
DIFFERENTIAL GEOMETRY BASED REPRESENTATIONS
FOR MESHES AND CORRESPONDENCES

By

Yuanzhen Wang

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2013

ABSTRACT

DIFFERENTIAL GEOMETRY BASED REPRESENTATIONS
FOR MESHES AND CORRESPONDENCES

By

Yuanzhen Wang

Geometry processing is one of the major subfields of computer graphics, which deals with the

representation, display, and animation of virtual scenes. Geometric models are involved not only

in the digitization of three-dimensional (3D) objects, but also in rendering and animation, i.e., the

processes of creating digital imagery from such models and deforming shapes over time. The rep-

resentations of shapes and their relations are crucial to the accuracy and efficiency of geometry

processing. Thus improved representations can potentially benefit a wide range of applications,

including computer aided design, visualization, simulation, education, training, and electronic en-

tertainment.

Despite the rapid progress in the past few decades, several known challenges remain in geom-

etry processing, including: Storage in runtime volumetric data structure has a space complexity

that is cubic in resolution, or worse when the shape to represent changes dynamically; Automatic

hexahedral meshing with well-shaped elements, i.e., decomposing a shape into cube-like cells, is

highly desirable in finite element approaches in physical simulation, but is still considered as an

open problem; Coordinate-system-independent representations of curved surfaces representing the

boundary of 3D objects are indispensable in robust 3D model acquisition through scanners and

animation, but are often highly redundant, or inefficient in conversion to explicit representations

or deformation; Shape correspondence is becoming increasingly important with the rapid growing

number of digitized 3D models, but can be hard to establish under large deformation.

We address these seemingly diverse issues with methods based on a uniform framework called

discrete differential geometry, which strives to preserve desired structures of smooth shapes in

their digitized representations, through carefully designed discretization. In this dissertation, we

present novel meshing and correspondence inference techniques, designed for generating high

quality representations of both the geometric objects and the mappings among these objects, which

benefit subsequent geometry processing, modeling, and scientific computing.

First, we use edge lengths and dihedral angles of polyhedra to represent the first and second

fundamental forms, two continuous quantities that measure the lengths and curvatures of curved

surfaces, respectively. Mirroring the fundamental theorem of surfaces involving these fundamental

forms, a discrete condition for the existence of an immersion of the surface in the discrete repre-

sentation is also provided, which leads to an efficient method applicable in shape deformation.

Second, in order to express correspondence maps between two shapes, we propose a vector

field map representation, extended from a spectral representation called functional map. The gen-

eralized representation is capable of handling the constraints for correspondence inference in the

important angle-preserving case. The extension also makes it possible to handle function transfer

between shapes with different topology.

Third, we present an automatic hexahedral meshing tool, based on a systematic treatment that

eradicates common singularities that would lead to degenerate volumetric cells. Such singular-

ities could be abundant in automatically generated edge direction fields guiding the interior and

boundary layouts of the hexahedra in the final result.

Finally, we develop a compact data structure for volumetric shapes of arbitrary topology. It

offers all commonly used incidence queries among its elements with constant time complexity,

and can be adapted to work with dynamically changing topology.

We demonstrate the numerical test results, discuss future work, and point out the potential

applications and techniques.

To my wife Qiong Wu.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Yiying Tong, for his tremendous help during

my doctoral study, which is the most cherishable time in my life. I would not have been able to

go through these four years without his continuous encouragement and inspiring guidance. From

him, I learned a great amount of knowledge in computer graphics, the systematical way of doing

research and the earnest attitude of pursuing the truth. This dissertation would not have been

possible without his efforts in careful reviews.

I would also like to express my gratitude and deep appreciation to Prof. Rong Jin, Prof. Charles

Owen, and Prof. Guowei Wei for being my dissertation committee members and giving me insight-

ful comments and guidance. I am also grateful to Prof. Guowei Wei for the enlightenment to me

in the research of Biomedical Imaging. I would also like to thank Prof. Jin Huang and Prof. Kun

Zhou for sharing their research experiences and softwares. I also wish to thank Beibei Liu for

the collaboration on surface meshing and correspondence, Tengfei Jiang for the collaboration on

automatic hexahedral meshing, Xin Feng for the collaboration on 3D volume data structures, and

Xiaojun Wang for the discussion and codes on fluid simulations, among other colleagues. I also

want to thank Lujin Wang, my mentor in NVIDIA, for her help in my improvement of coding and

software development skills.

At personal level, I am indebted to my parents, for their endless love, encouragement and

support.

v

Table of Contents

LIST OF TABLES . x

LIST OF FIGURES . xii

Chapter 1 Introduction . 1
1.1 Digital Geometry Processing . 3

1.1.1 Mesh Generation and Surface Reconstruction 5
1.1.2 Mesh Smoothing . 5
1.1.3 Mesh Simplification/Subdivision . 6
1.1.4 Structured Remeshing . 6
1.1.5 Mesh Deformation/Editing . 7
1.1.6 Mesh Parametrization . 7
1.1.7 Mesh/Shape Correspondence . 8

1.2 Discrete Differential Geometry . 8
1.3 Surface and Volume Representations . 11

1.3.1 Surface Representation Based on Differential Coordinates 12
1.3.2 Compact Volume Mesh Data Structures 14
1.3.3 Automatic Hexahedral Meshing . 16

1.4 Representation and Inference of Shape Correspondence 18
1.5 Dissertation Organization . 21

Chapter 2 Rudiments of Discrete Differential Geometry 23
2.1 Basic Concepts from Differential Geometry . 24

2.1.1 Differential Geometry of Curves . 25
2.1.1.1 Tangent vector . 25
2.1.1.2 Curvature . 26

2.1.2 Differential Geometry of Surfaces . 27
2.1.2.1 Tangent plane and Normal vector 28
2.1.2.2 Curvatures on Surface . 29
2.1.2.3 Principal Curvatures . 29
2.1.2.4 Mean Curvature and Gaussian Curvature 30
2.1.2.5 First and Second Fundamental Forms 32
2.1.2.6 Surface Equations . 33

2.1.3 Differential Operators . 36
2.2 Discrete Curvature Estimates for Triangle Meshes 38

2.2.1 Discrete Mean Curvature Normal . 40
2.2.2 Discrete Gaussian Curvature . 41

2.3 Discrete Exterior Calculus . 43
2.3.1 Smooth Exterior Calculus . 43

vi

2.3.1.1 Manifold . 43
2.3.1.2 Vector Field . 44
2.3.1.3 Differential Forms . 45
2.3.1.4 Exterior Derivative . 46
2.3.1.5 Hodge star . 46

2.3.2 Discretization . 47
2.3.2.1 Discrete Manifold and Simplicial complexes 47
2.3.2.2 Discrete Differential Forms . 49
2.3.2.3 Discrete Exterior Derivative . 50
2.3.2.4 Discrete Hodge Star . 50
2.3.2.5 Discrete Laplace Operator from DEC 52

Chapter 3 Rigid-motion-invariant Discrete Surface Representation 53
3.1 Discrete Fundamental Theorem of Surfaces . 54

3.1.1 Lift of an Immersion. 55
3.1.2 Discrete Fundamental Forms from Edge Lengths and Dihedral Angles . . . 57

3.1.2.1 Local frames . 57
3.1.2.2 Transition rotation . 58

3.1.3 Discrete Surface Equations . 59
3.1.3.1 Local Discrete Fundamental Theorem of Surfaces 59
3.1.3.2 Local discrete fundamental theorem of surfaces 60
3.1.3.3 Global discrete fundamental theorem of surfaces 62

3.2 Surface Reconstruction from Discrete Fundamental Forms 63
3.2.1 Immersion Energy through the Lift to 6D 63
3.2.2 Algorithm . 66

3.3 Applications and Results . 67
3.3.1 Deformation . 68
3.3.2 Quasi-isometric Parameterization . 69
3.3.3 Independence to Sampling Density . 70
3.3.4 Comparison to Existing Work . 70

3.4 Conclusion . 74

Chapter 4 Vector Field Map Representation for Surface Correspondence 76
4.1 Related Work . 76
4.2 Functional Maps Between Shapes . 79
4.3 Spectral Vector Field Analysis on Surface . 80
4.4 Tangential Vector Field Map . 86

4.4.1 Properties of the basic representation . 86
4.4.1.1 Induced maps (pullbacks) . 86
4.4.1.2 Conformality and orthogonality 87
4.4.1.3 Block-diagonal form of C1 . 88
4.4.1.4 Relation with C0 and C2 . 89
4.4.1.5 Isometry . 89

4.4.2 Constraints . 90

vii

4.4.2.1 Vector field constraints . 90
4.4.2.2 Area preservation . 90
4.4.2.3 Landmark constraints . 91
4.4.2.4 Segment constraints . 91
4.4.2.5 Constraint splitting . 91
4.4.2.6 Symmetrization . 92

4.4.3 ICP in the Gradient Embedding Space . 92
4.5 Results . 94

4.5.1 Conformal correspondences . 94
4.5.2 Isometric benchmarks . 98
4.5.3 Segment correspondences . 100
4.5.4 Vector field guided alignment . 104
4.5.5 Function transfer across different topology 105
4.5.6 Implementation details . 106
4.5.7 Limitations . 107

4.6 Conclusion . 108

Chapter 5 Parametrization-based Automatic Hexahedral Meshing 109
5.1 Related Work . 110
5.2 Overview . 112
5.3 Rotational Transition and Singularity . 114

5.3.1 Internal Singularities . 115
5.3.2 Surface Singularities . 116

5.4 Inadmissible Singularities . 118
5.4.1 Atomic Operation to Adjust the Singularities 119
5.4.2 Zigzag Removal . 119
5.4.3 Compound Singularity Split . 120
5.4.4 Frame Field Adjustment . 123

5.5 Parameterization . 124
5.5.1 Topological Simplification . 125
5.5.2 Parameterization as a Mixed Integer Programming Problem 126

5.6 Results and Discussion . 128
5.6.1 Comparisons . 134

5.7 Conclusion . 137

Chapter 6 3D Volume Data Structures for Compact Storage 138
6.1 Related Work . 139
6.2 Combinatorial Maps . 140
6.3 Compact Volume Data Structure Using Compact Maps 142

6.3.1 Overview . 143
6.3.1.1 File format . 143
6.3.1.2 Comprehensive data structure 143

6.3.2 Details for 3D . 144
6.3.2.1 Local information within each 3-cell 145
6.3.2.2 Global information . 148

viii

6.3.2.3 Boundary . 149
6.3.2.4 Edge and face incidence information 149
6.3.2.5 Example table construction . 150
6.3.2.6 Spatial complexity . 151

6.4 Incidence/Adjacency Queries . 153
6.5 Conclusion . 155

Chapter 7 Conclusion and Future Work . 156

BIBLIOGRAPHY . 160

ix

LIST OF TABLES

Table 1.1: Actual memory usage for the same meshes using OpenVolumeMesh li-
brary [83], CGAL’s combinatorial maps [24] and compact data struc-
tures [35], respectively. 15

Table 1.2: Actual memory usage for a variety of meshes. 16

Table 4.1: Vector fields defined on surfaces. 80

Table 4.2: Differential operators defined on surfaces. 81

Table 4.3: L2-inner product defined on surfaces. 81

Table 4.4: Other differential operators represented as combinations of basic operators. 82

Table 4.5: Arrangements of LB-bases. 84

Table 4.6: Differential operators represented in the spectral domain. 85

Table 5.1: Statistics of the results. The number of input tetrahedra, inadmissible
singularity edge (Compound, Zigzag-inner and Zigzag-surface), and time
spent (in seconds) for fixing them are in columns Tet, Comp, Zz-inner,
Zz-surf and T, respectively. 130

Table 5.2: Statistics of the results (average/minimal). The time used in parametriza-
tion is listed in the second column. The following columns list mean/minimal
of dihedral angles, edge lengths and scaled Jacobian of the parameteri-
zation (measurements proposed by Shepherd and Tuttle [97]) , and the
Hausdorff distance/ 10−3× bounding box diagonal for measuring the
quality of the output hexahedral mesh. 131

Table 6.1: Cell type 0 (tetrahedron). 146

Table 6.2: Cell type 1 (prism). 146

Table 6.3: Cells table for mesh shown in Figure 6.2 146

Table 6.4: β1 and β2 tables for the running example shown in Figure 6.2. 147

Table 6.5: The tables for the 3-cell example. 149

x

Table 6.6: Optional edge tables for the running example. 150

Table 6.7: Memory cost for the various connectivity tables. 152

xi

LIST OF FIGURES

Figure 1.1: Main stages in digital geometry processing. For interpretation of the ref-
erences to color in this and all other figures, the reader is referred to the
electronic version of this dissertation. 3

Figure 1.2: Example stages in digital geometry processing pipeline. 4

Figure 1.3: The Bunny model on the right side is deformed through our rigid-motion-
invariant representation. 13

Figure 1.4: Models with hexahedral meshes generated by an automatic method. . . . 17

Figure 1.5: Illustration of function transfer through the matrix representation of func-
tional map. 19

Figure 2.1: Tangent at a point p on a planar curve C. 26

Figure 2.2: Defining curvature of a planar curve. 27

Figure 2.3: Tangent plane and normal vector N. 28

Figure 2.4: Normal Curvature of a 3D curved surface. 29

Figure 2.5: Spatial average region (a) and Voronoi region (b) around a point v. 39

Figure 2.6: Discretization of mean and Gaussian curvatures at vertex vi. 41

Figure 2.7: Examples of k-simplices. 48

Figure 2.8: Example of invalid case for being 2-simplex. 48

Figure 2.9: Examples of discrete manifold and non-manifold cell complexes. 49

Figure 3.1: An example of local frame. 58

Figure 3.2: Transition rotation matrices. 60

Figure 3.4: Deformation examples. 67

Figure 3.5: Applying our method to the extreme deformation test cases from the sur-
vey paper [14]. 69

xii

Figure 3.6: Parameterization produced by setting the dihedral angles to zeros. 70

Figure 3.7: Tori with different sampling densities produce similar deformation and
preserves symmetry. 70

Figure 3.8: Comparison to Lipman et al. [70]’s method. 74

Figure 4.1: The vector field basis functions (shown as arrows) derived from the eigen-
basis for functions (intensity shown by color). 84

Figure 4.2: Comparison of transferring coordinate functions and point-to-point (P2P)
correspondence between C0 and C1 representations, on a capsule (top)
conformally mapped to another shape (bottom). Three pairs of landmarks
are shown as dots. For P2P correspondence, we draw on each source
mesh vertex the (x, y, z) of the corresponding vertex on the target as RGB
color components (top). For function transfer comparison, we transfer
the coordinate functions of the source to the target (bottom). 94

Figure 4.3: Comparison of P2P mapping through C0 and C1. 95

Figure 4.4: Error plot for conformal pairs (top) and conformal pairs with connectivity
change (bottom). This test clearly indicates that C1 is better suited for
conformal deformation. 96

Figure 4.5: Tests on the Bunny-to-sphere sequence dataset with different frame dis-
tances between pairs. Top: average case; Bottom: pairs with distance of
150 frames. 97

Figure 4.6: Comparison of our method (C1) with the original functional map (C0)
method. The top error plot is for SCAPE dataset and the bottom error
plot is for TOSCA dataset. 99

Figure 4.7: Comparison of P2P mapping with only segment constraints. The dis-
continuity on C0 induced map exhibits the incompatibility with non-
isometric deformation. 101

Figure 4.8: Comparison of more TOSCA non-isometric models: the dog to the horse
(left); the cat to the wolf (right). 102

Figure 4.9: Segment constraints for non-isometric pairs (top) and for automatic cor-
respondence inference (bottom). 103

xiii

Figure 4.10: Here we demonstrate the effect of our new type of constraint applied on
vector fields directly. The map from the Venus head model to the sphere
was first established based on 4 landmark pairs. The user can further spec-
ify the correspondence of certain direction fields. For easy manipulation,
the source mesh venus head was shown on the sphere through the first
correspondence to help the editing process. We then add an additional
constraint for C1 and produce the expected modified result. 104

Figure 4.11: Comparison of Poisson reconstruction for function transfer between shapes
with different topology. 106

Figure 5.1: Surface singularity example. 117

Figure 5.2: Removing a zigzag pxq. The gray edge is regular, and the black edge is
possibly singular. 120

Figure 5.3: Splitting a compound singularity edge xq. The gray edges are regular,
and the black edges can be singular. 121

Figure 5.4: Illustration for the Proposition 5.4.1. 122

Figure 5.5: An example of topological simplification. 126

Figure 5.6: The red singularity edges in (a) lead to degeneracy and the sunk part (in
red) in (b), but the defects can be easily fixed by surface snapping and
post-smoothing (c). 129

Figure 5.7: Topological structures of the singularities. 132

Figure 5.8: Results with polycube-like structure. The red lines are near-misses, ex-
posed on the boundary after parameterization. 132

Figure 5.9: Results on CAD1, sculpture and CAD2 contain internal singularities. . . . 133

Figure 5.10: Our method can automatically remesh the complex model CAD3 while
preserving its important features without time-consuming manual meta-
mesh construction. 134

Figure 5.11: Compared with the method in Li et al. [66], which lacks the ability of de-
tecting and fixing inadmissible surface singularities, our method is more
robust in generating high quality hexahedral meshes in the presence of
such singularities. 136

xiv

Figure 5.12: Unlike our method, the collapse strategy Li et al. [66] may introduce
numerous poorly shaped tetrahedral elements. The histograms show the
scaled Jacobian of the tetrahedral meshes. 137

Figure 6.1: Example: Combinatorial map for a volume: (a) β1; (b) β2; (c) βc; (d) the
complete combinatorial maps. 142

Figure 6.2: Running example. 145

xv

Chapter 1

Introduction

The world we live in is often approximated as a three-dimensional (3D) Euclidean space. However,

our visual system only creates two-dimensional (2D) projections of 3D shapes. Despite the emer-

gence of stereo displaying technologies, such as volumetric displays, holographic displays, 2D

displays dominate as the major visual output device from computer to human. Computer Graph-

ics bridges the gap between 3D models of real-world objects and the 2D imagery created through

the rendering process. In this process, the representations of geometric shapes in computer are of

ultimate importance.

Unfortunately, the discretization of 3D objects is almost always plagued with loss of certain

properties in the continuous world. It is thus a fundamental task in computer graphics to find the

proper representations for the target application. In computer aided geometric design and physical

simulation, many representation schemes for solid objects have been developed. For example,

using cell decomposition techniques, a solid object is represented by a collection of disjoint cells,

whose union forms the original 3D volume occupied by the object. The adjacency relationship

among the decomposed cells is usually represented by combinatoric descriptions. However, in

applications from animation and rendering, in order to display objects for human visual perception

1

efficiently, usually only the boundaries of objects are relevant to generating the images, since the

interior of opaque objects is invisible to human eyes. In this case, boundary representation (or b-

rep) is another scheme developed to represent objects by their boundary surfaces alone. It improves

the efficiency both in memory space and computational time tremendously, roughly speaking, from

O(n3) to O(n2), with n being the resolution of the model along each dimension.

In both volume and surface cases, concrete representations and actual data structures are nec-

essary. Mesh is the most widely used to represent both surfaces and volumes. A mesh is formed by

the cell decomposition process, but restricted to using simple cells, with certain adjacency rules.

For example, a triangle mesh approximates surfaces using flat triangles, such that each pair of trian-

gles only intersect at one vertex or one edge, or are otherwise disjoint. Similarly, in the volumetric

case, a tetrahedral mesh approximates a solid object using tetrahedra only.

The pipeline in geometric modeling in computation is often called Digital Geometry Processing

(DGP), seen as a special form of the more generic digital signal processing (DSP). However, DGP

poses important challenges as the sampling in meshes is usually highly irregular unlike the regular

1D audio, 2D image, or 3D video in DSP. Again, how the geometric signals are represented is

fundamental to addressing this issue. In the following sections, we first go over the topics in

DGP, noting those that would directly benefit from our work; we then introduce the elementary

concepts in the theory of discrete differential geometry (DDG), which strives to preserve important

structure during the discretization process, as the geometric signals come from digitizing smooth

3D surfaces and volumes; finally, we summarize the main contributions, which focus on using a

DDG-based approach to address the question of how shapes should be represented in DGP.

2

1.1 Digital Geometry Processing

We provide the context of our work here, by presenting the usual pipeline of geometry processing

and noting the relevance of our work within the overall structure.

Data acquisition
(Point sampling)

↓

Reconstruction and denoising
(Mesh generation)

↓

Preprocessing for applications
(Mesh simplication, remeshing, etc.)

↓

Applications
(Mesh editing, analysis, etc.)

Figure 1.1: Main stages in digital geometry processing. For interpretation of the references to
color in this and all other figures, the reader is referred to the electronic version of this

dissertation.

In computation, especially in applications in Finite Element Methods (FEM), Computational

Fluid Dynamics (CFD), and Computer-aided Design (CAD), to represent the shapes of real world

objects, we first need to construct or acquire discrete geometric models. 3D scanners based on

various techniques have now become common-place. They can provide us with the information

of sampling points on the geometric shapes. Processing raw dataset from scanners leads to the re-

search on point-based geometry processing [59], e.g., Pauly et al. [89] proposed a shape modeling

algorithm based solely on sampling points. However, a point cloud without additional structure

3

may not be adequate for most other applications.

Original Bunny model Raw data from 3D scanner Mesh generation

Mesh smoothing Mesh simplification Structured remeshing

Mesh parametrization Texture for the parameterization

Figure 1.2: Example stages in digital geometry processing pipeline.

4

1.1.1 Mesh Generation and Surface Reconstruction

In practice, the knowledge about point locations only is insufficient to fulfill the tasks from most

applications, including regular rendering and physical simulation. To establish the complete sur-

face, additional information is required, such as how the points are connected with each other and

how the gaps between points are filled with facets. More formally, the topology of those points is

necessary for practical purposes, such as ray tracing, interference detection, inside/outside query.

In computational science, the term mesh, refers to the structure that not only describes the

points locations but also tells us about the connections between them. There are a multitude of

methods in mesh generation designed for various application purposes [71]. Our work [35] on

volume mesh data structure can be seen as an extension of the connectivity representation of sur-

faces to volumes. It can also be used as an efficient representation for the domain within which

the surface reconstruction can be performed for scanner output, through methods such as marching

tetrahedra.

1.1.2 Mesh Smoothing

As mentioned before, we can use the sample point locations obtained from 3D scanners or vision

techniques to construct the raw 3D models of objects. However, this process usually produces

noisy data. It is not that unexpected, since noise is unavoidable for almost any 3D data acquisition

techniques, unless the original surface is digitally created. Consequently, one sub-research area of

geometry processing is on smoothing out the noise in raw sampling point datasets, obtained directly

from real objects, in order to produce a mesh with higher quality than the original one. Research on

smoothing algorithms recently received intense attention. Diffusion approaches including spectral

analysis, Laplacian smoothing and curvature flow, and global minimization for certain forms of

5

nonlinear energy, are developed. A lot of alternative approaches are still under active research for

specific application purposes. Our work [110] on rigid motion-invariant surface construction using

discrete fundamental forms can potentially provide new definitions on noise, and lead to denoising

processes that are independent of possible translation or rotation. Moreover, our novel spectral

vector field analysis tool can be potentially applied to mesh smoothing by relying only on low

frequency signals.

1.1.3 Mesh Simplification/Subdivision

Once a low-noise mesh is obtained, a subsequent step in geometry processing is to make the mesh

coarse/dense for different applications. The raw dataset from 3D scanners is often sampled with

a limited range of resolution. It is therefore desirable to have a postprocessing tool (e.g., the

one proposed by Daniels et al. [25]) to manually control the mesh density. In some applications,

e.g., fluid simulation and physical simulation, a large number of points can make the computation

extremely slow. Therefore, a coarse mesh is favorable. On the other hand, a finer mesh may be

more suitable for other applications where fine geometric details are necessary [43], e.g. 3D model

sculpture. Our compact data structure [35] may prove indispensable when the required sampling

density is extremely high.

1.1.4 Structured Remeshing

In FEM and other computational applications, a structured mesh (e.g., an all-quadrilateral mesh

with each vertex adjacent to exactly four vertices) may lead to stabler or more accurate simulation

than unstructured mesh (e.g., triangle meshes or polygonal meshes.). Recently, the research on

remeshing from triangulation to quadrangulation is actively explored and there are a lot of excellent

6

results obtained from researchers [32, 107, 55, 12, 46, 25, 90, 119]. However, a fully automated

method of generating high quality hexahedral meshes from tetrahedral meshes is still missing. Our

work [49] based on smooth frame field has made progress towards such a meshing tool.

1.1.5 Mesh Deformation/Editing

With the increasing computing capability and user demands on 3D models, mesh deformation/editing

becomes a convenient tool to generate new shapes from existed ones. Intuitive (real-time) editing

methods [114, 101, 69, 47] allow artists and designers to creatively sculpture models without in-

terruption of inspiration. Our work [110], based on representing discrete differential forms as

local surface descriptors, provides such an editing tool, with quality matched only by much slower

non-linear methods.

1.1.6 Mesh Parametrization

Without textures, meshes look like gypsum sculptures. To put the vivid textures (and other material

properties) stored as planar images onto 3D geometric objects, surface parametrization, the pro-

cess of flattening patches of the surface, is necessary. Although its early uses in computer graphics

had been merely for texture mapping, parametrization, as a fundamental concept in differential

geometry, has since found applications in many other mesh processing routines [37], such as de-

tail mapping, detail synthesis, detail transfer, mesh completion, mesh editing, remeshing, mesh

compression, and surface fitting. Our work [110] on rigid-motion invariant surface reconstruction

provides a simple method for a quasi-isometric parameterization, which introduces low distortion

and produces a natural boundary condition.

7

1.1.7 Mesh/Shape Correspondence

In recent years, mesh/shape correspondence inference became an active research area in computer

graphics and computer vision. With the rapid increase in 3D models repositories (e.g., Google 3D

warehouse), an interface for efficiently exploring large sets of models is necessary for users. How-

ever, it is not an easy task when the exploration is under a certain user preference, for example,

browsing all chairs from a collection of furniture. Traditionally, it is merely based on the semantic

method, which requires manually associating each model with several descriptive labels. But the

labeling process is usually inefficient and not scalable. Thus, an automatic, efficient and accurate

mesh exploration method is highly in demand. The analysis of shapes and their relations is a nec-

essary prerequisite to such applications as mesh exploration. Our vector-field map representation

presents a tool for establishing such relations among different shapes within the collection, and for

their further spectral analysis.

To summarize, with extensive applications in computer graphics and geometric modeling, ge-

ometry processing is a vast research area. As stated above, our work is relevant for multiple stages

in the spectrum of DGP, ranging from acquisition to deformation and shape analysis. There are

many other novel works for interesting specific application topics in the same context, such as con-

structive solid geometry, computational geometry, and collisions detections. However, it is beyond

the scope of this dissertation to survey all of these topics.

1.2 Discrete Differential Geometry

Discrete Differential Geometry (DDG) has emerged as a rapidly developing research area to study

the proper discretization in recent decade. As the basic tool and theoretical foundation of this

dissertation, we first briefly introduce the basic concepts here.

8

From the mathematical theory point of view, DDG bridges the gap between classical differ-

ential geometry, which focuses on smooth manifolds, and discrete geometry, which is concerned

more with discrete geometric objects (i.e. polygons in 2D, polyhedra in 3D, simplicial complexes,

etc.). The goal of DDG is to build discrete theories that mirror their counterparts in the classi-

cal differential geometry, in the sense that they preserve the important structures defined directly

on the discrete level even at a coarse resolution. More importantly, it should not only be charac-

terized as a pure mathematics field but also an important computational tool to other disciplines

that rely heavily on geometry processing, such as computer-aided design, physical simulation, and

computer graphics.

DDG is ubiquitously involved in operations of geometry processing. A survey edited by

Bobenko et al. [8] has compiled recent developments made by researchers from a wide range of

fields, including mathematics, physics, computational geometry and computer graphics. It pointed

out some major research directions in the current DDG community:

• Discretization of Surfaces. This topic mainly focuses on what discrete representation of

surfaces, among triangle meshes, polygon meshes, circle patterns [8], etc., should be prop-

erly chosen for specific applications. Some surfaces are often defined through continuous

procedures: e.g., constrained surface area minimization for finding minimal surfaces [84];

Willmore flow [9] minimizing an energy measuring how much a surface deviates from a

sphere. In simulating such procedures, an arbitrary discretization may not be able to capture

those defining properties accurately, since often there is no known “perfect” discretization

that preserves all the properties from the continuous theory.

• Discrete Curvature for Curves and Surfaces. A related topic in determining important shape

descriptors with a given discretization of surfaces is the definition and evaluation of the dis-

9

crete curvatures [40]. Curvature plays a central role in describing shapes since it describes

how much curves or surfaces deviate from straight lines and flat planes, respectively. Further-

more, they are often the determining factors in geometry processing procedures and physical

simulations. For example, computing the minimal surfaces depends on a discrete method

to estimate mean curvatures [91]. In Chapter 2 of this dissertation, curvature estimates for

triangle meshes will be discussed in detail.

• Geometric Realizations of Combinatorial Surfaces. This topic is about finding solutions for

some classical problems such as “using n vertices to construct a combinatorial data with

maximum genus for a surface.” Ziegler [122]’s work shows that it is realizable to construct

a triangle mesh with n vertices for a surface with genus O(nlogn), although while it is still

unknown for a surface with genus O(n2). Such problems are nontrivial, since we must ex-

amine the surface from at least three different points of view — geometrically, topologically

and combinatorially. However, they are highly relevant in geometry processing, as even the

basic data structure in geometric modeling depends on the combinatoric representation of

the underlying topology of the object.

• Geometry Processing and Modeling with Discrete Differential Geometry. There are many

important applications involving geometry processing, especially with the recent increase in

the amount of geometric data collected. A lot of results from DDG [28, 9, 56, 31, 21, 75,

111, 15] have been applied to geometry processing. The main theme of this dissertation also

lies within this topic.

In this dissertation, we show our main contributions on surface and volume meshing and shape

correspondences. We extend the curvature discretization of surfaces to the local shape description

based on a discrete version of fundamental forms, from which the curvatures are derived. This

10

representation benefits further operations in geometry processing, such as deformation and ani-

mation. The discretization of volumes can be seen as the natural next step of DDG approaches

to the discretization of surfaces. Volumetric meshing has been a long-standing topic in the Finite

Element Methods (FEM) and Finite Volume Methods (FVM) communities for its importance in

describing solid objects and domains of fluid motions. We draw upon the recent developments in

DDG-based quadrilateral meshing, and make progress towards the challenging problem of auto-

matic high quality hexahedral meshing. In the process, we develop a novel compact volumetric

mesh data structures as we have to deal with large data, based on combinatoric representations of

the topology.

By extending correspondence inference using the functional map representation, we develop a

representation of mappings between manifold surface meshes through a linear mapping between

the spaces of tangential vector fields. The theoretical foundation of this representation is a spectral

vector field analysis tool, which we develop to handle various vector fields on surfaces.

1.3 Surface and Volume Representations

As mentioned above, in 3D surface meshing, for further processing operations after obtaining

the sampling points (e.g., from 3D scanners), a proper representation of the connectivity between

points is often required. There are basically two categories of methods to solve this problem.

One is to build combinatorial structures such as Delaunay triangulations by interpolating points

[10, 98]. The other one is to compute an implicit scalar function in 3D from the sampling points,

and then extract the iso-surface from the implicit function. For example, Marching Cubes, de-

signed by Lorensen and Cline [73], is the most famous algorithm for extracting the polygonal

mesh approximating an iso-surface from implicit functions. Both categories of methods discussed

11

above can be extended to 3D volume meshing; our research on 3D volume meshing is aligned with

the combinatorial structures based methods. In 3D volume meshing and solid modeling, volumet-

ric combinatorial representations [67], as extensions to surface combinatorial structures, are used

for representing numerous topological models. Tournois et al. [108] provided a robust and high

quality 3D tetrahedral volumetric mesh generation algorithm.

In this section, we introduce the following three research projects on surface and volume mesh-

ing:

• local and rigid-motion-invariant surface representations based on Differential Coordinates;

• compact data structure to represent polyhedral meshes;

• automatic hexahedral meshing tool with singularity corrections.

1.3.1 Surface Representation Based on Differential Coordinates

A rigid-motion-invariant mesh representation forms the basis for capturing the geometric details

when the shapes undergo deformations. Yu et al. [114], Zayer et al. [115] define differential co-

ordinates based on the gradients of original surface coordinates, while Zhou et al. [121], Lipman

et al. [69], Sorkine et al. [101] manipulate the Laplacian, trace of the Hessian matrix (second order

derivatives), of the spatial coordinates.i However, those methods are non-linear when dealing with

rotations, since gradients and Laplacians of coordinates are not rotation-invariant.

iThe terms such as “gradients” and “Laplacian” are defined in Chapter 2.

12

Figure 1.3: The Bunny model on the right side is deformed through our rigid-motion-invariant
representation.

Unlike gradients of surface coordinates and Laplacian of the spatial coordinates, the first and

second fundamental forms can provide both local and rotation-invariant information. Through

integrating the surface equations that describe the relation between local shape descriptor and

global shape (covered in section 2.1.2.6 in detail), we can reconstruct the original surface, up to an

arbitrary rotation and translation, from the fundamental forms. Based on this fact, Lipman et al.

[70] proposed a method of linear rotation-invariant differential coordinates for discrete triangle

meshes.

A seemingly straightforward way is by directly attaching a local coordinate system (formed by

2 tangent vectors and the normal) at each vertex as suggested by Lipman et al. [70], and extracting

the local information that can be analyzed to obtain first and second fundamental forms. This

leads to a discretization of the first discrete form measuring the length on surface by a set of inner

products between neighboring edges projected onto the tangent plane.

Besides the first discrete form, Lipman et al. [70] defined a second discrete form that plays a

similar role as the second fundamental form, which provides the information about how the normal

vector is changing in the neighborhood of each vertex. However, their discrete fundamental forms

13

are dependent on the choice of tangent planes, potentially degenerate in extreme cases, and highly

redundant. The deformation technique based on these discrete fundamental forms cannot handle

rotation and position constraints simultaneously. In contrast, our formulation uses tangent plane

naturally associated with the triangles, and provides a concise representation, which can then be

used to handle both rotational and positional constraints [110].

1.3.2 Compact Volume Mesh Data Structures

With current hardware technology, memory usage and operation efficiency can be well balanced for

surface mesh data structures [100, 95]. For more information about surface mesh data structures,

refer to two recent surveys Sieger and Botsch [100], Serna et al. [95]. Unfortunately, that is not the

case in 3D volume mesh data structures. Developing a compact yet efficient volume data structure

is still an active research topic. Compactness is a necessary requirement for processing large 3D

volumetric objects. As shown in Table 1.1, using compact data structures for models can contribute

to a memory usage reduction of more than 90%. On the other hand, efficiency in neighborhood

access is important for applications in computational geometry and scientific computing, which

rely on intense mesh operations such as incidence and adjacency queries. For example, the duality

operators in discrete exterior calculus [28] involve both incidence and adjacent queries including

vertex and edge neighborhood construction.

14

model name OpenVolumeMesh CGAL CM Comapct Data

1mag 246,284k 334,028k 23,006k

Armadillo 502,028K 673,587k 44,634k

david 366,988k 483,532k 33,334k

dc-wt 1,402,900K 1,929,379k 125,702k

emd1590 54,696K 67,789k 6,110k

fertility 885,876K 1,205,862k 79,490k

neptune 921,616K 1,258,291k 83,442k

Table 1.1: Actual memory usage for the same meshes using OpenVolumeMesh library [83],
CGAL’s combinatorial maps [24] and compact data structures [35], respectively.

Alumbaugh and Jiao [3] have proposed an array-based compact data structure, which employs

three lookup tables to store the incidence information between vertices and faces. However, it has

limitations in providing efficient incidence and adjacent queries for edges. The main reason is that

the three tables in their data structure do not provide direct information about edge indices. Thus,

there are overheads in identifying a unique edge as the common member of different faces. This

lack of efficient queries on edges may prevent this compact data structure from being used in a

wider range of applications.

To address this issue, our approach [35] incorporates auxiliary lookup tables that contain edge

incidence information. It improves the efficiency for commonly-used incidence and adjacency

queries. We elaborate on this extended data structure in Chapter 6.

15

model name Alumbaugh and Jiao [3] Feng et al. [35]

1mag 19,858k 23,006k

Armadillo 38,103k 44,634k

david 29,486k 33,334k

dc-wt 111,286k 125,702k

emd1590 5,346k 6,110k

fertility 70,098k 79,490k

neptune 73,622k 83,442k

Table 1.2: Actual memory usage for a variety of meshes.

1.3.3 Automatic Hexahedral Meshing

Automatic high quality hexahedral mesh generation has sometimes been dubbed the “holy grail” in

the meshing community, as such meshes benefit finite element methods due to their tensor product

nature, leading to improvement in both speed and accuracy. Recent development in quadrangu-

lation [32, 107, 55, 12, 46, 25] in computer graphics and geometric modeling has stirred up new

research effort in this direction based on meshing methods guided by the cross-frame fields, fields

of equivalence classes of local frames under the chiral cubic symmetry group (the set of 24 rota-

tions that keep a cube centered at origin invariant without changing the right-handed frame to a

left-handed one).

16

Figure 1.4: Models with hexahedral meshes generated by an automatic method.

In theory, CubeCover method [81], extending QuadCover method [55], formulated the neces-

sary conditions for the volumetric parameterization, and laid down the foundation for automatic

hexahedralization methods based on such parameterizations. They formulated the basic require-

ments of rotational and translational transitions on each interface between different charts or differ-

ent parts of the same chart serving as the domains for parameterizations. The nontrivial transitions

(cuts) of the domain are necessary to provide the flexibility in creating a mesh with high-quality el-

ement shape. Otherwise, a polycube-like topology would be enforced, potentially leading to huge

angle distortion, undesirable for engineering or scientific computing purposes.

Huang et al. [48] proposed a method of automatically generating boundary aligned frame fields.

It seems straightforward to combine this method with CubeCover. However, such a simple com-

bination does not immediately yield a good automatic hexahedral meshing tool. Unless manually

constructed or adjusted frame fields are used, there is no reason to assume that such automati-

cally computed frame fields would satisfy these compatibility conditions [81] for degeneracy-free

volumetric parameterization, and indeed they do not most of the time.

To generate high quality hexahedral meshes, we should eliminate the problem of the incon-

sistence caused by the automatically generated guidance field. By examining all the singularity

17

edges [81], we are able to detect the inadmissible ones and adjust them to obtain a singularity

structure that would lead to a high quality hexahedral mesh [49]. However, it remains a challeng-

ing task to formulate the common global problematic cases mathematically.

1.4 Representation and Inference of Shape Correspondence

With the drastically increased number of available 3D models in the public domain, establishing

correspondence between different shapes has been an ever more important research topic in com-

puter graphics and computer vision in recent years. While the problem of shape correspondence

is of great interests to the research community, the general correspondence of deformable shapes

remains challenging even for similar complete shapes.

18

f = Φa =

[· · ·]



a1 �

a2 �

...

an−1�

an �



b = Ca

[· · ·]



b1 �

b2 �

...

bn−1�

bn �



T (f) = Ψb

Figure 1.5: Illustration of function transfer through the matrix representation of functional map.

19

Inspired by the functional map representation using the linear map between functions defined

on the two shapes [86], we propose to use the linear map between tangent vector field spaces as a

more general representation to facilitate correspondence inference and other related applications.

With our representation, it is possible to extend applicability in correspondence inference from near

isometry to near conformal mapping. In applications such as joint analysis of shape collections,

near isometry can be overly restrictive even for mappings between corresponding parts of the

shapes. On the other hand, conformal mapping, or angle-preserving mapping, is a wider class of

mappings, with isometry being a special case. For example, conformal mapping can always be

achieved in theory, among any genus-0 closed surfaces, or disk-like surface patches, although it

is not always compatible with landmark correspondence constraints in practice. However, even in

that case, approximate angle preservation is still a desirable local property in many applications,

as it leads to similar local shapes.

In correspondence inference using the functional map representation, the constraints and reg-

ularization terms often assume restricted types of correspondences. One important regularization

constraint is the orthonormality of the functional map representation in their chosen bases, which

restricts the map between functions to those induced by area preserving maps. It leads to signifi-

cant improvement of the point-to-point correspondence quality in the near isometry case, but also

to potential degradation of map quality when the deformation deviates from being area preserving.

However, near area-preserving correspondences often forces even local features to distort severely.

In our representation, it is replaced by the more commonly used near conformality requirement,

while the implementation is still through orthonormality in vector field bases with identical sizes

to function bases. Thus, our extension keeps the same compactness and efficiency while extending

the applicability.

By representing the mapping in the gradient domain, we also provide a natural solution for

20

handling topological change when transferring scalar fields with landmarks. We first set the val-

ues at the landmark locations on the target mesh with the values on the corresponding landmark

locations on the source mesh. Then, we transfer the gradient fields, and solve for the scalar fields

by integrating the transferred gradient fields with the landmark values as the boundary condition.

Thus, we can have precise control of the scalar field values at landmark locations, including those

near the topological changes (pinching/merging points), although the transferred gradient fields

may only contain the leading low frequencies in the spectral domain.

We note that our method is fully compatible with the functional map representation. Thus, any

function preservation constraints for inference, including geometric descriptor, segmentation, and

landmarks, can be directly incorporated into our system. With the new flexibility, we expect our

compact representation to find application in improving results of point-to-point maps, mapping

among collections of shape with large deformation, as well as facilitating transfer of novel types

of properties, including principal curvature direction fields or even tensor fields.

1.5 Dissertation Organization

We first introduce the necessary concepts of discrete differential geometry in Chapter 2. After

setting up the basic mathematical background, we discuss our discrete first and second fundamental

forms and the surface reconstruction algorithm based on them in Chapter 3. Next, Chapter 4 is on

the topic of surface correspondence. We propose a new way to represent the mapping between

two shapes and introduce our spectral vector field analysis tool to deal with the discretization on

meshes. After the topics of surface meshes, we start the discussion on volume meshes in the

following two chapters. Chapter 5 presents our latest results on singularity optimization for fully

automatic hexahedral mesh generations. Chapter 6 describes a novel compact, yet efficient and

21

easy to implement 3D volume data structure. Finally, we conclude the contributions from this

dissertation and the future works in chapter 7.

22

Chapter 2

Rudiments of Discrete Differential

Geometry

In computation, geometric objects cannot be represented by arbitrary smooth functions as often

assumed in science and engineering. Piecewise polynomial approximations are often the method

of choice. With the advent of parallel computational structure capable of handling a large number

of simple objects efficiently, the simplest piecewise polynomial approximation, triangle meshes

(linear within each triangle), has been the most popular representation in both geometric modeling

and physical simulation.

Given the choice of piecewise flat surface as the digital representation of geometric shapes,

important theorems or even concepts in the continuous theory often cannot be directly applied.

To address this issue, the emerging research field of discrete differential geometry (DDG) aims

at treating geometric objects used in computation as intrinsically discrete, with the continuous

setting regarded as the limit when the discretization resolution goes to infinity. Thus the important

structures modeled after the continuous theory are directly defined on the discrete objects, and

23

preserved at any resolution instead of only at the continuous limit. Therefore, unlike the idea of

discretization through approximation to the continuous setting, DDG strives to discretize not only

specific equations but also the principles in differential geometry theory. For example, if derivatives

and integrals can be defined on discrete meshes, in a fashion consistent with a discrete version of

Stokes’ theorem (an extension of Leibniz’s rule), a number of fundamental theorems derived based

on Stokes’ theorem from the continuous theory can be consequently applied to discrete meshes

directly.

One such discrete theory on differential and integral calculus performed on meshes is Discrete

Exterior Calculus (DEC) [28]. It provides such a systematic structure-preserving treatment on

differential operators, and represents scalar and vector functions using a differential geometric

concept called differential form. We employ the tools from DEC and extend some of its notions in

Chapter 3 and 4.

In the rest of the chapter, we give a brief overview of the DDG concepts that are closely related

to our work. We start with a discussion on the basics of the continuous theory in differential geom-

etry of curves and surfaces, and elaborate on the corresponding discrete terms that are necessary to

describe our work.

2.1 Basic Concepts from Differential Geometry

The classical theory of differential geometry studies curves and surfaces in 3D Euclidean space

through techniques in differential and integral calculus. In this dissertation, we focus mainly on

such low-dimensional geometry. We introduce the basic concepts without formal definition in this

section. We attempt to provide the reader (presumably with at least elementary calculus knowledge

and a computer science background) with the intuition behind these concepts, without involving

24

much differentiation despite the name “differential geometry”. See, e.g., Gray et al. [41] for a

rigorous introduction.

The basic goal in differential geometry is to describe geometric shapes using differential quan-

tities in a neighborhood of each point. As the shapes of two objects are defined to be locally the

same if a neighborhood in one object coincide with a neighborhood of the other after some rigid

motion (translation and rotation), these quantities should be rigid motion invariant. Another goal in

differential geometry is to provide the concepts of calculus for quantities defined on curved shapes,

e.g., in vector field analysis.

In the following, we discuss some basic types of such differential geometric quantities, in-

cluding curvature of curves, mean and Gaussian curvatures of surfaces, and the first and second

fundamental forms. Then, we briefly introduce some differential operators for surfaces.

2.1.1 Differential Geometry of Curves

For simplicity, we restrict our discussion to planar curves.

2.1.1.1 Tangent vector

A straight line segment is the simplest object to locally approximate a segment of a smooth curve

containing a point. More formally, given a point p on curve C, we can pick another point q near p

and construct a straight line by connecting point p and q. As the point q approaches p, we obtain a

line in the limit, which is called the tangent to the curve at point p, i.e., a line with one intersection

point with the curve locally (within a neighborhood).

25

p

C

tangent vector

Figure 2.1: Tangent at a point p on a planar curve C.

2.1.1.2 Curvature

The tangent gives us the first order approximation of a local neighborhood of point p along the

curve, which deviates from the curve with an error quadratic to the distance away from the point.

However, tangent lines are insufficient to distinguish the local shapes around two different points,

each located on a curve, because we can always perform a rigid-body transformation to align the

two lines approximating the two neighborhoods. In other words, the straight line does not provide

us with an invariant quantity to distinguish shapes.

In order to obtain more information about the shape of the neighborhood, instead of one other

point, we pick two other points, infinitesimally close to p. Then we can construct a circle, which

goes through those two points and p. The limit circle as the two points approach p is called the

osculating circle. Its radius r tells us how much the local neighborhood of p is approximated by

an arc. The value κ = 1
r is defined as the curvature at point p, which describes how fast the

tangent direction is rotating when moving along the curve.i This quantity will only be the same

if two segments of curves can be aligned through rigid motion with second order accuracy. This

quantity is also rigid-motion-invariant since the radius of the osculating circle is not changed under

translation or rotation.

iAs a convention, the radius is considered infinite with the curvature considered 0, when the
three points remain on a straight line.

26

For two curve segments to be the same, it is obvious that they must have the same curvature

description. The converse is actually also true, when the curvature is described as a function of

arc length distance from one of the end points. This fact is known as the fundamental theorem of

planar curves. Thus, the global shape of curves can also be represented by curvature.

p

C
r

Figure 2.2: Defining curvature of a planar curve.

2.1.2 Differential Geometry of Surfaces

We now generalize the concept of curvature to the surface case, to mean curvature and Gaussian

curvature. However, these two curvatures are insufficient in determining the global shape. Thus,

we introduce two matrix functions, the first and second fundamental forms, with which the global

surface can be determined by solving differential equations, the surface equations involving these

functions. These local shape descriptors for a neighborhood of a point on the surface are crucial to

our representation for the surface in Chapter 3.

27

2.1.2.1 Tangent plane and Normal vector

As with the curve case, a necessary concept to describe the surface locally near a point is the

tangent plane. Given a surface S in 3D Euclidean space and a point p on S , if we follow the same

procedure in defining the tangent for curves, we can find a set of tangents, which are the limits of

approaching p from the other neighbouring points. It can be proved that all such tangents form a

plane going through point p, which is called tangent plane.ii

Alternatively, we only need two additional points on the surface to determine a plane through

points p, and take the limiting process with the two points approaching p to define the tangent

plane at point p, as it is well known that a plane can be defined through three non-collinear points.

(See Figure 2.3.) The vector N orthogonal to the tangent plane is defined as the normal of the

surface at point p. If the surface describes the boundary of a 3D object, as a convection, we always

pick the direction pointing from the inside of the object to the outside.

S

tangent plane

N

Figure 2.3: Tangent plane and normal vector N.

iiThe strict mathematical proof is again omitted here. For interested readers, refer to Gray et al.
[41].

28

2.1.2.2 Curvatures on Surface

Unlike the curve case, the curvature at a point p on surface is not unique if we construct osculating

circles on the surface going through p. The definition of curvature on surface thus requires addi-

tional restrictions to produce a unique number. Instead of arbitrarily choosing two points near p,

we first fix a plane going through point p, spanned by a tangent direction t and its normal vector.

The intersection of the plane and the surface is a planar curve which also lies on the surface. We

define the normal curvature (also known as the directional curvature) at p along t to be the curva-

ture of this curve. (See Figure 2.4.) In other words, the normal curvature is determined by a given

tangent direction. For curved 2D surfaces, we often refer to these normal curvatures by curvatures

for simplicity.

r

N t

Figure 2.4: Normal Curvature of a 3D curved surface.

2.1.2.3 Principal Curvatures

Through rotating the plane in the definition of normal curvature around normal N, we can find

all possible curvature values. Among those values, the maximum and minimum of the curvatures

29

values are called the principal curvatures at p, often denoted as κ1 and κ2. The tangent directions

associated with these two curvatures are called the principal directions.

2.1.2.4 Mean Curvature and Gaussian Curvature

The mean curvature κH can be considered as the average of the curvature values along all direc-

tions at point p. Using κ(θ) to denote the curvature after rotating the normal plane by an angle of θ

starting from an arbitrary normal plane, the mean curvature at p is defined as

κH =
1

2π

∫ 2π

0
κ(θ)dθ (2.1)

Simple evaluation of the integral shows that κH =
κ

1
+κ

2

2 .

The Gaussian curvature at p, usually denoted as κG, is defined as the product of the two

principal curvatures,

κG = κ1κ2 (2.2)

These two curvatures, κH and κG, are of great importance since they contain essential local in-

formation of the surface geometry. In fact, for any two points with the same set of mean and

Gaussian curvatures, we can align their local neighborhoods through a 3D rigid motion with sec-

ond order accuracy. An important fact about κG is that it is an intrinsic property of surfaces, i.e.

it is determined by geodesic distances, or lengths measured when moving only on the surfaceiii,

as indicated by Gauss’s Theorema Egregium. This is an important observation in mathematics and

computation. For instance, as a direct consequence, we cannot draw a map of the Earth on a flat

sheet without any distortion.

iiiMore formally, the metric on the surface.

30

An example about the importance of mean curvature is the minimal surfaces, which have κH =

0 at every point. The word “minimal” in the name is due to the fact the surface area, with some

boundary constraints, is minimized if and only if the mean curvature is zero everywhere. This

fact is related to mean curvature flow, which gradually moves the surface points according to the

mean curvature normal, the normal with a magnitude determined by the mean curvature, as it only

stops when mean curvatures are zero. This is related to how soap bubbles or membranes assume

their characteristic shapes, and various shapes used in product design and architecture, as well as

denoising process for geometric signals.

We can view the mean curvature normal as the gradient of surface area with respect to the point

position, which leads to the following formula,

2κHN = lim
A→0

∇A
A

(2.3)

where ∇ is the gradient notation denoting the rate of change with respect to the components of the

coordinates of the chosen point, and A is a small area around the point on the surface and κHN is

the mean curvature normal.

This definition of mean curvature suggests a similar geometric definition for Gaussian curva-

ture, in which, Gaussian curvature can be defined by the same limiting process through the concept

of the Gauss map. For a surface, the Gauss map is a mapping from a surface point to a point on

the sphere, such that both points have the same normal direction, i.e. the surface point is mapped

to its normal. Then, the Gauss curvature can be defined as the following limit,

κG = lim
A→0

AG
A

(2.4)

where AG is the area of the image of A on the unit sphere under the Gauss map. Instead of

31

using the formula κG = κ1κ2, the above definition is often the practical choice for implementing

discrete Gaussian curvature. We provide the details in later sections.

2.1.2.5 First and Second Fundamental Forms

The mean curvature and Gauss curvature determine the local shapes, but this combination does not

provide enough information on how to assemble these local pieces to a global shape of a larger

piece. In other words, there are completely different surfaces sharing the same mean curvature and

Gaussian curvature. Thus, to create representations for surfaces, it is necessary to introduce other

quantities. The first and second fundamental forms are one set of surface functions that fit the task.

To make the discussion easier to follow, assume that the surface S is represented as a map-

ping x from a planar region with two coordinates (parameters) (u1, u2) to the 3D space R3. This

description of a surface patch through the mapping x with two parameters is called a parame-

terization. Given the parameterization, we can formulate the surface as x(u1, u2) = (x1(u1, u2),

x2(u1, u2), x3(u1, u2))T , where xi’s are the coordinate functions. For simplicity, we use subscripts

after comma to denote the partial derivatives.

x,α = (
∂x1

∂uα
,
∂x2

∂uα
,
∂x3

∂uα
)T , x,αβ = (

∂2x1

∂uα∂uβ
,
∂2x2

∂uα∂uβ
,
∂2x3

∂uα∂uβ
)T ,

where α, β ∈ {1, 2}. The first fundamental form I is then defined in these notations as,

I =


〈
x,1, x,1

〉 〈
x,1, x,2

〉
〈
x,2, x,1

〉 〈
x,2, x,2

〉
 (2.5)

Let N denotes the normal vector, obtained by N =
x

,1
×x

,2

‖x
,1
×x

,2
‖
. The second fundamental form II is

defined as

32

II =


〈
x,11,N

〉 〈
x,12,N

〉
〈
x,21,N

〉 〈
x,22,N

〉
 (2.6)

Intuitively speaking, the first fundamental form I measures all lengths on the surface, which

can also be used to determine angles and areas, and the second fundamental form II measures how

the normal vector is changing locally along different tangential directions. Given a 3D surface S

with the (u1, u2) parameterization, we can obtain the fundamental forms straightforwardly.

They seem to encode the same information as the mean and Gaussian curvatures up to a repa-

rameterization and a rotation within the tangent plane. In fact, for any point on the surface, we can

always find a new mapping through an affine transformation such that I is turned into the identity

matrix. Then, with a rotation, we can turn the symmetric matrix II into a diagonal matrix, with

the principal curvatures on the diagonal. Alternative, we can directly compute mean and Gaussian

curvature as the (half) trace and determinant of I−1II, respectively. However, it is a fundamental

result in differential geometry, that we cannot create a region around a point, within which I is

always identity. Thus, the fundamental forms do provide more information for a region than the

curvatures. By linking the curvature information with the parameterization, they provide a means

to piece together the local shapes to create the global shape.

2.1.2.6 Surface Equations

We first introduce the notations used here, which follow common conventions in differential ge-

ometry. By using indices for the matrix elements, the first fundamental form (metric tensor) I can

be written as Iαβ = 〈x,α, x,β〉, and the matrix of second fundamental form II as IIαβ = 〈x,αβ,N〉,

where lowercase Greek letters are still used for indices ∈ {1, 2}, and an index after a comma in the

subscript denotes partial derivative with respect to the parameter associated to that index.

33

In the following discussion, we assume Einstein’s summation convention, in which indices that

appear twice will be considered as dummy indices for summation, e.g.

Γ
γ
αβ

x,γ =

2∑
γ=1

Γ
γ
αβ

x,γ.

We also use superscripts and subscripts to denote different quantities related through I or its

inverse. More precisely, inverse of the first fundamental is denoted by Iαβ, which is defined from

Iαβ by

IαγIγβ = δαβ ,

where δα
β

is called Kronecker’s symbol, which is equal to 1 when α = β, and 0 otherwise. With

Iαβ defined, we can denote I−1II by IIα
β

, i.e.

IIαβ = IαγIIγβ.

Gauss’s surface equations describe how the local quantities, the fundamental forms, can be

used to construct the surface. These equations give expressions of the derivatives of the tangent

vectors x,α, which can be used to solve for the embedding x.

It is actually a straightforward decomposition of x,αβ, a 3D vector when α and β are fixed, in

the local frame formed by {x,1, x,2,N} as

x,αβ = Γ
γ
αβ

x,γ + IIαβN.

Note here that the decomposition coefficients Γ
γ
αβ

are called the Christoffel symbols, which turn

34

out to be functions of only I,

Γ
γ
αβ

=
1
2

Iγτ(Iτα,β + Iτβ,α − Iαβ,τ).

Since x,αβ, x,γ and N are all combinations of derivatives of x, the above equations are a set of

partial differential equations for x given I and II.

Roughly speaking, to find a solution given a symmetric positive definite matrix function I and a

symmetric matrix function II, if we start from a seed point and a chosen pair of tangential directions

x,1 and x,2, we can propagate these directions along any paths on the surface by integrating these

equations. We can then construct an immersion by integrating x,1 and x,2.

I and II provide 6 numbers per point while the 3D embedding requires only 3 numbers (coor-

dinates) per point, so there must be 3 equations per point that I and II must satisfy. In fact, they

can be easily derived as follows. As the left-hand side of the above equation describes the gradient

of x,α, it has to be curl-free, which means

0 = x,αβγ − x,αγβ = (Rταγβ − (IIτγIIαβ − IIτβIIαγ))x,τ

+ (∇γIIαβ − ∇βIIαγ)N, (2.7)

where R denotes the Riemann curvature tensor determined by I,

Rταγβ = Γταβ,γ − Γταγ,β + ΓτγµΓ
µ
αβ
− ΓτβµΓ

µ
αγ;

and ∇ denotes the covariant derivative defined by I through Γ, in particular, for II, it is

∇γIIαβ = IIαβ,γ − ΓταγIIτβ − ΓτβγIIατ.

35

The coefficient in front of x,τ must be 0,

Rταγβ − (IIτγIIαβ − IIτβIIαγ) = 0,

which is called Gauss’s equation. The coefficient in front of N must also be 0,

∇γIIαβ − ∇βIIαγ = 0,

which are called the Mainardi-Codazzi equations. Note that on surfaces, Rτ
αγβ

has only one in-

dependent component R1
212; thus Gauss’s equation simply states that the Gaussian curvature

det(I−1II) is the intrinsic curvature.

The fundamental theorem of surfaces states that Gauss’s equation and the Codazzi equations

are not only a necessary condition for I and II to be induced by a local embedding, but also a

sufficient one, as proven using the Frobenius theorem, which is explained further in Chapter 3.

In this section 2.1, we go over some necessary concepts very briefly. However, the above

definitions can be easily found in many textbooks [41, 51] in great detail.

2.1.3 Differential Operators

We concentrate on calculus done in curved 2D for simplicity and relevance to our work. In planar

differential calculus, three types of differential operators are essential. They are gradient, curl, and

divergence. They can be combined to generate other useful operators, such as the Laplace operator,

or Laplacian, which is crucial to spectral analysis, since the eigenfunctions of Laplacian form the

basis for the usual spectral analysis.

36

The gradient operator on a scalar field f is defined by

(∇ f)α = f,α,

where we again use superscripts or subscripts before comma to index components, and those after

comma to denote partial derivative with respect to that coordinates. It indicates the direction along

which f increases fastest.

The curl operator on a vector field v is defined by

∇× v = v2
,1 − v1

,2.

It measures local rotations contained in the vector field, for example, curl of velocity fields provides

information on the strength of vortices.

The divergence operator on a vector field v is defined as

∇· v = vα,α,

where we again use Einstein’s summation notation.

The Laplace operator is then defined as the second order operator,

4 f = ∇· ∇ f .

37

On surfaces endowed with a first fundamental form I, the operators are modified as

(∇ f)α = Iαβ f,β (2.8)

∇× v =
1
√
|I|

[(I2
αvα),1 − (I1

αvα),2] (2.9)

∇· v =
1
√
|I|

(
√
|I|vα),α, (2.10)

∆ f = ∇· ∇ f =
1
√
|I|

(
√
|I|Iαβ f,α),β, (2.11)

where |I| denotes the determinant of the first fundamental form I. While it is easy to see that the

above operators reduce to the planar counterparts when I is the identity matrix, these operators are

seemingly coordinate-dependent. However, they are indeed coordinate-system (parameterization)-

independent, which can be more obviously revealed with the language of differential forms dis-

cussed in the discrete calculus section.

2.2 Discrete Curvature Estimates for Triangle Meshes

As example concepts in discrete differential geometry, which are also closely related to the discrete

fundamental forms that we introduce in Chapter 3, we show how the continuous definitions on

curvatures can be mirrored in the discrete settings, in particular, on triangle meshes. The principles

of taking integral (or spatial average) and defining quantities on carefully chosen mesh entities

used in the definitions of curvatures are explained here, and they also apply to our definition of

discrete fundamental forms.

As mentioned earlier, triangle meshes are widely used in computer graphics to approximate sur-

faces piecewise-linearly. However, properties derived from taking differentials in continuous the-

ory become nontrivial to define in such piecewise flat structure. For example, normal vectors and

38

curvatures cannot be defined everywhere directly as in the continuous case. Nevertheless, these ba-

sic geometric attributes are crucially important and ubiquitously needed in numerous applications,

such as mesh simplification, surface modeling, mesh editing and parametrization [44, 2, 113].

v

(a)

v

(b)

Figure 2.5: Spatial average region (a) and Voronoi region (b) around a point v.

The work from Meyer et al. [75] gives definitions on some discrete differential operators for

triangle meshes. The idea behind their discrete definitions is spatial average (as shown in Figure

2.5a). In order to define a property on a vertexiv, we can specify a local region around it, which is

influenced by this vertex. Thus, the property value stored on this vertex represents an average of

the property on all points within this region. For a vertex v, denoting the local region as Ωv, we

can formally express the spatial average as

f|v =
1

AΩ
v

∫∫
p∈Ω

v

f|pdA, (2.12)

where f is the value of some property of interest, and AΩ
v

is the area of region Ωv. If the local

region is chosen consistently for each vertex, increasing sampling density with a high-quality mesh

iv We use the term "vertex" for corner points of the polyhedron representing the discrete surface.

39

will eventually lead to the property converging to the continuous definition under mild assumptions

on the smoothness of f .

The way of defining the spatial averaging region around a vertex is non-unique. For Finite

Element with linear basis functions or other piecewise linear methods, the spatial average region

is sometimes chosen to be the region bounded by a loop going through the midpoints of every

edges in one ring, with those midpoints connected through a certain “center” point chosen from

each triangle (see Figure 2.5b). The most commonly used two such regions are the Voronoi region,

which corresponds to choosing circumcenters as the triangle centers, and the barycenter region,

which corresponds to choosing barycenters as the triangle centers.

2.2.1 Discrete Mean Curvature Normal

Recall that we can consider the mean curvature from area limit as equation (2.3). For a vertex vi

on a triangle mesh, the discrete mean curvature Hi can be defined through

2HiNi =
1

AΩ
v

∑
T

j
∈Ring(v

i
)
∇A(T j) (2.13)

where, HiNi corresponds to the mean curvature normal at vi; Ring(vi) is the one-ring of vi, the

region formed by the triangles incident to vi; A(T j) is the area of the intersection of triangle j and

the spatial region Ω; and AΩ
v

=
∑

T
j
∈Ring(v

i
) A(T j). Note that ∇A(T j) becomes trivial to compute

in the discrete setting, which is just the normal direction of the triangle j.

We can see that the discrete mean curvature normal shares the same form of the integral version

of in the continuous case Eq. 2.3,

∫ ∫
A

2κHN = ∇A.

40

Expanding the gradient of triangle angles leads the following equation, known as the cotan-

formula applied to the vertex coordinates:

2HiNi =
1

AΩ
v

∑
v

j
∈Ring(v

i
)
(cotαi j + cotα ji)(vi − v j) (2.14)

where the αi j and α ji are the opposite angles of edge ei j within its two adjacent triangles

as showed in Figure 2.6a. This formula derived from area minimization coincides with the one

derived from differential approach when the differential operator involved is discretized as specified

in the next section, another evidence of the structure-preserving property of the spatial averaging

approach.

vi

v j

αi j

α ji

(a)

vi
α j

(b)

Figure 2.6: Discretization of mean and Gaussian curvatures at vertex vi.

2.2.2 Discrete Gaussian Curvature

The definition of Gaussian curvature in the continuous case is involved with the second order

derivative of spatial coordinates as with the definition of mean curvature. Thus, we use the spatial

averaging approach as in the mean curvature case. We start with the alternative definition involving

the area ratios between a neighborhood of a point and its image under the Gauss map.

41

For a piecewise flat surface, the Gauss map image of a region covers a non-zero area on the

sphere only when it contains a vertex. Otherwise, it is only a point or a curve without interior on

the sphere. Thus, a commonly used geometric way to define Gaussian curvature for a vertex vi is

Gi = 2π −
∑

T
j
∈Ring(v

i
)
α j, (2.15)

where α j is the tip angle of triangle T j in the one-ring of vertex i, as illustrated in Figure 2.6b.

If we sum up the Gauss curvature at each vertex on a triangle mesh, we get a discrete version of

the Gauss-Bonnet theorem, which says that the integral of Gauss curvature is 2πχ, where χ is the

Euler characteristic, a topological invariant that can be evaluated based on an alternating sum of

the number of cells of each dimension. For a closed triangle mesh M, assuming V , E and F denote

the number of vertices, edges and faces , the Euler characteristic of M is V − E + F. The sum of

all Gauss curvatures are 2πV − πFv, which means 2π(V − 1
2F) = 2π(V − E + F) = 2πχvi.

The above definition is in fact just the integral of Gaussian curvature over a region that contains

a single vertex. Thus, if we take the spatial average region into account, the following equation is

used to get the average value

Gi =
1

AΩ
v

(2π −
∑

j
α j), (2.16)

which is precise the Gauss map image area divided by the original area. Our discrete definitions in

Chapter 3 on the fundamental forms are consistent with this popular discrete Gauss curvature, in

the sense that they satisfy a version of Gauss’s equation linking I and K.

vEach angle from each face is subtracted exactly once.
viFor a closed surface triangle mesh, each edge is shared by exactly two triangles, which

implies2E = 3F.

42

2.3 Discrete Exterior Calculus

A systematic treatment on differential operators (e.g., gradient, divergence and Laplace operator) is

rather straightforward through discrete exterior calculus (DEC). DEC mimics the smooth exterior

calculus, which provides common operators, including the differential operators, on entities called

differential forms. With a first fundamental form, differential forms can be used to represent scalar

fields and vector fields; and exterior calculus provides all necessary operators for vector calculus

on surfaces and volumes.

The most important operator in exterior calculus is the exterior derivative, which is a unifying

concept for various differential operators in the study of geometry, topology and physics. It has

a long history, involving mathematicians such as, Hermann Grassmann, Sophus Lie, Élie Cartan,

W. V. D. Hodge and many others, although the systematic treatment of discrete exterior calculus

(DEC) was devised only a decade ago. Due to the needs in numerous applications from computa-

tional methods (e.g., elasticity, plasticity, electromagnetics, and fluids dynamics), computer vision

and computer graphics, the applications and extensions of DEC have been intensely explored.

2.3.1 Smooth Exterior Calculus

Before introducing DEC, we briefly explain the terminology used in smooth exterior calculus.

Again, the discussion is mainly on the intuition behind each concept. For a comprehensive intro-

duction to exterior calculus, the interested readers are referred to Frankel [38].

2.3.1.1 Manifold

Informally, an n-manifold is a space that locally looks like an n-dimensional linear space. For

example, the surface of the Earth can be modeled as a 2-manifold. Imagine that standing on

43

the ground, one sees the ground as approximately a flat plane (2-dimensional linear space), even

though the Earth globally cannot be flattened in maps without first being decomposed into (poten-

tially overlapping) pieces.

A manifold can be described by such pieces through continuous maps called charts, which

describe the inverses of continuous parameterizations of such pieces of the manifold defined on

subsets of Rn. The linear space thus provides local coordinate systems for the manifold. Most

manifolds (e.g., a sphere) must be described by more than one charts. The collection of charts

that covers the entire manifold is called an atlas. A differentiable manifold is the type of manifold

with an atlas containing “compatible” charts. Roughly speaking, the word “compatible” means

that, in the intersection region of three charts (e.g. U, V , and W), the change of coordinates are

differentiable, and the change from U to W is the same as the compound of the change from U

to V and V to W. Unless specified otherwise, the manifolds mentioned in this dissertation are

differentiable.

In this dissertation, the word “surface” implies a 2-manifold, and “volume” a 3-manifold. For

simplicity, the concepts to be introduced are based on 2-manifolds in following discussion.

2.3.1.2 Vector Field

As mentioned in 2.1.2, for each point on a curve, there is a tangent vector going through it (as

shown in 2.1); for each point on a surface, there is a tangent plane passing through it (as shown

in 2.3). For high-dimensional manifolds, the similar concept is generalized as a tangent space to

describe the space composed by all tangents passing through a point. It allows the definition of

vector field on manifolds. Informally, a vector field is seen as a continuous assignment of a tangent

vector, belonging to the tangent space, to each point of the manifold.

44

2.3.1.3 Differential Forms

The concept of a k-differential form provides a unified way to represent the integrands for k dimen-

sional integrations on k-dimensional submanifolds (subsets of manifolds inheriting the manifold

structures). It simplifies the representation of integrands, especially when they are defined with

multiple variables in differential geometry and tensor analysis. More precisely, a k-form (ω) is the

integrand of a definite integral on a k-dimensional region (Ω).

∫
Ω
ω (2.17)

For example, a scalar field (regular function) s(x, y) can be considered a 0-form (integrated at

a point) in a plane or a chart of a surface with coordinates (x, y); f (x)dx in the definite integral∫ b
a f (x)dx on the interval [a, b] along the real line is a 1-form; more generally, in

∫
C F(x, y, z)dx +

G(x, y, z)dy+H(x, y, z)dz integrated along a 3D curve, F(x, y, z)dx+G(x, y, z)dy+H(x, y, z)dz is also

a 1-form; similarly, the integrand in the integral
∫∫

S F(x, y, z)dxdy+G(x, y, z)dydz+ H(x, y, z)dzdx

is a 2-form.

In 2D, we can see that 0-forms have one component, 1-forms have two components, and 2-

forms have one component. When one changes the coordinate-based representation from one chart

(parameterization) to another, 0-forms remain the same, so they represent functions (scalar fields);

1-forms vα change in a way different from vector fields vα, but the two can always be related

through I, i.e. vα = Iαβvβ; 2-forms change similarly to functions multiplied by
√
|I|, square root

of the determinant of the first fundamental form. Thus, given a first fundamental form I, we can

use both 0-forms and 2-forms to represent scalar fields, and 1-forms to represent vector fields.

45

2.3.1.4 Exterior Derivative

Given a k-form ω, the exterior derivative produces a (k + 1)-form when applied on ω, such that

∫
Ω

dω =

∫
∂Ω

ω, (2.18)

where Ω is a (k + 1)-submanifold, and ∂Ω is its k-D boundary. This definition can be shown as

equivalent to a more complicated form expressed in coordinates, through the Stokes’ theorem.

In a sense we can see d as an overloaded operator, and use dk to explicitly denote the exterior

derivative applied to k-forms. When it is clear from the context, we drop the subscript k in the

following text.

Furthermore, this operator d corresponds to the gradient ∇ when applied to 0-forms represent-

ing the functions to get 1-forms representing the resulting vector fields, and the curl operator ∇×

when applied to 1-forms.

2.3.1.5 Hodge star

On an n-dimensional manifold, the Hodge dual or Hodge star operator, denoted as ?k, converts a

k-form into a (n − k)-form. We omit the mathematical definition here, and give only the 2D case.

When n = 2, ? applied to a 0-form as simply a multiplication of
√
|I|, to a 1-form as rotation of

the corresponding vector field by 90◦, and to a 2-form as division by
√
|I|.

As with d, ? can be seen as an overloaded operator, and we omit the subscript when the context

provides enough information about which type of differential forms that ? is applied to.

Together with d, we can assemble the operator divergence ∇· as d?1.

46

2.3.2 Discretization

For computation purposes, we need to find the discrete counterparts of the above concepts on

smooth theory. Following the main principle of DDG, we must seek the preservation of the impor-

tant structures in this calculus on surface. As a counter example, a regular finite-difference-based

approach on 0-forms or 1-forms would not keep basic theorems (e.g., Stokes’ theorem) even when

the manifold is discretized to a regular grid.

We only present the most relevant concepts briefly here. For a detailed discourse on DEC,

interested readers are referred to Hirani [45] and Desbrun et al. [29]. We loosely follow the nota-

tions in Desbrun et al. [29] to explain the discretization of the entities involved one by one: first,

the discrete domain; second, fields defined on the domains; third, basic operators; and finally, the

Laplacian operator.

2.3.2.1 Discrete Manifold and Simplicial complexes

As the domain on which exterior calculus is performed, we introduce the discretization of a man-

ifold in this section. In practice, polygonal and polyhedral meshes are commonly used in appli-

cations. Theoretically, triangle and tetrahedral meshes are examples of simplicial complex, which

is a collection of simple cells called simplices. A k-simplex is the k-dimensional element in the

discretization of manifold. Roughly speaking, a k-simplex is the convex hull of k + 1 points in

a generic position, i.e. when the convex hull does not degenerate to an m-dimensional set, with

m < k.

As shown in the following figure, 0-simplices are vertices, 1-simplices are edges, 2-simplices

are triangles, and 3-simplices are tetrahedra.

47

(vertices) (edges) (triangles) (tetrahedron)

Figure 2.7: Examples of k-simplices.

Any k vertices from the (k+1) vii vertices form a (k−1)-simplex. We call those (k−1)-simplices

the (k − 1)-faces of the k-simplex. For convenience, to allow faces to be defined for 0-simplices,

the empty set ∅ is regarded as the (−1)-simplex.

A simplicial complex K is a collection of simplices under the following conditions:

1. Every face of a simplex from K is also in K .

2. The intersection of any two simplices is a face of both simplices.

The second condition eliminates some invalid cases. For instance, as shown in Figure 2.8, the

intersection of two 2-simplices is not a face of either of the 2-simplex.

Figure 2.8: Example of invalid case for being 2-simplex.

Triangle and tetrahedral meshes are special cases of simplicial complexes, whose highest cell

dimensions are 2 and 3, respectively.

viiObviously, there are k + 1 different ways.

48

Simplicial complexes can be used to represent manifolds. However, for a simplicial complex

to be a discrete manifold, every point must have neighborhoods that are similar to n-D linear

spaces. Specifically, an n-dimensional discrete manifoldM is an n-D simplicial complex satisfying

following condition: for each simplex, the union of all the incident n-simplices is topologically an

n-D ball, i.e. it can be continuously deformed into an n-D ball. In practice, it suffices to check if

the condition holds for each vertex.

(Discrete Manifold) (Not a discrete manifold)

Figure 2.9: Examples of discrete manifold and non-manifold cell complexes.

The Figure 2.9 shows two valid 2-D simplicial complexes. The left picture shows a discrete 2-

dimensional manifold, while the purple edge on the right picture destroys the property of “locally

linear”, because all incident 2-simplices do not form a topological disk (2-D ball).

2.3.2.2 Discrete Differential Forms

As introduced in previous sections, discrete differential k-forms on surface are discretized as their

integrals on k-D cells, which are the k-simplices in a simplicial complex representing a discrete n-

manifold. In particular, on orientable surfaces, i.e. surfaces with a specific ordering of vertices for

each triangle, once we select an orientation for each edge, we can represent the forms as follows:

• 0-form: scalar values on vertices

• 1-form: scalar values on edges

49

• 2-form: scalar values on facets

For a discrete surface M, let n0, n1 and n2 be the number of vertices, edge and facets, respec-

tively. Then the discrete k-forms are stored as vectors with size nk.

2.3.2.3 Discrete Exterior Derivative

In the continuous setting the exterior derivative operator turns k-forms, linearly, into (k + 1)-forms.

Naturally, the exterior derivative operators are discretized as matrices, since matrices represent the

linear transformations between two vector spaces. As d can be defined through Stokes’ theorem,

and a (k+1)-form dω is stored as one value per (k+1)-simplex σ, we only need the values summed

up over all the values for the ω on the k-D faces in ∂σ. Thus, the three discrete exterior derivative

operators for 2-dimensional discrete manifold are merely incidence matrices with entries indicating

the sign of mutual orientation: the exterior derivative dk (k ∈ {0, 1}) for k-forms is a nk+1 × nk

matrix D, such that

Di j =



1 if i-th (k + 1)-simplex is incident to j-th k-simplex with consistent orientation;

−1 if i-th (k + 1)-simplex is incident to j-th k-simplex with opposite orientation;

0 otherwise.

2.3.2.4 Discrete Hodge Star

The discretization of more accurate Hodge star operators is still an active topic in computer graph-

ics [78], finite element analysis, and other areas. A convenient way of visualizing the Hodge dual

is to use a dual mesh. For simplicity, we use Voronoi diagrams as dual meshes. In 2D, such a dual

mesh provides: a 2-D cell, the Voronoi region, for each vertex in the primal mesh (the original

triangle mesh); a 1-D cell, Voronoi edge between two adjacent Voronoi regions of the end vertices,

50

for each edge in the primal mesh; and a 0-D cell, the intersection of three Voronoi regions for the

three vertices, for each triangle in the primal mesh.

The discretization of the Hodge star operator relies on this duality. The primal k-dimensional

Hodge star transfers a k-form (on the primal mesh), in a linear manner, to an (n − k)-form (on

the dual mesh). Given a surface M with n0 vertices, n1 edges and n2 facets, we can represent

the Hodge star as an nk × nk matrix, since each primal k-simplex has exactly one corresponding

dual (n−k)-simplex in the dual mesh. Such matrix representations are not unique, with complexity

dependent on its accuracy (error in terms of the mesh resolution). For efficiency, in this dissertation,

we use symmetric, positive definite and diagonal matrices to represent the Hodge stars. Those

properties bring computation efficiency and numerical stability for our applications. Similarly

to the discrete exterior derivative, we have three discrete Hodge star operators for 2-dimensional

discrete manifold. The Hodge star mapping k-forms on the primal meshes to n − k-forms on the

dual mesh can be represented as the matrix

S i j = δij |?σi|/|σi|,

where δij is the Kronecker symbol, which is equal to 1 when i = j and 0 otherwise, |σ| is the size

of a k-simplex σ (1 for vertex, length for edge, and area for polygon), and ?σ is the dual n−k-cell.

The Hodge star from k-forms on the dual mesh to the primal mesh, is simply the inverse of the

corresponding primal Hodge star.

51

2.3.2.5 Discrete Laplace Operator from DEC

Now, we can re-examine Laplace operators from the perspective of DEC. For any k-form, it can be

defined in general as

4 = d∗d + dd∗, (2.19)

where d∗k = (−1)k?−1d?.

In particular, for a function, f ,

(L f)p
i

=
∑
p

j

((cotαi j + cotα ji)(fp
i

− fp
j

)). (2.20)

We can observe that this cotan formula coincides with the coefficients in the mean curvature es-

timate, preserving this important relation in the discrete setting, showing the benefits of proper

discretization.

However, as concluded in Wardetzky et al. [111], different discrete strategies lead to different

behaviors of the Laplacian in applications. It can be theoretically proved that there is “no free

lunch”, i.e., it is impossible to come up with a “perfect” discrete Laplace operator which preserves

all the properties of a continuous Laplace operator.

In summary, we introduce in this chapter the basic terminology in the relevant parts of differ-

ential geometry, including curvature, fundamental forms, and simple calculus, as well as the prin-

cipled discretization methods that we use throughout the dissertation: meshes, differential forms,

and operators in DEC.

52

Chapter 3

Rigid-motion-invariant Discrete Surface

Representation

Local rigid-motion-invariant quantities, such as the aforementioned curvatures and fundamental

forms, often serve as a starting point for differential geometry of surfaces. According to the fun-

damental theorem of surfaces, the fundamental forms can even be used to represent the surface,

since they determine the global shape. In the discrete setting, such representations are also of great

interest in various geometry processing contexts. For geometric modeling, local encoding of ge-

ometric details facilitates intuitive surface manipulation and deformation. For the simulation of

elastic thin-shell objects, the strain energy must only depend on invariants of rigid motions to en-

sure preservation of momenta. Even parameterization, geometric texture synthesis, shape analysis,

or 3D model registration can potentially benefit from an efficient rotation-invariant description of

the shape.

An obvious choice for such a representation for surface meshes would be the array of edge

lengths and dihedral angles, which uses approximately twice as much storage space as the orig-

53

inal vertex coordinates, but is indeed rotation-invariant and local. Moreover, given an arbitrary

parameterization, they can be used to construct the first and second fundamental forms, which de-

scribe the metric of the surface and the bending of normals respectively. However, constructing

a surface embedding (or immersion) in a linear fashion from an arbitrary set of edge lengths and

dihedral angles is far from straightforward—except when the set of values are known to come from

an existing embedding, in which case a sequential reconstruction of the shape can be performed

by determining the coordinates of the vertices one-by-one based on the edge lengths and dihedral

angles, through traversing the mesh (e.g., in breadth-first search order) starting from an arbitrary

seed vertex.

3.1 Discrete Fundamental Theorem of Surfaces

To mirror the fundamental forms from the smooth theories (mentioned in Section 2.1), we [110]

propose to encode the local geometric information in edges instead of vertices. The edge lengths

and dihedral angles look like an obvious choice for surface representation. In fact, Fröhlich and

Botsch [39] have used edge lengths and dihedral angles in their mesh deformation method, which

relies on non-linear minimization of a physics-based energy. However, it is not straightforward to

reconstruct a 3D surface from an arbitrary edge lengths and dihedral angles in a linear manner.

As mentioned above, the reconstruction is only trivial if the edge lengths and dihedral angles are

known to come from an existing embedding. To introduce our [110] discrete fundamental forms,

we employ a convenient mathematical tool called lift.

54

3.1.1 Lift of an Immersion.

The lift F(u1, u2) of an immersion x(u1, u2) from the 3D Euclidean space to the 6D rigid trans-

formation (or Euclidean motion) group E(3) is expressed in the familiar 4 × 4-matrix form for

homogeneous coordinates

F =


f x

0 1

 , (3.1)

where f = (b1,b2,b3) is a rotation matrix representing a local frame at x. We further restrict

the third basis vector b3 to be N, and thus (b1,b2) is an orthonormal frame of the tangent plane.

This moving frame that we attach to each point on surfaces is similar to the Frenet-Serret frame

for curves. The matrix 1-form dF provides the differential properties of the surface, including the

tangential directions (dx) and how the frames are rotating (d f). To find the differential invariants,

we describe these quantities in the frame with the axes aligned to f and the origin located at x, i.e.,

we use F−1dF. i

Ω = F−1dF =


f T − f T x

0 1



d f dx

0 0

 (3.2)

=


f T d f f T dx

0 0

 =



0 −ω2
1 −ω3

1 ω1

ω2
1 0 −ω3

2 ω2

ω3
1 ω3

2 0 ω3

0 0 0 0


, (3.3)

iTechnically, this turns out to be the pullback of a canonical Lie-algebra-valued 1-form on
E(3), the Maurer-Cartan form Ω. Roughly speaking, it just identifies the tangent space at any F to
the tangent space at the identity of the group through the group action (i.e., matrix multiplication)
of F−1; refer to Ivey and Landsberg [51] for the mathematical definitions. In this context, the
pullback of Ω onto the surface simply means that we restrict the application of the 1-forms to only
tangent vectors of the surface. We omit the pullback notation below for simplicity.

55

which can be seen as a matrix with each entry being a 1-form. Ωx = (ω1, ω2, ω3)T denotes

the change of x in the local frame. We have ω3 = 0 on the surface, since an infinitesimal dis-

placement on the surface does not contain any normal component. ω1 and ω2 can be used as an

orthonormal basis for 1-forms on the surface, which implies that they provide information about

I; more precisely, I = ω1 ⊗ ω1 + ω2 ⊗ ω2. The upper left 3 × 3-block ΩR denotes the rotation

of f under infinitesimal motions on the surface, and is antisymmetric because f is orthonormal.

ω2
1 is exactly the metric connection form of I in the given orthonormal local frame field. We

also have ω3
α = IIαβω

β, describing the rotation of the normal vector. Thus, Ω encapsulates all

the information in I and II, and prescribes the differential dF given F at any given point. Since

dF = FΩ,

dx = f Ωx = ω1b1 + ω2b2 (3.4)

d f = f ΩR = f


0 −ω2

1 −ω3
1

ω2
1 0 −ω3

2

ω3
1 ω3

2 0


. (3.5)

The main difference between these equations and Gauss’s surface equations is that here we choose

an orthonormal frame field instead of the frame induced by the parameterization. Therefore, up to

a change of frames, the integrability conditions are exactly the same as Gauss’s equation and the

Codazzi equations. However, by introducing the intermediate variables f , the integrability condi-

tions in this form can be constructed straightforwardly. Briefly speaking, our discrete fundamental

theorem of surface examines the restrictions on the values that Ω can assume to make dF inte-

grable, and our discrete reconstruction deals with the problem of finding a least-squares solution

minimizing the difference between F−1dF and the prescribed Ω, when the system is not exactly

56

integrable.

3.1.2 Discrete Fundamental Forms from Edge Lengths and Dihedral Angles

Given a fixed connectivity of the surface mesh M with vertex set V , edge set E, and triangle

set T (which corresponds to fixed topology in the continuous case), we define the discrete first

fundamental form I to be the assignment of edge lengths {le} and the discrete second fundamental

form II to be the assignment of angles between face normals {φe} (or φi j, if e is adjacent to triangles

i and j). We will also sometimes refer to φe as the dihedral angle, although technically, the dihedral

angle is π − φe. Both forms are stored on edges; they are naturally invariant under rigid-body

transformations, and independent of the parameterization.

Given an arbitrary parameterization, edge lengths can certainly be used to construct a piecewise-

constant first fundamental form matrix. The dihedral angles are often used to compute mean cur-

vatures at edges locally. However, together with the connectivity of the mesh, they provide more

information than just the mean curvature, since they denote the change of the normal across the

edges. In fact, given the change of normal in the three directions from each face center to its

three adjacent faces, one can construct a unique second fundamental form matrix (represented by

3 numbers in any given parameterization) per face. Conversely, the edge lengths and dihedral an-

gles can be computed from the fundamental form matrix per face. Note that no existing embedding

is required in the process.

3.1.2.1 Local frames

Given the discrete first fundamental form I, we can define a 2D local orthonormal frame (t, t⊥) in

each triangle T . This is uniquely determined by the edges and an arbitrary rotation from, e.g., the

first edge of the triangle. We show later that all our derivations and algorithms are independent of

57

this rotation. Each edge (seen as a 2D vector) can then be expressed as a linear combination of its

local frame vectors, xn − xm = a1
mn,T t + a2

mn,T t⊥, if the edge points from vertex m to vertex n,

and xm is the 2D coordinates of vertex m. Here, aαmn,T ’s are specifying a piecewise constant ω1

and ω2 given the choice of the 2D frame.

Figure 3.1: An example of local frame.

If there is an immersion, we can identify the 2D frame with (b1,b2), and the inclusion map

indicates xn − xm = a1
mn,T b1 + a2

mn,T b2 (see figure 3.1).

3.1.2.2 Transition rotation

In the continuous setting, a proper integration of the rotation part of dF = FΩ along a dual path

from Ti to T j would produce f j− fi = fiRi j− fi, where Ri j is a rotation determined by Ω indepen-

dent of the path if Ω comes from an integrable pair of first and second fundamental forms. In the

discrete setting, we can use the transition rotation Ri j defined on each edge to express the rotation

part of the discrete Ω as Ri j − Id. A discrete transition rotation that is completely determined by I

and II (and consistent with an immersion when it exists) can be constructed as follows. A rotation

angle that would align the first axis in the 2D orthonormal frame in a triangle T to one of its edge

58

e is denoted as θT→e. We define Ri j to be the 3D rotation matrix Rz(θT
i
→e)Rx(φe)Rz(−θT

j
→e),

where Ru(θ) represents the rotation of axis u and angle θ, e is the shared edge with triangle Ti to

its left side, and φe changes sign if the edge orientation is reversed. Basically we align the first

frame axis of Ti to the common edge, rotate around the edge by the dihedral angle, and then rotate

within the next face to fit the local frame in T j.

Given an immersion with a lift F, we also have Ri j = f−1
i f j. The rotation angle θT→e in the

tangent plane determines the discrete connection for tangential fields [21], corresponding to ω2
1 in

the continuous setting, while φe corresponds to ω3
1 and ω3

2, which contain the information of II.

3.1.3 Discrete Surface Equations

In the last section, we provide the discretization of fundamental forms. It is natural to examine the

other components of the continuous theory: the discretization of certain conditions that should be

satisfied to recover the surface from fundamental forms.

3.1.3.1 Local Discrete Fundamental Theorem of Surfaces

Since we put f and x at different locations (faces and vertices, resp.), we need to process the two

components of dF also at appropriate locations.

The frames of the lift must satisfy the following frame equations:

∀ei j ∈ E, f j − fi − fi(Ri j − Id) = f j − fiRi j = 0 (3.6)

For any triangle T containing vertex m and vertex n, we have the edge equations as follows:

xn − xm − (a1
mn,T b1,T + a2

mn,T b2,T) = 0. (3.7)

59

Figure 3.2: Transition rotation matrices.

3.1.3.2 Local discrete fundamental theorem of surfaces

Given a surface mesh with fixed connectivity and disk-like topology, if the transition rotation

matrices {Ri j} computed from a set of edge lengths (satisfying the triangle inequalities) and a set

of dihedral angles satisfy the following condition for a counterclockwise loop of n triangles Ti

around each interior vertex

Πi∈0,...,n−1Ri,(i+1) mod n − Id = 0, (3.8)

then there exists an immersion in 3D Euclidean space with these edge lengths and dihedral

angles as its first and second fundamental forms.

Proof. The condition (Eq. 3.8) means that f can be updated by repeatedly applying transition

rotations (f j = fiRi j) along any minimal dual cycle (formed by the dual edges of the one-ring

of a vertex, see Figure 3.2), and the result is the same as the starting frame. We prove next that

integrating f using Eq. 3.6 along two arbitrary dual paths from face i to face j will produce the

same frame f j from the same fi. Without loss of generality, we restrict the paths to be non-

intersecting and without self-intersection. First notice that due to the trivial topology we assume

60

for now, such two paths form a counterclockwise boundary loop around a simply connected region

if we reverse one of the paths. Second, we use induction: As shown in Figure 3.3, if a dual

loop encloses a single interior vertex, the accumulated rotation around it will be identity; Assume

that the conclusion is true for a dual loop enclosing k vertices; For a dual loop enclosing k + 1

vertices, we can always find one vertex adjacent to the dual loop such that removing it will leave

the remaining region simply connected; Denote the common segment of the dual loop around the

removed vertex and the original loop by S i→ j, the other part of the original loop by P j→i, and

the other part of the one-ring dual loop by S j→i; We have RP
j→i

RS
i→ j

= (RP
j→i

R−1
S

j→i

)(RS
j→i

RS
i→ j

) = Id,

as the product inside the first set of parentheses is equal to identity by the induction hypothesis.

Figure 3.3: Two different paths to reach same triangle.

Thus we can compute all the fi’s following a dual spanning tree from a seed face, such that they

are all consistent with the given data. Now we prove that we can also unambiguously reconstruct

the vertex locations starting from a seed vertex. First, notice that with f j consistent with Ri j, the

edge vector (in Eq. 3.6) is the same when we use the edge equation from either face. Second, by

61

construction, aαi j + aαjk + aαki = 0, which means moving along each the boundary loop of each face

creates no translation. We can immediately see that the coordinates x can be integrated consistently

along any paths starting from any seed vertex, since translations are commutative.

�

Independence to the choice of local 2D frame: Note that we do not need an original immersion

in order to locally check the integrability. Also, the conditions are not dependent on the choice of

the 2D frames, since the rotation will affect both Rz(−θT→e) and Rz(θT→e′), resulting in just a

change of frame variables denoting the same tangent planes.

Links to the continuous theorem: This single condition actually contains 3 independent integra-

bility conditions as 3D rotation has 3 DoFs. We can interpret the condition as the requirement for

a normal to be propagated back to itself (2 DoFs), and an additional rotation in the tangent place

(1 DoF). The former corresponds to the two Codazzi equations on the symmetry of the covariant

derivative of II; the latter corresponds to Gauss’s equation stating that the Gauss curvature com-

puted by θT→e should be consistent with the area on the unit sphere formed by the Ni’s along the

dual path.

3.1.3.3 Global discrete fundamental theorem of surfaces

Given a closed mesh with genus g, if, for any one homology basis, (i) the above local integrabil-

ity condition is satisfied on all but two arbitrarily chosen adjacent vertices, (ii) the accumulated

rotation along each dual homology generator (nontrivial loop) is the identity, and (iii) the accumu-

lated translation (following the rotated frames) along each primal homology generator is 0, we can

create an immersion of the surface mesh in 3D, unique up to a rigid transformation.

Proof. For any genus-0 surface, removing one triangle is enough to make the local version of our

62

theorem applicable for the reconstruction of the coordinates of all the vertices. Adding back the

triangle introduces 3 dihedral angles that are completely fixed by the local integrability condition

around any one of the 3 vertices. For higher genus models, the only difference with the local

version is that some loops include combinations of the 2g nontrivial loops in addition to the one-

ring loops, so we need to make the rotations around them match as well. In addition, unlike in the

simply connected case, the translations around these nontrivial loops do not automatically match,

hence the additional constraints. �

Matching DoFs: As triangle inequalities do not eliminate DoFs, we can count the number of

true DoFs as 2|E|−(3(|V |−2)+6×2g) (corresponding respectively to the length and dihedral values,

the local integrability conditions on all but two vertices, and the additional topological constraints).

Using Euler’s formula |V | − |E| + |F| = 2(1 − g) and the fact that triangulated manifolds satisfy

3|F| = 2|E|, we see that there are 3|V | − 6 DoFs, matching exactly the number of DoFs of an

immersed mesh up to rigid transformations. Note that the choice of the homology basis does not

matter, since, roughly speaking, any basis will span the space of non-trivial loops.

3.2 Surface Reconstruction from Discrete Fundamental Forms

3.2.1 Immersion Energy through the Lift to 6D

Ideally, the integrability condition should be used as a constraint in the geometry processing pro-

cedure producing the discrete fundamental forms. However, in practice, we may have additional

point and direction constraints imposed by the user, or conflicting fundamental form data due

to various reasons; one such source of incompatibility could be the discretization itself. In this

section, we propose a simple energy functional, the minimization of which leads to a globally

63

optimal reconstruction in the sense that the local differential properties F−1dF deviates from the

prescribed invariants in Ω as little as possible. This is equivalent to minimizing the L2-norm of

dF − FΩ provided that f is orthonormal. In the continuous setting, one could use

∫
M
‖dF − FΩ‖2 =

∫
M
‖d f − f ΩR‖

2 +

∫
M
‖dx − f Ωx‖2,

for such an energy, where ‖ · ‖ denotes the Frobenius norm of matrices. In the discrete setting,

as we store different components of the lift at different locations, we can simply treat the rotation

part and the translation part separately as above. To derive the discrete energy, we use the notation

of discrete differential forms in Desbrun et al. [28]. We treat each entry of d f and f ΩR as dual

1-forms, and each entry in dx and f Ωx as primal 1-forms. The discrete 1-forms are represented

by their line integral along edges. Along a dual edge connecting face i and face j, the line integral

of the exact form d f is simply f j − fi, and the path-dependent line integral of the 1-form f ΩR is

approximated by fi(Ri j − Id). The primal 1-form dx − f Ωx can be integrated along the primal

edge in each triangle. For any primal 1-form β, the L2-norm is discretized to βT ∗1 β, where ∗1 is

the primal Hodge star, and for dual one-form γ, it is γT (∗1)−1γ. Thus, we arrive at the following

weighted least-squares energies

E f (f) =
1
2

∑
e∈E,e=T

i
∩T

j

w−1
e ‖ f j − fiRi j‖

2,

and

Ex(x, f) =
1
2

∑
e=v

m
v

n
∈E

∑
T⊃e

we,T ‖xn − xm − fT


a1
mn,T

a2
mn,T

0


‖2,

64

where the we’s are the cotangent edge weights of the usual discrete Laplacian [91], and we,T is

the single cotangent term within the triangle T . We can thus construct the mesh by minimizing the

following energy (quadratic with respect to (x, f))

EM(x, f) = w E f (f) + Ex(x, f), (3.9)

where w is relative weighting (set to 1, 000 in our tests). Varying w leads to a change in the

“stiffness” of the mesh, with smaller w preserving the metric I better and larger w preserving

dihedral angles better. However, the change in the result is subtle unless the weighting is changed

in orders of magnitude.

The resulting linear system will be positive-semi-definite, and after fixing one vertex and one

frame, the system becomes positive-definite. The cotangent weights used in E f are thresholded

to be above a small positive number (set to be 10−11 in our test) to improve the condition num-

ber. Without thresholding, the Cholesky factorization in the linear solver may fail. However, the

threshold value does not lead to visually noticeable change on the results even if we increase it to

10−3

We can also formally prove that the reconstruction does not depend on the choice of 2D local

frame. Suppose that we perform a random 2D rotation with angle θi within each face i. Given the

same fundamental forms, the new transition rotation will become R̂i j = Rz(−θi)Ri jRz(θ j), and the

new â satisfies 
â1
i j,T

â2
i j,T

0


= Rz(−θi)


a1
i j,T

a2
i j,T

0


.

Hence, ‖ f j − fiR̂i j‖
2 = ‖ f jRz(−θ j) − fiRz(−θi)Ri j‖

2, since the Frobenius norm satisfies ‖AR‖2 =

65

tr(AR(AR)T) = tr(AAT) = ‖A‖2 for any orthogonal matrix R. Thus if the rotation part of the

minimizer of the new energy is f̃i, f̃iRz(−θi) is the minimizer of the original energy, and the

translation part x remains the same. Note that the above argument holds whether f is orthonormal

or not.

3.2.2 Algorithm

The above convex energy function, together with possible constraints, can be optimized through a

linear system resembling a Poisson equation. If we arrange elements of f in row-major order, we

can express the sparse symmetric linear system using a block matrix; for example, the diagonal

entry for the n-th row for x would be wnnId, and the block on the i-th row and j-th column for f

would be

−wi j


RT

i j 0 0

0 RT
i j 0

0 0 RT
i j


.

We omit further discussions here, as all the coefficients can be deduced from the energy functional.

Through its similarity to the Poisson equation, it is easy to see that this block matrix is positive-

definite once we fix at least one position and one rotation (or other equivalent combinations of

constraints) as mentioned above. The main procedure for surface reconstruction is described in

Algorithm 1.

Algorithm 1: Surface reconstruction from discrete first and second fundamental forms.

1. Compute Ri j and a from I and II or directly from immersion when it is available.

2. Include hard or soft constraints for positions and (optionally) for rotations through variable
elimination or penalty terms.

3. Solve the sparse linear system to get the immersion x.

66

We do not enforce (and in fact cannot enforce with a linear system) that the frames stay or-

thonormal. However, as noted in [70], since the Ri j’s are orthogonal, f remains close to being

orthonormal, except for extreme constraints (in which case, one may (ortho)normalize the result-

ing f , and solve the system again with the normalized frames as soft constraints. In this optional

step, the penalty weight on a frame for deviating from the orthonormal frame in the first solve is

set to 1, 000 in our tests. A larger penalty can lead to better preservation of the first fundamental

form, but may also produce small discontinuity near constrained vertices). Due to the fact that the

frames are stored on triangles, we can also easily derive constraints for f if needed, obtaining the

face normal N by the normalized cross product of two edges for triangles with all three vertices

constrained.

3.3 Applications and Results

The basic local rigid-motion invariant formulation for surface equation can potentially benefit var-

ious applications involving geometry processing with triangle meshes. We developed a few proof-

of-concept examples. We ran all the tests on an Intel Core2Dual@3.0GHz CPU with 4GB RAM.

Figure 3.4: Deformation examples.

67

3.3.1 Deformation

Our first example is mesh deformation or editing using position and (optional) rotation constraints.

Using Region of Interest and prefactorization of the SPD matrix, we can achieve interactive rates

for moderate size regions, similar to e.g.[60, 101, 70]. See Figure 3.4. From left to right: original

and rearranged models of Octopus, bent Cactus, Armadillo, and Bunny, deformed using our linear

reconstruction with position and optional rotation constraints. Octopus was deformed by relocating

multiple handles (red) simultaneously, and the other models were results of one or more steps of

deformation, with each step using one fixed handle (red) and one movable handle (yellow). Note

that our method is robust even for the highly irregular triangle shapes in the Cactus model.

We also show some extreme test cases as in (Figure 10 of) the survey paper [14]. From left

to right in Figure 3.5, we did tests on 1) bumpy plane before and after frame orthonormalization;

2) 120◦ bent cylinder before (top) and after (bottom) orthonormalization; 3) 135◦ twisted bar be-

fore and after orthonormalization; 4) 70◦ bent cactus. Note that the results with orthonormalized

frames are produced by a second linear solve using normalized columns of the frames in the first

solve as soft constraints to handle these extreme cases. In these extreme deformations, the second

solve produces visible differences except for the cactus case. In the bumpy plane test before nor-

malization, the smooth transition between frames would force the bumps to point upward as the

constraints force the frames at both handle regions to point upward.

68

Figure 3.5: Applying our method to the extreme deformation test cases from the survey paper
[14].

3.3.2 Quasi-isometric Parameterization

One interesting example when we manipulate the fundamental forms is to set II to 0, thus flattening

the surface patch. In some sense, it is striving to preserve the first fundamental form, thus it can be

called quasi-isometric. This method represents a new linear method to produce a parameterization

with a “natural” boundary (see[27]). In this case, orthogonality can be weakly enforced by a

quadratic penalty term. We sometimes perform a second linear solve as for the extreme constraints,

since the abrupt change in II leads to large deviations from the compatibility conditions. However,

as such, it cannot guarantee an embedding in 2D, but just an immersion. In such cases, the target

function still forces the frames to produce a planar mesh, but the frames may be turned left-handed,

i.e., flipped from the original orientation for certain triangles. However, parameterization of typical

meshes rarely gives rise to flips, as illustrated in Figure 3.6.

69

(a) Nefertiti model. (b) Beetle model.

Figure 3.6: Parameterization produced by setting the dihedral angles to zeros.

3.3.3 Independence to Sampling Density

In Figure 3.7, a torus with varying vertex densities was deformed. As shown from the results, the

overall shape remains the same despite the abrupt change in sampling density, and the symmetry

of the shape is preserved.

Figure 3.7: Tori with different sampling densities produce similar deformation and preserves
symmetry.

3.3.4 Comparison to Existing Work

The goal of mesh deformation and other related geometry processing methods is often to produce

reasonable, natural-looking surfaces that satisfy user-specified constraints at near interactive rates.

70

There are mainly two types of algorithms: surface-based, and ambient-space-basedii deformation

methods. As our method fits squarely in the first category, we mainly go over related surface-

based methods.iii Some among these methods focus on point sampled in a global coordinate

system and employ a scalar (blending) field to get a smooth transition between constrained and

unconstrained parts. For instance, Blandford et al. [7] use geodesic distances to define the blending

function and add an implicit occluder function to the mesh editing environment, while Pauly et al.

[89] use Euclidean distances in a hybrid geometry model by combining implicit and parametric

surface representations. The latter produces more intuitive deformation, while increasing the cost

computational time.

With such limited information, the point-based deformation methods are often not physical

aware. For better physically plausible results, a number of authors propose to minimize various

physically-motivated deformation energies. For example, Chao et al. [20] define an elastic energy

based on the distance between the deformation and the rotation group.iv Wardetzky et al. [111]

provide instead a quadratic curvature-based energy to achieve simpler computations.

Physically-motivated methods have a common drawback, the loss of geometric details for fine-

scale surfaces. To preserve geometric details, other authors, Kobbelt et al. [60, 61], Botsch and

Kobbelt [13], suggest to combine physically-motivated energy methods with multi-resolution mod-

eling. Alternatively, with consideration of geometric detail as a local intrinsic property of the sur-

face, several papers [101, 69, 114, 121, 115] propose to use so-called differential coordinates to

encode these details instead of storing them in a global coordinate system. For instance,Yu et al.

[114] and Zayer et al. [115] define differential coordinates based on the gradients of original sur-

iialso called free-form
iiiFor readers interested in second category, refer to the survey [82].
ivAn additional thin-shell bending term can be added if necessary.

71

face coordinates, while Zhou et al. [121], Lipman et al. [69], Sorkine et al. [101] manipulate the

Laplacian of the spatial coordinates. See Botsch and Sorkine [14] for a survey on these methods.

Unfortunately, differential-coordinates based methods are often non-linear and require rela-

tively large computations. Among those, the method, proposed by Lipman et al. [70], is the only

existing linear and rotation-invariant approach (not including iterative methods with linear steps,

of course). It defines a local frame per vertex and encodes the local geometric information into the

transition between adjacent local frames. The method produces deformations that preserve local

details in the least-squares sense through a linear solve for the local frames and another for the co-

ordinates. It handles rotational constraints efficiently, but is insensitive to translational constraints,

since the solve for the frames is decoupled from the positional constraints [14].

There are a number of differences between our method and the only existing linear and rotation-

invariant approach Lipman et al. [70]. First, our discrete fundamental forms representation is

(around 50%) more compact, independent of the choice of vertex normal, and independent of

choice of the edges in the definition of frames (as we have proven mathematically, and observed

numerically). Second, we do not require a prior an embedding of the triangle mesh. Third, we cou-

ple the rotation and translation constraints in a natural fashion. As shown in Figure 3.8, our method

produces similar results measured by edge length change, but produces less angle distortion, es-

pecially for the more complicated armadillo model. We added compatible rotation constraints

for both methods, so that the linear rotation-invariant (LRI) coordinates [70] can produce results,

although our method can in fact work with only translational constraints. For these large deforma-

tions, we found that orthonormalization of the frames improves the results for both methods. We

used a weight of 100 for the afore-mentioned soft constraints approach for orthonormalization of

the frames in our method.

Other surface deformation methods with point constraints are either not rotation-invariant or

72

non-linear. For a comparison to these methods, refer to (Figure 10) of Botsch and Sorkine [14]

for models deformed under same type of constraints (bumpy plane, cylinder bending, bar twisting,

and cactus bending) as in Figure 3.5.

In Figure 3.8, we visualize the distortion with pseudo-color and histograms. From left to right:

angle distortion for results using LRI [70], angle distortion for results using our method, edge

distortion for results using LRI, and edge distortion for results using our method. The pseudo

color denotes the absolute value of changes in edge length and dihedral angles measured in radian.

The sizes of the bounding boxes for the bar model (with 1666 vertices) and the armadillo model

(with 16K vertices) are 1 × 1 × 6 and 1 × 1.2 × 0.9 , respectively.

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000
dihedral angle change

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000
dihedral angle change

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

500

1000

1500

2000

2500
edge length change

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

500

1000

1500

2000

2500
edge length change

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000
dihedral angle change

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000
dihedral angle change

0 0.005 0.01 0.015 0.02 0.025 0.03
0

500

1000

1500

2000

2500
edge length change

0 0.005 0.01 0.015 0.02 0.025 0.03
0

500

1000

1500

2000

2500
edge length change

Figure 3.8: Comparison to Lipman et al. [70]’s method.

3.4 Conclusion

In this section, we have introduced compatibility conditions for edge lengths and dihedral angles

for meshes with fixed topology, akin to Gauss’s equation and the Codazzi equations. We have

proposed a sparse linear system based on these lengths and angles, mimicking the continuous

surface equation, the solution of which produces a mesh immersed in 3D with edge lengths and

dihedral angles close to the specified ones. We have also demonstrated the benefits of such a

rotation-invariant representation for mesh deformation applications.

74

One drawback of our approach (common to other work) is the lack of a guarantee on frame

orthonormality—although for certain applications, it can provide additional flexibility necessary

to satisfy the constraints. It is an interesting research direction to examine the possibility of using

quaternions to represent rotations with a nonlinear but tractable optimization process.

Like the differential surface theory it is based on, our method cannot handle intersections with-

out resorting to other numerical tools. However, this is also common to other methods in the same

category, and can actually be remedied by incorporating existing collision handling techniques.

75

Chapter 4

Vector Field Map Representation for

Surface Correspondence

In general, the problem of shape correspondence can be stated as: finding structure-preserving re-

lations among a series of shapes, in particular, point-to-point mappings. The structures to preserve,

be they global or local, depend on the application domains, with the simplest scenario being rigid

matching for entire shapes. However, general correspondence of deformable shapes remains chal-

lenging even for similar complete shapes. We propose a vector field based method for representing

the surface correspondence, leading to simplified expressions of constraints used in correspon-

dence inference, in particular, the angle-preserving constraint.

4.1 Related Work

There are a multitude of existing correspondence algorithms in various application domains. Dif-

ferent error measures can be used to define correspondences with different properties. For instance,

the traditional alignment applications involve rigid alignment, which keeps the Euclidean distances

76

between any pair of points. A typical iterative closest point (ICP) algorithm can be used to find

the best rotation between two 3D shapes for partial matching [6]. Variants of ICP have also been

proposed for isometric correspondences (e.g. Huang et al. [46], Bronstein et al. [18]). Under large

deformations, sparse sets of correspondences can be found by methods such as deformation-driven

shape correspondence [118] and voting after Möbius transformations [68]. A recent survey on the

correspondence problem can be found in [109].

For many current mesh correspondence methods, the representation of the relation between

shapes are point-based, which renders the search for such relations a costly procedure. However,

for certain applications, it is unnecessary to build a point-to-point mapping in-between. No reason-

able mapping may even exist for meshes with vastly different numbers of vertices. Methods such

as [50, 68] suggest to build a mapping between a sparse subset of the vertices, which is called land-

mark correspondence. Theoretically, starting from the sparse set, it is possible to produce a unique

dense correspondence between isometric shapes [85, 68], or through cross-parameterization even

in a non-isometric case [1, 63]. Spherical parameterization can also be used to bridge the mapping

between two meshes, and optimal conformal maps can also be computed [53, 116]. However, all

of these approaches employing point-based presentations rely naturally on local correspondences,

without direct access to global structures.

Recently, Ovsjanikov et al. [86] proposed a novel representation based on functional maps

between two shapes. Instead of finding correspondence directly between surface points, they sug-

gested to build a map between the function spaces associated with the surface pair. Their repre-

sentation has two major benefits: first, flexibility in the choice of bases for the function space on

each shape; second, linear function preservation constraints for inference. Thus, the representation

is well-suited for correspondence inference, and shape analysis of collections of isometric shapes.

Coupled harmonic basis proposed by Kovnatsky et al. [62] can further increase the sparsity of the

77

functional map, but it requires an initial correspondence before the joint basis can be computed.

Applications of the representation have also been proposed in visualizing maps and measuring

shape differences using maps [87, 94].

The functional map representation is particularly convenient when employing a specific ba-

sis for function spaces, closely tied to spectral analysis. As a popular technique used widely in

computer vision, signal processing and other computational sciences, spectral analysis can also be

adapted for irregularly sampled shapes in geometry processing. Ever since Taubin [105] first intro-

duced the approach into the computer graphics community, it has been a powerful computational

device in various geometry processing contexts, e.g. in [65, 46]. A commonly used basis for tra-

ditional spectral analysis of functions is composed of the eigenfunctions of the Laplace-Beltrami

(LB) operator. In fact, the 1D Laplace-Beltrami eigenbasis (LB-basis) for the unit circle simply

consists of the familiar sine and cosine functions with integer frequencies. The LB operator on

triangle meshes is often discretized by the cotan formula used in denoising [26] and mesh editing

[101], for instance. The 2D mesh version of LB-basis has already been used in correspondence

problems [93, 52, 74], although they did not allow mixing across different frequencies as in [86].

Our vector field map representation also employs a vector field version Laplace-Beltrami operator

basis (LB-basis). We also present a complete set of operators in triangle mesh LB-basis, includ-

ing gradient, curl and divergence, which are not only necessary for our representation but also

convenient in other areas of spectral analysis of vector fields.

Similar to functional map, our vector field map representation uses much less storage by re-

stricting to only the low frequencies, and admits much more flexible correspondence specifications,

such as geometric detail function matching and segment matching, than the point-based represen-

tations. However, unlike functional map, our method can handle conformal mapping in correspon-

dence inference, extending the applicability of the method. As a gradient domain method, the

78

tangent vector field map can handle topological change naturally. The final map is constructed

through a Poisson reconstruction with the landmarks as the boundary condition.

4.2 Functional Maps Between Shapes

We briefly review the definition of the functional map representation here, loosely following the

notations used in [86]. Given a smooth manifold M, a smooth scalar function f on M is defined

as a mapping f : M → R. All such smooth scalar functions form a functional space, denoted as

F (M,R). For two smooth manifolds M and N related through a smooth bijective map T : M → N,

we can establish the correspondence between functions defined on them. More specifically, from

a scalar function f ∈ F (M,R), we construct a scalar function g = f ◦ T−1 through composition.

For simplicity, we use a symbol T∗ to denote the map as T∗(f) = f ◦T−1. With {φM,i} and {φN,i}

as bases for functional spaces on M and N respectively, the linear operator T∗ on function spaces

can be represented by a matrix C = [ci j], such that T∗(φM, j) =
∑

i ci jφN,i. The mapping between

functions f and g can thus be expressed as

T∗(f) = T∗(
∑

j
a jφM, j) =

∑
j

a jT∗(φM, j) (4.1)

=
∑

i

∑
j

ci ja jφN,i =
∑

i
biφN,i = g, (4.2)

where a = [ai]i and b = [bi]i are the coefficient vectors of f and g in their corresponding functional

basis. In matrix multiplication form, the above equation is simply C a = b.

One of the advantages of the functional map representation is that whenever a constraint can

be translated into functional correspondence T∗(f) = g, be it matching of geometric descriptor

functions, landmarks or segments, the constraint can be translated into a simple linear constraint

79

on C, i.e. Ca−b=0. Operator commutativities can also be expressed as commutatvities of matrices.

Furthermore, area-preservation can be depicted by the orthonormality of C. See [86] for proofs of

those propositions.

4.3 Spectral Vector Field Analysis on Surface

Before describing the vector field map representation for correspondence, we first present the nec-

essary tool, a novel spectral vector field analysis based on exterior calculus (introduced in Section

2.3.2.5). We associate the concepts in exterior calculus with their counterparts in usual vector field

analysis. In fact, for a Riemannian surface (a surface with a metric), we have canonical mathemat-

ical one-to-one correspondences between both the fields and the operators in exterior calculus and

those in vector field analysis. Denoting the area element by µ, we have listed the correspondences

in the following lookup tables:

• fields defined on surfaces:

0-form ω0 scalar function f

1-form ω1 tangential vector field v

2-form ω2 scalar function with area element fµ

Table 4.1: Vector fields defined on surfaces.

80

• operators:

differential dp : ωp 7→ ωp+1

d0 gradient

d1 curl of a tangent vector field

(Hodge-)dual operator ?p : ωp 7→ ω2−p

?0 multiplication by area element

?1 rotation by π/2 counterclockwise

?2 division by area element

wedge operator ∧ : (ωp, ωq) 7→ ωp+q

ω0
a ∧ ω

0
b pointwise product

ω0 ∧ ω1, ω1 ∧ ω0 pointwise scalar product

ω1 ∧ ω1 pointwise cross product

Table 4.2: Differential operators defined on surfaces.

• L2-inner product:

∫
M ω

p
a ∧ ?

pωp
b scalar/vector L2-inner product

Table 4.3: L2-inner product defined on surfaces.

More precisely, 1-forms are covector fields, which are dual to vector fields, i.e. fields of linear

mappings from tangent vector space to real number. Since the surfaces used here are all equipped

with the metric induced by the 3D space, there is indeed a canonical isomorphism between vectors

and covectors (through contraction with the metric or its inverse). Thus, we use the two terms

interchangeably. Note that the mapping in our representation is the mapping induced for 1-forms,

81

which can then be treated as the mapping between tangent vector fields through the isomorphisms,

as we describe in Section 4.4.1.

We use superscript to denote which type of forms we apply the operator to, and subscript to

denote individual fields or surfaces. We drop the superscript when it is clear from the context.

Some other operators can be created by the combinations of the basic operators:

d?1 divergence

−?d0 curl of a normal vector field

∆0 = ?d?d0 ∇·∇ scalar LB operator

∆1 = ?d?d1 + d?d?1 −∇×∇×+∇∇· vector LB operator

Table 4.4: Other differential operators represented as combinations of basic operators.

In particular, ∆0 is reduced to the commonly used cotan formula following the discretization

of the basic operators in [29].

Through the generalized eigenvalue problem with symmetric matrices d?d f = −λ? f , we ob-

tain a series of eigenvalues λi in ascending order. These λi’s correspond to squared spatial fre-

quencies of the respective eigenfunctions. The 0-th frequency associated to the constant function

is always 0. The set of eigenfunctions {φi} form the LB-basis for scalar functions. We drop the

constant function φ0 from the basis for clarity, as any continuous map between surfaces would

induce a trivial mapping between constant functions. As a unit vector, the function has a constant

value that is equal to the inverse of the square root of the total area. With the total surface area

rescaled to 1, φ0 = [1 1 . . . 1].

While eigenfunctions can be obtained by solving a similar generalized eigenvalue problem for

vector field LB-operators, we note that each dφi/
√
λi and ?dφi/

√
λi are both unit eigenfunctions

of ∆1 with eigenvalue λi. Here, d corresponds to gradient as mentioned above, and ?d corresponds

82

to curl applied to the normal field with magnitude determined by the scalar field. According to the

Helmholtz-Hodge decomposition, they span the entire space of 1-forms together with 2g inde-

pendent harmonic 1-forms (eigenfunctions of eigenvalue 0), where g is the genus of the surface.

Hence, they form the LB-basis for vector fields. For simplicity, we drop the harmonic 1-forms

since they are not involved in the correspondence computation (detailed in Section 4.4.1). Note

that differentials of piecewise-linear 0-forms are piecewise-constant (co)vector fields, so ?1 can

be applied within each triangle for the 1-form basis fields. If discrete 1-form representation (one

integral along each edge) is needed, a simple average of the two integrals for the constant vector in

the two triangles incident to the edge can be used, also known as the primal-to-primal dual in DEC.

This would only introduce negligible error since the low frequency fields are extremely smooth.

Figure 4.1 shows a few example pairs of eigen-vector-fields used in the derived 1-form LB-

basis. Similarly, LB-basis for 2-forms can be induced by the 0-form LB-basis. We simply multiply

the area element to get ?0φi. We again drop the 0-th eigenfunction in the following discussion.

83

1st gradient 20th gradient 50th gradient

1st curl 20th curl 50th curl

Figure 4.1: The vector field basis functions (shown as arrows) derived from the eigenbasis for
functions (intensity shown by color).

Through discretization and keeping only the n leading low frequencies, most operators are

made extremely simple in LB-bases, as in regular Fourier analyses. We use capital letters to denote

operators in LB-bases, and assume that the LB-bases are arranged as follows:

0-form basis Φ0 = [φ1 φ2 . . . φn]

1-form basis Φ1 = [dφ
1√
λ

1

. . .
dφ

n√
λ

n

?dφ
1√

λ
1

. . .
?dφ

n√
λ

n

]

2-form basis Φ2 = ?0Φ0

Table 4.5: Arrangements of LB-bases.

84

Any field projected onto the low frequencies can be expressed as ωp = Φpap, where ap is the

coefficient vector for the p-form. In order to express the spectral domain operators effectively, we

first arrange the frequencies into a diagonal matrix D = diag[
√
λi]. Now taking derivatives and

taking integrals will simply be multiplying or dividing by the frequencies in LB-bases, respectively.

The vector field operators can be denoted by linear matrices applied to coefficient vectors. We list

the basic operators below, and some other operators can be expressed as their combinations as in

the spatial domain.

gradient 2n×n matrix GRAD =


D

0


curl on vector field n×2n matrix CURL = [0 D]

?1 (rotation by π/2) 2n×2n matrix R =


0 −I

I 0


Table 4.6: Differential operators represented in the spectral domain.

Note that we ignore the constant function, otherwise, there would have been an additional

leftmost column with zeros for GRAD. The operator R resembles a 2D rotation by π/2, except

that I is the n×n identity matrix. Laplace-Beltrami operators are simply D2 (second derivative) by

construction. Integrating a gradient field, for instance, is achieved by [D−1 0] (integration constant

ignored). In addition, ?0 and ?2 are both just identity matrices. L2-inner product is also simply

vector inner product for coefficient vectors as if in Euclidean spaces.

85

4.4 Tangential Vector Field Map

We present the theoretical description and implementation details on the vector field map repre-

sentation in this section. Constraints for inference of a proper tangential field mapping induced by

a point-to-point correspondence are then introduced.

4.4.1 Properties of the basic representation

As mentioned above, not all linear maps between functional spaces are induced by a point-to-point

correspondence. Although it can be regularized through the commutativity between the scalar field

map and the Laplace-Beltrami operator together with a postprocessing to orthogonalize the map, an

implicit restriction is required for the correspondence to be isometric. These regularization terms

are essential for correspondence inference applications, so the isometric requirement is limiting

the applicability of the map representation. In order to handle shape correspondences with large

variation and enable vector field transfer while retaining the compactness of the functional map

representation, we introduce the tangential vector field map.

4.4.1.1 Induced maps (pullbacks)

As in the case for mapping between scalar functions, it is possible to induce a mapping between

vector fields from the bijective map T : M → N, defined by the Jacobian matrix (first derivative

DT) of the map T , which maps an infinitesimal motion on M to the corresponding infinitesimal

motion on N. Mapping a vector field on M to a vector field on N is also known as the pushforward.

The transpose of the Jacobian can be used as a mapping from 1-forms (covector fields) on N

to those on M, known as the pullback. We choose the pullback induced by T−1 as our basic

representation, which maps 1-forms on M to 1-forms on N. When using our representation to map

86

a true vector field, the procedure is equivalent to turning the vector field to a covector field through

the metric on M, mapping it to N through the pullback T−1
∗

induced by T−1, and turning the

covector field back into a vector field through the metric on N.

In the following, we use Cp to denote the matrix for mapping p-forms from M to N using

LB-bases, and use subscript to denote different surfaces. As 0-forms are scalar functions, C0 is

just the n×n-matrix in the original functional map representation. Note again that we discard the

trivial mapping between the constant function φ0, since constant functions are mapped to constant

functions equal to the same constant, under the assumption that we only deal with single-piece

surfaces.

One important property of this induced map is its commutativity with the differential operator

d (exterior derivative, regarded as the dual of gradient), dC0 = C1d. A mapping between 2-forms

can also be induced from T , which commutes with d (regarded as the curl) as well, dC1 = C2d.

4.4.1.2 Conformality and orthogonality

One crucial property of the vector field map representation is that conformality can be expressed

as the orthonormality of C1. This can be seen from the preservation of the L2-norm of a 1-form

∫
M
ω1 ∧ ?Mω1 =

∫
N

(T−1
∗
ω1) ∧ ?N (T−1

∗
ω1).

Through the correspondence T , M and N can be regarded as the same surface with different met-

rics, but an angle-preserving conformal T will not changing the 90◦ rotation ?1, and ∧ is metric

independent, so the two integrals are identical. The discrete version of the above formula is

aT a = aT C1T
C1a,

87

for any discrete 1-form. Thus C1 must be orthonormal.

For instance, for gradient fields transferred by C1, the orthonormality can be understood as a

result of conformal invariance of the Dirichlet energy of any function ED(f) =
∫
M |∇ f |2: where

the area is increased, the corresponding gradient is reduced, since the distance required to produce

the same change in f is increased.

4.4.1.3 Block-diagonal form of C1

The covector field map C1 is a 2n×2n-matrix, which can be written in the following 2×2 block

matrix form,

C1 =


C̄ C′

C′′ C̃

 . (4.3)

As mentioned earlier, we omit the 2g harmonic components for correspondence inference, because

T is completely determined by the scalar function map C0 through the mapping of the indicator

function of each point, and C0 is determined only by the mapping of the gradient fields. The

commutativity of Cp and d, i.e. the fact that gradients are mapped to gradients, simplifies the

expression of C1: given arbitrary gradient field d f = (a, 0)T ,

C1d f = (C̄a,C′′a)T = dC0 f = (b, 0)T ,

which implies that C′′ = 0 since a is arbitrary. Similarly (C1)−1 is also with a trivial bottom left

block, but (C1)−1 = C1T
as we restrict our discussion to the near conformal case, so C′ = 0 as

well. Thus, C̄ is the mapping between gradient fields, and C̃ is the mapping between curl fields.

88

Under conformal mapping, rotation by 90◦ is preserved, RC1 = C1R, leading to


0 −C̃

C̄ 0

 =


0 −I

I 0



C̄ 0

0 C̃


=


C̄ 0

0 C̃



0 −I

I 0

=


0 −C̄

C̃ 0

 ,

which is equivalent to C̄ = C̃. Thus, we only need to keep C̄ as the main variable, implying the

same efficiency for our representation C1 as for functional map C0.

4.4.1.4 Relation with C0 and C2

The commutativity with d, C1 GRADM = GRADN C0 is equivalent to C0 = D−1
N C̄DM , i.e.

C0 is the same as taking the gradient, mapping the gradient field through C1, and integrating

the gradient. Likewise, C2 = DNC̃D−1
M , i.e., C2 is integration, C1-mapping of a curl field, and

differentiation. In other words, the vector field mapping includes the information for both scalar

field mapping and the 2-form mapping.

4.4.1.5 Isometry

In the special case of isometry, there are additional constraints on C0 that can be used in corre-

spondence inference. For instance, the orthogonality of C0 due to

C0T
C0 = DMC̄T D−2

N C̄DM = DMC̄T C̄D−2
N DM = I,

since C̄ commutes with the Laplacian D2
N and the two spectra are identical D2

M = D2
N . It can also

be seen as a result of the additional area preservation constraint, as the L2-norm of any function is

89

preserved under that constraint, (C0a)T C0a = aT a. This serves as the basis for the C0-based ICP

algorithm in improving the results (as explained in Sec. 4.4.3).

4.4.2 Constraints

As a generalization of C0-based method, we can use any constraints described in Ovsjanikov et al.

[86]. In addition, we list some additional constraints for correspondence inference.

4.4.2.1 Vector field constraints

Given a pair of vector fields that are supposed to be mapped to each other, we can create a C1a−b

type constraint, where a and b are coefficients for the vector fields on M and N respectively. One

such example is the gradient fields of scalar functions, since the constant component does not

actually produce useful information.

It is easy to see that all C0-based constraints can still be used through a variable substitution.

For example, we can keep any C0 type function pair constraints, and regard them as the gradient

field constraints filtered by a low pass filter D−1
N . Feature direction alignment or user-specified

direction alignment can be naturally incorporated (e.g. Figure 4.10).

4.4.2.2 Area preservation

We also note that area preservation can be expressed as a soft constraint w(C0 − C2) = 0, as they

are mappings of scalar fields with or without multiplication by the area element. In all our tests,

we set the weighting w = 100
∑
|a|2 to balance the regularization with all Ca−b-type constraints.

Another way to see that area preservation is equivalent to the above equation is through the fact

that the Hodge dual ?0 (multiplication by the area element) is commutative with the mapping

C2?0
M = ?0

NC0, and ?0 is simply the identity map in LB-bases. The area constraint combined

90

with the hard constraint on conformality can deduce the commutativity of C0 with the Laplace-

Beltrami operator, but the relative weighting would be different in the least-squares sense.

4.4.2.3 Landmark constraints

It is acceptable to use Gaussian kernel function pairs to enforce landmark correspondences as

they are invariant under isometry. However, Gaussian kernels are not invariant under conformal

mapping. Thus we design a simple construction for function pairs that would indeed correspond

to each other under conformal mapping. We pick a subset of the landmarks, set one of them to 1

and the others to 0, and solve for a harmonic function with these as boundary constraints. Since

harmonic functions are invariant under conformal mapping, they form natural landmark functions

compatible with the conformal class of mappings.

4.4.2.4 Segment constraints

As pointed out by Ovsjanikov et al. [86], segmentation correspondences are often more robust than

landmark correspondences in automatic detection. For segment constraints, we can directly use

the characteristic function pairs. Alternatively, we can follow the same procedure as the landmark

constraints, and turn it from the characteristic function pairs to a smoother representation. More

precisely, we set the points on one segment to 1, set the points on some other segments to 0, and

leave the rest to be determined by solving a Laplace equation. With the harmonic functions defined

on some of the segments, we can have a smoother constraint for segment association.

4.4.2.5 Constraint splitting

For near isometric cases, many descriptor functions are available. When there are fewer but higher

confidence corresponding function or vector field pairs, constraint splitting can increase the effi-

91

ciency of using the information for each pair. In theory, with only two pairs of matching generic

functions, one can determine the entire mapping, as each level set of a function f should be mapped

to the corresponding level set of the matching function g. On the other hand, Ca − b can only pro-

vide n constraints. We propose to use compound function pairs s ◦ f and s ◦ g, where s :R→R is

an arbitrary function. We found it stable to use a box function (square pulse) as s to select unions

of level set in intervals, or use a Gaussian kernel as a blurred version of the box function.

4.4.2.6 Symmetrization

For numerical stability, we can use the fact that C1T
= (C1)−1 to duplicate the vector field

constraints, i.e. to add C1T b − a = 0. As the orthonormality constraint is not a linear constraint

for C1, we cannot include it in the least squares system. So the inclusion of the dual constraint

improves the initial guess for C1. The same procedure can also be used for C0 in the isometry

case.

4.4.3 ICP in the Gradient Embedding Space

The elegant method of matching the mesh embedded in the space of indicator function coefficient

vectors by Ovsjanikov et al. [86] turns the deformable matching problem into a rigid registration

in n-D space. First, treating the coefficients of an indicator function av
M

of each vertex vM on

the source mesh as the coordinates in the n-D space, and similarly bv
N

for target vertex vN , both

meshes are embedded in the n-D space. Then, a C0-based ICP method can be directly applied:

find the best point-to-point correspondence under the current rotation C0; find the best C0 such

that C0T
C0 = I and C0 aligns the n-D points to their counterparts best; repeat the two steps.

The matrix C0 is only orthonormal when the map is area preserving, which is true in the

isometric case. In dealing with the class of conformal mapping instead of isometry, we replace this

92

requirement by the orthonormality of C1. We list the detailed steps in C1-based ICP:

1. Construct function preservation constraints as D−1
N C̄DMa − b = 0.

2. Construct vector field preservation constraints and include area preservation constraint as a

regularization term.

3. Solve the linear system to obtain the initial C1.

4. Build the point-to-point correspondence vM→vN by finding target vertex vN with the indi-

cator function bv
N

, which matches best with the mapped image of the indicator function av
M

associated with source vertex vM .

5. Find the best rotation C1 minimizing the L2-distances between n-D vectors DMav
M

and the

corresponding DNbv
N

. (e.g. Kabsch [54])

6. Iterate the above two steps, and produce the final point correspondence if needed.

An efficient way to perform the search in Step 4 is by building a kd-tree populated by all the

bv
N

’s first. The indicator function used in the functional map representation is chosen to be the

Dirac function, which integrates to 1 over the surface. For each vertex v, setting the function

value to be the inverse of its lumped area (a third of the one-ring area) 1/?0(v) and 0 everywhere

else would produce such a function. Projecting onto the LB-basis, each row of the basis matrix Φ0

directly gives the correct coefficient vector av in each row, since (Φ0)T?0 is the projection operator.

Performing additional smoothing or regularization can make the indicator functions relate to each

other in a more continuous way. For example, an optional Gaussian smoothing can be easily

performed by multiplying the i-th coefficient by e−hλ
i for a small diffusion time h (e.g., h=2/λmax

is used in all our tests, where λmax is the largest eigenvalue for the eigenfunctions in the LB-basis,

assuming that all surface areas are rescaled to 1).

93

4.5 Results

4.5.1 Conformal correspondences

We compare the results using our representation (C1-based) mainly with the results using the only

other compact map representation based on spectral analysis (Ovsjanikov et al. [86], C0-based).

In the example shown in Figure 4.2, we demonstrate that C1 normalization does lead to correct

conformal maps, for correspondence pairs with ground truth conformal mapping computed based

on, e.g., the spin transform Crane et al. [22]. The discontinuous artifacts on the result using the

functional map representation show the incompatibility of an orthonormal C0 and conformal map-

ping. In the C0 case, the orthonormalization of C0 still provides regularization to the results even

though insufficient, as the point-to-point (P2P) correspondences were much worse before orthonor-

malization. In this test, we simply used three landmarks, due to the lack of useful corresponding

geometric descriptors in this extreme case.

Source P2P from C0 P2P from C1 C0 transfer C1 transfer
Figure 4.2: Comparison of transferring coordinate functions and point-to-point (P2P)

correspondence between C0 and C1 representations, on a capsule (top) conformally mapped to
another shape (bottom). Three pairs of landmarks are shown as dots. For P2P correspondence, we

draw on each source mesh vertex the (x, y, z) of the corresponding vertex on the target as RGB
color components (top). For function transfer comparison, we transfer the coordinate functions of

the source to the target (bottom).

Figure 4.3 presents another example for a conformal pair of shapes.

94

Source shape Ground truth P2P Through C0 Through C1

Figure 4.3: Comparison of P2P mapping through C0 and C1.

We ran our tests on a dataset consisting of all 8 pairs of non-copyrighted models shown in Crane

et al. [22], each with 5 manually selected landmarks. We measure the correspondence rate by the

percentage of points mapped to a point within a given geodesic distance away from the ground

truth point. The error plot in Figure 4.4 shows the advantage of C1-based method in the conformal

case. In both cases, ICP improves the results, but the initial estimate in C1 map is already better

than the final C0 map. It also shows that when the connectivity of mesh is changed through a

remeshing to a uniformly sampled mesh with approximately the vertex count, the spectral methods

are resilient to such changes.

We also evaluated our method on the bunny-to-sphere sequence dataset provided by Crane

et al. [23], which is a sequence of shapes generated from a conformal flow from the Bunny model

to a sphere. The entire sequence contains 218 frames in total. We set up the dataset with 5

landmarks specified by users. We performed a test of mapping from frame-0 to all other frames.

Figure 4.5 shows the result of this experiment. In the above error plot of Figure 4.5, the shapes are

more isometric to each other, so the C1 representation produces slightly better results than C0, but

when we only choose the pairs at least 150 frames apart, which are less isometric to each other, the

margin is larger.

95

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

e

C0 initial
C0 ICP
C1 initial
C1 ICP

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

e

C0 initial
C0 ICP
C1 initial
C1 ICP

Figure 4.4: Error plot for conformal pairs (top) and conformal pairs with connectivity change
(bottom). This test clearly indicates that C1 is better suited for conformal deformation.

96

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

es

C0 initial
C0 ICP
C1 initial
C1 ICP

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

es

C0 initial
C0 ICP
C1 initial
C1 ICP

Figure 4.5: Tests on the Bunny-to-sphere sequence dataset with different frame distances
between pairs. Top: average case; Bottom: pairs with distance of 150 frames.

97

4.5.2 Isometric benchmarks

We have also evaluated our vector field map method on two benchmark datasets, SCAPE Anguelov

et al. [4] and TOSCA Bronstein et al. [17], which are the only large public domain isometric

benchmarks that provide the ground truth point-to-point mapping information, to the best of our

knowledge. For either dataset, we tested the method on around 400 pairs under near-isometric

deformation. In this evaluation, the constraints and parameters for both C0 and C1 methods are

identical, based on the landmarks specified in the datasets: 36 landmarks for SCAPE; 21 on ani-

mals, 36 on humans and 46 on centaurs for the eight groups in TOSCA. With eigenbasis size of

50, we initialize C0 and C1 with the landmark constraints and the commutativity regularization

term, and then refine the C0 and C1 by their corresponding ICP for 5 iterations. Figures 4.6 show

that our C1 method performs properly under the same constraints induced from C0 method, at

the same cost with the C0 representation, with a small amount of improvement in the quality of

correspondence.

98

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

es

C0 initial
C0 ICP
C1 initial
C1 ICP

0 0.05 0.1 0.15 0.2 0.25
20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

es

C0 initial
C0 ICP
C1 initial
C1 ICP

Figure 4.6: Comparison of our method (C1) with the original functional map (C0) method. The
top error plot is for SCAPE dataset and the bottom error plot is for TOSCA dataset.

99

4.5.3 Segment correspondences

As with the functional map representation, segment correspondences can be used. With the vector

field map, we can even use it for the non-isometric cases. Figures 4.7 presents point-to-point cor-

respondence inference under such segment constraints (9 pairs) on the models from the TOSCA

dataset Bronstein et al. [17]. Note that C0 using unweighted Laplacian suggested in Ovsjanikov

et al. [86] (the one without inverse of area element ?0) produces much worse results, even for iden-

tical shapes with different connectivity, so we always use the weighted Laplacian. Near conformal

mapping again shows fewer artifacts, compared to the more restrictive isometric mapping. The

error plot for the cat and dog pair is shown in top of Figure 4.9. In this case, since there is no actual

ground truth matching, we generate an alignment using the deformation technique of Sumner and

Popović [104] using landmarks. More non-isometric pairs can be found in Figure 4.8.

100

Target segmentation Source segmentation

Reference P2P with C0 P2P with C1

Reference P2P with C0 P2P with C1

Reference P2P with C0 P2P with C1

Reference P2P with C0 P2P with C1

Figure 4.7: Comparison of P2P mapping with only segment constraints. The discontinuity on C0

induced map exhibits the incompatibility with non-isometric deformation.

101

Reference P2P with C0 P2P with C1

Reference P2P with C0 P2P with C1

Figure 4.8: Comparison of more TOSCA non-isometric models: the dog to the horse (left); the
cat to the wolf (right).

Functional map produced one of the best results for automatic correspondence inference through

segment correspondences when no landmarks are available Ovsjanikov et al. [86]. We performed

another test based on the same Heat Kernel Signatures (HKS) descriptor functions Ovsjanikov

et al. [85]. With segment-based HKS constraints and commutativity regularization, we evaluated

C1 and C0 methods under the same condition on SCAPE dataset. The result is shown in the bottom

error plot of Figure 4.9. Once again, we show slight improvement even for this isometric dataset.

102

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

e

C0 initial
C0 ICP
C1 initial
C1 ICP

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Error

%
 C

or
re

sp
on

de
nc

es

C0 initial
C0 ICP
C1 initial
C1 ICP

Figure 4.9: Segment constraints for non-isometric pairs (top) and for automatic correspondence
inference (bottom).

103

4.5.4 Vector field guided alignment

Sometimes, it is unnecessary that a certain landmark pair should correspond to each other or a

feature curve should correspond to another when designing shape correspondences, but an overall

direction field should correspond to another direction field on the target mesh. In Figure 4.10,

we provide a proof-of-concept example. We first created a correspondence without considering a

direction alignment. Then, the user designed two vector fields using intuitive tools by sketching

strokes, and generated vector fields through the method in Fisher et al. [36]. With this additional

constraint, the desired alignment can be achieved.

vector field on source mesh vector field on target mesh

without the vector field constraint. with the vector field constraint.

Figure 4.10: Here we demonstrate the effect of our new type of constraint applied on vector fields
directly. The map from the Venus head model to the sphere was first established based on 4

landmark pairs. The user can further specify the correspondence of certain direction fields. For
easy manipulation, the source mesh venus head was shown on the sphere through the first

correspondence to help the editing process. We then add an additional constraint for C1 and
produce the expected modified result.

104

4.5.5 Function transfer across different topology

We demonstrate in Figures 4.11 function transfer for shapes with different topology. Transfer

functions through C0 induced by C1 is sufficient for shapes with the same topology, but not in

this case, since the LB-basis structure changes significantly with a topological change. Even low

frequency eigenfunctions can be very different. We can take advantage of the gradient domain

technique: setting the precise scalar function values at the corresponding landmarks as the bound-

ary condition, the process can be implemented through Poisson reconstruction of the transferred

gradient of functions, i.e., solving a Poisson equation with the right hand side set to the divergence

of the transferred gradient vector field. With the scalar values set directly at the landmark loca-

tions using the known values on the corresponding landmark locations on the source mesh, we

show that the functions are transferred smoothly, since we only transfer the low frequency gradient

fields. Directly using the Laplacian of the transferred scalar function using the function method

for a reconstruction with the landmark used as boundary condition does not lead to similar results,

probably due to the drastic change in area often associated with topological changes. The same set

of manually selected landmarks is used for C0 and C1 in this test, 8 for the bunny and the torus,

and 11 for the dog and the kitten.

105

Original dog0 Reconstruction by C0 Reconstruction by C1

Original Bunny Reconstruction by C0 Reconstruction by C1

Figure 4.11: Comparison of Poisson reconstruction for function transfer between shapes with
different topology.

4.5.6 Implementation details

All our tests were run on a Windows 7 system with Intel Core i7@2.8GHz and 12GB RAM). The

efficiency of C1 representation matches exactly that of C0 representation, including the construc-

tion of the eigenbases, since the eigenbases used for vector fields are derived from the one for

scalar fields. Conversion among C0, C1, and C2 introduces negligible overhead. The most costly

step by far is the kd-tree search used in conversion from C to P2P correspondences. We use kd-tree

implementation on Matlab Central by Michael [76], which seems not as optimized compared to

the timing reported in Ovsjanikov et al. [86], and typically runs for about 30 seconds for a P2P

conversion for a mesh with around 25K vertices. We use the Kabsch algorithm [54] for finding

the best rotation in high dimensional space, with a simple modification to allow reflection, as the

106

eigenfunction pairs may happen to be in different signs. The only weighting term in solving for

the initial C1 or C0 is the one for the regularization term w. The results remain similar unless w is

different by orders of magnitude, so we stick to the simple setting described in Sec 4.4.2. We also

observe not much further improvement in results when more than 5 steps of ICP is performed, so

in all our tests, we opt to use 5 iterations. We have also consistently used 50 LB eigenfunctions,

since it is both efficient and without much loss in accuracy compared to representations that we

tested with a higher number of basis functions.

4.5.7 Limitations

The point-to-point map obtained through kd-tree search or indicator function transfer is in fact

a discrete vertex-to-vertex map. Such correspondences do not map a vertex to its best matching

location, which normally would be a point within a certain triangle of the other mesh. Without

an additional relaxation process, this type of correspondence cannot be directly used for opera-

tions such as texture transfer. However, in the case of genus-0 surfaces or patches, we expect that

using a sphere as an intermediate shape can allow cross parameterization between any pair with

post-processing through smoothing on the sphere or disk. Another issue with the functional map

or the vector field map representations is that thin long features (high-frequency structures) can be

mapped to collapsed curve-like structures on the target mesh when a small number of frequencies

are used, which is perhaps the price to pay for representing the mapping with such a low dimen-

sion matrix. A decomposition of the entire shape into several simpler components, and performing

component-wise function or vector field maps may alleviate the problem. We dropped the har-

monic vector fields in the correspondence inference, as the the one-to-one correspondence can be

determined by C0 while C0 only depends on the mapping among gradient vector fields. However,

for objects with different topology, no one-to-one correspondence exists, so it might be a useful

107

control tool to exploit the correspondences among harmonic vector fields and other vector fields.

4.6 Conclusion

We have demonstrated that our vector field map representation facilitates correspondence inference

for the important case of near-conformality (angle-preserving maps). Most important constraints

on correspondence can be expressed as linear constraints, and conformality is just the orthogonality

of the proposed map representation, which leads to a simple algorithm including a least-squares

method followed by an ICP. We also demonstrate the possibility of extending the method to change

of topology through Poisson reconstruction of the transferred gradients. The spectral analysis on

surface meshes developed for the representation is also an efficient tool in handling vector fields in

general.

108

Chapter 5

Parametrization-based Automatic

Hexahedral Meshing

Recent development in quadrangulation has stirred new research effort in parametrization-based

on volumetric meshing methods guided by the cross-frame fields, fields of equivalence classes of

local frames under the chiral cubic symmetry group.i Such methods first create a parameterization

of the volume for 3D charts intersecting at common interfaces, followed by extracting the vertices

of the hex mesh from the integral points in the parameter domain. The edges of the hexahedra

in the mesh would then follow the gradient lines of the parameterization. For computational pur-

poses, the boundary of the resulting mesh must conform to the original boundary, create patches

sharing the same integer parameter value over smooth regions, and introduce sharp edges and

corners near the original features of the mesh. Thus, feature alignment and angle distortion re-

duction are both linked to a high-quality frame field with one of the axes aligned to the boundary

normal on all surface points. Combining the global volumetric parameterization with compatible

iThe set of 24 rotations that keep a cube centered at origin invariant without changing the
right-handed frame to a left-handed one.

109

rotational and translational transitions as specified in the CubeCover method with automatic gen-

eration of guidance fields, one would imagine that an automatic hexahedral meshing tool would

be straightforward to construct. However, unless manually constructed or adjusted, automatic gen-

erated frame fields do not usually satisfy these compatibility conditions for non-degenerate clean

volumetric parameterization.

In this chapter, we represent the singularities in the global parameterization guided by a frame

field as a graph, and present a systematic treatment of singularity that would lead to degenerate

cell. Finally, based on the modified singularity graph, we present an efficient hexahedral mesh

generation through a topological simplification of the volume.

5.1 Related Work

As mesh generation has been an active research topic for a long period of time, a number of

methods have been proposed to generate high quality triangle or tetrahedral meshes automatically

[72, 78]. Most of them rely on Delaunay tessellation (dual of Voronoi diagrams), which ensures

proper connectivity and element quality. However, quadrilateral or hexahedral remeshing is sub-

stantially more difficult because there is no such dual structure for non-simplicial elements. In 2D

manifold quadrangulation, some recent works [32, 46, 119] use Morse-Smale Complexes (MSC)

[33] to guarantee a pure quadrangulation based on a scalar function with periodic property. Un-

fortunately, 3D MSC does not necessarily lead to hexahedral structures. As a consequence, many

hexahedral remeshing methods, such as sweeping [99] and paving [102] rely heavily on manual

input to define the proper topological structure by decomposing the volume into simple parts. Such

challenges make grid-based methods [103] or hex-dominant mesh-based methods [112, 64] often

the practical choice for computation performed on automatically generated domains in spite of

110

their inferior results as compared to those obtained with hexahedral meshes.

Recent progress shows that global parameterization has achieved great success in surface quad-

rangulation [55, 11] with the help of a smooth frame field defined on a manifold surface with

compatible transition functions between charts. From such a non-degenerate parameterization, an

all-quadrilateral mesh can be extracted by tracing the iso-lines. To extend such a scheme to hexa-

hedral remeshing, [81] has proposed a global parameterization method for hexahedral remeshing,

and [48] gives a method to automatically construct a desired frame field. These two works are

most relevant to our method. Roughly speaking, we attempt to apply a parameterization method in

CubeCover to the automatically generated frame field. However, the task is extremely challenging

as the original frame field optimization does not take into account the conditions on admissible

singularity types (both inside the volume and on the boundary). In addition, without a coarse

meta-mesh manually specified or generated from a manually specified frame field, a topologically

sound partitioning of the volume for a global parameterization is not so straightforward to generate

as one might expect. Gregson et al. [42] propose a method for all hexahedral remeshing with the

topological restriction of no internal singularity, thus leaving few degrees of freedom to optimize

the shape of hexahedra. As noted in [81], it is often necessary to move the right angle transition

line in the parameter domain on smooth regions of the surface into singular edges inside the vol-

ume to have better element quality, as the former turns the dihedral angle between a hexahedron’s

two faces into nearly 180◦, while the latter only turns the sum of three such dihedral angles around

the internal edge to 360◦.

Singularity plays a critical role in detecting and remedying this issue. Shepherd [96] lists many

topological restrictions on primal elements of a hexahedral mesh, such as nodes, edges and faces,

and uses these restrictions in a frame-field-independent remeshing algorithm. Some methods have

been proposed to analyze the global topological structure of a quadrilateral mesh or a 2D symmetry

111

vector field by singularity graphs [107, 88]. In 2D quadrangulation, noisy singularity points lead

to problematic parameterization results. Thus, some remedies have been proposed for denoising

or adjusting the singularities in the frame field [55]. For hexahedral remeshing, Nieser et al. [81]

provide a definition on internal singularity types and prove some of its properties. However, there

is no existing work on automatic surface singularity and internal singularity adjustment for frame

fields used in hexahedral meshing, except a concurrent work on hexahedral meshing by Li et al.

[66]. However, their method does not address the potential issues involving surface singularities,

and may require manual adjustment of the frame field to produce non-degenerate parameterization.

5.2 Overview

Algorithm 2: Hexahedralization process overview.
Data: tetrahedral mesh Ω with one frame F per tet computed by, e.g., Huang et al. [48]
Result: hexahedral mesh with edges guided by F
Compute the singularity graph (Section 5.3);
while there is a zigzag (Section 5.4.2) do

Remove zigzag by “straightening”
while a compound edge (Section 5.4.3) adjacent to two admissible edges exists do

Split the compound edge:
turn it into an admissible type;
create a separate singularity path through vertices newly introduced in a local
refinement;

Adjust the frame field (Section 5.4.4);
Reduce the number of integer variables
(used in boundary and transitions, Section 5.5.1);
while an untreated integer variable (Section 5.5.2) exists do

minimize the parameterization energy;
round the integer variable closest to an integer;
turn the variable into a constant;

Minimize the parameterization energy;
Construct hexahedral meshes with integer grid points;
Postprocessing if necessary (Section 5.6);

Our work focuses on generating all-hexahedral meshes from input cross-frame fields generated

112

automatically by the method proposed by Huang et al. [48]. Given a tetrahedral mesh Ω, each

tetrahedron is associated with an orthonormal frame F = (U,V,W), with U, V , and W as the basis

vectors. The frame is considered as a representative of a cross-frame (an equivalent class of 24

orthonormal frames with axes chosen from {U,−U,V,−V,W,−W}). To generate an all-hexahedral

mesh with edges following such an input, we compute a parameterization with a method similar to

the one proposed in CubeCover[81]. We loosely follow their notations below.

We denote the parameterization f : Ω → R3, which can be expressed in each chart (tetra-

hedron) as a linear function with three components (u, v,w)T . In tetrahedron t, we denote its

expression by ft.

If we use integral lines of the gradients of the parameterization for edges, they must connect to

each other across the tetrahedron boundaries. Thus, in order to obtain a parameterization whose

integer grid points can be used in hexahedralization, the transition from fs to ft, for two adjacent

tetrahedra s and t, must satisfy

ft = Πst fs + gst, (5.1)

where gst ∈ Z3 and Πst ∈ O, the set of one of the 24 matrices for the cross frame containing

the standard identity frame, a.k.a. the chiral octahedral symmetry group. Comparing with the

transition from t to s, we have

Πst = Π−1
ts , gst = −Πstgts. (5.2)

We call any face with a non-identity rotational transition or non-zero translational transition a

jump-face.

For a surface triangle a associated with tetrahedron t, to avoid cutting the corresponding hexa-

hedron by the boundary surface, one of parameter must be an integer, with its gradient aligned to

113

the surface normal. Thus, there is a transition Πta that makes the parameterization coordinates of

a surface point p ∈ a satisfy

(Πta ft(p)) · (1, 0, 0)T = gta, (5.3)

where Πta ∈ O aligns the U-axis of the frame to the normal of a, and gta ∈ Z.

The translational part (the gap) gst can be resolved during the parameterization process if the

hex edge size can be adjusted, but the rotational part Πst must be properly prescribed to avoid

fold-overs and degeneracy in parameterization while following the given frame field.

For the parameterization with its gradients following the frame field to be smooth, a natural

requirement for the rotational transitions is that they make the angles between the corresponding

axes in Ft and FsΠst respectively as small as possible. If one of these angles becomes greater than

π/2, it can lead to large angle distortion in the parameterization. In addition, more constraints are

required to avoid the defects caused by singularities as shown in the next section.

5.3 Rotational Transition and Singularity

A straightforward method to evaluate the rotational transition is to find the best transition matrices

that minimize the following “alignment error”:

‖Ft − FsΠst‖,

‖(FtΠta)(1, 0, 0)T − na‖
(5.4)

where na stands for the normal of the surface triangle a in t, and the matrix norm is the Frobenius

norm, which is used throughout the rest discussion. For a tetrahedron t containing more than

one boundary faces, e.g., a and b, Πta , Πtb or t should be split into two. When the rotation

114

Πta minimizing the above error is non-unique, we choose the one fixing one of the axes. Such a

setup is necessary for the rotational transition of the gradient fields of the parameterization to be

smooth while remaining consistent with the rotational transition of the guidance frame fields [81].

However, it does not guarantee degeneracy-free parameterizations in the presence of certain types

of singularities as discussed below.

5.3.1 Internal Singularities

If the valence (number of adjacent hexahedral cell) of an internal edge in the final hexahedral mesh

is not 4, it is an internal singularity. Such singularities can be detected by checking the rotational

transitions. As formulated in [81], for an oriented tetrahedral mesh edge e, surrounded by a small

counter-clockwise oriented dual edge loop passing through tetrahedra (t0, t1, · · · , tk, t0), we can

define the type of the edge with respect to starting tetrahedron t0 as

type(e, t0) = Πt
k
t

0

Πt
k−1
t

k

· · ·Πt
0
t

1

. (5.5)

If type(e, t0) , I, we call it an internal singularity edge.

An internal singularity can lead to a non-valence-4 segment in the final hexahedral mesh, only

if type(e, t0) is a rotation around one of the axes in the frame. Other types of singularities are said to

be compound, and forced to be mapped to a point in any parameterization producing a hexahedral

mesh consistent with the transitions, leading to degeneracy. It can be shown by contradiction.

Suppose that the image of e in the parameterization is not a point. If we choose a sufficiently fine

hexahedral mesh, the image is either parallel to hexahedral faces, or intersecting with a hexahedral

face. For a compound singularity edge e, U, V , or W is not an eigenvector of type(e, t0), so its

image cannot be parallel to one of the gradient lines of the parameters. On the other hand, the

115

hexahedral face that it intersects with contains edges along U, V , or W, which cannot form a loop

consistent with the accumulated rotational transition type(e, t0), leading to a contradiction.

The additional requirement on the inner singularity vertex (Theorem 2.2 in [81]) through

counting valences would be satisfied automatically when the rotational transitions form the mini-

mizer of the frame field transitions. Although valence 3 and 7 (or 4 and 8) cannot be distinguished

by edge type, valence 7 (or 8) edges do not appear in automatically generated frame fields in

practice.

5.3.2 Surface Singularities

In Section 5.4, we will show that internal singularities may lead to degeneracy in parameterization

because of the constraints that they impose. For surface edges, it is also possible that they introduce

constraints that cause degeneracy. Such constraints force two components of the parameterization

coordinates along the edge to be both constant integers, i.e. the edge must be along some edges

of the hexahedral mesh. We call such surface edges surface singularities, which are formulated

mathematically below, with a definition consistent with the internal singularities.

Similar to the internal case, for an oriented surface edge e, we also create a small counter-

clockwise oriented loop around it, which passes through (a, t0, · · · , tk, b, x, a) (e.g., Figure 5.1),

where the faces sharing e, a and b, are the triangles adjacent to tetrahedra t0 and tk, respectively,

and x stands for a point outside of the tetrahedral mesh. We then define the type of the edge as

type(e, a) = ΠbaΠt
k
bΠt

k−1
t

k

· · ·Πt
0
t

1

Πat
0

, (5.6)

where Πba is a rotation around axis U aligning the V,W-axes on triangles a and b when U-axis on

116

a

be

x

t0

t1 t2

t3

Πba

Πat
0

Πt
k
b

Πt
1
t

2

Πt
0
t

1

Πt
2
t

3

Figure 5.1: Surface singularity example.

each triangle is aligned to the normal. More precisely, it minimizes

‖Re(na, nb)Ft
0

Πt
0
aΠab − Ft

k

Πt
k
b‖,

where Re(na, nb) is the rotation around e that aligns na (normal of a) to nb (normal of b), which

flattens the hinge formed by the two boundary triangles. If type(e, a) is a rotation around an axis

by ±π/2, it creates a sharp edge on the surface in the parameter domain, and denotes an admissible

singularity. In other words, the valence of such an edge in the hexahedral mesh would be differ-

ent from 2. If it is not a rotation around one of the frame axes, we have a compound boundary

singularity.

The transition between surface faces Πab describes a rotation on V,W-axes in the parameter

domain. The product of Πab’s along a loop around a surface vertex can be used to detect singularity

vertices on the surface, which form sharp corners in the parameter domain with a discrete Gaussian

curvature (angle defect) of multiples of π/2. Only ±π/2 would lead to reasonable sharp corners. If

117

the angle defect becomes π, the parameterization would wrap two surface squares around a surface

vertex, leading to degeneracy. However, such a degeneracy never occurred in all our experiments

based on automatically generated guidance fields.

5.4 Inadmissible Singularities

The whole singularity graph G is composed of the internal and surface singularity edges, and the

vertices incident to these edges. The following two issues in such a graph will lead to degeneracy

in the parameterization, and are thus necessary to eradicate:

• Compound singularity (a rotation not around any axis in the frame): It maps to a single

point in the parameter domain, thus inducing degeneracy. In addition, a surface rotation

around a frame axis by π is also treated as a compound singularity, because it indicates zero

or 4 neighboring hexahedra, leading to great distortion except for the case with a valence-4

boundary edge whose adjacent boundary faces have nearly opposite normals.

• Zigzag (two same type consecutive singularity edges in one tetrahedron): Denote the edges

by e0 and e1, and the tetrahedron by t, type(e0, t) = type(e1, t). Such edges map to a straight

line in the parameter domain, thus making the image of the tetrahedron degenerate.

These issues can be viewed as resulting from improper discretization of a smooth frame field with

only admissible singularity types. A compound singularity can be viewed as several close-by

singularity lines merged onto one tetrahedral edge. A zigzag can be explained as misalignment of

the edges of tetrahedral mesh with the singularity line in the smooth frame field. Unless a manually

constructed or adjusted frame field is used, these issues almost always exist and must be addressed.

118

Based on the above observation, we propose a two-step method to schematically adjust the

initial rotational transition set derived from Equation 5.4 to address the above issues. In the first

step, we remove all the zigzag issues by straightening the singularities. In the second step, we split

the compound singularities into admissible ones.

Additional care may be necessary to avoid extreme angle distortion associated with high hexa-

hedral edge valences. However, for internal singularity edges, the valences are in most cases less

than 6 when the singularity types are derived from the automatically generated guidance frame

field. For boundary singularity edges, one may want to make sure that the dihedral angles do not

deviate far from the dihedral angles specified by the singularity type in the parameter domain. Sim-

ilarly, the boundary singularity vertex should have compatible Gaussian curvature in the parameter

domain and on the mesh to avoid extreme angle distortion at the sharp corners.

5.4.1 Atomic Operation to Adjust the Singularities

For an internal face shared by tetrahedra s and t, it is an atomic operation of modifying the rota-

tional transition Πst into ΠstΠ by a matching matrix Π, since the face only affects the types of

its three edges. The type of one of these three edge type(e, s) that is counterclockwise oriented

around the direction of s → t becomes type(e, s)Π after the modification. Thus, the types of all

these edges change by a same rotation. It can be likewise applied to surface singularities. We use

this simultaneous change as the basic operation to remedy the issues in the singularity graph.

5.4.2 Zigzag Removal

As shown in the Figure 5.2, the triangle between tetrahedra s and t contains a zigzag pxq with

type X. Changing the rotational transition Πst into ΠstX−1 turns the edges px, xq into regular

119

edges. The type of the third edge pq in this triangle with original type Y will become XY . Such

an operation can be viewed as straightening the singularities px, xq into pq, and superposing their

type onto the original type of pq. If the original type of edge pq is not I, its type may become

compound singularity after removing the zigzag, which will be split into admissible ones in the

second step of our method.

X

X

Y

p

x

q

⇒

I

I

X · Y

p

x

q

Figure 5.2: Removing a zigzag pxq. The gray edge is regular, and the black edge is possibly
singular.

Removing a zigzag may introduce new zigzags, but the procedure always terminates when we

repeatedly find a zigzag to remove until all zigzags are eliminated. The number of zigzag removal

operations to be performed cannot exceed the total number of singularity edges in the graph, since

that number decreases by either one or two in each operation.

5.4.3 Compound Singularity Split

After removing all the zigzags in the graph, the remaining inadmissible singularities are compound

singularities. To remove a compound singularity, we split it into multiple admissible singularities

inside its one-ring neighborhood without affecting other singularities or introducing zigzags (Fig-

ure 5.3). During this procedure, tetrahedra may be split into smaller ones through local refinement.

120

In the refinement steps, we keep the rotational transition on split faces, and set the rotation tran-

sition to identity for the newly introduced faces. Thus, the split edges share the same type as the

original ones, and the newly introduced edges are all regular edges.

x

p

q

y1

yn

⇒
x

p

q

y1

yn

y′1
y′n

⇒
x

p

q

y1

yn

y′1
y′n

Figure 5.3: Splitting a compound singularity edge xq. The gray edges are regular, and the black
edges can be singular.

We first find an open end node x of a compound singularity polyline, i.e. a node connected

to only one compound singularity edge. In its one-ring neighborhood Ωx, we pick one node p on

one adjacent admissible singularity, and another node q on the compound singularity. Then, we

subdivide each triangle on the boundary of Ωx into four triangles and its associated tetrahedron

into four tetrahedra, by inserting one new node at the middle of each boundary edge. As the newly

introduced nodes yi’s are connected, and each original node is adjacent to some of them, we can

always find a path of the form py1y2 · · · ynq. In particular, we can pick the shortest one. These

edges and x form a fan of triangles (in the same orientation), with each edge xyi being regular.

To avoid re-introducing zigzag edges when removing the complex singularity, we further sub-

divide the triangle fan x, py1y2 · · · ynq as follows. Each edge xyi, along with each of its incident

tetrahedra in the one-ring, is split into two by inserting a new node y′i at the middle. Then we get

a new path py′1y′2 · · · y
′
nq completely inside the original one-ring neighborhood, with each of its

121

edges initialized to the identity type. We modify the rotational transition on all the triangles in the

fan composed of x and py′1y′2 · · · y
′
nq by multiplying the inverse matrix of the edge type for px,

turning px into a non-singular edge. Then the polyline py′1y′2 · · · y
′
nq contains all admissible singu-

larity edges with the same type of px. The vertex x is now incident to only two singularity edges,

with one of them the original incident admissible singularity. According to following Proposition

5.4.1, the other edge xq must also be an admissible singularity.

Proposition 5.4.1. If a vertex is incident to only two singularity edges, the types of the two edges

must match in a certain local alignment.

Proof. If vertex x is incident to only two singularities px, xq, we prove that the two share the same

rotational transition in a local alignment.

First, we construct the local alignment by cutting the one-ring neighborhood N(x) of x open to

expose the two singularities onto the boundary. Similar to the situation in Figure 5.3, such a cut

always exists. As shown in the inset, we denote the split nodes as yi, y
′
i , i = 1, · · · , n. Then, the

frames in every tet of

x

p

q

y1

y2

yn

y′1

y′2

y′n

R1,2

Figure 5.4: Illustration for the Proposition 5.4.1.

N(x) can be aligned so that each internal face has identity as its rotational transition type. The

only none-trivial rotation transitions are between the triangle pairs xyiyi+1 and xy′i y′i+1, where

y0 = p, yn+1 = q. We denote the transition from xyiyi+1 to xyiy
′
i+1 as Ri,i+1.

122

For each i, the edge xyi before the cut is regular. Thus, for the small circle through the tetra-

hedra around the edge xyi in the one-ring before the cut, the accumulated rotational tranisition

Ri−1,iR
−1
i,i+1 must be I, i.e. Ri−1,i = Ri,i+1. Thus, the edges px, xq must have the same singular-

ities type R0,1 = Rn,n+1.

�

The above operation can be viewed as splitting and shifting the singular segment pxq to the new

paths. It fails when there exist loops of compound singularity edges, which contain no end node.

However, it never occurred in all frame fields automatically generated during our experiments. The

monotonic decrease in the number of compound singularity edges within each iteration guarantees

the termination of the procedure.

5.4.4 Frame Field Adjustment

The above singularity adjustment removes the compound and zigzag inadmissible edges as defined

in the previous section, but it may increase the alignment error, leading to possible difficulties in

the subsequent parameterization step. By minimizing the alignment error with respect to F, we

can update the frame field according to the new rotational transitions. For robustness, we adopt

a scheme that incorporates the non-linear constraints gradually. With the rotational transitions

fixed to the adjusted matrices, we first obtain an initial guess by turning the problem into a linear

system, minimizing Eq. 5.4, without the constraints F ∈ S O(3), i.e. treating each F as an arbitrary

3 by 3 matrix. We then incorporate the orthonormality constraints on F as soft constraints, by

including a non-linear penalty term w‖FT F − I‖2 (w is set to 100 in all our results), and solve

the optimization problem again with Gauss-Newton method starting from the initial guess. The

solution is converted to the closest ZYZ Euler angle representation, and serves as the initial value

123

to minimize the alignment error in such a representation. We then transform the solution back to the

3 by 3 matrix representation as the updated frame field satisfying the hard constraints F ∈ S O(3).

In most cases, the largest angle between the corresponding axes of two adjacent tetrahedra is

about 30◦ when measured with the initial rotational transition, but increases to about 120◦ after

adjusting the rotational transition to resolve compound singularity. After the above adjustment, it

finally drops to about 75◦.

In some cases, the resulting singularities may be close to each other, resulting in high distortion

in the parameterization. However, a simple post-processing is discussed in Section 5.6 to reduce

the distortion of the parameterization in the hexahedral elements between these singularities, pro-

ducing high quality hexahedral meshes.

5.5 Parameterization

We follow essentially the same idea in the CubeCover method for parameterization, i.e. finding

the minimizer of the following energy

∫
V
‖d f − F‖2 d Vol,

which means that the gradient of each component of the parameterization should follow the corre-

sponding axis of the given frame field F as much as possible. The main difference is that we are

able to greatly reduce the number of integer variables through a simple preprocessing procedure,

making the subsequent steps more efficient and robust.

124

5.5.1 Topological Simplification

We merge all the charts to get a global parameterization domain. To improve efficiency, instead

of just creating a minimal spanning tree (MST) to remove a minimum set of transition variables

across faces between tetrahedra adjacent in the tree as in [81], we additionally create a 3D domain

with trivial internal topology to fill the volume, removing as many transition variables associated

with faces as possible. Note that the original (possibly nontrivial) topology is encoded by the self-

intersection of the new domain boundary. This can be achieved by slowly growing the domain to

eventually occupy the whole volume, while maintaining a ball-like topology for the interior of the

domain throughout the process. In Figure 5.5, we show a simple example of the topological simpli-

fication process for torus. Figure 5.5 (a) shows the arbitrary tetrahedron chosen as the starting cell.

Figure 5.5 (b) and (c) are the first several steps of expanding the domain by merging neighbouring

tetrahedra. Figure 5.5 (d) and (e) are the intermediate stages of the merging process. In Figure 5.5

(e), we render the faces (in green) only for illustrative purposes. They are not detected until the

merging process is completed. Figure 5.5 (f) is the final remained faces that cannot be removed in

order to maintain the ball-like topology.

After using MST to globally align the frames while keeping the singularity structure intact, we

start from a seed tetrahedron, gradually remove faces with trivial transitions to merge tetrahedra,

and expand the domain until all tetrahedra are merged to it. Any non-rotational-jump-face is a

candidate for removal. If both adjacent tetrahedra of such a face are already merged to the domain,

it can still be removed when it contains a non-singularity edge adjacent only to this unremoved

face. Since all the faces corresponding to the MST edge can be removed, the entire volume can

always to be merged into a single domain. However, an arbitrary order of traversing such face

candidates can leave more faces unremoved than necessary, leading to more integer variables. We

125

(a) (b) (c)

(d) (e) (f)

Figure 5.5: An example of topological simplification.

follow a simple rule when expanding the domain, under which all candidate faces around an edge

on the boundary of the growing domain are simultaneously removed. This ordering will leave

few rotational transition face patches, which, together with the at most P translational transition

patches, cut the genus-P volume into a ball-like parameterization domain.

5.5.2 Parameterization as a Mixed Integer Programming Problem

We can easily cluster the remaining faces into patches with same transition types. Each internal

patch uses only three integer jumps, and each boundary patch has one integer parameter. It is

equivalent in theory to associate variables with each individual face, and then use Gaussian elimi-

nation to reduce the number of variables, or simply leave these variables in the final linear system

with an increased number of equations. However, the Gaussian elimination process is significantly

slower with a much larger number of constraints. Leaving the constraints as equations in the linear

126

system would turn them into soft constraints when we solve the over-constrained system using

least-squares method. With the patches clearly identified, we can actually leave a small number of

integer constraints only on the internal singularity lines and the boundary patches, and use three

floating point values per internal patch. This approach can greatly reduce both the integer de-

grees of freedom of the system and the number of constraints, and thus expedite the process of the

Gaussian elimination when we enforce the hard constraints.

The final system normally contains less than few tens of integer variables for a given input

frame field. We successively snap one integer variable from the floating point value obtained in

the previous solver in a greedy fashion. The linear system is assembled through first removing

redundant hard constraints, and then eliminating them from the variables by substitution. This can

be done on the gradient operator. After that, the reduced gradient operator and its transpose can be

assembled as the reduced Laplacian operator for the optimization step. The construction process

may take long if the model contains a large number of vertices, but the subsequent linear systems

turned out to take little time for each solve when we call the sparse linear solver of Matlab.

With a singularity graph containing only admissible singularities, the parameterization may

still contain degenerate or flipped tetrahedra initially, due to geometric distortion and numerics. In

our experiments, less than five iterations of local stiffening are sufficient to eliminate the flipped

tetrahedra and most of the degenerate tetrahedra. In the few cases when there are remaining degen-

erate tetrahedra, they most often do not actually lead to any issue in the mesh generation process

described below. The only actual problematic degeneracies are all associated with internal singu-

larities very close to the surface, which can be treated by a postprocessing procedure as detailed in

the next section.

We use a simple approach to produce the final mesh. First, we generate the integer points

(u, v,w) ∈ Z3 and half-integer points (u + 1/2, v + 1/2,w + 1/2) within each tetrahedron, and

127

snap nearby points of the same type together through a spatial indexing structure to avoid potential

duplicates near the faces. Then, starting from each half-integer point which serves as the center of

a hexahedron, we follow the U,V,W directions to find the 8 corresponding corner vertices from the

set of integer points and produce the connectivity information for the hexahedral mesh. During this

process, we keep track of how far it needs to go in the parameterization domain, and the change of

directions to handle any jump-faces encountered along the path.

5.6 Results and Discussion

The singularity correction method mentioned in Section 5.4 is able to resolve all the zigzag and

compound singularity issues in our experiments. However, it remains an open problem to give a

sufficient condition on singularity graphs compatible to non-degenerate hexahedral meshing.

In our experiments, some singularities close to the surface (near-misses) lead to degeneracy

as well. As shown in Figure 5.6, some singularities sink right below the boundary surface of the

tetrahedra mesh, and lead to degeneracies in regions between them and the boundary. As a result,

the boundary of output hexahedral mesh at these singularities edges is not aligned with the input

boundary.

Similar to zigzag and compound singularity, discretization of a singularity in a smooth cross-

frame field which is close to, but not exactly on the surface (possibly due to the numerics of

the frame field generation process) may lead to such singularities. This issue is inevitable when

few assumptions can be made on the automatically generated cross-frame field. The difficulty of

solving it lies in that such a degeneracy cannot be simply detected from the singularity graph.

Fortunately, such sunk parts are all narrow and shallow (often less than two layer of tetrahedra)

as they resulted from near-misses, and more importantly, the output hexahedral mesh still shares

128

(a) (b) (c)

Figure 5.6: The red singularity edges in (a) lead to degeneracy and the sunk part (in red) in (b),
but the defects can be easily fixed by surface snapping and post-smoothing (c).

the same topology to the input tetrahedral mesh. Thus, we simply first snap the sunk nodes in the

hexahedral mesh onto the tetrahedral mesh boundary by projecting them along the normal, and then

improve the quality of the hexahedral mesh by a local relaxation (few iterations of Laplacian-based

local smoothing).

We tested the proposed method on several models. The statistics on the models are given in

Table 5.1 and Table 5.2. The timing is measured on a PC with an I7 940 CPU at 2.8 GHz and 12

GB RAM. To measure the dihedral angles of an edge in a hexahedron, the normal of each adjacent

quadrilateral face is evaluated by averaging the four triangle normals in two different tessellations

of the quadrilateral face. As shown in the table below, nearly all the elements are with decent shape

quality measures.

129

Model Tet Comp Zz-inner Zz-surf T(s)

Torus 30k 0 100 15 0.04

Nut 65k 0 0 5 0.10

Sphere 80k 0 26 10 0.05

Pretzel 300k 5 204 35 6.27

Sculpture 105k 0 8 1 0.11

Fandisk 301k 0 148 16 0.22

Elk 123k 12 318 58 5.04

CAD1 68k 0 36 2 0.07

CAD2 130k 0 56 1 0.12

CAD3 530k 0 60 132 0.54

Table 5.1: Statistics of the results. The number of input tetrahedra, inadmissible singularity edge
(Compound, Zigzag-inner and Zigzag-surface), and time spent (in seconds) for fixing them are in

columns Tet, Comp, Zz-inner, Zz-surf and T, respectively.

130

Model T Hex Angle Length Scaled_jac Haus.

Torus 0.5m 12768 90.0/85.7 1.53/1.08 0.981/0.036 0.448

Nut 1m 6540 90.0/88.8 1.28/1.04 0.985/0.0229 0.286

Sphere 1.5m 7776 90.1/83.4 1.50/1.05 0.980/0.0391 0.745

Pretzel 1.17m 3024 90.0/89.4 1.62/1.13 0.921/0.104 0.605

Sculpture 1.3m 10003 89.9/88.4 1.42/1.07 0.984/0.0192 0.295

Fandisk 5m 24001 90.0/82.1 1.70/1.02 0.959/0.0551 0.341

Elk 1.1m 14144 90.0/79.4 1.58/1.01 0.921/0.101 0.574

CAD1 0.5m 21530 89.9/82.4 1.37/1.09 0.977/0.0406 0.709

CAD2 2m 13788 90.0/87.3 1.24/1.01 0.987/0.0264 3.55

CAD3 81.5m 17784 90.0/88.7 1.18/1.01 0.897/0.0257 1.09

Table 5.2: Statistics of the results (average/minimal). The time used in parametrization is listed in
the second column. The following columns list mean/minimal of dihedral angles, edge lengths
and scaled Jacobian of the parameterization (measurements proposed by Shepherd and Tuttle

[97]) , and the Hausdorff distance/ 10−3× bounding box diagonal for measuring the quality of the
output hexahedral mesh.

For models shown in Figure 5.7, our method naturally captures their symmetries. Even for high

genus models, our method is able to automatically find a proper topological structure.

In the following figures, to demonstrate the parameterization results, we show the adjusted sin-

gularity graphs, the resulting hexahedral meshes, and their cutaway views from left to right. In

Figure 5.8, without any manual input, the models Pretzel, Elk and Fandisk are remeshed into a

polycube-like topology, as indicated by their frame fields. In Figure 5.9, several internal singulari-

ties are automatically introduced on the models CAD1, Sculpture and CAD2, producing excellent

element quality.

131

Figure 5.7: Topological structures of the singularities.

Figure 5.8: Results with polycube-like structure. The red lines are near-misses, exposed on the
boundary after parameterization.

132

Figure 5.9: Results on CAD1, sculpture and CAD2 contain internal singularities.

In Figure 5.10, we show the result of our method applied on the complex model CAD3. Man-

ually constructing a meta-mesh for such models would have been extremely time-consuming. The

models have some small features, which even cause problems in some surface quadrangulation

techniques. By choosing a relatively small element size, our method is able to generate an all hex-

ahedral mesh while preserving important features at the same time. The initial singularity graph

extracted from the input frame field has roughly depicted the final connectivity structure. How-

ever, the original singularities are on or near the surface, such near-misses can lead to distorted and

even degenerate parameterization. After automatic adjustment, all singularities are snapped to the

surface for the model shown, resulting in a polycube topology.

133

Figure 5.10: Our method can automatically remesh the complex model CAD3 while preserving
its important features without time-consuming manual meta-mesh construction.

5.6.1 Comparisons

Automatic generation of high quality hexahedral meshes is still an open problem. Many methods

have been proposed under various assumptions. Gregson et al. [42] assumes no internal singulari-

ties inside of the object. Nieser et al. [81] requires a valid singularity graph in the input. Lévy and

Liu [64] allows non-hexahedral elements in the resulting mesh. The most closely-related work Li

et al. [66] also takes a frame field in the input, and tries to reduce the inadmissible singularities.

Although our method shares some of the same limitations, such as lack of guarantee in eliminating

all inadmissible singularities (e.g. in presence of looped compound singularities), our method has

the following advantages:

• In addition to all the inadmissible cases mentioned in Li et al. [66], our method can detect

and fix surface inadmissible singularities. As shown in Figure 5.11, our method is more

robust by taking such inadmissible singularities into account.

• Our method guarantees convergence for both zigzag and compound edge removal steps. The

compound edge collapsing strategy Li et al. [66] may introduce new zigzags, and is thus

without convergence guarantee.

134

• Near miss cases are often inevitable in automatically generated frame fields. We are the first

to recognize and address such issues in these frame fields.

• There are known specific local degenerate cases that our method can handle but the method

in Li et al. [66] cannot. For instance, a face with three singularity edges in types Ru,Rv, and

Rv cannot be properly handled either in “matching adjustment” phase, “improper singular

edge collapse” phase, or their ad hoc split method. Our pipeline can trivially handle such

cases by first removing zigzag, and then splitting the compound singularity.

• Unlike our subdivision strategy, the collapse strategy used in Li et al. [66] leads to possible

numerical issues in parameterization because of the numerous poorly shaped tetrahedral

elements introduced in fixing long compound singularities (Figure 5.12).

135

Original singularities Fixed singularities

Li et al. [66] Our method

Figure 5.11: Compared with the method in Li et al. [66], which lacks the ability of detecting and
fixing inadmissible surface singularities, our method is more robust in generating high quality

hexahedral meshes in the presence of such singularities.

136

Figure 5.12: Unlike our method, the collapse strategy Li et al. [66] may introduce numerous
poorly shaped tetrahedral elements. The histograms show the scaled Jacobian of the tetrahedral

meshes.

5.7 Conclusion

In this section, we represent the relations of the singularities in a frame field guided parameteriza-

tion as a graph, and mathematically formulate the common problematic singularity cases. Then, we

provide a framework to automatically detect and treat them in a consistent way within the graph,

and finally generate an all-hexahedral mesh by solving a mixed integer programming problem after

reducing the number of integer variables. Our main contributions include:

• We give a definition of surface singularities, and necessary conditions for admissible singu-

larity graph of both internal and surface singularities for hexahedral meshing.

• We provide a procedure for treatment of common defects in the singularity graph, which

would lead to degenerate parameterization if left alone.

• We demonstrate a practical solution for hexahedral mesh generation guided by automatically

generated guidance cross-frame input fields.

137

Chapter 6

3D Volume Data Structures for Compact

Storage

Volumetric meshes, e.g., those generated using our method in the previous chapter, are now ubiq-

uitous in solid modeling, physics-based simulation, computational science, and even rendering of

translucent materials. However, the ever-increasing size and complexity of meshes impose un-

due stress on both memory access times and usage, especially since mesh size typically grows

as a cubic function of the resolution. A data structure with small memory footprint that can effi-

ciently handle queries of incidence and adjacency would thus benefit a wide range of applications

in graphics and scientific computing in general.

Based on a topological representation called combinatorial maps, we provide a simple but

generic method for defining volume cell types, extending the array-based mesh data structure pro-

posed by Alumbaugh and Jiao [3], through completing the data structure with a list of edges and

improving incidence queries within each volume cell. As shown in Table 1.2, our data structure

increases memory usage by only a small fraction compared with Alumbaugh and Jiao [3]’s method.

138

6.1 Related Work

A common assumption for volumetric meshing is that 3D volumes are of 3D manifolds without

degenerate structures such as “shark-fins” or “hanging rods”. Under this assumption, a so-called

element connectivity table, which maps volume cells to their corner vertices, provides us com-

plete adjacent information about vertices, edges, faces, and volume cells. Although this can be

adequate for a certain geometry processing algorithms like those presented in [106, 79], compu-

tational applications still prefer to constant-time incidence queries (i.e., access lower dimension

geometry primitives from higher dimension ones, or vice versa). For instance, some applications

may only require certain incidence queries, e.g., cell-face relations in ray-tracing [77], cell-vertex

(cells around vertex) relations in Delaunay tetrahedralization. On the other hand, many FEM-based

applications may need all incidence queries, including face-edge relations [28]. Those queries

cannot be easily achieved if we only have the element connectivity table. This desired property is

referred to as comprehensiveness in [3].

To solve this problem, several data structures are proposed. Guibas and Stolfi [43] initially

propose a face-edge data structure. Brisson [16] invents a more abstract “cell-tuple” data structure,

using the idea of boundary representation for a mesh. This innovative idea is based on the fact

that it is theoretically possible to “order” all the (k−1)-cells and k-cells around a (k−2)-cell on the

boundary of a (k+1)-cell. In fact, nearly three decades earlier, Edmonds [34] already had intro-

duced a notion called Combinatorial Map for polyhedral surfaces and orientable quasi-manifoldsi.

Lienhardt [67] proposes to extend the combinatorial maps to generalized d-maps to represent non-

orientable manifolds. Beall and Shephard [5] develop a topology-based mesh data structure which

stores the adjacent information in the boundary representation; however, their direct implemen-

iAlso called singular manifold in some cases.

139

tation of adjacent relationships requires a relatively large amount of additional memory storage.

Although generalized d-maps can also be compressed [92], the adjacency information will only be

restored through decompression.

Recently, a number of compact data structures have been proposed. For example, Blandford

et al. [7] introduce a method to provide comprehensive connectivity information using only about

7.5 bytes per tetrahedron. However, this approach is only applicable to simplicial meshes. Alum-

baugh and Jiao [3] present a compact array-based data structure for 3D orientable manifold cell

complexes. With the concept of anchored half-faces, incident cells can be computed in constant

time. However, while an incident edge can be represented by two vertex indices, it is not possible

to find an identifier for the edge, using only the proposed connectivity representation. Celes et al.

[19] independently developed a similar data structure which only explicitly stores the incidence

information of nodes and mesh elements, with pre-defined element types. Edges and faces are still

implicitly represented, but bit flags are used to ensure uniqueness. Their method also improves the

speed of adjacency queries with “reverse indices”.

6.2 Combinatorial Maps

In order to introduce the notion of combinatorial maps, we loosely follow the notation used in [24]

and call k-dimensional cells k-cells. Hence, vertices are 0-cells, edges are 1-cells, faces are 2-cells,

and volume cells (such as tetrahedra, prims, etc) are 3-cells. Two cells of different dimensions are

said to be incident if one is a subset of the other. Two k-cells of the same dimension are adjacent if

they share a common (k−1)-cell.

A combinatorial map describes the incidence and adjacency relations among cells of the mesh

using a basic element called dart, and a group of relations between darts. For an orientable 3D

140

manifold, a 3D dart corresponds to a cell tuple (v, e, f , c), where v is a starting vertex of an edge

e that lies in a face f of 3-cell c. For 2D orientable surfaces, a 2D dart would be the same as the

usual half-edge.

An abstract way to define a whole 3D combinatorial map M is to use

1. D is a finite set of darts;

2. for i = 1, 2, 3, βi : D→ D is a mapping;

3. β1 is a permutation;

4. β2, β3, and β1 ◦ β3 are involutions.ii

In this abstract sense, we can define k-cells by orbits 〈S 〉(d), i.e., the set of darts that can be

reached by arbitrary combination of maps m ∈ S :

• the 3-cell containing d is 〈{β1, β2}〉(d);

• the 2-cell containing d is 〈{β1, β3}〉(d);

• the 1-cell containing d is 〈{β2, β3}〉(d),

• the 0-cell containing d is 〈{β1 ◦ β2, β1 ◦ β3}〉(d).

The following pictures show an example of how combinatorial maps defined on a volume.

Readers are invited to verify the above definitions.

iiFor a map f : X → X, if ∀x : f ◦ f (x) = x, we call this map an involution. Hence, condition 4
means that ∀d ∈ D, β2 ◦ β2(d) = d, β3 ◦ β3(d) = d, and (β1 ◦ β3) ◦ (β1 ◦ β3)(d) = d.

141

(a) (b)

(c) (d)

Figure 6.1: Example: Combinatorial map for a volume: (a) β1; (b) β2; (c) βc; (d) the complete
combinatorial maps.

Intuitively speaking, βi maps a dart to another dart with a different i-cell and a different vertex.

If we identify the darts with (v, e, f , c) in the regular cell complex description, β1((v, e, f , c)) =

(v′, e′, f , c), β2((v, e, f , c)) = (v′, e, f ′, c), and β3((v, e, f , c)) = (v′, e, f , c′). Note that β1 and β2

are the 3D analogues of a half-edge’s next() and opposite() operations, respectively.

6.3 Compact Volume Data Structure Using Compact Maps

In this section, we propose our compact data structure based on the above combinatorial maps to

achieve two goals: 1) a data structure compatible with arbitrary valid cell elements; 2) efficiency

of all commonly-used incidence queries.

142

6.3.1 Overview

6.3.1.1 File format

For a 2D polygonal mesh, the complete connectivity information can be encoded by a face list,

with each entry corresponding to the list of vertices in the polygon face. However, for a polyhedral

mesh, the same list of vertices can correspond to different polyhedra. For instance, an octahedron

and a prism both have six vertices. As there are only a handful of k-cell types in most k-dimensional

meshes used in practice, we opt to describe all the k-cell types in the header part of the file, and to

describe each polyhedron by an ordered vertex list and its k-cell type.

6.3.1.2 Comprehensive data structure

All low dimensional (≤ k − 1) relations (β1, . . . , βk−1) map darts within the same k-cell. Given

the type of a k-cell, we may assign each dart in that cell a local id, and the maps among the darts

can be precomputed when the k-cell type. One can easily assemble a global ID for each dart by

(C, d), where C is the global ID of the k-cell, and d is the local dart ID. Additional auxiliary local

incidence mapping to increase efficiency can also be created for each k-cell type at a constant

memory cost (independent of the mesh size).

Combinatorial map βk maps a dart in one k-cell C1 to another dart in an adjacent k-cell C2.

Noticing the relation among β’s, we only store βk for one dart in the common (k−1)-cell in C1.

Thus, the size of βk can be reduced to one dart per pair of k-cell and (k−1)-cell.

The relation between k-cells and darts is implicitly given in the way we express a global ID

for each dart (C, d). The mapping from darts to vertices (0-cells) is stored in the vertex lists for

k-cells, also called the element connectivity in array-based methods such as Alumbaugh and Jiao

[3], denoted Cv2V below. The map from each vertex to one of its darts is stored in a table, denoted

143

by V2D below .

The above information enables constant time incidence/adjacency inquiries among vertices,

k-cells, and “half”-(k−1)-cells, akin to Alumbaugh and Jiao [3] except some subtle differences.

However, no unique IDs are actually given to 1-cells, 2-cells, through (k−1)-cells, hence no constant

time incidence inquiries involving these cells can be achieved, without additional memory cost.

We propose to build a minimal set of additional connectivity tables to provide these incidence

relations crucial to real world applications. We describe them as optional, since often only some

of the tables in this set are needed, although at least one of them is, in many cases, indispensable.

Here we restrict our discussion to 3D. To create a unique edge identifier we use a table called

E2D, which maps a global edge ID to one of its darts. The map from darts back to edges can be

implemented through a table V2E mapping a vertex to the edge starting from it with the smallest

ID, as elaborated below. Similarly, but less frequently required, we assign unique face IDs through

the table F2D, and the backward mapping by V2F.

6.3.2 Details for 3D

To illustrate the detailed actual data structure, we use as a running example the description of the

simple meshes shown in Figure 6.2, as found in a mesh file—skipping the list of vertex coordi-

nates since our focus is on connectivity information. As in the compact array-based half-face data

structure (HFDS) [3], we leverage the fact that there are only a few types of cells typically used

in engineering or graphics applications. However, unlike in HFDS, we will not limit ourselves to

3-cells used in the CFD General Notation System (tetrahedron, pyramid, prism, and hexahedron):

any 3-cell type for which faces are locally defined can be specified in the header of a mesh file.

144

0
1

2

3 5

3

2

0 1

4
0 3

41

26
5 7

d1

d9 d10
(C0,d2) (C2,d2)

β1

β2

β3

Figure 6.2: Running example.

6.3.2.1 Local information within each 3-cell

Each 3-cell is treated locally as a 2-manifold cell complex, which can be represented by a local

half-edge structure, i.e., a 2D combinatorial map. For a given type of 3-cell with nv vertices, ne

edges, n f faces:

• locally denote each vertex by vi, with i ∈ {0, . . . , nv − 1};

• locally label each face as fm = (vi, v j, vk, . . .), with m ∈ {0, . . . , n f − 1}.

• (optionally) locally label each of the 2ne darts as ek = (vi, v j), with k ∈ {1, . . . , 2ne};

Darts are indexed starting from 1, as 0 is reserved for boundaries.

The mesh file for Figure 6.2 would thus contain the following information:

145

faces 0:(0,2,1) 1:(0,1,3) 2:(1,2,3) 3:(2,0,3)

darts 1:(0,1) 2:(1,0) 3:(0,2) 4:(2,0)

5:(0,3) 6:(3,0) 7:(1,2) 8:(2,1)

9:(1,3) 10:(3,1) 11:(2,3) 12:(3,2)

Table 6.1: Cell type 0 (tetrahedron).

faces 0:(0,2,1) 1:(0,1,4,3) 2:(1,2,5,4)

3:(2,0,3,5) 4:(3,4,5)

darts 1:(0,1) 2:(1,0) 3:(0,2)

4:(2,0) 5:(0,3) 6:(3,0)

7:(1,2) 8:(2,1) 9:(1,4)

10:(4,1) 11:(2,5) 12:(5,2)

13:(3,4) 14:(4,3) 15:(3,5)

16:(5,3) 17:(4,5) 18:(5,4)

Table 6.2: Cell type 1 (prism).

type 0 C0:(1,0,2,6) C1:(3,4,5,7)

type 1 C2:(0,1,2,3,4,5)

Table 6.3: Cells table for mesh shown in Figure 6.2 .

In all the tables we list, the information before “:” is for illustration purposes only, and is thus

not stored in memory or files. For each 3-cell type, defining only the faces would be necessary

and sufficient, since we can build the darts based on faces and give them labels. We then build a

lookup table for β1 and β2 of all darts, with 2ne entries and 2ne possible values in the range for

146

each entry. In our running example, the β1 and β2 tables for 3-cell type 0 are

d 1 2 3 4 5 6

β1 9 3 8 5 12 1

β2 2 1 4 3 6 5

d 7 8 9 10 11 12

β1 11 2 6 7 10 4

β2 8 7 10 9 12 11

Table 6.4: β1 and β2 tables for the running example shown in Figure 6.2.

Here the rows labeled β1 and β2 contain the images of the darts of the same column in the rows

labeled with d, e.g. β1(1) = 9 and β2(1) = 2.

Assuming a small number of 3-cell types compared to mesh size, these type specifications

only use a negligible amount of memory. In fact, storing all the local incidence and adjacency

information directly for improved speed only requires an additional constant memory cost. We

denote local incidence mappings as follows:

• d2 f (d) maps a dart d to its local face ID;

• f 2d(f , i) is the i-th dart of the local face f ;

• d2v(d) maps a dart d to its starting vertex.

We use lower (resp., upper) cases in the name of a map to denote whether the index is local (resp.,

global).

147

6.3.2.2 Global information

We load the connectivity table that contains, for each 3-cell, the global indices of its vertices. We

denote this table by Cv2V(C, v) since it maps the v-th vertex of 3-cell C to its global index V . Note

that this corresponds to the usual way of storing the bare minimum connectivity information of 2D

polygonal meshes in files. Similarly, one can organize the file by listing vertex lists of every 3-cell

in their order of enumeration; that is, the file first lists the descriptions of 3-cell types, followed by

vertex lists of all 3-cells of the first type, the second type, etc. Once we have the 3-cell connectivity,

a dart can be globally indexed by an ordered pair D = (C, d), where C is the global 3-cell ID, and

d is the local dart index. Note that instead of using a local face index with a starting vertex (called

anchored half face) as in HFDS, we use local indices of darts; for the common case of tetrahedron

meshes, this means we can cope with meshes twice as large for the same amount of memory.

To complete incidence and adjacency information in the combinatorial map, we need to con-

struct β3. We save space by noticing that β3 = β1 ◦ β3 ◦ β1, which means that β3(D) can be in-

ferred if β3(β1(D)) is known. Thus, we only store β3 for the first dart in each half face H = (C, f),

and denote this additional table by H2D(C, f). If the application requires the use of boundary

darts, their β3 can be stored in a separate list B2D(B), mapping the first dart of each boundary

face B to its corresponding dart in the 3-cell adjacent to it. We also need to map from a ver-

tex to one of its darts V2D(v); but the map from a dart to its starting vertex is trivially found by

D2V(C, d) = Cv2V(C, d2v(d)).

148

β3 C0 f0d3:(2,8) f1d1:(0,0) f2d7:(1,0) f3d4:(2,0)

C1 f0d3:(2,16) f1d1:(3,0) f2d7:(4,0) f3d4:(5,0)

C2 f0d3:(0,8) f1d1:(6,0) f2d7:(7,0) f3d4:(8,0)

f4d13:(1,2)

B2D BF0:(0,1) BF1:(0,7) BF2:(0,4) BF3:(1,1) BF4:(1,7)

BF5:(1,4) BF6:(2,1) BF7:(2,7) BF8:(2,4)

V2D V0:(0,7) V1:(0,1) V2:(0,4) V3:(1,1) V4:(1,7)

V5:(1,4) V6:(0,10) V7:(1,6)

Table 6.5: The tables for the 3-cell example.

6.3.2.3 Boundary

The map β3 usually returns an internal dart (C, d) with d > 0. However, if the opposite is a

boundary dart, it will return (B, 0), where B is the boundary half-face ID. We carefully choose

V2D so that whether a vertex V is on boundary can be determined by examining β3(V2D(V)).

Darts belonging to boundary half-face do not need to explicitly maintained in most cases .

6.3.2.4 Edge and face incidence information

If we need to use a unique edge identifier, a table for E2D(E) is maintained to map an edge to one of

its darts. We sort the edges in the E2D table by lexicographic order of their vertices (Vstart,Vend)

assuming that it always points from the vertex with a smaller index to the one with a larger index.

A backward mapping D2E can be implemented by a table V2E(V), mapping vertex V to the first

edge starting from it. We can avoid sorting the edges by using a linked list at the cost of storing

another n1 integers. The map V2E would then be made to map a vertex to a linked list of edges

149

starting from it.

If only half faces need identifiers, (C, f) can be used instead. Otherwise, a table F2D(F) is

required. Similar to the edge case, we can sort the faces by their first three vertices, assuming

that the vertices are in ascending order within each face F. Then the backward mapping D2F can

be implemented by V2F(V), mapping vertex V to the first face that has V as its smallest-indexed

vertex.

For our running example, the (optional) edge tables are:

E2D E0(V0,V1):(0,2) E1(V0,V2):(2,3) E2(V0,V3):(2,5)

E3(V0,V6):(0,9) E4(V1,V2):(0,3) E5(V1,V4):(2,9)

E6(V1,V6):(0,5) E7(V2,V5):(2,11) E8(V2,V6):(0,11)

E9(V3,V4):(2,13) E10(V3,V5):(1,3) E11(V3,V7):(1,5)

E12(V4,V5):(2,17) E13(V4,V7):(1,9) E14(V5,V7):(1,11)

V2E V0:0 V1:4 V2:7 V3:9

V4:12 V5:14 V6: V7:

Table 6.6: Optional edge tables for the running example.

6.3.2.5 Example table construction

The construction of most tables is straightforward since the mesh connectivity information is com-

plete. We only give an example of how to build E2D in Algorithm 1. Note that the procedure

ensures that a quick counter-clockwise traversal of the edge’s one-ring is possible even when it is

on the boundary, and an easy boundary test through β3 ◦ β2(E).

150

Algorithm 3: Build E2D table
1: Initialize flag table visited(), E ← 0
2: for all non-boundary dart D do
3: if visited(D) then
4: continue
5: end if
6: D0 ← D
7: while true do
8: D′ ← β3 ◦ β2(D) {rotate clockwise}
9: if Boundary(D′) or D′ = D0 then

10: break
11: end if
12: D← D′

13: end while
14: E2D(E)← D, E ← E + 1, D0 ← D
15: repeat
16: visited(D)← true, vistied(β2(D))← true
17: D← β2 ◦ β3(D) {rotate counter-clockwise}
18: until Boundary(D) or D = D0
19: end for

6.3.2.6 Spatial complexity

Tetrahedron meshes are the easiest test objects to establish comparisons between various data

structures: for such meshes, we can approximate all k-cell counts nk as a function of the number of

tetrahedra n3 and boundary faces nb—other mesh types must be analyzed using the count of darts,

and its estimated relation with k-cell numbers. Following Beall and Shephard [5], we assume the

average valence of a vertex is around 4π divided by the solid angle for a vertex of an equilateral

tet 0.5513, i.e., 22.8. Additionally, we assume that the average solid angles at boundary nodes are

about half of the average angle. Based on these assumptions, the fact that each tetrahedron has 4

vertices and 4 faces, and Euler’s formula, we have

22.8n0 ≈ 4n3, 4n3 + nb = 2n2, n0 − n1 + n2 − n3 ≈ 0.

151

The k-cell counts are therefore

n0 ≈ 0.175n3, n1 ≈ 1.175n3 + 0.5nb, n2 = 2n3 + 0.5nb.

In the following analysis, we assume that the lowest four or more bits are sufficient to encode

the local dart index or the local half face index; thus we need only one integer for (C, d) or (C, f).

Alternatively, for tetrahedron meshes with fixed connectivity, we can use an integer D such that it

represents C = D/12 and d = D%12. When 3-cells are sorted by type, this method can be easily

extended to cope with hybrid meshes and to include boundary darts. The memory size required for

the various connectivity tables are listed below:

Table V2XYZ Cv2V H2D V2D B2D

Space 3n0 4n3 4n3 n0 nb

Table(optional) E2D V2E F2D V2F

Space n1 n0 n2 n0

Table 6.7: Memory cost for the various connectivity tables.

By tallying up these numbers, we find that 8n3 + n0 + nb ≈ 8.175 n3 + nb integers are required

for the basic tables, in par with the basic eight pointers per tetrahedron (pointing to adjacent tetra-

hedra and corner vertices) plus one pointer per node (to one incident tetrahedron) used to encode

connectivity in Pyramid and CGAL, and close to Blandford et al. [7]’s tetrahedron mesh struc-

ture prior to difference code compression. Data structures capable of handling generic polytope

meshes require more memory space when used for simplicial meshes, e.g., Dobkin and Laszlo’s

structure [30] would require around 18n3 pointers, while radial-edge, cell-tuple, and G-map rep-

resentations, as well as CGAL’s combinatorial map, would use even more memory. If unique edge

152

identifiers are needed, we require n0 + n1 ≈ 1.35 n3 additional integers, which is more compact

than the pure tet mesh encoding of [7] before difference coding.

HFDS [3] uses the same amount of basic space (8.175 n3 + nb). However, their encoding of

a local dart (anchored face) identifier (C, f , v) uses a separate local index f for a face within the

tetrahedron and a local index v of a vertex within the face. Thus, it would be less memory efficient

when dealing with generic 3-cells, for example, 3-cells that have 5-edge faces or more. In addition,

even in the common case of tetrahedron meshes, HFDS requires 5 bits for local indices (f = 0 is

reserved for boundary), while we only need 4 bits, enabling us to handle meshes with 256M 3-cells

with a 32-bit integer representation, instead of their 128M limit.

Furthermore, and key to runtime efficiency, we provide a simple way to give edges and faces

unique identifiers. As we elaborate upon next, this enables constant time incidence queries, and

allows appending attributes to edges and faces, which are important in simulation and other com-

putational tasks. The HFDS data structure does not actually provide any means to get unique

adjacent edge IDs in constant time.

6.4 Incidence/Adjacency Queries

As our data structure can be seen as an internal representation of a combinatorial map, it can

directly leverage any implementation of combinatorial maps to get incidence and adjacency infor-

mation in constant time. In addition, with integer IDs, additional attributes associated to vertices,

darts, half faces, cells, edges, and faces, can be directly allocated as an array with the appropriate

size, making it highly efficient and flexible for static meshes. We will first give a few examples of

commonly-used neighborhood constructions such as one-rings in Algorithms 4 and 5.

Assuming constant maximum valence, both algorithms run in constant time. To map a dart to

153

Algorithm 4: One-ring darts and cells around vertex V0
Ensure: {darts} and {cells} contain darts and cells in the one-ring.
1: C ← (V2D(V0)→ C)
2: Queue Q.push(C), save C in {cells}
3: while Q not empty do
4: C ← Q.pop()
5: {Di} ← all darts starting at V0 in C
6: save {Di} in {darts}
7: for all D in {Di} do
8: C ← (β3(D)→ C)
9: if C not in {cells} then

10: Q.push(C), save C in {cells}
11: end if
12: end for
13: end while

Algorithm 5: One-ring (internal) HF around Edge E0
Ensure: Array {HF} is the CCW ordered one-ring.
1: D0 ← E2D(E0), D← D0
2: repeat
3: C ← (D→ C), d ← (D→ d)
4: save (C, d2 f (d)) and (C, d2 f (β2(d))) in {HF}
5: D← β2 ◦ β3(D) {rotate counter-clockwise}
6: until Boundary(D) or D = D0

a unique edge ID, we find the end vertices (Vstart,Vend) with Vstart < Vend. We then perform a

linear search in E2D starting from V2E(Vstart), this again would terminate in constant time.

In most cases, faces do not need a unique ID, as attributes are often associated to half faces;

but if needed, our F2D and V2F tables can be used to provide a unique face ID.

All other incidence information can be similarly assembled from the mappings between cells

and darts and the mappings among darts.

154

6.5 Conclusion

In this section, we present a concise local connectivity representation of generic 3-cell (volume

cell) types, an efficient way to store all the combinatorial maps in volume meshes, and a straight-

forward way of associating attributes to k-cells (k ∈ {0, 1, 2, 3}). With this compact volumetric data

structure, we demonstrate that the time complexity of accessing to adjacency information (e.g.,

face-edge) is constant.

One limitation of the compact combinatorial map data structure described here is its apparent

inability to deal gracefully with dynamically changing connectivity, in particular with possible

changes of 3-cell types. (On the other hand, if 3D cells are kept intact as in the case of cutting or

merging meshes along faces, the mesh can be easily modified accordingly.) However, we believe

that our data structure can be readily altered to efficiently handle connectivity changes as well: one

could use pointers instead of integers for the IDs of 3-cells and vertices—and the last few bits of

the pointer can actually be used to encode local dart index as in the integer case.

155

Chapter 7

Conclusion and Future Work

Based on the theory of discrete differential geometry, we present novel representations of mesh

connectivity, geometric shape, singularity structure, and shape correspondence, and demonstrate

the effectiveness of our representations in applications such as meshing and shape correspondence.

We summarize our main contributions as follows:

• In Chapter 3, based on the first and second fundamental forms represented simply by edge

lengths and dihedral angles, we present local and global versions of the discrete fundamental

theorem of surfaces. The preservation of the fundamental theorem of surfaces leads to a sim-

ple procedure to construct an embedding through a sparse linear solver given an arbitrary set

of edge lengths and dihedral angles. As the main application, a practical mesh deformation

algorithm is proposed to handle point constraints and orientation constraints concurrently in

a rigid-motion-invariant fashion.

• In Chapter 4, we extend the functional map representation for correspondence maps to the

vector field map representation. The generalized vector field map representation is able to

handle the constraints for correspondence inference in the important conformal case. We

156

also demonstrate the possibility of extending the method to handle function transfer between

shapes with different topology. For the specific bases used in the generalization, we develop

a spectral vector field analysis tool for handling various vector fields on surfaces.

• In Chapter 5, we present a global volumetric parameterization-based tool to automatically

generate all-hexahedral meshes based on 3D frame fields. We first introduce the definition of

surface singularities in the singularity structure represented as a graph. Although a manually

constructed or adjusted frame field may lead to a singularity graph compatible to a non-

degenerate parameterization, an automatically generated one usually will not. To eliminate

degeneracy in parameterization caused by conflicting rotational transitions often presented

in an automatically generated frame field, the definitions and some analyses on commonly

seen inadmissible internal and surface singularity types are provided in this dissertation. We

also devise a framework to adjust these problematic singularities by applying a sequence

of local operations with guaranteed convergence, by rerouting and splitting the singularity

edges within the graph.

• In Chapter 6, an efficient internal representation of combinatorial maps is presented to de-

scribe the connectivity of volumetric meshes. All necessary components in combinatorial

maps can be implemented in compact form. Compared to previous work, our data struc-

ture can handle arbitrary 3-cell types, and it provides adjacency and boundary inquiries in

constant time. Appending attributes to cells of any dimension is also straightforward.

Our novel representations based on the theory of discrete differential geometry points to several

directions for future research:

• In our local surface shape representation, we proposed an ad-hoc method for conversions

between matrix functions and discrete fundamental forms. For further improvement on ac-

157

curacy, it is necessary to investigate the continuous limits of the matrix functions when we

refine the mesh. Another topic worth exploring is the design of a modified version of our

energy functional to serve as a potential energy for thin shell simulations—we could asso-

ciate translational velocities at vertices with a lumped mass matrix, and rotational velocities

at faces with moments of inertia of each triangle. We also wish to study proper handling

of potential energy with inhomogeneous and anisotropic material property using our basic

representation. Based purely on geometric information, we can also try to weight different

dihedral angles differently to enforce feature preservation, or weight regions differently to

modify their rigidity according to user specifications.

• In theory, our vector field map representation assumes conformal mapping, which implies

that the gradient field mapping (C̄) and curl field mapping (C̃) are identical. Thus, to extend

the representation to non-conformal cases, one must explore the representation with C̄ , C̃.

In practice, experimenting with possible applications in automatic feature alignment through

our novel constraint for vector field pair preservation may lead to improved correspondence

inference. Applying our vector field map representation to areas such as analysis of large

collections of non-isometric similar shapes [80, 58, 94] or improvement to point-to-point

maps [57] are also interesting directions for future endeavor.

• One major limitation of our automatic hexahedral meshing method is the lack of a theoretical

proof to guarantee that the set of all the conflicting geometric and topological structures can

be detected and fixed by using the definition of inadmissible singularity. It is interesting yet

challenging to develop a sufficient condition to guarantee a complete solution for automatic

all-hexahedral remeshing. Current methods may generate hexahedral meshes with degener-

ate elements that cannot be removed without introducing new degeneracy. Indeed, we find

158

that even a singularity graph containing no zigzag or compound singularities can still lead

to degeneracy. We conjecture that it may be related to near misses or certain global inad-

missible structure of the singularity graph, which may force certain singularity lines to be

mapped to a single point in the parameter domain. Thus, we still study the global admissible

condition for the singularity graph.

• For compact volumetric mesh data structure, a possible research direction worth exploring

is the design of admissible local connectivity changes (such as edge removal or 2-3 flip) that

maintain the validity of our combinatorial map data structure. Compression of neighboring

information (β3) using difference coding after sorting the cells along space-filling curves

could also lead to further reduction of memory usage. Additionally, the extension to dimen-

sion n > 3 could be done by encoding the local connectivity (β1, . . . , βn−1) of n-cell types,

and storing only βn. Another possible future direction to explore would be the application

of the data structure in tasks involving volumetric data, such as 3D tensor field design and

solid texturing [120, 117].

159

BIBLIOGRAPHY

160

BIBLIOGRAPHY

[1] M. Alexa. Recent advances in mesh morphing. Computer graphics forum, 21(2):173–198,
2002.

[2] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic polygonal
remeshing. ACM Trans. Graph., 22(3):485–493, jul 2003.

[3] T. J. Alumbaugh and X. Jiao. Compact Array-Based Mesh Data Structures. In B. W. Hanks,
editor, Engineering, IMR ’05, pages 485–503. Springer Berlin Heidelberg, 2005.

[4] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. Scape: shape
completion and animation of people. ACM Trans. Graph., 24(3):408–416, jul 2005.

[5] M. W. Beall and M. S. Shephard. A general topology-based mesh data structure. Interna-
tional Journal for Numerical Methods in Engineering, 40(9):1573–1596, 1997.

[6] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern
Anal. Mach. Intell., 14(2):239–256, feb 1992.

[7] D. K. Blandford, G. E. Blelloch, D. E. Cardoze, and C. Kadow. Compact Representations of
Simplicial Meshes in Two and Three Dimensions. International Journal of Computational
Geometry and Applications, 15(1):3–24, 2005.

[8] A. Bobenko, P. Schröder, J. Sullivan, and G. Ziegle. Discrete Differential Geometry.
Springer, 2008.

[9] A. I. Bobenko and P. Schröder. Discrete Willmore flow. ACM SIGGRAPH 2005 Courses
on - SIGGRAPH ’05, page 5, 2005.

[10] J.-D. Boissonnat. Geometric structures for three-dimensional shape representation. ACM
Trans. Graph., 3(4):266–286, oct 1984.

[11] D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-integer quadrangulation. ACM Trans.
Graph. (SIGGRAPH), 28, 3:77:1–77:10, July 2009.

[12] D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-Integer Quadrangulation. ACM Trans.
Graph., page to appear, 2009.

[13] M. Botsch and L. Kobbelt. A remeshing approach to multiresolution modeling. In Sympo-
sium on Geometry Processing 2004, SGP ’04, pages 185–192, New York, NY, USA, 2004.
ACM.

[14] M. Botsch and O. Sorkine. On linear variational surface deformation methods. IEEE Trans-
actions on Visualization and Computer Graphics, 14(1):213 –230, 2008.

161

[15] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. uno Levy. Polygon Mesh Processing. AK
Peters, 2010.

[16] E. Brisson. Representing geometric structures in d dimensions: topology and order. In SCG
89 Proceedings of the fifth annual symposium on Computational geometry, volume 9, pages
218–227. ACM Press, 1989.

[17] A. Bronstein, M. Bronstein, and R. Kimmel. Numerical Geometry of Non-Rigid Shapes.
Springer Publishing Company, Incorporated, 1 edition, 2008.

[18] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling:
A framework for isometry-invariant partial surface matching. Proceedings of the National
Academy of Science, pages 1168–1172, 2006.

[19] W. Celes, G. H. Paulino, and R. Espinha. A compact adjacency-based topological data struc-
ture for finite element mesh representation. International Journal for Numerical Methods
in Engineering, 64(11):1529–1556, nov 2005.

[20] I. Chao, U. Pinkall, P. Sanan, and P. Schröder. A simple geometric model for elastic defor-
mations. ACM Trans. Graph. (SIGGRAPH), 29:38:1–38:6, July 2010.

[21] K. Crane, M. Desbrun, and P. Schröder. Trivial Connections on Discrete Surfaces. Computer
Graphics Forum (SGP), 29(5):1525–1533, 2010.

[22] K. Crane, U. Pinkall, and P. Schröder. Spin transformations of discrete surfaces. In ACM
Transactions on Graphics (SIGGRAPH), volume 30, page 104. ACM, 2011.

[23] K. Crane, U. Pinkall, and P. Schröder. Robust fairing via conformal curvature flow. ACM
Trans. Graph., 2013.

[24] G. Damiand. Combinatorial maps. In CGAL User and Reference Manual. CGAL Editorial
Board, 4.0 edition, 2012. www.cgal.org/Manual/4.0/doc_html/cgal_manual/packages.html.

[25] J. Daniels, C. T. Silva, J. Shepherd, and E. Cohen. Quadrilateral mesh simplification. ACM
Trans. Graph., 27(5):148:1–148:9, dec 2008.

[26] M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Anisotropic feature-preserving denois-
ing of height fields and bivariate data. In Graphics Interface, volume 11, pages 145–152.
Citeseer, 2000.

[27] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic Parameterizations of Surface Meshes. Com-
puter Graphics Forum, 21, 2002.

[28] M. Desbrun, E. Kanso, and Y. Tong. Discrete Differential Forms for Computational Mod-
eling. In G. Bobenko, A. Schröder, P. Sullivan, J. Ziegler, editor, Discrete Differential
Geometry, pages 287–324. Springer, 2008.

[29] M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for computational modeling.
Discrete differential geometry, pages 287–324, 2008.

162

[30] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdi-
visions. In Proceedings of the third annual Symposium on Computational Geometry, SCG
’87, pages 86–99, New York, NY, USA, 1987. ACM.

[31] S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral remeshing of
arbitrary manifolds. Comput. Aided Geom. Des., 22(5):392–423, 2005.

[32] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral surface quadran-
gulation. ACM Trans. Graph. (SIGGRAPH), 25(3):1057–1066, 2006.

[33] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for
piecewise linear 2-manifolds. Discrete and Computational Geometry (SoCG), 30(1):87–
107, July 2001.

[34] J. R. Edmonds. A combinatorial representation for polyhedral surfaces. Notices Amer Math
Soc, 7:646, 1960.

[35] X. Feng, Y. Wang, Y. Weng, and Y. Tong. Compact combinatorial maps in 3d. In S.-M.
Hu and R. Martin, editors, Computational Visual Media, volume 7633 of Lecture Notes in
Computer Science, pages 194–201. Springer Berlin / Heidelberg, 2012.

[36] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe. Design of tangent vector fields. ACM
Transactions on Graphics (SIGGRAPH), 26(3):56, 2007.

[37] M. S. Floater and K. Hormann. Surface Parameterization: a Tutorial and Survey. In N. A.
Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geomet-
ric Modelling, Mathematics and Visualization, pages 157–186. Springer Berlin Heidelberg,
2005.

[38] T. Frankel. The Geometry of Physics: An Introduction, Second Edition. Cambridge Univer-
sity Press, 2 edition, 2003.

[39] S. Fröhlich and M. Botsch. Example-Driven Deformations Based on Discrete Shells. Com-
puter Graphics Forum, 30(8):2246–2257, dec 2011.

[40] R. V. Garimella and B. K. Swartz. Curvature Estimation for Unstructured Triangulations of
Surfaces. Technical Report LA-UR-03-8240, Los Alamos National Laboratory, 2003.

[41] A. Gray, E. Abbena, and S. Salamon. Modern Differential Geometry of Curves and Surfaces
with Mathematica, Third Edition. Studies in Advanced Mathematics. Taylor & Francis,
2006.

[42] J. Gregson, A. Sheffer, and E. Zhang. All-hex mesh generation via volumetric polycube
deformation. Computer Graphics Forum (SGP), 30:5:1407–1416, 2011.

[43] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the
computation of voronoi. ACM Trans. Graph., 4(2):74–123, apr 1985.

[44] P. S. Heckbert and M. Garland. Optimal triangulation and quadric-based surface simplifica-
tion. Comput. Geom. Theory Appl., 14(1-3):49–65, nov 1999.

163

[45] A. N. Hirani. Discrete exterior calculus. PhD thesis, California Institute of Technology,
Pasadena, CA, USA, 2003. AAI3086864.

[46] J. Huang, M. Zhang, J. Ma, X. Liu, L. Kobbelt, and H. Bao. Spectral quadrangulation with
orientation and alignment control. ACM Trans. Graph., 27:147:1–147:9, December 2008.

[47] J. Huang, Y. Tong, K. Zhou, H. Bao, and M. Desbrun. Interactive Shape Interpolation
through Controllable Dynamic Deformation. IEEE transactions on visualization and com-
puter graphics, aug 2010.

[48] J. Huang, Y. Tong, H. Wei, and H. Bao. Boundary aligned smooth 3d cross-frame field.
ACM Trans. Graph., 30:143:1–143:8, dec 2011.

[49] J. Huang, T. Jiang, Y. Wang, Y. Tong, and H. Bao. Automatic frame field guided hexahedral
mesh generation. Technical report, Zhejiang University, 2012.

[50] Q.-X. Huang, B. Adams, M. Wicke, and L. J. Guibas. Non-rigid registration under isometric
deformations. Comput. Graph. Forum, 27(5):1449–1457, 2008.

[51] T. A. Ivey and J. M. Landsberg. Cartan for Beginners: Differential Geometry Via Mov-
ing Frames and Exterior Differential Systems. American Mathematical Society, illustrate
edition, 2003.

[52] V. Jain, H. Zhang, and O. van Kaick. Non-rigid spectral correspondence of triangle meshes.
International Journal of Shape Modeling, 13(01):101–124, 2007.

[53] M. Jin, Y. Wang, S.-T. Yau, and X. Gu. Optimal global conformal surface parameterization.
In Visualization, 2004. IEEE, pages 267–274. IEEE, 2004.

[54] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallo-
graphica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography,
32(5):922–923, 1976.

[55] F. Kälberer, M. Nieser, and K. Polthier. Quadcover - surface parameterization using
branched coverings. Computer Graphics Forum, 26(3):375–384, sep 2007.

[56] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schröder, and M. Desbrun.
Geometric, variational integrators for computer animation. Computer, pages 43–51, 2006.

[57] V. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic maps. ACM Transactions on
Graphics (TOG), 30(4):79, 2011.

[58] V. Kim, W. Li, N. Mitra, S. DiVerdi, and T. Funkhouser. Exploring collections of 3d models
using fuzzy correspondences. ACM Transactions on Graphics (TOG), 31(4):54, 2012.

[59] L. Kobbelt and M. Botsch. A survey of point-based techniques in computer graphics. Com-
puters & Graphics, 28(6):801–814, 2004.

164

[60] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution modeling
on arbitrary meshes. In Proceedings of SIGGRAPH 1998, pages 105–114, New York, NY,
USA, 1998. ACM.

[61] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution hierarchies on unstructured triangle
meshes. Comput. Geom. Theory Appl., 14(1-3):5–24, 1999.

[62] A. Kovnatsky, M. Bronstein, A. Bronstein, K. Glashoff, and R. Kimmel. Coupled quasi-
harmonic bases. arXiv preprint arXiv:1210.0026, 2012.

[63] V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing of 3d models.
ACM Transactions on Graphics (SIGGRAPH), 23(3):861–869, 2004.

[64] B. Lévy and Y. Liu. Lp centroidal Voronoi tessellation and its applications. ACM Trans.
Graph. (SIGGRAPH), 29(4):119:1–119:11, July 2010.

[65] B. Levy and R. H. Zhang. Spectral geometry processing. In ACM SIGGRAPH Course
Notes, 2010.

[66] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. All-hex meshing using singularity-restricted
field. ACM Trans. Graph. (to appear), dec 2012.

[67] P. Lienhardt. Topological models for boundary representation : a comparison with n-
dimensional generalized maps. Computer-Aided Design, 23(1):59–82, 1991.

[68] Y. Lipman and T. Funkhouser. Mobius voting for surface correspondence. ACM Transac-
tions on Graphics (Proc. SIGGRAPH), 28(3), aug 2009.

[69] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel. Differential
Coordinates for Interactive Mesh Editing. In Proceedings of Shape Modeling International,
pages 181–190. IEEE Computer Society Press, 2004.

[70] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. Linear rotation-invariant coordinates
for meshes. ACM Trans. Graph., 24:479–487, July 2005.

[71] Y. Liu and J. Snoeyink. A Comparison of Five Implementations of 3D Delaunay Tessella-
tion. Combinatorial and Computational Geometry, 52:435–453, 2005.

[72] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang. On centroidal
voronoi tessellation-energy smoothness and fast computation. ACM Trans. Graph., 28:
101:1–101:17, September 2009.

[73] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. COMPUTER GRAPHICS, 21(4):163–169, 1987.

[74] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer. Articulated shape matching
using laplacian eigenfunctions and unsupervised point registration. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

165

[75] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry opera-
tors for triangulated 2-manifolds, 2002.

[76] S. Michael. kd tree nearest neighbor and range search, 2005.

[77] P. Muigg, M. Hadwiger, H. Doleisch, and E. Gröller. Interactive volume visualization of
general polyhedral grids. IEEE transactions on visualization and computer graphics, 17
(12):2115–24, dec 2011.

[78] P. Mullen, P. Memari, F. de Goes, and M. Desbrun. Hot: Hodge-optimized triangulations.
ACM Trans. Graph., 30:103:1–103:12, aug 2011.

[79] P. Murdoch. The spatial twist continuum: A connectivity based method for representing all-
hexahedral finite element meshes. Finite Elements in Analysis and Design, 28(2):137–149,
1997.

[80] A. Nguyen, M. Ben-Chen, K. Welnicka, Y. Ye, and L. Guibas. An optimization approach
to improving collections of shape maps. In Computer Graphics Forum, volume 30, pages
1481–1491. Wiley Online Library, 2011.

[81] M. Nieser, U. Reitebuch, and K. Polthier. CubeCover - parameterization of 3d volumes.
Computer Graphics Forum (SGP), 30:5:1397–1406, 2011.

[82] J. R. Nieto and A. Susín. Cage based deformations: A survey. In Deformation Models,
pages 75–99. Springer, 2013.

[83] OpenVolumeMesh. OpenVolumeMesh - A Generic and Versatile Index-Based Data Struc-
ture for Polytopal Meshes. http://www.openvolumemesh.org/, 2012.

[84] R. Osserman. A Survey of Minimal Surfaces. Phoenix Edition Series. Dover Publications,
2002.

[85] M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. J. Guibas. One point isometric matching
with the heat kernel. Comput. Graph. Forum, 29(5):1555–1564, jul 2010.

[86] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas. Functional maps: a
flexible representation of maps between shapes. ACM Trans. Graph., 31(4):30:1–30:11, jul
2012.

[87] M. Ovsjanikov, M. Ben-Chen, F. Chazal, and L. Guibas. Analysis and visualization of maps
between shapes. Computer Graphics Forum, 2013 (to appear).

[88] J. Palacios and E. Zhang. Rotational symmetry field design on surfaces. ACM Trans. Graph.
(SIGGRAPH), 26:3:55, 2007.

[89] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape modeling with point-sampled
geometry. ACM Trans. Graph., 22(3):641–650, 2003.

[90] C.-H. Peng, E. Zhang, Y. Kobayashi, and P. Wonka. Connectivity editing for quadrilateral
meshes. ACM Trans. Graph., 30:141:1–141:12, dec 2011.

166

http://www.openvolumemesh.org/

[91] U. Pinkall and K. Polthier. Computing Discrete Minimal Surfaces and Their Conjugates.
Experimental Mathematics, 2:15–36, 1993.

[92] S. Prat, P. Gioia, and Y. Bertrand. Connectivity compression in an arbitrary dimension. The
Visual Computer, 21(8-10):876–885, sep 2005.

[93] R. Rustamov. Laplace-beltrami eigenfunctions for deformation invariant shape representa-
tion. In Proceedings of the fifth Eurographics symposium on Geometry processing, pages
225–233. Eurographics Association, 2007.

[94] R. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal, and L. Guibas. Map-
based exploration of intrinsic shape differences and variability. ACM Trans. Graph. (SIG-
GRAPH), 2013.

[95] S. P. Serna, A. Stork, and D. W. Fellner. Considerations toward a Dynamic Mesh Data
Structure. In SIGRAD Conference, pages 83–90, 2011.

[96] J. Shepherd. Topologic and geometric constraint-based hexahedral mesh generation. PhD
thesis, University of Utah, 2007.

[97] J. F. Shepherd and C. J. Tuttle. Quality improvement and feature capture in hexahedral
meshes. Technical Report UUSCI-2006-029, The University of Utah, 2006.

[98] J. R. Shewchuk. General-dimensional constrained delaunay and constrained regular trian-
gulations, i: Combinatorial properties. Discrete Comput. Geom., 39(1):580–637,
mar 2008.

[99] B.-Y. Shih and H. Sakurai. Automated hexahedral mesh generation by swept volume de-
composition and recomposition. In 5th International Meshing Roundtable, pages 273–280,
1996.

[100] D. Sieger and M. Botsch. Design , Implementation , and Evaluation of the Surface mesh
Data Structure. In International Meshing Roundtable, pages 533–550, 2011.

[101] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. Laplacian
Surface Editing. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Ge-
ometry Processing, pages 179–188. Eurographics Association, 2004.

[102] M. L. Staten, R. A. Kerr, S. J. Owen, and T. D. Blacker. Unconstrained paving and plas-
tering: Progress update. In In Proceedings, 15th International Meshing Roundtable, pages
469–486, 2006.

[103] Y. Su, K. Lee, and A. S. Kumar. Automatic hexahedral mesh generation for multi-domain
composite models using a hybrid projective grid-based method. Computer-Aided Design,
36(3):203 – 215, 2004.

[104] R. Sumner and J. Popović. Deformation transfer for triangle meshes. In ACM Transactions
on Graphics (SIGGRAPH), volume 23, pages 399–405. ACM, 2004.

167

[105] G. Taubin. A signal processing approach to fair surface design. In Proceedings of the
22nd annual conference on Computer graphics and interactive techniques, SIGGRAPH
’95, pages 351–358, New York, NY, USA, 1995. ACM.

[106] T. Tautges, T. Blacker, and S. Mitchell. The Whisker Weaving Algorithm: a Connectivity-
Based Method for Constructing All-Hexahedral Finite Element Meshes. International Jour-
nal for Numerical Methods in Engineering, 39(19):3327–3349, 1996.

[107] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing quadrangulations with
discrete harmonic forms. In Proceedings of the fourth Eurographics symposium on Geom-
etry processing, SGP ’06, pages 201–210, Aire-la-Ville, Switzerland, Switzerland, 2006.
Eurographics Association.

[108] J. Tournois, C. Wormser, P. Alliez, and M. Desbrun. Interleaving delaunay refinement and
optimization for practical isotropic tetrahedron mesh generation. ACM Trans. Graph., 28:
75:1–75:9, July 2009.

[109] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape correspon-
dence. Computer Graphics Forum, 30(6):1681–1707, 2011.

[110] Y. Wang, B. Liu, and Y. Tong. Linear surface reconstruction from discrete fundamental
forms on triangle meshes. Computer Graphics Forum, pages no–no, 2012.

[111] M. Wardetzky, M. Bergou, D. Harmon, D. Zorin, and E. Grinspun. Discrete quadratic
curvature energies. Comput. Aided Geom. Des., 24:499–518, November 2007.

[112] S. Yamakawa and K. Shimada. Hex-dominant mesh generation with directionality control
via packing rectangular solid cells. In Proceedings of Geometric Modeling and Processing
2002, pages 2099–2129, 2003.

[113] H. Yamauchi, S. Gumhold, R. Zayer, and H.-P. Seidel. Mesh segmentation driven by gaus-
sian curvature. The Visual Computer, 21:659–668, 2005. 10.1007/s00371-005-0319-x.

[114] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh Editing with
Poisson-Based Gradient Field Manipulation. ACM TRANS. GRAPH (SIGGRAPH), 23:644–
651, 2004.

[115] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel. Harmonic guidance for surface deformation.
In Eurographics, volume 24:3 of Computer Graphics Forum, pages 601–609, 2005.

[116] W. Zeng, Y. Zeng, Y. Wang, X. Yin, X. Gu, and D. Samaras. 3D non-rigid surface matching
and registration based on holomorphic differentials. In Computer Vision–ECCV 2008, pages
1–14. Springer, 2008.

[117] G.-X. Zhang, S.-P. Du, Y.-K. Lai, T. Ni, and S.-M. Hu. Sketch guided solid texturing.
Graphical Models, 73(3):59–73, may 2011.

[118] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. Van Kaick, and A. Tagliasacchi.
Deformation-driven shape correspondence. Computer Graphics Forum, 27(5):1431–1439,
2008.

168

[119] M. Zhang, J. Huang, X. Liu, and H. Bao. A wave-based anisotropic quadrangulation
method. ACM Trans. Graph., 29(4):118:1—-118:8, 2010.

[120] X. Zhao, B. Li, L. Wang, and A. Kaufman. Texture-guided volumetric deformation and
visualization using 3d moving least squares. Vis. Comput., 28(2):193–204, feb 2012.

[121] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum. Large mesh
deformation using the volumetric graph Laplacian. ACM Trans. Graph. (SIGGRAPH), 24
(3):496–503, 2005.

[122] G. M. Ziegler. Polyhedral surfaces of high genus. In Discrete Differential Geometry, vol-
ume 38 of Oberwolfach Seminars, pages 191–213. Birkhäuser Basel, 2008.

169

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Digital Geometry Processing
	Mesh Generation and Surface Reconstruction
	Mesh Smoothing
	Mesh Simplification/Subdivision
	Structured Remeshing
	Mesh Deformation/Editing
	Mesh Parametrization
	Mesh/Shape Correspondence

	Discrete Differential Geometry
	Surface and Volume Representations
	Surface Representation Based on Differential Coordinates
	Compact Volume Mesh Data Structures
	Automatic Hexahedral Meshing

	Representation and Inference of Shape Correspondence
	Dissertation Organization

	Rudiments of Discrete Differential Geometry
	Basic Concepts from Differential Geometry
	Differential Geometry of Curves
	Tangent vector
	Curvature

	Differential Geometry of Surfaces
	Tangent plane and Normal vector
	Curvatures on Surface
	Principal Curvatures
	Mean Curvature and Gaussian Curvature
	First and Second Fundamental Forms
	Surface Equations

	Differential Operators

	Discrete Curvature Estimates for Triangle Meshes
	Discrete Mean Curvature Normal
	Discrete Gaussian Curvature

	Discrete Exterior Calculus
	Smooth Exterior Calculus
	Manifold
	Vector Field
	Differential Forms
	Exterior Derivative
	Hodge star

	Discretization
	Discrete Manifold and Simplicial complexes
	Discrete Differential Forms
	Discrete Exterior Derivative
	Discrete Hodge Star
	Discrete Laplace Operator from DEC

	Rigid-motion-invariant Discrete Surface Representation
	Discrete Fundamental Theorem of Surfaces
	Lift of an Immersion.
	Discrete Fundamental Forms from Edge Lengths and Dihedral Angles
	Local frames
	Transition rotation

	Discrete Surface Equations
	Local Discrete Fundamental Theorem of Surfaces
	Local discrete fundamental theorem of surfaces
	Global discrete fundamental theorem of surfaces

	Surface Reconstruction from Discrete Fundamental Forms
	Immersion Energy through the Lift to 6D
	Algorithm

	Applications and Results
	Deformation
	Quasi-isometric Parameterization
	Independence to Sampling Density
	Comparison to Existing Work

	Conclusion

	Vector Field Map Representation for Surface Correspondence
	Related Work
	Functional Maps Between Shapes
	Spectral Vector Field Analysis on Surface
	Tangential Vector Field Map
	Properties of the basic representation
	Induced maps (pullbacks)
	Conformality and orthogonality
	Block-diagonal form of C1
	Relation with C0 and C2
	Isometry

	Constraints
	Vector field constraints
	Area preservation
	Landmark constraints
	Segment constraints
	Constraint splitting
	Symmetrization

	ICP in the Gradient Embedding Space

	Results
	Conformal correspondences
	Isometric benchmarks
	Segment correspondences
	Vector field guided alignment
	Function transfer across different topology
	Implementation details
	Limitations

	Conclusion

	Parametrization-based Automatic Hexahedral Meshing
	Related Work
	Overview
	Rotational Transition and Singularity
	Internal Singularities
	Surface Singularities

	Inadmissible Singularities
	Atomic Operation to Adjust the Singularities
	Zigzag Removal
	Compound Singularity Split
	Frame Field Adjustment

	Parameterization
	Topological Simplification
	Parameterization as a Mixed Integer Programming Problem

	Results and Discussion
	Comparisons

	Conclusion

	3D Volume Data Structures for Compact Storage
	Related Work
	Combinatorial Maps
	Compact Volume Data Structure Using Compact Maps
	Overview
	File format
	Comprehensive data structure

	Details for 3D
	Local information within each 3-cell
	Global information
	Boundary
	Edge and face incidence information
	Example table construction
	Spatial complexity

	Incidence/Adjacency Queries
	Conclusion

	Conclusion and Future Work
	BIBLIOGRAPHY

