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Section 1. Introduction

Studies of Brouwerian algebras in which there is

defined a binary operation analogous to the distance

function of a metric space have been carried out by

Nordhaus and Lapidus [ 11] and by Lapidus[ 8 ] . Their

work generalized many of the earlier similar investigations

of Ellis [5.6] and B1umenthal[ L; ] in the field of Boolean

algebras. Ellis, in particular, observed that in a Boolean

algebra the symmetric difference operation satisfied lattice

relationships formally equivalent to the postulates defining

a metric distance function, and showed that many purely

geometric concepts could be carried over into this new

setting.

The first goal of this thesis is to show that in a

Boolean algebra the symmetric difference is the only binary

Operation Which satisfies the requirements of an.abstract

metric and is simultaneously a group operation.

One important difference between Boolean and

Brouwerian algebras is thefact that the Boolean complement

x' of an element x is disjoint from.x, while the Brouwerian

ccmplement‘lx of an element x is not necessarily disjoint

from x. However, in.many (but not all) Brouwerian algebras

it is true that, given any element x, the elements 1x and'Tix



are disjoint, where]]x denotes the Brouwerian complement of

'TX. M. H. Stone has asked, "What is the most general

Brouwerian algebra in which, for every x, the elements

7x and 71x are disjoint?"1 ‘

The second goal of this thesis is to determine the

basic structure of these Brouwerian algebras.

In Section 2 the symmetric difference operation in a

Boolean algebra is characterized as the only binary operation

which.is at once an abstract metric and a group operation.

By successive weakening or removal of some of the group

and metric postulates generalizations of this result are

obtained. Other characterizations of the symmetric differ-

ence among the class of Boolean operations are found, and

Section 2 is concluded with.further characterizations of

the symmetric difference in a Boolean algebra as the only

binary operation satisfying certain other side conditions.

In Section 3 there is determined the basic structure

of those Brouworian algebras in which, for every x, the

elements 1x and 11x are disjoint. An interesting charac-

terization of a wide sub-class of these special Brcuwerian

algebras is presented in Section a.

In the remainder of this section are presented

fundamental definitions, concepts, and notation to be used

throughout.

 

1This question appears as Problem.70 of Birkhoff

[ 3 ], where it is phrased in the dual setting of pseudo-

complemented lattices.
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Definition: A partially ordered set P is a set of elements
 

a, b, c, .4». together with a binary relation 9. 2 I) (read "a

is over b", "a Contains b", or "b is under a") subject to

the following postulates: .

Pl: a _>_ a ‘

P2: Ifoa_>_b andb_>_a, thena=b

P3

Definition: An £12222 £93313 of a subset x of P is an

If aZb andb_>_c, thenaZc..
0

element a such that a _>_ 2: holds for every x in X. An

element b is the M 11311:;M of x if b is an upper

bound of x and if b _<_ a holds for every upper bound a of X.

A 19193. Egan-9.. of X and the greatest $93.23 gains of X are

defined similarly. ' I

Definition: A partially ordered set P is a lattice if for

each pair of elements a, b the greatest lower bound of a

and b and the least upper bound of a and b exist. The

greatest lower bound of a; and b is denoted by vb, or ab,

and is referred to as the product, or lattice product, or

33933 of a and b; the least upper bound of a and b is

written a + b and is called the gig, or lattice m, or

1&1}; of a and b. It is shown in Birkhoff [ 3 1 that the

meet. and join Operations satisfy the following laws:

Ll: (Idempotent law): a 4'- s w a and as II 9..

L2 (Commutative law): a + b = b + a and ab e3 be.

L3 (Associative law): a + (b + c) = (a + b) + c

and MM) == (ab)c.

11+ (Absorption law): a + ab = a and a(a + b) = a.
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Definitiqn: A distributive lattice is a lattice in which
 

for every triple of elements a, b, c the following relation-

ships hold:

L5

L6: a + be = (a +b)(a + c).

a(b + c) =ab + ac.



Section 2. Characterizations of the

Symmetric Difference Operation in a Boolean Algebra

Definition: A Boolean algebra is a distributive lattice

with 0 and I in which for each element a there exists an

element a' satisfying a + a' = I and aa' == 0. The element

a' is referred to as the complement (or Boolean complement)

of a.

It can be shown that the complement a' of a is

unique, and that complementation is ortho-complementation,

i.e. that (a')' = a. 2

Definition: With each pair of elements a, b of an abstract
 

set S let there be associated an element f(a, b) of a

lattice L with an O. The binary function f is a metric

function from S to L if the following three conditions

hold:

151 f(a, b) 0 if, and only if, a = b,

M2: f(a, b) f(b, a),

M3 f(a, b) + f(b, c) _>_ f(a, c);

and we say that "S is lattice-metrized by f". A metric

function 1‘ from a lattice L to itself is called a

metric operation, and in this case L is called an auto-

metrized lattice.
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The properties Ml, H2 and N3 are lattice-analogues

of the familiar requirements of a distance function in a

metric space. We carry the analogy further by referring

to the lattice element f(a,b) as the "distance between.a

and b", the elements f(a,b), f(b,c) and f(a,c) as "sides

of the triangle whose vertices are a, b and c", and in

general using geometric terminology wherever such usage

is convenient and suggestive. It is particularly convenient

to refer to M3 as the "triangle inequality".

Definition: In a Boolean algebra the element ab! + a'b
 

is the gymmotric difference of a and b.

Theorem 2.1 [Ellis, 5] : The symmetric difference in a
 

Boolean algebra is a metric operation.

2322:: Let d(a,b) denote the symmetric difference of a and b.

First we observe that d(a,b) =laa' + a'a = O + O = 0. Next

we show that d(a,b) = 0 implies a = b. d(a,b) = ab' + a'b = O

can hold only if ab' = a'b = 0. To each side of the

equation ab! = O we add ab, obtaining

(2.1) ab! + ab = 0 + ab = ab.

Then ab = ab! + ab = a(b' + b) = a1 = a, using the fact

that a Boolean algebra is a distributive lattice. But

ab = a means that a E;b° Similarly, from a'b =g0 we con-

clude that b;g_a. Therefore a =‘b, and Ml holds. Since

the expression ab' + a'b is symmetric in a and b, it

follows that M2 holds. To prove M3, we will show that

[d(a,b) + d(b,cfl'd(a,c) = d(a,c), which of course implies



d(a,b) + a(b,c) 2;d(a,c). To this end, we write

(2.2) [d(a,b) + d(b,c)] ' d(a,c) = [(ab' + a'b)

+ (bc' + b'c)]-(ac' + a'c)

= ab'ac' + a'bac' + bc'ac' + b'cac'

.+ ab'a'c + a'batc + bc'a'c + b'ca'c

= ab'c' + abc' + a'bc + a'b'c

= ac'(b' + b) + a'c(b + b!) = ac' + a'c = d(a,c)

and the proof is complete.

In the following theorem, we let ash denote a

metric group operation in a Boolean algebra, and show

that sub = ab' + a'b necessarily.

Lemma 1: If x, y and z are the sides of a triangle in a

Boolean.algebra, then x +‘y = x + z é'y + z.

- 23333: Since x + y 2 z by M3, we add x to each side to get

x+y2x+ z. Similarlyx+ zzybyMB, and addingxto

each side yields x + z 2 x + y. This implies that x + y =

x + z, and the proof for the other two cases is similar.

Lemma 2: If a = bee, then ash = c and are = b.

23222; a =‘bwc implies as(b*c) = O by M1. The associative

law then gives (ash) so = O, whence ash = c by M1. The

proof for the other case is similar.

Lemma : O-zt-a = a.

M: Let can: 1:. By Lemma 2, am: = 0. Hence a = x by Ml.

Lemma 1.1:: a::-I = a'.

33223: Let asa' = b, and consider the triangle 0, a, a',

the sides of which are Ora = a, Oea' = a', asa' =‘b. Lemma

lgivesusa+b=a+a'=I, anda'+b=a+a'=I.
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Hence I = (a + b)(a' + b) = b. We conclude that awa‘ = I,

and Lemma 2 gives us awI = a' and airI = a.

Theorem 2.2: The only metric group operation in a Boolean

algebra is the symmetric difference.

nggf: Let xry = p. Consider the triangle I, x, y, the

sides of which are I%x = x', Try = y', xwy = p by Lemma h.

From Lemma 1 we conclude that x' + y' = x' + p and x' + y: =

y' + p. Multiplying the first of these by x gives xy' = xp,

and multiplying the second by y gives ny = yp. Adding, we

obtain xy' + x'y = xp + yp = (x + y)p. From the triangle

0, x, y, whose sides by Lemma 3 are wa = x, Cry =‘y, and

x-::~y = p, we obtain x + y 2 p by the triangle inequality.

Hence (x + y)p = p, and xy' + x'y = p = xey, completing the

proof.

We now extend Theorem.2.2 by relaxing some of the

group requirements.

Definition: A semi-group is a system of elements together
 

with an associative binary operation.

Theorem 2.3: The only metric semi-group operation in a
 

Boolean algebra is the symmetric difference.

2323;: The only group property used in the proof of Theorem

2.2 was the associative law.

Definition: A binary operation % is weakly associative if

a*(a*b) = (awa)*b.

Theorem 2.h: The only metric weakly associative operation
 

in a Boolean algebra is the symmetric difference.



23223: In the proof Of Theorem.2.2, the associative law

was used OnTy to show that a = bsc implies b = ass and c = ash,

i.e. in the proof Of Lemma 2. we will show that these

relations follow from the weak associative law and the fact

that the symmetric difference is a metric operation. Then

the proof Of Theorem 2.1 suffices as a proof of this theorem.

The fact that Osa = a follows from M1 and the weak associa-

tive law, for as(as0) = (asa)so = oso = 0 implies a = aso.

Now let a = bsc, x = ash, and y = asc. Then

(2.3). x = hsa = hs(bsc) = (hsh)sc = osc = c

(2.h) y = csa = cs(csh) = (csc)sh = Osh = h.

Hence a =‘hsc implies h = asc and c = ash.)

Theorems 2.3 and 2.h.were generalizations Of

Theorem.2.2 obtained through.relaxations Of the group

postulates. In Theorem.2.5, which.fellows shortly, the

associativity is abandoned.

Definition: A quasiggroup is a system consisting Of a set

of elements, together with.a binary Operation which satisfies

the law Of unique solution, i.e. if a = hsc and two of

these are known, the third is uniquely determined. A.lggp

is a quasi-group with a two-sided identity element. ‘

Definition:' The Ptolemaic inequality holds'for a quadri-

lateral if the three products (meets) Of Opposite sides

satisfy the triangle inequality (M3).

Theorem.2.5: The only metric loop Operation in a Boolean

algebra is the symmetric difference.

Before proceeding with the proof, some lemmas will be
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established.

Lemma 1: The loop identity is 0.

PM: Let e‘denote the loop identity. Since ese = e by

definition and ass = e by m, we have a = 0.

Lemma 2: asI = a' and _asa' = I.

£329.93: By the law Of unique solution there exists y such

that asy = a'. The sides of triangle 0, a, y are asy = a',

Osa = a, and Osy = y. The triangle inequality implies

(2.5) a+y_>_a' and a'+y?_a.

Tlms

(2.6) as! + a'y _>_ a' and aa' + ay _>_; a,

or

(2.7) a'y 2 a' and ay 2 a.

But these imply that'y _>_; a' and y _>_ a. Hence y a I, or

asI = a'. Consider the triangle 0, a, a' whose. sides are

Osa = a, Osa' = a' and asa'. Again the triangle inequality

implies

(2.8) a + (asa') _>_; a' and a' + (asa') _>_ a.

Multiplying the first Of these by a' and the second by a

gives

(2.9) a'(asa') _>_ a' and a(asa') _>_~ a.

Fram these we conclude that asa' Z a' and asa' _>_ a; hence

asa' = I. ‘

Lemma :2: The Ptolemaic inequality holds in any quadrilateral

0, I, a, b.

M: In the quadrilateral O, I, a, b, the side Gsa is

Isb, the side Osb is Opposite Isa, and the side OsI is
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Opposite ash. We will show only that

(2.10) (OsaHI-u-b) + (Osb)(Isa) 2 (OsI)(ash)

or

(2.11) ab' 4- a'b _>_ I 0 (ash) = ash;

the proofs for the other two cases are similar. The

triangle I, a, b has sides Isa = a', Ish =‘b' and ash by

Lemma 2. The triangle inequality gives

(2.12) a' + b' 3 ash.

By Lemma 1, the sides Of the triangle 0, a, h are Osa = a,

Osb =‘b and ash. The triangle inequality here yields

(2.13) a + h 2 ash.

Hence

(2.114.) (a + b) (a' + b') _>_ ash

or

(2.15) ab' + a'b‘z ash,

which is what we set out to show.

Proof Of Theorem.2.5: Let ash =‘x. We knew from.Lemma 3

that ab' + a'b‘z'x. We will complete the proof by showing

ab' + a'b;g x. Applying the Ptolemaic inequality to the

quadrilateral O, I, a, b', we have

(2.16) (0sa)(Ish') + ('Osb'HI-sa) _>_ (0sI)(asb')

or

(2.17) ab + a'b' _>_ I - (ash') = asb'.

Since ab' 4- a'b _>_ x, we Obtain

(2.18) (ab' + a'b)( ab + a'b') 2 x . (asb').

But (ab! + a'b)(ab + a'b') = 0, hence

(2.19) x . (asb') = O.
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The triangle a, b, b' has sides ash = x, asb', and bsh' = I

by Lemma 2. Using the triangle inequality, we get

(2.20) x + (ash') = I.

Thus x is the complement of ash', i.e.

(2.21) x' = asb'.

A similar argument shows that

(2.22) x' = a'sb.

Using the identity usv 5 u + v, we have

(2.23) x' 5 a + b' and x' _<_ a' + b.

Hence

(2.2h) x"5 (a + h')(a' + h) = ab + a'b'.

By DeMorgan's laws, we get

(2.25) x 2 ab' + a'b.

This, together with the earlier result x‘s ab! + a'b, shows

that

(2.26) x = ab! + a'b

and completes the proof Of Theorem.2.5.

It might be conjectured that a metric quasi-group

Operation is a Boolean algebra is necessarily the symmetric

difference. The following example shows that this is not

the case. In the Boolean algebra Of four elements 0, a,

a' and I define "distances" as shown in Table 1.

 

Table 1

C3 C) a a' I

0 0 a' a I

a a' O I a

a' a I O a'

I I a a' o
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Sinoe each.element appears once and only once in

each row and column Of Table l, the law of unique solution

holds. That Ml holds '15 shown by the fact that the elements

on the main diagonal, and only those elements, are 0. The

symmetry about the main diagonal implies that M2 holds. It

is easily seen that the sides of any non-degenerate triangle

are a, a' and I, hence M3 holds. This shows that 69 is indeed

a metric quasi-group Operation. However, 0 ® a = a', while

Osa == Oa' + O'a = a. Hence 6.9 is not the symmetric difference.

Bernstein [1,2] characterized the possible group

operations in a Boolean algebra among the class Of Boolean

Operations. The author is indebted to Professor B. M.

Stewart for pertinent Observations which.led to the following

theorem. This theorem is similar to those in[ l ] .

Definition: An Operation s is a Boolean operation in a

Boolean algebra if

(2.27) xsy = Axy + Bxy' + ery + Dx'y',

where A, B, C and D are fixed elements Of the Boolean algebra.

Theorem 2.6: Anvaoolean group operation in a Boolean

algebra is an abelian group Operation, and is of the form

(2.28) xsy = e(xy + xry') + e'(xy| + x'y)

where e is the group identity.

2323;: The proof consists Of evaluating the "constants"

A, B, C and D under the assumption that s is a group

operation. Repeatedly using (2.27), we write

(2.29) OsD = AOD + BOD! + CID .+ DID! = CD,

(2.30) OsC' = AOC' + ECO + CIC' 4- DIC = DC.



-m-

IBy the law Of unique solution, this implies D = C'. Now

(2.31) Dso = ADO + BDI + CD'O + DD'I = BD,

(2.32) B'so = AB'O + BB'I + CBO + DBI = DB.

Again by the law of unique solution, D = B'. Next

(2.33) AsD = AAD + BAD' + OA'D + DA'D'

= AD + AB

= AD + AD‘

= A

implies that D = e by definition Of the group identity.

Hence (2.27) can be written

(2.3h) xsy = Axy + eixy' + e'x'y + exry'.

Now

(2.35) e = ese = Aee + e'ee' + e'e'e + ee'e' = A0.

Since e = 3', this gives B' = AB'. Next we Observe that

(2.36) A's-B = AA'B + e'A'B' + e'AB + eAB‘ == AB + AB' = A,

(2.37) BsB = ABB + e'BB' + e'B'B + eB'B'

= AB + B:

= AB + AB'

= A.

By the law Of unique solution, we get A' = B. Collecting

results, we can write

(2.38) e = D = B' = C' = A and e' = D' = B = C = A'.

Hence (2.27) becomes finally

(2.39) xsy = exy + e'xy' + e'x'y + ex'y'

= 6(xy + x'y') + e'(xy' + X'y).

The fact that s is an abelian Operation follows from.the

symmetry in x and y of the right side of (2.39).
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Corollary 1: In a Boolean algebra, the only Boolean group

Operation with O as the group identity is the symmetric

difference.

Corollarng: In a Boolean algebra, the only Boolean group

Operation such.that OsO = O is the symmetric-difference.

'ggggf: Using (2.28), we write

(2.hO) O = OsO = e(O-O + II) + e'(OI + IO) = e,

and Corollary 2 follows from Corollary 1.

We notice that, in the proof Of Theorem 2.6, nO use

was made of the associative law. Thus Theorem 2.6 may be

generalized to get

Theorem.217: Any Boolean loop Operation in a Boolean algebra

is an abelian group Operation, and is of the form

(2.hl) xsy = e(xy + x'y') + e'(xy' + x'y),

where e is the loop identity.

£3223: Exactly as in the proof of Theorem.2.6, it can be

shown that s is an abelian Operation of the form cited in

the theorem.statement. We will now show that the

associative law holds, in particular that

(2.h2) zs(xsy)

and

x-y'z + xiylz + xlyzl + xylzl

(2.h3) (zsx)sy - xyz + x'y'z + x'yz' + xytzt.
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In what follows, DeMOrgan's laws are used repeatedly.

(2.111;) ' zs(xsy) = e [z(xsy) + z'(xsy)'] + e' [z(>s!-y)' + z'(x-=:-y)]

' = (62 + e'z')(x*y) + (62' 4- e'2)(x-='rv)'

= (62 + e'z') [a(ryhir X'y') + e'(xy' + X'fl]

+ (625' + 6'2) [div + X'Y')‘+ e'(x:v" + X'y)]'

== ez(xy f" x'y') +~ e'z'(xy' + x'y)

+ (92' + e'z) [e(xy + x'y')]' [e'(xy' +‘x'y)]:

ez(xy + x'y') +,e'z'(xy' + X'Y)

+ (ez' + e'z).[e' + (xy + x'y')‘] [afl- (xy' +3030!)

ez(xy + x'y') + e'z'(xy' + x'y)(I

+ (ez' + e'z) [e'(xy' + x'y)' + e(xy + x'y')‘

+ (xy + x'y')'*(xy' + x'y)']

= ez(xy + my) + e'z'(xy' +x'y)

+ e'z(xy' +ix'y)' + ez'(xy + x'y')'

'+ (62' + e'ZHXY)'(x'y')'(xy')'(x'v)'

.ezmr + X‘y') *9 e'z'(xy' + K'y)

+ 6'2(ry')'(x'y) ' l+._rezt(i:q))(xty')!

+ (ez' + e'z)(x' + y|)(x + y)(x' + y)(x + y')

ez(xy + x'y') + e'z'(xy' + x'y)

+ e'z(x' + y) (x + y')++ ez'(x' + y')(_x + y’)

4- (ez' + e'sz'y + xy'Hx'v' + xy)

= ez(xy + x'y') + e'z'(xy' + x'y)

+ e'z(xy + x'y') + ez'(xy' + x'y)

= emz + ex'y'z + e'xy'z' + e'x'yz' + e'xyz

+ e'x'y'z + exy'z' + ex'yz'.

Collecting terms, we obtain 8

(2.11.5) zs(xsy) == xyz + x'y'z + x'yz' + xy'z'.
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TO find (zsx)*y, we use the fact that s is abelian tO write

(2.1;6) (zsx)sy = ys(zsx).

Replacing 2 by y, x.by z, and y by x in (2.hS), we get

(2.14.?) (zsx)sy = zxy + z'x'y + z'xy' + zx'y'.

Hence

(2.h8) (zsx)sy = xyz + x'y'z + xiyz' + xyiz'.

The right sides or (2.16) and (2.1m) are identical, which

proves that the associative law holds. Since an associative

lOOp is a group, the theorem.follows.

Corollary 1: The only Boolean loop Operation with O as

the loop identity in a Boolean algebra is the symmetric

difference.

Corollary 2: The only Boolean loop Operation such that

OsO = O in a Boolean algebra is the symmetric difference.

.zgggg: Since

(«Z-#9) my = abs + x'y') + e'(xy' + x'y)

we can write that

(2.50) O = OsO = e(OO + II) + e'(OI + IO) = 6.

Then Corollary 2 follows from Corollary 1.

It is interesting that the requirement that s be

a Boolean Operation allowed us to remove the associative

law from the assumptions needed to characterize the

symmetric difference among the class of Boolean operations.

Itn will be shown next that a similar phenomenon occurs

with respect to the triangle inequality.

Definition: A binary Operation is called semi-metric if it
 

satisfies M1 and M2.



-18-

Theorem 2.8: The only Boolean semi-metric Operation in a

Boolean algebra is the symmetric difference.

23922: According to Bernstein[ 1 1, a Boolean Operation

has the form .

(2.51) my = (lea-1m + (I-x-o) xv + (o-x-I) x'y + (cz-omyi.

Thus

(2.52) . IsI

by M1, and

u 9 8 u o

(2.53) Ozz-I = IsO

by MZ. Let OH = z. Then (2.51) yields

(2.5h) Isz = zIz' 4 zI'z = O*+ O = O,

and z = I by M1. Thus

(2.55) xsy = xy' + x'y.

Frink [ 7 ] has characterized the symmetric differ-

ence as the only Boolean group Operat ion over which the

meet distributes. A In what follows, however, we will not

restrict ourselves to Boolean Operations.

Theorem 2.9: The only semi-metric group Operation in a

Boolean algebra over which the meet distributes is the

symmetric difference. .

M: The group identity is 0. Let a, b and c be the

sides Of the triangle 1, m,..n. Using the associative law,

M1 and M2, it is seen that

(2.55) ash i= (lsm)s(m-::-n)

= 1s[ms(m-::-n)]

= 1s (m-::-m)-::-r£l

= 1s(0sn)

= 1sn
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Similarly it can be shown that

(2.56) asc = b i

and

(2.57) obit-c = a.

New, using (2.55) - (2.57) and the distributivity assumption,

(2.58) [(asb) + (hsc)] (as-c) = (c + a)(asc)

[(9. + c)a]s[(a + c)c]

='- a'X‘O.

Recall that the lattice relation (x + y)z = z implies

x + y _>_ 2. Hence (2.58) yields

(2.59) (ash) + (hsc) _>_ asc.

Similarly it can be shown that

(2.60) (ash) + (asc) 2 hsc

(2.61) (hsc) + (asc) 2 ash.

Thus M3 holds, and s is a metric group Operation. Then s

is the symmetric difference by Theorem 2.2. A

It might be conjectured that the meet necessarily

distributes over every semi-metric group Operation in a

Boolean calgebra. That this is not the case is shown by

the following example. In the‘BOOlean algebra of eight'

elements, define an operation 69 by the following table:

 

 

Table 2

£13 0 a c a' b' c' I

O O a b c a' b' c' I

a a O b' c' I b c a'

b b b O- a' c a I c'

c c ' a' O-' b I a h'

a' a' I c b O“ c' b' a

b' b! b a I c' O a' c

c' c' c I a b' a' O b

I I a' c' b' a c b O
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New 0 appears only on the main diagonal, and the table is

symmetric about the main diagonal, so MI and MZ hold.

Clearly O is the group identity, and inverses are unique

(each element is self-inverse). It has been verified that

the associative law holds. Thus 69 is a semi-metric group

Operation. However

(2.62) a'(c®a) = 8'0' = b.

while

(2.63) (a'c) -::- (a'a) = GO 0 = c.

which shows that the meet does not distribute over 69.

Theorem 2.10: The only semi-metric semi-group operation
 

in a Boolean algebra over which the meet distributes is

the symmetric difference. 6

M: Ml guarantees that ass = 0. Thus if 0 is an identity

element, then each element Of the Boolean algebra is its

own inverse. But the associative law and M1 give us

(2.66) (0-::-a)sa == 0:3(asa) == Oso = O

whence Osa = 21, again by Ml, and O is an identity element.

If e is any element such that esa = a holds. for all a, then

ese = e. But ese = O by M1, so 0 is a unique identity.

Thus s is a group Operation and Theorem 2.10 now follows

from Theorem 2.9.

Theorem 2.11:. In a Boolean algebra, the only semi-metric
 

weakly associative operation over which the meet distributes

is the symmetric difference.

£13932: Using Ml and weak associativity,

(2.611.) (Osa)sa == os-(asa) = OsO = O
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implies_;

(2.65) Osa = a.

' By the distributivity assumption and M2

(2.66) ab'(asb) = (ab'a)s(ab'b) = (ab')*0 ab'

yields

(2.67) . ab' 5 ash.

Similarly

(2.68) a'b |
/
\

ash,

hence

(2.69) ab' + a'b _<_ ash.

Bow
,

(2.70) ab(asb) == (aba)s(abb) = (ah)s(ab) == 0,

and therefore

(2.71) [ab(ash)]' '= .I.

By DeMorganfls laws

(2.72) (ab)' + (asb)' = I.

Then

(2.73) (ab) [(abw + (ea-MI = (ab)

gives

(2.74) (ab)(as-b)l- =4 (ab)

which.implies

(2.75) ab 5 (9:314?) '.

Next we Observe that

(2.76) (a + h)(asb) = [(a + b)a]s[(a + b)b] '== ash,

or

(2.77) a + b _>_ ash.
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Hence-

(2.78) (a + h)' 5 (ash)'

or

(2.79) a'b' _<, (ash) '-

Thus (2.75) and(2.79) yield

(2.80) ab + a'b' _<_ (asb)'

or

(2.81) (ab + a'b')‘ 3 ash.

Again applying DeMorgan's laws, we get

(2.82) ab' + a'b Z ash.

But (2.69) and (2.82) together imply

(2.83) ab' + a'b = asb'

and the theorem.is proved.

Corollary: In a Boolean algebra, the only semi-metric
 

operation s such that Osa = a for every a and such that the

meet distributes over s is the symmetric difference.

23322: In the proof Of Theorem 2.11 the weak associativity

preperty was used only to show that Osa = a for every a in

the Boolean algebra.

Definition: As usual, let s denote the symmetric difference.
 

A binary Operation O is called quasi-analytical (Marczewski

[10 ]) when

(2.814.) (aob)chOd) 5 (ass) 4- (hsd)

for all quadruples a, b, c, d Of a Boolean algebra.

Theorem 2.12: (Marczewski): The only quasi-analytical

group operation in a Boolean algebra with O as the group

identity is the symmetric difference.
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3292.3 Marczewski showed in his proof that the Operation

0 is Boolean. . It then follows. from Corollary 1 to Theorem

2.6 or from Bernstein's results I: 1] that O is a metric

Operation, whereupon the theorem follows from Theorem 2.2.

Following is an independent proof Of Marczewski's theorem.

First we note that a = a'l, for

(2.85) a = asO = (aoO)s(aoa'1) _<_ (as-a) + (Osa'l) = a‘1

and 6

(2.86) a'1 = a'lso = (a‘loo)s(a'1oa) _-_<_ (a’lsa'l) + (Osa) = a

give us respectively a 5 a"1 and a"1 5 a.

. Since a ='a"1, we have aoa = 0. Let aob = 0. But

aoa = 0, hence a = b by the law Of unique solution and M1

holds. To prove M2, we write

(2.87) (aob)o(boa) = so [bO(boa)]

ao [(boh)oa]

ao(Ooa)

I
I

(I aoa

l
l

0.

Thus 'aOb = boa by Ml.

Let a, b and c be sides of a triangle 1, m, n, with

a = lom, b = men and c = lon. Then

(2.88) aOb == (lom)o(mon) = lon = c

(2.89) sec = (lom)o(lon) == (mol)o(lon) == men s b

(2.90) boc == (mon)o(lon) = (mon)o(nol) = mOl = a



Now

(2.91) .0 = aob (OOO)%:-(aob) _<_ (Osa) + (Osb) = a + b

(2.92) b = aoc = (DOOM-(ace) < (Osa) + (Os-c) = a + c

(2.93) a = boc (OOO)s(boc) _<_ (Osb) + (Osc) = b + c

proves M3. Hence 0 is the symmetric difference by Theorem

2.2. ’



Section 3. Structure of Stone Algebras

pgfinition: A Brouwerian algebra is a lattice L in which

for every pair Of elements a, b there exists an element x

such that

(3.1) b + x Z a

and

(3:2) b + y _>_ (1 implies y 2 x.

In other words x is the "smallest" element such that

b + x _>_; a. The element x is the difference of a andb.

and is denoted by a -' b. It may be verified (see McKinsey

and Tarski, [9] ) that

(3.3) a-bsc ifandonlyifa_<_b+c.

Examples of Brouwerian algebras are numerous;

among the Brouwerian algebras are all Boolean algebras,

all chains with c, all finite distributive lattices, all

distributive lattices in which descending chains are

finite, and all complete and completely distributive

lattices.

Theorem 3.1: A Brouwerian algebra is a distributive
 

lattice.

Proof: We will show that

(B-M) a + ylyg = (a + V1)(a + V2).
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Let

(3.5) b = (a + y1)(a + are).

Then

(3.6) a+y1_>_banda+y22b

implies ‘

(3.7) ylzb-aand yZ‘Zb-a

by (3.3). This gives

(3.3) V1372 _>_: b - a.

We can now write

(3.9). e+y1y22a+ (b - a) _>_b.

whore the last inequality follows from (3.1).

Having

(3.10) a + V132?- (a + y1)(a + y2 ),

it remains to show that the Oreverse inequality also holds.

But in any lattice

(3.11) a g a + yl, and y1y2 5 a + yl implies

(3.12) a + ylyg 5 a + yl.

Similarly a + ylya _<_ a 4- ya. Hence

(3.13) a + hire _<_ (a + y1)(a + V2):

This shows that (3.14.) holds. Also valid is the dual of

(3.14.), i.e.' the expression

(3.1M a(yl + 3'2) = “3’1 + aye

obtained from (3.1() by interchanging "4-" and ".".

Definition: If the Brouwerian algebra has a greatest

element I, the element I - a is the Brouwerian gomplement

of a, and is denoted by “Is. Similarly I -"|a ="|']a,

I ma =ma. and on.



In what follows, we restrict ourselves to Brouwerian

algebras having an O and an I.

It is shown in [9] and [13] that

(a) a Sb implies ]a Z'Ib

(b) Tia _<_ a

(3.15) (0) THa =1a

((1) Met) =']a +11.

(e) ‘l(e + b) =‘l‘l(1s]b).

M. H. Stone has asked the question: "What is the

most general Brouwerian algebra B in which. IaJIa = 0

holds for every element a in B?". This problem.appears

in its dual form as "Problem 70" of Birkhoff [3]. A

simple example of a Brouwerian algebra in which this

prOperty does p92 hold is the lattice whose five elements

are c, ab, a, b, a + b = I, for in this lattice ‘Is = b,

.1b =‘f1a = a, but 1a11a = ba‘# 0. On the other hand, this

prOperty holds in every Boolean algebra, and in every

chain with an O and an I.

Definition: A S2933 algebra is a Brouwerian algebra in

which.']a]1a ll 0 identically.

Let B denote a Brouwerian algebra with O and I, and let X

denote the set Of elements of B satisfying ']x]]x = 0. If

x and y are in X, then

(3.16) 1(x + 38TH): + y) =71(1x1y)(11x +T|v>

_<_ IX‘M‘TIX +TIF)

=‘lx'ly11x +"|x'|yT|y

= o + o

= O
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and

(3.17) 1(m)'|'|(xy) (1x + ly)'|'|(xy)

(‘lx + ‘IyYI'K‘I'Ime

S. (11 + 'IYYHXTW

= WXTbITIy + “ly'l‘leiy

= o + o = 0

show that X is a sub-lattice Of B, since X is partially

ordered by the partially ordering of B. Further, using

the relationship 1(a - b) =1a +‘Hbl, we see that

(3.18) )(x - y)'l‘|(x - y) (1:: +11y)[))(11x1y.)]

5. (1x +‘I'Iy)T|x')y

IXTIx'Iv +"I‘IyTlx‘ly

=O+O=O

That is, if x and y are in X, then so are x + y, xy and

x - y. This proves the

Theorem 3.2: In a Brouwerian algebra B with O and I,
 

the collection 'Of elements x satisfying ijlx == 0 is a

Stone sub-algebra.

Birkhoff [3]has shown that in any Brouwerian

algebra B the subset R of elements satisfying 'T)r ='|r is

a Boolean algebra under the Operations a + b and a® b = Tush).

In a Stone algebra, however, the subset R is a Boolean

sub-algebra Of B, i.e. R is a Boolean algebra under the

Operations a + b and ab which hold in B. This is, in fact,

a characterization Of Stone algebras, as is shown by the

following theorem.‘

 

1This result is shown in[8].



Theorem 3.3: A Brouwerian algebra B is a Stone algebra
 

if and only if R is a Boolean sub-algebra of B.

Before proceeding with the proof Of this theorem,

some lemmas will be established which not only facilitate

the proof but also add some insight into the structure of

Stone algebras. Let Q denote the set of all elements of

B satisfying a‘|a = 0.

Lemma 1: Q is a subset Of R.

m: If a is in Q, then a]a = 0 implies

(3.19) 118. = m + a‘la = (Tla + a)(TIa + 1a) = a I = a,

and a is in R.

Lemma 2: Q is a sub-lattice Of B.

23392: Let a and h be in Q. Then

(3.20) (a + h)‘|(a'+ b) _<_ (a + b)('|a‘|b)

= ala'lb + bla'lb

== 0 + 0

== 0

and

(3.21) (ab)'|(ab) = ab('la + ‘|b) == ab‘la + ab'lb = 0-'~+ O = 0

show that a + b and ab are in-Q.

M 3: B is a Stone algebra if and only if Q = R.

M: Let Q = R. Recalling that "Is =Tn a, it follows

that 1a is an element of R, for every a in B. Since

Q = R, we have that 'laTla = O, and B is a Stone algebra.

Conversely. let 1x112: = 0 hold for every x in B. If x is

in R, then 'I'lx = x implies 0 = ‘ flx. Hence R is a subset

of Q. Using Lemma 1 we conclude that R = Q.
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Proof Of Theorem 3.3: Let B be a Stone algebra. Then

R = Q'by Lemma 3: hence if x is in R then xflx ==0.

Since x +']x = I identically, it is seen that ']x is a

Boolean complement Of x, and is unique since B is a

distributive lattice. By Lemma 2, R = Q is a sub-lattice

of B. Hence R is itself a complemented distributive

lattice under the operations of B, 1.6. R is a Boolean

sub-algebra Of B.’ Conversely, assume that R is a Boolean

sub-algebra Of B. Then if x is in R, there exists an

element x' in R satisfying x + x' = I and xx' = 0. Since

x +’]x = I, we have (x +']x)(x + x') = x + x11.x = I.

This, together with. x(x'1x) = 0, implies that x' = x'flx

since B is a distributive lattice. Thus x' $11!. But

x' satisfies 2: + x' _== I, hence ‘Ix 5 x' by definition Of

the Operation 1. This shows that x' = ‘Ix, and hence

xx' = £11: '5' O. From this it follows that R is contained

in Q. Applying Lemma 1, we have that R = Q. Then B is a

Stone algebra by Lemma 3, and the proof is complete.

This. theorem suggests that Stone algebras may,

in a sense, he built up from.Boolean algebras. This is

indeed the case, and in the remainder Of this section we

present a characterization theorem which gives some insight:

into the general structure Of Stone algebras.

Definition: An ideal J in a lattice K is a subset of K

having the prOperties

(3.22) x and y in J implies x + y is in J.

(3.33) x in J and y;5 x implies y is in J.



Let L be a distributive lattice with o and I.

R be a Boolean sub-algebra Of L containing 0 and I, and

T be an ideal in L having the properties W

(3.21:) (a) The only element in L (common to both R and T

is O.

(b) T is a Brouwerian sub-algebra Of L.

Remark: t1 4- t2 = I holds for no pair Of elements t1, t2

Of T.

Proof: If t1+ t2 = I for some pair Of elements t1, t2

of T, then the fact that T is an ideal would imply that

I is in T. This is impossible by (3.2ha).

W: The relationship t 2 r )5 0 holds for no elements

t in T and r in R.

2.29.9.2: Assume t 3 r. Since T is an ideal, it follo‘rs that

r is'in T. Then, by (3.21)), r ='o.

Let B denote the direct sum R a T of R and T, i.e.‘the set

of elements of L Of the form r + t, where r is in R and

t is in T.

Theorem 34*: B is a lattice.

M: Let r1 + tliand r2 4- t2 be elements of B. T1161:

(3.25) (r1 + t1) + (ra + t2) = (r1 + r2) + (t1 + t2)

4 = r3 4- t3,

where r3 = r._L + r2 is in R since R is a Boolean sub-algebra

OfLandt3=t1+taisinTsinceTisanidealefL.



Since L is a distributive lattice, we Observe that

(3.26) (r1 + t1)(r2 + t2) = r1r2 + (r1t2 + rgtl + tlta)

= :03 + 153,

where r3 =-r1r2 is in.R since R is a Boolean sub-algebra

of L and t3 = rlta + r2t1 + tlta is in T since T is an

ideal of L.

Lemma 1: r - (r1 + t1) = rrl'.

923225: ‘Using the fact that L is a distributive lattice, we

write

(3.27) (r1 + t1) + rrl' u r1 + rrli + t1

= (r1 + r)(r1 + r1|) + t1

= (r1 + r) I + t1

= r1 + r + t1'

3 r.

Thus rr1' satisfies the first part (3.1) Of the definition..

or the difference or r and (r1 + t1). We show next that if

(r1 + t1) + x _>_ r then x _>_ rlrli. Let x be any element

of B, say x = r2 + t2, and assume

(3.28) (r1 + t1) + (r2 + t2) _>_ r.

Then

(3.29) (T1 + r2) + (t1 + t2) _>_ r.

Since R is a Boolean sub-algebra of L, there exists an

element (r1 + r2)' in R such.that (r1 + r2)(r1 + r2)! = 0.

Hence

(3.30) (r1 + r2)(r1 + r2)| + (t1 + t2)(r1 + r2)! _>_ r(r1 4- r2)'

or _ '

(3.31) (t1 + ta)(r1 + r2)! 2 r(r1 + 1'2)"
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The left side of (3.25) is in T, since T is an ideal of

L, and the right side is in R since R is a sub-algebra

of B. But in an earlier remark we showed that t Z r )5 O

is impossible. Hence

(3.32) r(r1 + r2)' = 0.

Since R is a Boolean algebra, DeMorgan's laws hold. Hence

(3.33) r' + r1 + T2 = I.

Multiplying both sides by rrl', we get (rI‘1')r2 == (rrli)

which.in turn implies that

(3.31;) r2 _>_ rrl'.

Hence

(3.35) 1-2 + .132. _>_ 1-23 rrlt

and the proof Of Lemma 1 is complete.

Lemma 2: t - (r1 4» t1) = t - [t(r1 4- t1)].

23222: The right side exists since T is itself a Brouwerian

algebra. Let y = t - [t(r1 + t1)]. Then

(3.36) (r1 4- t1) + y = (r1 + t1) 4- [t - t(r1 + t1)]

‘2 t(r1 + t1) + [t - t(r1 + tlfl

Z’t

by definition of the difference Operation. If x in B satisfies

(3.37) (r1 + 1:1) + x _>_ t

than

(3.38) t(r1 + t1) + tx Z t.

Appealing to the second part (3.2) Of the definition Of

the difference Operation, we see that

(3039) 153‘ _>_ y:

i.e. y = t - t(r1 + t1) is by definition the least element



satisfying t(r1 4- t1) 4- y 2 t. Hence

(3.1).0) x _>_ (31 2 .y,

which completes the proof Of Lemma 2.

Theorem 3,5: 3 is a Brouwerian algebra.

Proof: Let (r + t) and (r1 4. t1) be any two elements Of

B. We will show that (r + t) - (r1 + t1) exists in s,

in particular that

(3.1a) (r + t) - (r1 + t1) = [r - (1.1+ t1)] +[t - (r1 + t1)]

Let

(3.1.2). x=r-(r1+t1) and y=t-(r1+t1).

The existence of x and y is guaranteed by Lemmas 1 and 2.

.Further,

. (3.1)-3) x + (r:L 4- t1) = [r - (r1 + 121)] + (r1 +t1) 2 r

and f

(3.142).) y 4- (r1 4- t1) = [t - (r1 + t1)] + (r1 4: t1) 2 t,

by the definitions Of x and y. Combining (3.113) and (3.111).),

we get

(3.11.5) x+y+(r1+t1)2r+t.

We will complete the proof by showing that if an element

2 OfB satisfies 2 4» (r1 + t1) 2r+ t then z_>_x+y.

New

(3.1i6) z+(r1+t1)3r+tzr3r-(r1+t1)ax

gives 2 3 x by definition Of the difference operation,

and similarly

(3.1)?) 2+(r1+t1)_>_r+t2tgt-(r1+t1)=y

yields z _>_ y. Hence 2 Z x + y and the proof is complete.



Theorem.3.6: B is a Stone algebra.

‘gggggz Let r1 + t1 denote an arbitrary element of B.

‘We will use the relationship

(3.1).8) r - (r1 + (:1) --- rrl' _

of Lemma 1 to obtain ‘I(r1 + t1) and‘11(r1 + t1). By

definition Of the Operation '1 , we have that

(3.h9) '1(r1 + t1) = I - (r1 + t1) = Irl' = r1'

and,

(3.50) '11(r1 + t1) =.I -_)(r1 + t1) = I - r1' = (rl')'= r1.

Since R is itself a Boolean algebra, we have

(3.51) )(r1 + t1)11(r1 + t1) = rl'rl = 0.

Thus B is a Stone algebra.

Structure Theorem: If B is the direct sum Of R and T, where

R is'a Boolean sub-algebra (with least element 0 and greatest

element I) Of a distributive lattice L with O and I and

T is an ideal Of L such that g

(a) the only element of L common to hoth.R and

T is O

(b) T is a Brouwerian sub-algebra of L,

then.B is a Stone algebra. Further, every Stone algebra

may be so described.

The first part of the Structure Theorem.has already

been proved. The remainder of this section, except for

some remarks at the end, will be used to prove the last

part Of the theorem.

Definition: Let T denote the set Of elements of B.satisfying
 

‘]x = I and, as before, let R denote the collection of
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elements Of'B satisfying 'Tlx =.x.

Theorem 3.7: R is a Boolean sub-algebra of B.

‘23223: This has already been proved in Theorem.3.2.

Theorem_3.8: T is an ideal of B.

2339;: Let a and b be elements of T. Then ’Ia db = I.

and

(3.52) 1(a + b) -.= “()aIb) = TII = I,

by (3.15s). Hence a + b is in T. If a is in.T, and 0:5 a,

then lo Z‘la "2 I by (3.15s). Thus 'IO = I, c is in T, and

T is an ideal of B.

Theoremg3.9: The only element of B common to both R and T

is 0.

23232: Assume that an element a is in both.R and T. Then

1s = I, and O = ala = a1 = a.

Theorem 3.10: IT is a Brouwerian sub-algebra Of B.

‘ggggg: In the proof Of Theorem.3.8 we showed that a + b is

in T whenever a and b are in T. Now

(3.53) 1(ab)=1a +‘Ib = I + I = I

by (3.15d). Hence ab is in T, and T is a sub-lattice of

B. It remains to prove that a - b is in T ifya and b are

in T. But a- h_<_aby (3.3). Hence a - b is in T since

T is an ideal Of B.

Theorem 3,11: Every element b of B can be written in the

form ‘b = r + t, where r is in R and t is in T.

£2223: Since B is a distributive lattice, we may write

(3.51)) 'Hb + b1b= (le + b)(le +_'|b).



But

(3.55) le + b =_b

by (3.1%). and

(3.56) 'I‘lb + 'lb = I

by definition of the difference operation. Hence

(3.57) le + b‘lb =1le + b)(T|b + 1b) '= bl = b .

holds for every element b in B. Now 11b is in R, since

(3.58) 11mm =lm1b) =‘|flb) =11}.

by (3.150). Further, b-I‘b is in T, for

(3.59) 'I(b'lb) ='|b +le = I

by (3.15d). Thus we may set ‘le = r and b‘lb = t, and

the desired representation is obtained.

Theorems 3.7 through 3.11 complete the proof of

the Structure Theorem.

More insight into the make-up of Stone algebras

may be obtained by interpreting the preceding work in

terms of set theory.

Definitigs A .gigg _o_f_ _s_e_t_s_ is a collection 0 of sets

A, B, 0,." such that if A and B belong to 0 so does the

set sum AUB and the set product AnB. A Boolean ring 3:

391:3 is a ring of sets which contains with any member A

the set complement A' of A.

Definition: Given two members A and B of a. ring of sets

8. A a- B denotes the smallest set of all sets X in 6

satisfying BUX 3A whenever this smallest set exists. 8

is a Brouwerian ring _o_I_‘_ sets if, for every pair of‘members

A, B’ A E B 61513158 in C.



An example of a Brouwerian ring of sets which is

not a Boolean ring of sets is the collection 4% of all

closed subsets of the plane. In W , A 7 B is the inter-

section of A and the closure of the complement of B. The

collection 0 of all Open subsets of the plane is a ring of

sets which is not a Brouwerian ring'of sets. For, let A

' and B be Open sets, neith‘er containing the other, such

that A03 is not empty. The smallest set satisfying

BUXjA is An B', which is not in C9 . It is easily seen

that there is no smallest open set containing AnB', hence

A v5; B does not in general exist in 0’ .

Let C be- a ring of sets containing the null set ¢

and a greatest set I, and let R be a Boolean sub-ring of C’

which also contains ¢ and I. Let 7 be a Brouwerian

sub-ring of CD. which is an ideal and which has in common

with I? only the null set ¢ . Finally, let 6 = i297

denote the collection of all sets of the form RUT, where

Risin RsndTlsinfl’.

Set-Theoretic Structure Theorem: Every ring of sets

6= HQ 37/, where if and 31’ satisfy the conditions laid

down in the preceding paragraph, is a Stone algebra, and

every Stone. algebra can be so described.

M: The first part of the theorem follows from Theorem

3.5 and 3.6. Let B denote an arbitrary Stone algebra.

Then B = R ® T where R is the set of elements of B

satisfying 'I‘Ir = r and T is the set of elements of B

satisfying ‘I t = I. Since any distributive lattice is



isomorphic with.a ring of sets [cf. Birkhoff, p. lhq]

we knew that B is isomorphic with a ring dg’of sets. The

Boolean sub-ring fl? and the Brouwerian sub-ring.j7 are the

respective images, under the isomorphism, of R and T.

A direct application of Theorems 3.7 through 3.11 oan.now

.be made to complete the proof of this theorem.

This set-theoretic representation furnishes a

method of constructing Stone algebras. Lot 21 denote an

algebra of sets, Tyfan arbitrary collection of elements of

Wtogether with their complements, and W the collection

of elements of Z/Atogether with their pairwise sums and

products. If R1 and R2 are in /6), it is clear that

RfLJRZ and RlnR2 are also in if . Further, if R is in

I? , then R' is in 68 . For, if R is in Vthen R' is in

ywhich is contained in fl . If R is not in ‘f, then

either R = ViLJVé or R = V1f\V2, where V1 and V2 are

elements of V. In the first case R' = Vl'flVZ' and in

the second case R' = Vi'LJV2'. Since V1' and V2' are"

elements'of 7V”, it follows that in either case R' is in

i9. Hence fl is a Boolean ring of sets.

From among the members of ZZnot already in fl

choose a sub-collection.27 in such.a way that:

(a) If T is in 17’, the set complement T'

is not in ;?H.

(b) If T1 and T2 are in Jar: so is TlLJTa.

(c) If T is in 57’, so are all sets of'?‘

contained in T.
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(d) The collections frand l?have in common

only the null set.

It is seen from (b) and (c) that fie a ring of sets, and

(a) implies that ,7 is not -a Boolean ring of sets. If T1

and T2 are in j, the set T1 35(- T2 exists in ’M since

W is an algebra of sets. But it is clear that

T1 ? TZC T1, so that '1‘1 72 T2 = T1): T2 exists in

57 and 5/" is a Brouwerian ring of sets. Intuitively, the

Brouwerian ring 3/ of sets serves to "fill out" the

Boolean "skeleton" fl? . The desired Stone algebra fl is

now obtained by forming the direct sum 5 = £6 57/.
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Section.h. Characterization of

Certain Stone Algebras

In.this section we characterize a wide sub-class of

Stone algebras. These Stone algebras are shown to be

factorable into a direct product of Brouwerian algebras of

a rather special kind called T-algebras.

Definition: An element a.of a lattice L is Join-irreducible

if x + y = a implies x = a or -y = a.

Definition: A Brouwerian algebra with.I is a T-algebra if

I is join-irreducible.

T-algebras may be constructed in the following

manner. To any Brouwerian algebra L adjoin a new element

J in such a way that J is preperly over every element of

L. Let'i denote the resulting lattice. It is seen that

the adjoining of J to L leaves unchanged all the original

differences a - b of elements of L. If x is an element of

L, then J - x = J since for no y‘fi J can the relationship

x + y = J hold. (Recall that J is preperly over every

element of L, and that x + y is an element of L). This

shows that there exists inlf the difference of any two

elements, i.e. that‘L is a Brouwerian algebra.

One of the results proved in this section is that

the direct product of T-algebras is a Stone algebra. Thus

a large collection of Stone algebras can be constructed by



taking an arbitrary collection of'arbitrary Brouwerian

algebras, converting each Brouwerian algebra into a

T—algebra by adjoining an element J, and forming the direct

product of the resulting T-algebras.

Important concepts used throughout the rest of this

section are presented in the following definitions.

Definition: Let the set C be the indexing set for a
 

collection of Join-irreducible elements apb’ec. The

collection a1} is a representation 2;: _I. if

(LI-01) I =\/a»‘.

650

The representation is irredundant if Kffi implies ”‘3" O.
 

Definition: A lattice L is complete if every subset of L

has a greatest lower bound and a least upper bound.

Definition: A lattice L‘is completely distributive if
 

arbitrary sums distribute over arbitrary products, and

dually.

Remark: Let D be the indexing set for an arbitrary subset

of L, and let a;', 66D, denote the Boolean complementof

as. For our purposes the full power of the complete

'distributive law is not needed; instead, it suffices that

(ll-.2) AU“ + ag') = V[5/\a8(1)]

. (1) GD

where @335”) denotes a product formed by choosing, for

(1)] ’
each 8613, either as or aS', “d(1)V[56/})a6 denotes the

union of all such products. ”The following example illustrates

the notation; the complete distributive law we require is

the generalization of the following law:
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(ll.3) (a + a')(b + b').(c + c') = abo 4- abc' a-‘ab'o

+ abi'c' + a'bc + a'bc'

+ a'b'c + a'b'c'.

Definition: Let A and B denote two algebraic systems

having the same operations. The 3% product A XB

of A and B is the set whose elements are pairs (a,b),. aeA

and bEB, and whose operations are performed component-wise:

- uni) r[(a1,b1).(a2.b2)] = [martian f(b1,b2)].

The direct product of an arbitrary number of algebraic

systems, all having the same operations, is defined

similarly. A

Lemma 1: The direct product of an arbitrary collection of

Stone algebras is itself a Stone algebra.

£39.32: Let A be the indexing set for a collection of Stone

algebras S,v «EA. Let

(ll-0.5) S F’ILS“

denote the direct product of the Stone algebras 88. An

element x of S has components x“, where ages“. Then the

element ‘11: = I - x of S has components 'Ix,‘= I.) - x4, and

111563 has components Tlx“ = 1,. - 'qu, since the difference

operation is performed componentwise. Since the product

Operation is also performed componentwise, the element

1x11xes has components 'lea‘lxd. But each 3,. is a Stone

algebra, hence 'lxd‘l'lx.‘ = 0... Thus the components of ‘lelx

are all 0, and S is a Stone algebra.

Lemma 2: Every T-algebra is a Stone algebra.
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33.9.92: . Let x 75 I. Then 11: + x.=‘I implies that 1:: = I,

since I is joinpirreducible. Hence “Tlx = 0, and

”1anx = ID = 0 holds for every x‘# I. The proof is

completed by noting that 'TITTI = OI = O.

The principal result of this section is presented

in.the next two theorems.

Theorem {p.l: If B is a complete Stone algebra, and if I

has a representation as an irredundant Join of Join-irreduc-

ible elements, then B is isomorphic with a direct product

of T-algebras.

Theorem.h,2: If B is a complete and completely distributive

Stone algebra, then I can.be represented as an irredundant

join of Join-irreducible elements.

Proof of Theorem.h.1: Let C be the indexing set for the

set of Join-irreducible elements az;fec, making up the

representation of I, so that

(LI-o6) I a: %ao’o

Let AU denote the set of elements xEB satisfying 3: 5 at;

and let D denote the direct product of the sets AK‘ The

proof consists of three parts. In the first part it is

shown that AF is a T-algebra. A one-to-one correspondence

is established between B and D in the second part of the

proof, and in the third part this correspondence is shown

to be an isomorphism.

AF is clearly a sub-lattice of B. If u and v

are in Ar, then the fact that u - v _<_ 11 means that u - v

is also in AU’ so that AU’ is itself a Brouwerian algebra.
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The element a, (which plays the role of I in A1,) is

Join-irreducible, hence A, is a T-algebra, by definition.

Let d be an element of D having components dav,

where dreAr The correspondent x in B of “d in D is

defined as

(ll-o7) X = deo

The sum exists since each do’ is in B, and B is complete.

Let 3 denote another element of D, having components

35, and assume that

((+08) var = V315:
{EC

1. e. assume that d and 5. map into' the same element X of B.

If aflflEC, is one of the elements making up the representation

if I, then from (2.}.8) we may write that

(1;..9) 9.er = eggs?

Using the infinite distributive law, which holds in B since

B is complete, the above eXpression becomes

(law) Mend.) = $451,521,).

The fact that the representation is irredundant implies

that the elements ab. are pairwise disjoint. Since at _<_ aa—

implies 9;de 5 sea, = O forfl #1), expression (1)..10)

reduces to

(ll-011) 939% == afi'dp.

But dc, g afl, and 'dp 5. eff, hence dp :36, Since p was an

arbitrary member of the indexing set 0, this shows that

d = d, i.e. that the correspondence defined in (1).?) is a
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one-to-one mapping of D into B. We will complete the

second part of the proof of Theorem l)..1 by showing that

every element in B is the image of an element of D. Let

y be an element of B. Then yap. is in AU, and the element

dy’ whose components. are yaT, is in D. The image of

dyis

((+012) Xééyaz) == yxecaa. = yI = '3':

again using the infinite distributive law.

That this one-to-one correSpondence is operation-

preserving follows from the fact that if d and d are,

elements of D. satisfying d 5 3, then the components

d3 of d and 35 of d indivually satisfy dis- Hr

Hence

(L13) Md. 5. ye).

and the correspondence is order-preserving. But all the

operations in B are defined in terms of the order relation;

hence the correspondence is an isomorphism and the proof

of Theorem l)..1 is complete.

Proof of Theorem L2: If B is a T-algebra the theorem

.is trivial. If not, the set R of elements of B

satisfying _\')r = r contains elements other than 0 and

I. For, if B is not a T-algebra, then there exists

elements x and y, both different from I, such that

x + y = I. This implies that -I(x + y) = O and

T-Hx + y) = I. If-lx = I, then

(milk) I =T|<x + y) = -|[')"|('|f|y)] = 1[T]V|fl] = TIY ..<. y
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. implies y = I which is a contradiction. Hence 1:: 15 I.

Finally, x )4 I yields "Ix # 0. Thus the element '1 x,

which is in R since —|'](')x) ='Ix, is different from O

and I.

Let A be the indexing set for R. If rdfieA, is

an element of R, so is its Boolean complement rd', since

R is a Boolean sub-algebra of B by Theorem 3.2. We form

the product

((+015) I = Q<r9< + rd')'

The product is I, as shown, since each term of the product

is I. Using the complete distributive law (h.2), (1),.15)

becomes

(4.16) I -V [/\r,((i):l .
"(1) sea

Let x =/\r (1). We will show that x is in R, i.e.
“GA 4

that every term of (1.).16) is in R. From x 5 124(1) it

follows that ‘lx Z 119‘”) = rad-1“.

Hence

(L17) _)x _>_ deArdU) '.

Let y = Vr (1)'. Since y + rd)” = I holds for every

0’s in A, we have

(($018) I = @(y + 13(1)) = y + ard(i) = y + x.

By definition of 1x, this means y 3“) x, 1.6. .

(#49) 1x 5 MIR”) '.

From (h..17) and (4.19), We have

(h.20) 'Ix = Mrguw.

It is clear that, for every 0( in A, xrdU)‘ == 0. Hence
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(ll-.21) O = Mnd(i)' = XMI'JH)‘ := 3(1):,

‘This shows that x is in Q and hence in R by Lemma 1

to Theorem 3.3, page 29. ‘

Not every term of (1+.16) is 0, since the sum of

the terms is I. After discarding from.(h.16) those terms

which are 0, the remaining terms may be relabelled so

that (l)..16) becomes

(”'22) I = sway

It will be shown next that D is the indexing set for

the atoms of R, i.e. those elements 8‘6 of R such that

.0 5 r é 8‘8 holds for no element 'r in R. After that we

(will show that the representation (L22) is irredundant,

and the proof will be completed by showing each element a 8

is Join-irreducible. .

Suppose that an element r of R satisfied

(1)423) Osrgas, Ofir, aflér

for some 6 in D. By the manner in which a6 was obtained,

we observe that the expression for 8‘8 contains the letter

1', with or without a prime. If r appears as one of the

members of the expression for 38’ then r _>_ as, which

violates ((4.33). On the other hand, if r' appears as one

of the members of the eXpression for as, then ra8= O,

which also contradicts (L23). We conclude that no element

r of R can satisfy (h.23), i.e. that 9‘6 is an atom of

R. We remark parenthetically that a 5 may not be an

atom of B.
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Again using the fact that ‘each element r,< of R,

with or without a prime, appears as a member of the

expression for as, we see that 61 75 82 implies 8‘51

and a52 are different, i.e. at least one of the elements

is primed in one term and not in the other. It follows

that

(11.21).) aslas2 = O for 61 75 62,

which shows that the representation (1922) is irredundant.

Assume that there exists elements x, y of B, each

different from O and from as, which satisfy

(14425) 05.35%: Osygag, x+y=a8

for some 6 in D. Recalling that 11x _<_ x, that ‘I'Ix is

in. R, and that a6 is an atom of R, we have “Fix = 0.

Hence 'lx s”: I, and, similarly,‘|y = I. Hence

(L26) ‘(as =‘|(x + y) =')‘|(‘|x')y) =‘I'|(II) =T|I

But if 183‘ I, then 0 ='|'|a6 = as since as is in R.

I.

This is a contradiction, for in the construction of (11.32)

only the terms of (L916) different from 0 were retained.

Thus (4.25) is impossible, and a5 is join-irreducible.

This completes the proof of Theorem Ll..2.

Corollary 1: Every complete and completely distributive
 

Stone algebra is isomorphic with a direct product of

T-algebras.

Proof: This is a direct consequence of Theorems h.l and

h.2.

Corollary 2: Any finite Stone algebra is isomorphic with
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a direct product of T-algebras.

23932: Any finite Stone algebra is complete and- completely

‘ distributive.

Noticing that the essence of the proof of Theorem

Li.2 was the discovery of the atoms of R, we are led to

Theorem li.3: A Stone algebra B is isomorphic with a

direct product of T-algebras if every descending chain in

R is finite.

W: Since R is a Boolean algebra in which descending

chains are finite, we know that R‘ itself is finite (cf.

Birkhoff[ 3 ], p. 159). Hence the atoms of R can be

determined; it can be shown as in Theorem l)..2 that I is

an irredundant join of the atoms of R and that the atoms

of’ R are Join-irreducible elements of B. The proof is

completed by applying Theorem 192.

One further extension of Theorem l)..2 is obtained

by noticing that the use of the infinite distributive law

in the proof was confined to elements of R.

Theorem huh: If B is a Stone algebra in which the

Boolean sub-algebra R is complete and completely distributive,

then B is isomorphic with a direct product of T-algebras.

m: Exactly as in Theorems 1+.l and L)..2.

An example of a Stone algebra which is not factorable

is the "measure algebra" H (see Birkhoff[ 3 ], p. 1814.).

This algebra may be constructed as follows. Let M denote

the set of Lebesgue measurable subsets of the unit interval.

Divide M into equivalence classes by placing in the same
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class any two subsets whose symmetric difference is a set

of measure zero. The equivalence classes are ordered by

' set inclusion. It is known that the resulting algebra H

is a complete Boolean algebra without atoms. Since M

is a Boolean algebra, it follows that T is a Stone algebra.

However, H cannot be factored into a direct product of

T-algebras since it has no join-irreducible elements.

It might be conjectured that all Stone algebras

are direct products, the factors being either T-algebras

or Boolean algebras without atoms.. That this is not the

case is shown by the following example, due to L. M. Kelly.

First consider a non-atomic Boolean algebra, and consider

its representation as a Boolean ring W of sets. ”may

be regarded as embedded in an algebra of sets which.of

course contains points. Let T be one of these points,

and let the set ,57 consist of T together with.the null

set. It is easily verified that the conditions of the

Set-Theoretic Structure Theorem.(p. 38) are satisfied,

hence 6 = £69? is a Stonealgebra. Since 43 contains

only one join-irreducible element, namely T, the only

possible factorization of (t; of the conjectured type is

fi= ”XV. In the direct product flxyj the four

elements (R,T), (R,D), (RQT) and (R50) are distinct, Where

R denotes some member of fl different from O and I.

But the point T lies in either R or R', hence in the

direct sum flC—B 7the four elements R + T, R + O, R' + T

and R! + O are not distinct. Thus no one-to-one
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correspondence can be set up between £67} and flxj ,

‘ 6V

i.e. the Stone algebra Web/l cannot be factored in the

conjectured manner.



1.

9.

10.

11.

12.

13.

11),.

-53-

BIBLIOGRAPHY

B. A. Bernstein, Operations with respect to which the

elements of a Boolean algpbra form a group, Trans. Amer.

Math. Soc., 26(192h), 171-175.

, On the existence of fields in Boolean algebras,

Trans. Amer. Math. Soc., 3h(1928), 65h-657.

Garret Birkhoff, Lattice Theory, Amer. Math. Soc.

Colloquium.Publications, 25(19h8), revised edition.

L. M. Blumenthal, Boolean Geometry I, National Bureau

of Standards Report lh82, (1952).

D. 0. Ellis, Autometrized Boolean Algebras I, Can. J.

maths! 3(1951)9 87'93.

, Geometry in abstract distance spaces, (Debrecen,

Hungary, 1951): 3.

O. Frink, On the existence of linear algebras in Boolean

algebras, Bull. Amer. Math. Soc., 3h(1928), 329-333.

L. Lapidus, Lattice Metrized Spaces, Unpublished Ph.D.

thesis, Mich. State Univ., 1956.

J.C.C. McKinsey and A. Tarski, On closed elements in

closure algebras, Annals of Math., h7(19h6), 122-162.

E. Marczewski, Concerning the symmetric differencegin

the theory of sets and in Boolean algebras, Colloquium

Hathematicum, 1(19h8), 199-202.

E. A. Nordhaus and L. Lapidus, Brouwerian Geometry, Can.

J. NIath.’ 6(195’4), 217‘229.

M. H. Stone, Topological representationof distributive

lattices and Brouwerian logics, Cas. Hat. Fys.,67(1937),

1‘25.

R. Vaidyanathaswamy, Treatise On Set Topology, Part I,

First edition, Indian Math. Soc., Madras, 19h7.

J. G. Elliott, Autometrization and the Symmetric

Difference, Can. J. Math, 5(1953), 32h-331.



  "'TW sli (I)! WW))li Aim)?!“
3 1293 03502 6776


