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Section 1. Introduction

Studies of Brouwerian algebras in which there is
defined a binary operation analogous to the distance
function‘of a metric space have been carried out by
Nordhaus and Lapldus [ 11] and by Lapidus[ 8 ] o Their
work generalized many of the earlier similar investigations
of E111s [5.6 | and Blumenthal| L | in the field of Boolean
algebras. Ellis, In particular, observed that in a Boolean
algebra the symmetric difference operation satisfied lattice
relationships formally equivalent to the postulates defining
a metrlc distance function, and showed that many purely
geometric concepts could be carried over into this new
setting.

The first goal of this thesis is to show that in a
Booleap algebra the symmetric difference 1s the only binary
operation which satisfies the requirements of an abstract
metric and 1s simultaneously a group operation.

One important difference between Boolean and
Brouwerian algebras 1s the fact that the Boolean complement
x! of an element x 1s disjoint from x, while the Brouwerian
complement 7])x of an element x is not necessarily disjoint
from x. However, in many (but not all) Brouwerlan algebras

it is true that, given any element x, the elements 1x and 11x



are disjoint, where ]]x denotes the Brouwerilan comnlement of
Ix, M. He Stone has asked, "What 1s the most general
Brouverian algebra in which, for every x, the elgments
Ix and TIx are disjointz"! |

The second goal of this thesis is to determine the
basic structure of these Brouwerian algebras,

In Section 2 the symmetric difference oneration in a
Boolean algebra is characterized as the only binary operation
which 13 at once an abstract metriec and a group operation,
By successive weakening or rerioval of some of the group
and metric postulates generalizations of this result are
obtained, Other characterizations of the symmetric differ-
ence among the class of Boolean operations are found, and
Section 2 is concluded with further characterizations of
the symmetric difference in a Boolean algebra as the only
bilnary operation satisfying certaln other side conditions.

In Scection 3 there 1s determined the basic structure
of those Brouwcrian algebras in which, for every x, the
elements ]x and 1lx are disjoint. An interesting charac-
terization of a wide sub-class of these special Brouwerian
algebras 1s presented in Section l..

In the remalnder of this section are presented

fundamental definitions, concepts, and notation to be used

throughout.

”his question appears as Problem 70 of Birkhoff
[ 3 ], where 1t is phrased in the dual setting of pseudo-
complemonted lattices,



Definition: A partlally ordered set P is a set of elements

a, b, c, ese togethef with a binary relation a > b (read "a
is over b", "a contains b", or "b is under a") subject to
the following postulates: '

Pl: a 2> a |

P2: If a>bandb>a, thena =b

P3: Ifa>band b >0, then a > ¢,

Definition: An upper bound of a subset X of P is an

element a such that a > x holds for every x in X, An
element b is the least upper bound of X if b is an upper

bound of X and if b < a holds for every upper bound a of X,

A lower bound of X and the greatest lower bound of X are

defined similarly,
Definition: A partlally ordered set P is a lattice if for

each pair of elements a, b the greatest lower bound of a
and b and the least upper bound of a and b exist, The
greatest lower bound of a.and b is denoted by a°b, or ab,

and 1s referred to as the produect, or lattice product, or

meet of a and b; the least upper bound of a and b is
written a + b and is called the sum, or lattice sum, or

join of a and b, It 1s shown in Birkhoff [ 3 | that the

meet and join operations satisfy the following laws:
L): (Idempotent law): a + a * a and aa = a,
L2 (Commutative law): a + b =Db + a and ab = ba,
L3 (Assoclative law): a + (b +06) = (a + D) + ¢
and a(bc) = (ab)ec,
L} (Absorption law): a + ab = a and af(a + b) = a,



L=

Definition: A distributive lattice is a lattice in which

for every triple of elements a, b, ¢ the following relation-
ships hold:
L5

16: a + bo = (a+b)(a-|;c).

a(b + ¢) = ab + ac.



Section 2, Characterizations of the
Symmetric Difference Operation in a Boolean Algebra

Definition: A Boolean algebra is a distributive lattice

with 0 and I In which for each element a there exists an
element a' satisfying a + a' = J and aat = 0, The element

a' is referred to as the complement (or Boolean complement)

of a.

It can be shown that the complement a' of a is
unique, and that complementation is ortho-complementation,
i.e, that (a!')! = a,

Definition: With each pair of elements a, b of an abstract

set S let there be associated an element f(a, b) of a
lattice L with an 0, The bilnary function f is a metric
function from S to L if the following three conditions
hold:

Ml: f£(a, b) 0 if, and only if, a = b,
M2: f(a, D) f(b, a),
M3: f(a, b) + £(b, ¢) > f(a, ¢);
and we say that "S is lattice-metrized by f". A metric

oo
i

function £ from a lattice L to 1tself is called a

metric operation, and in this case L is called an auto-

metrized lattice,
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The properties L1, 112 and li3 are lattice-analoguos
of the familiar requirements of a distance function in a
metric space. \ie carry the analogy further by referring
to the lattice eloment f(a,b) as the "distance betwecen a
and b", the clements f(a,b), f(b,c) and f(a,c) as "sides
of the triangle whose vertices are a, b and c", and in
reneral using geometric terminology wherever such usage
is convenient and suggestive. It is particularly convenient
to refer to M3 as the "triangle inequality".

Definition: In a Boolean algebra the element ab'! + atb

is the syrmoetric differcnce of a and b.

Theorem 2.1 [Ellis, S] ¢ The symmetric differcnce 1in a

Boolean algebra 1s a metric operation,

Proof: Let d(a,b) denote the symmetric difference of a and b,
First we observe that d(a,b) = aa' + ata =0 + 0 = 0, Next
we show that é(a,b) = 0 implies a = b, d(a,b) = ab' + atb =0
can hold only if ab'! = a'b = 0, To each side of the
equation ab! = 0 we add ab, obtaining

(2,1) ab! + ab = 0 + ab = ab,

Then ab = ab! + ab = a(b' + b) = al = a, using the fact

that a Boolean algebra 1s a distributive lattice, But

ab = a means that a < b, Similarly, from a'b = 0 we con-
clude that b < a. Therefore a = b, and 111 holds, Since

the expression abt'! + at'b 1s symmetric in a and b, it

follows that 112 holds, To »nrove 113, we wlll show that

[d(a,b) + d(b,cﬂ~d(a,c) = d(a,c), which of course implies



d(a,b) + a(b,c) > d(a,c). To this end, we vwrite
(2.2)  [a(a,b) + d(bye)] « da(a,e) = [(ab! + atb)
+ (bet! + b'c)]-(ac' + a'e)
= abtac! + atbac'! + bectac! + b'cac!
+ abtal'c + atbatlc + betalec + btealc

= abtec! + abe! + albec + a'blc

= ac!(b!' + b) + alec(b + b?') = ac! + alc = d(a,c)
and the proof is complete,

In the following theorem, we let a:b denote a

metric group operation in a Boolean algebra, and show
that aitb = ab!' + a'b necessarily,
Lerma 1: If x, ¥ and z are the sides of a triangle in a
Boolean algebra, then x +y =x + 2 = Yy + z.
Proof: Since x + y > z by 113, we add x to each side to get
X+y>2x+ 2z, Similarly x + é > ¥y by 13, and adding x to
each side ylelds x + z > x + y, This implles that x + y =
X + 2z, and the proof for the other two cases 1s simllar,
Lerma 2: If a = bi#c, then a#%b = ¢ and aiec = b,
Proof: a = bic implies ai(bic) = 0 by 1. Tho associative
law then gives (a*b) ¢ = 0, whence a%b = ¢ by Ml, The
proof for the other case is similar,
Lerma 3: O%a = a.

Proof: Let Oa = X, By Lemma 2, ai#x = 0, Illence a = x by I,

Lentna .’:1:3 a*I = at,

Proof: Let aia! = b, and consider the triangle 0, a, at,
the sides of which are 0O:i:a = a, Oa' = at', aia' = b, Lemma

lgivesus a+b=a+a!' =1, and a' + b =a + at = I,
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Hence I = (a + b)(a' + b) = b, We conclude that awat = I,
and Lerma 2 glves us a*l = a' and a'%I = a,

Theorem 2.2: 'The only metric group operation in a Boolean

algebra 1s the symmetric difference,
Proof: Let x*y = p. Conslider the triangle I, x, y, the
sides of which are I#x = x!', I%y = y', X%y = p by Lemma l,
From Lermma 1 we conclude that x' + y' = x' + p and x!' + ' =
y' + p. Multiplylng the first of these by x gives xy! = xp,
and multiplying the second by y gives x'y = yp. Adding, we
obtain xy! + x'y =xp + yp = (x + y)p. From the triangle
0, X, ¥, whose sides by Lemma 3 are Oix = x, O%y =y, and
X%y = p, we obtaln x + y > p by the triangle inequality.
Hence (x + y)p = p, and xy' + x'y = p = xxy, completing the
proof,

We now extend Theorem 2,2 by relaxing some of the
group requirements,

Definition: A semi-group is a system of elements together

with an associative binary operation,

Theorem 2.3: The only metric semi-group operation in a

Boolean algebra 1s the symmetric difference.
Proof: The only group property used in the proof of Theorem
2.2 was the associlative law,

Definition: A bilnary operation iz 1s weakly assoclative 1if

ai:(a#b) = (aia)b,

Theorem 2,li: The only metric weakly associative operation

in a Boolean algebra is the symmetric difference,



Proof: 1In the proof of Thoorem 2,2, the associlative law

was used only to show that a = bic Implies b = a%c and ¢ = ab,
i.e, 1In the proof of Lerma 2, /e will show that these
relations follow from the weak associative law and the fact
that the symmetric differcnce is a metric operation. Then

the proof of Theorem 2,1 suffices as a proof of this theorem,
The fact that 0#a = a follows from M1l and the weak associa-
tive law, for a:i:(ai0) = (a%a)*#0 = 00 = 0 implies a = a::0.

Now let a = bic, x = a%b, and y = a¢c, Then

(2¢3) x = bia = bi(bxc) = (bxb)#ec = Oc = ¢

(2.14) y = ci#a = c#(cib) (c=e)#b = 0ub = b,
Hence a = bi¢c lmpllies b = ac and ¢ = a*b.:

Theorems 2,3 and 2,l. were generalizations of
Theorem 2,2 obtained through relaxations of the group
postulates. In Theorem 2.5, wﬁich follows shortly, the
associativity is abandoned,

Definition: A quasi-group 1s a system consisting of a set

of elements, together with a binary operation which satisfies
the law of unique solution, i.e, if a = bitc and two of

these are known, the third is uniquely determined. A loop

1s a quasi-group with a two-sided identity element,
Definition: The Ptolemaic lnequallty holds for a quadri-

lateral if the three products (mecets) of opposite sides
satisfy the triangle inequality (1M3).
Theorem 2,5: The only rictric loop operation in a Boolean

algebra is the symmetric difference.

Before proceeding with the proof, soric lermas will be



established,

Lemma l: The loop identity is 0,

Proof: Let e denote the loop identity. Since ewre = e by
definition and eite = 0 by M1, we have e = O,

Lerma 2: a*I = a' and axa! = I,

Proof: By the law of unique solution there exists y such
that a%y = a'e The sides of triangle 0, a, y are axy = al,
Oa = a, and 0%y = y. The triangle inequality implies

(2.5) a+y>a! and a!' +y>a.
Thus

(2.6) aa' + a'y > a' and aa' + ay > a,
or

(2.7) a'y > a' and ay > a.

But these lmply that y > a' and y > a. Hence y = I, or

aiI = at, Consider the triangle 0, a, a! whose sides are
O%a = a, Oi¢a! = a' and aa'!, Again the triangle inequality
implies

(2.8) a + (a%a') > a' and at + (aia') > a,

Multiplying the first of these by a' and the second by a
glves

(2.,9) a'(axd) > a' and a(ava') > a,

From these we conclude that a®a' > a' and axa' > a; hence
axal = I,

Lemma 3: The Ptolemalc inequality holds in any quadrilateral
0, I, a, b,

Proof: 1In the quadrilateral 0, I, a, b, the slde Oia 1s
I#b, the side Oxb is opposite I:ta, and the side 0iI is



opposite aib, We will show only that

(2.10) (Oxa) (I#d) + (Ou#db) (Ia) > (0+I) (a#db)

or

(2.11) ab! + a'b > I ¢ (axb) = axb;

the proofs for the other two cases are similar., The
triangle I, a, b has sides Iwa = a!, Ii#tb = b! and aitb by
Lemma 2., The triangle inequallity gives

(2.,12) a' + b' > aib,

By Lemma 1, the sides of the triangle 0, a, b are Oi#a = a,
0¢b = b and a#b, The triangle inequality here yielda
(2.13) a + b > aib,

Hence

(2.1L) (a + b)(a' + b') > axd

or

(2.15) ab' + a'b > aib,

which is what we set out to show,

Proof of Theorem 2,5: Let a*b = x, We know from Lemma 3

that ab' + a'b > x, We wlll complete the proof by showing
ab! + a'b < x, Applying the Ptolemaic inequality to the
quadrilateral 0, I, a, b', we have

(2.16) (0:a) (Ix#b') + (Oxb')(Ixa) > (0«I)(asub?)

or

(2.17) ab + a'b! > I « (a#b'!) = axb!,

Since ab' + a'b > x, we obtain

(2.18) (ab' + a'b)( ab + a'b!) > x « (axb!'),

But (ab! + atb)(ab + a'b') = 0, hence

(2,19) x « (a#bt') =0,



-12-

The triangle a, b, b! has sides aib = x, a¥b'!, and bi%b! =1
by Lemma 2. Using the triangle inequality, we get

(2.20) x + (a#d!) = I,

Thus x is the complement of aib', i.e.

(2.21) xt = aib',

A similar argument shows that

(2.22) x! = a'wb,

Using the 1ldentity ukv < u + v, we have

(2.23) x! < a+b'and x' < a' + b,

Hence

(2.24) x!' < (a + b')(a' + b) = ab + a'b?,

By DeMorgan's laws, we get

(2.25) x > ab' + a'b.

This, together with the earlier result x < ab!' + a'b, shows
that

(2.26) X = ab! + a'b

and completea the proof of Theorem 2.5,

It might be conjectured that a metric quasi-group
operation 1s a Boolean algebra is necessarily the symmetric
difference., The followilng example shows that this is not
the case., In the Boolean algebra of four elements 0O, a,

a! and I define "distances" as shown in Table 1.

Table 1
(%] 0 a al I
o ¢} at a I
a at 0 I a
a'l a I 0] al
I I a a' 0
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Since each element appears once and only once in
each row and column of Table 1, the law of unique solution
holds, That M1l holds is shown by the fact that the elements
on the main diagonal, and only those elements, are 0. The
symmetry about the main diagonal implies that M2 holds. It
1s easily seen that the sides of any non-degenerate triangle
are a, a' and I, hence M3 holds. This shows that € is indeed
a metric quasi-group operation, However, 0 @ a = a!, while
Oka = Oa' + 0'a = a., Hence @ is not the symmetric difference,

Bernstein PI,Z] characterized the possible group
operations in a Boolean algebra among the class of Boolean
operations, The author is indebted to Professor B. M.
Stewart for pertinent observations which led to the following
theorem, This theorem is similar to those in.[ 1 ].

Definlition: An operation it 1s a Boolean operation in a

Boolean algebra if
(2.27) x#y = AXy + Bxy! + Cx'y + Dx'y!,
where A, B, C and D are fixed elements of the Boolean algebra,

Theorem 2.6: Any Boolean group operation in a Boolean

algebra is an abelian group operation, and is of the form
(2,28) xxy = o(xy + x'y') + ot(xy' + x'y)

where e 1s the group identity,

Proof: The proof consists of evaluating the "constants"
A, B, C and D under the assumption that % 1s a group
operation, Repeatedly using (2,27), we write

(2429) 0D = AOD + BOD' + CID + DID' = CD,

(2430) 0#C!' = AOC' + BOC + CIC' + DIC = DC,
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By the law of unique solution, this implies D = C!', Now
(2.31) D0 = ADO + BDI + CD'O + DD'I = BD,
(2.32) B'+#0 = AB'O + BB'I + CBO + DBI = DB.
Again by the law of unique solution, D = B', Next
(2.33) A#D = AAD + BAD' + éA'D 4+ DA'D?

= AD + AB

= AD + AD!

= A
implies that D = e by definition of the group identity.
Hence (2.,27) can be written
(2.3h) Xty = AXy + e'Xy! + e'X'y + ex'y',
Now
(2435) e = eie = Aeo + e'eo! + elel'e + eote! = Ae,
Since e = B', this gives B! = AB!'., Next we observe that
(2.36) A'B = AA'B + e!A'B! + e'AB + e6AB!' = AB + AB! = 4,
(2437) BB = ABB + ©'BB' + e'B'B + eB'B!

= AB + B!

= AB + AB!

= A,
By the law‘of unique solution, we get A' = B, Collecting
results, we can write
(2.38) e=D=B'=C!' =A and e' =D! =B =C = A'.
Hence (2.27) boecomes finally
(2.39) Xty = exXy + e'xy! + e'x'y + ex!y!

= o(xy + x'y') + e'(xy' + x'y).
The fact that % i1s an abelian operation follows from the
symetry in x and y of the ripght side of (2,39).
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Corollary 1: 1In a Boolean algebra, the only Boolean group

operation with 0 as the group identity is the symmetric
difference,

Corollary 2: In a Boolean algebra, the only Boolean group

operation such that 030 = 0 1s the symmetric difference.
Proof: Using (2,28), we write
(2.40) 0 =020 = 6(0°0 + II) + e!'(0I + IO) = e,
and Corollary 2 follows from Corollary 1.

We notice that, in the proof of Theorem 2.6, no use
was made of the associative law, Thus Theorem 2,6 may be
géneralized to geot

Theorem 2,7: Any Boolean loop oporation in a Boolean algebra

is an abelian group operation, and is of the form

(2.11) xxy = e(xy + x'y') + et(xy! + x'y),

where e 1s the loop identity.

Proof: Exactly as in the proof of Theorem 2.6, it can be
shown that : 1s an abellan operation of the form cited in
the theorem statement. Ve will now show that the
assoclative law holds, in particular that

(2.L2) z+(x#y) = xyz + x'y'z + x'yz! + xy'z!

and

(2,1:3) (zix) sy

]

Xyz + X'y'z + x'yz! + xytzt,
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In what follows, Dellorgan's laws are used repeatedly.
(&MJ,ZNEW)=9@WW)+2Wﬁﬂﬂf°ﬂ%mﬂ'+zwmwﬂ
' = (ez + o'z!) (xxy) + (oz' + e'z)(xxy)!
= (ez + o'2!') [e(xyh+ x'yt) + et(xy! + x'y)]
+ (ez! + o'2) e(ky + X'yt) + e'(xy' + x'y)]*
= ez(xy + x'y') + o'z'(xy' + x'y)
+ (ez' + o'z) @(xy + x'y'ﬂ'[@'(xy' +'x'yﬂ'
ez(xy + xt'y') + etz (xy' + x'y)
+ (ez' + e'z)'[e' + (xy + x'y')'] [ara- (xy? +x!y)r]
ez(xy + x'y') + e'z'(xy' + x'y)

1l

+ (ez' + o'2) [e'(xy' + xX'y)' + e(xy + x'y')?
+ (xy + xty") vV (xyr + x'y)']
= ez(xy + x'yt) + e'z'(xy' + x'y)
+ e'z(xy! +'x'y)' + ez'(xy + x'y')!
+ (ez' + e'z) (xy) '(x'y*) (xy!) t(x'y)!
= oz(xy + x'y!') + o'z'(xy' + x'y)
+ etz(xy') 1 (xty)t + eztlxy) Y (x'y")?
+ (ezt + o'z)(x' + yl)(x + y)(j:' + y)(x + y')
= ez(xy + x'y') + e'z'(xy' + x'y)
+ etz(x! + y)(x + y1)++ ez'(x' + y')(x + ¥)
+ (ez' + o'z)(x'y + xy")(x'y' + )
= ez(xy + x'y') + e'zt(xy' + x'y)
+ elz(xy + x'y') + ez'(xy' + x'y)
= exyz + ex'y'z + e'xy'z'! + e'x'yz' + e'Xxyz
+ e'x'y'z + exy'z'! + ex'yz'.
Collecting terms, we obtain
(2,145) zw(xny) = xyz + x'y'z + x'yz' + xy'z',



To find (z#x)¥#y, we use the fact that i is abelian to write
(2.46) (z#x) sy = yi(z4x).

Replacing z by y, x by 2z, and y by x in (2.45), we get
(2.4.7) (zux)#y = zxy + z'xX'y + z2'xy' + zx'y!,

Hence

(2.48) (z*x)*y = Xyz + xX'y'z + x'yz' + xyiz'.

The right sides of (2.45) and (2.48) are identical, which
proves that the associative law holds, Since an assoclatlve

loop 1s a group, the theorem follows,

Corollary l: The only Boolean loop operation with 0 as

the loop identity in a Boolean algebra is the symmetrie
difference,

Corollary 2: The only Boolean loop operation such that

0::0 = 0 in a Boolean algebra 1s the symetric difference,
Proof: Since
(2.49) xiy = e(xy + x'y!) + et(xy' + x'y)
we can vrite that
(2,50) 0 = 0:#0 = (00 + II) + o!'(0I + IO) = e.
Then Corollary 2 follows from Corollary 1,

It 1s interesting that the requirement that i be
a Boolean operation allowed us to remove the assoclative
law from the assumptions needed to characterize the
symmetric difference among the class of Boolean operations,
It.. will be shown next that a similar phenomenon occurs
with respect to the triangle inequality.
Definition: A binary operation is called semi-metric if it

satisfies M1 and M2,
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Theoren 2.,8: The only Boolean semi-metric operation in a

Boolean algebra 1s the symmetric difference.

Proof: According to Bernstein[ 1l ], a Boolean operation
has the form
(2451) Xy
Thus

(2,52)  IxI
by M1, and

(I+I)xy + (I#0) xy' + (0%I) x'y + (0:x0)x'y!,

1
?
E
]
o

(2.53) 0%I = It0

by M2, Let 0O#I = z, Then (2.51) yields
(I2.51;.) Iitz = zIz' + zI'z = 0+ 0 = 0,
end z « I by M1, Thus

(2.55) X%y = Xy! + x'y,

Frink [ T ] has characterized the symmetric differ-
ence as the only Boolean group oporation over which the
meet dlstributes., In what follows, however, we will not
restrict ourselves to Boolean operations.

Theorem 2,9: The only seml-metric group operation in a

Boolean algebra over which the meet distributes 1s the
symmetric difference, .

Proof: The group identity 1s O, Let a, b and ¢ be the
sides of the triangle 1, m,.n, Using the associative law,
Ml and M2, it 1s seen that

(2,55) axb = (1:m):(m:n)

1 [_-ms':- ( m-::-n)]

1% [( m::m) -::-rg

= 1:(0%n)

1

= 1i#n
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Similarly it can be shown that
(2.56) ai’c = b |
and
(2.57) bito = a.
Now, using (2.55) = (2,57) and the distributivity assumption,
(2.58) [(a-:&b) + (b*c)] (ate) = (¢ + a)(ac)
= [(a + c)e.]-:s[(a + c)c]
= ait.
Recall that the lattice relation (x + y)z = z implies
X +y >z, Hence (2,58) yields
(2.59) (a#b) + (bic) > aic,
Similarly it can be showvn that
(2,60) (ab) + (ai#ec) > bie
(2.61) (bie) + (a#c) > axb,
Thus M3 holds, and * 13 a metrie group operation., Then i
is the sjmnetrio difference by Theorem 2,2.

It might be conjectured that the meet necessarily
distributes over every semi-metric group operation in a
Boolean aalgebra. That this is not the case is shown by
the following example., In the Boolean algebra of eight
elements, define an operation @ by the following table:

Table 2
@ 0 a b ¢ a' b' ¢! I
o) (o} a b ¢ a'! b' et I
a a 0 bt o!' I b c atl
b b bt O al! ¢ a I ct
c c 't at QO D I a bt
a'l at I c b 0 ¢! D' a
by} bt D a 1 c (0] al! ¢
el ¢! ¢ I a bt a' O b
I I a'! ¢! Dbt a c b o}
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Now O appears only on the main diagonal, and the table is
symmetric about the main diagonal, so M1 and M2 hold.
Clearly O is the group identity, and inverses are unique
(each element is self-inverse)., It has been verified that
the assoclative law holds, Thus @ is a seml-metric group
operation, However

(2.62) a'(c@®a) = atc! = b,

while

(2.63) (ate) = (ata) =c @ 0 = ¢,

which shows that the meet does not distribute over @.

Tﬁeorem 2,10: The only semi-metric semi-group operation

in a Boolean algebra over which the meet distributes 1s

the symmetric difference.

Proof: ML guarantees that a%a = 0. Thus 1f 0 1s an identity
element, then each element of the Boolean algebra 1is its
ovm Inverse, But the associative law and M1l give us

(2,66) (0:a)a = Ox(axa) = 030 = 0

whence 0i#a = a, again by M1, and 0 1s an identity element,
If e 1s any element such that e#a = a holds for all &, then
e%e = e, But ee = 0 by Nl, so 0 is a unique identity,
Thus 3+ 18 a group operation and Theorem 2,10 now follows
from Theorem 2.9.

Theorem 2,11: In a Boolean algebra, the only semi-metric

weakly assoclative operation over which the meet distributes
1s the symmetric difference,

Proof: Using Il and weak assoclativity,

(2.6l) (0a)a = Ox(aka) = 00 = 0



implies
(2.65) Owa = a.
By the distributivity assumption and M2

(2.66) ab' (a#b) = (ab'a)#(ab'd) = (ab')#0 = ab’

vields
(2.67)  ab! < aib,
Similarly

(2.68) a'p

IA

a¥b,

hence

(2.69) ab! + a'b < axb,

Nolw

(2.70) ab(aib) = (aba)#(abb) = (ab)i(ab) = 0,
and therefore

(2.71)  [sb(azm) ]t = 1.

By Dellorgan's laws

(2.72) (ab) ! + (awb)!' = I,

Then

(2.73)  (ab) [(ab) ' + (awb)] = (ab)

glves

(2.74) (ab) (awb)t = (ab)

which implles

(2475) ab < (axb)',

Next we observ'e that

(2.76)  (a + b)(axd) = [(a + b)a]x[(a + DIB] = awb,
or

(2.77) a + b > awb,
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Hence

(2,78) (a + b)! < (ad)?

or

(2.79) a'b! < (a#b)!,

Thus (2.75) end (2,79) yleld

(2.80) ab + a'd! < (aub)!

or

(2.81) (ab + a'b!) > aswb,

Again applying DeMorgaﬁ's laws, we get

(2.82) ab! + a'd > aib,

But (2.69) and (2.82) together imply

(2.83) ab! + a'b = aib’

and the theorem 1s proved,

Corollary: In a Boolean algebra, the only semi-metric
operation % such that 0O:a = a for every a and such that the
meet distributes over # 1s the symmetric difference,

Proof: In the proof of Theorem 2.1l the weak assoclativity
prbperty was used only to show that O%a = a for every a in
the Boolean algebra,

Definition: As usual, let % denote the symmetric difference.

A binary operation o 1s called guasi-analytical (Marczewski
[10 ]) when
(2.8) (aob)(eod) < (axe) + (bxd)

for all quadruples a, b, ¢, d of a Boolean algebra,

Theorem 2,12: (Marczewski): The only quasi-analytical

group operation in a Boolean algebra with O as the group
identity is the symmetric difference,
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Proof: larczewskl showed in his proof that the operation
o 1is Boolean., It then follows from Corollary 1 to Theorem
2,6 or from Bernstein's results [ 1 ] that o 1s a metric
opératian, whereupon the theorem follows from Theorem 2.2,
Following is an independent proof of Harczewski's theorem,
First we note that a = a'l, for
(2.85) a = ax0 = (aoo)*(aoa’l)'g (a#a) + (0#a=l) = a=1
and |
(2.86) a-1 = a~1:0 = (a~100):(a~Yoa) 5}(3‘1*a‘1) + (0:a)
glve us respectively a < a~1 and a1 < a,

| Since a =-a'1, we have aoa = 0, Let aob = 0, But
aoa = 0, hence a = b by fhe law of unique solution and Ml
holds. To prove M2, we write
(2.87) (aob)o(boa) = ao[bo(boaﬂ
ao [(bob) oa]

ao(0oa)

n

aoa

O.
Thus aob = boa by Ml,
Let a, b and ¢ be sldes of a triangle 1, m, n, with
a =lomy, b = mon and ¢ = lon. Then
(2,88) aob = (lom)o(mon) = lon = ¢
(2.89) aoc = (lom)o(lon) = (mol)o(lon) = mon =D

i

(2.90) boc = (mon)o(lon) = (mon)o(nol) = mol = a



Now

(2.91) ¢
(2.92) b = aoc = (000)#(aoc) < (0%a) + (Oxc) =a + ¢
(2.93) a = boc

aob (000) ::( aob) (0¢a) + (0b) = a + b

IA

(000):¢(boc) 5 (0x%b) + (O*¢) =b + o

I

proves M3. Hence o 1s the symmetric difference by Theorem
2.20



Section 3., Structure of Stone Algebras

Definition: A Brouwerlan algebra 1s a lattice L in which

for every palr of elements a, b there exists an element x

such that

(3.1) b+x>a

and

(3;2) b+ y>a implies y > x.

In other words x 1s the "smallest" element such that

b + x > a, The element x is the difference of a and b,

and is denoted by a - b, It may be verified (see McKinsey
and Tarski, [9) ) that
(3.3) a-b<oc 1if and only if a < b + ¢,

Examples of Brouwerlan algebras are numerous;
among the Brouwerian algebras are all Boqlean algebras,
all chains with 0, all finite distributive lattices, all
distributive lattices iIn which descending chains are
finite, and all complete and completely distributive
lattices,

Theorem 3,1l: A Brouwerian algebra 1s a distributilve

lattice,
Proof: We will show that

(3el4) a + 715, = (a + yp)(a + y5),



«26-

Let

(3.5) b= (a+7y;)(a +7¥5).

Then

(3.6) a+y12banda+y22b
Implies

(3.7) yy>b-aand y,>b-a
by (3¢3)e This gives

(3.8) Y15, 2 b - a.

We can now write

(3.9). a+yy,2a+ (b=-2a)2Dh,

where the last inequality follows from (3.1),

Having

(3410) & +y,5,> (a +37;)(a +35),

it remains to show that the reverse inequality also holds,
But in any lattice

(3.11) a<a+y), and 77, < a +y; Ainmplies

(3.12) a+y1¥y2 5 &+ ¥y

Similarly a + y37, < @ + Joe Hence

(3.13)  a+yy, < (2 +7;)(a +7,),

This shows that (3.l) holda, Also valld is the dual of
(34l4), 1.0 the expression

(3.1l4) a(y; + yp) = ayy + ayp

obtained from (3.l) by interchanging "+" and ",",
Definition: If the Brouwerlan algebra has a greatest

element I, the element I - a i1s the Brouwerisn complement

of a, and is denoted by |a, Similarly I -’|é. =="|]a.
I -’|"a =772, and so on,



In what follows, we roestrict ourselves to Brouwerian
algebras having an 0 and an I,
It 1s shown in [9] and [13] that

(a) a < b implies Ta >7b

() 1Maga
(3415) (¢) 117a =Ta

(@) 1(ab) =7a + b

(e) 1(a + 1) =11(Talv).

M, H, Stone has asked the question: "Vhat is the
most general Brouwerian algebra B in which TJalla =0
holds for every element a in B?", This problem appears
in its dual form as "Problem 70" of Birkhoff [3]. A
simple example of a Brouwerian algebra in which this
prbperty does not hold 1s the lattlce whose five elements
are O, ab, a, b, a + b = I, for in this lattice la = b,
Tb =77a = a, but Jalla = ba # 0, On the other hand, this
property holds in every Boolean algebra, and in every
chain with an 0 and an I,

Definition: A Stone algebra is a Brouwerlan algebra in

which Ja|la

0 identically,

Let B denote a Brouwerian algebra with 0 and I, and let X
denote the set of elements of B satisfying |x7]x = 0, If
x and y are in X, then

(3026)  Ux + N1 Ux + y) =11AxT9 x +77y)

< Ixly(M=x +77y)

1xlyTx + X777y
0O+0

n

0



and

(3.17) NUxy) 1 Uxy)

i

(Ox + 7)1 Uxy)

Ox + 37971700 7y)
< Ckx + 9=y
IxMNx1y + 1yNxTly
=0+0 =0

show that X is a sub-lattice of B, since X 1s partially
ordered by the partially ordering of B. Further, using
the relationship |(a - b) =7a +'|'\b1, we see that
(3.18) Nx -y Ux -y = Ox+7y) [Tl(Tlx'\y)]

< Ox +19) 1=y
=M=y + MyTxly
0O0+0=0

|

That 1s, i1f x and y are in X, then so are x + ¥y, Xy and
X = Yo This proves the

Theorem 3,2: In a Brouwerian algebra B with 0 and I,

the collection of elements x satisfying |x|lx =0 1s a
Stone sub-algebra,

Birkhoff [3 |has shown that in any Brouwerian
algebra B the subset R of elements satisfying ||r =7r 1s
a Boolean algebra under the operations a + band a®@b = _n(ab).
In a Stone algebra, however, the subset R is a Boolean
sub-algebra of B, i.,e, R 1s a Boolean algebra under the
operations a + b and ab which hold in B, This 1s, in fact,
a characterization of Stone algebras, as 1s shown by the

following theorem,

lmmis pesult 1s shown in[B].



Theorem 3,3: A Brouwerian algebra B is a Stone algebra
1f and only if R is a Boolean sub-algebra of B.

Before proceeding with the proof of this theorem,
some lemmas will be established which not only fascilitate
the proof but also add some insight into the structure of
Stone algebras. Let Q denote the set of all elements of
B satisfying aja = O,

Lemma l: Q 1s a subset of R,
_lf_r_q_g_g_: If a 1s in Q, then aja = 0 implies
(3.19) 17a =71a + ala = (1la + a)(1la +1a) =a I = a,
é.x‘ui a is 1n R,
Lerma 2: Q 1s a sub-lattice of B.
Proof: Let a and b be in Q, Then
(3.20) (a + b)1(a + b) < (a + b)(1alb)

= alalb + blalb

=0+ 0

=0
and
(3.21) (ab)1(ab) = ab(la + 1b) = abla + ablb =0+ 0 = 0
show that a + b and ab are in Q,
Lemma 3: B 1s a Stone algebra if and only i1f Q =R,
Proof; Let Q = R, Recalling that Ja =T\a, it follows
that 7a 13 an element of R, for every a in B, Since
Q = R, we have that Tlalla = 0, and B 18 a Stone algebra,
Conversely, let Tx]1x = 0 hold for every x in B, If x is
in R, then 11x = x implies ¢ = x|x, Hence R is a subset
of Qo Using Lemma 1 we conclude ‘that R = Q.
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Proof of Theorem 3.3: Let B be a Stone algebra. Then

R = Q by Lemma 3, hence if x is in R then X]x = 0,
Since x +7|x = I identically, it is seen that |x is a
Boolean complement of x, and 1is unique since B is a
distributive lattice, By Lerma 2, R = Q 1s a sub-lattice
of B, Hence R 1s 1tself a complemented distributive
lattice under the operations of B, 1.,e R 18 a Boolean
sub-algebra of B, Conversely, assume that R is a Boolean
sub-élgebra of B, Then if x 1s in R, there exists an
element x!' in R satisfying x + x! =1 and xx!' = 0, Since
x+7|x =1, we have (x + x)(x + x!') =x+x'|x =1,
This, together with x(x'])x) = 0, implies that x! = x! Ix
since B 1s a distributive lattice, Thus x!' < |x, But
x' satisfies x + x! = I, hence |x < x' by definition of
the operation |, This shows that x!' = |x, and hence
xx! = xX]x = 0, From this it follows that R is contained
in Q. Applying Lemma 1, we have that R =Q, Then B is a
Stone algebra by Lemma 3, and the proof 1s complete,

This theorem suggests that Stone algebras may,
in a sense, be bullt up from Boolean algebras, This 1ia
indeed the case, and in the remainder of this section we
present a characterization theorem which glves some insight.
into the general structure of Stone algebras,

Definition: An ideal J in a lattice K 1s a subset of K

having the properties
(3022) xandy in J implies x + y 1s in J,
(3¢33) x in J and y < x implies y is in J,



Let L be a distributive lattice with O and I,
R be a Boolean sub-algebra of L ocontaining O and I, and
T be an ideal in L having the properties
(3.24) (a) The only element in L common to both R and T
is O,
(b) T is a Brouwerian sub-algebra of L.

Remark: tl + t2 = I holds for no pair of elements tl’ tz

of T,
Proof:  If tl + t5 = I for some palr of elements tl’ to

of Ty then the fact that T is an ideal would imply that
I4s in T, This is impossible by (3,24a),

Remark: The relationship t > r # 0 holds for no elements
tin T and r in R,

Proof: Assume t > r, Since T 1s an 1deal, it follows that
» 18 in T, Then, by (3.24), r = O,

Let B denote the direct sun R@ T of R and T, 1,0, the set
of elements of L of the form » + t, where r is in R and
tisin T,

Theorem 3,&: B 1s a lattice,

Proof's Lef ry + tl and T, + t2 be elements of B, Then
(3e25) (1 + t3) + (12 + t2) = (rg + o) + (b3 + £2)

= r3 + t3,
where r3 = ry + T 1s in R since R 1s a Boolean sub-algebra

of L and t3 = t1 + t2 is In T since T is an ideal of L,



Since L is a distributive lattice, we observe that
(3+26) (ry + t7)(ry + t3) = vy + (rytp + roty + t1t2)
=r3+ t3,

where r3 = MY, is iIn R since R is a Boolean sub-algebra
of L and t3 =1yt + rpty + t1t5°1s in T since T is an
ideal of L.
Letma 13 r - (ry + t9) =rryt.
Proof: Using the fact that L is a distributive lattice, we
write
(3.27) (r1 + tl) + eyt ey et 4 by

= (ry + r)(ry + ry4t) + ty

= (r1 +r) I+ By

=r;+r+ tl

>r,
Thus rrq! satisfies the first part (3.,1) of the definition .
of the difference of r and (r1 + tl). We show next that if
(rq + t9) + =2 r then x> rry's Let x be any element
of B, say x = r, + t2, and éssume
(3,28) (ry + t,) + (v + t5) 21,
Then
(3,29)  (ry + 1p) + (8 + t2) 2 x,
Since R 13 a Boolean sub-algebra of L, there exists an
element (r1 + r2)' in R such that (r1 + ra)(r1 +r,)! =0,
Henoce
(3.30) (ry + vo)(ry + o)t + (B + £5)(rg + 1)t 2 2(ry + 1))
or
{3431) (tl + 1::_,.)(1'1 + rz)' > r(r:l + rz)'.



The left side of (3.25) is in T, since T is an ideal of
L, and the right side 1s in R since R is a sub-algebra
of B, But in an earlier remark we showed that t > r # 0
1s Impossible, Hence
(3.32) r(ry + r5)' =0,
Since R 1s a Boolean algebra, Dellorgan's laws hold, Hence
(3433) r o+ ry ¥+ = I.
Multiplying both sides by rry', we get (rrl')ra = (rrl')
which in turn implies that
(3e34)  r, 2 rr) 0,
Hence
(3635) ry + 'ta > ro> rry!
and the proof of Lemma 1 is complete,
Lomma 2; t = (ry + t;) =t - [1;(::-1 + t7)]e
Proof: The right side exists since T is itself a Brouwerian
algebra, Let y =t - [t(rl + tl)]. Then
(3036)  (ry + t)) + 3 = (r) + t) + [t = (x; + t))]
> tlry + t5) + [t - t(ry + tl)]
>t
by definition of the difference operation, If x in B satisfles
(3.37) (rl + tl) + x>t
then
(3438) t(ry + ty) + tx > t,
Appealing to the second part (3,2) of the definitlon of

the difference operation, we see that

(3039) tx 2 7,
i1,0¢ y =t - t(ry + t1) 1s by definition the least element
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satisfying t(rl + tl) +y > t. Hence

(3.140) x2tx2y,

which completes the proof of lLemma 2.

Theorem 3,5: B is a Brouwerian algebra.

Proof: Let (r + t) and (rl * tl) be any two elements of

B; We will show that (r + t) = (rl + tl) exists in B,

in particular that

(3.41) (4t - (g 4 ty) = [ (my + e +[6 - (2 + 1))
Let

(3.42) =x=1p - (r1+t1) and y=+t - (r1+ t1)e

The existence of x and y 1s guaranteed by Lemmas 1 and 2,

. Further,

| (3.43) x+ (r) + ) = [r - (rl + tl). + (rl +t)2r

and

Bl T+ ey e ) =[5 -my b ¢y ) 2,
by the definitions of x and y, Combining (3.43) and (3.4}),

we get

(345) x4+ 3+ (rg +ty) 21+t

We will oomplete the proof by showing that 1f an element
z of B satisfies z + (ry + t;) 2 r + t then z2>x + 7y,
Now

(3.46) 2+ (P + ) 2r+t2r2r-(r +¢) =x
gives z > x by definition of the difference operation,
and similarly

B?)  z4 (P ) Zr+t2E2t=-(rp+8) =5

yields z >y, Hence z > x + y and the proof 1s complete,



Theorem 3,6: B is a Stone algebra.
Proof: Let r; + t, denote an arbitrary element of B,
We willl use the relationship
(301}8) Y - (1‘1 + tl) = r’rl'
of Lemma 1 to obtain '\(r1 + %) and'TW(ri + tl). By
definition of the operation | , we have that
(3.49) Nry + 87) =1 - (py +1ty) =1Irgt =1y
and

= - = - = !
(3.50)  V(ry + t)) 1 ey + ) =I=r =(r")'=r,,
Since R 13 1tself a Boolean algebra, we have

(3.51) W(rl- +8) ey + £)) =r'r, =0,

Thus B is a Stone algebra,

Structure Theorem: If B is the direct sum of R and T, where

R is a Boolean sub-algebra (with least element O and greatest
element I) of a distributive lattice L with O and I and
T is an 1deal of L such that |

(a) the only element of L common to both R and

Tis O

(b) T 1s a Brouwerian sub-algebra of L,
then B 1s a Stone algebra, Further, every Stone algebra
may be so described,

The first part of the Structure Theorem has already

been proved, The remainder of this sectlon, except for
some remarks at the end, will be used to prove the last
part of the theoren,
Definition: Let T denote the set of elements of B satisfying

]x = I and, as before, let R denote the collection of
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elements of B satisfying 1lx = x,

Theorem 3.7: R 1s & Boolean sub-algebra of B,

Proof: This has already been proved in Theorem 3.2.
Theorem 3,8: T 1s an ideal of B.

Proof: Let a and b be elements of T, Then la =1b = I,
and

(3.52)  T(a +1b) = Ti(laWp) = 11 = I,

by (3.15e)s Hence A + b 4s in T, If a is in T, and ¢ < a,
then o >7a =1Iby (3.15a), Thus Je = I, ¢ is in T, and
T is an 1deal of B,

Theorem 3.9: The only element of B common to both R and T

is 0.
Proof's Assume that an element a 1s in both R and T, Then

i

Ja = I, and O

n

ala = aI = a.

Theorem 3,10: T is a Brouwerian sub-algebra of B,

Proof: In the proof of Theorem 3,8 we showed that a + b is
in T'whenever a and b are in T, Now

(3¢53) T(ab) =Ja+1b=I+1I=1

by (3,15d), Hence ab is in T, and T is a sub-lattice of
B, It remains to prove that a = b i3 In T if a and b are
in T, But a = b < a by (3.3)s Hence a - b 1s in T since
T 13 an ideal of B,

Theorem 3,11: Every element b of B can be written in the
form b=r + t, where r 1s iIn R and t 18 in T,

Proof: Since B is a distributive lattice, we may write
(354) 1T + vIb = (170 + b) (111 + D),



But

(3.55) 1Ib+b =0

by (3.15b), and

(3.56) N +1b =1

by definition of the difference operation, Hence
(3.57) 1Ib +blb = (1o + b)(TIb +1b) =bI =b
holds for every element b in B, Now |1b is in R, since
(3.58)  11(T) = UM Tb) =](1p) =]

by (3;150). Further, blb is in T, for

(3.59)  T(lb) =Tb +7b =1

by (3,15d), Thus we may set 1o =r and bIb = t, and
the desired repi'esentation is obté.ined.

Theorems 3.7 through 3,11 complete the proof of
the Structure Theorem,

More insight into the make-up of Stone algebras
may be obtalned by interpreting the preceding work in
terms of set theory,

Definition: A ring of sets 1s a collection C of sets

Ay By Cyeee guch that 1f A and B belong to C so does the
set sum AUB and the set product A(\B, A Boolean ring of

sets 1s a ring of sets which contains with any member A
the set complement A!' of A,
Definition: Given two members A and B of a ring of sets

@, A -e- B denotes the smallest set of all sets X in @

satisfying BUX DA whenever this smallest set exists, (

i1s a Brouwerlan ring of sets if, for every palr of members

Ay B, A E B exists in C,



An example of a Brouwerilan ring of sets which is
not a Boolean ring of sets 1s the collection ’X of all
closed subsets of the plane, In Vst s A N B 1s the inter-
section of A and the closure of the complement of B, The
collection & of all open subsets of the plane 1s a ring of
sets which is not a Brouwerian ring of sets, For, let A
-and B be open sets, nelther containing the other, such
that ANB 1s not empty. The smallest set satisfying
BUXjA i1s ANnB', which is not in C e It 13 easily seen
that there is no smallest open set containing ANBt!, hence
A U B does not in general exist in O.

Let C be a ring of sets containing the null set ¢
and a greatest set I, and let R be a 'Bool.ea.n sub-ring of C
which also contains ¢ and I, Let /4 be a Brouwerian
sub-ring of (¢ which is an ideal and which has in common
with £ only the null set @ . Finally, let 8= R&.7
denote the collection of all sets of the form RUT, where
Risin R and T 1s in 7 .

Set-Theoretis Structure Theorem: Every ring of sets
6= Ro fr, where ﬂ and satisfy the conditions laid

‘down in the prededing paragraph, 1s a Stone algebra, and
every Stone algebra can be so described,

Proof: The first part of the theorem follows from Theorem
3,5 and 3.6, Let B denote an arbitrary Stone algebra,
Then B=R®T where R is the set of elements of B
satiafying |r = r and T is the set of elements of B
satiafying 1t = I, Since any distributive lattice is



isomorphic with a ring of sets [of, Birkhoff, p. o]

we kmow that B is 1somorphic with a ring dg)of sets, The
Boolean sub-ring 0? and the Brouwerian sub-ring ﬁ?lare the
respective images, under the lsomorphism, of R and T,

A direoct application of Theorems 3,7 through 3,11 can now
»be made to complete the proof of this theorem,

This set-theoretlic representation furnishes a
method of constructing Stone algebras, Let Z{ denote an
algebra of sets, 1y/§n grbitrary collection of elements of
QZ'together with their complements, and ﬁ?the collection
of elements of Z/Atogethsr with their pairwlse sums and
products, If Rl and R2 are in /ZD s 1t 1s clear that
R{UR, and R,/ R, are also in /£ . Further, if R 1s in
A, thenR' 1s in 02 ., For, if R 1s in 7 then R! is in
ZV/thch is contained in éf). If R 1s not in '7/: then
either R =VyUV, or R = V;(\V,, where V, and V, are
elements of 7/ o In the first case R! = V1! V2! and in
the second case R!' = V;'UJV,', Since Vy' and V,! are
elements’ of 7/ﬁ, it follows that in either case R! is in
J?. Hence /? i1s a Boolean ring of sets,

From among the members of 2[not already in /?
choose a sub-collection.j7’in such a way that:

(a) If T is in J?J, the set complement T!
is not in ;7/.

(b) If Ty and T, are in ;;V: so is Tll)Ta.

(c) If T 1is in 57‘, so are all sets of 2

contained in T,
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(d) The collections f/d and / have in common
only the null set,

It 1s seen from (b) and (e¢) that /‘713 a ring of sets, and
(a) implies that 7 1s not a Boolean ring of sets, If Ty
and T are in 7, the set Ty g7 Tp exists in U since
2 18 an algebra of sets, But it is clear that
Ty 5 T2CTy, s0 that Ty o Ty =Ty s T, exists in
7 and /‘7/4 is a Brouwerlan ring of sets, Intuitively, the
Brouwerian ring .7 of sets serves to "f£ill out" the
Boolean '"skeleton" /f o The desired Stone algebra L 1s
now obtained by forming the direct sum ﬂ = LD ,afJ.
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Section lj, Characterization of
Certain Stone Algebras

In this section we characterize a wide sub-class of
Stone algebras, These Stone algebras are shown to be
factorable into a direct product of Brouwerian algebras of
a rather special kind called T-algebras,
Definition: An element a.of a lattice L is join-irreducible

if x+y=a implies x=aor y =a,

Definition: A Bfouwerian algebra with I is a T-algebra if

I is join-irreducible,

T-algebras may be constructed in the following
manner, To any Brouwerian algebra L adjoin a new element
J in such a way that J 1s properly over every element of
L. Let T denote the resulting lattice, It is seen that
the adjoining of J to L leaves unchanged all the original
differences a - b of elements of L. If x is an element of
Ly, then J = x = J since for no y # J can the relationship
X +y =J hold, (Recall that J is properly over every
element of L, and that x + y is an element of L), This
shows that there exists in T the difference of any two
elements, 1i,e, that T 1s a Brouwerian algebra,

One of the results proved in this section is that
the direct product of T-algebras is a Stone algebra, Thus

a large collection of Stone algebras can be constructed by



taking an arbltrary collection of arbitrary Brouwerlan
algebras, converting each Brouwerlan algebra into a
T-algebra by adjoining an element J, and forming the direct
product of the resulting T-algebras,

Important concepts used throughout the rest of this
section are presented in the following definitions.
Definition: Let the set C be the indexing set for a

collection of join-irreducible elements ay,UéC. The

collection aﬂ»is a representation of I if

.1 1 =\Va,.
(he2) gec ¥

The representation 1s irredundant if ¥#¥' implies ayayi= 0,

Definition: A lattice L is comgiete if every subset of L

has a greatest lower bound and a least upper bound,

Definition: A lattice L 1is completely distributive if

arbltrary sums distribute over arbiltrary producté, and
dually.

Remark: Let D be the indexing set for an arbitrary subset
of L, and let ay', feD, denote the Boolean complement of
age For our purposes the full power of the complete

distributive law is not needed; instead, it sufflces that

(4e2) /\(as + agt) = \/[[/\as(i)]
: (1) seD

where gggas(i) denotes a product formed by choosing, for
(i)] |

each §€D, either ag or agl, and(\i/)[é})as denotes the

union of all such products, ' The following example 1llustrates

the notation; the complete distributive law we requirehis

the generallzation of the following lawg
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(4.3) (a + a')(b + bt)(c + ¢') = abc + abe! # ab'e
+ ab'ec! + a'bec + atbe!
+ atbtec + a'bte?,

Definition: Let A and B denote two algebraic systems

having the same operations, The direct product A X B

of A and B 1s the set whose elements are pairs (a,b), aeA
and b€B, and whose operations are performed component-wise:
) £[(ay,by),(a5,b5)] = [flay,85), £(by,by)].

The direct producst of an arbitrary number of algebralec
systems, all having the same operations, is defined
similarly.,

Lemma 1: The direct product of an arbitrary collection of
Stone algebras is 1tself a Stone algebra,

Proof: Let A be the Indexing set for a collection of Stone
algebras S_, X€A. Let

()-I-OS) S .“.:D‘;S“

denote the direct product of the Stone algebras S e An
element x of S has components x,, where x€S,, Then the
element 1x = I - x of S has components |x = I - Xy and
11x€S has components 1xy=Ix- 'qu, since the difference
operation 1s performed componentwise, Since the produst
operatidn is also performed componentwlse, the element
71x711x€S has components T1x«l1x, But each 38, 1s a Stone
algebra, hence 7|x, 11X, = Oxe. Thus the components of 1xT]x
are all 0, and S is a Stone algebra,

Lemma 2: Every T-algebia la a Stone algebra,



Uy

Proof: Let x # I, Then 1x + x ='I implies that 1x = I,
since I is join-irreducible, Hence 11x = 0, and
JxTx = I0 = 0 holds for every x # I, The proof is
completed by noting that TITII = 0I = 0.

The principai result of this section is presented
in the next two theorems,

Theorem li,1: If B is a complete Stone algebra, and if I

has a representation as an irredundant join of join-irreduc-
1b1e'elements, then B 1s isomorphic with a direct product
of T-algebras,

Theorem li,2; If B is a complete and completely distributive

Stone algebra, then I can be repﬁesented as an irredundant
Join of join-irreducible elements,
Proof of Theorem li,1: Let C be the indexing set for the

set of join-irreducible elements a,{fec, making up the

representation of I, so that

(,-l-oé) I = ‘o\'\anJ'

Let Ay denote the set of elements xeB satlsfylng x < ay;
and let D denote the direct product of the sets Ar. The
proof consists of three parts, In the first part it is
shown that Ay 1s a T-algebra. A one-to-one correspondence
1s established between B and D in the second part of the
proof, and in the third part this correspondence is shown
to be an isomorphlsnm,

Ay is clearly a sub-lattice of B, If uand v
are in Ay, then the fact that u ~ v < u means that u - v

is also in Ay, 80 that Ay 1s 1tself a Brouwerian algebra,
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The element ay (which plays the role of I in Av) is
Join-irreducible, hence A, is a T-algebra, by definition,

Let 4 be an element of D having components dy,
where dy€Ay. The correspondent x in Bof 4 inD is
defined as

(llo7) X = \/dgo

The sum exlsts since each d, is in B, and B i3 complete,
Let d denote another element of D, having components

dy, and assume that

b8  Mag = M3y,

i,0, assume that d and d map into the same element X of B,
It aﬂ.ﬁec, 1s one of the elements making up the representation
if I, then from (l}.8) we may write that

(4+9) %kéd, = a,g}e/c'd' .

Using the infinite distributive law, which holds in B since
B is complete, the above expression becomes

(lt,10) }é(a,ga,) = M(%a,).

The fact that the representation 1s irredundant implies
that the elements a, are pairwise disjoint, Since d, <ey
mblies asdy < 8,a; =0 for 4 #7Y, expression (l.10)
reduces to

(ho11)  8gdy = 8eTge

But d@ < ag, and Ty < 8gs hence dg ""“a-p- Since p was an
arbitrary member of the Indexing set G, this shows that

a =d, 1.6, that the correspondence defined in (47) 1s a
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one-to-one mapping of D into B, We wili complete the
second part of the proof of Theorem L .1 by showing that
every element in B is the iImage of an element of D, Let

Y be an element of Bs Then yay 1s In Ay and the element

dy’ whose components'are Yays, is In D. The 1mage of

dy is

(’4-012) ‘[}C/(ya’) = y‘o’eca’ =yl=y,

again using the infinite distributive law,

That thls one-to-one correspondence 1s operation-
preserving follows from the fact that if 4 and d are
elements of D satisfying 4 < d, then the components
dy of 4 and EU of d indivually satisfy a,.g'a,.
Hence
13 Va, < N
and the correspondence is order-preserving, But all the
operations in B are defined in terms of the order relation;
hence the correspondence is an isomorphism and the proof
of Theorem lj,1 1s complete,

Proof of Theorem L4.,2: If B 1s a T-algebra the theorem

13 trivial, If not, the set R of elements of B

satisfying \lr = r contains elements other than 0 and
I, For, If B 1is not a T-algebra, then there exists
elements x and Yy, both different from I, such that
X+y =1, This implies that 1(x +y) =0 and

THx +y) =1, If Ix = I, then

(hely) I =TNx+7y) = '\[Tl(‘]x’\y)] = 1[‘]1(1in =1y <y
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~implies y = I which is a contradiction. Hence 7|x # I.
Finally, x # I yields 7x # 0. Thus the element 7] x,
which is in R since ||(1x) =7x, is different from O
and I,

Let A be the indexing set for R. If x.,96A, is
an element of R, so 1s its Boolean complement ro". since
R 1is a Boolean sub-algebra of B by Theorem 3,2, We form
the product

(,-I-O]-S) I= Q(ro( + ro")o

The product is I, as shown, since each term of the product

is I, Using the complete distributive law (4.2), (l4.15)
becomes
(4b.16) I V4 [/\Ia(i)J :

(1) [oA€A
Let x =/\r (i). We will show that x 1is in R, 1,e.

Aep %
that every term of (}.16) is in R, From x < rd(i) it
follows that 1x > ']rd\(i) = ro((i) '

Hence

(4.217) Ix EMrd(i) '

Let y = \/I' (1)'. Since y + rq-(i) = I holds for every
A in A, we have

(l}-ola) I= @(y + I‘d(i)) =y + D(G\Ard(i) =y + X,

By definition of 7x, this means y >7|x, l.e.
1a19) =< Mt

From (4.17) and (4.19), we have

(he20)  Tx = 2r M,

It 1s clear that, for every & in A, xrd(i)' = Qo Hence
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o22) 0= Vo (D' 2 x Ve (D' - 14,

AT AT

This shows that x is in Q and hence in R by Lerma 1

to Theorem 3.3, page 29.

Not every term of (l..16) is 0, since the sum of

the terms is I, After discarding from (L.16) those terms
which are 0, the remalning terms may be relabelled so

that (l..16) becomes

(he22) T = ofpese

It will be shown next that D 1is the indexing set for

the atoms of R, i,e, those elements ag of R such that
0 § r é ag holds for no element r in R, After that we
.w111 show that the representation (L,22) is irredundant,
and the proof willl be completed by showing each element ag
is join-irreducible,

Suppose that an element r of R satisfiled

(4e23) 0O<sr<a, Ofr, afr

for some & in D, By the manner in which ag Wwas obtained,
we observe that the expression for ag contains the letter
T, with or without a prime, If r appears as one of the
members of the expression for gy then r > 85 which
violates (4.,23), On the other hand, if r' appears as one
of the members of the expression for a5, then rag = 0,
which also contradicts (4.23)s We conclude that no element
r of R can satisfy (L.23), i.e, that ag is an atom of
R, We remark parenthetlcally that ag may not be an

atom of B,
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Again using the fact that each element =r, of R,
with or without a prime, appears as a member of the
expression for ag, We see that 61 # Sé implies agy
and a52 are different, i,e, at least one of the elementa
is primed in one term and not in the other., It follows
that

(l]..Zl].) aslasa =0 for 81 ?é 52’

which shows that the representation (l.22) is irredundant,
Assune that there exists elements x, y of B, each

different from O and from acy which satisfy

(4.25) 0<x<a, O0<y<a, x+7y=ag

for some § in D, Recalling that ]7]x < x, that Tlx 1is

in R, and that a; 1s an atom of R, we have 11x = 0.

Hence 7|x = I, and, similarly, |y = I, Hence

(he26) oy = Ux+y) =T1](Ky) =1NID =1

But if ']as= I, then 0 =77a; = a;, since ag is in R,

I

This 1s a contradiction, for in the construction of (l,22)
only the terms of (l.,16) differont from O were retained,
Thus (4.25) 1is impossible, and ag 1is join-irreducible.
This completes the proof of Theorem l,2.

Corollary l: Every complete and completely distributive

Stone algebra 1s 1somorphic with a direct product of

T-algebras,

Proof: This 1s a direct consequence of Theorems lj,1 and

h.2,

Corollary 2: Any finite Stone algebra 1is isomorphic with
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a direct product of T-algebras,
Proof: Any finite Stone algebra is complete and completely
distributive,

Noticing that the essence of the proof of Theorem
.2 was the discovery of the atoms of R, we are led to
Theorem li,3: A Stone algebra B 1is isomorphic with a

direct product of T-algebras i1f every descending chain in
R 1s finite,
Proof: Since R 1s a Boolean algebra in which descending
chains are finite, we know that R 1itself is finite (cf.
Birkhoff [ 3 ], p. 159). Hence the atoms of R can be
determined; it can be shown as in Theorem l,2 that I is
an irredundant joln of the atoms of R and that the atoms
of° R are Join-lrreducible elements of B, The proof 1is
completed by applying Theorem li.2,

One further extension of Theorem l,2 1s obtained
by noticing that the use of the infinite distributive law
in the proof was confined to elements of R,

Theorem lil.: If B 1s a Stone algebra in which the

Boolean sub-algebra R 1s complete and completely distributive,
then B 18 isomorphic with a direct product of T-algebras,
Proof: Exactly as in Theorems l.1 and l,2,

An example of a Stone algebra which is not factorable
is the "measure algebra" [« (see Birkhoff [ 3 -], p. 184,
This algebra may be constructed as follows, Let M denote
the set of Lebesgue measurable subsets of the unit interval,

Divide M 1into equivalence classes by placing in the same
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class any two subsets whose symmetric difference is a set
of measure zero. The equivalence classes are ordered by
'set inclusion, It 1s known that the resulting algebra N
is a complete Boolean algebra without atoms, Since N

is a Boolean algebra, it follows that M is a Stone algebra.
However, I cannot be factored into a diresct product of
T-algebras since it has no join-irreducible elements,

It might be conjectured that all Stone algebras
are direct products, the factors being either-T-algebras
or Boolean algebras without atoms, That this 1s not the
case 1s shown by the following example, due to L. M, Kelly.
First consider a non-atomic Boolean algebra, and consider
its representation as a Boolean ring %of sets, /fmay
be regarded as embedded In an algebra of sets which of
course contains points, Let T be one of these points,
and let the set /gf’consist of T together with the null
set, It 1s easlly veriflied that the conditions of the
Set-Theoretic Structure Theorem (p, 38) are satisfied,
hence ﬁ = ﬁ@/é\/ i1s a Stone algebra, Since 43 contains
only one Join-irreducible element, namely T, the only
possible factorization of 43 of the conjectured type 1s
B= Rx7 . In the airect proauct /x 7, the four
elements (R,T), (R,b), (Ry,T) and (R'0) are distinct, where
R denotes some member of ﬁ different from 0 and I,
But the point T 1lies in either R or R!, hence in the
direct sun £ ® 7 the four elements R+ T, R+ 0, R! + T

and R! + 0 are not distinect, Thus no one-to-one
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correspondence can be set up between JB@7 and /?x7 ’
G‘/
i,e, the Stone algebra ﬂﬁa,/ cannot be factored in the

conjectured manner.
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