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ABSTRACT

MATCHINGS AND COVERINGS
FOR GRAPHS

By
Daniel Huang-Chao Meng

In graph theory, an extensive amount of research has
been devoted to the study of maximum matchings, namely of
sets of independent edges or independent vertices which
have the maximum cardinality possible. Similarly much
attention has been given to covering properties, that is to
sets of edges which cover all the vertices of a graph, or
to sets of vertices which cover all the edges of a graph
and in which the sets have the minimum possible cardinality.

In this thesis the basic notions of matchings and
coverings are extended to maximal matchings and minimal
coverings, and the interrelations between matchings and
coverings are investigated. A well known theorem of Gallai,
which relates minimum covers and maximum matchings is
extended in various ways.

In particular a ratio called the edge Gallai ratio and
one called the vertex Gallai ratio are introduced, and

facilitate the study of matchings and coverings. Precise
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upper and lower bounds are obtained for these ratios.

A final section is devoted to generalizations of the
concepts of edge dominating numbers and vertex dominating
numbers.

There are essentially twelve principal graphical
parameters discussed in this thesis, and a useful table is
provided listing their values for numerous well known graphs

and classes of graphs.
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CHAPTER 1

Section 1.1
INTRODUCTION

In graph theory certain concepts have been emphasized
and extensively studied. Examples which readily come to
mind are the genus of a graph, which might more appropriately
be called the minimum genus, the edge matching number asso-
ciated with maximum matchings, and the edge covering number
associated with minimum edge covers. Recently it was found
fruitful to consider the concept of the maximum genus of a
graph [16].

As Professor Branko Grunbaum [13] has remarked, "People
are too frequently preoccupied with maximum matchings and
minimum coverings. It is certain that a non-discriminatory
approach should lead to a bevy of new results on matchings
and coverings and in many other areas of graph theory."”

This thesis has been motivated by such considerations, and
we investigate certain general properties of matchings and
coverings and find that it is possible to provide meaningful
definitions for minimum matchings and maximum coverings.

Some results on minimum matchings have already been noted




by Granbaum. We extend these results to arbitrary matchings
and coverings.

In many areas of graph theory, one could see if useful
and meaningful results could be obtained by a change in the
point of view, such as replacing the word "maximum” by
"minimum" or vice-versa. This certainly opens a new door
to the interested researcher. Until recently, general
matchings and coverings have not been carefully examined,
since it appears that almost the entire emphasis has been
placed on maximum matchings and minimum coverings.

Definitions of terms as well as some of the notation
employed in this thesis are presented in Section 1.2, A
survey of known results related to the material of this
thesis is presented in Chapter 2.

The first section of Chapter 3 discusses edge matchings,
and a condition for a matching to be a minimum. The next
section determines non-trivial lower bounds for the number
of edges in a minimum matching in terms of the maximum
degree A(G) of G. These bounds differ when the minimum
degree 6(G) > 1 and when 6(G) > 2. Section 3.3 deals with
the enumeration of minimum matchings for n-th subdivision
graphs. Precise formulas are obtained for the number of
edges in such matchings.

In Chapter 4, a discussion is made of edge coverings.

Certain general properties of maximum coverings are




developed, and in Section 4.2 an upper bound for the number
of edges in a maximum cover is given in terms of a degree
sequence. In Section 4.3 a sufficient condition for a
covering to be a maximum is stated and proved.

Chapter 5 deals with the inter-relationship between
matchings and coverings. In Section 5.1 certain graphs
of Gallai type relative to matchings or coverings are char-
acterized. In Section 5.2 we define an edge Gallai ratio
for a graph Q and obtain sharp upper and lower bounds for
this ratio.

In Chapter 6, we extend some of the ideas developed
for edge matchings and edge coverings to independent sets
of vertices and to vertex coverings. In Section 6.1 an
extension of Gallai's theorem is obtained. This result is
that for any graph G of order p, aOU(G) + BOL(G) o PowyIn
contrast with the case of edge matchings and edge coverings,
where all values between the minimum and the maximum values
of the parameters are assumed, for vertex coverings and
independent set of vertices "gaps" may occur in the para-
meter values. In Section 6.2 we define a vertex Gallai
ratio for a graph G and obtain upper and lower bounds for
this ratio.

In Chapter 7, dominating numbers are discussed, and
edge dominating sets and vertex dominating sets are in-

troduced. The relation between minimal edge dominating
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sets and edge matchings and also between minimal vertex
dominating sets and independent sets of vertices are studied.
Finally, a table is provided giving the values of all of
parameters considered in this thesis for certain well known
special graphs and special classes of graphs.

Finally, a bibliography lists references which have
been useful in the preparation of this thesis.

Section 1.2
BASIC TERMINOLOGY

In this section we present some of the basic definitions
and notations which are used in the following chapters. For
additional graph theory terminology not explicitly given in
this thesis, one may refer to standard texts such as Behzad
and Chartrand [4], Berge [ 3], or Harary [14].

A graph G is a non-empty set V together with a set E of
two-element subsets of V. The set V is referred to as the
vertex (or point) set of G, and each element of V is called
a vertex (or point). The set E is referred to as the edge
(or line) set of G. The members of the edge set E are called
edges. In general, the vertex set and edge set of a graph
G will be denoted by V(G) and E(G) respectively. The graph
G is called finite if V(G) and E(G) are both finite. In
this thesis all graphs, unless otherwise noted, are assumed

to be finite, undirected, and without loops or multiple edges



and ordinarily having no isolated vertices.

The order of a graph G, denoted by V(G) or more
simply by | G|, is the number of elements in V(G). If
Iv(G)] = p and | E(G)| = q, we say that G is a (p,q) graph.
A graph G is called empty if E(G) is the empty set. The
degree (or valency) of a point of G is the number of edges
of G incident with v and is denoted degGv. or simply by
deg v. In particular, 6(G) and A(G) are repeatedly used to
denote respectively the minimum and the maximum degree of
the vertices of G, A graph H is a subgraph of a graph G if
V(H) € V(G) and E(H) S E(G). The subgraph induced by a set
U of vertices of G, denoted by <U>, is that graph which has
U as its vertex set and whose edge set consists of all edges
of G which join two vertices of U. Similarly, if F is a
non empty subset of E(G), then the subgraph <F> induced by
F is the graph whose vertex set consists of those vertices
of G incident with at least one edge of F and whose edge set
is F. If v is a vertex of G then G-v denotes the graph
<V(G) - v>, and in general if S is a proper subset of V(G)
then G - S represents the graph <V(G) - S>, Two vertices
u and v of a graph G are said to be connected if there
exists a u-v path in G, the graph G itself is connected if
every two of its vertices are connected.

Given any X € V(G), there is a largest subgraph H of

G such that X = V(H), that is, for u, veX, (u,v)€E(H) if and



only if (u,v)€E(G). We call this subgraph H the restric-
tion G/X of G to the vertex set X. There are several spe-
cial classes of graphs to which we will frequently make
reference. A graph of order n which is a path or a cycle

is denoted by Pn or Cn respectively, and the number of edges
in a path or a cycle is called its length. An acyclic graph
is a graph G with no cycles and is a tree if G is also
connected., If G is disconnected and acyclic, G is called a
forest. The complete graph Kp has every pair of its p
vertices adjacent. A bipartite graph G is a graph whose
vertex set V(G) can be partitioned into two disjoint subsets
V, and V, such that every edge of G is of the fonm(vlyz)
where vy € Vi' -t O 5201 TR V1 and Vz have m and n points
and G mn edges, we say that G is a complete bipartite graph
and write G = K(m,n). A star graph or claw is a complete
bipartite graph K(1,n). For n > 4, the wheel Wn is defined
to be the graph K1 + cn-l'

Figure 1.1, The Wheel w6
A graph Sn(G) referred to as the n-th subdivision graph of

G is obtained by replacing every edge of G by a path of
length n + 1. When n = 1, this graph is called the subdivi-
sion graph of G and is denoted by S(G)




A set M of edges of a graph G is called a matching set
provided each vertex of G is incident with at most one edge
contained in M. Thus M is a set of independent edges. A
matching set M is called a matching of G provided there is
no matching set of G which properly contains M.

If M is a matching for G, I|M| denotes the number of
edges in M. The parameters 61L(G) and BIU(G) are used to
denote respectively the minimum and maximum number of edges
in any matching of G. If M is any fixed matching of G, an
edge e in M is called a strong edge. Obviously two strong
edges are never adjacent. If edge e is not in M, we refer

to it as a weak edge. These concepts are of course depend-

ent on the choice of the matching M. A vertex incident only
to weak edges relative to M is said to be a weak vertex. A
vertex incident with a strong edge and not incident with any
weak edge is called a strong vertex (relative to M.)
Finally, a vertex incident with a strong edge and also to
at least one weak edge (relative to M) is said to be neutral.
Let X be any subset of E(G). An alternative path of
(G,X) is one whose successive edges are alternatively in X
and not in X. When an orientation of the vertices of a
path is made, the first and last edges of a path are called
its terminal edges. The terminal vertices of the path
consist of the vertex incident to the first edge but not the

second, and the vertex incident to the last edge but not to



the preceding edge. An augmenting path (G,X) is an alter-
nating path (G,X) whose terminal vertices are incident to no
edge of X. If (G,X) has no augmenting path, X is called
unaugmentable. The concept of an augmenting path has been
used in characterizing maximum matchings [2].

A set C of edges of a graph G is an edge covering set
of G provided each vertex of G is incident with at least one
edge that belongs to C. An edge covering set C is called an
edge covering of G or simply a covering, provided there is
no edge covering set of G which is properly contained in C.

If C is a covering of G we denote by |C| the number
of edges in C, and by aOL(G) and aOU(G) the minimum and
maximum number of edges respectively, in any covering of G.
An alternative path of (G,C) is a reducing path if (1) its
terminal edges are in C, (2) its terminal vertices are in-
cident to edges of C which are not terminal edges of the
path, If (G,C) possesses no reducing path, C is called an
irreducible cover.

A graph G having the property that corresponding to an
arbitrary edge covering C of G there exists at least one
matching M such that |C| + |M| = |V(G)| is called of Gallai
type relative to coverings. Similarly, a graph is said to
be of Gallai type relative to matchings if it has the prop-
erty that for every edge matching M of G there is at least
one edge covering C of G with |M| +|C| = |v(G)|.



CHAPTER 2
HISTORICAL SURVEY

In this chapter we summarize some of the most impor-
tant known results bearing on matchings and coverings of
graphs, and related results.

In 1957, C. Berge [2] used the technique of alternative
paths to characterize a maximum matching. He proved that a
matching M has maximum cardinality if and only if there
exists no argumenting path in (G,M).

According to this theorem, if an edge matching M is
given, one can decide if this matching is a maximum matching
by searching for all alternating paths starting at a weak
vertex. This method has been improved by Edmonds [8] and
adapted to a computer search by Witzgall and Zahn [26].

They defined a vertex v to be an outer vertex, rooted at u,
if u is a weak vertex which is joined to v by an alternating
path of even length. (In particular, all weak vertices are
regarded as outer.) The reason for considering outer ver-
tices becomes evident if one examines an augmenting path
connecting two weak vertices uy and ujy. Let vy and v be

the neighbors of uy and u, within the augmenting path.

)
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Then Vo is an outer vertex rooted at u, and v, is an outer
vertex rooted at uy. This leads to a reformulation of
Berge's result, namely that a matching is maximum if and
only if no weak vertex u is adjacent to an outer vertex
which is rooted at a weak vertex different from u.

For the purpose of establishing maximality or non-
maximality of a matching it is therefore sufficient to
search for all outer vertices. This is an improvement over
searching for all alternating paths, since there are in
general more alternating paths emanating from weak vertices
then there are outer vertices.

In 1957, Norman and Rabin [18] presented a method for
finding in a graph G a minimum edge cover, employing the
concept of a reducing path. They proved the theorem that
an edge cover C has minimum cardinality if and only if
there exists no reducing path in (G,C).

This theorem gave rise to an algorithm for finding a
minimum cover. Norman and Rabin also show that the maximum
matching problem and minimum edge cover problem are equiv-
alent. This, of course serves the same purpose as the well
known theorem of Gallai, which states that for any graph G
of order p we have %L " aOU = p, and for any graph having
no isolated vertices, oy + BlU =D,

J. Weinstein [25] in 1961 found a non-trivial lower

bound for BIU(G) in terms of the maximum degree A(G) of G,
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and states two theorems which also involve the minimum

degree 6(G).

A

(1) For graphs with 6 > 1, p < (1 +4A) * BIU(G)

(2) For graph with & > 2, 2p < (2 + max (4,8) ° BlU(G))

Using the technique of "alternating paths" Ganbaum
[12] proved the following two intermediate theorems for
matchings and coverings.

(1) For every graph G and every integer Bl satisfying
alL < Bl < BIU' there exists an edge matching M of G such

that | M|

Bq.

(2) For every graph G and every integer @, with
@y £ < 4y there exists an edge cover C of G such that
[§C 1= a;.

These results are of interest since they show that no
gaps are possible in these parameter values. We will show
later that gaps can occur in the parameter values for vertex
covers and maximal independent sets of vertices.

< [p/2] and that M is an edge

It is evident that BlU
matching of G such that |M| = P/, if and only if Misa 1 -

factor of G. Grunbaum [13] has also shown that Byy < 2By

and that there exists a j - connected graph G with ar-
bitrary large order, such that ﬁlL(G) = LJ—%-l].

No general procedure or algorithm has so far been
developed to determine the number of edges in an arbitrary

matching or in an arbitrary covering. M. J. Stewart [24],
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has determine the number of edges in a maximum matching for
the n-th subdivision graph Sn(G). This number, BIU(Sn(G))'
depends on q = |E(G)|, on the parity of n, and sometimes
also on the parameter EIU(G). namely,
(1) Let G be a connected (p,q) graph. Then
B1u(Sox(6)) = ka + Byy(G).

(2) Let G be a connected (p,q) graph. Then

_ [ Kq if G is a tree.
alU(SZK-l(G)) “1Kq + p - q otherwise.

Let K(pl' Pysr + « s pJ) denote the complete j - partite
graph with sets of vertices containing P1e Pgs o o v oy pJ

elements the notation being such that Py < Py Sre S pj.

)
and et p=2Z Py Then we have
i=1
B1y(K(Pys Pps « « s Py)) = min ([P/,], p-py)
and

B (K(Pys Pps « « vy Py) = max (py g, {(p'pj)lz})
The first result is due to Chartrand, Geller, and Hedetniemi
[6], and the second to B. Grunbaum [13].

Let Id denote the graph of the d-dimensional cube.
Forcade [9] proved that BIL(Id)/V(Id) is a non-increasing
function of d and that 1lim BIL(Id)N(Id) = 1/3

d= e

Finally, let G be a connected (p,q) graph and let LG
denote the line graph of G and TG the total graph of G.

R. P, Gupta [11] proved the following formulas:
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Boy(LG) = B,y(G)
o (L6) = q - By,(6)
9L(LG) = 0y, (6)
Boy(TG) = p - a5, (G)
2o (T6) = q + 0y (&)
Byy(Le) = [/,]

a,.(16) = {9/}

wol[BH

BlU(TG) = [T]
ptq

a“-(‘[(;) = ri

o1 (6) < Boy(T6) < [°/, - a3 ()]

Many of these results could be extended to arbitrary
matchings and coverings. Line graphs will be considered

briefly in chapter 7 of this thesis.




CHAPTER 3
EDGE MATCHINGS

Section 3.1. In 1957, Berge [2] gave a necessary and
sufficient condition for determining whether or not a given
matching is a maximum, and provided an algorithm for
constructing a matching with the maximum number of edges.
However, to find a necessary and sufficient condition for a
given matching to be a minimum appears to be a difficult
question to answer. One reason for this is that a minimum
matching is not hereditary, in the sense that if H is a
subgraph of G, the inequality BlL(H) < ﬁlL(G) need not be
valid, For example, consider the graphs G and H shown in

the figure.

Figure 3.1. A minimum matching which is not hereditary.
Here H is a subgraph of G, yet BlL(G) = 1, and BlL(H) =2,

Throughout this chapter we will assume that the word

"matching"refers to an edge matching. Furthermore, since

14
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an isolated vertex cannot be covered by any edge, we assume
that the graphs considered have no isolated vertices.

In this section we prove a sufficient condition for a
matching to be minimum, Let M be any matching of a graph
G(p,q), and let W, S, and N denote the sets of weak vertices,
strong vertices and neutral vertices of G, respectively,
relative to M.

First we have the following elementary observation.

Theorem 3,1. If IW| <1, then M is a maximum matching.
Proof: If |W| =0, since p=|N|+|WI|+ |S, then

p=INI+1ISl. Now IN|+Is|=2Iml,
since every vertex incident with an edge in M is a strong
or a neutral vertex. Thus p = 2IM| and | M| = p/Z’ so M
is a maximum matching.
If|W|l =1, then p = 2IM| + 1, and |M| = (P'l)/f (%57

Thus M is again a maximum matching.

The converse may not be true, since M can obviously be
a maximum matching even when | W| > 2. An example is a star
graph S of order p > 3., Then BIL(S) = BIU(S) =1 and S
has p-2 weak vertices.

If P is a path, then | P| denotes the length of this
path, i.e. the number of edges in the path. We need the
following three definitions.



Geahrel:

16

Definition 3,1. Let G be a connected graph and M a matching
of G. Then two edges e and e, in M are said to be pear to
one another if there exist a path P in G containing e and
e, such that |P| < 4.

It is clear that for such a path P, either | P| = 3 or

|P| = 4, since edges in M are disjoint.

Definition 3,2. If G is a connected graph and M is a
matching of G, then the matching M is said to have property
(P) if for any two near edges e ey in M, a shortest path
P(el,ez) containing e and e, has exactly one weak vertex

between e and ey,

Definition 3.3. If G is a disconnected graph, and if M is
a matching of G, then M is said to have property (P) in G,
provided the matching induced by M in each component of G
has property (P). In the trivial case where | M| = 1, we

agree that M has property (P).

Theorem 3,2. Let G be a connected graph and M a matching
of G, If |IM| > 2, then there exist at least one pair of
near edges in M.

Proof: If there exist a path P containing two edges
in M such that | P| < 4, then the theorem follows at once.

Hence, we may assume that the length of every path in G
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containing two arbitrary edges of M is always > 5. Let P

be the shortest such path, say P : Vs Yas:o vt et bV
’

where K > 6. Then we conclude that Vs Vg S50 &0y BVR 5
are all weak vertices relative to M. If there were a neutral
vertex. say Vi, 3 <i <K-2, then by definition vy is in-

cident with a strong edge (vi,u). The path P': u, Vir Vig,

s v Vg1 VK contains two edges of M, but | P'|< |P],
contradicting the assumption that P is the shortest such
path., But if V3r V4o o o o s Vg oy are all weak vertices
where K > 6, then M is not a matching, a contradiction.
Hence, we conclude there must exist at least one pair of

near edges in M,

Theorem 3,3. Let G be a connected graph. A matching M has
property (P) if and only if every shortest path P(el.ez)
containing any two near edges e and e, of M has length
four and exactly one weak vertex between e and €.

Proof: Since e and e, are near edges in M, there
exists a path P containing e and e such that | P| < 4,
The shortest path P(el.ez) containing e; and e, then sat-
isfies IP(91'92)I <|P| < 4. Since e, and e, are disjoint
edges, 3 < |P(e;,e;)| < 4. If |P(ey,e))| = 3, then
P(el.ez) has no weak vertex between € and e contradicting
the assumption that M has property (P). Therefore

IP(el.ez)| = 4 and P(el,ez) contains a vertex v which is
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not an end vertex of eqor e,. If v is not a weak vertex,
then v must be a neutral vertex and adjacent with an edge
e = (u,v) in M, In this case e and e and also e, and e
are pair of near edges in M, and |P(e,e1)| =3,
|P(e.ez)] = 3, again contradicting the fact that the matching
M has property (P). Therefore v is a weak vertex, and the
theorem follows.

The converse is clear, since this is merely the defini-

tion of property (P)

In order to obtain one of our main results (Theorem 3.4.)

we first prove two lemmas.

Lemma 3,1. Let G be a connected graph and M a matching of
G having property (P). If v is any weak vertex relative to
M, then M has property (P) in G-v.

Proof: We first show that the subgraph G-v has no
isolated vertex. Suppose that there exists an isolated
vertex Vo in G-v., Then Vo is clearly adjacent only to v in
G, and since v is a weak vertex then Vo is also a weak vertex.
This contradicts the fact that M is a matching, since no
matching permits ad jacent weak vertices.

Next, consider the following two cases which arise
when v is any weak vertex relative to M.

Case (i). If v is a cut-vertex of G, then G-v is
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disconnected and consists of L > 2 components Cl' CZ' o e
i CL. We claim that M/C ,» the matching induced by M on
the component Ci. has prop;rty (P) :for .= Bow2yer,, i K,
it |M/C1| 2 2. Let e, e, be two near edges in M/Ci'
therefore these are also two near edges in M. Let P(el,ez)
be a shortest path in Ci containing ey and €. Since
[P(el,ez)l <4 in Cy, then | P(el,e2)| = 4, since the
supposition that |P(e1,e2)| = 3 contradicts the fact that
M has property (P). By Theorem 3.3, M/c has property (P)
in Cl, for eachi=1,2, ..., L, so ﬁ has property (P)
in G-v. For the case M/C.= 1,the result is clear.

Case (ii). If v is notla cut-vertex of G, then G-v is
connected., Let ey and e, be any two near edges in M, and
P(el.ez) a shortest path in G-v containing e and ey, as in

Case (i), |P(ejse,)| = 4. Theorem 3.3 again shows that M

has property (P) in G-v,

Lemma 3,2. Let G be a connected graph and M any edge
matching in G. If v is not a cut-vertex in G, then there
exist a matching M in G-v such that either | M|= M| or
IMl=1MIl- 1.

Proof: We consider two different cases, depending on
the degree of vertex v.

Case (i). v is an end vertex of G. Let v be incident

with the edge e = (u,v). (a) If v is a weak vertex, then
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M is also a matching in G-v. Setting M = M, we have
IM]l=1MI, (b) If edge e is in M, and M-e is a matching
in G-v, set M= M-e, then Ml = IM| - 1, However, if M-e
is not a matching in G-v, then there exist at least one weak
vertex w adjacent to u, otherwise if all vertices adjacent
to u were neutral, then M-e would be a matching in G-v.
Now set M = M - e + (u,w). It is clear M is a matching in
G-v, and |Ml=|M|- 1+ 1=|Ml

Case (ii). v is not an end vertex of G. (a) Suppose
that v is a weak vertex relative to M. Then M is also a
matching in G-v, Setting M = M, we have | M| = |M| .
(b) Suppose that v is a neutral vertex, so that v is in-
cident with an edge e = (u,v) in M, If M - e is a matching
in G-v, set M = M - e, so that |M| =|M| - 1. IfM-eis
not a matching for G-v. then there exists at least one weak
vertex w adjacent to u, otherwise if all vertices ad jacent
to u were neutral then M - e would be a matching in G-v.
Again set M = M - e + (u,w). Then M is a matching in G-v,
because no two adjacent weak vertices exist in G-v., In

this case | M|= | M]|.

Remark: This lemma may happen to hold even when v is
a cut-vertex, but in general the assumption that v is not
a cut-vertex is essential., For example, if v is the center

of a star graph, this lemma fails to hold true.

V N
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The next theorem gives a sufficient condition for a
matching to be a minimum matching. It is assumed that the

graph G has no isolated vertices.

Theorem 3.4. Let G be a graph which possesses a matching
M having property (P). Then M is a minimum matching.

Proof: We will use induction on the order of G.
Assume that for any graph GO having order less than that
of G then the theorem is true, i.e. if MO is a matching
of Gy having property (P) then My is a minimum matching
for G.

If G is not connected, then by definition 3.3 the
matching induced by M on each component has property (P)
provided M has property (P), so by the inductive hypothesis
such induced matchings on each component are minimum
matchings. Thus M is a minimum matching for G, since the
matching for any two components are disjoint.

We henceforth assume that G is connected. If |M| =1,
the theorem is trivial., We may therefore assume | M| > 2,
This assumption, together with the fact that M has property
(P) implies the existence of weak vertices in G relative to
M. Let us assume that M is not a minimum matching, and
seek a contradiction. Then there exists a matching M in
G such that | M| <| M|, There are two cases to consider.

Case (i). There exists at least one weak vertex
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(relative to M) which is not a cut-vertex of G. Now M is
obviously a matching in G-v, and by Lemma 3.1, M has
property (P) in G-v. By induction, M is a minimum matching
in G-v. Next consider M in G. Since v is not a cut-vertex,
by Lemma 3.2, there exists a matching M* in G-v such that
either M| =|Mlor |M*l =1¥M|- 1. Since M is a minimum
matching in G-v, we have | M*| > M, If|M*| =|H| then

|M| >I M|, a contradiction., If IM*| = # - 1, then

IMl -1 >|Ml, and | M| >| M|, again a contradiction. Thus
no such matching M can exist, so in case (i), M is a
minimum matching.

Case (ii). All weak vertices (relative to M) are cut-
vertices of G. Difficulties arise if a cut-vertex of G is
removed, since the resulting graph G-v might have isolated
vertices, and in this case no matching for G-v is possible.
In order to make use of the inductive hypothesis, we resort
to a shrinking process applied to suitable subgraph of G.
When a subgraph A is shrunk to a vertex v of A, we mean that
the entire graph A is replaced by the single vertex v.

Let v be a weak vertex and Ao any component of G-v,.

Set A = <AOU {v}> and let GA be the graph constructed from
G by shrinking the (block) A into the single vertex v. We
show first that the matching M induces matchings on A and
on G, both of which have property (P). Denote by M(A) and
M(GA) the matchings of A and G, induced by M. If IM(A) | =1
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or lH(GA)l = 1, the resulting induced matching is clearly
a minimum matching. Therefore we assume that | M(A)|> 2
and IM(GA)I > 2. To show that M(A) has property (P) in A,
let ey e be any two near edges in M(A), and P(el,ez) a
shortest path containing e and ey It is clear that
|P(e1.e2)|5 4. Also since e; and e, are two near edges in
M, by theorem 3.3, we know that | P(el.ez)l = 4 and that
P(el,ez) has exactly one weak vertex between e; and e,.
Similarly M(GA) has property (P) in Gy. Therefore by
induction M(A) and M(GA) are minimum matchings of A and GA'
respectively.

Now consider the following two cases:

Case ja). The vertex v is a weak vertex with respect
to M, then M(A) and ﬁ(GA) are matchings for A and G,
respectively. Since M(A) and M(GA) are minimum matchings
of A and G, respectively, we have | M(a)| > 1M(A)] and
1M(G,) | 21M(G,)I. Then | M |=|H(@A)| +|F(G)| >IM@A)]
+ |M(Gy) | =M, a contradiction,

Case (iib). The vertex v is not a weak vertex with
respect to M. If M(A) and M(G,) are matchings for A and
GA respectively, then by the same argument employed in
case (iia) we obtain | M| >| M|, a contradiction. Hence
we may assume either M(A) is a matching for A, or ﬁ(GA) is
a matching for GA' for they cannot both fail to be matchings

for A and GA at the same time, otherwise M would not be a
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matching., Let us assume M(A) is a matching and E(GA) is
not a matching, this could happen only when v is a weak
vertex relative to ﬁ(GA) and there are weak vertices
relative to M(G,) adjacent to v. However M(G,) is a
matching for G,-v. Now, consider M(GA) in Gy. Since v is
a weak vertex with respect to M, and also a weak vertex
with respect to M(GA), and M(GA) has property (P) in Gps
then by lemma 3.1, M(GA) has property (P) in Gy-v. By
induction M(GA) is a minimum matching in G,-v. Hence
|ﬁ(GA)| > |M(GA)I. Also since | M(A) | > M(A)|, then
1M =1H@)| +1M(Gy )| 2 |M@A)| +1M(Gy)| =M, again a
contradiction. Hence we conclude that M is a minimum

matching in G.

Section 3.2. Weinstein [25] in 1961 determined a non-
trivial lower bounds for B,,(G) in terms of the maximum
degree A(G) of G, depending on the value of the minimum
degree 6(G). (1) For 6(G) 21, |V(G)| = (1+A(6))"8,(G)
(2) For 6(G) 22, 2|V(6)| < (2+max(4,4))"8,,(G)

In this section, we obtain non-trivial lower bounds for
811.(G), in terms of A(G) and show that these bounds can be
attained, so are sharp.

We first establish a lower bound for B,; (G) in the

case that G is a tree.




2%

Theorem 3,5. Let T be a tree of order p, and maximum
degree A(T). Then p <2 A(T)-BlL(T).

Proof: We use induction on the number of edge of T.
Suppose T is a tree with IE(TO)I < | E(T)|, we assume that
Iv(Ty) | = 2 A(T()Bq; (T), and shall prove that
p =< ZA(T)~31L(T).

Let M be a minimum matching for T, i.e. IM|= BlL(T)'
If there are no weak edges in T relative to M, then all
edges of T are in M, Since T is connected, this is possible
only when T = Kz. In this trivial case, the theorem
follows easily.

Hence, we assume there exist weak edges in T relative
to M, Consider the following two cases:

Case (i). There exists at least one weak edge e,
which is not an end edge. Consider T' =T - e, it is clear
M is also a matching in T', with |V(T*)| =1V(T)|. Since
every edge of a tree is a bridge, then T' is a forest.
Consider the components Cl' CZ, DR Cn of the forest T';

by induction we have IV(Cl)I < Zlk(Ci)-BlL(Ci). Hence

n n
p=lv(T")l =zIv(c))l =2 Z A(Cy)-B1.(Cy)
et s g Toag

n
< 28(10)+ 5 By (C)) £ 2A(T)By (T)

Case (ii). All weak edges of T relative to M are end

edges. We claim first that T is a tree with diameter < 3.
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Let the path P(“l'“Z' 08 oC OND “K) be a diameter of T if

|P| >4, then K > 5, it is clear the edges (uy,u3), (u3,u,),
Bain n (“K-Z'“K-l) are not end edges and it is impossible
for all these edges to be in M, since M is an independent
set of edges, hence there is some edge which is not an end
edge. This contradict the assumption. Therefore T is a
tree of diameter < 3, 1i.e. T is a union of two star graphs,
joined by an edge between two centers of the stars. It is
clear in this case | M |= 1. Suppose the degree of these
center vertices are d]. and d2 respectively, we may assume

1 < d; <d, that is A(T) =dy, Now [T |=d; +d, and
BIL(T) =1land p=d, +d, =< 2 0dy = 2A(T)-BIL(I).

Theorem 3,6. Let G be any graph of order p with maximum
degree A(G), and having no isolated vertices. Then
P < 2A(6) By (6).

Proof: We use induction on the number of edges.
Suppose H is a graph having no isolated vertices and
|E(H)| < |E(G)|. We assume | V(H)| < ZA(H)'BlL(H) and we
shall show that p < 2A(G)~81L(G).

If G is not connected, let Cl'CZ' e | CK be the
components of G, By induction on each component we have
Iv(cy) | < 2A(cy) By (Cy), 1 =1,2, .. ., K. Then

K
< 2A(G):L B

K K
P =5 V(eI = 24k, AcCy)-By (C)) < BP0 (Cy)

IA

2A(G)-91L(G)
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We now assume that G is connected. If G is a tree, our
result follows by theorem 3.5. We may therefore assume that

G is not a tree. Then there exist a cycle C in G, Let M

be a minimum matching for G. Then there exists in C at

least one edge e such that e is a weak edge with respect

to M. Now set H=G - e. We have 6(H) > 1 and A(H) < A(G),
moreover M is a matching in H. Hence BlL(H) <|M|, now
|V(G)] =|V(H)| = pand |E(H)| <|E(G)|. By induction,

P S 2A(H)*By (H) < 2A(G) M| = 2. A(6)*B,; (G).

we have p < ZZS(H)'BIL(H) and

Remark: For each j > 1 there exists a graph G with
A(G) = 3, 8(6) =1 and |V(6)| = 2+ A(G)*B,; (G).

For example, let G be a tree of diameter = 3, as in

the prove of theorem 3.5. Set |G| = 2n, and deg u = deg v = n,

BlL(G) =1 then 2n = Z-ZS(G)'BlL(G) = 2-n.1,

& dius

¥n-1

Figure 3.2. A graph illustrating a sharp lower bound
when 6(G) > 1.

Hence the inequality stated in theorem 3.6. is a best
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possible result, in the sense that equality can be attained.
However, our lower bound for BIL(G) in some examples may
be poor.

In this section our principal result (Theorem 3.7.) is
an analogue of theorem 3.6, but provides a sharper lower
bound for BIL(G) when the minimum degree 6(G) > 2, namely
Iv(e)| < (1 +A(G))'51L(G). In proving this result we shall

use the following lemmas,

Lemma 3,3. Let Cn be a cycle of length n. Then BIL(Cn) ={n/3}.
In this lemma, {x} denotes the smallest integer not less
than x,

Proofs Consider the following three cases, where
n=3K, n=3K +1o0or3K +2, and K =1, 2, 3, . . ..

Cage (i). If n = 3K, then C3K='{v1. Vor o o e V3K}
is a cycle of length 3K, construct a matching M as follows
M = {(v2'v3)' (5'v6). . . LI ] (V3K'1' V3K)}. M Clearly haS
property (P), hence by theorem 3.4, M is a minimum matching,
and | M | /3 { /3}.

Case (4i). If n = 3K + 1, then C3K+1 = {vl. Vor « o
o» Vapo V3K+1} is a cycle of length 3K + 1, Construct a
matching M as follows M = {(vl.vz). (V4ovsde o o on (Vag oo
V3K-1)' (V3K' V3K+1)}' I M]=K + 1, We cannot employ
theorem 3.4, since M does not have property (P). However

if M were not a minimum matching, then there exists a
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matching M*, such that | M*| < | M| =K + 1, then | M| < K.
Hence there are at least K+1 weak vertices relative to M*.
This implies there exist two consecutive weak vertices in
C3K+1 relative to M*. which contradicts the fact that M*
is a matching. Therefore M is a minimum matching and

1=k 1= (OO0 o (o)

Case (11i). If n = 3K+2, then C3K+2 ={v1. Vor o .
or Vg4 V3K+2} is a cycle of length 3K+2. Construct a

matching M as in case (ii). If M were not a minimum
matching then there existsa matching M*, such that

IM*) < IM|. This will imply that there exists a matching M
in Cqy,, such that IM I<IM|=K + 1, which contradicts the
fact that a minimum matching of C3l( +1 is of order K+1.

Then I M 1=k +1 = {K2)/} —(n/ 3,

Hence we conclude that in all three cases B, (C_) ={n/3}.

Lemma 3,4. Let G be a connected graph, and M a matching of
G. Let X and Y be subsets of V(G), such that they form a
partition of V(G), i.e. XUY =V(G) and XNY =&, Let H
and K be any graphs (not necessarily subgraphs of G) having
vertex sets X and Y respectively, such that A(H) < A (G)
and A(K) < A(G). 1If M, and M, are matchings for H and K
respectively with | My | +1 le < I M|, and in H and K we
have the inequalities | X |=1V(H)| < (1 +A(H))- M, |y |
= |V(K)] < (1 + A(K)) M, , then in G we have |V(G)| <

(1 +A(G))IMI,
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Proof: The proof is trivial, since
V@) =lvi | +1v(K) | = (1 +A@E))-IMl + (1 +AK)) 1M, ]
< (1 +4(6))-(IMy 1 +1IMyl) = (1 +A(G)) Ml

Theorem 3,7. Let G be a graph of order p with §(G) > 2,
Then p £ (1 +A(G))°B]_L(G).

Proof: We use induction on the edge number | E(G) |of
G, and assume that whenever H is a graph with 8(H) 2 2 and
IE(H)| <1E(G)| then IV(H)| < (1 +A(H))* By (H). We
shall show that p < (1-+ZS(G))°BIL(G). Throughout the
entire proof of this theorem, we will let M be a minimum
matching for G, If G is not connected, let Cl’ CZ' o o ey CK
be the components of G and M/c y 1 =1, 2, . . ., K the
matching in Ci induced by the ;atching M. Then
|M/C | = ﬁlL(Ci). By using induction on each component, we
haveilv(ci)l S (1 +AC))By(C)y 1 =1,2, ..., K
Then

K K
P =1511V(Ci)l 5151(1 + A(Cy))- By (Cy)

K
S (1+ A(0)) 28y (C) = (1+ A(©))-8y (O)

We next assume that G is connected, and define
s={vev(e)| deg v 23}. T ={vev(c)| degv =2}. we
first note that we may assume that S ¥ ¢, for if S =@,

since G is connected then G is a cycle and by lemma 3.3.
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8,.(8) = {P/3}. Now (1 + A6 B, (@) = 3{P/5} 2 {3-P/5} = p,
so the theorem holds in this case,

We may also assume that T #¢, for if T =4) , then
there exist two S - vertices joined by a weak edge e = (u,v).
Setting H = G - {e}, we have 6(H) > 2 and |E(H)| < | E(G)I.
Hence by induction | V(H)| < (1 + £\(H))°BIL(H). But since
M is also a matching of H, we have | M| > BIL(H)' Also
since p = | V(H) |, we obtain p < (1 +A(H))-61L(H)

IA

(1 +4(G))+B,;(G), and
again the theorem follows.

Note in the above discussion of the case where T #4>
we have also shown that the graph G/S is either discrete
(i.e. totally disconnected) or joined by edges in M,
between S vertices,

Now we are going to prove the theorem in the following
five steps in the case where S #$ and T #9.

(1) Let P be a path between two S - vertices. If the
terminal edges of P are weak edges the theorem follows if
IPl>2, so we may assume | P | < 2,

(2) The theorem follows when G/S is not discrete (i.e.
totally disconnected), so we may assume that G/S is discrete.

(3) If there exists an edge in M which is not incident
with an S - vertex, the theorem follows. Therefore we may
assume that all edges in M are incident with S - vertices.

(4) For any path P between two S - vertices, the
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theorem follows when| P | < 4,

(5) If the assumptionsmade in steps 1-4 hold. Then
IS]=IMland A(G)ISI >ITI.

After proving these five steps, the proof of the
theorem will be immediate, since |S| +|T| = p,
Now A@G)IslI >IT)=p -1ISI.

(A(G) +1):ISl2p, but since|S|=|M]|= By, (G).

Therefore we conclude (1 +Z§(G))-BIL(G) > p.

(1) Let P be a path between two S vertices x and y say,
and the terminal edges of P are weak and| P |> 2,

Case (a). x =y

(a-1). Deg x = deg y > 4.

Set H = P(u, Ugs o o e v), and K = G - V(H). Since
8(H) > 1, by theorem 3.5, we have | V(H) | < 2 A(H): B, (H) =
4-81L(H) < (1'+AS(G))-BIL(H). and in K we have §(K) > 2
and |E(K)) <| E(G)|. By induction we have
IV(K) | < (1+ A(K))-le(K). Let M(H) and M(K) be the
matchings on H and K induced by M, then we have
IM(H)| > By;(H) and IM(K)| 2 B;;(K). Thus by lemma 3.4.
the theorem follows.

(a-2). Deg x =deg y = 3, let us trace the path

P(x, X4y + . .y Xy) to the nearest S vertex xy, since (u,x)
and (v,x) are weak edges, the first neutral vertex on the
path P (start from x) must be either x = y, or 3% Also we

note that there must exist a T vertex w adjacent to Xy,
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for if all vertices adjacent to xy are S vertices, this
implies that there are weak edges joining two S vertices,

which contradicts our assumption.

Figure 3.3. Existence of a T vertex w adjacent to Xy.

If x = y were the first neutral vertex, we can set
H = P(u, Ups o o ey v), and K =G - V(H) + (x,w). In H by
theorem 3,5, we have |V(H) | < 2-£S(H)-31L(H) = 4-51L(H)
< (1 +A(G)) B, (B).

In K we have &(K) > 2, |E(K)| <|E(G)| and
A(K) < A(G). By induction we have | V(K) | < (1 +A(K))-
B, (K). Let M(H) and M(K) be the matchings on H and K
induced by M, then we have | M(H)| > B11,(H) and
IM(K)| > B, (K). Thus by lemma 3.4. the theorem follows.
If X, were the first neutral vertex we can set
H=C(x,u .. .h v, x) and K =G - V(H) + (w,x;).
Similarly, by induction and lemma 3.4. the theorem follows.

Case (b). X ¥#y. Set H = P(u, gy o o e v) and
K=G - V(H). In H, theorem 3,5, implies |V(H)| < 2-A(H)*

B L(H) < (1 +A(6)) By, ()
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In K, we have §(K) > 2, |E(K)| < |E(G)|] and A(K) < A(G).
Again by lemma 3.4, the theorem follows. Therefore we may
assume that | P | = 2,

(2) G/S is not discrete. We have shown that if
G/S is not discrete, then there are only strong edges joined
between vertices in S. If there exist two S vertices x and
y, joined by a strong edge (x,y), then by step (1) any path
between x and y has length 2.

Figure 3.4. Two S vertices x and y joined by a
strong edge.

Set deg x = N+ I, deg y = L + T, We may assume without
loss of generality that N > L. Now, let us consider the
following various of cases.

Case 2-a. N=L =0, Then 1 > 2, we have
AG) =T1+1, p=1I+2 and B;;(G) =1, then
p=1+2= (A(G) + 1)~81L(G), thus the theorem follows.
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Case 2-b, N =1, L =0, and I > 2, Let us trace the
path P(x, Xp0 X990 o o o xR) to the nearest S vertex xp, we
have R > 2, by the same argument as in step (1) case (a-2)
there exists a T vertex w ad jacent to Xgp . Now consider the
following two possibilities, start from x in the path P.
Either Xy is the first neutral vertex or Xy is the first
neutral vertex., If X, were the first neutral vertex, set
H = G/<X. Yo Vio o o oy vI>
H we have |[V(H)| = I +2 = (1 +A(H))-8,;(H). In K we have
6(K) > 2, lE(K)| < |E(G)|, by induction |V(K)| < (1 +A(K))"

and K = G - V(H) + (xl,w). In

BIL(K)' Similar argument as before the theorem follows by

lemma 3.4, If X, were the first neutral vertex, we can set
= G

H /<x19 Xo Yo V9o o o o Vi

K=G - V(H) + (x,,w) {f R > 2. In H we have IV(H)] =1 +3

and I +3 =1+ (I +2))'1=(1 +£§(H))°BIL(H). Again in K

> and K =G - V(H) if R = 2,

by induction we have |V(K)| < (1 +A(K))* By (K), From lemma
4,3, the theorem follows,

Ca =c. N2>22,L=0and I > 2, We divide the set
of vertices {xl. Xor o o o xN} into two sets, namely M(x) of
those vertices incident with edges in M, and M'(x) of those
vertices not incident with edges in M, Set H = G/<

Yo vl. * o
« «» Vi, X and x;€M'(x) > and K = G - V(H). In H we have
Therefore | V(H) | = I +2 +IM(x)| = ((I +|M'(x)| +1) +

1)1 = (1 +A(H))* B,y (H).
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As for K, we are going to construct a graph K from K, such
that | V(K)] =] V(K)|, 6(K) > 2 and A(K) <A(G). Moreover
there exists a matching M* in K such that |M*| =[M] - 1.

If in K we set M = M/E (i.e. M* is the matching induced

by M on K). then for xieM(x), the x; are strong vertices
relative to M* and are of degree one in K, As for the ver-
tices z's joined to xiéM'(x). they are either neutral or
strong vertices relative to M* depending upon whether their
degree > 1 or = 1, Now, we can construct K from K by joining
the xi's in M(x) and the z's of degree 1, among themselves in
pairs if they are even in number., If the number is odd the
extra vertex can be joined to a T - vertex, so that A(K) <
A(G), 8(K) > 2 and |V(K)| =|Vv(K)|. It is clear by the
construction that M* is a matching of K and | M™ | =|M]-1,
hence by induction we have | V(K)| < (1 +Z§(K))-BIL(K).

Thus by lemma 3.4, the theorem follows.

Ca -c. N2>2L>1, We first establish that we may
assume there exists a T vertex incident with an edge in M.
For if there were no T vertex incident with an edge in M
then | M| = 'S'/z. To verify this statement, it is clear that
since M is incident only with S vertices (as will be proved
in step 3 on page 39), then [Mi< lS'/Z. Conversely if there
exists an S vertex, say 83+ noOt incident with edges in M, then
one of the vertices joined to 83, say s, must be a neutral

vertex, If deg s > 3, then we have two S vertices joined by



37

a weak edge. If deg s = 2, this contradicts our assumption.
Hence 2 I M| > ISI, i.e. IMI= |5|/2_ Now count the number
of edges in G. Since the path between two adjacent S ver-

tices is either an edge in M or two weak edges we have

a= t degs-!Sl, 221114180,

s€S

and B+ls) - 181, 2 21y 4181y,
Als) Z 2T+ sl=2p -1Isl

Isl-(A+1) 2 2p. 'Sl,ea+1) =Iml-(a+1) 2 p.
Therefore the theorem follows. Thus we may assume that
there exist T vertices incident with edges in M.

- - =G
N = L = 1 and zl # ul' set H /<x1. x. y. Vl' o o e VI>

_ G
or = /<x' y. Vl. . o oy VI>

depending on whether z, or x, is a neutral vertex:. Then
K=G - V(H) + (zl.yl) or K=G - V(H) + (xl.yl). and the
theorem follows by lemma 3,4, If N =L =1 and 2z, = ug,

if (xl,zl) in M or similarly (yl.zl) in M,

set H="0/_ Vis o e ey upe 304 K =G VA + (xpuyg).
The result is clear. If both Xy and y, are weak vertices
set H = G/<x1, Xe Yo Vi o v eh VP and K = G - V(H) +
(yl,w). where w is a neutral T vertex, we have established
the existence of such a vertex at the beginning of case 2-d,
therefore the theorem follows by lemma 3.4,

N>L>1, We may assume all yi's are weak vertices,

for if there exists one vertex, say Yo which is a neutral
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vertex, we can join all yi's to yg» and treat the rest as in
= G
case 2-c, i.e. Set H /<y.x.v1. .« s vy and x, € M'(x)>
and K = G - V(H). Construct K from K by joining all y;'s to
Yo then from case 2-c, the theorem follows., Thus all yi's

are weak vertices, Now set H = G/

<YonV10 o o o0 Vo and
x € M* (x)>* (M'(x) as in case 2-c) and K =G - V(H). Assume
there are J vertices (z;, . . ., zj) adjacent to x,'s, After

removing H from G we obtain J strong or neutral vertices, and
the total degree decrease arising from these J vertices is N,
Also there are L weak vertices of degree 1 in K. Since
N > L, we can construct K from K by joining these two sets
of vertices in an appropriate way without increasing the
degree of K. From such a construction A(K) > 2, A(K) < A(G)
and | K| =|K|. Moreover set M* = M/K the matching induced
by M on K, It is clear from the construction of K that
|M*| = |M| - 1, and the theorem follows by lemma 3.4.

Notes Case 2-d also shows that no strong edge can join
an S vertex to a T vertex and then be followed by a weak S

vertex, If it does, we can set H =G and

/<y.x.x1€M'(x)>

K =G - V(H).

Figure 3.5. A T vertex joining :5
two S vertices.
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The same argument as case 2-c, will prove the theorem.
(3) A1l edges in M are incident with S vertices. For
if there exist an edge e = (x,y) not incident with an S ver-

tex, then deg x = deg y = 2.

X y X y X y
v v
M ;m )
. ' . . w "

Figure 3.6, An edge (x,y) not incident with S vertices.

Case 3-a. Deg u >3 and deg v > 3. Set H = (x,y)
and K = G - V(H).

Case 3-b. Deg u > 2, and deg v = 2, If v is a
weak vertex and w a neutral vertex. Set H = P(x,y,v) and
K=G - V(H) + (uw). If v is a neutral vertex, set
H= (x,y) and K = G - V(H) + (u,w). The theorem follows
again by induction and lemma 3.4.

(4) Let P be any path between two S vertices then
Pl <4, For if there exists a path between two S vertices
of length > 5, then such a path must contains a strong edge
disjoint from S vertices which contradicts (3).

(5) G/S is discrete, and all the paths P between S
vertices satisfy | P| < 4. In particular, if the terminal

edges of P are weak edges, we have | P| = 2, Claim IS | =|M|
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and A+IS|>|Tl. We have shown in (3) that every edge of
M is incident with S vertices, hence | M| < |S|. If there
exists an S vertex, say s, which is not incident with any
edge in M, then s is a weak vertex. Let Sy be a vertex
joined to s. Then deg sy = 2 (otherwise we have two S
vertices joined by a weak edge), also (31'32) is in M, 1If
deg Sy, = 2, we contradict (3). If deg D) > 3, again we
contradict the remark stated before (3). Therefore every S
vertex is incident with an edge of M, sol M | = |S|.

Finally, we show that A.|S| > |T|, let us divide the
set of vertices T into three classes of subsets, Let a be
the set of T vertices, such that a vertex is in a if it is
ad jacent to two T vertices. Let B be the set of T vertices,
such that a vertex is in B if it is adjacent to one T vertex
and one S vertex, Let y be the set of T vertices, such that
a vertex is in vy, if it is adjacent to two S vertices. Now
consider the number of edges q in G. We have

q= I degs +|lal + IB'/2
S€ES

also q = 2|vl+ |a | + 3|B|/2.
tence A -1s| +lal+Bl/, > olvl 4 a1 43181,
and A.ls!> 2|yl +]|8l.
We claim that |y |2 lal. It is clear that |al< IS'/2. for
a vertex v in a, v must be on a path P of length 4, and the

terminal edges of P are therefore strong edges. There will
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be no other a vertex on any path joining these two terminal
S vertices, Also we have |y | > lS'/2. for if |y|< |S|/2
then 3 1sl+lal+ Bl cq=2iy+1a1+ 3Pl

3isi+ ' Bl <apy1 + 318l < s+ 31BIY,

i.e. 2Isi <|Bl
Since one edge in M can contribute at most two P vertices

then |Bl< 2 |M|= 2|S|, which yields a contradiction.
Therefore|y| > ‘Sllz >tla)l and Aclsl > 2|ly|+ |8l
>lal+|1Bl+ |yl =1T|. Thus we conclude thatAlS| >| T |

and the proof of theorem 3.7. is completed.

Section 3.3, M, J, Stewart [24], has determined the number

of edges in a maximum matching for the n-th subdivision
graph Sn(G). This number, BIU(Sn(G))' depends on

q = |E(G)l, on the parity of n, and sometimes also on the
parameter BIU(SI(G))‘ Similar precise results are obtained
here for the minimum matching number BlL(Sn(G). Various
cases arise depending on the value of n modulo 3. We first
prove the following theorem for the case when n = 3K-1,
where K=1, 2, 3, . . .. It will be observed that in this

case the value of ﬁlL(Sn(G)) depends only on K and q.

Theorem 3,8. Let G be a connected (p,q) graph. Then
Proof: Let both the vertices of G and the vertices of
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S3K_1(G) which correspond to the vertices of G be labeled

as vy, v2. e « o3 V_. To each edge (vi,vj) present in G,

P
denote the corresponding vi-vJ path of length 3K in S3K-1(G)

by Pijz( Vir Ups Ugs o e ey Ugg g0 Vg ). Next construct a

matching M in S;¢ ,(G) as follows: to each path Pyyin
S3K_1(G) choose the edges (ul.uz). (u4.u5). o ey (u3K_2.
u3K_1) to be the edges in M, We are choosing for M

the middle edge in each set of three consecutive edges of

P It is obvious from the construction that M is an edge

14
maiching in Sqy_,(G), and that each path P, j contributes
exactly K edges to M, Hence | M | = K-q. The theorem then
follows if we can show that M has property (P), since by
theorem 3,4, M is then a minimum matching. Let e be any
edge in M and consider in M all the near edges of €y-
Suppose that e is any one of these near edges. Two pos-
sibilities arises Case 1, The near edges €o and e lie on
the same path Pij' It is clear from the construction of M
that lP(eo.el)l = 4, and that there exists a weak vertex
between e and e, Case 2, The near edges €0 and e, lie
on two different paths P1J and Pik' Since IP(eo,el)l <4,
edges L) and e, are two terminal edges of the paths Pij
and Pik which are in M, Again, by the construction of M,
we conclude that |P(eo,e1)| = 4, and that the vertex v, is
the weak vertex between e, and e,., (See figure 3.7.) In

each case M has property (P), sol M | = B,1(S3x.1(G)) = Kq.



Figure 3.7. A weak vertex vj
between eg and e

Corollarys Let G be an arbitrary (p,q) graph. Then
BIL(S3K-1(G)) = K.q. K = 1' 2’ 3. . o
Proof: The connected case has already been considered
in theorem 3,8, If G is not connected, let G = Cl\J CZLJ
. U CN where C o« o« o0 CN are the non-empty components
of G, and N > 2, Then N
B1u (831 (6)) = = By (S5 1(Cy))

N
= I K¢ |E(Cy)| =K-q.
i=1

In the remaining cases when n = 3K+l or when n = 3K+3,
where K =0, 1, 2, . . . , the formulas for BIL(Sn(G)) are
somewhat more complicated than that given in theorem 2.8,
since they depend also on the values of BIL(Sl(G)) and
BIL(S3(G))‘ Nevertheless these formulas are useful, espe-
cially when K is large.

When an edge e of G and its end vertices are replaced
by a path P of length n+l in Sn(G), we find it convenient
to say that the edge e "contains” the n+l edges of the path P.
To each edge (Vi'vj) in G, denote the corresponding path of

length n+l in Sn(G) by Pij' (Vi’ul'UZ’ « o ey un,vj). For
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instance the corresponding path of length 2 in SI(G) is
Pij' (Vi’ up, VJ).

Theorem 3,9. Let G be a connected (p,q) graph. Then
B11(S3k41(G)) = 811 (S1(G)) +Keq. K=0,1,2, ...
Proof: Let |M0I = m denote the number of edges in a

minimum matching of Sl(G). so BIL(Sl(G)) = m. Then there

are exactly m edges of G which contain an edge of MO' and

q-m edges of G which do not contain an edge of MO.

Let both the vertices of G and the vertices of S3K+1(G)
which correspond to the vertices of G be labeled Vie Vi o o
. e vp. To each edge (Vi’vj) in G denote the corresponding
vitVy path of length 3K+2 in S3K+1(G) by Pij’ (Vi' Uy, Uy, o
e Uge vj). Now, construct a matching M in S3K+1(G)
in a manner we now describe. Corresponding to a path
Pij:(vi,ul,vj) in SI(G) containing an edge of Mo. one of
the vertices vy and vJ must be incident to an edge in MO.

If vy does, we choose the available K+l edges in Pij’ namely

(vioug)s (ugeu,)s o o oy (uggsugey) to be in M. Cor-

responding to a path P1J in SI(G) which does not contain

an edge in MO. we choose the available K edges in Pij as

follows (u,,u3), (ugsug), . « s (uzp_ysuzp). Thus

IM| = m(K+1) + (q-m)K = q.K + m,

Now claim (1) M is a matching and (2) M is a minimum

matching. It is clear that M is an independent set of edges
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in S3K+1(G). If M is not a matching, then on some path in
S3K+1(G) there are at least two consecutive vertices which
are not incident with edges in M. This can possibly occur

only on two ends of path P, . of S3K*1(G) which contains K

edges in M. If Vieuy are t:o such vertices, then vy must

be a weak vertex relative to My in SI(G). However in Sl(G).
Pij contains no edges in MO‘ Therefore Vir in Sl(G) are
two consecutive weak vertices, contradicting the fact that
My is a matching in SI(G)' Thus v; must incident with an
edge in M. Thus M is a matching. We next show that M is a
minimum matching in S3K+1(G). If false, let Ml be a minimum
matching of S3K+1(G). and |M1|< | M. We can obtain another
matching M2 from M1 having the same cardinality as Ml in

the following way. The edges of M1 are distributed among
the q-path of S3K+1(G). It is clear that no path P1j
contains K+3 edges in Ml’ since M1 is a minimum matching.

If there exists a path Pij containing K+2 edges of Ml' then
there must exist a path P11 or ij containing K edges of Ml.
since if all paths adjacent to Pij contain K+1 edges of Ml'
we can construct a new matching with fewer edges than Ml'
This contradicts the assumption that M1 is a minimum matching.
We can therefore rearrange the edges in M1 so that both Pij
and Py, (or ij) contain K+1 edges of M,. We may then
assume that among these paths there are s which contain K+1

edges in Ml' while the other q-8 paths each contain only K
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edges of Ml' Whenever a path Pij’ contain K edges of Ml’
both vy and vj must be incident with edges of M1 not in
Pij' For a path P1j containing K+1 edges of Ml' at most
one of vy and vj can be incident with an edge of M1 not in
Pij' since otherwise K edges could be used in M1 for that
path Pij' contradicting the minimality of Ml' This set of
K+1 edges in M1 can be replaced by a set of K+1 edges which
form a matching for Pij' such that exactly one of vy and vJ
is incident with an edge of Ml in Pij' If this latter set
is distinct from the former, we obtain a minimal matching
having the same cardinality as Ml' Repeating this process
for every path Pij containing K+1 edges of Ml' we obtain a
matching M,, where [ M,| = |M1| . We observe that M, has the
property that a path Pij contain K edges of Mz if and only
if both vy amd vj are incident with edges of MZ not in Pij’
and a path Pij contains K+1 edges of MZ if and only if
exactly one of vy and vj is incident with an edge of MZ in
Pij' Now we choose a new independent set of edges M* in
Sl(G) in the following ways: corresponding to a s-path PiJ
containing K+1 edges of M,, we choose the edge (Vi'ul) or
(ul.vJ) to be in M* depending upon whether vy or vj is in-
cident with an edge of M, in Py, It is clear that M* is an
independent set of edges, and we claim it is a matching for

Sl(G). If not then there exists at least two consecutive

vertices in SI(G) which are not incident with edges in M*.
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say vy and u,. Then the path Pij contains only K edges in
MZ’ otherwise uy would be incident with an edge in M*. This
implies that both vy and vj must be incident with edges of M2
not in Pij‘ If Vi is incident with an edge of MZ in path
Pik' then the path Pik contains K+1 edges of MZ. By the
construction of M#. vy would be incident with an edge in M*,
contradicting the assumption. Hence we conclude that M* is

a matching of Sl(G), and | M| = s, Since My is a minimum
matching of Sl(G). we have m < s. However | Mll = g(K+1) +
(q-8)*K =8 + q.K >m + q:K =] M|. Hence we have IM1| =| M),

i.e. M is a minimum matching.

Corollary:s For any graph G of order p having q edges,
BlL(S3K+1(G)) = BIL(SI(G)) + K'q- K = 0. 1. 2. e o o
Proofs The proof is similar to that given in the

corollary of theorem 3.8. and is omitted.

The next theorem completes our study of the minimum
matching number BIL(Sn(G)) by treating the remaining case
when n = 3K+3, K=0,1, 2, . . .

Theorem 3,10. Let G be a connected (p,q) graph. Then
alL(S3K+3(G)) = BIL(SB(G)) + K-q.
Proof: In S3(G). for each edge (vi,vj) in G, the
corresponding path Pij' (vi’“l'“Z'vJ) is of length 4. A
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matching for S3(G) then involves either one or two of the
edges in each such path. Let M0 be a minimum matching for
S3(G), and let r be the number of edges of G which contain
two edges in M,. Then q-r is the number of edges of G which
contain only one edge of M, and |Mol = 2r + (q-r) = r+q.
Let both the vertices of G and the vertices of S3K+3(G)
corresponding to the vertices of G be labeled as VisVore
. vp. For each edge (Vi'vj) occuring in G, denote the
corresponding path of length 3K+4 in S3K+3(G) by Pij' (Vi’
UgsUgse o o9 u3K+3.vj). Again the vertices between vy and
vj on Pij have been labeled in a way not showing their
dependence on 1 and j. Now construct a matching M for
S3K+3(G) in the following manner. Corresponding to an edge
(vi,vJ) in G which contains two edges of Mo in 83(6). at
least one of vy and vJ or both must be incident with edges
of My in the path Pij of S3(G). In the former case, if v,
has this incidence property, we choose the edges (Vi’ul)’
(ugsu5)s « « o» (ugpiosugpiq) to be in M, It is to be noted
that the last edge selected was not (u3K+3,vJ) but the
preceeding edge. In the latter case, we choose the edges
(vioug)s (ugaugd), o . oy (u3K+3’VJ) to be in M. Cor-
responding to an edge (Vi’vj) in G which contains only one
edge of MO in S3(G), we observe that at least one of vy and

vJ must be incident with an edge of Mo not in the path P1J
of S3(G). otherwise Mo would not be a matching. If v, has
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this incidence property, so that vy is a neutral vertex in
S4(G), we can choose (uz.u3). (ughug)y = « o (ugk421U3k43)-
Hence we have | M| = r(K+2) + (q-r)(K+1) = (r+q) + q+K

= B11.(53(G)) + K-q.

We next show (1) M is a matching, and (2) M is a
minimum matching. For (1), it is clear that from the choice
of the edges of M that M is an independent set of edges in
S3K+3(G). If M is not a matching, then there must exists
at least two consecutive vertices in S3K+3(G) which are not
incident with edge in M., By the construction of M, this is
impossible for any path Pij containing K+2 edges of M. For
those paths Pij which contain only K+1 edges in M, this
could possibly occur only at an end vertex of the path Pij‘
If vy and u, are two consecutive such vertices on path Pij’
then v, must be a weak vertex relative to My in S3(G). for
if not then vy must be incident with an edge in Mo. By
construction of M, this vy must then be incident with an
edge in M in S3K+3(G). constradicting the fact that vy is a
weak vertex relative to M. Hence vy is a weak vertex
relative to Mo. In this case vj must be incident with an
edge of MO not in Pij’ again by the construction of MO'
Since the vertex on P1J ad jacent to vJ will then be a neutral
vertex relative to M, we find another contradiction. Thus
M is a matching.

To prove (2), suppose that M is not a minimum matching
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for S3K+3(G). Let M; be any minimum matching of S3K+3(G)

8o 'Ml' < |M|. We can obtain another matching M, from M,
having the same cardinality as Ml in the following way.

The edges of M1 are distributed among the q paths Pij of
S3K+3(G). Some of these paths - say s in number - contain
K+2 edges of Ml' while the remaining q-s8 paths each contains
only K+1 edges of Ml' We will refer to the former as s-edges
and to the latter as q-s edges in G. Whenever a path Pij in
S3K+3(G) contains K+1 edges of M,, at least one of v; and
vJ must be incident with an edge of Ml not in path Pij'
Whenever a path Pij contain K+2 edges of Ml' we may replace
this set of K+2 edges by a set of K+2 edges of Pij which
form a matching in the subgraph Pij itself. Moreover, one
of vy and Vj' or both, is incident with edges of M1 in Pij’
if this latter set is distinct from the former. It is
impossible for both vy and vj to be incident with edges of
Ml not in Pij' otherwise K+1 edges could have been used in
M, for the path P, ,, contradicting the minimality of |M1|-
This replacement yields a matching having the same cardi-
nality as Ml' Repeating this process for every path PiJ
containing K+2 edges of Ml’ we obtain a matching MZ' where
'le = |M;|. Next, we choose a new independent set M* in
S3(G) with the assistance of MZ‘ For a path Pij containing

K+2 edges in M_, we are going to choose from P, , in 83(G)

2 ij
two edges in M*. these two edges will be incident with vy or
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vJ depending on whether or not vy and vj are incident with
edges of M in Pij’ and choose from Pij in S3(G) one edge in

*

M, if the path P contains K+1 edges in MZ' and this edge

i
is distance two aw:y from the vertex vy (i.e. from vy to
the near end vertex of this edge is distance two) or vj. if
vy or vJ is incident with an edge of M* not in Pij‘ It is
clear that vy and vJ cannot both be weak vertices relative
to MZ and cannot both be incident with edges in Pij in MZ'
In either case, K+2 edges are needed for Pij in order that
MZ be a matching. In case both vy and vJ are incident with
edges of M* not in Pij’ we can choose an edge of PiJ in
S3(G) distance two away from either vertex vy or VJ' Now,
we show that M* is a matching in S3(G). If not, there
exists at least two consecutive weak vertices on Pij relative
to M* in S3(G). By the construction of M*, one of these
vertices must be a vertex \£} of G. Then the corresponding
path, say Pij' in S3K+3(G) is either an s-edge or a q-8
edge., If (Vi'vj) were a s-edge, then V4 must be incident
with an edge in M* in Pij' and there would be two strong
edges relative to M* between vy and vj. Hence consecutive
weak vertices on Pij are not possible., If (vi.vj) w:re a
q-8 edge, then vj must be incident with an edge of M not

in P Thus by the construction above, the edge chosen in

ij°
M* is distance two away from vj. This makes the vertex in

Pij ad jacent to vy a neutral vertex and not a weak vertex
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* * *
relative to M, Hence M" is a matching and I|M" | = s + q,

Since My is a minimum matching in S3(G) we have r+q < s+q,

i,e. r <s, Now | M,| = | le = s(K+2) + (q-s)(K+1)
= (stq) + q-K <[ M|
= (r+q) + K-q.
Hence s = r, i.e. |M| = |M1|.

Thus we conclude M is a minimum matching.

Corollary:s Let G be any (p,q) graph. Then
BIL(33K+3(G)) = BIL(S3(G)) + K°'q. K=0,1, 2, . ..
Proof: The proof is similar to that given in the

corollary to theorem 3.8. and is omitted.



CHAPTER 4

EDGE COVERINGS

Section 4.1. The graphs considered in this chapter are

understood to have no isolated vertices, since no edge can
cover an isolated vertex. A set C of edges of a graph G
is called an edge covering set of G, provided each vertex
of G is incident with at 1least one edge that belongs to C.
An edge covering set C is called an edge covering (or simply
a covering) of G provided there is no edge covering set of
G which is properly contained in C. The set of all edges
of G, for example, is a covering set but ordinarily is not
a covering. The usual edge covering number al(G) denotes
the cardinal number of a covering having the minimum
number of edges. We will designate this number by alL(G).
In addition to the minimum covering number, we also define
the maximum covering number alU(G) as the cardinal number
of a covering having the largest possible number of edges.
Let G be a (p,q) graph and C an arbitrary covering of
G. We denote by a =| C | the number of edges in C. It is
clear that p/2 < alL(G) < a(G) < alU(G) < p-1.
Since p < 2a1L(G). we also have

53
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alL(G) < alU(G) < ZalL(G)-l.
If G=Kp denotes a complete graph of order p, we have
alU(Kp) = p-1. If G is a cycle C  or a path P_, then
2 2(n+1
ayy(Cy) = [P/3] and ) = (2D,

Theorem 4,1. Let C be any covering of a graph G of order p.
Then the number of components of <C> in G is p-|C|.

Proofs For any covering C of G, no three edges in C
can be the edges of a path of length three in G, since the
middle edge could then be omitted from C, violating the
definition of a covering. Thus the induced graph <C> must
be a union of A star subgraphs. Let vJ be the center of
the j-th star subgraph, j =1, 2, . . ., A. In case the
star subgraph is KZ' it is immaterial which end vertex is
called the center., If vj is adjacent to aj vertices in the
j-th star graph then aj is less than or equal to the degree
of vj in G. Since C is a covering of G and covers all
vertices of G, then

A

Xz :
+ a. = p.
1 )

If a is the edge covering number of C, then

A
a=Z o =|cl
=1 J

and A +a =p, or A = p-a = p-|Cl|,



If we choose one edge from each components of C, this
set of edges constitutes a matching set M for G, but is not
necessary a matching. Then A=|M|], and we at once have the

following result, which is a variation of Gallai's theorem,

Corollary: Corresponding to every covering C of G, there

exists a matching set M of G such that |C| +| M} = |V(G)]|.

Let K(pl.pz, .« o e pj) denote a complete j-partite
graph with j-pairwise disjoint sets of vertices containing

Py» P o s pJ vertices respectively, the notation being

chosen so that p; < p, <. . . = Pje Set p = 5 P;. Then
i=1

by Gallai's formula and from [6].

81y(K(pysPys + - s Py)) = min {[P/,;], p-p,}.
We mve alL(K(plpng . . [N} pj)) = p-min {[p/ZJO p-pj}'
Also it is easy to show that

J

alU(K(pl’pZ’ e ey pJ)) =i§2p1 = p-p; » a result which
we now prove.

It is obvious from theorem 4.1, that | C | depends on A
and that | C | attains its maximum when A attains its minimum

value., When G = K(pl. . o ey pj)’ the minimum number of

components a covering C can have is Pq- Hence from| C | = p-a,

J
2 pio

we have a,,(K(py, . . ., pj)) = p-p, =i=2
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Section 4,2. It is not hard to see that an edge covering
of G and the degree sequence of the vertices of a graph of
G are closely related. Consider, for example, the following
illustrations. Let G1 and G2 be graphs of order 7 with
degree sequences (5, 3, 2, 2, 2, 1, 1) and (6, 3, 3, 2, 2,
1, 1) respectively (see figure 4.1,)

Figure 4.1. The degree sequences of G1 and GZ’

Here alU(Gl) = 5 and alU(GZ) = 6, It will therefore come
as no surprise that an upper bound for | C | can be derived
in terms of the degree sequence of G.

Let G be a (p,q) graph with the degree sequence dl' dZ'

e o o o9 d_, where d1 > dz 2 . 4e ¢ e2d. Then the degree

p = P
sequence has the properties d, +1 < p

and

Hence it is possible to determine a unique integer k with
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1< k < p such that

k k+1
L(d +1)<sp< ZI(d; +1).
i=1 i=1
Define a = P - k (This definition is due to Prof. B, M,

Stewart), we have the following.

Theorem 4,2. Given any graph G(p,q) with degree sequence
dl' 2 dZ 2 e e 2 dp. then for any covering C of G we
have | C | 5fa. (a defined as above.)

Proof: From theorem 4.1, if C is any covering of G,

then

A
p=A+|C|l= Z(a

5 j + 1),

If we suppose that the star subgraphs of <C> to have
been lebeled so that G 2a2. .. 2 a, it follows

that “j < dJ for 1< jJ< A,

Fal
k + a.

We have p = A +/C|

Suppose A < k, then

A A k
p= Z(ay+1)< L(dy+1)< E(dy+1)<p,

N
a contradiction. Hence k < A and | C | < «a.

Since in theorem 4.2, C is any covering of G, thus we
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have derived an upper bound for any covering C of G. Also
the equality of the upper bound can be attained. Consider,
for example, the case when G consists of n copies of KZ'

Then there are n components, with degree sequence d1 = d2 =
d3 =, ., ., = dZn =1 we have _

n p/
a=2Zd;, =n= .
j=1 1 2

Section 4.3. In 1957 Norman and Rabin [18] presented a

necessary and sufficient condition for determining whether
or not a given edge covering is a minimum, and also provided
an algorithm for finding a minimum cover. In the case of
maximum covers, however, we have been unable to obtain
similar necessary and sufficient conditions. But, we were
able to find a sufficient condition for a covering to be a
maximum, To develop this result, we first need several

definitions.

Definition 4,1. Let X be any subset of the edge set E(G).
If P(G,X) is a path in G with the property that as one
traverses the path from one of the end vertices to the other
the successive edges are alternatively two in X and one

not in X or vice versa, then P(G,X) is called a bi-alterna-
tive path. In the special cases where | PI< 3, we agree to
regard paths having two consecutive edges in X or a single

edge not in X as bi-alternative paths.
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Let G be a given graph and C a covering of G, The
vertices of G can be partitioned into two sets:

¢, ='{v| deg.v = 1} » Gy ={ v I deg.v > 1}.
Here degcv (the degree of v relative to C) denotes the
number of edges of C incident with v. Evidently

L deg, v < |cll , and equality folds if and only if the
veC
2

induced graph <C> has no component isomorphic to KZ'

Definition 4,2. Let C be a covering of G. We say that C
has property Lgfl. if every path joining two C1 vertices is
bi-alternative.

Our main result in this section is to show that a
covering C which has property (P*) must be a maximum
covering. The converse is false. For example, consider a
graph G consisting of two star subgraphs and an edge joining
the two centers of the stars, as shown in the figure 4.2,
The edges shown shaded clearly form a maximum cover, but the
path P: (vl, Vys V3 v4) Joining’two C, vertices is not bi-

alternative.
v
4
vy g
3

Figure 4.2. A maximum covering failing to have
property (P*).
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Before proving the main theorem (Theorem 4.3,), we

need to establish four lemmas,

Lemma 4,1. If a covering C of graph G has property (P*),
then no edge of G joins two C2 vertices,

Proof: Let Vi'Vo € CZ’ 50 v, and v, are centers of
star subgraphs of G. There exist C1 vertices, say Upe Yy
joined to Vis Vo respectively. If there exists an edge
(vl,vz) in E(G), it is clear that (VI’VZ) is not in C. Then
P:(ul. Vir Voo uz)would be a path joining two C, vertices
which is not bi-alternative. This contradicts the assump-

*
tion that the covering C has property (P ).

Lemma 4,2, If a covering C has property (P*), then no
component of <C> {is KZ'

Proof: Suppose there exists a component of <C> which
is a single edge (ul.uz). Then P: (ul.uz) is a path between

two C1 vertices which is not bi-alternative,

Lemme 4,3. If a covering C of G has property (P*), then
every C1 vertex v has deg,v < 2.

Proof: Let v€-C1. so there is exactly one edge of C
incident to v. If degGv > 2, then there are at least two
edges in G which are not in C and are incident to v, let

uy and u, be the other end vertices of two such edges.
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Three cases arise. Case (i). Both Ugs Uy, in Cl' Then
P (ul. vV, uz) is a path joining two C, vertices, which is
not bi-alternative, a contradiction.

Case (ii). Suppose u,y in C1 and u, in CZ' Then there
exists at least one C1 vertex, say w, adjacent to u,. If
u, ¥ w, then the path Pi1 (w, uy, v, ul) between two C,
vertices is not bi-alternative. If u, = w, then P (ul. Uy,
v) between two C1 vertices is not bi-alternative, again a
contradiction,

Case (iii). Both upr 4y in CZ’ then there exists a
vertex weC, joined to u, (or “2)' The path P: (w, Uy, v)
between two C1 vertices is again not bi-alternative. Hence

we conclude that degGv < 2.

Lemma 4.,4. If C is any covering in G which has property (P*),
then for every vertex v in C2 we have deng = degG .

Proofs Let v be any vertex in CZ' so degcv > 1, If
every edge of G incident with v is in C, then deng = degGv
and the lemma follows. Thus we may assume that there exists
an edge e incident with v which is not in C. Let u be the
other end vertex of edge e. Then u cannot be a C2 vertex
by lemma 4.1. Hence u in Cl' Since v is in CZ' there exists
at least one C1 vertex, say w # u, joined to v. Then the
path P: (w, v, u) is not bi-alternative., But P is a path

Joining two C1 vertices, contradicting the assumption
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that C has property P*. Therefore we conclude that

degGv = degC .

Theorem 4,3. If C is a covering in G having property (P*).
then C is a maximum covering.

Proof: By lemma 4.2. no component of <C> is Ky, so
if A is the number of components for <C>, then A = ICZ|.

Also IicC| = lCII =z degC . Let us label the vertices of
V'(-C2

Cz as Vs Vs o . o9 V) and those vertices in C1 as VL+1'
VX+2' o s e vp. Consider the corresponding degree sequence
(in G): dys dyy o . 0y dy, dyF1, L L, dp. From lemma 4.4,
we know that degcvi = degGvi = di’ for 1 <1i <1, and from
lemma 4.3. we have degij = dJ <2, for A+1 < j < p.
By the definition of ; and theorem 4.2, we have

- A

@ =2ZId, = Ideg. = icl.

i=1 veC2

Since & is an upper bound for every covering C of G, in

this case | C| = &. C is then a maximum covering for G.



CHAPTER 5

EDGE MATCHINGS AND COVERINGS

Section 5,1. In [18], Norman and Rabin discussed relations
between minimum edge coverings and maximum edge matchings.
They proved that if one begins with a minimum covering C, a
maximum matching M can be produced from it, and conversely
that from a maximum matching M one can construct a minimum
cover C., In this section we develop analogous results for
arbitrary matchings and coverings. These results generalize
Gallai's Theorem in various ways. The graphs discussed are
assumed to have no isolated vertices, so 6(G) > 1 always
holds.

In the corollary to theorem 4,1, we have proved that
corresponding to any covering C of G there exists a matching
set M of G such that | C I1+IM I =|V(G)|. The first result
developed in this section is that if G is a tree a valid
result is obtained when we replace "a matching set M" by "a
matching M",

This modified result is not true in general, As a
counter example, consider the graph G of order 6 having a

covering C shown shaded in the figure 5.1.

63
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Here | C| = 4, but B,.(G) = Byy(G) = 3, so far this choice
of C, there is no matching M for which | Cl+|IM] =6,

Figure 5.1. A counter example.

This example shows that it is reasonable to make the

following definitions.

Defi n 5,1. A graph G having the property that corre-
sponding to an arbitrary edge covering C of G, there exists

a matching M such that |C|+|M|=|V(G)| is called of
Gallai type relative to coverings.

An analogous definition is useful for matchings.

nition 5,2. A graph G having the property that corre-
Eponding to an arbitrary edge matching M of G, there exists

a covering C such that | C|+| M |=]|V(G)|is called of
Gallai type relative to matchings.

Before we prove our next theorem 5.1. we need a
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preliminary result.

Llemma 5,1. Let T be a tree and C any covering of T, If
<C> has more than one component, then there is at least one
component C; of <C> which is joined to the subgraph T-V(Ci)
by exactly one edge.

Proof: Let the components of C be the star graphs

Cy» CZ' . « « Ciy where k>1, If C; is joined to T-V(Cl)

1
by exactly one edge, then the lemma follows. If not, then
C, is Jjoined to T-V(Cl) by more than one edge. Let e, be
one of these edges. Then e, is ad jacent to some component,
say C,. If e; is the only edge joining C, to T-V(CZ), then
the lemma follows, Otherwise there exists another edge

e, # ey and e, is ad jacent to a component, say C3. etc.

In this process we never encounter a component which has
already appeared in our 1list, since paths in a tree are
unique. Hence for i # j, C1 # Cj' Since the number of
components in <C> is finite, we must terminate our list

with a component C; which is joined to T-V(Ci) by exactly

one edge.

Iheorem 5,1. Let T be a non-trivial tree and C any covering
of T. Then there exists a matching M of T such that
lcl+ 1Ml =1v(T)I.

Proof:s From the corollary of theorem 4.1, we know the
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existence of a matching set M' such that | C| +| M'| =| T/,

Of course M' may not be a matching, but only an independent
set of edges. In the case of a tree, our problem is to
choose an appropriate edge from each component of <C> so that
the resulting set of edges constitutes a matching M, The
theorem follows at once if <C> has only one component. In
this case C = E(T), the edge set of T. Henceforth assume
that <C> has more than one component. There are then two
kind of components which may occur, namely a component which
is connected to the tree by exactly one edge (the existence
of at least one such component is proved in lemma 5.1,) and
those components of <C> which are connected to the tree by
more than one edge. Let us called the former outer compo-
nents of <C>, and the latter inner components of <C>, Each
outer component is adjacent to some component of <C> by a
single edge in T. In some cases this single edge is not
joined to the center of the star graph (type I), and in the
other case the edge is joined to the center of the star graph
(type 11). If an outer component is KZ' we agree that the

center is not an end vertex,

Figure 5.2. The types of

Type 1
outer components,

Type 1

Type II



67

The ad joining figure shows outer components of each type.
When an outer component is removed from T, the edges of C
remaining define a cover for the resulting subtree.

A suitable matching M can now be constructed for T.
In constructing a matching, one must select one edge from
each star graph. From each outer component of type I, the
edge ad jacent to the single edge joining the adjacent com-
ponent is selected. From each outer component of type II,
we choose an arbitrary edge. Next, we remove all these
outer components from T and designate these components as
belonging to level I. A new tree is obtained. The argument
is now repeated. After a finite number of steps, there will
be one or two components of <C> left. In case there is only
one component remaining, we choose any edge from it to be an
element of M. In case there are two components left, only
one edge join these components, since otherwise there would
be a cycle in T, a contradiction., Thus either component may
be regarded as an outer component. Depending on whether this
outer component is of type I or of type 1I, we choose a
suitable edge, and from the remaining component select an
arbitrary edge, completing the construction of M. We next
show that M is a matching for T. It is already clear that
M is a set of independent edges. If M is not a matching,

then there exists at least two ad jacent weak vertices rel-

ative to M in G, say vy and vj. These vertices cannot
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belong to the same component of <C>, so must belong to two
distinct adjacent components, say Ci and Cj‘ The vertices
vy and vj cannot have degree in C greater than one, since
such vertices are neutral with respect to M. Therefore
degcvi = 1 and degcvj = 1, Moreover the components Ci and
Cj cannot belong to the same level of outer components,
because components on the same level are not adjacent., If
Ci and Cj were adjacent, this would imply the existence of
a cycle in T, except in the trivial case where Ci and Cj
are the only components in C, However, in this case, the
theorem follows easily by an appropriate choice of one edge
from each component. Therefore at some level one of Ci and
Cj must be an outer component, and the other an inner com-
ponent. Let Ci be the outer component, and CJ the inner.
Since degcv.1 = 1, then vy is a neutral vertex relative to
M, by the manner in which M was constructed., This con-
tradicts the assumption that vy was a weak vertex. The
proof that M is a matching in T, and that |C| +| M| = |V(T)]|

is now complete.

We conclude from definition 5.1. and from theorem 5.1.
that all trees are of Gallai type relative to coverings.
A number of sufficient conditions for a graph to be of
Gallai type relative to matchings (see definition 5.2.) will

next be developed.
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Theorem 5,2. Let G be a graph of order p with maximum
degree A(G) = p-1. Then G is of Gallai type relative to
matchings.

Proofs Let M be an arbitrary matching for G, and Vo
be a vertex having maximum degree p-1 in G. Suppose that
Vo is a weak vertex relative to M. Then Vo is the only weak
vertex relative to M, for if there exists another weak
vertex v in G, then the edge (v.vo)G:E(G). and M\J(v.vo) is
a matching set in G containing M, contradicting the assump-
tion that M is a matching. Thus all other vertices of G
are then neutral vertices. If u is any neutral vertex, the
edge (vo.u) is in G and the set of edges C = Ml)(vo,u) is
clearly a covering for G, Then | Cl=IM|+ 1, so
IM|+{1C| = 2IMI+ 1 = p, proving the theorem when vg is a
weak vertex relative to M,

Next let Vo be a neutral vertex relative to M, and W
the set of edges joining Vg to all the weak vertices (rel-
ative to M) in G, and set C = MUW, Then |[C|=IMI+|Wl|,
and IC I+ IM|= 2IM|I +|WIl=p,

The restriction that A(G) = p-1, cannot be weakened,
as the following example shows. Consider G = P4. so
p=1Gl=4 and A(G) = 2. There exists a matching M with
IM| =1, and only one possible covering C, withl| C | = 2,

Then| M|+ |C| < 4, s0o G is not of Gallai type relative to
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matchings,

Theorem 5,3. Let G be a graph of degree p and maximum

graph of Gallai type relative to matchings.

Proof: Let M be a matching of order m, If m = BIU(G),

then by Gallai's theorem there exists a covering C of order

alL(G) such that BIU(G) + alL(G) = p.

We may therefore assume that m < BlU(G)' or
m= BIU(G) + r, for some positive integer r. One must show

that there exists a covering C, such that |C | = alL(G)+ r,

since then |IM| +|C] = p. To show the existence of such a
covering C, by the intermediate theorem of covering [12] we

only have to show that alL(G) < alL(G) +r < aIU(G). By

theorem 3.5,

- pB-1) . i.e. r is always bounded by

2A
pA-1)
Hence alL(G) < alL(G) +r < alL(G) + 21;1 < alU(G). and

there exists a covering C, such that |C| = alL(G) + r,

Similarly we employ theorem 3.7. to prove a slightly

different version of theorem 5.3,
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Theorem 5,4. Let G be a graph of order p with maximum
degree A, and minimum degree 6(G) > 2, and having

A-1
ayy(6) - a4, (G) 2 gzng%. Then G is of Gallai type relative

to matchings.

Proof: Let M be a matching of order m, If m = BIU(G)
then |[M| +|C| = p is an immediate consequence of Gallai's
theorem, since a cover C with |C | = alL(G) always exists. We
henceforth assume that m < BIU(G)’ som = BIU(G) - r, for
some positive integer r. We must demonstrate the existence

of a covering C such thatlC | = alL(G) + r., By theorem 3.7.

B1L(6) 2 P/ py and B,y(G) - By (G) P/ - Py Ay %{%
i.e, r is bounded by 1 < r < %%%i%% .

A-1)
Then ay; (G) < ayy (@) + 1 < a3 (G) + Zors < ay,(G). By the

intermediate theorem of covering [12] there exists a covering

C, such that | C | = alL(G) +r, and hence | M| +| C| = p,

It is not true in general that a graph which is of
Gallai type relative to coverings is also of Gallai type
relative to matchings. Neither is it true in general that a
graph which is of Gallai type relative to matchings is also
of Gallai type relative to coverings, we present some
examples to illustrate these assertions.

Example 5,1, Let T be a tree of order 12, as shown in
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the figure 5.3.

®

Figure 5.3. A graph not of Gallai type relative to
matchings.

By theorem 5.1. T is of Gallai type relative to coverings.
There exists a matching M of order 2, but no covering C
such that | C| +|M| = 12, since IC| = 8. Thus T is not of
Gallai type relative to matchings.

Example 5,2. Let G be the graph of order 6 shown in

figure 5.4.

Figure 5.4. A graph not of Gallai type relative to
coverings,

Since A(G) = 5, by theorem 5.2. G is of Gallai type

relative to matchings. Consider a maximum cover C, for
which | Cl =5, Since BlL(G) =2, |M|>2 for any matching
M, and | C| +I M| > 7. Thus G is not of Gallai type relative
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to coverings.

One might wonder if some connectivity requirement
might force a graph which is of Gallai type relative to
coverings to be of Gallai type relative to matchings, or
vice versa., We show the following counter examples, using
graphs which are blocks, that is, are 2-connected.

Example 5,3. Let G = Kp with P > 4, Then G is a
2-connected graph and A(G) = p-1, so by theorem 5,2, G is
of Gallal type relative to matchings. However G is not of
Gallai type relative to coverings. As we now show, consider
a covering C of Kp consisting of all p-1 edges incident with
a fixed vertex. Since BIL(G) > 2, then for any matching M,
IM|I +1c) > ptl.

Example 5,4. Let G be a graph of order 14, having 6
vertices of degree 5, and 8 vertices of degree 3, as shown
in figure 5.5. We notice that G is 2-connected, it is
connected and has no cut vertices. We readily calculate the
values alL(G) = 8, alU(G) = 10 and BIL(G) = 3, BIU(G) = 6,
Thus by the intermediate theorem for any covering C of G
there exists a matching M of G such that IM{+|C| = 14,

For a matching M with | M| = 3, there is no covering C such
that | C1 +| M| = 14, since 8 <| C| < 10 for any covering
C. We conclude that G is Gallai type relative to coverings

but not of Gallai type relative to matchings.



Figure 5.5. A block not of Gallai type relative
to matchings.

However, we do have a characterization of graphs which

are of Gallai type relative to both matchings and coverings.

Theorem 5,5. A necessary and sufficient condition for a
graph G or order p to be of Gallai type relative to both
matchings and coverings is that alU(G) + ﬁlL(G) = p,
We observe that this equation is similar to Gallai's
equation alL(G) + BIU(G) = p,

Proof:s Let G be a graph which is of Gallai type
relative both to matchings and to coverings. Consider a

minimum matching M of G for which| M| = BlL(G)‘ By
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hypothesis there exists a covering C of G such that
IMI +lCcl=p, Similarly for a maximum covering C' of G,
for which | Cc*'| = alU(G)' there exists a matching M' of G,
such that| M'| +|C'| = p. Now IM| <|{M'| and|C| <l C'|.
But inequality is impossible, because | M| +| C | =| M'| +| C'|
=p, Thus|M|=|M'l andlCIl=lC'l, solM]+|C'| =p.
Conversely, suppose that alU(G) + BIL(G) = p. We seek
to prove that G is of Gallai type relative to both matchings
and coverings., By Gallai's formula, alL(G) + BIU(G) = p.
Let M be any matching for G, so B,;(G) & IM] < B,,(6).
Then P-ay(G) <IMl<p - ay,(G)
or a,1.(G) = p -1 M| = ay,(G).
By intermediate value theorem for covering, there exists a
covering C, such that IC|l=p -|M|. i.e. IM|]+lcC]| =p.
Similarly, let C be any covering for G, so alL(G) <lCl<
@,y(G). Then p -B,,(G) <licl=<p - B, (G).
or B,;(G) <p -ICIl<B,,(G6).

By intermediate value theorem for matchings, there exists a
matching M, such that |M| =p - |Cl. Then |M| +iC| = p.
Thus G is of Gallai type relative to both coverings and

matchings.

Section 5.2, We again consider graphs G of order p having

no isolated vertices. For any matching M of G:

1 <8(G) <IMI<By(6) < P/,
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The following inequalities hold for an arbitrary

covering C of G:

P/, <ap (6) <1C1<ayy(6) < p-1.
It should be observed that every number in the second se-
quence of inequalities is greater or equal to each number
in the first sequence. Clearly a covering C is also a
matching if and only ifl C | = p/z, so G has a 1-factor.

From these inequalities we readily obtain

3 1 3
1/2 < 1/2 + 1/p < l!LLiglill <7y -, <7

Definition 5,3. For an arbitrary matching M and an arbitrary

covering C of a graph G, we define the edge Gallai ratio.

= 2,(G,M,C) = IMI+]CJ.

A
p

1
We first prove that there exist graphs G and suitable
natchings and coverings of G, such that the Gallai ratio is
arbitrary close to the upper bound 3/2. To show this, let
G be a complete graph Kp.
Case (i). If p = 2n, then alU(Kp) = p-1, and

BIL(Kp) = n, thus alU(Kp) + BIU(KP) =2n-1+n=3n -1,

.
p 2 2n

Clearly the edge Gallai ratio is arbitrary near 3/2 for p
sufficiently large.
Case (ii). If p =2n + 1, then alU(Kp) = 2n and
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p 2n + 1 1
2 + /rl

Again, it is evident that edge Gallai ratio is arbitrary

near 3/2 when p is sufficiently large.

Surprisingly, it turns out that the lower bound for
the Gallai ratio can be substantially improved. We prove

the following result.

Theorem 5,6. Let G be a graph of order p. Then for arbi-

trary matchings M and coverings C of G, xl(G.M.C) > 3/4, and

there exist graphsfor which this lower bound is attained.
Proofs Suppose that there exists a graph G, a matching

M and a covering C for G, such that A,(G,M,C) < 3/4 . We

seek a contradiction. In particular, then alL(G) + BIL(G)

< 3p/4’ 80 we may as well assume that | M | = BIL(G) and

ICI =ay;(G). ThusIM[+ici 3P/, and so P/, <lcl< 3P/,
Now, the edges in matching M cover exactly 2IM| vertices,

so there exists p-2|M] weak vertices in G, relative to M.

No two of these weak vertices can be adjacent, otherwise M

could be enlarged by including the edge joining these two

weak vertices, contradicting the fact that M is a matching.

Therefore there exists at least p-2|M| independent vertices

in G. Since IMI <32 p -lcl, then p - 21M1| > 2IC] - P/,
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If p is even, there exists at least 1 + 2IC| - p/Z independ-
ent vertices in G. Since 2IC|>p then|Cl+ 1 > p/Z' and
21c) - p/2 +1>lcl. If pis odd, there exists at least
2ic | - [plz]independent vertices in G. Since 2IC| > p and

p is odd, then 2iC| >p, | c 1> [P/,], and 2Ic| - (P/,] >l
But C is an edge covering this implies that G has at most

Ic |independent vertices. In any case a contradiction. This

completes the proof of the theorem.

The equality alL(G) + ﬁlL(G) = 3p/4 can be attained for
certain graphs G whose order is a multiple of four. A very
simple example is afforded by G = P4. a path of length 3.
Here AI(P4. M, C) assumes only two values, namely 3/4 and 1.
A more general example is given by taking for G the union of
n vertex disjoint copies of Pa. By ad joining suitable edges
one can easily obtain a connected graph for which equality
holds,

We next consider properties of graphs which attain this
minimum possible value of the Gallai ratio, and employ an

argument similar to that used in theorem 5.6.

Theorem 5,7. Let G be a graph of order p = 4n, Then alL(G)
= 3P =P =P

+ BIL(G) /4 if and only if alL(G) /2 and ﬁlL(G) /4.
Proof: Suppose that alL(G) + BIL(G) = 3p/4' so p is a

multiple of four, and p/2 < alL(G) < 39/4, Let M be a
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matching with IM | = BIL(G) and C a covering with| C | = alL(G).
Now the matching M covers exactly 2IM| vertices of G, so
there are p-2IM| weak vertices with respect to M, no two of
which can be adjacent. Hence there are at least p-2|M|
independent vertices in G, We next show that there are at
least two such weak vertices. Since |M]| = 3p/4 -1Cl, then
p - 2IM| = 2IC| - p/Z' and since p/2 <|C| < 3p/4. we have
2iC| > p, and p - 2IM| > p/2 > 2. There are p - | C| compo-
nents in C , hence G has at most | C | independent vertices
in G, Then p/2 < 2icl - P/Z <lIcl, so ICI< p/z.

Thus |C | = p/2 and | M| = p/4. The converse is trivial,

In the remainder of this section, we prove two theorems
which relate matchings and coverings to the Gallai ratio of
a graph. They provide a characterization of graphs for
which every covering (or every matching) contains the same

number of edges.

Theorem 5,8. Let G be a graph of order p. Then alL(G) =
alU(G) if and only if xl(G.M,C) < 1 for all matchings M and
coverings C of G.

Proof: 1If alL(G) = alU(G), then for any matching M
and covering C, we have
lct +1MIg a;4(G) + B(G) = @y, (G) + B,,(G) = p, by Gallai's
theorem., Hence xl(G,M,C) <1,
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Conversely,if xl(G.M.C) < 1 for all matchings M and
coverings C of G, then by Gallai's formula

p=ay;(G) + B y(G) < a,,;(G) +B,,(G) < p.
Thus alL(G) = alU(G).

Corollary: Let G be a graph of order p. Then alL(G)=a1U(G)
if and only if AI(G,M.C) < 1 for a maximum matching M and a

maximum covering C of G.

Theorem 5,9. Let G be a graph of order p. Then BIL(G) =
BIU(G) if and only if A,(G,M,C) > 1 for all matchings M and
coverings C of G.

Proofs 1If BIL(G) = BIU(G). then for any matching M of
G and any covering C of G we have

ICl+IMI| > alL(G) + BIL(G) = alL(G) + BIU(G) = p.
Hence AI(G.M,C) >1.

Conversely, if Al(G,M.C) > 1 for all matchings M and
coverings C of G, by Gallai's formula

P =ay;(G) +By,(G) 2a,;(G) + B,;(G) > p.
Hence B,,(G) = B, (G).

Corollary: Let G be a graph of order p. Then BlL(G)=31U(G)
if and only if Al(G,M,C) > 1 for a minimum matching M and

a minimum covering C of G.



CHAPTER 6

VERTEX COVERINGS AND INDEPENDENT SETS OF VERTICES

Section 6,1. Many of the concepts which we have developed
in our study of edge matchings and edge coverings can be
extended to maximal independent vertex sets and to vertex
coverings., As was the case for maximum edge matchings and
minimum edge coverings, earlier investigations have been
devoted almost exclusively to the study of maximum indepen-
dent sets of vertices and minimum vertex covers, Little or
no attention has been given to a general study of indepen-
dent vertex sets and to vertex covers., We find it possible
to define vertex coverings and maximal independent vertex
sets in a more general way. We again assume that the graphs

considered have no isolateq vertices,

Definition 6,1. A vertex covering set C0 is any subset of
the vertex set V(G) of G, which covers all the edges of G.

In particular, V(G) itself is a vertex covering set for G.

D ti 6,2. A vertex covering is a vertex covering set

which is minimal, in the sense that it contains no proper
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subset which is also a vertex covering set.

Let ag; = aou(G) denote the number of vertices in a
vertex covering having maximum cardinality and Ty = aOL(G)
the number of vertices in a vertex covering with minimum
cardinality, Let G be any (p.q) graph with no isolated
vertices, and C0 any vertex covering of G of order ag. Then
the following inequalities are obvious:

1< oL < @, < oy < p-1.

Furthermore, there exist graph G such that aOU(G) = p-1 and
aOL(G) = 1, so both bounds are attainable. In fact, both
bounds can be attained with a single graph, as shown by the
example of a star graph S of order p. Clearly aOU(S) = p-1,
and aOL(S) = 1, It is readily seen that there exist only
two vertex coverings for S. This example also shows that
one cannot obtain an intermediate value theorem as was the
case for edge coverings, since for any integer K such that
1 < K < p-1 there is no vertex covering C0 such that |CO|=K.
We next define a maximal independent set of vertices

for a graph G.

Definition 6,3. An independent vertex set My is any subset

of the vertex set V(G) of G with the property that no two

vertices in MO are adjacent,
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Definition 6,4. A maximal independent vertex set is an

independent vertex set MO which is maximal. This means that
MO ceases to be an independent vertex set if any vertex of

G not in M0 is ad joined to MO.

Let ﬁOU = BOU(G) denote the number of vertices in a
maximal independent vertex set having maximum cardinality,
and aOL = BOL(G) in one having minimum cardinality. Let G
be a (p,q) graph and MO any maximal independent vertex set
with order Bo. Then it is clear we have

1< By < By < Byy < p-1.

We again consider the example of a star graph S of order

p 2 3, for which BOL(S) = 1 and BOU(S) = p-1. There are
clearly only two maximal independent vertex sets for S, one
consisting of the center of the star graph S and the other
consisting of the remaining vertices. We again see that no
intermediate value theorem is possible, If K is any integer
such that BOL(G) < K< BOU(G). there may or may not be a
maximal independent vertex set having order K.

Gallai [10] has shown that for any graph G, of order
ps a5 (G) + Byy(G) = p.

We will prove in this section a rather surprising
variation of Gallai's result, namely that

aOU(G) + BOL(G) = Pp.

Thus Gallai's theorem also holds when the subscripts L and
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U are interchanged. First we need to establish the fol-

lowing.

Lemma 6,1. Let G be a graph of order p having no isolated
vertices. Then C0 is a vertex covering for G if and only if
the complementary vertex set M, = V(G) - Co is a maximal
independent set in G.

Proof: Let C0 be a vertex covering for G. Now
My = vV(G) - CO is an independent set of vertices, for if
there exist two vertices \£ and \L in MO which are not
independent, then vy is ad jacent to \p) and the edge
e = (VI'VZ) is not covered by any vertex in CO' This
contradicts the assumption that Co is a vertex covering.

We next prove that Mo is maximal. Suppose that Mo is
not maximal, so that there exists a set UC C0 such that
uuv MO is an independent set of vertices, Let u € U, so u
is joined only to vertices in CO and not to vertices in MO.
Then Co-u is also a vertex covering, contradicting the
minimality of CO.

Conversely, let Mo be a maximal independent vertex set
for G, and set Cy = V(G) - Mg. Then Cy must be a vertex
covering set, for if there exists an edge not covered by CO
this edge must join two vertices in MO' contradicting the
assumption that the vertices of Mo are independent. The set

C0 is also a vertex covering. If the contrary is assumed,
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then C0 has a proper subset R which is a vertex covering
set., Let v ¢ C0 - R. Then v is joined only to vertices in
Co. for if v is joined to some vertex in MO by an edge e,
this edge e clearly is not covered by R. But if v joins
only vertices in CO' then Mo\J ‘v} is an independent set of
vertices, contradicting the maximality of MO. Thus Co is

a vertex covering.

We can now prove our principal result of this section,
an extension of Gallai's well known result for minimum

vertex covers and maximum sets of independent vertices.

Theorem 6,1. Let G be any graph of order p with no isolated
vertices. Then aOU(G) + BOL(G) = p.

Proofs Let C0 be a vertex covering of maximum order
aOU(G), and let M, = V(G) - Co- By lemma 6.1, M, is a
maximal independent vertex set, we seek to show that
IMy | = By (G), that is that M; has the minimum number of
vertices possible, If MO is not a minimum, then there
exists a maximal independent vertex set MO* such that
IMy*I < IMgl. Let Co* = V(G) - My*. By lemma 6.1. C,* is
a vertex covering and | CO*I > ICol. contradicting the
assumption that C0 had maximum order. Hence MO is a
minimum maximal independent vertex set, and | Mol = BOL(G).

Since |C0| +| M0| = p, the theorem follows.



86

It is obvious that the assumption made in theorem 6.1.
that G has no isolated vertices is not essential. Suppose
there exists a set N of isolated vertices in G, Then we
can set G =G - N, and |G |l=p - n, where| N |=n. By
theorem 6,1. aou(a) + BOL(E) = p-n, Since aOU(E) = aOU(G)
and BOL(E) =='ESOL(G) - n, then aOU(G) + BOL(G) = p.

Section 6,2. We again consider graphs G of order p having
no isolated vertices. We have observed in section 6.1l. that
for any maximal independent vertex set Mo of Gs

1< BOL(G) <l M0| < BOU(G) < p-1.
and for any vertex covering C0 of G, we have:

1< ay(6) =Gyl < agy(G) < p-1.
From these inequalities we readily obtain:

p - ) p

Definition 6,5. For an arbitrary maximal independent set

of vertex MO and an arbitrary vertex covering C0 of a graph

G, we define the vertex Gallai ratio

= = l 0 .

We first show that there exist graphs G and suitable
maximal independent vertex sets and vertex coverings of G

such that the Gallai ratio is arbitrary close to the lower
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bound 0 and to the upper bound 2. To show this, let G be

a star graph of order p, then aOL(G) = BOL(G) = 1 and

+ B
Ay = EQL_E__QL = % . Clearly A\, is arbitrary near 0 when

p is sufficiently large. Also aOU(G) = ﬁOU(G) = p-1 and

Q- + B
_Q!_E__Qu =2 - % . It is evident that XO will be

Ag =
arbitrary near 2, when p is sufficiently large.

Next we prove a theorem which relates independent
vertex sets and vertex coverings to the vertex Gallai ratio
of a graph. It also providesa characterization of graphs
for which all vertex coverings contain the same number of

vertices and all maximal independent vertex sets also have

the same number of vertices.

Theorem 6,2. Let G be a graph of order p. Then the fol-
lowing three statements are equivalent.

(1) @y (G) = ay,(G).

(2) ByL(G) = Byy(G).

3) AO(G,MO.CO) = 1 for all maximal independent
vertex sets M0 and vertex coverings C0 of G.

Proofs (1) 1implies (2). By Gallai's theorem
p = aOL(G) + BOU(G) = aOU(G) + BOU(G), and from theorem 6.1.
p = aOU(G) + BOL(G). Hence BOL(G) = BOU(G).

(2) implies (3). For any maximal independent vertex

set Mo and vertex covering CO’ we have:
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1C | + 1My 1 < agy(G) + Byy(G) = ayy(G) + By (G) = p, by
theorem 6.1. Hence AO(G. M., CO) < 1. Furthermore,
|C0' + | Mol = l Co | + BOU(G) 2 aOL(G) + SOU(G) = p, by
Gallai's formula. Hence AO(G, MO' CO) > 1, and we conclude
that XO(G. MO’ CO) = 1.

(3) implies (1). Since p = ay (G) + Byy(G) = ag,(G) +
BOU(G) then aOL(G) = QOU(G).

It is interesting to compare theorem 6.2. with the
analogous results obtained for edge matchings and coverings
in theorem 5.8. and theorem 5.9.

Remarks If for some graph G, aOL(G) # aOU(G), (or if
BOL(G) ¥ BoU(G)). then the vertex Gallai ratio XO(G) assumes
values less than unity and also greater then unity. By
theorem 6.2. aOL(G) # aou(G) implies BOL(G) # BOU(G), and
vice-versa., From theorem 6,1, aOU(G) + BOL(G) = p and this
implies that aOU(G) + BOU(G) > p and also that aOL(G) + BOL(G)
< p. The last two inequalities show that AO > 1 and lo< 1

both occur for such graphs.



CHAPTER 7
DOMINATING NUMBERS

Section 7,1, Dominating numbers have been discussed by
Ore [22] and also by Berge [1], who refers to them as
coefficients of external stability. An application of
dominating numbers which readily comes to mind is the
problem of the five queens. In the game of chess, what is
the fewest number of queens which can be placed on a stand-
ard chessboard so that every square is guarded (dominated)
by at least one of the queens? It is easy to show that
five queens can be placed so that this condition is satis-
fied, and that no fewer suffice.

In this chapter it is assumed that G is a (p,q) graph

which has no isolated vertices.

Definij n 7,1. A subset Dy of V(G) is called a vertex
dominating set, if every vertex of G not in D0 is adjacent

to at least one vertex in DO'

Definition 7,2. A vertex dominating set D0 is called

minimal if no proper subset of DO is a vertex dominating set.

89
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Let us denote the minimum and maximum number of
vertices in any minimal vertex dominating set of graph G
by oy = dOL(G) and dg,; = dOU(G) respectively, and refer
to these parameters as the vertex dominating numbers. If
D0 is any minimal vertex dominating set of order dO' then
it is clear that 1 < dOL < do < Sou < p-1.

A star graph S of order p serves as an example to show that
the upper and lower bounds for do can both be attained,
since dOL(S) = 1 and dOU(S) = p-1, From this example it is
also evident that there exist only two minimal vertex
dominating sets for S, and hence in general there is no
possible intermediate value theorem as in the case of edge
coverings and edge matchings. The range of values of dO(G)
may therefore be expected to contain gaps.

Ore [22] proved that an independent vertex set is
maximal if and only if it is a vertex dominating set. We

shall prove the following generalization:

Theorem 7,1. An independent vertex set is maximal if and
only if it is a minimal vertex dominating set.

Proof: Let C0 be a maximal independent vertex set. If
C0 failed to be a vertex dominating set, then there exists
some vertex v in V(G) - CO’ such that v is not ad jacent to
any of the vertices in Co. Then COLJ {v} forms a larger

independent set of vertices, which contradicts the maximality
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of CO' Hence C0 is a vertex dominating set. If C0 is not
minimal ( as a dominating set), then there exists a vertex
u in C0 such that C0 - {u} also forms a vertex dominating
set. But vertex u fails to be dominated by Cy - {u}, a
contradiction.

Conversely, let DO be any independent vertex set which
is also a minimal vertex dominating set., If Do were not a
maximal independent vertex set, then there exists some
vertex w in V(G) - Dy such that {w} VU D, is an independent
vertex set. This implies that w is not dominated by DO'

again a contradiction.

The vertex independence numbers are bounded above and

below by the vertex dominating numbers.

Corollary 7,1. For any graph G of order p.

1 < 99.(G) < By (G) < Byy(G) < oy,(G) < p-1.

Proof: Since from theorem 7.1. every maximal independ-
ent set of vertices is a minimal vertex dominating set, the

result follows immediately.

There exist graphs such that 50U < gy and there are
graphs such that dOL< ﬁOL' For example, consider the

following graphs shown in the figure 7.1. and figure 7.2,



92

A 7 6

Figure 7.1, A graph illus- Figure 7.2. A graph illus-
trating BOU(GI) < GOU(GI). trating dOL(GZ) < BOL(GZ).

Then BOU(GI) = 2 and dOU(Gl) = 3, since the vertices A, B,
and C form a minimal vertex dominating set. Where GOL(G)==3
and BOL(GZ) = 5, Here the vertex set{_A,B,C} and §1,2,8.6,7}
can be used.

Definitions can be made for minimal edge dominating
sets analogous to those made for minimal vertex dominating

sets.

Definition 7,3. A subset D; of E(G) is called an edge

dominating set if every edge of G not in D1 is ad jacent to

at least one edge in Dl'

Definition 7,4. An edge dominating set D1 is called

minimal if no proper subset of D1 is an edge dominating set.

We denote by 01 = dlL(G) and g, = dlU(G) respectively
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the minimum and maximum number of edges in any minimal edge
dominating set of G and refer to these parameters as the
edge dominating numbers. If D1 is any minimal edge domi-
nating set having cardinality 61' then

1 20y, 29 29y =p-2.
The fact that p-2 is an upper bound for 9y will be shown
later. A star graph S of order p is an example showing
that the lower bound can be attained, and the following
figure 7.3. shows that the upper bound p-2 is also attain-

able, Vi

Figure 7.3, dlU(G) = p-2.

Then dlU(G) = p-2, as can be seen by considering the edge
set {(vi.vp)| i=1, 2, « « o p-Z}. Also dlL(G) = 2, and
there are no minimal edge dominating sets whose cardinality
lies between 2 and p-2. Thus no intermediate value theorem
is possible, and the range of values of the edge dominating
numbers may contain gaps.

We next show that p-2 is indeed an upper bound for dlU'
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Suppose a graph G of order p has a minimal edge dominating
set D, such that |D1| = p-1. Each component of the edge
induced graph <D1> is a star graph, so <D1> is a forest.
Supposing that <D1> has p' vertices, then <D1> has p'- A
edges, where A is the number of components in <D,>, Then
by hypothesis p' - A = p - 1 where A > 1, so p' 2 p. Hence
p=p'and A =1, i.e, <D1> is connected and is a spanning
star graph. If we consider any edge of G not in D1 dom-
inated by an edge (VI’VZ) of Dl’ it is clear that it is
already dominated by other edges of D;. Then D; - (VI’VZ)
also forms an edge dominating set, contradicting the
minimality of D,. Therefore | D1| < p-2.

There is a relation between edge matchings and minimal

edge dominating sets, as shown in the following

Theorem 7,2. An independent set of edges of a graph G is
a matching for G if and only if it is a minimal edge
dominating set.

Proof: Let M be an edge matching. If M fails to be an
edge dominating set, then there exists an edge e in E(G) - M,
which is not ad jacent to any edge of M. This implies that
MU{e} is an independent set of edges contradicts the
assumption that M is a matching. Hence M is an edge dom-
inating set., If M is not minimal, then there exists an

edge e' in M such that M - {e'} also forms an edge dominating
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set, but then edge e' is not dominated by M - {e'}. a
contradiction., Thus M is a minimal edge dominating set.
Conversely, let D1 be an independent set of edges
which is a minimal edge dominating set. If D1 were not a
matching, then there exists an edge e" in E(G) - D1 such
that DIL){e"} is an independent set of edges. However,
this implies that edge e" is not dominated by Dl' a con-

tradiction,

The following corollary is the analog of corollary 7.1.
shows that the edge independence numbers are bounded above

and below by the edge dominating numbers.

Corollary 7,2. For any graph G of order p we have
Proofs Since from theorem 7.2. every edge matching is

a minimal edge dominating set, the result follows immediately.

There exist graph having B1u < J1y° For example from
the adjoining figure 7.4.

Figure 7.4. A graph illustrating BIU(G) < dlU(G).
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We have Bw= 2 and Sy = 5.
The situation is quite different for the parameters

B,1.(G) and ¢11.(G). We have the following.

Theorem 7,3. For any graph G with no isolated vertices,

dlL(G) = BlL(G).

In order to establish this equality, we need the

following.

Lemma 7,1. Let D, be a minimal edge dominating set of G,
having minimum cardinality, so | Dl' = dlL(G). Suppose that
the edge induced subgraph <D1> has a component C which is a
star graph different from KZ' so|l Cl1> 3., Then there exists
a non-empty set of at least| C| - 2 vertices in G - <D1>.
which are joined to at least | C | - 2 end vertices of the
component C,

Proofs Define W =G - <D1>. The graph W is a set of
independent vertices, for if two vertices of W were joined
by an edge e, then e is not dominated by Dl' a contradiction.
Let| C | = n+¥l, where n > 2. Since D1 is an edge dominating
set in G of minimum cardinality, each edge of C dominates
at least one edge of G not in C, since otherwise such an

edge of C could be omitted from Dl’ a contradiction.

We maintain it is always possible to choose a set of
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distinct vertices u;, uy, . . ., u,  in W, such that (1) no

three end vertices of C can be joined to a single vertex

of W and to no other vertices of W and (2) no two (or more)

pairs of end vertices of C can be joined to two (or more)

distinct vertices of W and to no other vertices of W,
Suppose there exists three end vertices Vis Vi V3 of

C which are joined to a single vertex uy of W and to no

other vertices of W, (see figure 7.5.)

Figure 7.5. Three end vertices of C, joined to a
single vertex of W,

Then we can delete edges a and b from D1 and add edge e to
Dl' thereby obtaining a new edge dominating set with smaller
cardinality than | Dll, a contradiction.

Next suppose that there exists two pairs of end vertices
of C which are joined to two distinct vertices uy and u, of

W and to no other vertices of W, (see figure 7.6.)

Figure 7.6. Two pairs of end
vertices of C, joined to two
distinct vertices of W,
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Then we can delete edges a, b, ¢ from D1 and add edges d, e
to D1. We obtain a new edge dominating set with cardinality
less than |Dll, a contradiction.

From (1) and (2) we conclude that at most two end
vertices of C can be joined to a single vertex of W, there-
fore m > n-1., Hence there exists a non-empty set of at
least |C | - 2 = n-1 vertices in W, which are joined to at

least n-1 end vertices of the component C,

We are now able to complete the proof of theorem 7,3,
Let D; be a minimal edge dominating set having | Dll = 0;,.(G).
It is clear from corollary 7.2. that dlL(G) < BlL(G)‘ If
D1 is also an independent set of edges, then D1 is an edge
matching and dlL(G) > BIL(G)’ so dlL(G) = BlL(G)' and the
theorem is proved in this case.

If D1 is not an independent set of edges, then at
least one of the components of <D1> is a star graph dif-
ferent from KZ' Let A where C.l denotes the i-th

<D1> =121Ci'

component of <D1>, i=1,2, .. ., A. Consider a component
C, of order n;+1, where n; 2 2. By lemma 7.1, there exists
at least nl-l vertices in G - <Dl> which are joined to

nl-l end vertices, say Vi2r V130 ¢ o e vln; of the graph
Cl‘ Now we are going to construct a new edge dominating

set by replacing the edges (VIO’ V12)’ (vig° v13), . e e e
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. o3 (VIO' vlnl) by the set of edges (VIZ’ ulz), (v13. u13),
¢ o op (vlnl' ulnl). Let us denote this edge dominating
set by D,;. It is clear|D,| = |Dlll. Suppose that a
component CZ in <D1> has order n2+1, where n,> 2. We claim
there is no end vertices of C2 can be joined to vertices

uli's only, and to no other vertices of W. For example

figure 7.7,
Cq C,
V10 V20
v
1n
1
v Von
Vi1 1y 21 v 2
2]
o
Y117Y25

Figure 7.7. An end vertex of C2 joined to vertex Uqgye

If, \FX is joined to Uyj = Uy then D,, - (VZO. VZj) is
an edge dominating set, which contradicts the minimality of

D From this assumption and lemma 7.1l. there exists at

1.
least n2-1 vertices in G - <D1> namely Ujyys Urzs o oy u2n2
different from Ujqe Ugge o o oy Ugpg which are joined to
nz-l end vertices of CZ' SaY Voos Vygs o o e vZnZ' Now,

we may construct a new edge dominating set D12 by replacing

the set of edges (VZO' VZZ)’ (VZO’ Vy3)e o e e (Vo0 VZnZ)‘
by the set of edges (VZZ’ u22)' (v23. u23). . o (VZnZ’Uan)'
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After a finite number of such steps, all components in the
edge dominating set are reduced to single edges, and no
star component different from KZ exists. The remaining
edges in these components must then be independent, and
therefore form an edge matching. Thus dlL(G) > 31L(G), and

equality follows.
An application of theorem 7.3. is the following.

Theorem 7,4. Let G be a graph of order p, and having no
isolated vertices. Then GOL(G) + dlL(G) < p.

Proof: Let D0 be a minimal vertex dominating set such
that | Dy| = g, (G). Define W = V(G) - Dy. If |Dyl < P/z,
then dOL(G) + dlL(G) = IDOI + BIL(G) < p, since no independ-
ent edge set has more than p/2 elements.

Suppose next that | Dol > p/z. We first note that if
Vi is in D0 and is incident with a vertex \p) in DO' then
there exist at least one vertex u,y in W such that u,y is
dominated only by vy and not by any other vertices in DO'
For if the set of vertices in W which are dominated by vy
are also dominated by some other vertices in DO’ then since
v, itself is dominated by v,, this implies that D, - {vl}
will be a vertex dominating set. This contradicts the
minimality of DO'

Now, let Ml be a minimum edge matching in G, so
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'Mll = BIL(G) = dlL(G). M, is a set of independent edges,
which join pairs of vertices in DO' or in W, or join a
vertex in D0 to one in W, Suppose there exist r edges in
M1 which join two vertices in DO’ then there are at least
2r vertices in W which cannot join vertices in D0 to form
edges in Ml’ by the previous argument, Now, we may form an
upper bound for |M1| by joining these 2r vertices in W by
r edges and join the remaining | W| - 2r vertices of W to
vertices in D;. This is possible since | Dol >| Wl., Thus
IMJIS T +r +|Wl-2r =l W|. This shows that | M, is
bounded above by |Wl, and is independent of the number of
edges chosen from the set <D0>. Hence we conclude that

9or(G) + 9;.(G) =1Dyl +IM I <IDyl +1WI=p.

We have considered in this chapter sets of edges which
dominate all edges of a graph G, and also sets of vertices
which dominate all vertices of G. One might wonder if it
would be useful to consider sets of edges which dominate
all vertices of a graph, or sets of vertices which dominate
all edges.

A moment's reflection convinces one that under the
usual interpretation of domination, the parameters arising
are exactly the edge and vertex covering numbers discussed

in chapters 4 and 5.

'7.»
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Sectjon 7,2. This final section contains a few miscella-
neous results on line graphs. The line graph LG of G by
definition has a vertex set V(LG) which is in one-to-one
correspondence with the edge set E(G) of G. Two vertices
of LG are adjacent if and only if the corresponding edges
of G are ad jacent. The line graph of G is sometimes called
an interchange graph or derivative of G. Gupta [11]
mentioned without proof a few results concerning the
relationship between minimum covers and maximum matchings
for line graphs, We present a few new ones. We assume G is
a (p,q) graph and has no isolated vertices. It is clear
that By,(LG) = B,,(G), By (LG) = B,;(G).
and  dy,(LG) = 0,,(G), 0, (LG) = d,;(G).
From Gallai's formula we readily have

qOL(LG) + BOU(LG) = q.
Hence aj (LG) =gq - BOU(LG) =q - BIU(G).
From theorem 6.1, we have

aOU(LG) + SOL(LG) = q.
Hence aOU(LG) =q - BOL(LG) =q - BlL(G)

We also have the following.

Theorem 7,5. Let G be a graph with no isolated vertices.,
Proof: Now BOL(LG) = BlL(G) and dOL(LG) = dlL(G).
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By theorem 7.3, B,;(G) = 0;;(G). Hence we conclude that

Corollary 7.3. Let G be a (p,q) graph which has no
isolated vertices., Then ObL(LG) + aOULG) = q.

The proof is trivial and is omitted.
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