T
i δ = Op(‖δ‖) (3.14)

Recall Lemma A.1, then

1

n

n∑
i=1

XT
i r(zi)Uδ = Op(k

−r
n ‖δ‖) (3.15)

Therefore

∆1 = Op(
√
nαn‖δ‖) +Op(nk

−r
n αn‖δ‖) = Op(nk

−r
n αn)‖δ‖

We can also show that ∆2 = Op(nα
2
n)‖δ‖2. Then, by choosing a sufficiently large C, ∆1 is

dominated by ∆2 uniformly in ‖δ‖ = C. It follows from Taylor expansion that

∆3 ≤ n
d∑
j=1

[
αnp
′
λ1(‖γ̃j∗‖)

γ̃j∗
‖γ̃j∗‖

‖δj∗‖+ α2
np
′′
λ2(‖γ̃j∗‖)‖δj∗‖2(1 + op(1))

]

≤ n
√
dαnfn‖δ‖+ bnα

2
n‖δ‖2

where fn = maxj{|γ̃j∗| : γ̃j∗ 6= 0}. With assumption (A6), we can prove that ∆2 dominates

∆3 uniformly in ‖δ‖ = C. Therefore, (3.12) holds for sufficiently large C, and we have

‖γ̂vc − γ̃‖ = Op(αn).

In order to prove β̂j(z) = 0 for j = v+1, . . . , d in probability, it is sufficient to demonstrate

that γ̂vcj∗ = 0,j = v + 1, . . . , d. It follows from the definition that when max(λ1, λ2) → 0,

an = 0 for large n. Then we need to show that with probability approaching 1 as n → ∞,
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for any γ̂vc satisfying ‖γ̂vc − γ̃‖ = Op(n
−1

2kn) and some small εn = Cn−
1
2kn, we have

∂Q1(γ)

∂γj,∗
< 0, for − εn < γj,∗ < 0, j = v + 1, . . . , d

> 0, for 0 < γj,∗ < εn, j = v + 1, . . . , d

(3.16)

where γj,∗ denotes the individual component of γj∗. It’s not hard to show that

∂Q1(γ̂vc)

∂γ̂vcj,∗
= −2

n∑
i=1

Uij

[
Yi −UT

i γ̂
vc
]

+ np
′
λ1

(|γ̂j,∗|)sgn(γ̂j,∗)

= −2
n∑
i=1

Uij [εi +XT
i r(zi)]− 2

n∑
i=1

UijU
T
i [γ̃ − γ̂vc]

+ np
′
λ1

(|γ̂j,∗|)sgn(γ̂vcj,∗)

= nλ1

[
Op(λ

−1
1 n

−r+1/2
2r+1 ) + λ−1

1 p
′
λ(|γ̂j,∗|)sgn(γ̂vcj,∗)

]
(3.17)

By assumption (A5), λ−1
1 n

−r+1/2
2r+1 → 0. Then it follows from assumption (A7) that the sign

of the derivative is completely determined by that of γ̂vcj,∗. Therefore, γ̂vc, the minimizer of

Q1, is achieved at γ̂vcj∗ = 0, j = v+ 1, . . . , d. This completes the proof of Theorem 1(1), part

1. �

(B) Proof of Theorem 1 (2)

Next we establish the consistency of the varying coefficient estimator. Let αn = n−
1
2kn+an,

γ̂(v) = γ̃(v) + αnδv, γ̂(d) = γ̃(d) + αnδd, and δ = (δTv , δ
T
d )T

Q2(γ(v),γ(d)) =
n∑
i=1

(
Yi −UT

(v)iγ(v) −U
T
(d)iγ(d)

)2
+ n

d∑
j=v+1

pλ2
(|γj,1|) (3.18)
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We need to show that for any given ε > 0, there exists a large constant Cε such that

P
{

inf‖δ‖=CQ2(γ̂(v), γ̂(d)) ≥ Q2(γ̃(v), γ̃(d))
}
≥ 1− ε (3.19)

which implies that with probability at least 1 − ε there exists a local minimum in the ball

{γ̃(v) +αnδv : ‖δv‖ ≤ C} and {γ̃(d) +αnδd : ‖δd‖ ≤ C} respectively. Therefore, there exists

local minimizers such that ‖γ̂(v) − γ̃(v)‖ = Op(αn) and ‖γ̂(d) − γ̃(d)‖ = Op(αn). We have

Dn(δv, δd) = Q2(γ̂(v), γ̂(d))−Q2(γ̃(v), γ̃(d))

= −2αn

n∑
i=1

[
εi +XT

1 R(Zi)
] [
UT

(v)iδ(v) +UT
(d)iδ(d)

]

+ α2
n

n∑
i=1

[
UT

(v)iδ(v) +UT
(d)iδ(d)

]2
+ n

d∑
j=v+1

[
pλ2

(|γ̂j,1|)− pλ2
(|γ̃j,1)|

]
≡ ∆1 + ∆2 + ∆3

(3.20)

where r(z) = (r1(z), . . . , rd(z))T and rj(z) = B(z)T γ̃j − βj(z), j = 1, . . . , d.

Since E(εi|U(v),U(d), zi) = 0, we have

1√
n

n∑
i=1

εi[U
T
(v)iδ(v) +UT

(d)iδ(d)] = Op(‖δ‖) (3.21)

With Lemma A.1 we can show

1

n

n∑
i=1

XT
i r(zi)

[
UT

(v)iδ(v) +UT
(d)iδ(d)

]
= Op

(
k−rn ‖δ‖

)
(3.22)
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Combine the above two equations, we can obtain that

∆1 = Op(n
1
2αn‖δ‖) +Op(nk

−r
n αn‖δ‖) = Op(nk

−r
n αn)‖δ‖

Since ∆2 = Op(nα
2
n)‖δ‖2, it’s easy to show that by choosing a sufficiently large C, ∆1 is

dominated by ∆2 uniformly in ‖δ‖ = C. By Taylor expansion,

∆3 ≤ n
d∑

j=v+1

[
αnp
′
λ2(|γ̃j,1|)sgn(γ̃j,1)|δdj |+ α2

np
′′
λ2(|γ̃j,1|)δ2

dj(1 + o(1))
]

≤ (p− v)
1
2nαnfn‖δ‖+ bnα

2
n‖δ‖2

where fn = maxj{|γ̃j,1| : γ̃j,1 6= 0}. Recall (A6), then it follows that, by choosing an enough

large C, ∆2 dominates ∆1 uniformly in ‖δ‖ = C. Consequently (3.19) holds for sufficiently

large C, and we have ‖γ̂v − γ̃v‖ = Op(αn) and ‖γ̂d − γ̃d‖ = Op(αn). By the definition of

γcz, we have γ̂cz
(d)
− γ̃(d) = Op(αn). Then for j = 0, . . . , d

‖β̂j(zi)− βj(z)‖2 =

∫ 1

0

[
β̂j(z)− βj(z)

]2
dt

≤
∫ 1

0

[
B(z)T γ̂czj (z)−B(z)T γ̃j + rj(z)

]2
dt

=
2

n
(γ̂czj − γ̃j)

TGn(γ̂czj − γ̃j) + 2

∫ 1

0
rj(z)2dt

= ∆1 + ∆2

Recall Lemma A.1, A.2 and kn = Op

(
n

1
2r+1

)
, we can demonstrate that ∆1 = Op

(
k−1
n α2

n

)
,

∆2 = Op
(
k−2r
n

)
. ∆1 is dominated by ∆2, thus we finish the proof of Theorem 1(b). �

(C) Proof of Theorem 1(1) (Part 2)
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To show β̂j(z) = 0 for j = c + 1, . . . , d, it is sufficient to demonstrate that γ̂czj,1 = 0,

since the constancy of βj(z), j = v + 1, . . . , d was already established in (A). It follows

from the definition that when max(λ1, λ2) → 0, an = 0 for large n. Then we need to

prove that with probability approaching 1 as n → ∞, for any γ̂(v) and γ̂(d) satisfying

‖γ̂(v) − γ̃(v)‖ = Op(n
−1

2kn), ‖γ̂(d) − γ̃(d)‖ = Op(n
−1

2kn) respectively, as well as some small

εn = Cn−
1
2kn, we have

∂Q2(γ(v),γ(d))

∂γj,1
< 0, for − εn < γj,1 < 0, j = c+ 1, . . . , d

> 0, for 0 < γj,1 < εn, j = c+ 1, . . . , d

(3.23)

We can prove that

∂Q2(γ̂(v), γ̂(d))

∂γ̂j,1
= −2

n∑
i=1

U(d)ij

[
Yi −UT

(v)iγ̂(v) −U
T
(d)iγ̂(d)

]
+ np

′
λ(|γ̂j,1|)sgn(γ̂j,1)

= −2
n∑
i=1

U(d)ij

[
εi +XT

i r(zi)
]
− 2

n∑
i=1

U(d)ijU
T
(v)i [γ̃v − γ̂v]

− 2
n∑
i=1

U(d)ijU
T
(d)i [γ̃d − γ̂d] + np

′
λ(|γ̂j,1|)sgn(γ̂j,1)

= nλ2

[
Op

(
λ−1

2 n
−r+1/2

2r+1

)
+ λ−1

2 p
′
λ(|γ̂j,1|)sgn(γ̂j,1)

]
(3.24)

By assumption (A5), λ−1
2 n

−r+1/2
2r+1 → 0. Then it follows from assumption (A7) that the sign

of the derivative is completely determined by that of γ̂j,1. Therefore, γ̂cz, the minimizer of

Q2, is achieved at γ̂czj,1 = 0, j = c+ 1, . . . , d. This completes the proof of Theorem 1(1). �
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3.7.3 Proofs of Theorem 2.

In Theorem 1, we showed that both γ̂j∗ = 0, j = v + 1, . . . , c and γ̂j = 0, j = c + 1, . . . , d,

hold in probability. Then Q2 reduces to

Q2(γ(v),γ(d)) =
n∑
i=1

(
Yi −UT

(v)iγ(v) −U
T
(c)iγ(c)

)2
+ n

c∑
j=v+1

pλ2
(|γj,1|)

≡ Q2(γ(v),γ(c))

(3.25)

Since (γ̂(v), γ̂(c)) is the minimal value of Q2(γ(v),γ(c)), we obtain

∂Q2(γ̂(v), γ̂(c))

∂γ̂(v)
= −2

n∑
i=1

U(v)i

[
Yi −UT

(v)iγ̂(v) −U
T
(d)iγ̂(d)

]
= 0 (3.26)

∂Q2(γ̂(v), γ̂(c))

∂γ̂(c)
= −2

n∑
i=1

U(c)i

[
Yi −UT

(v)iγ̂(v) −U
T
(c)iγ̂(c)

]
+ n

c∑
j=v+1

p
′
λ2(|γ̂j,1|)sgn(γ̂j,1) = 0

(3.27)

By applying Taylor expansion on p
′
λ2(|γ̂j,1|) in (3.27), we have

p
′
λ2(|γ̂j,1|) = p

′
λ2(|γj,1|) + p

′′
λ2(|γj,1|)(γ̂j,1 − γj,1)[1 + op(1)]

By the fact that p
′
λ2(|γ̂j,1|) = 0 as λ2 → 0, and p

′′
λ2(|γj,1|) = op(1) from the assumption, it

follows that
∑c
j=v+1 p

′
λ2(|γ̂j,1|)sgn(γ̂j,1) = op(γ̂j,1 − γj,1) = op(γ̂(c) − γ(c)). Consequently,

we have

1

n

n∑
i=1

U(c)i

[
Yi −UT

(v)iγ̂(v) −U
T
(c)iγ̂(c)

]
+ op(γ̂(c) − γ(c)) = 0
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Following similar lines of arguments in Theorem 1, we can show

1

n

n∑
i=1

U(c)i

[
εi +XT

i r(zi) +UT
(v)i(γ(v) − γ̂(v)) +UT

(c)i(γ(c) − γ̂(c))
]

+ op(γ̂(c) − γ(c)) = 0

(3.28)

Meanwhile, a straightforward calculation yields

1

n

n∑
i=1

U(v)i

[
εi +XT

i r(ui) +UT
(v)i(γ(v) − γ̂(v)) +UT

(c)i(γ(c) − γ̂(c))
]

= 0 (3.29)

Recall the definition of Φn and Ψn, (3.29) is equivalent to

γ̂(v) − γ(v) = Φ−1
n

{
1

n

n∑
i=1

U(v)i

[
εi +XT

i r(zi)
]

+ Ψn[γ(c) − γ̂(c)]

}
(3.30)

Plugging (3.30) into (3.28) results in

1

n

n∑
i=1

U(c)i

{
εi +XT

i r(zi)−U
T
(v)iΦ

−1
n

1

n

n∑
i=1

U(v)i

[
εi +XT

i r(zi)
]}

=
1

n

n∑
i=1

U(c)i

[
U(c)i −ΨT

nΦ−1
n U(v)i

]T
(γ̂(c) − γ(c)) + op(γ̂(c) − γ(c))

(3.31)

Together with the facts that

1

n

n∑
i=1

ΨT
nΦ−1

n U(v)i

εi +XT
i r(zi)−U

T
(v)iΦ

−1
n

1

n

n∑
j=1

U(v)k[εk +XT
k r(tk)]

 = 0

and

1

n

n∑
i=1

ΨT
nΦ−1

n U(v)i

[
UT

(c)i −ΨT
nΦ−1

n U(v)i

]T
= 0
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and recall the definition of Λi, a direct computation from (3.31) leads to

[
1

n

n∑
i=1

ΛiΛ
T
i + op(1)

]
√
n(γ(c) − γ̂(c)) =

1√
n

n∑
i=1

Λiεi +
1√
n

n∑
i=1

ΛiX
T
i r(zi)

+
1√
n

n∑
i=1

ΛiU
T
(v)iΦ

−1
n

1

n

n∑
j=1

U(v)k

[
εk +XT

k r(tk)
]

= ∆1 + ∆2 + ∆3

It follows from law of large numbers that

1

n

n∑
i=1

ΛiΛ
T
i

p−−−−→ N(0,Σ)

where Σ = E
(
U(c)U

T
(c)

)
− E

{
E(ΨT

n |T )E(Φn|T )−1E(Ψn|T )
}

. Consequently,

∆2
d−−−−→ N(0, σ2Σ)

follows from central limit theorem. Because Xi is bounded and ‖r(z)‖ = op(1), we have

∆2 = op(1).Besides,
∑n
i=1 ΛiU

T
(v)i

=0 implies that ∆3 = 0. Therefore, by Slutsky theorem,

we complete the proof of Theorem 2. �
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Chapter 4

A Group Coordinate Descent

Approach For High Dimensional

Variable Selection In

Gene-Environment Interactions

4.1 Introduction

High dimensional data arises in a diversity of scientific areas, especially in the study of human

genetics as tons of data covering the entire human genome are brought by the advancement

of high-throughput genotyping technologies. Gene-environment (G×E) interaction draws

our interest due to the crucial roles it plays in elucidating the etiology of complex disease

and tracking down the disease variants. The risk of complex diseases is triggered not merely

by genetic factors, but also by the environmental exposures, as well as their interactions.

The varying coefficient (VC) model framework, initially proposed in Hastie and Tibshi-

rani [74], lends us significant flexibility in investigating genetic responses to environmental

stimuli and how gene expressions are mediated by environmental influences to increase dis-

ease predispositions, for both continuous phenotype response in Ma et al [37] and binary
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disease response in Wu and Cui [68]. The merit of the framework is especially prominent

when the penetrance effect of genetic variants are non-linear, as the VC model is powerful

to capture the dynamic fluctuations of regression coefficients.

Current methodologies on G×E interactions are mainly developed within single variant-

based framework, using either parametric methods as reviewed in Mukherjee et al [81],

semi-parametric methods as in N. Chatterjee et al [35] and Maity et al [36], non-parametric

methods as in Ma et al [37] and Wu and Cui [68], or data mining approaches such as mul-

tifactor dimension reduction (MDR) in Hahn et al [33]. Accumulation of evidence showing

the advantage of set based association analysis, such as in Neal and Sham [82], Cui et al

[39], Wu and Cui [40] and Wang et al [38], motivated us to consider the joint modeling of

a number of variants (p) within the genetic system given a common environment mediator.

When the dimension p is large, the problem can be approached from a high dimensional

variable selection perspective, within the VC model framework.

In recent years, much progress has been made on penalized regression methods for VC

models. Wang et al [78] developed SCAD penalty based method for longitudinal response.

Wang and Xia [83] considered variable selection for VC model via local constant kernel

estimation with LASSO penalty, while the penalization method in Leng [84] was proposed in

the framework of smoothing spline ANOVA models with component selection and smoothing

operator (COSSO). The number of candidate predictors for selection in those models is finite

and less than the sample size. A diversity of penalized group coordinate approaches have been

developed for high dimensional case where the dimension of model p significantly exceeds

the sample size n. See Yuan and Lin [85] for group LASSO approach, Wei et al [86] for group

adaptive LASSO approach and Breheny and Huang [87] for group SCAD approach.

In this chapter, we develop a general framework, based on the group coordinate descent
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(GCD) algorithm, to carry out variable selection for set-based G×E interactions in VC

models. GCD was generalized to group case from coordinate-wise descent algorithms which

are demonstrated to be effective in fitting penalized models such as in Friedman et al [88],

Wu and Lange [89] and Friedman et al [90]. Our framework is implemented through a

two-stage iterative procedure to separate the varying, non-zero constant and zero effect

of the predictors. It is computationally efficient especially for high dimensional problems

where p > n, since the computational complexity increases only linearly with the number of

predictor groups.

The rest of the chapter is organized as follows. First, we describe the B spline basis

expansion to the VC model. The computation algorithm via GCD with both convex and

non-convex penalties will be proposed and the convergence of the algorithm will be discussed.

Selection of the tuning parameters are examined subsequently. We demonstrate the utility

of our approach through extensive simulation studies and real data analysis. Discussions

and concluding remarks are given at the end of this chapter.

4.2 Statistical methods

Let (Xi, Yi, Zi), i = 1, . . . , n be random vectors which are independent and identically dis-

tributed (i.i.d.). Consider a varying coefficient (VC) model with p predictors

Yi =

p∑
j=0

βj(Zi)Xij + εi (4.1)

where βj(·) is the smooth varying-coefficient function, Xij is the jth component of (p+1)-

dimensional vector Xi with the first componentXi0 being 1, Zi’s are the scalar index variable,
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and εi is the model error.

The varying coefficient model helps us gain particular power to evaluate the nonlinear

responses of genetic variants to environmental incentives in gene-environment (G×E) inter-

actions [37, 68].We are interested in dissecting the penetrance of multiple genetic variants

within a system, such as gene set or pathway, under various environmental stimuli, espe-

cially when those variants are mediated by a common mediator Z to affect phenotype. The

effect of the variants can be determined by investigating the status of the coefficient function

βj(·) in (4.1). If βj(·) is a varying function of the environmental factor Z, then the G×E

interaction exists. The nonzero constancy of βj(·) indicates that the G×E interaction is not

present. The genetic variant is not associated with the response (phenotype) if βj(·) = 0. In

such a set-based G×E interaction study design, the total number of variants in the system

(p) can far exceed the sample size (n).

4.2.1 Basis expansion and penalized regression

Supposed that the coefficient function βj(z) (j = 0, . . . , p) in (4.1) can be approximated by

basis expansion such that

βj(Z) ≈
L∑
l=1

γjlBjl(Z)

where L is the number of basis functions to approximate the coefficient function, B(·) =

{Bjl(·)}Ll=1 is a set of normalized B spline basis, and γj is the corresponding spline coefficient

vector. It follows from change of basis [79] that the above basis expansion is equivalent to

βj(·) ≈
L∑
l=1

γjlBjl(·)
.
= γj1 + B̃Tj (·)γj∗
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where the spline coefficient vector γj
.
= (γj,1,γ

T
j∗)

T , and B̃j(·) = (Bk2(·), . . . , BjL(·))T . γj,1

and γj∗ correspond to the constant and varying part of the coefficient functional respectively.

Denote ‖γj‖2j = γTj Rjγj , where Rj = 1
n

∑n
i=1

[
Bj(Zi)XijX

T
ijB

T
j (Zi)

]
. Note that Rj is a

L×L positive definite matrix.If ‖γj∗‖j=0, then the jth predictor only has a constant effect.

Furthermore, if γj,1=0, then the predictor is not associated with the response. Therefore

γj∗ can be treated as a group.

To separate the varying, constant and zero effect in the procedure of simultaneous variable

selection and parameter estimation, we minimized the penalized loss function

Q(γ) =
1

n

n∑
i=1

Yi − p∑
j=0

L∑
l=1

γjlXijBjl(Zi)

2

+

p∑
j=1

pλ1
(‖γj∗‖j)

+

p∑
j=1

pλ2
(|γj1|)I(‖γj∗‖j = 0)

(4.2)

where λ1 and λ2 are the penalization parameters. The penalty function pλk
(k=1,2) in

(4.2) can be concave, such as in LASSO [91] or adaptive LASSO [92], or non-cave, such as

the smoothly clipped absolute deviation (SCAD) penalty function [75]. Tang et al [73] first

proposed the framework and established the asymptotic results for adaptive LASSO penalty

function, while Wu et al [93] demonstrated improved finite sample performance of SCAD

penalty over adaptive LASSO as well as the corresponding oracle property. Both approaches

are based on local quadratic approximations (LQA) to the penalty function pλk
(k=1,2).

However, LQA leads to a ridge-type solution dependent on repeated large matrix inversions,

which renders the algorithm not efficient for large scale regression problems. Furthermore,

as pointed out in Breheny and Huang [87], the quadratic approximation cannot benefit from

the sparsity since this approach will not yield naturally sparse solutions.
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Zou and Li [94] developed local linear approximation (LLA) to the non-convex penalty

function and demonstrated its advantage over LQA. Breheny and Huang [95] further en-

hanced the LLA by showing penalized models with non-convex penalty can be fitted effec-

tively by coordinate descent method. The main idea of GCD for (4.2) is to minimize the

penalized loss function Q with respect to an individual predictor group after basis expansion

at each step, and then cycle through all the predictor groups till convergence.

4.2.2 Computational algorithms

In this section, we extend the two-step iterative framework in [73, 93] with GCD approach.

(4.2) can be rewritten using matrix notations as

Q(γ) =(Y −Wγ)T (Y −Wγ) + n

p∑
j=1

pλ1(‖γj∗‖j)

+ n

p∑
j=1

pλ2(|γj1|)I(‖γj∗‖j = 0)

(4.3)

where Y = (Y1, . . . , Yn)T , Wi = (Xi0B(Zi)
T , . . . , XipB(Zi)

T )T , W = (WT
1 , . . . ,W

T
n )T and

γ = (γT0 , . . . ,γ
T
p )T .

We denote the subsets of predictors of varying, non-zero constant and zero effects by V ,

C, and Z respectively. The iterative algorithm is carried out in the following two steps.

At step 1, to separate the varying and nonzero constant effects, we minimize the following

penalized loss:

Q1(γ) = (Y −Wγ)T (Y −Wγ) + n

p∑
j=1

pλ1
(‖γj∗‖j) (4.4)

to obtain γVC . All the predictors are assumed to be in the subset of varying effects V initially.
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The penalization is conducted in a group manner. The jth predictor will be moved from

subset V to C if ‖γ̂VCj∗ ‖j=0, or it will stay in V .

At step 2, the penalized criterion

Q2(γ) = (Y −Wγ)T (Y −Wγ) + n

p∑
j=1

pλ2
(|γj1|)I(‖γj∗‖j = 0) (4.5)

is minimized only with regard to the predictors in set C. If Xj is in C, then it will be moved

to Z if |γ̂CZj,1 |=0, otherwise it will stay in C.

The above two steps will be iterated till convergence and we can obtain the estimator

γ̂ at convergence. The coefficient function βj(z) (j = 0, . . . , p) in (4.1) can be estimated as

β̂j(z) = BT (z)γ̂j . β̂j(z) will be a varying function in z, non-zero constant and zero if γ̂j is

in V , C and Z respectively.

4.2.2.1 Group LASSO and group adaptive LASSO

In this section, we investigate the two-step iterative algorithm based on GCD approach

using the convex penalty functions, such as LASSO and adaptive LASSO. Yuan and Lin [85]

extended LASSO to the selection of variables group-wisely. By setting pλi(x) = λi
√
Dijx

for i = 1, 2 in (4.3), where Dij is the corresponding dimension of predictor group j. Let

γ̃j = R
1
2
j γj and W̃ij = R

−1
2

j Wij . Then (4.4) and (4.5) can be reexpressed as

Q1(γ̃) =
(
Y − W̃ γ̃

)T (
Y − W̃ γ̃

)
+ n

p∑
j=1

λ1

√
D1j‖γ̃j∗‖2

and

Q2(γ̃) =
(
Y − W̃ γ̃

)T (
Y − W̃ γ̃

)
+ n

p∑
j=1

λ1

√
D2j |γ̃j1|I(‖γ̃j∗‖2 = 0)
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respectively. From now on, we drop ˜ from the formula for simplification of notation. The

dimension of predictor group, Dij , was included in the optimization, as in [85], to guarantee

that the amount of penalization is consistent with the group size, so the small groups won’t

be dominated by large groups. However, note that the number of basis functions is the same

for all the predictors in approximating the coefficient function, and the size of all the groups

in Q2 is 1, Dij can be dropped from both Q1 and Q2.

By setting the partial derivative of Q1 with respective to γj∗ to zero, we have

γ̂VCj∗ =

(
1− λ1

‖S1j‖2

)
+

S1j (4.6)

where S1j = W T
j∗
(
Y −Wγ−j∗

)
with γ−j∗ =

(
γT0 , . . . ,γ

T
j−1, (γj1,0L−1)T ,γTj+1, . . . ,γ

T
p

)T
,

Wj∗ is the part of Wj corresponding to γj∗ and (x)+ = xI{x > 0}. Similarly, setting the

partial derivative of Q2 with respective to γj1 for those j such that ‖γj∗‖2 = 0 will lead to

γ̂CZj1 =

(
1− λ2

‖S2j‖2

)
+

S2j (4.7)

where S2j = W T
j1

(
Y −Wγ−j1

)
with γ−j1 =

(
γT0 , . . . ,γ

T
j−1, (0,γj∗)

T ,γTj+1, . . . ,γ
T
p

)T
,

and Wj1 is the part of Wj corresponding to γj1.

The group adaptive LASSO estimator could be obtained by simply replacing λ1 and λ2

with λ1‖S1j‖−1
2 and λ2‖S2j‖−1

2 , in (4.6) and (4.7) respectively. (4.6) and (4.7) are essentially

the multivariate version of the soft-thresholding operator in [96]. They will be updated solely

for predictors with varying and constant effect, respectively. All the rest components of γ̂VCj

and γ̂CZj will remain as the updates in previous iteration. Both solutions have closed forms

and are exempt from any sort of approximations. Furthermore, the GCD algorithm is
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piecewise linear and therefore exceptionally well suited for high dimensional scenarios.

4.2.2.2 Group TLP and group SCAD

In group settings, the closed form solutions (4.6) and (4.7) exist not only for convex penalties

such as LASSO and adaptive LASSO, but also for non-convex penalties like truncated L1-

function penalty, TLP, in Shen et al [97], and smoothly clipped absolute deviation penalty,

SCAD, as in Fan and Li [75].

The TLP penalty function is given as

pτ,λ(x) = min(
|x|
τ
, 1)λ (4.8)

where positive tuning parameters λ and τ control adaptive model selection and the degree

of sparsity, correspondingly. As pointed out in Shen et al [97], with properly tuned τ , the

approximation error of TLP to L0 function reduces to 0, and low resolution coefficients

can be taken good care of. By resorting to difference convex (DC) approach, Shen et al

[97] turned non-convex optimization problems into its convex counterpart, thus significantly

improved the computational efficiency and stability.

Following the similar lines of derivations in Shen et al [97] and Xue and Qu [98], the closed

form solutions for (4.4) and (4.5) with group TLP penalty can be obtained by replacing λ1

and λ2 in (4.6) and (4.7) with
λ1
τ1
I
(
‖γ̂j∗‖2 ≤ τ1

)
and

λ2
τ2
I
(
‖γ̂j1‖2 ≤ τ2

)
, respectively, where

γ̂j∗ and γ̂j1 are taken as their most recent updates.

Before finding the solutions to (4.4) and (4.5) under group SCAD penalty, we briefly
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revisit the SCAD penalty function, defined in Fan and Li [75] as

pλ,a(x) =


λx if 0 ≤ x ≤ λ

− (x2−2aλx+λ2)
2(a−1)

if λ < x ≤ aλ

(a+1)λ2

2 if x > aλ

(4.9)

where λ > 0 and a > 2, and its derivative

p
′
λ,a(x) =


λ if 0 ≤ x ≤ λ

− (x−aλ)
a−1 if λ < x ≤ aλ

0 if x > aλ

(4.10)

The spirit of SCAD penalty could be explicitly conveyed by (4.10). SCAD starts its penaliza-

tion with the same rate as LASSO till the point x = λ. Then the rate continuously reduces

to 0 and will stay as 0 from the point x = aλ. Therefore SCAD is capable of correcting

the bias introduced by LASSO while still performing variable selection. The group SCAD

estimator for λ > 0 and ai > 2 (i=1,2) can be derived as

γ̂VCj∗ =



(
1− λ1

‖S1j‖2

)
+
S1j if ‖S1j‖2 ≤ 2λ

a1−1
a1−2

(
1− a1λ1

(a1−1)‖S1j‖2

)
+
S1j if 2λ < ‖S1j‖2 ≤ a1λ

S1j if ‖S1j‖2 > a1λ

(4.11)

and

γ̂CZj1 =



(
1− λ1

‖S2j‖2

)
+
S2j if ‖S2j‖2 ≤ 2λ

a2−1
a2−2

(
1− a2λ1

(a2−1)‖S2j‖2

)
+
S2j if 2λ < ‖S2j‖2 ≤ a2λ

S2j if ‖S2j‖2 > a2λ

(4.12)
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with notations defined the same as in (4.6) and (4.7), correspondingly. (4.11) and (4.12) are

of the soft-thresholding property as a1 −→∞ and a2 −→∞ respectively.

4.2.2.3 Convergence of the GCD algorithm

In the previous two sections, we obtained the closed form updates for all the 4 penalty

functions (LASSO, adaptive LASSO, TLP and SCAD) within the group settings. At each

cycle of the GCD algorithm, the minimization of Q with respect to γj (j = 1, . . . , p) is

achieved by iterating the minimization of Q1 with respect to γj∗, and Q2 with respect to

γj1 correspondingly, where Q, Q1 and Q2 are defined in (4.3), (4.4) and (4.5) respectively.

Hence, the two-stage iterative algorithm is of the descent property. Meanwhile, the value of

Q at each cycle is nonnegative. So we have the following proposition:

Proposition 1. Let γ̂(k) be the estimated spline coefficient vector at the convergence of

kth iteration. Then for the group penalties of LASSO, Adaptive LASSO, TLP and SCAD,

GCD has the property such that

Q(γ̂(k)) ≤ Q(γ̂(k−1))

Moreover, given an initial value γ̂(0), the sequence {Q(γ̂(k)), k ≥ 1} converges to a local

minimal of Q.

It follows from the above proposition that the two-stage iterative algorithm always con-

verges. The penalized loss function Q is not convex in general, otherwise the convergence

to the global optimum will be guaranteed by Proposition 1. Given that dimension p is fixed

and p < n, the asymptotic properties of the two-stage estimator were established in Tang et

al [73] with adaptive LASSO penalty, and Wu and Cui [93] with SCAD penalty. The global
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optimality of the two stage estimator for large p small n is beyond the scope of this chapter

and will not be discussed here.

4.2.3 Selection of tuning parameters

Here we propose a data-driven procedure to choose the proper tuning parameters. For group

LASSO and group adaptive LASSO, there are 4 tuning parameters, O, L, λ1 and λ2, where

the degree of the B spline basis O and the number of interior knots L uniformly spaced on

[0,1] govern the smoothness of the varying coefficient functions, while λ1 and λ2 control the

sparsity of the estimator.

At the beginning, we apply BIC in Schwarz [79] to choose O and L. The range for L can

be determined by [max(b0.5n
1

(2O+3) c, 1), b1.5n
1

(2O+3) c], with bxc denoting the integer part

of x. The optimal combination of O and L can be reached by searching the corresponding

two-dimensional grid, according to the following criterion

BICO,L = log (Y −Wγ̂)T (Y −Wγ̂) +
(O + L+ 1)

n
log(n)

for γ̂ = (γ̂T0 ,0
T , . . . ,0T )T . Conditional on the chosen N and p, we can determine optimal

λ1 by minimizing

BICλ1
= log

(
Y −Wγ̂λ1

)T (
Y −Wγ̂λ1

)
+
dfλ1

n
log(n) (4.13)

where γ̂λ1
is the minimizer of (4.4) given λ1, and dfλ1

is the effective degree of freedom,

defined as the total number of varying and non-zero constant predictors. Once we selected
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N , p and λ1, the optimal λ2 can be determined by minimizing

BICλ2
= log

(
Y −Wγ̂λ2

)T (
Y −Wγ̂λ2

)
+
dfλ2

n
log(n) (4.14)

where γ̂λ2
is the minimizer of (4.5) given λ2, and dfλ2

is defined similarly as dfλ2
.

We need to choose additional tuning parameters τ1 and τ2 for group TLP algorithm.

Slight modifications can be made to (4.13) so we can carry out a two-dimensional search for

the best pair of λ1 and τ1. Optimal λ2 and τ2 can be taken similarly.

Note that in the group SCAD algorithm, we also have two more tuning parameters a1 and

a2 than those in group LASSO and group adaptive LASSO. A search for the best combination

of λi and ai (i=1,2) over a two dimensional grid will be computationally intensive. It was

pointed out in Fan and Li [75] that as a function of a in (4.9), the Bayesian risks are not

sensitive to the choice of a. Here a is fixed as 2.2 in the subsequent analysis. We can tune

λ1 and λ2 according to (4.13) and (4.14) correspondingly.

4.3 Simulation study

In this section, we carry out Monte Carlo simulations to assess the finite sample performance

of group LASSO, group adaptive LASSO, group TLP and group SCAD in our framework

through the GCD algorithm. The accuracy of variable selection and successful separation of

the varying, non-zero constant and zero effects can be assessed by the percentage of choosing

the correct model out of the total R replicates. Integrated mean squared error (IMSE), is

adopted for evaluation of the estimation precision.

Let β̂
(r)
j be the estimator of the coefficient function βj in the rth (1 ≤ r ≤ R) replication,
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and {zk}
ngrid
k=1 be the grid points where β̂

(r)
j is evaluated. The integrated mean squared error

(IMSE) of β̂j(z) is defined as

IMSE(β̂j(z)) =
1

R

R∑
r=1

1

ngrid

ngrid∑
k=1

{β̂(r)
j (zk)− βj(zk)}2 (4.15)

(4.15) can be used to measure the estimation precision for the jth predictor. The overall

estimation accuracy is reflected by the total integrated mean squared error (TIMSE) of all

the coefficients, defined as TIMSE=
∑p
j=0 β̂j(z). Note that IMSE(β̂j) reduces to MSE(β̂j)

when β̂j is a constant.

We rewrite model (4.1) here as

Yi =

p∑
j=0

βj(Zi)Xij + εi

(i = 1, . . . , n) for describing our simulation schemes. The predictors were generated from

both continuous and discrete distributions. Two types of distribution for εi, a standard

normal distribution and a t distribution with 3 degrees of freedom, were taken. Without loss

of generality, assume the first 3 coefficients are varying, next two are constant and all the

rest coefficients are redundant. The coefficients were set as: β0(z) = 5 + 3 sin(2πz), β1(z) =

2−3 cos{(6z−5)π/3}, β2(z) = 7−7z, β3(z) = 4.5, β4(z) = 3, and βj(z) = 0 for j = 5, . . . , p.

All the simulations were carried out with sample size n = 200, p =10,100,200,400 and a total

of R =200 replicates. All the approaches use LASSO as the initial estimate.

Example 4.1. We simulate the responses from model (4.1), where the index variable

Xi ∼ Uniform(0,1), and the predictors were generated from a multivariate normal distribu-

tion with mean vector 0 and Cov(Xij , Xij′
) = 0.5|j−j

′
| for 0 ≤ j, j

′ ≤ p. The IMSE of the
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estimator obtained from all the 4 approaches and the true model were calculated. Under

the standard normal error, as p increases, group LASSO has a systematic less satisfactory

performance than the others which have relative stable and comparable performances, with

group TLP gradually establishing its advantage over the rest in terms of both oracle per-

centage and estimation precision, as shown in Table 4.1. A pretty much similar trend can be

observed in Table 4.2 when the random error was generated from t(3) distribution, though

the performance of all the procedures are slightly worse than that under the standard normal

error.
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Table 4.1: Simulation results of Example 4.1, N(0,1) error

N(0,1) error

gLASSO gALASSO gSCAD gTLP Oracle

p=10 Oracle Perc. 0.615 0.955 0.97 1 1

IMSE

β0(u) 0.1393 0.1380 0.1388 0.1492 0.1492

β1(u) 0.3199 0.1678 0.1427 0.1641 0.1669

β2(u) 0.4777 0.1539 0.1213 0.0666 0.0674

β3(u) 0.1771 0.0175 0.0122 0.0101 0.0101

β4(u) 0.0784 0.0231 0.0103 0.0081 0.0081

TIMSE 1.2022 0.5019 0.4339 0.3980 0.4017

p=100 Oracle Perc. 0.515 0.995 0.995 1 1

IMSE

β0(u) 0.1650 0.1657 0.1648 0.1587 0.1506

β1(u) 0.2302 0.1541 0.1477 0.1607 0.1374

β2(u) 0.7810 0.6678 0.6515 0.0713 0.0855

β3(u) 0.0792 0.0140 0.0176 0.0096 0.0093

β4(u) 0.0711 0.0216 0.0128 0.0082 0.0081

TIMSE 1.3308 1.0232 0.9945 0.4085 0.3909

p=200 Oracle Perc. 0.355 0.985 1 1 1

IMSE

β0(u) 0.1771 0.1761 0.1781 0.1612 0.1523

β1(u) 0.2259 0.1599 0.1595 0.1720 0.1480

β2(u) 0.8094 0.6731 0.6484 0.0764 0.0845

β3(u) 0.0812 0.0193 0.0202 0.0087 0.0089

β4(u) 0.0804 0.0271 0.0144 0.0081 0.0085

TIMSE 1.3825 1.0554 1.0206 0.4265 0.4022

p=400 Oracle Perc. 0.27 0.99 1 1 1

IMSE

β0(u) 0.2104 0.2102 0.2099 0.1654 0.1654

β1(u) 0.2514 0.1744 0.1697 0.1729 0.1748

β2(u) 0.8967 0.7930 0.7840 0.0746 0.0756

β3(u) 0.0705 0.0256 0.0273 0.0108 0.0108

β4(u) 0.0749 0.0257 0.0124 0.0072 0.0072

TIMSE 1.5188 1.2290 1.2033 0.4310 0.4339
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Table 4.2: Simulation results of Example 4.1, t(3) error

t(3) error

gLASSO gALASSO gSCAD gTLP Oracle

p=10 Oracle Perc. 0.29 0.83 0.945 0.97 1

IMSE

β0(u) 0.1929 0.1921 0.1913 0.2063 0.2066

β1(u) 0.3392 0.2198 0.2050 0.2343 0.2386

β2(u) 0.5859 0.3676 0.3358 0.1445 0.1464

β3(u) 0.1775 0.0457 0.0400 0.0333 0.0294

β4(u) 0.1100 0.0463 0.0358 0.0233 0.0211

TIMSE 1.4520 0.8856 0.8170 0.6526 0.6421

p=100 Oracle Perc. 0.01 0.74 0.965 0.98 1

IMSE

β0(u) 0.2557 0.2537 0.2551 0.2109 0.2002

β1(u) 0.2834 0.2173 0.2220 0.2370 0.2134

β2(u) 0.9739 0.8729 0.8721 0.1386 0.1544

β3(u) 0.1044 0.0538 0.0510 0.0273 0.0293

β4(u) 0.1036 0.0549 0.0402 0.0260 0.0230

TIMSE 1.8882 1.5170 1.4614 0.7184 0.6204

p=200 Oracle Perc. 0.005 0.67 0.915 0.955 1

IMSE

β0(u) 0.3046 0.2963 0.3026 0.2004 0.1999

β1(u) 0.2857 0.2077 0.2103 0.2405 0.2515

β2(u) 1.1327 1.0282 1.0327 0.1441 0.1577

β3(u) 0.0833 0.0484 0.0523 0.0256 0.0261

β4(u) 0.1156 0.0501 0.0340 0.0237 0.0212

TIMSE 2.2144 1.8028 1.6943 0.7474 0.6564

p=400 Oracle Perc. 0 0.57 0.905 0.96 1

IMSE

β0(u) 0.3481 0.3428 0.3398 0.2097 0.1955

β1(u) 0.2902 0.2219 0.2279 0.2522 0.2433

β2(u) 1.2438 1.1509 1.1543 0.1555 0.1369

β3(u) 0.0886 0.0513 0.0491 0.0282 0.0239

β4(u) 0.1170 0.0482 0.0346 0.0227 0.0223

TIMSE 2.3943 1.9293 1.8288 0.7677 0.6220
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Example 4.2. Now the simulation in a genetic setup is considered. The responses were

generated from model (4.1) with SNP Xj (j = 0, . . . , p) coded as 3 categories (1,0,-1) for

genotypes (AA,Aa,aa) respectively.

The LD based simulation scheme was adopted to generate the genotype data. Let pA

and pB be the minor allele frequencies (MAFs) of two risk alleles A and B for two adjacent

SNPs, with linkage disequilibrium denoted as δ. The frequencies of four haplotypes are

pab = (1−pA)(1−pB)+δ, pAb = pA(1−pB)−δ, paB = (1−pA)pB−δ, and pAB = pApB+δ.

Assuming the Hardy-Weinberg equilibrium, we can simulate the SNP genotype at locus A

from a multi-nomial distribution with frequencies p2
A,2pA(1−pA) and (1−pA)2 for genotypes

(AA,Aa,aa) respectively. SNP genotype at locus B conditional on that at locus A can be

simulated based on the conditional probability matrix in Cui et al. (2008)[39].

Table ??–?? summarize the estimation results in example 2. For all the four approaches,

as the minor allele frequency (MAF) pA goes up from 0.1 to 0.5, the proportion of choos-

ing the correct model generally increases, and the estimation error reduces. Group LASSO

consistently performed worse than its counterparts in terms of the two criteria. Under the

standard normal error, when p =10, the difference in performance among the 3 different

MAFs, especially between MAF 0.3 and 0.5, is not significant for all the four methods.

However, as p increases, dramatic differences are observed. Starting from p=100, all the ap-

proaches can barely choose the exact true model as pA=0.1, and the corresponding TIMSEs

are quite large. Given MAF 0.3, the performance of all the approaches except group TLP

in very high dimensions,such as p=200 and 400, fall way behind that given MAF 0.5. The

performance of group TLP is relative stable compared to the other 3 methods, especially

when the dimension is extremely high, as p=400.

We observe similar patterns when the procedures are assessed under t error with 3 de-
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grees of freedom. In general, the performances of all the procedures under standard normal

error are superior. Group TLP outperforms the others in all the scenarios.

Table 4.3: Simulation results of Example 4.2, p = 10, n = 200, N(0,1) error

N(0,1) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0.44 0.795 0.935 0.96 1

IMSE

β0(u) 0.7266 0.7252 0.7574 0.3981 0.3895

β1(u) 1.1823 1.5831 0.6841 0.4124 0.4861

β2(u) 1.8650 1.3619 0.7610 0.3528 0.3777

β3(u) 0.4954 0.2529 0.1010 0.0615 0.0573

β4(u) 0.2002 0.2767 0.0650 0.0415 0.0416

TIMSE 4.5192 4.2036 2.3704 1.2934 1.3521

pA=0.3 Oracle Perc. 0.615 0.98 0.99 0.985 1

IMSE

β0(u) 0.2152 0.2131 0.2122 0.1785 0.1783

β1(u) 0.4975 0.2814 0.2064 0.2204 0.2277

β2(u) 1.0013 0.3706 0.2660 0.1237 0.1259

β3(u) 0.4007 0.0467 0.0268 0.0245 0.0237

β4(u) 0.1559 0.0665 0.0254 0.0195 0.0195

TIMSE 2.2862 0.9808 0.7424 0.5699 0.5751

pA=0.5 Oracle Perc. 0.73 0.97 0.99 0.99 1

IMSE

β0(u) 0.2152 0.2131 0.2122 0.1785 0.1783

β1(u) 0.4975 0.2814 0.2064 0.2204 0.2277

β2(u) 1.0013 0.3706 0.2660 0.1237 0.1259

β3(u) 0.4007 0.0467 0.0268 0.0245 0.0237

β4(u) 0.1559 0.0665 0.0254 0.0195 0.0195

TIMSE 2.2862 0.9808 0.7424 0.5699 0.5751
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Table 4.4: Simulation results of Example 4.2, p = 10, n = 200, t(3) error

t(3) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0.33 0.54 0.705 0.79 1

IMSE

β0(u) 1.6609 1.6954 1.7427 1.0722 0.9165

β1(u) 1.4901 2.3887 1.7687 0.9836 1.0244

β2(u) 1.9043 2.2271 1.6040 0.9273 0.9033

β3(u) 0.5425 0.6404 0.3444 0.2340 0.1560

β4(u) 0.4238 0.6674 0.2963 0.1649 0.1261

TIMSE 6.1169 7.6370 5.8026 3.5783 3.1263

pA=0.3 Oracle Perc. 0.25 0.895 0.935 0.955 1

IMSE

β0(u) 0.3432 0.3406 0.3432 0.2534 0.2491

β1(u) 0.5782 0.4111 0.4861 0.3823 0.3835

β2(u) 1.1033 0.6824 0.7795 0.3340 0.3098

β3(u) 0.3668 0.0949 0.0828 0.0825 0.0706

β4(u) 0.2144 0.1224 0.0648 0.0592 0.0522

TIMSE 2.6777 1.6856 1.7235 1.1496 1.0652

pA=0.5 Oracle Perc. 0.23 0.845 0.96 0.965 1

IMSE

β0(u) 0.3432 0.3406 0.3432 0.2534 0.2491

β1(u) 0.5782 0.4111 0.4861 0.3823 0.3835

β2(u) 1.1033 0.6824 0.7795 0.3340 0.3098

β3(u) 0.3668 0.0949 0.0828 0.0825 0.0706

β4(u) 0.2144 0.1224 0.0648 0.0592 0.0522

TIMSE 2.6777 1.6856 1.7235 1.1496 1.0652

95



Table 4.5: Simulation results of Example 4.2, p = 100, n = 200, N(0,1) error

N(0,1) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0 0 0.005 0.015 1

IMSE

β0(u) 5.9486 5.9577 5.9433 4.8575 0.4180

β1(u) 2.1664 4.2821 5.0012 1.0952 0.5239

β2(u) 2.5871 2.6322 2.6478 0.9247 0.5210

β3(u) 7.4511 0.5889 3.4381 0.0965 0.0624

β4(u) 4.1242 0.6425 2.0292 0.0693 0.0508

TIMSE 11.978 14.4393 14.2111 8.7643 1.5761

pA=0.3 Oracle Perc. 0.01 0.565 0.82 0.99 1

IMSE

β0(u) 1.0107 1.0204 1.0199 0.1690 0.1666

β1(u) 0.5794 0.4570 0.5103 0.2204 0.2202

β2(u) 1.1485 0.9477 1.5749 0.1567 0.1237

β3(u) 0.2246 0.0596 0.0674 0.0233 0.0232

β4(u) 0.1854 0.1118 0.0457 0.0153 0.0153

TIMSE 3.2486 2.6329 3.2207 0.5847 0.5489

pA=0.5 Oracle Perc. 0.55 1 1 1 1

IMSE

β0(u) 0.1593 0.1588 0.1606 0.1561 0.1561

β1(u) 0.3242 0.2071 0.2637 0.1953 0.2017

β2(u) 0.9660 0.8267 1.1570 0.1088 0.1145

β3(u) 0.1357 0.0330 0.0360 0.0197 0.0197

β4(u) 0.1328 0.0588 0.0198 0.0142 0.0143

TIMSE 1.7231 1.2843 1.6370 0.4942 0.5063
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Table 4.6: Simulation results of Example 4.2, p = 100, n = 200, t(3) error

t(3) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0 0 0 0 1

IMSE

β0(u) 6.4423 6.4941 6.4759 5.3221 0.8603

β1(u) 2.2632 3.5782 4.2976 1.9710 0.9942

β2(u) 2.6220 3.3151 3.2927 1.9261 0.9143

β3(u) 0.6904 1.0206 0.3533 0.2403 0.1557

β4(u) 0.6988 1.5284 0.6974 0.1799 0.1369

TIMSE 13.0771 16.6350 15.6337 12.0716 3.0614

pA=0.3 Oracle Perc. 0 0.065 0.27 0.86 1

IMSE

β0(u) 1.9184 1.9154 1.9258 0.3391 0.2511

β1(u) 0.6734 0.6233 0.8530 0.4326 0.3638

β2(u) 1.3878 1.4093 2.1560 0.5030 0.3218

β3(u) 0.2408 0.1414 0.1447 0.0698 0.0650

β4(u) 0.2472 0.1723 0.0857 0.0474 0.0439

TIMSE 5.1465 5.2540 5.9097 2.0213 1.0456

pA=0.5 Oracle Perc. 0.035 0.725 0.935 0.985 1

IMSE

β0(u) 0.2407 0.2443 0.2407 0.2057 0.2088

β1(u) 0.3715 0.2827 0.3359 0.3258 0.3332

β2(u) 1.3128 1.2550 1.4448 0.2307 0.2403

β3(u) 0.1391 0.1130 0.1130 0.0507 0.0523

β4(u) 0.1893 0.1120 0.0783 0.0361 0.0346

TIMSE 2.5354 2.1107 2.2240 0.9181 0.8692
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Table 4.7: Simulation results of Example 4.2, p = 200, n = 200, N(0,1) error

N(0,1) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0 0 0 0 1

IMSE

β0(u) 6.4035 6.4500 6.4518 5.0816 0.3961

β1(u) 2.1184 4.3209 4.9639 1.1121 0.4109

β2(u) 2.3654 2.6648 2.8046 0.8625 0.3500

β3(u) 0.7732 0.4838 0.3425 0.0938 0.0586

β4(u) 0.4501 0.5315 0.1985 0.5025 0.0426

TIMSE 12.2412 14.8546 14.7897 8.9683 1.2582

pA=0.3 Oracle Perc. 0 0.075 0.345 0.98 1

IMSE

β0(u) 1.8631 1.8954 1.8833 0.1987 0.1703

β1(u) 0.6342 5.5156 0.8991 0.2307 0.2113

β2(u) 1.3076 1.2343 2.3473 0.1570 0.1374

β3(u) 0.2365 0.0549 0.0628 0.0238 0.0230

β4(u) 0.2280 0.1338 0.0575 0.0192 0.0193

TIMSE 4.4824 4.0975 5.2837 0.6483 0.5613

pA=0.5 Oracle Perc. 0.44 0.985 1 1 1

IMSE

β0(u) 0.1588 0.1594 0.1583 0.1525 0.1525

β1(u) 0.2979 0.2000 0.2639 0.2003 0.2064

β2(u) 1.0129 0.9003 1.2411 0.1141 0.1157

β3(u) 0.1180 0.0343 0.0433 0.0178 0.0178

β4(u) 0.1310 0.0676 0.0216 0.0158 0.0159

TIMSE 1.7286 1.3615 1.7282 0.5006 0.5083
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Table 4.8: Simulation results of Example 4.2, p = 200, n = 200, t(3) error

t(3) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0 0 0 0 1

IMSE

β0(u) 7.8770 7.8787 7.8986 5.628 0.8906

β1(u) 2.237 3.5923 4.4315 2.0438 1.0194

β2(u) 2.542 3.4581 3.4735 2.2584 0.8541

β3(u) 0.8399 0.8507 0.5609 0.2691 0.1614

β4(u) 0.7117 1.4850 0.5707 0.1665 0.1282

TIMSE 14.7035 18.344 17.356 12.8456 3.0536

pA=0.3 Oracle Perc. 0 0 0.015 0.705 1

IMSE

β0(u) 3.0900 3.1150 3.1170 0.7914 0.2705

β1(u) 0.7765 0.7070 1.0440 0.5144 0.4026

β2(u) 1.4769 1.6380 2.6080 0.5512 0.3126

β3(u) 0.2164 0.1412 0.1220 0.0745 0.0715

β4(u) 0.3116 0.2076 0.1040 0.0536 0.0480

TIMSE 6.5667 6.8139 7.2260 2.5457 1.1053

pA=0.5 Oracle Perc. 0 0.695 0.915 0.96 1

IMSE

β0(u) 0.2872 0.2928 0.3075 0.2178 0.2089

β1(u) 0.4168 0.3450 0.3626 0.3954 0.3450

β2(u) 1.4403 1.4106 1.5519 0.2830 0.3179

β3(u) 0.1521 0.0960 0.1116 0.0578 0.0553

β4(u) 0.2092 0.1303 0.0670 0.0557 0.0461

TIMSE 2.9052 2.5833 2.4056 1.0997 0.9732
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Table 4.9: Simulation results of Example 4.2, p = 400, n = 200, N(0,1) error

N(0,1) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0 0 0 0 1

IMSE

β0(u) 6.9606 6.8309 6.8046 5.1098 0.3685

β1(u) 2.1276 4.0791 4.8938 1.2151 0.4558

β2(u) 2.4348 2.8612 2.8865 1.1964 0.3100

β3(u) 0.6920 0.6841 0.4083 0.1016 0.0510

β4(u) 0.5384 0.9365 0.2659 0.0713 0.0392

TIMSE 12.8890 15.8640 15.3025 9.3504 1.2246

pA=0.3 Oracle Perc. 0 0 0.095 0.88 1

IMSE

β0(u) 2.783 2.792 2.793 0.421 0.181

β1(u) 0.675 0.572 0.810 0.313 0.243

β2(u) 1.422 1.467 2.753 0.364 0.135

β3(u) 0.236 0.081 0.090 0.030 0.023

β4(u) 0.278 1.763 0.090 0.021 0.017

TIMSE 5.713 5.596 6.643 1.258 0.600

pA=0.5 Oracle Perc. 0.29 0.985 1 0.995 1

IMSE

β0(u) 0.1817 0.1825 0.1831 0.1558 0.1551

β1(u) 0.2926 0.2092 0.2928 0.2169 0.2232

β2(u) 1.1169 1.0209 1.3567 0.1325 0.1162

β3(u) 0.1110 0.0401 0.0426 0.0205 0.0204

β4(u) 0.1392 0.0676 0.0250 0.0152 0.0152

TIMSE 1.8554 1.5204 1.9003 0.5409 0.5300
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Table 4.10: Simulation results of Example 4.2, p = 400, n = 200, t(3) error

t(3) error

gLASSO gALASSO gSCAD gTLP Oracle

pA=0.1 Oracle Perc. 0 0 0 0 1

IMSE

β0(u) 8.3537 8.1152 8.2099 6.0230 0.9324

β1(u) 2.1540 3.5756 4.5341 2.1497 0.9725

β2(u) 2.5676 3.3866 3.4152 2.5080 0.9093

β3(u) 0.8431 0.6975 0.4919 0.2443 0.1773

β4(u) 0.7683 1.3577 0.6356 0.1642 0.1549

TIMSE 15.1398 18.0344 17.5993 13.2892 3.1463

pA=0.3 Oracle Perc. 0 0 0 0.425 1

IMSE

β0(u) 4.127 4.114 4.123 1.968 0.279

β1(u) 0.812 0.681 0.940 0.701 0.427

β2(u) 1.562 1.815 2.985 0.823 0.305

β3(u) 0.264 0.187 0.162 0.114 0.071

β4(u) 0.359 0.244 0.143 0.076 0.057

TIMSE 7.973 8.427 8.711 5.132 1.146

pA=0.5 Oracle Perc. 0 0.61 0.935 0.97 1

IMSE

β0(u) 0.3306 0.3289 0.3317 0.1991 0.2016

β1(u) 0.4178 0.3265 0.3698 0.3515 0.3564

β2(u) 1.4987 1.4649 1.6647 0.3334 0.2950

β3(u) 0.1294 0.0916 0.0888 0.0485 0.0468

β4(u) 0.2179 0.1178 0.0518 0.0457 0.2438

TIMSE 3.084 2.5707 2.5263 1.1916 0.9435
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4.4 Real data analysis

We used the genome-wide association data from Genetic Analysis Workshop (GAW) 18 for

142 unrelated subjects to illustrate the utility of our approach. It is widely recognized that

individual’s blood pressure is related to age. The aim of our study is to track down the

genetic variants that can interpret the variation in Diastolic Blood Pressure (DBP) caused

by non-linear penetrance effect over time (age). The environment condition is defined as

age, and the blood pressure, measured as DBP, might not be the same for an individual with

the same gene but of different environmental exposures. This is triggered by the complex

interplay between the age and gene effects.

The dataset was cleaned by removing SNPs with MAF less than 0.05 or departure from

Hardy-Weinberg equilibrium. Subjects with missing DBP or age, as well as with more than

1/3 missing genotypes, were excluded from the dataset before final analysis. We take a subset

of 250 SNPs from chromosome 9 and imputed the missing value before the final analysis.

We applied our approach to the data and select the model

Y = β0(z) + βj1Xj1 + βj2Xj2 + ε

where Xj1 and Xj2 correspond to SNP rs723877 and rs10972462, respectively. Both coeffi-

cients βj1 and βj1 are varying. Thus we identified two genetic risk variants that are sensitive

to age to affect blood pressure.

A cross validation examination, the single SNP based analysis in Ma et al [37], was

performed for SNPs on chromosome 9. From the over all association test corresponding to

LM, LMI and VC models, we calculated p-values denoted as P CON, P LIN and P VC. SNPs

with at least one of the three p-values less than 5E-06 were tabulated in Table 4.11. For SNP
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rs10972462, testing on the constant coefficients implies that the coefficient function of this

SNP does change across age, as P CON¡ 0.05. Further test on linear structure indicates that

rs10972462 has a linear interaction with age (P LIN¿ 0.05). Hence it makes sense that the

p-value obtained from the test corresponding to LMI model is smaller than its counterpart

with LM and VC model. A similar observation can be concluded for SNP rs723877.

Table 4.11: List of SNPs with p-value < 5E-06 on Chromosome 9

SNP ID GeneName Location P VC P CON P LIN P LM P LMI P I

LMI model

rs723877 UNC13B Chr9 6.52E-06 0.00649 0.12311 2.83E-05 2.24E-06 0.00357

rs10972462 UNC13B Chr9 2.13E-06 0.00208 0.07052 3.01E-05 1.24E-06 0.00175

4.5 Discussion

A growing number of pieces of evidence have demonstrated the importance of G×E interac-

tions in complex traits, as the responses of genetic factors to environmental exposures play

a crucial role in affecting disease risks and variations of quantitative traits. Many statistical

methods have been developed to explore G×E interactions. The linear assumption of gene

effect under environmental stimuli on which these methods rely is often violated in practice.

Ma et al [37] and Wu and Cui [68] relaxed the linear assumption to allow for a non-linear

genetic penetrance effect for continuous and binary disease phenotype, respectively. The true

effect of G×E interactions is captured by the model itself, through a sequence of likelihood

ratio tests.

A common feature of these methods, including Ma et al [37] and Wu and Cui [68],

and those reviewed in Cornelis et al [65], is that the identification of the presence of G×E

interactions is casted in a single genetic variant based hypothesis testing framework. To
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our best knowledge, Wu and Cui [93] for the first approached the problem from a high

dimensional variable selection perspective. Specifically, within the VC model framework, the

presence of G×E interactions, no G×E interactions and no association with the phenotype

can be determined by separating the VC coefficient functions after B spline basis expansion

approximations as varying, non-zero constant and zero, correspondingly.

The effect separation and variable selection in Wu and Cui [93] is attained by penalized

estimation on the model parameters so some varying coefficients are continuously shrunk to

a non-zero constant or zero. The procedure is dependent on local quadratic approximations

(LQA) to SCAD penalty function. However, LQA leads to loss in efficiency and accuracy,

especially when dimension p is large, due to frequent factorizations of large matrices. The

local linear approximation (LLA) to penalty functions proposed in Zou and Li [94] improved

LQA but then was shown outperformed by coordinate descent method (CD), as in Breheny

and Huang [87]. In this work, we integrate the group version of CD, or GCD, in the two-stage

iterative procedure to exploit G×E interactions in a high dimensional setting.

The most prominent character of GCD is the penalized objective function is optimized

over one individual predictor group at a time, so the computational complexity only increase

linearly with the dimension p. This attribute ensures the superior performance of our frame-

work. We examined both convex (LASSO, adaptive LASSO) and non-convex (TLP, SCAD)

penalty functions. Extensive simulation results manifest that all the penalty except LASSO

perform satisfactorily, and TLP excels in all the scenarios. As p grows from low to very

high dimensions, the performance of approaches with all penalty functions remain relative

stable, though slight drops was observed. The phenomenon indicates the advantage of our

framework from another perspective.
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Chapter 5

Concluding Remarks

It has been widely recognized that the naturally occurring variations in most complex disease

traits are not merely explained by genetic factors, but also can be understood from the

mechanism of genetic responses to environmental mediators. G×E interactions, the genetic

control of the pattern to environmental stimuli, shed novel light on examining the trait

variations. This dissertation focuses mainly on developing powerful statistical methods to

tackle the challenges originated from G×E interactions.

In chapter 2, we developed a new statistical approach to extend the varying coefficient

model for continuous quantitative response in our previous work to the binary disease re-

sponse. The varying coefficients were estimated by the nonparametric B spline method due

to its computational expediency and nice asymptotic properties. Our scheme has particular

advantage in hunting down the fluctuation in gene functions across environmental changes.

A significant boost in power were indicated in the simulation study when underlying pene-

trance effect of genetic variants is non-linear.

The simulation results also show that when the model for underlying mechanism of G×E

interactions is misspecified, VC model may not have the higher power than LM and LMI

models, since it is much more complex and needs large degrees of freedom for hypothesis

testing. To determine which model fits the data more appropriately, we developed a sequen-

tial testing scheme. Our scheme is applied to two Type 2 Diabetes studies by first evaluating

105



constant coefficients, then linear and varying coefficients. The novel disease signals captured

by VC model in our framework could be missed if our focus is restricted to linear model

only.

A broad spectrum of available methodologies in exploring G×E interactions are coined

within single genetic variant based hypothesis testing framework. Set based association

study, such as the gene-centric, gene-set and pathway based analysis, has continued to soar

in popularity as its advantage has increasingly been acknowledged. In chapter 3, we proposed

a variant set based framework to examine how variants in a genetic system are mediated

by a common environment factor to influence quantitative phenotypic response. We tackle

the issue from a high dimensional variable selection standpoint. Specifically, we can identify

the sensitivity of genetic variants to environment stimuli, which is tantamount to determine

the coefficient function as varying, non-zero constant and zero, corresponding to cases of

existence of G×E interactions, no G×E interactions and no genetic effects.

The procedure was implemented in a two stage iterative framework. We established the

selection consistency and oracle properties of the penalized estimator with SCAD penalty,

and demonstrated dramatic improvement in finite sample performance over the adaptive

LASSO in simulation study, in terms of oracle percentage and estimation accuracy. The

application of our approach to the JAK/STAT signaling pathway in LGA/SGA study cor-

rectly select the risk SNP without G×E effect. This framework is critically dependent

on local quadratic approximations (LQA). Because of repeated factorizations of matrices,

significance loss in computational efficiency and estimation precision will be caused when

dimension is large, especially in scenarios of p > n.

To overcome this issue, we developed the group coordinate descent (GCD) approach

within the two-stage iterative framework in chapter 4. After basis expansion, the penalized
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loss function is minimized with regard to single predictor group at a time, and all the

predictor groups are cycled until convergence of the algorithm. Therefore, the computational

complexity only grows linearly with dimension p. Through extensive simulation study with

different penalty functions (LASSO, adaptive LASSO, TLP and SCAD), we demonstrated

the merit of this framework. Our approach yields high oracle percentages and estimation

precision even when dimension p is much larger than sample size n.

The main objective of this dissertation is to develop novel statistical methodology for the

elucidation of complicated machinery in G×E interactions. By implementing different link

functions, our framework on investigating the non-linear G×E interactions can be readily

extended to different types of phenotypic responses such as count or survival outcomes.

We can also try to test if the novel hypothesis in Perry et al [52] that the significance of

potential risk loci could be enhanced by the stratification of patients with Type 2 Diabetes

based on BMI will result in any new findings within our framework. To the best of our

knowledge, this dissertation first proposed the scheme of approaching G×E interactions

from a high dimensional variable selection perspective. Generalizations of our framework to

binary disease response in case control association study and survival response are currently

undergoing. The selection consistency and oracle property when dimension of predictors p

exceeds the sample size n for the procedure will also be examined. It is worth noting that

to explore G×E interactions in ultra-high dimensional feature space, we can integrate the

sure independence screen (SIS) procedure in Fan and Lv [99] into our framework. Relevant

investigations will be carried out in the near future.
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