I .. .332. j. . ‘ : z,“ w . ..f . {a}: 5 , « I . . .. I. . : a 33‘. “92;. . 2a. ‘. Alli}? . x. ,. . .. .. 3 L , ,n v. .. v haw .1. a: : ‘ ., x , . a k... 7 . f . . x >. )t 1 )3 , . “I! . , s ‘ 9151.....(1. 33§§efifi\a.t€3)x\ . 3 a. ‘371~.XI.\)331 )3 {1111:1‘ 3 .53}: \A, ....§>I..Rzi.=2. 2x113“ 3.. .3;qu , T. . «:4. ha}. . .. ‘ é.)§\1551¥112$> a. a t\\:)13.>.1113:\.l§‘fl.lq 1: \\1;39Js\buk¢v\~oz. ia‘vaiuixxfivzfii #453.» \3 V x37§1$3fi€531ulvvi$§x|2‘93‘(.xn.,)11\§3§x ‘ fi33x£1dfizw 3Q..\\\.)V)lpxx.§.{ 13:49 t1), x\)... a! .{ii11)\.§‘\}l.\£ll . ggiiiefipzkrhwfififl. fete. ‘ . . ., aflflufifi 3.... 2...} ‘31.;1 .eifilargintfifir" ‘ . .3. Fifth" Pan... u. 11‘\2;1t‘x‘. ‘ Inlet. I) 1Jxx|k £§i \lHHHUIWlIiHlWllllHWlHtlH\IIHIHIflIHHWI 31293 10062 6781 \ as“ This is to certify that the thesis entitled Optimal Allocation of Investments in a Leontief Input—Output Mode 1 presented by Amor Farouk Benghezal has been accepted towards fulfillment of the requirements for Ph. D. degree inManagemenL Science lewd-=1? 4 fies/.43. 5 Major professor Date May 9, 1979 04639 OVERDUE FINES ARE 25¢ PER DAY PER ITEM Return to book drop to remove this checkout from your record. © 1979 AMOR FAROUK BENGHEZAL ALL RIGHTS RESERVED OPTIMAL ALLOCATION OF INVESTMENTS IN A LEONTIEF INPUT-OUTPUT MODEL By Amor Farouk BenghezaT A DISSERTATION Submitted to Michigan State University in partia] fu1fi11ment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Management 1979 ABSTRACT OPTIMAL ALLOCATION OF INVESTMENTS IN A LEONTIEF INPUT-OUTPUT MODEL By Amor Farouk Benghezal The purpose of this studylwas to develop a model based on Leon- tief input-output relationships that would help economists formulate plans of economic development. A predetermined amount of funds is available for investment in the planning period. Economic planners are faced with the question: l) in which sectors funds should be al- located; 2) howrnuchshould be invested, and 3) when investments should be carried out. A mathematical progranlwas formulated to answer these questions, where the objective function wasto maximize value added by the whole economy in the planning period. Three types of constraints wereused, namely, demand, capacity, and investment. The contribution to economic development depends upon the se- quence of investments made during the planning period. A theory of economic development recommends to underdeveloped countries to under- take projects in upstream industries (steel, chemicals, etc.). The implementation of the latter ones will provide inputs for down- stream industries and thus will favor their development. To take into account the preponderance of foreign trade in underdeveloped economies two types of input-output coefficients are used, namely, domestic and foreign coefficients. In Chapter 2, a model with both types of coef- ficients is formulated, and a numerical example is solved by dynamic programming. Two elements prevented the author from applying the Amor Farouk Benghezal dynamic programming solution to the Algerian plan; first, data used to compute both types of input coefficients arenot available; second the tediousness of computations required to write a computer program that dealt with all details of the solution procedure. In Chapter 3, a mixed integer prograniwas formulated for the Algerian plan and was solved using the APEX package available on the CDC 6500. In the mixed integer program the input-output coefficients used were those obtained from l969 input-output table. The program was run first for a four year plan (1970-l973), and second for an eight year plan (l970- T977). The results obtained in the l970-l973 period disagree with the claim that underdeveloped economies should invest in upstream indus— tries (high capital ratio industries). 0n the contrary, they showed that investments must be made in downstream industries (low capital ratio andlaborintensivesectors). The author thought this theory claim could be valid in the long run. So it was tested in the eight year plan (l970-l977). Here again (section 3.3.3),the results dis- approved the implementation of projects in upstream industries in the early years of the plan. However after l974 high capital ratio pro- jects showed up in the optimal solution. Two elements explained this situation. First, funds available for investment in the 1974-1977 period were two and a half times greater than in the preceeding period. Second, low capital ratio sectors did not need that many funds for investment to satisfy the demand requirements imposed on them. There- fore nore funds were available for spending in upstream industries. In Chapter 4,limits to the mixed integer program results were reviewed and some suggestions were made. To my father Mohammed, who taught me that education is the best asset one can have -- 190l—l970 ii ACKNOWLEDGMENTS I would like to express my gratitude to some of the people who contributed to the completion of this study. I am grateful to my academic adviser Dr. Richard C. Henshaw, Department of Management, for his encouragement,support, guidance since my enrollment in the Ph.D. program at Michigan State University. I would like to thank my other committee members, Dr. Phillip L. Car- ter and Dr. Ram Narasimhan for their professional criticisms and en— couragement. I would also like to thank the Algerian "Ministere de l'Enseign— ment Superieur et de la Recherche Scientifique for granting me a scholarship, and my sponsors from AMIDEAST for their continuous help. Special thanks go to my brother-in-law, Abdelhamid, who pro- vided me with statistical data, I could not get otherwise, and to my family for their moral support. Particular recoginition is due my wife, Nadia, for her moral and material support throughout this phase of our life, and my son Mohanmed Amin, at the age of five, who understood somehow that this task simply had to be completed. iii TABLE OF CONTENTS Page LIST OF TABLES ........................ vi INTRODUCTION ........................ . 1 CHAPTER I INPUT-OUTPUT MODELS . . .T. .............. 4 1.1 Leontief Model .................. 4 1.2 Maximization of the Growth Rate of Net Output . . 7 1.3 Introduction of Capacity Building in a Dynamic Leontief Model .................. 16 1.4 A Model for Resource Allocation ......... 22 1.5 Objectives of this Research ........... 33 II THE DYNAMIC PROGRAMMING SOLUTION TO THE DYNAMIC LEONTIEF MODEL FOR AN INVESTMENT ALLOCATION ...... 38 2.1 Definition of the Model ............. 38 2.2 Assumptions and Dynamics of the Model ...... 43 2.2.1 Assumptions ................ 43 2:2.2 Dynamics of the Model ........... 44 2.3 The Dynamic Programming Solution ...... . . . 51 2.3.1 Stages and States of the Problem ..... 51 2.3.2 Recursion Formula ............. 52 2.3.3 Principle of Optimality .......... 53 2.3.4 The Dynamic Programming Approach ..... 54 2.4 Insights in the Model .............. 62 2.4.1 Reduction of Computations by Marginal Analysis ................. 52 2.4.2 Further Insights in the Model ....... 64 2.5 Dynamic Programming Solution in a New Light . . . 67 2.6 An Example .................... 73 III THE MIXED INTEGER PROGRAMMING SOLUTION TO THE DYNAMIC LEONTIEF MODEL FOR AN INVESTMENT ALLOCATION ...... 98 3.1 The MIP Formulation ............... 98 iv 3.2 3.3 IV CONCL APPENDIX BIBLIOGRAPHY Estimation of the Parameters and Data ...... 3.2.1 Estimation of the vi ‘5 and a1 '5 ..... 3. 2. 2 The Estimation of the Right Hand Side of Demand Constraints ............ 3.2.3 Estimation of the Right Hand Side of Capacity Constraints .......... 3.2.4 Estimation of the Projects Costs gi's 3.2.4.1 General Assumptions ....... 3.2.4.2 Method of Estimation ...... 3.2.4.3 Estimation of a Project Cost in Agriculture ........... 3.2.4.4 Estimation of the Cost of a Pro— ject in the Mining Sector . . . . 3.2.4.5 Estimation of the Cost of a Pro- ject in the Construction Indus— tries Sector .......... 3.2.4.6 Estimation of Projects Costs for All Other Sectors ........ 3.2.5 Estimation of the Capacity Increase Due to Investment . . .......... 3. 2. 6 Estimation of the Investment Expenditures. Solution by MIP ................. 3.3.1 Introductory Conments .......... 3.3.2 Analysis of the MIP Results ....... 3.3.3 The MIP Solution to the Eight Year Plan . USIONS AND SUGGESTIONS ............. oooooooooooooooooooooooo oooooooooooooooooooooooo Page 101 103 105 108 108 110 111 113 114 115 115 Table NW 'N N N N N N .1 0143-0) .10 .11 .12 LIST OF TABLES The Leontief Input-Output Table ........... Stage (1,1) ..................... Stage (i,l) ....... ' .............. Stage (i,k) ..................... Results of Stage ( Results of Stage ( Results of Stage (1,2) ............. ( N U N V Results of Stage Investment Per Year and Sector ........... The MIP Formulation ................. Estimates of ail's and vj's ............. Rate of Increase of the Different Types of Consump— tion ........................ Value of Exports in 1969 and 1973 (as Projected) The Right Hand Side of Demand Constraints . . . . The Right Hand Side of Capacity Constraints ..... Sum of Years' Digits ................ Cost of Projects: gi (Based on U.S. Data) ..... The Value of Capacity Increases: diw. (Based on American Data) ................... Available Investment in Algeria ........... Structure of Investments in the Four Year Plan The Right Hand Side of Demand Constraints for 1974- 1977 ........................ vi ............... Page 68 69 72‘ 77 79 86 95 97 102 104 105 106 107 109 111 113 118 119 124 Table 3.13 3.14 3.15 A.l A.2 A.3 A.4 A.5 A.6 Available Investment in the Eight Year Plan ...... Structure of Investments in the Eight Year Plan . . . . Structure of Investments in the Eight Year Plan . . Input-Output Table of 1969 .............. Data Used to Compute Projects Costs ........ Listing of Input Cards of the Four Year Plan ..... Computer Output for the Four Year Plan ........ Listing of Input Cards of the Eight Year Plan ..... Computer Output for the Eight Year Plan ........ vii 169 186 INTRODUCTION Economic theory has described underdeveloped countries as non- integrated, dominated, lacking savings for investment purposes, having food shortages, and so on.1 It has also suggested different economic policies to answer the key question underdeveloped countries face; how to allocate resources to achieve economic development? Each of these policies has its own strength and weakness. It is not this re- search purpose to examine these policies. Many investment opportunities exist in underdeveloped countries, because many economic activities are lacking, or, are at a primitive stage. Since funds (available for investment) are in short supply, all of the investment possibilities cannot be funded. At a micro- economic level, they could be ranked according to their rates of re- turn. But at a macro econOmic level, this would not work, because relationships among activities are ignored. If it were used, it would be likely that most of the funds would be spent in few economic activ— ities belonging to the same sector (the clothing sector is an example)2. 1Samir Amin, Accumulation on a world scale; a criti ue of the theory of underdevelopment (New York: Monthly Rev1ew Press, [974). Charles Bettelheim, Planification et croissance acceleree (Paris: F. Maspero, 1965). 2This does not mean that the rate of return method could not be used once the funds allocated to a given sector are known. However, we would like to suggest a model that could help in answering the question of allocating resources--especia11y investment to bring about economic growth. The Leontief‘s input-output analysis provides the framework of the model.1 Input-output analysis shows the relationships among the different sectors of the economy. Some econ- omists have suggested the use of Leontief's system for the formulation of economic development plans.2 The purpose of the model that will be presented is to find the optimal sequence of investments that will achieve the goals economic planners set. The modelhas been formulated in a mathematical program. Its solution can provide planners with an answer to the following three questions: 1) how much must be invested? 2) when must investments be made? 3) in which sectors must investments be made? This research contains three chapters: - the first one presents the Leontief's model, some of the re- search on resource allocation, and the research goals. - the second chapter deals with the dynamic programming approach to solving the model. A nunerical example is carried out to show how the method of solution works. - the third one presents another approach to the same model. It 1Wassily w. Leontief, The structure of the American econom : 1919—1939 (2d ed., New York: Oxford Univer51ty Press, I951). 2Oskar R. Lange, Essa s on economic lannin (Bombay, New York: Asia Publishing House, 2d ed., Calcuta: Stat1stical Pub. Society, 1967). Mohamed Dowidar, Schemas de la re roduction et la methodologie de la planification socialiste (Algiers: Editions du Tiers Monde, 1964). is formUlated as a mixed integer program. It is applied to the Al- gerian planning problem. CHAPTER I INPUT-OUTPUT MODELS Input—output models have received a great deal of attention since the publication of Leontief's work on the American economy.1 Leontief was interested in presenting a sort of balance sheet of the economy: the output and its distribution among the different sectors of the economy. Leontief prepared these balance sheets in table form for the United States for 1919, 1929, and 1939. The input-output tables are very useful in economic planning. In the following, firstly, the Leontief model is presented; secondly, some research works made in the field of input-output analysis are reviewed; thirdly, the purpose of the present research is discussed. 1.1 The Leontief Model Leontief model views the economy as being composed of several sectors such as, agriculture, mining, steel, chemicals, etc. Let us suppose there are n sectors in the economy. The main idea of input- output models is to show the general dependence among sectors. This dependence among sectors is quantified and is expressed by the flow of goods from one sector to the others. Let xi be the total output of sector i. Let xii denote that 1Nassily w. Leontief, The Structure of the American Econom 1919- 1939 (2d ed. enl.; New York: Oxford Un1versity Press, 1951). part of the total output retained by sector 1 for its own use. In general, let x.. be the value of goods of sector i consumed by 13 sector j for production in sector j and yi be the value of net output. One has the following equality n x-=Zx..+y.i i=1,...n (1.1) Equality (l.l) says the output of sector 1 is the sum of the flows of sector 1 goods to all sectors and the net output. Viewed differently, to get output Xj’ sector j must obtain goods n from all sectors i in an amount equal to z Xij and sector j must i=1 add salaries and return on capital. Let w. be the wages paid in sector J j and pj the return on capital. The following equality is obtained. n xj = E] Xij + wj + pj j = l, . . . n (1.2) The sum of wj and pj is the value added of sector j. With Equalities (1.1) and (1.2) one is able to construct the Leontief Input—Output Table. Let x be the total output of the economy, in other words, the Gross National Product. I1 11 n n n n n z z x.. + z y. = z z x.. + z. w. + z p. i=1 j= ‘3 i=1 1 3:1 i=1 ‘3 j=l J j=l J n n n n Since 2 2 x1. = Z 2 x35, one obtains i=1 j=l J j=l i=1 Table 1.1 The Leontief Input-Output Table net total sectors 1 2 "' n output output 1 X11 X12 x1n yl X1 2 x21 x22 X2n y2 x2 “ an an Xnn y" X" Wages w1 ”2 W" Return on p p P Capital 1 2 " Total x x x x Output 1 2 n n n n zy-=zw-+zp- (1'4) i=1 ‘ j=l J j=1 3 Equality (1.4) states the net output of the economy (Zyi) is equal to the sum of the value added of all sectors. Now, let us define aij as the ratio of the value of inputs 1 consumed in sector j to the output of sector j. x.. =——u A: aij x. 1 l n (1.5) .1 From the above ratio, it results = a.. x. (1.6) xii 11 .1 Making use of Equation (1.6) in Equality (1.1) one gets: (1.7) II —J 3 n . = .. . + . ' x E a1J xJ y], 1 or, in matrix form X = AX + Y, (1.8) where X is an n-component column vector, A is an n x n matrix with aij as elements, and Y is an n-component column vector. If a matrix A of input coefficients and a set of values for Y are given, the level of output X will be obtained right away, by solv- ing x = (I - A)“ Y (1.9) This model has n equations and n unknowns (Xi)’ and has a unique solution if (I — A)'] exists. If the yi are the n unknowns, one can use Equation (1.8) to find them. The Leontief model is very useful in planning of economic activ- ities. If the planning authorities decide upon a given level of out- put for each activity (Xi)’ they can obtain the levels of net output for all activities (yi). In the following sections, some of the re- search works made on the input-output models are presented. 1.2 Maximization of the growth rate of net output Lange formulated a model where the goal is to maximize the growth rate of net output by the end of the planning period using a Leontief type of model.1 His objective was to maximize Z = 9%, where AY is the increase of net output between the year zero and the ending year of the plan and Y is the net output in year zero. The growth rate of net output can be expressed as 1 Oskar R. Lange, Lecons d'Econometrie (Paris: Gauthier-Villars, 1970). Av AM. I Y where I is the total investment that should be made during the plan- ning period. If one is given values of I and Y, the only way to achieve the highest growth rate of net output is to maximize the ratio %¥~. The constraints of the maximization problem are: the final consumptions of goods, produced by each sector, should be at least equal to some predetermined level for every period of the plan. Suppose there are n sectors. Let Cit be the final consumption of goods of sector 1 in period t. Let Kit be the minimum level of final consumption of sector i goods in period t. The following must hold for each period: Cit :Kit 1 II —I 3 (1.11) Net output of sector i in period t (Yit)’ must equal the sum of the final consumption of sector 1 goods, Cit’ and the amount invested in sector i goods, Iit' it + Iit i = 1 . . . n (1.12) Inequality (1.11) and Equality (1.12) imply that IitiYit' Kit ‘ II —I 3 (1.13) Hence,Lange's problem reduces to the following linear program. max Z = %¥ subject to Ii < Y. - K. In this LP (linear program), it is not clear what the decision variables are. Also it does not show any resemblance to Leontief model. In order to arrive at an LP containing the input-output coef- ficients, Lange developed a new formulation by modifying the objective function and the left hand sides of the constraints inequalities along the following lines. Prior to discussing these modifications, it is useful to define the concept of investment cycle. It is the time elapsed between the moment the investment is made and the moment an increase of the output is obtained. Let Iijst be the investment needed by sector j, in terms of sector i net output, in period t, and of cycle 5 years. AX. is the increase in output of sector j obtained after 5 jst years due to an investment made in period t. By definition ijst = Xj,t+s — th (1.14) and let b.. = 27—111“ (1 15) 1jst stt bijst is the ratio of investment of cycle 5 made by sector j in sector 1 net output in period t, to the increase of sector j output after 5 years. Let It be the total investment made by the whole economy in period t. Let I(JSt) be the total investment of cycle 5 made in sector j in period t. Let 10 j = 1 . . . n (1.16) Ajst is the ratio of sector j investment (of cycle 5) in period t,to the total investment of year t. From Ratio (1.15) one gets n n 21.. = 2 b.. AX. i=1 1jst i=1 1jst jst n . . = (jst) S1nce .2 Iijst I 1-1 . (jst)- " one has. I - iEl bijst Astt = (jst) . = l or AXjst I Bjst’ where B jst _TF.—_—_—_' (1.17) X b.. t i=1 ‘35 Let ajit be the ratio of the amount of sector j output needed in sector 1, to the output of sector 1 in period t X.. _ 1jt a.. — (1.18) j1t Xit Let Ojst be that part of sector j increase of output in 5 years from year t, used to achieve the increase in output in the other sec— tors during the same period. n = Z a.. AX. ojst 1:1 1j,t+s 1st (1.19) Astt Let AYjst be the increase in net output of sector j, obtained after 5 years, due to investments made in year t. 11 n AY331: = ijst ‘ 1:1 aji,t+s AXist “'20) Using Ratio (1.19), Equality (1.20) becomes AYjst = ijst (1 - Ojst) (1.21) Making use of Equality (1.17), the equality above becomes = _ (jst) AYjst (l Ojst) Bjst I (1.22) or A = - (JSt) . = - Yjst B jst I , where B jst (l Ojst) Bjst (1.23) After using Ratio (1.16) and Equality (1.23) A ‘2‘ A " A = = Z I Yst i=1 Yjst It i=1 8 jst jst (1'24) To obtain the increase in net output during the planning period, a k year plan of investments is considered. These investments have different cycles 5 and are made in the various sectors j (j = 1 . . . n) in year t, t = 1, 2, . . . k - 1. In fact, it is assumed that no in- vestment is made in year k, since the increase in net output yielded by investments in year k will only show up in year k + 1. Hence in the first year, only investments having cycles 5 - l, 2 . . . k-l, need be considered in the second year, only investments of cycles 5 = l, 2 . . . k—2 are taken into account. Likewise for the (k - 1)th year, only investments of cycle 5 = 1 need be considered. With the above considerations in mind, the increase of net output, 12 for the whole economy in the second year of the plan, is AY1 = Y2 - Y]. This is the result of investments of cycle 5 = 1. Now, using the no- tation of Equality (1.24), one has II H II ._a where 5 Following the same reasoning, the increase of net output, in the third year of the plan, is due to investments of cycle 5 = 1 made in the second year and of cycle 5 = 2 made in the first year. AY2 = AY + AY 12 21 In general, the 1ncrease of net output: AYt = Yt+l - Yt’ obtained in year (t+l) is AY (1.25) AY = 1 Sgt-5+1 I t s "Mt‘f' The increase of net output, after k years, is the sum of the increases during the different years. Let this increase be Ak v = :2: AYt (1.26) After using Equality (1.25), Equality (1.26) becomes k-l t Ak Y = til 5:1 AYS,t_S+] (1.27) The former relation shows the increase in net output after k years depends on the increases of net output, due to investments of 13 different cycles made in the various years of the plan. Now, introducing Equality (1.24) into Equality (1.27), one ob— tains k—l t n A Y= z z 21 A. _ s'. (1.28) k t=l 5:1 j=1 t-s+1 js,t s+l js,t-s+1 k—l I = E It is the total investment, and also the sum of the t=l investments made up to year k-l. I(.ist) . Let ajst - I j - 1 . . . n, s,t — l . . . k-l (1.29) k—l t n with Z Z Z a. t=l s=l j=l M II _.1 since A. = 1(j5t) jst I , from Ratio (1.16) t Ratio (1.29) is rewritten as Ajst It ajst = ___T__— (1.30) From Ratio (1.30), it follows I o. I (1.31) A = t jst jst Making use of Equality (1.31) in Equality (1.28), one gets k-l t n ( A v=12 z 2‘. on. 8'. 1.32) k t=1 s=1j=1 J53t-S+] JS,t-S+] Since the objective is to maximize ég-, the objective function becomes AkY k-l t n T: Z Z Z 01 (1.33) t=l 3:] j=1 js,t-s+1 B js,t—s+l 14 Next, the constraints expressed by Inequality (1.13) are dis- cussed; these are Ii Y1 — Ki t 5- t t‘ k-] n n l u - S1nce Iit = SE] jEl Iijst, the 1nvestment, 1n per1od t 1n sector 1 net output, is equal to the sum of all investments of cycles 5 = 1 . . . k - 1 made by all sectors j in period t, and in sector i net output. Using ratio (1.15), this equality becomes k—1 n I. = z z b.. AX. (1.34) 1t s=1 i=1 1jst jst Substituting for ijst from Equality (1.17), this relationship becomes k-l n I. = Z E b (jst) 1t _ ._ B I s—l j-l ijst jst (1'35) Combining Ratios (1.16) and (1.30), it results 1(jSt) = Iajst (1.36) Using Equality (1.36) into Equality (1.35), one obtains k-l n I. = I Z E b B ‘t s=1 j=l ijst jst “jst (1'37) Now, the modified linear program that must be solved can be stated as: k-l k-1 n Max Z = Z Z 2 B'. a. t=l s=1 j=1 js,t—s+l js,t-s+l 15 subject to k-l n I SE, jg, bijst Bjst O‘jst i Yit ' Kit 1 = l n t = l . k - 1 k-l k—l n E Z Z d- = 1 t=l s=1 j=1 3“ “jst z_0 j = l . n; s,t = 1 . . . k—l djst are the decision variables of this LP. They correspond to the part of total investment, in the k year plan, made in sector j in period t, and having a cycle of 5 years. The investment coeffic- ients bijst appear in the constraints. The input-output coefficients ajit do not appear directly in the LP, but must be used to compute B|jst in the objective function (see Ratio (1.19)). Once a set of ajst one can determine how much must be invested, in each sector every year, is found that maximizes the objective function, by computing 1(j5t) = I dist from Ratio (1.29). Since 8 jst = ETTEF)’ from Equa11ty (1.23) B'jst can be interpreted as the increase of net output, in sec— tor j, due to an investment of cycle 5 made in period t. B'jst defined as the investment efficiency of cycle 5 in sector j. In fact, the objective is to maximize 8' €%—I, i.e.,the investment efficiency in the whole economy. 16 In summary, Lange developed a model, using Leontief type of relationships between sectors, that maximizes the investment efficiency in the whole economy subject to the constraints that investments in each sector goods, in each year, should not exceed some predetermined Y - K. ). it: it 1t In the next section, a were general type of Leontief model is level (i.e. I presented that includes sector capacity. 1.3 Introduction of Capacity Building in a Dynamic Leontief Model Wagner formulated a Leontief model1 that included both in— ventories and capacity of sectors. Assume, for any period t, there is an n x n matrix of input- th column of A represents the inputs from each of the n sectors required to produce one unit of the jth sec- output coefficients A, where the j tor output. Also, consider an n dimensional square matrix B of capi- th column of B represents the inputs th tal coefficients, where the j from each sector needed to build one unit of capacity for the j sector. In the following vector notation the subscript t denotes the relevant time period. All vectors are n demensional column vectors: f = final demand c1 = initial capacity xt = level of production lt = level of capacity being built (so Blt are the direct cap- ital requirements for the creation of 1t) 1Harvey M. Wagner, “A linear programming solution to dynamic Leontief type model,“ Management Science, Vol. 3, No. 3, April 1957. 17 st = level of inventories at the end of period t u =leve1 of unused capacity. t The output of a sector and its beginning inventories are equal to the sum of intermediate demand, final demand, investment require- ments and ending inventories. In vector notation, this can be ex- pressed by the following set of linear equations. xt + St-l = Axt + Blt + ft + st t = 1 . . . T (1.38) By definition, unused capacity in a sector is the difference between available capacity and capacity used up for production. U = C - X t = 1 . . . T (1.39) In any time period, the capacity level is the sum of the capa— city existing in the previous period and any increase in capacity undertaken in the previous period: Ct = Ct-1 + 1t-1 t-l or ct = c1 + 2 1r t = 2 T (1.40) r-l Combining Equalities (1.39) and (1.40), one obtains t-l c1 = xt + ut - 2 1r t = 2 . . . T (1.41) r—l Assuming values for final demand ft, beginning inventories so and initial capacity c], the model given by Equalities (1.38) and (1.41) can be represented as follows: (—+ II ——‘ _| (1.42) (1.41) O -—I ll )< + C l M _1 ('9' II N .._| Because of the very nature of the economic activities, it is further required that x l > 0 (1-43) t’ 12’ St’ ”t — Equations (1.42), (1.41) and restrictions (1.43) in the model satisfy the standard form required for the application of linear pro— gramming. The following figure gives a starting simplex tableau. Decision Variables Note, each line of symbols in the tableau actually represents n separate linear constraints, one for each sector in period t. Hence there are 2nT constraints. Similarly, each column heading is a vec- tor of n elements, one for each sector in period t. There are 4nT 19 unknowns. The previous tableau nay be regarded as a matrix equation Y = HZ where Y is the entire column on the left of the tableau, H is the body of coefficients and Z is the entire top of column headings. An inspection of the model reveals that if c1 3_(I—A)'1 ft, for all t, then feasibility is obviously possible by setting xt = (I-A)'] f because production is undertaken under capacity (c1 3_xt). How— t! ever, if c1 < (I-A)‘1 (f1-so) then feasibility is not possible. The reason for this becomes clear by examining Equation (1.42) fl'so = (I—A) x1 - Bl1 - s1 §_(I-A) x], since 11 and 51 > 0; hence, x1 > (I-A)'] (f1-so). Since (I—A)'1 (f1-s ) > c], it follows that x1 > c]: the production 0 level in period 1 is above capacity. One is faced with an inconsis- tency since xt §.ct (see Equality (1.41)). A real problem is the case in which the first period demand is 1 ff'exceeds initial capacity for some t > 1. feasible, but (I-A)' It is here that the economy must be able either to stockpile in earlier periods or to build additional capacity to meet future demand. If a feasible solution of this case exists, it may not be unique. There- fore, by defining an appropriate objective function, the optimal so— lution, with respect to the objective function, can be found. Let us define an m dimensional vector of constants K, where m is equal to 4nT, and V as a vector of these 4nT decision variables (Xt’ 1t, St’ ut). The objective function is: Z = KV (1.44) K can be specified as a vector of manpower input figures 20 associated with x and 1t. t K = (K11, K12, 0, K21, K22, 0, . . . KTl’ KT2’ 0), where each K is a row vector in n manpower coefficients for period ti t with either xt (i = l) or 1t (1 = 2) and each 0 is a 2n dimensional vector of zeros. An optimal solution nay be found by T min Z = E (K x + K 1 ) t=1t1t t2 t subject to constraints (1.42) and (1.41). KTl can be thought of as the cost of producing an output level of xt and KT2 as the cost of creating a capacity equal to 1t. th If maximizing the total anount of new capacity in the i sector by the end of period T is sought, K in (1.44) will become K = (O, 1, O, 1, . . . 0), where the scalar one appears in all positions correspond- ing in V to lti’ the ith component of 1t. 50 the objective function becomes T Z = til 1ti' The model, represented by equations (1.42) and (1.41) contains 2nT equations and 4nT unknowns. Wagner explored the possibility of reducing the model, to one containing only :nT equations in 3nT unknowns and hence, one that is computationally easier to handle than the larger model. For this, Equation (1.41) is multiplied by -(I-a) and added to Equation (1.42); t-l + r21 (I-A) 1r — (I-A) ut (1.45) f - s t t'l - (I-A) c1 = -B1t - St 21 Thus, xt is eliminated in the model. Since the model is less constrained than the former one, a larger maximum (or smaller minimum) value for Z should be expected in the abbreviated system than would be in the larger and more restrictive system. If the optimal solu- tion to the abbreviated system, when substituted in Equation (1.41), yields all x 3_o, then by definition this solution is feasible in the general model. It is also optimal, since the optimal Z in the general model is less than or equal to the optimal Z in the abbreviated system. In the case, where some components of xt are negative, say th’ Wagner showed that the input-output production relationship in sector t1" t1 ”1 column of A) becomes the output. The author explained j is reversed in period t, so, x th becomes the input and ij being the j the negativity of x .as follows. tJ th ”An input of the j good implied by the negativity of x must th tJ' come from an existing stockpile of the j good and not from any pro- duction in period t. The stockpile has only one possible origin: it must have been created by production during previous periods in the model. The correctness of the value of Z despite the fact that xtj is negative can be explained as follows. The abbreviated model has used a ”short-hand" way of storing raw materials. In period t, the model indicated used the vector of inputs of industry j's product in the amount equal to ijtj as raw materials for other industries' pro- duction. Instead of storing these raw material inputs in the earlier periods when they became available, the model embodied them in the form of the jth industry's product and in period t reversed the produc- tive process. Since the stockpile used in t was actually produced earlier, one may easily translate the ”short-hand" program of the 22 abbreviated system to not produce the stockpile of the jth industry's good in previous periods but rather to save the inputs for use in t."1 Moreover, Wagner discussed a general algorithm, which involved the dual problem for proceeding from an optinal solution in the ab- breviated system to an optimal feasible solution in the more restric- tive system. He argued the computational savings, due to utilizing the abbreviated system, should more than offset the inconvenience of having to switch at the end to the dual algorithm. Wagner's model is very general and can accommodate any type of objective function, as long as the vector K in the objective func- tion is properly defined. Next, a model of economic development based on Leontief's type of relationships is presented. It introduces other constraints in the model such as foreign exchange, a limited resource of underdeveloped countries. 1.4 A Model for Resource Allocation The primary purpose of Chenery and Kretschmer's study2 is to develop a model, based on mathematical programming and input-output analysis, which will assist in the formulation of economic development programs. The authors introduce imports and exports in their analysis; these are important activities when underdeveloped economies are con- sidered. Their model tries to minimize the investment needed to achieve certain goals in the target year. 1Harvey M. Wagner, ”A linear programming solution to dynamic Leontief type model.” Management Science, 3, No. 3, 1957, pp. 245-246. 2Hollis Chenery and Kenneth Kretschmer, "Resource allocation for economic development,” Econometrica, Vol. 24, No. 4, October 1956. 23 Let n be the number of sectors, and let us use their notation. Yi' is the total final demand for sector 1 in the target year; Yi is the net final demand for sector 1 to be satisfied from increased capacity or imports; R} is the existing productive capacity in sector 1; Xi is the increase in production in sector 1 above existing capacity; M1 is the level of imports in sector 1 measured in domestic prices; E1 is the level of exports in sector 1 measured in domestic prices; L* is the labor available for increasing production; 0* is the maximum foreign trade deficit; di is the ratio of increased production to increased production plus imports d1 = Xi/(Xi + Mi); mi is the ratio of imports to increased production for sector 1 aij is the amount of input i currently used in producing one unit of output from sector j (current input coefficient); aij is the increase in use of input i required to increase the production of sector j by one unit (marginal input coefficient); mi is the marginal labor input coefficient for sector 1; Ci is the amount of capital needed per unit increase in capacity for domestic use in sector i (marginal capital coefficient); k1 is the amount of capital needed per unit increase in capacity for export in sector i; hi is the price of exports from sector i in foreign currency; 24 gi is the ratio of import prices to domestic prices in sector i at the given exchange rate; It is assumed that the goods and services required in the economy are divided into n commodity groups corresponding to the n sectors of production. The final demands Y1 are taken as given. The net final demand that must be satisfied in each sector from new capacity or im- ports (after allowing for full operation of existing capacity) is n Y. = Y.' - (TI - z 51. —- . _ 1 1 1 j=l 1j Xj)’ 1 - 1 . . . n (1.46) — n — — where (Xi - Z aij Xj) is the amount that could be supplied for final i=1 use from existing capacity after deducting intermediate uses (2 a_.. 1.). j 1J J The authors made the following assumptions. First, an economic sector can be thought of as an aggregate of productive subsectors cor- responding to a single commodity. Second, in each subsector there is a choice between imports and only one domestic activity. Third, the input coefficients, for all domestic activities in a given sector, are identical for each input except capital. So, the only difference be- ~ tween subsectors is due to capital coefficients. The authors argue, for any given set of shadow prices, it is efficient to import those conmodities for which the corresponding domestic activity is unprofit— able and to produce the rest. However, under the second and third assumption, it is possible to rank subsectors according to increasing capital coefficients alone, since the other coefficients are the same. Therefore, the capital coefficient of a sector can be derived from the 25 coefficients of the subsectors, taken in a definite order. In general, the authors conclude, the average capital coeffic- ient is an increasing function of the ratio dj’ of total needs sup- plied domestically in sector j. For simplicity, this function is assumed linear. .=.+. . , . . . cJ onJ SJ dJ a > 0 B > 0 (1 47) The total supply of a given output (Xi + Mi) less the inter— mediate uses in domestic and export activities is equal to the net final demand: n n X.+M. - z a..X.— 2: a..E.=Y. (1.48) The last equation is the familiar balance equation of the Leontief system, except that, production for export is considered as a separate sector from domestic production of the same commodity. The price received for exports is assumed to vary with the quantity exported. This function is also supposed to be linear. .= .+ . . . . . hJ yJ oJ EJ YJ > 0. pJ < 0 (149) . . . . 1 Furthermore, the authors cons1der two resource 11m1tat1ons: labor and foreign exchange. The labor constraint is The authors stated: ”The introduction of more resource limita— tions such as natural resources can be handled quite easily because they will usually affect only a small number of sectors, often only one. In this latter case the resource limitation can be incorporated in the suboptimization procedure for the sector in question without the neces- sity of adding another equation.” Chenery, Kretschmer, p. 376. 26 n n * 151 mi Xi + iEl mi E1 5 L (1.50) The maximum trade deficit constraint is n n Z 91 Mi - ‘2 h. E. < D* (1.51) The purpose of the economic development program is to choose increases in capacity (Xi)’ import levels (Mi) and export levels (E1) in such a way the given final demand will be supplied in the target year with a minimum total investment, without exceeding the specified resource limitations. So, the problem consists of subject to Constraints (1.48), (1.50) and (1.51). Xi > O, M E1 3_0. This is a non-linear programming problem, since the objective function is non-linear. If a solution exists, as Kuhn and Tucker have shown, there is a set of nonnegative numbers (Lagrange multipliers) which may be inter— preted as unit prices of the scarce resources.. It is assumed that a th product, Pw is imputed to labor and a value Pj is imputed to the j value of Pf is imputed to foreign exchange. These values are the shadow prices and must satisfy the following properties. - “They must be nonnegative. - If the supply of labor or foreign exchange is not fully 27 utilized for an optimum production plan, then its price should be zero. - Each connodity should be assigend a value equal to the largest decrease in investment cost which could be obtained if one less unit of that comnodity were demanded, labor (or foreign exchange) should be assigned a value equal to the largest de- crease in investment cost which could result if one more unit of labor (or foreign exchange) were made available.“1 The authors assume that shadow prices with the above properties exist and are known. Chenery and Kretschmer determine the values of ii’ M1 and E1 minimizing the objective function as follows. They claim, the optimum export levels Ej are obtained at the point where Ej maximize the difference between the revenue and the cost of export activities. Let 2: A m V II n h. . - .. P. + . + . . J Pf EJ (E a1J 1 wJ Pw k3) EJ (1.53) .. . + . + . . aU‘P.I wJ Pw kg) EJ .+ . . .. .- (1J OJ E3) PT EJ ( d-M: where (Z aij Pi + wj Pw + kj) is the unit cost of exporting one unit .i of projuct j. Since Pf > 0, R3" (Ej) = 2 Dj Pf < 0. Hence, the unrestricted maximum of Rj (Ej) is attained at + . P + k. - . P wa 3Y3 f) (1.54) for Rj' (rj) = 0. Hence the maximum of Rj (Ej) for Ej 3_O is attained Chenery, Kretschmer, p. 377. 28 at [11) II r-‘-\ (1.55) Next, the authors want to determine the optimal proportion of domestic production d. needed to compute ii and M1. .For this, the J total cost of producing the fraction dj (dj = Xi ) domestically X, + Mi and importing the fraction (1 - dj) is 1 - dj) (1.56) n T. (d.) = (T a.. Pi + mj Pw + Cj) dj + gj Pf ( n where (E a . P. + w. Pw + Cj) is the cost of producing domestically 1 131.1 one unit of product j. Using Function (1.47), Equation (1.56) becomes n . . = .. . + . + . + . . . - . . TJ (d3) (1; a13 P1 1.3 PW or) 8de + gJ P. (1 dJ) (1 57) Since Tj" (dj) = 2 Bj > 0, therefore the unrestricted minimum is attained at 81f D —_l_ _ _ - tj - 2 j (g. P E a.j Pi wj Pw a.) (1.58) for Tj' (tj) = 0, hence the minimum value of Equation (1.57) in the interval 0 5-dj §_1 is attained at O tj §_0 dj = {tj O E-tj f_l (1.59) 1 t. 3_l J 29 From the knowledge of dj and Ej, X1 and fii follow directly from Equation (1.48). If c1j = o it implies that )1, = 0. However, if SJ. > 0, then a, the ratio of imports to increase in production of sector 1 x A Mi (m. = we) will be: 1 . X. 1 It also follows: M1 = mi Xi (1.61) Let us substitute Equality (1.61) into Equation (1.48). A A A A n A X. + m. X. — Z a.. X. - Z a.. E. = Y., i e S (1.62) 1 1 1 jeS1 13 j j 13 j 1 l where S1 is the set of i such that di > 0. There are as many equations as unknowns (i.e. Xi) 50, X1 are uniquely determined. Now, in order to find Mi’ one must use Equality (1.61) for i in S], but, for those 1 not in 5], Mi are given by m) M. (1.63) A n = . + .. . + . 1 Y1 E a X E a jeS1 As the given set of shadow prices has the above properties, it n A A follows that 2 (Ci X1 + ki Ei) is the minimum value of Function 1—1 (1.52) subject to Constraints (1.48), (1.50) and (1.51). Moreover, if pw > 0, there will be a strict equality in Constraint (1.50) and if Pf > 0, there will be a strict equality in Constraint (1.51) too. 30 Hence, the problem is reduced to finding a set of shadow prices sat— isfying the above properties. The next step for the authors is to derive a set of shadow prices. For this, they proved the following results.1 "Theorem 1: For each PW and Pf there exists one and only one solution to the following system of equations. . P , . < O . 93 1: SJ —- (164) P = {g P — ——l—- s 2 O < s < 28 j = 1 n f f 2 j ’ — j— J 48. J . P - . + , . QJ f sJ BJ sJ :28J where Sj = 93 Pf - g aij Pi - “j Pw - aj j = 1 n Lemma 1: The following iterative process converges to the solution of (1.64). Assume initial values of s], 52, . . . sn, say (0) (0) (0) s1 , $2 . . . sn . Set (0) gj Pf , sj :_0 (1.65) (1) _ 1 <0) 2 (0) P — P - — , < . < . = J gJ f 48j (sJ ) 0 __sJ __ZBJ,J l n (O) (O) . P — . + -. , . > 9.1 f SJ 33 SJ —ZBJ Determine subsequent values in the order sn(k), Pn(k+1), s (k), P (k+1) . . . s (k), P (k+1) from the recursive formulas n—1 n-1 1 l (k) 3 (k) “ (kn) s. =.P-Z ..P. -2 ..P, -.P-. .1 93 f (:1 an 1 15341813 2 (”.1 w 0‘3 1Chenery, Kretschmer, pp. 379-380. 31 (k) gj Pf , Sj : O (1.66) (k+l) _ 1_ (k 2 (k) = 1’1 ' 1911f 483- (5111’° 0} denote the set of sectors having slack 5 capacity. The planners would like to use U11 > 0 to reduce imports of goods i, i e 0KS , by the whole economy. Each sector j, j = l . . . m, used to * ' * ' buy from sector 1, i e 0KS , a1j1xj. The quantity u11, 1 3 OK , can be shared by the different buyers of goods i on a proportional basis. Let y1j be the increase of sector j purchase of a given i c 0y : ‘s u* (a. x* ) = il ijl jl . . = Yij m , 1 e OKs, J l m (2.5) , 1 1.21 aiJlXJl Yij must be computed for each i a 0K , y1j represents the decrease of purchase of foreign goods 1 by 49 sector j. The new coefficients aijt that will be used in period 2 are: a.. xt + Y.“ = 111 Jl 13 . = . . a112 x1 , 1 a 0K , J l . . . m, but Jfl (2.6) Jl s The new coefficients dijt are d112 = a1j1 + dijl - a112, 1 e OKs, J = l . . . m, in (2.7) The reason for Formula (2.7) is that technology is assumed constant in the model or in other terms: + dijt+l = aijt + dijt’ a1.‘1.t+1 i e OKs, j = l . . . m but jfi. The validity of Formulas (2.6) and (2.7) is explained as follows. The different sectors j=l . . . m use the coefficients a111 and (11.1.1 in period l which are those given in period zero. At the end of period 1 when (LPK ) is solved, the planners have an optimal solution: 5 x11, 211 and u11. If some u11 > 0, they will revise their estimates of aijt and dijt and Will use Formula (2.6) to get a1:12 and Formula (2.7) to get d112. In fiormulas (2.6) and (2.7) it was pointed out that j#i. y.. is 13 the decrease of foreign purchase of goods i by sector j; this does not have any effect on the value added by sector j, unless j=l. In this case, the decrease of purchase of foreign goods i by sector i contri- butes to increase the value added by sector 1. y11 will be shared by the two elements on a proportional basis. -- The first element contributes to increase the value added of sector 1. This element is p11. 50 -- The second element contributes to increase the purchase of domestic good i by sector i. This is p21. 1.111 = V1. X Y11, 16 0K5 (2.8) v1 is the value added coefficient of an integrated economy, so v1 Y11 is the increase of value added in sector i due to a decrease of purchase of foreign good i by sector i in an amount of y11. 1121: Y11' 1111-: 18 0K5 (2.9) Now the parameters of sector i, i a 0K , become: 5 a.. X"! + p . 111 11 21 . a.. = ~————————-——— , 1 e 0 (2.10) 112 x11 KS V. x"! + p . 11 11 11 . v. = ————————————— , 1 e 0 (2.11) 12 x11 KS d112 = am + dm + v11' am ' V12’ ‘5 0K5 (2'12) Formula (2.12) is justified by the assumption of constant technology. In summary: for a given set Ks’ s l . . . 51, such that Z 8 . 11911 18KS f_n1, the planners solve LPK and use the unused capacities U11, where S 1 e OKs, to find a112 v1a Formulas (2.5), (2.6) and (2.10), (11.11.2 v1a (2.7) and (2.12) and v12 via (2.11) for each i 9 0K and repeat the 5 previous steps for all values of s, s = 1, . . . , $1. The next section will show the solution of LPk by Dynamic Pro- gramming. 51 2.3 The Dynamic Programming Solution The Dynamic Programming solution to the planner's problem re- quires the following steps: -- definition of states and stages —- use of a recursion formula -— satisfaction of the optimality principle. The planner's problem LPk was formulated as k m max Z = tEl iEl Vitxit k m k tEl 151 Bitg” £t§1 nt k =1’ ' ’ T LPk m m xit +151 dijtxjt '151 aijtxjt + zit = fit + eit + Sit ‘ Si(t-l) #1 Xit + ”it = Cit x1t 2,0, u1t 31o, z1t 3_0, i = l, . . . , m, t = l, . . . , k 2.3.1 Stages and States of the Problem The number of stages in LPk is mT. There are m stages for each year in a T year plan. Each one corresponds to a given sector i, i = l . . . m, in a given year of the T year plan. Let (ik) denote the stage corresponding to sector i in year k, i = 1, . . . , m and k = 1 , . . . , T. The state of the system in stage (ik) depends on the planners' decision to invest, in sector i period k, an amount equal to y m u when r m u are available for investment in stage (ik). Note y15 r. 52 This implies that r — y was invested optinnlly in the previous m(k-l) + i-l stages. 2.3.2 Recursion Formula Let P1k(y) denote the immediate value added generated by invest- ing y m u in stage (ik). Let Qi-1,k (r—y) be the optimal value added obtained when r-y m u was invested in the previous m(k-l) + i-l stages. The recursion formula is:1 k 0- (r) = max [P- (y) + Q- (r-y)l. r < z n (2.13) 1k YE? 1k 1-l,k _'t=l t Equation (2.13) is true for any ifl. Inequality (2.3), i.e. k m k z z a. g. g z t=1 i=1 “5 ‘t t=1 k = l, 2, . . . , T m becomes 121 811911 5_n1 for k = 1, and for k = 2 it corresponds to two constraints m 2 m 2 8. g. 5_n , and, Z Z 6. g. 5_n + n . 1:1 11 11 1 t=1 1:1 1t 1t 1 2 Both of these constraints imply that the maximum invested in the econe omy in year 2 is n1 + n2 and the least is n2. If an amount less than n2 were invested in year 2, the following would occur: 1The subscript k to Wagner's recursion formula was added. Harvey M. Nagner, Princi les of 0 erations Research (2d ed.; Engle— wood Cliffs, N.J.: Prentice-Hall, Inc., 19755, p. 264. 53 m m m 811911 + .2 B12912 in1+ n2 1 .2 812912 < "2 i=1 i=1 1=l this implies m m 1.51 8119115 n1 + "2 '131 812912 In since 112 — 2 8.29.2 > 0 which includes the possibility of i=1 ‘ l m n 131 81191] > n1 because iil B11911 5_n1 + something p051t1ve; this possibility would not happen if 112 was the least amount that could be invested in year 2. This includes the case where zero is invested in year 2 in all sectors i except i = 1. So the recursion formula for i = l is: Q]k(r) = max [P]k(y) + Qm,k-l (P1101 (2J4) 5’3” k k-l where r :_ 2 nt , and , r-y < 2 nt. t—i _ t=1 2.3.3 Principle of Optimality: Bellman1 stated the so-called ”principle of optimality“ encount— ered in any recursion formula of a dynamic progranming problem as follows: An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision. 1Richard E. Bellman, Dynamic Programming (Princeton: Princeton University Press, 1957), p. 83. Stuart E. Dreyfus and Averill M. Law, The art and theor of d namic ro rammin (New York: Academic Press, 19775. 54 The decisions in this research are the investment decisions y. The principle of optimality as stated above applied to the backward type solution to dynamic programming problems. The recursion formulae (2.13) and (2.14) are of the forward types.1 The model is known only at the beginning of period 1 of the T year plan. In subsequent years, the state of the model will depend on the previous investment decisions r—y for a given available amount r in these subsequent years. The principle of optimality for a forward type solution can be restated as: An optimal policy has the property that whatever the present state and present decision are, the previous decisions must constitute an optinal policy with regard to the state resulting from these de— cisions. Formulae (2.13) and (2.14) satisfy this statement. For a given available investment r in stage (ik), a decision to invest y in this stage determines both the state of the system in stage (ik) and the decisions concerning the previous m(k-l) + i-l stages. These previous decisions are an optimal policy for entering this state at stage (ik). 2.3.4 The Dynamic Programming Approach Next, the planners' problem (LPk) is solved by dynamic program- ming. 1George F. Hadley, Nonlinear and D namic Pro rammin (Reading, Mass.: Addison-Wesley Pub. Co., 1964). Harvey H. Wagner, Principles of 0 erations Research (2d ed.; Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975). 55 For a T year plan, there are mT stages. The states in any stage depend on the combination of r and y. Starting with the first year (k=1), the corresponding stages are (l,l) to (m,l). For i=1, the recursion formula (2.14) becomes 011(r) = P11(r) for r 5_n1 (2.15) because by definition Qm o(r-r) = 0 P11(r) is obtained by solving the following LP for a given set of values of f11, e11, s11.and s10,and for r = 611911, 811 = O, 1, 2, P11(r) = max Z m max Z = E v. x. 1:1 11 11 m m X11 + 121 dijlle 1:1 aijlle + 211 = f11 + e11 + 511 ' 510 j#1 1 = l m x11 + u11 = C11 for ifl x11 + u11 = C11 + o‘1811W11 H1Z°’%13°’%130 This LP has to be solved for each value of r, obtained for a given value of 811. The computation of P11(r) requires solving £11 = max [811, integer such that 811911 5 n1] LP's. Now, for i=2, . . . , m, the recursion formula (2.13) is applied 011(r) = max [P11(y) + QH 1(r-y)l. r 5_n1 (2.16) xfir ’ 56 The computations are carried first for i=2 and so on. For each i, the change in the capacity of the first i sectors, for a given pair of (r,y), must be accounted for. .- + .. = _ + . . . ' = . xJ1 uJ1 cJ1 aJBJ1wJ1 J l 1 x11 + u11 = c11 for j > 1 also B11911 ‘ y and i-l Z 8. g. - r-y 1:1 31 31 So the LP that must be solved, to get [P11(y) + Q1_1 1(r—y) for a given pair (r,y), is m max Z = 2 v. x. 1:1 11 11 811911 = y i-l 2 8. g. - r-y j=1 11 31 m m x11 + 121 d1j1XJ1 ' 1:1 aijlle + Z11 " TC11 I e11 + 511 ' 510’ jfi 1 = l m x11 + u11 = cJ1 + ijj1w11, J - 1 1 x11 + u11 = cj1 for j > 1 x11 :_0, 211 3_O, uj1 3_0, j = l . . . m For each i one LP must be solved for each value of y. The number of 57 LP% that must be solved, for each i, and for a given value of r, is 811 where 811 = max [811, 1nteger such that B11911 = y 5_r]. For the case where i = 2, . . . , m and y=0, there is an inter— esting property of the model that can be used to make the dynamic programming solution appealing. For example, if i=2 and y=0 the pre- vious LP becomes 1'1 ' 11 + e11+ S11 ‘ 510’ X11+ u11 = C11+ o‘1811‘111 C21 — le for j > 2 X + C I x. > 0, 211 3_0, u11 3_O, for j = l, . . . , m It can be seen that this LP has been solved (see (2.15)). Max Z = Q1_1 1(r) = Q1 1(r) when i=2 or [P2] (y=0) + 02-],l(r)] = Q],](r)- This implies that P21(y=0) = 0. lbreover, for i 3_2 and y=o, P11 (y=0) = o. This is generalized to any k, i.e., P1.k (y=0) = 0, for i 3_2. The case of P1k(y=0) when i=l will be discussed shortly. For k=2 the model deals with year 2. First, there is a new set of values 58 for f12, 212, 51.2 and 511. Second, some parameters such as v12, a112 and dijz might have changed because of investment decisions in year 1. Both of these situations must be accounted for. The case of i=1 is treated separately. For i=1, the recursion formula (2.14) gives 0120‘) = max [P12(y) + 0m111r-y11 (2.17) YEP with 2 r < Z n and r-y §_n . _t=l t 1’ First of all, Qm 1(r-y) is known by Formula (2216) for any pair (r,y) satisfying the three Conditions above. This will determine the values of v12, a1jz and d1J2 if they are different from those of year 1. Also, the new capacities, resulting from investing r-y in year 1 are known. For y=0 and any r, r 5_n1, P12(y=0) is obtained by solving the following LP. m max Z = Z v. x. 1:1 12 12 m m X12 +121 dij2xj2 ‘ 1.51 aij2xj2 + Z12 — fi2 + e12 + 512 ‘ S11: in 1 = 1 m X12 + u12 = C12 1 = 1 m x12 3_0, U12 3_0, 21.2 3_0, 1 = l . . . m The optimal solution to this LP is: m = = * * . . . P12(y 0) 151 v12x12, where x12 15 an optimal product1on level in sector i, i = l, . . . , m. 59 This implies that P12(y=0) 3_0 For y > O and a given r, i.e., for 812 = l, 2, . . . such that y = 812 912 §_r, P12(y) is obtained by solving this LP with a new con— straint reflecting the change in capacity of sector 1. More precisely, x12 + u12 = C12 + o‘1812W12' For i 3_2, the recursion formula (2.13) is applied. Q- (r) = max [P- (Y) + Q- (r-y)] , r < n + n 12 YET 12 1—l,2 —- l 2 Again P12(y=0) = O. For example i=2, y > 0 and a given r, i.e., for 822 = l, 2, . . . such that y = 822922 5hr, P22(y) is obtained by solving the LP m max Z = 1:] v1.2x12 m m X12 + 121 dithjZ ' 151 aij2xj2 + 212 ' f12 + e12 ‘ 511 + 512’ in 1 = l, , m x12 + U12 = C12 for i > 2 x12 + u12 = c12 + O‘1512W12 X22 + u22 = C22 I O‘2522W22 x1.2 3_0, u1.2 3_0, 21.2 3_0 i = l, . . . , m The value of the right hand side of capacity constraints i, if2, is determined by the investment decisions associated with Q1 2(r—y). The same approach is used for i=3, 4, . . . , m. Furthermore, the case of k=3, . . . , T and i=1, . . . , m is similar to the one just discussed k=2. It is now possible to give the very reason for having adopted 60 the concept of w1t: tion in the year the money is spent for an investment g1t. This rea— the equivalent investment with 100 percent comple- son satisfies the principle of optinality in the model of concern. For a given stage (ik) and a state represented by the pair (r,y), in the quantity [P1k(y) + Q1_1’k(r-y)], the principle of optimality says: Q1_1’k(r-y) is the optimal value added generated in stages m(k-l) + i—l when r-y m u were invested in these stages to reach state (r,y) at stage (ik). The main difference between w. ‘n- 1t t1 tegrates two things: the immediate value added (generated in the year and g1t is that w1 of investment) and the future value added (generated by the completion of the project); whereas g1t takes into account only the immediate value added. If g1.t were used instead of w1t, it would favor investments having the best immediate value added which would prove to be non— optimal at some stage (ik). A simple example will carify things. An amount y=2 is invested in any of the 2 sectors, assume 100 percent completion in year 1 for sector 1 and 50 percent completion for sector 2. Let both investments have the same life time, 5 years. Let the value added by each sector be v1 = .2 and v2 = .3. Assume for convenience a1 = a2 = 1, Bit = BZt = l, and that both sectors are operating at full capacity, C11 = 20, c21 = 15. The total added value is .2 x 20 + .3 x 15 = 9.5. Assume that with investment y=2, they will be still operating at full capacity. If g1t is used, the value added, generated by y=2 in sector 1, will be .2 x 2 = .4 and in sector 2 it will be .3 x l = .3. Investment in sector 1 will be favored by the recursion formulae. 61 (2.15) gives 011(0) = 9.5 011(2) = 9.5 + .4 = 9.9 (2.16) gives 021(0) = 9-5 02112) = max1P21101+ 011(2) . P2112) + 011(0)] wax [9.9 , 9.8] = 9.9 In year 2 it will be found out that investment in sector 2 was actually the best. Under the same Conditions as year 1 (f12, e12, $12, 51.1 are those for period 1 even though the sum tends to increase each year), the total value added in year 1 and year 2, if the invest- ment in sector 1 was carried out, would be: 9.9 + 9.9 = 19.8. If the same investment was made in sector 2, the total value added would be 9.8 + 10.1 = 19.9. Using w21 Formula (2.4) gives 1 1 = 921 (2 + e ' _2h%) W21 6 e = 5, h%= 5 l 21 5 5 ' ' Now the value added generated by investing 2 m u in sector 2, is .3 x 1.8 = .54 so Formula (2.16) gives 021(2) = max [9.9, .54 + 9.5] = 10.04, i.e., investment in sector 2 is favored. This concludes the remarks made on w. 1t and g1t. The problem 62 faced by the planners is very tedious. For any stage (ik), the plan- ners have to solve Bik LP's where Bik = max [Bik 1nteger such that Bikgik = y §_r] T m A The total number of LP‘s is E Z Bik‘ This quantity can be very k=1 i=1 large. Next a method will be proposed to reduce considerably the number of LP's to solve. 2.4 Insights in the Model 2.4.1 Reduction of Computations by Marginal Analysis Max 2 = VX such that AX = b and X 3_0 V is a 3 m—component vector of constants X is a 3 m-decision variable vector A is a 2m x 3m matrix b is a 2m—component vector of constants Once this LP problem is solved, the following information can be obtained from the final tableau. J = set of 2m basic variables 8'] = inverse of the basis matrix B; B is a 2m x 2m matrix b = vector of 2m optimal right hand side constraints n = vector of 2m dual variables. and V Let X denote respectively the vector of 2m optimal basic B B variables and the vector of 2m basic coefficients of the objective function associated with XB. 63 Linear programming theorems give:1 —1 B b = E -1 _ VB B — n VBXB = Max Z = nb The right hand side ranging method (abbreviated as r.h.s.r.m.) provides the tool for achieving the reduction of computations. th Let the right hand side of the i constraint increase by y. Let 3(y) be a 2m column vector where all components are zero except the ith one equal to y. For y=l, the new vector of optimal right hand side becomes -1 th 1 B" = B (b + 3(1)) = E'+ i column of B- the new objective function is max Z = n(b + 3(1)) = nb + ith component of n. 1 Now, for any y, so long as B' (b + 3(y)) = 5” remains non negative, i.e., Eh 3_0, for j=l , . . . , 2m, the basic set remains optimal (and n the optimal dual vector). If y is large enough, 5" may becone negative in which case the old basic set is no longer feasible. -1 . II = b D + B I I = , O I I , I J J 11 y j 1 2m (2 18) -l - -l . .th .th where 811 15 the element of B corresponding to the 3 row and 1 column. 53 will become zero for some value of y if B31 is negative. For the set J to remain basic, the maximum value of y should be 1George B. Dantzig, Linear Programmin and Extensions (Princeton, N.J.: Princeton University Press, 19631. Leon S. Lasdon, Optimization Theor for Lar e S stems (New York: Macmillan, 1972). Allan w. Spivey and Robert M. Thrall, Linear 0 timization (New York: Holt, Rinehart, and Winston, Inc., 1970). 64 —1 11 < 0] (2.19) A E- = y = min [ —%T- , B This means that the right hand side of the ith constraint can increase by y leaVing the set J basic and n the optimal dual vector. For 0 < y §_y the value of the objective function is th Max Z = n(b + 3(y)) = nb + 3(y) (i component of n) (2.20) Equation (2.20) will be used to reduce the number of LP's to solve. 2.4.2 Further Insights in the Model The nodel of concern has the nice following property. Once the value of y is reached, increasing the right hand side of the ith con- straint will not improve the value of the objective function. In other words for y 3_§, Max Z = nb + 8(y) x n1, where n1 is the ith component of n. This is so because of the following reasons. V is a 3m component vector where all components are zero except the first m ones, those corresponding to Xit' Since there are 2m constraints, m for demand constraints (f1t, e1t, s1t, Si(t-1))’ and, m for capacity constraints, it is expected all x. 1t tive level in the optimal solution unless some constraints have a will be at a posi- zero right hand side. At the optimal solution for any x1t, one of two cases must happen: 1) 21t 3_0 and u1t = 0, or, * = 2) u1t 3_0 and 21t 0. The first case states that the sector i is operating at full capacity. Increasing the capacity of sector 1 by y §_y will improve the value of the objective function by 8(y)n1 and increase the optimal 65 value of Xit' Now, for y > y the result is a surplus capacity and the second case occurs. Z1t will leave the basic set J, u1t will enter it and x1t will keep its value. Since u1t has a zero coefficient in vector V, its contribution to the objective function is zero. This nice property will further reduce the number of LP's to solve, since, beyond y the objective function remains the same even though the basic set changes. The basic matrix has a special characteristic if one is able to know what the basic variables are and consequently whether or not the slack capacity variables u1t are basic. If none of the u1.t are basic one does not have to solve an LP to get the optimal solution, i.e., Z* and E} but this is not enough; one must calculate B'] to perform the r.h.s.r.m. computations. In the following, a method will be proposed to find 8']. In the basic set J,there are 2 m basic variables m for z1t and m for x11: since the case where none of the slack capacity variables u1t are basic is assumed. The method consists in arranging the set J starting with the import variables 2. occupying the first m places and the last m it places being occupied by the x1t's. J has the following format: lt’ ZZt’ ' ' ' ’ th’ Xlt" X2t’ ‘ ' ‘ ' xmt}' The basic matrix B is also arranged by columns according to the order in set J. Its inverse or B—1 is obtained very easily: it is B but where all figures switch sign except those equal to 1. Note that the one's are on the diagonal. Example: J = {3,4,l,2} i.e., m = 2 03 II COO-4 OO—JO ... OOO—' This method can be used only when one knows what the basic se- quence is and if none of the u. are basic. 1t There is one instance where this is the case. This is when Vit’ a and dijt at stage (k,l) (where k1: 2) are recomputed. This is so ijt because of the following reasons. The parameters are recomputed in state (k,l) when one or more sectors are operating below capacity in stage (k-l,m), i.e., the last stage of the previous year; the slack capacity is used to reduce d1. and increase v. and a. Once the jt 1t 1jt’ new parameters are obtained, the sectors that had U1t jt 3_0. The case of d.. < 0 occurs when the slack capacity u1 more than offsets the > 0 will operate at full capacity with the new parameters if d1 1jt m t imports jg] dij(t-l)xj(t-l)’ jfi which leads to dijt < 0 in the Formulae (2.7) and (2.12) dijt = aij(t-1) + dij(t-]) ' aijt’ for in, and As long as d 0 in the previous formulae, its slack capacity is ijt 3 reduced to zero, which implies it cannot be basic. So, one will have to solve an LP only if dijt becomes negative implying that dijt 1s zero and slack capacity exists. Note also, if one or more slack cap- acity variables are basic and the basic set J is known, an LP need not be solved. Instead, the inverse basic matrix B.1 must be found and 67 2*, b and W are computed respectively, which can be easier than solv- ing an LP. The previous section in conjunction with the right hand side ranging method will make the dynamic programming approach efficient. 2.5 Dynamic Programming Solution in a New Light In this section, a synthesis is made from both of the last sec- tions to arrive at the final format of the dynamic programming solu— tion. Year 1: Year 1 corresponds to the first m stages. *Stage (1,1): recursion formula (2.14) gives 011(r) = P11(r) r < n1 (2.21) For r=0, the following LP must be solved: "1 max Z - iil v11x11 m m X11 + 131 d131XJ1 151 a1j1xj1 + 211 = f11 + e11 + S 1 ' 510: Jfl 1 = l m X11 + ”11 ‘ C11: ‘=1 m N130’fi130’fi13m The solution gives P11(0) = 011(0), and the basic set J. For r > 0, an annunt r = 811911 is invested in sector 1, resulting in a capacity ' increase of G1811W11 in sector 1. Using the r.h.s.r.m., the maximum increase in capacity of sector 1, for the set J to remain basic can A be obtained. Let R be such a capacity increase. 68 R = max {a1811w11} (2.22) Since 01 and w11 are fixed, R depends only on 811 . 13 B = (2.23) For any r = 811911 such that 811 §_B11 (811 integer) it follows Q11(r) I P11“) I “1811w11"m+1 (2'24) where n corresponds to the dual associated with constraint m+1 m+1 (the first capacity constraint). For any r = 811911 such that 811 > 811 (511 integer) the maximum value added is Q11(r) I P11”) I O“11311“‘11'Im+1 (2'25) Note that 811 is not restricted to be integer. At state (1,1) the values of Q11(r) = P11(r) for r §_n1 and the optimal basic set J and output levels B'are recorded in Table 2.1. Tab1e 2.1 Stage (1,1) 69 Recursion formula (2.13) gives Q11(r) = 51:);[131-10’) + Q1_'|,‘|(r‘.Y)]a Y‘ in] (216) Table 2.2 for stage (1,1) has the following format: Table 2.2 Stage (i,l) The shaded area corresponds to y > r. In this table, the only boxes filled are those satisfying y 5_r. In other words, the computations of Formula (2.16) are carried out up to the point where r=y in each row of the table. There is an interesting property in the dynamic programming re— cursion formula (2.16). Q1_1 1(rsy) is constant for (r—y) fixed. The quantity (r-y) assumes values from zero to r. For each value of (r-y), there is one line crossing the boxes in a diagonal manner; this line crosses only one box in each row and each column. It is along this line that the r.h s.r.m. is applied. For example, in the case of 70 line r-y=0, y takes on the value 0, g11, 2911, etc. P11(y) + Q1_1,1(r-y) is the quantity that must be computed for each box along this line. Since Q1_1 1(r-y) is constant for all these boxes, the only difference between them is the value of y. The value of y only affects the ith capacity constraint. The application of the r.h.s.r.m. is made pos- sible, because P11(y=0) and Q1_1;1(r-y), for a given (r-y), have the same basic set J. Recall that P11(y=0) = O for l=2, . . . , m, as was shown pre- viously. Once the r.h.s.r.m. is carried out for all lines (r-y), one is able to find Q11(r) along each row of the table, to record the value of y, the basic set J and 51 There is a case where one has to be very cautious. The value of Q11(r) which is equal to max [P11(y) + Q1_1 1(r-y)] is also the ysr ’ solution of a linear program where y is invested in sector i, r-y has been optimally invested among the other i-l sectors and zero will be invested in the other i+l to m sectors. There is one case where this relationship does not hold. In other words, Q11(r) can be less than or equal to the 2* solution of the corresponding LP. This happens if both of the following conditions hold. lst condition: Q1_1’1(r-y), i.e., the value added generated by optimally investing (r-y) among the (i—l) first sectors, is obtained with A P = 0 + a. 1-1,1 1-1 X 81-1,1 X w1—1,1 X 1Tm+1-1 P1_1 1 is the maximum generated value added along its line in stage (i-l,l) because the optimal investment decision leads to slack 71 capacity in sector i-l. 2nd condition: The value added obtained by investing y in sector i also results in a slack capacity in sector i, i.e., P11(y) = O + a1 x 811 x w1.1 x nm+1. In both of these cond1t1ons, the optimal decision has resulted in slack capacity in two adjoining sectors lead— ing to 811 and B1_1 1 which are not necessarily integer. This situation is due to the non-independence of the sectors, situation which is not taken into account by the r.h.s.r.m. This weakness of the r.h.s.r.m. does not affect the recursion in future stages, namely i+l to m, and, can be remediated by solving the LP corresponding to Q11(r) and thus getting Z*.1 Year k: k=2, . . . , T All that follows applies for any k=2, . . . , T. In stage (l,k) P1k(y=0) is not equal to zero, contrary to the others. *Stage (l,k): Recursion formula (2.14) gives Q1k(r) = 11111:: [P1k(y) + Qm,k_1(r-y)l where k-l Z n t=1 t r 5. nt , and, r-y 5 The table in stage (l,k) has the following format. 1In the example solved in section 2.6, this situation occurs in stage (2,2) for r=28 along line r-y = 20. ' 72 Table 2.3 Stage (l,k) The upper shaded area of the table is y > r. k—l The lower one is r-y > Z n t-l 1'. 73 For P1k(y=O) and a given value of r, an LP must be solved. This LP has two characteristics: -- First of all, it has a new right hand side for demand con— straints: fik’ e1k, 51k, Si(k-l) -- Second, the parameters Vik’ aijk and dijk might have changed for some i's, because of investments in the previous k-l years. *Stage (i,k): i=2, . . . , m The same steps used in stage (1,1) are applicable here. An example will be used to show how the dynamic programming approach works. 2.6 An Example Assume there are two sectors, m=2. The following data pertain to year 1. a.. i .. j 1 1 ijl 2 v. j 1 131 2 ______._______________;L l 2 3 .2 l l 2 2 3 2 .3 2 l 1 Assume there is a two year plan with the following demands, and also assume that e1t = s1.t = 0. 74 t i 1 2 f1t 15 18 f2t 20 22 The initial capacities are C11 = 20, c21 = 24. The coefficients of conversion are 011=1 dz = .9 The percentage of completion of project in sector 1 is 100 per- cent and in sector 2, 50 percent. The life times of the projects are: e = 5 years in sector 1 e = 10 years in sector 2. The investment available in each year is 14 m u, i.e., n1 = 112 = 14. The costs of a project in sector 1 and sector 2 are, respectively, 2 and 4. The equvalent investments w1 obtained by using (2.14) are: t 2 (15.15%) W1t - _—-——_TT-__——_ — 2, and 1 4 (§-+ 10 - l) .21 = —T—= 3-8 The solution by dynamic programming will be given in 4 stages, 2 for each year. 2 Max Z = Z vjx . 2 2 X21 I E d23'1"J'1 E a2jlle I Z21 I 20 j—l j-l if? x11 + u11 = 20 x21 + u21 = 24 or Max Z = 2x11 + .3x21 x11 + .lx21 - .2x11 = .3x21 * 211 = 15 x21 + .2x11 - .3x11 - .2x21 + 221 = 20 x11 + u11 ' 20 x21 + u21 - 24 or Max 2 = 2x11 + .3x21 8x11 — .2x21 + 211 = 15 -.lx11 + .8x21 + 221 = 20 X11 I u11 I 20 = 24 x21 I u21 “1:0,Q130,%130,#L2 The solution of this LP gives the following information. 2* = 11.2 E: (3.8, 2.8, 20, 24) J = {211, 221, x11, x21} , n = (0, O, .2,.3) 3'1 = O—J—‘m I #OOJN COO-d OOé‘O From now on, the basic variables in the set J will be denoted by their column number, i.e., J = {211, 221, x11, x21} = {3, 4, l, 2} 76 If it was known that both of the input variables 211 and 221 were basic, 8'1 could have been found by the method illustrated in section 2.5.2 without having to solve an LP. Year 1 * Stage (1,1) P11 (r) = Q11(r) r 5_ 1 l4 (r=O) = 11.2 3 II P 11 For r > 0, the r.h.s.r.m. will be applied. Firs, none of the slack capacity variables in are basic, this implies that P11(r) > 11.2, for r > 0. Sector 1 capacity corresponds to the third constraint, i.e., i=3, so Formula (2.19) gives - 5; -1 3 8 y=minI—ET, Bj3<0]=—'§=4.75 J -Bj3 I Formula (2.19) is identical to Formula (2.22) y = R = 4.75 13 4.75 From Formula (2.21), 611 = 317—: —2—= 2.375 1 11 r = 811911, 811 integer. If 811 > 2, sector 1 will operate under capacity. The discussion following Formulas (2.22) and (2.23) gives r = 2 011(2) = P11 (0) + 1 x l x 2 n3 = 11.2 + l x l x 2 x .2 = 11.6 1 I 4: 011(4) = 11.2 + l x 2 X 2 x .2 = 12 77 For 811 > 2 or r > 4 Formula (2.24) gives 011(6) = 11.2 + 1 x 2.375 x 2 x .2 = 011(8) = 011(10) = 011(12) = 12.15 Table 2.4 contains data on the level of investment r, the corresponding value added (Q11(r)), and the optimal basic set J and output levels 51 Table 2.4 Results of Stage (1,1) m: l" Q11(r) J b- O 11.2 3, 4, l, 2 (3.8, 2.8, 20, 24) 2 11.6 3, 4, l, 2 (2.2, 3, 22, 24) 4 12 3, 4, l, 2 (.4, 3.2, 24, 24) 6 12.15 5, 4, l, 2 (1.25, 3.275, 24.75, 24) 8 12.15 5, 4, l, 2 (3.25, 3.275, 24.75, 24) 10 12.15 5, 4, 1, 2 (5.25, 3.275, 24.75, 24) 12 12.15 5, 4, l, 2 (7.25, 3.275, 24.75, 24) 14 12.15 5, 4, l, 2 (9.25, 3.275, 24.75, 24) The above table requires some explanations. For r=0, J and E are those obtained by the LP solution found previously. For r=2 and r=4, the r.h.s.r.m. gives the same basic set J as for r=0. To obtain 5} for r=2 and r=4, Formula (2.18) is used, i.e., — — -1 . = . + .. ' b1 b1 811 r, + N II ON sor for r=2' E“ = ..- NNMN #N- - The case of r=4 is obtained similarly. 78 For r=6, by the results of the r.h.s.r.m. J changes, because sector 1 is operating below capacity. This implies that the import variable 211 (or 3) leaves the basis and slack capacity u11 (or 5) will enter it. The new basic set is J = {5, 4, l, 2}. However, an LP need not be solved, since the new basic set is known, the inverse basis matrix associated with it is obtained by the method of section 2.4.2. —1.25 o 1 - .25 1.25 B—1 _ .125 1 o - .775 B'— 3.275 1.25 0 o .25 24.75 0 o o 1 24 = (.25, 0, 0, .35). For r=6, b'is computed as follows —- -1 -1 b = B b = B (15, 20, 26, 24) = (1.25, 3.275, 24.75, 24) For r=8 5‘: B4 (15, 20, 28, 24) = (3 25, 3.275, 24 75, 24) For r=lO 5': B4 (15, 20, 3o, 24) = (5.25, 3 275, 24.75, 24) For r=12b B'I (15, 20, 32, 24) = (7.25, 3.275, 24.75, 24) For r=l4 EI= =B-I (15, 20, 34, 24) = (9.25, 3.275, 24.75, 24) * Stage (2,1) = P 14 021(r) 3:: I 2161) + Q11(r- -y)l r < P21(y=0) = 0 a2 = .9 3.8 "21 92t 4 In each box of Table 2.5 corresponding to stages (2,1) two values will be recorded: P21(y) and Q11(r-y). Remember the r.h.s.r.m. is used along the lines r-y. 79 IIIIIIIIIII Amm.w~._m.mN.Fm.N.m..v N._.o.m m me.m_ o.__+mp._ mp.m_+we._ m_.N_+N._ m_.m_+o e_ AN5.2N.o.mN.me..e.Nv N.P.e.m a mm.m_ ~.__+mo._ N_+N._ m_.NF+N._ m2.m_+o N_ Ame.em.m.mw.mo..e.v N._.e.m 5 mm.m_ o._F+m_.F m_.N_+N._ m_.N_+o o_ Ame.mm.em.oe..mo._v N._.e.m e mo.m_ N.__+mo._ Np+mo._ m_.N_+o w Aw5.NN.NN.mN..mw.NV N.F.5.m e mo.m_ m.__+mo._ m_.N_+o o AN¢.NN.ON.5o..w¢.eV N._.e.m 5 mN.N_ N.__+mo._ N_+o e AeN.NN.m.N.NV N._.e.m o e._F e.__+o N A¢N.om.w.m.w.mv N._.e.m o N.P_ N.__+o o m a » ALV_No NF w e o »x "III'IIIIIIIHIIIIIIIHHHNH A—.Nv macaw mo mp—zmmm m.m mFQmH 80 Sector 2 capacity corresponds to the fourth constraint, i.e., i=4. 1) line r-y = O Q11(r-y = 0) = 11.2 with corresponding j = {3, 4, l, 2} and 5': (3.8, 2.8, 20, 24) A = - . J -] = c2—.—8—= y R min E-B'I , 814 < 0] .8 3.5 j4 A _ 3.5 3 5 821 I 9x3._8 I 3 42 ‘ I-0234 P21(y=0) - O P21IYI4I I P21II’I0I I 0‘2 X 821 x w21 X I4 = 0 + .9 x l x 3.8 x .3 = 1.026 = 1.03 P21(y=8) = P21(y=0) + .9 x 1.0234 x 3.8 x .3 = P21(y=12) = 1.05 2) line r-y = 2 Q11(r—y = 2) = 11.6 with corresponding J = {3, 4, 1, 2} and EI= (2.2, 3, 22, 24) 37: 2: 133—: 3.75 is . £5. 21 3.2 ; I'0965 P21(.y=0) P21(y=4) = O + .9 x l x 3.8 x .3 = 1.03 P21(y=8) = O + .9 x 1.0965 x 3.8 x .3 = P21(y=12) = 1.125 = 1.13 3) line r-y=4 Q11(r-y = 4) = 12 with J = {3, 4, 1, 2} and 5'= (.4, 3.2, 24, 24) §=§'=%=4 81 A - 4 _ 82] — 3.42 _ 1:]696 P21(y=0) = O P21(y=4) = O + .9 x l x 3.8 x .3 = 1.03 P21(y=8) = O + .9 x 1.1696 x 3.8 x .3 = 1.2 4) line r-y = 6 Q11(r-y = 6) = 12.15 with J = {5, 4, 1, 2} and BI= (1.25, 3.275, 24.75, 24) y = R = min [1.2: , —3'§;g] = 4.2258 A _ 4.2258 _ 82] — 3.42 _ 1.2356 P21 0 J = {5, 6, 1, 2} and EI= (.19, 2.51, 25.81, 28.23) 18 22 28 27.42 same pre- 27.42) Since u11 and u21 are basic, all parameters must be recomputed. D) V C ._a ._a ll 91 .19 .19 x .3 x 28.23 = _ .3 x 28.23 + .33018 = v22 I 28.23 '3I2 .19 x .2 x 25.81 = .98078 Y11 22 iI253fiIIIT37F28.23 13.631 Y12 I 13.631 'II8 _ .3 x 28.23 + .118 _ a122 I IIIIITZIZEIIIIIIII I '304 d122 = .3 + .1 - .304 = .096 011 = .3 x .072 = .0216 1,121 = .0504 _ .2 x 25.81 + .0504 _ a112 I 25.81 I ‘202 _ .2 x 25.81 + .0216 _ V12 I IIIIII25I81IIIIII' I 'ZOI d112 = .2 + .1 + .2 — .202 - .201 = .097 b) u21 = 2.61 = 2.61 x .3 x 25.81 : 20.20923 = Y21 .3'x 25T§TIIIZTGF28I23' I127289 _ 2.61 x .2 x 28.23 = Y22 I IIIIIIfiiifififIIIII I I006 _ .3 x 25.81 + 1.5094 = a212 I IIIIIIIifiiifiIIIIIIII '359 d212 = .3 + .2 - .359 = .141 612 = .3 x 1.1006 = .33018 022 = .77042 _ .2 x 28.23 + .77042 _ a222 I IIIIIIII28I23TIIIIIII I ‘277 .072 1.5094 92 d222 = .2 + .3 + .1 - .227 - .312 = .061 The above values are summarized in the following tables. d.. a.. . 1 132 . 1 132 j l 2 v12 j l 2 < l .202 .359 .201 l .097 .141 2 .304 .227 .312 2 .096 .061 Once the parameters new values are included the LP is: Max Z = .201 x12 + .312 x22 .798 x12 - .208 x22 + 212 = 18 -.218 x12 + .773 x22 + 222 = 22 X12 I u12 I 26 x22 + u22 = 30.84 The basic set is J = {3, 4, l, 2}, for the same previous rea- sons; and, hence g 0 - 798 .208 —1 _ 1 .218 -.773 _ B — 0 0 1 0 , n — (o, 0, .201, .312) 0 0 0 1 5': BIIb = BII (18, 22, 26, 30.84) = (3.67, 3.83, 26, 30.84) 2* = 14.85 = P12(y=0) ; = 8 = §§g%-= 4.599 A _ 4.599 _ 812 II _2—— - 2.299 P12(y=2) = 14.85 + l x l x 2 x .201 = 15.25 P12(y=4) = 15.65 P12(y=6) = 14.85 + 1 x 2.299 X 2 X .201 = . . . = P12(y=14) 15.77 93 To complete Table 2.6 one must record the values of Q12(r), y, J and b. For r=O to r=l4, y=0; J and 5 are those obtained when the different LP's used to get P12(y=O) were solved. For r=l6 and r=l8, the value of Q12(r) was obtained with J = {3, 4, 1, 2} which means that 5, for those values of r, can be found using Formula (2.18). b = (3.67, 3.83, 26, 30 84) + (3rd column of BII)a1812w12 For r=20 up to r=28, Q12(r) attains a maximum value because sec- tor 1 will be operating below capacity. So, the slack variable u12 will enter the basis and 212 (or 3) will leave the basic set. The new basic set is J = {5, 4, l, 2} and remains the same from r=20 to r=28. B is given below. 10 o .798 -.208 -1.253 0 1 -.261 B-l = 0 1 -.218 .773 .8—1 _ .273 1 0 -.716 1 0 1 0 _ 1.253 0 0 .261 0 0 0 1 0 0 0 1 I I VB BII = (o, 0, .201, .312) BII = (.25, 0, 0, .365) For r=20 53=B_I (18, 22, 32, 30.84) = (1.4, 4.83, 30.6, 30.84) r=22 53=B-I (18, 22, 34, 30.84) = (3.4, 4.83, 30.6, 30.84) r=24 5= (5.4, 4.83, 30.6, 30.84) r=26 b= (7.4, 4.83, 30.6, 30.84) r=28 b= (9.4, 4.83, 30.6, 30.84) * Stage (2,2) It is the last stage of this example. 0220“) = max [P22(.Y) III Q12(Y“Y)] 1" i 28 v 0, because sector 1 is already operating under capacity (U12 = 1.4). The r.h.s.r.m. does not take into consideration the fact that after building in sector 2, 822 projects where 822 > 822, sector 1 might operate at full capacity, because of the interdepend- ence between both of these sectors. It was pointed out 822 > 822, i.e., the case where the marginal value added generated by investing in sector 2, 822922 does not comprise the marginal value added gen— erated by secoor l (which was operating at full capacity) resulting from the investment in sector 2. So to get the whole marginal value added due to an investment of 2922 = 8 in sector 2, the following LP 95 Am¢.~m.~n.m—..-.v ~.—.o.n a 2.5.5.33..— otémzu. oo.o~+~m. 3.3.5..— mmdNKT— v.m~+em.~ ¢.m~+m~.— 5.3.5 ow .55.55.55.5...5.... 5...5.5 5 5...5 5.55+55.. 55.55+55. 55.55.. 55.55+55.. ,55.55+ 5.. 5.55+55.. 5.55.5 55 .55.55.55..5.55.5..5.. 5...5.5 5 55.55 5.55.5.. 55.554... 55.55+55. 55..5+.5.. 55.5555... 5.55+55.. 5.55.5 55 .55.55.55.55.5.5.... 5.....5 5 55.55 5.55+55.. 55.55+55. 55.55. . 55.55.55.. 55.554.5.. 5.55+5 55 .55.55.55.55...5..5. 5...5.5 5 55.55 5.55+ 5.. 55.55+... 55.55+55. 55..5+.5.. 55.55+.5.. 5.55.5 55 .55.55.55.5....55.55 5...5.5 5 55.55 5.55+55.. 55.55+55. 55.55+ . 55.55+.5.. 55.5545 5. .55.55.55..5.5..5.5. 5...5.5 5 55.55 5.55+ 5.. 55.55+... 55.55.55. 55..5+55.. 55.55+5 5. .55.55.55.55.5..5.5. 5...5.5 5 55.55 5.55455.. 55555555. 55.55+ . 55.5545 5. .55..5.55.55.5.5..5. 5...5.5 5 55.55 5.55+_5.. 55.55+... 55.55+55. 55..5+5 5. .55..5.55.55.5.55.5. 5...5.5 5 55.55 5.55+55.. 55.55.55. 55.55+5 5. .55..5.55.55.5.55.5. 5...5.5 5 55.55 5.55. 5.. 55.55+.5. 55.55+5 5 .55..5.55.55.5.55.5. 5...5.5 5 55.55 . 5.55.55.. 55555+5 5 .55..5.55.55.5.55... 5...5.5 5 55.55 5.55+55.. 55.55+5 5 .55.55.5.5.5. 5...5.5 5 5.55 . 5.55.5 5 .55.55.5.5.5.55 5...5.5 5 5.55 . 5.55.5 5 5 5 5 ...555 55 55 55 5. 5. 5 5 5 ». .5.5. 55555 55 55.5555 ..5 5.5.. 96 must be so1ved according to the discussion in section 2.5. Max Z = .201 x12 + .312 x 22 .798 x12 +—.208 x22 + z12 = 18 -.218 x12 + .773 x22 + 222 = 22 X12 + ”12 = 32 x22 + u22 = 37.68 X12 3 0’ Z1'2 30’ “i2 30 Its so1ution gives Z* = 18.13 J = {3, 6, 1, 2} b = (.27, .19, 32, 37.49) 1 .269 —.739 O B—1 _ 0 -1.294 -.282 1 0 0 1 0 0 1.294 .282 0 The margina1 va1ue added due to an investment of 2922 = 8 is 18.13 - 15.77 = 2.36. The quantity of 15.77 corresponds to the va1ue added due to in- vesting 6,in stage (1,2) when 20 were avai1ab1e in stage (1,2). Tab1e 2.8 summarizes the resu1ting investment decisions. The tota1 va1ue added in the 2 year p1an is 31.76 m u. The optima1 so1ution requires that 14 m u be invested in each year. At the end of year 2 the capacities are: C12 = 32 c22 = 37.68 The optima1 production schedu1e in year 1 is: X11 = 25,81, x2] = 28.23, U11 = .19, ”21 = 2.61 97 Tab1e 2.8 Investment per Year and Sector Unit: m. u. Investment Year 1 Year 2 Sector 1 6 6 Sector 2 8 8 Tota1 14 14 in year 2: x12 = 32, x22 = 37.49, 212 = .27, u22 = .19 The optima1 va1ue added in year 1 is 13.63 and in year 2 = 31.76 - 13.63 = 18.13. The app1ication of dynamic programming to the examp1e, presented above, shows the tediousness of computations, carried out to get the optima1 so1ution. A computer program cou1d be designed to perform a11 of the steps invo1ved in the so1ution as indicated in section 2.5. This is not the purpose of this research. A more important reason 1ed the author not to design this computer program. It was the non- app1icabi1ity to the A1gerian case. Data used to compute both of the input coefficients (domestic and foreign) are not avai1ab1e in A1geria. Even though imports are known by sector, there is no way of knowing from which foreign sectors they come from. Moreover, import figures contain both intermediate and fina1 demands. That is why, the node1, presented in the next chapter, wi11 be used for the A1gerian app1ication. It uses data as given in the A1gerian input-output tab1e. The so1ution of the economic p1anners' prob1em is obtained by mixed integer programming. CHAPTER III THE MIXED INTEGER PROGRAMMING SOLUTION TO THE DYNAMIC LEONTIEFF MODEL FOR AN INVESTMENT ALLOCATION In this chapter, a mixed integer programming so1ution wi11 be presented. However, the previous Leontieff mode1 wi11 have to be modified to make its so1ution by MIP (a shorter notation for mixed integer progranming), possib1e. 3.1 The MIP Formu1ation The MIP requires that a11 coefficients of the mode1 are known. and the input coefficients a.. must The va1ue added coefficients v. th 3t be known. The variab1es and parameters of the mode1, where the subscript t denotes the re1evant time period are defined. Let: Xit = production of sector i in period t expressed in m u. Bit = number of projects bui1t in sector i in period t. Bit is integer. fit = demand of fina1 goods i in period t expressed in m u. eit = export of fina1 goods i in period t in m u. zit = imports of fina1 goods i in period t in m u. it = inventory of fina1 goods i in m u at the end of period t. 9, = cost of a project in sector i expressed in m u, g, is 98 99 constant. Cit = capacity of sector i in period t in m u. ”it = s1ack capacity of sector i in period t in m u. Vi = va1ue added per unit produced in sector i, V, is known. aij = ratio of the va1ue of input i consumed by sector j to the output of sector j. aij is known. a = coefficient of conversion of investment into capacity in sector i. An investment of 9i in sector i wi11 increase capacity by aigi' The mode1 has the fo110wing ba1ance equations: = f. + s aijxjt + zit 1t ), i=1 . . . m it ‘ Si(t-1 The difference between this set of ba1ance equations and those m presented in the previous chapter is that Z d i=1 J7” ijtxjt is ignored in the present case. The input-output tab1es pub1ished to date provide data concerning on1y aij and not dij for a given year. This is the main reason this mode1 wi11 be used in the A1gerian app1ication. In the fo110wing, the MIP formu1ation of the prob1em wi11 be given. The concept of equiva1ent investment w. it is constant. is used again: the subscript t is dropped because wit In period zero, the capacity of sector i is known, i.e., Cio' In period 1, an investment of Bi1gi wi11 increase capacity by Bi1aiwi' So the fo110wing re1ationships ho1d: 100 Xi1 l O + "(D C11 ‘ io Fina11y, . + . = . + . . . X11 u11 Cio B110‘1wi ’ or, C . 10 Xi1 I ”1'1 ' Bi1o‘iwi (3'1) Equa1ity (3.0) can be genera1ized to any t t c. = x. + u. — 2 B r=1 iraiwi’ i=1, . . . m, t=1, ...T (3.2) It is a1so assumed that n1 m u are avai1ab1e for investment in period 1, n2 in period 2 and so on. Let N be the amount avai1ab1e for a11 T periods. Investments of period 1 must satisfy Inequa1ity (3.3) is genera1ized for any t as fo11ows: t m 2 £8.g.< p=1 i=1 1p1_ n t=1, . . . , T (3.4) P "Md" p 1 It is a1so assumed the p1anners want to maximize the va1ue added over a T year p1an. The formu1ation of the p1anners' prob1em in MIP form is: = f. + e. + s. - Si(t-1)’ i=1 ... m 101 t xit + ”it ' DE] Bipaiwi = cio’ 1:] m t m t z 2 8- g. 5_ z n , t=1 T p=1 i=1 1" 1 p=1 P Xit 3_O, zit :_0, ”it 3_0, Sip-3 0 and integer. T Note a1so that Z n = N. p=1 ‘0 The previous prob1em can be presented in a matrix form. This is done in Tab1e 3.1, where capita1 1etters X, U. Z, B, V, F, E, AS, CO, G stand for m-component vectors, (I-A) for an mxm matrix, I for the mxm identity matrix, W for an mxm diagona1 matrix. The variab1es are X, U, Z and B where B must be integer. The right hand sides are t F, E, AS, Co and 2 hp. The coefficients of the objective function p-1 are V. AS is the net inventory in period t. t Mixted integer programming wi11 be used to find the optima1 so1ution for the investment a11ocation in the A1gerian mode1. Before attempting to do that, the parametens of the mode1 must be estimated. 3.2 Estimation of the Parameters and Data E1even sectors are considered in this app1ication. Sectors which are not primary producers, name1y services, trade, and transpor- tation, are exc1uded. Each of these sectors is 1abe1ed from 01 to 11. Agricu1ture 01 Food industries 02 Petro1eum O3 The MIP Formu1ation Tab1e 3.1 obj. fct. 102 [IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII N A =5 ‘F C :IIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIII a. ‘3 A > :1: IIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIII IIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII A >- :F IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII =’ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 103 Uti1ities 04 Mining 05 Stone and c1ay products 06 Mechanica1, e1ectrica1 industries 07 Chemica1 products 08 Texti1e and 1eather 09 Misce11aneous manufacturing 10 Construction industries 11 In what fo11ows, methods are presented to estimate each param— eter or constant of the mode1. Such estimations concern the vi's, aij's, right hand sides of constraints, gi's, ai's and nt's. 3.2.1 Estimation of the vi's and aij's The 1969 Input-Output tab1e of the A1gerian economy provides the necessary data to estimate these parameters since the present study concerns the first four year p1an which started January 1st, 1970.1 The estimation of the va1ue added coefficients Vi is obtained by dividing the va1ue added of sector i by its production. The es- timates are found in the bottom row of Tab1e 3.2. The input coefficients aij were defined as the ratio of the va1ue of goods i consumed by sector j to the output of sector j. Their estimates are obtained by dividing the amount purchased by sector j from sector i by sector j production. The aij's are a1so in Tab1e 3.2. 1The Input-Output Tab1e is at the end of the study: Tab1e A1. The data was obtained from : Secretariat d'Etat au P1an, Tab1eaux de 1'Economie A1gerienne (A1ger: SNED, 1973, pp. 272—273). 104 0000. 5005. 5500. 5505. 0555. 5505. 5005. 50N5. 05—5. 005N. 0555. 5. 0000. 0500. 0000. 0000. 0000. 0000. 0000. 0N0o. 0050. 5500. 0500. 55 .pmcoo 00N0. 000N. 0500. 0550. 05—0. 00N0. 00N0. 0500. 0000. 0050. 5000. 0— .055: 0000. N500. 5000. 0500. N500. 0500. 0500. 00 5055pxwh 0550. 0000. 0N00. 5000. @050. 0500. 0050. 5500. 0000. N000. 00 m5wuwewzo 00N5. 50N0. ¢000. 00No. 0005. 0000. 500—. 0500. 0000. 0500. 5000. 50 .0050 .00: 0000. 0000. N000. 0000. 05¢N. NNoo. 5N50. 0N00. 0000. 00 0:000 Nooo. ¢5N0. 0000. 00 0:505: 5N00. 55—0. 0N00. 5000. 0000. 0550. 5500. 0005. 0000. N500. 0050. 00 wwwuw5wpo 0500. 0000. 5000. 5000. 0050. 5000. 0000. 0000. 5000. 5000. 0050. 00 500500505 0000. vN—o. 0000. 0005. 0050. N0 0005 0050. 5000. N000. N550. 50 0550< 55 05 00 00 5o 00 00 #0 00 N0 50 0 5 5 .5. 5..> 0:5. 5. 5 55 555555.55 5.5 5.555 105 3.2.2 The Estimation of the Right Hand Side of Demand Constraints The right hand side of demand constraints comprehends four elements: demand of final goods fit’ exports of final goods eit’ initial and ending inventory of final goods Si(t-l)’ and Sit' The 1969 Input-Output Table gives the demand, the exports and the change in inventory of final goods. To get an estimate of the demand and exports of final goods for each year of the four year plan, a constant rate of increase for both of them is assumed. The value of demand and exports as projected in the four year plan is known for the ending year.1 The estimate of the growth rate 9 is obtained from the following formula Value73 = Value69 (l + g)4 Table 3.3 contains the growth rates of demand for food products and industrial goods. Table 3.3 Rate of Increase of the Different Types of Consumption Increase 1969-731 Annual Increase Goods % % Agriculture and Food Products 23.5 5.42 Industrial Goods 30 6.78 Overall Mean 24 5.53 1Source: Ministry of Information and Culture, The four year plan (Algiers: SNED, l970, p. 70). 1Ministry of Information and Culture; The four year plan (Algiers: SNED, l970). 106 Table 3.4 shows the increase rates of exports for four categor- ies: l) agriculture and food products, 2) mining products, 3) Pet- roleum products, and 4) industrial goods. Table 3.4 Value of Exports in 1969 and 1973 (as Projected). Unit: Millions of DA Goods 19691 19731 Annua1%1ncrease Agriculture and Food Products 860 950 2.6 Mining Products 160 250 11.8 Petroleum Products 3250 5130 12.1 Industrial Goods 180 450 25.74 1Source: Ministry of Information and Culture, The four year plan (Algiers: SNED, 1970, p. 33). Furthermore, it is assumed that the growth rate of the net change in inventory is equal to the one used for the demand of final goods. This assumption is necessary since there is no data available to make a better estimate. The right hand side of demand constraints is presented in Table 3.5. Table 3.5 requires some explanations. First, the following growth rates are used in computing the demand and net change in inven- tory of final goods (see Table 3.3). -- 5.42% for agriculture and food sectors -— 5.53% for stone and clay products and construction indus- tries sectors —- 6.78% for all other sectors 107 Table 3.5 The Right Hand Side of Demand Constraints. Unit: Millions of DA Sector 1969 1970 1971 1972 1973 01 Agriculture 2040 2145 2255 2371 2494 02 Food ind. 4791 5030 5280 5543 5821 O3 Petroleum 3642 4055 4516 5031' 5606 04 Utilities 202 216 230 246 263 05 Mining 175 194 215 239 265 06 Stone and Clay 118 124 131 139 146 07 Mech., Elec. 629 690 760 841 936 08 Chemicals 945 1014 ' 1089 1171 1260 O9 Texti1e-1eather 2100 2251 2415 2593 2787 10 Misc. mfc. 709 765 828 898 976 11 Const. ind. 1852 1954 2063 2177 2297 Source: Secretariat d'Etat au P1an, Tab1eaux de 1'Economie Algerienne (Alger: SNED, 1973, p. 273). 108 Second, the exports are multiplied by the growth rates shown in Table 3.4: -- 2.6% for the agriculture and food sectors —- 12.1% for the petroleum sector -- 11.8% for the mining sector —— 25.74% for mechanical and electrical, chemicals, textile- 1eather and miscellaneous manufacturing sectors.1 3.2.3 Estimation of the Right Hand Side of Capacity Constraints The estimation of initial capacity is based on the Gross Na—' tional Product of 1969, and on the assumption that the economy oper- ated at full capacity in 1969. There are no data available to pro- vide a better estimate for initial capacity. The main reason for doing so, is, that the data found in the Input—Output Tab1e show al- most every sectors imported goods. Table 3.6 presents the initial production capacity for the different sectors of the economy. 3.2.4 Estimation of projects costs 91's The cost of a project is understood as the average investment made in a given sector to acquire the necessary fixed assets to achieve an average production. The estimation of g1 is based on American data. (The main reason for this choice is that Algeria has to import most of its capital goods from western countries. So, American data can provide a fair estimate of a project cost. 1The stone and clay products sector will not export anything during the four year plan because a strong demand will arise during this period. The exports were very low in 1969 for this sector 1 million of DA. 109 Table 3.6 The Right Hand Side of Capacity Constraints. Unit: Millions of DA Sectors Value 01 Agriculture 3312 02 Food ind. 3565 03 Petroleum 4679 04 Utilities 369 05 Mining 185 06 Stone and clay 310 07 Mech., e1ec. 1256 08 Chemicals 493 09 Texti1e-1eather 1443 10 Misc. mfc 498 11 Const. ind. 2043 Source: Secretariat d'Etat au P1an, Tab1eaux de 1'Economie Algerienne (Alger: SNED, 1973, pp. 272-273). 110 The data used in this estimation is in Table A2 in the Appen— dix. The data concerns the period 1969-1972 according to the differ- ent sectors used in this nodel. 3.2.4.1 General Assumptions Three assumptions are made: *1st Assumption. It is assumed that the life-time of a project is -- ten years in agriculture, food products, textile-leather and miscellaneous manufacturing. = -- fifteen years in construction industries. -— twenty years in mining and stone—clay products sectors. -- thirty years in utilities, petroleum, mechanical-e1ectrica1 and chemical sectors. The first assumption is justified because the lifetime of a project increases with the degree of capital intensity. *2nd Assumption. The completion time of a project is also assumed to vary with the degree of capital intensity. It is -- one year in agriculture, food products, textile-leather, miscellaneous manufacturing and construction industries sectors. -- two years in mining and stone-clay products sectors. —- three years for all other sectors. *3rd Assumption. It is assumed that the fixed assets available in the correspond- ing American sectors have been in use for half their lifetime. It is lll necessary to make this assumption to avoid a low estimate of the value of fixed assets. 3.2.4.2 Method of Estimation Data obtained for all sectors, with the exception of agriculture and mining, measure the net book value of fixed assets. To obtain a fair replacement value of fixed assets, two assump— tions are made. *lst Assumption. It is made in conncection with the depreciation method. Among the three methods generally used: straight line, sum of the year's digits and the double declining balance, the sum of the year's digits will be used.1 Table 3.7 contains the values of the sum. Table 3.7 Sum of Years' Digits 3 § t = n (n2+ 1 n Sum 5 15 7 28 10 55 15 120 20 210 30 465 1This assumption is ignored for fixed assets having a groos book value figure, namely agriculture and mining. 112 *2nd Assumption. To get a fair replacement value of fixed assets, inflation is taken into consideration. It is necessary to make such an assumption to avoid a low replacement value of fixed assets whose life-time is quite high. For instance, a fixed asset with a thirty year life-time, in use for fifteen years, will certainly have a high replacement value compared to its acquisition cost, because of the inflation in the cap- ita1 goods area. The rate of inflation for capital goods was in the vicinity of 4 to 7% in the sixties.1 The rate of inflation chosen is 5%. The method of estimation proceeds along the following steps. -- First, the net book value (NBV), of fixed assets per estab- lishment is found." —- Second, the acquisition cost of the fixed assets is computed. An example will clarify the method of obtaining the acquisition cost. Let us suppose, the net book value is NBV, the average life—time of the fixed'assets is ALT and they have been in use for T years: T = 5%I-, since the fixed assets age is assumed equal to half their life time. The sum of years digits method of depreciation gives: ALT NBV x z t t=1 acquisition cost = T ; t=1, . . ., T, . . . , ALT Z t t=1 -— Third, to obtain the replacement value of the fixed assets, 1U. S. Department of Labor, Bureau of Labor Statistics, Chartbook nprices, wages and productivit (Editors James McCall and John Tschetter, Vol. 2, No. ,May 1976, p. 25). 113 the inflation rate is taken into account. replacement value after T years = acquisition cost x (1 + .05)T A11 replacement values are computed for 1971, i.e., the second year of the plan and are used for each of the four years. Cost of projects (based on American data), gi, are in Table 3.8. Table 3.8 Cost of Projects: gi (Based on U.S. Data) ,2 seem” ($1,000?000's) (1 ,ooo?ooo's DA) 01 Agriculture .097 .452 02 Food 5.419 25.168 03 Petroleum 67.075 311.496 04 Utilities] 37.592 174.577 05 Mining 2.367 10.991 06 Stone-c1ay 12.999 60.367 07 Mech. Elec. 18.320 85.080 08 Chemicals 25.717 119.432 09 Textile-leather 1.898 8.815 10 Miscellaneous mfc 2.252 10.456 11 Const. industries .179 .830 1U.S. Federal Power Commission, Technical Advisory committee on finance, National Survey: The financial outlook for the ower industry: lhe report and recommendations of the Technical Ad- Visory committee on fiannce, Part II (Washington: U.S. Government Printing Office, 1974), p. 3.5l. 2$1 = 4.644 DA in United Nations, Statistical Office, Statist- ical Yearbook (New York: UN, 1975). 3.2.4.3 Estimation of a Project Cost in Agriculture The cost of an agricultural project is restricted to the value of machinery and equipment in an average size farm. 114 The market value of equipment is $24.285/acre.1 The average size of a state owned farm in Algeria is 1154 hec- 2 3 tares corresponding to 2851 acres. The acquisition cost of machinery and equipment in 1969 was $24.285 x 2851 x (1.05)5 = $88,365. In 1971 it was: $88,365 x (1.05)2 = $97,422. Its corresponding value in DA (the Algerian currency unit) is in column 2 of Table 3.8. 3.2.4.4 Estimation of the Cost of a Project in the Mining Sector The gross book value of fixed assets in the mining secotr was 16,432 millions of dollars in 1972.4 The number of establishments was 10,771. The average life-time of fixed assets in this sector is 20 years. Acquisition cost/establishment, in 1971 = 18’??? x (i.05)9 = 2.367 millions of dollars. 1U.S. Bureau of the Census: Census of A riculture 1969 Volume II General Reports, Chapter 3, Farm management, Farm operations (Washing- ton D.C.: U.S. Government Printing Office, 1973), p. 153. 2Secretariat d'Etat au Plan, Tab1eaux de 1'Economie Algerienne (Alger: SNED 1973, p. 121). 31 hectare = 2.471 acres. 4U.S. Bureau of the Census, Census of Mineral Industries 1972 Sub ect Industr and Area Statistics (WaShington, D.C.: U.S. Govern- ment Printing Office, 1976), pp. 1-89—1-92. 115 3.2.4.5 Estimation of the Cost of a Project in the Construction Industries Sector. The 1972 census of construction industries gives the following data:1 Number of establishments = 437,941 Net value of fixed assets = $12,054 millions Rental payments for machinery and equipment = $1,972 millions Now, the cost of a project in this sector can be computed. Net value of fixed assets/establishment = £37J§25 = $.027 millions To get the acquisition cost, the rental payments for machinery and equipment are incorporated. 15 .027 x Z acquisition cost of a project = ——-—7r£:l——-X (1-05)7 + 55%2%%T Z t t=1 = $.178 millions 3.2.4.6 Estimation of Projects Costs for All Other Sectors The data used to obtain an estimate of the replacement value of the fixed assets are shown in Table A2 in the Appendix. However, the non existence of the number of establishments in 1971 made necessary the use of the following assumption. The number of production workers per establishment is assumed the same for 1971 and 1972. Since the number of production workers and the number of establishments in 1972, are known, the number of production workers 1U.S. Bureau of Census, Census of Construction Industries, 1972, Vol. 1, Industr Statistics and S eCial Reports (Washington, D.C.: U.S. Government Printing Office, 1976), pp. 6—7. 116 per establishment can be obtained. The last figure divided into the number of production workers for 1971 gives the number of establish— ments in 1971 for a given sector. Now it is possible to get the net book value per establishment in 1971. Using the sum of years' digits method of depreciation1 and the inflation rate, the replacement value of fixed assets per establishment is (the cost of a project) obtained. This method is applied to the food sector to show how it is used. From Table A2 one obtains: Number of production workers/establishment = liég§j%%Q-= 49.23 Number of establishments in 1971 = li9%%i%%9-= $21,306 millions Net book value of fixed assets = gf’gg3'4 = $1.158 millions 5 Acquisition cost = 141§§—5—%§—5-1149§1— = $5.419 millions Table 3.8 indicates the cost of projects in other sectors. 3.2.5 Estimation of the Capacity Increase Due to Investment An investment 9i will increase capacity of sector 1 by aigi cone the project is completed. Recall, W1 is an equivalent investment to gi, being completed the same year it is started 1 1 g' (_+€' a) wi=—L—g—E——g%— fmmmeMa(ZA) Multiplying both sides of the previous formula by ai’ it follows 1 1 -0591 (2* E ' m) (x.W.— —-—-————— 11 8 1cf. Table 3.7. 117 The increase in capacity aiwi must be computed. It can be de- termined if Gigi is known since 8 and h% are given. From the data in Table A2 the value of shipments per establish- ment in 1971 can be obtained (provided, the number of establishments in 1971 is computed by the method illustrated in 3.2.4.6). However, the value of shipments does not correspond to full production capaci— ty; so the following assumption was made--the value of shipments cor- responds only to a certain percentage of production capacity. Once the value of shipment is divided by the corresponding percentage of production capacity, the aigi's, looked for, are obtained. In fact, there was no need to find the ai's. Table 3.9 contains the values of aiwi o The case of the mechanical-electrical sector will illustrate the application. The value of shipments per establishment is $5.492 millions. Since this value corresponds to 80% of production capacity, a project with fixed assets of $18.320 milliong will increase capacity by 5.432 .80 tained as follows =$6.865nfi11ions. This figure is precisely a7g7. a7w7 is ob— 1 1 1 3 a7w7 —————————7;—————-—— = 30 = $6.636 millions Table 3.9 shows the figures for each sector. 1cf. Table 3.8. 118 5 0— .00—000 ac—ac—Lm uzwscgw>oo .0: mu—cum=5=_ —~Lo=_z 00 mzmcou .m:m=uo 0:0 00 :uwgsm .m.= H.00 .=000=—=m~:v mo—um—uuum aog< 0:0 Lun:0=_ «om 0:0 N50— 0 . .0 . 0— .wu—uuo 0c—uc—ga newscgo>00 .0.: 0.0.0 .:000=—=mo:v ugumauo_.uvzao u_uuou_u as» so» goo—0:0 —a—u=~:—u 00— " u>g=0 —a:0—uuz .wu:a=.m :0 >50m.>5< —no—:=uoh .zo—mm—Esoo Logo; —ocuuou .0.0 "ougzomN .0 . 0: = L u:aE:gu>00 .0.0 “.0.0 .c—u0c—gmnzv wudwmuumm:auuu uzmemmucua Esau .0 cm“ ago .mugo mg —ugu=w .__ ass—o> 000— .ocsu—:u_g a he mamcou .mzmzoo use we :mmgsm .m.= "mocsom— 000.N 055. 055. 00 5000. — 0— .00— .umcoo —— 505.5 5N0.— 5N0.— 00 —N0. — 0— U05 .um—z 0— 0——.0 055.— 055.— 00 050.— — 0— Luguuo—io——axu— 00 050.0N 500.0 055.0 00 5N0.5 0 00 m—nu_Ew:0 00 0—0.00 000.0 000.0 00 N05.0 0 00 .00—0 .090: 50 500.0— 050.0 —05.0 05 050.N N 0N 020.9800 00 5——.5 N00.— —50.— 05 005—.— N 0N 0:.0.: 00 N55.5— 5N0.0 000.0 00 N50—.0 0 00 wo—u———»0 50 005.05 , N00.0— 000.0— 00 N05.0— . 0 00 saw—onumg 00 0N0.0N .000.0 000.0 00 —00.5 — 0— 0000 N0 005. 00—. 00—. 00 , —N0—. — . 0— uxzu—su—L0< —0 .m.000.w00.—00 5m.wm0.000._00 Au_.—.>0—uogoo Am.000.000._«0 Amcuoa cw. 5mgam> :_0 :5 5.89.82: .5 .3 B 8:258; .... 22.5.33: 2:12.: 352.... . mgouowm _z_u Aagm —-u+~ — 0 —ou 0:0 momuwgo=_ wauuzougua gun mucosa—gm =0_uw—Qsou 00 00—— » _=.a 5u—uuamo 0:05:00mugsou 00 as—a> “amass; 00ac0>< Anus: sou—Los< =0 wanna. —:—a "mumamgu=_ xa.uuauo no ma—u> 00— 0.0 0—05— 119 3.2.6 Estimation of the Investment Expenditures The money available for investment in the four year plan was defined as N. The value of N is computed by adding the public expenditures for investments to the private ones. The value of N is equal to 20,200 millions of DA.1 Since the data figures available did not specify the anount to be spent each year, it was decided to divide N into four equal parts, i.e., 5050 millions of DA per year. Table 3.10 shows the cor- responding values of E n t=1 k t, 1,. -.,4. Table 3.10 Available Investment in Algeria Unit: Millions of DA k Year t nt 1970, k=1 5,050 1971, k=2 10,100 1972, k=3 15,150 1973, k=4 20,200 Source: Ministry of Information and Culture, The four year plan (Algiers: SNED, 1970). 1Ministry of Information and Culture, The four year lan (Algiers: SNED, 1970) Public InVestments: l) allindustries: 12,100 millions of DA (p. 32); 2) Agriculture: 4100 millions of DA (p. 52); 3) Housing: 1510 millions of DA (p. 84). Private investments only in industrial sectors: 2190 millions of DA (p. 31). 120 Now, the planners' problem can be solved since all coefficients and right hand side constraints are known. This is the subject of the next section. 3.3 Solution by MIP The planners' problem, which is to maximize the value added over the four year plan to get the optimal sequence of investments, is solved by using the mixed integer programming option available in the APEX package.1 Before going further, a change in the initial tableau, correspond- ing to the one depicted in Table 3.1 was made. The columns Ut and Zt were deleted from the tableau; that make the demand and capacity con— straints inequalities of the 5_type. This avoided punching unneces- sary cards for these columns. 3.3.1 Introductory Comments The problem formulation required: -- 8 m variab1es, i.e., 2 m per year, m for Bit and m for Xit' Since m = ll,there were 88 variables. -- 4 (2m + 1) constraints, there are m constraints for demand and m for capacity, 1 for available investment. There was a total of 92 constraints. All constraints are of the less than or equal type except those representing the demand constraints of utilities (sector 04). These are strict equalities. LeSs than or equal constraints for this sec- tor demand would mean the possibility of having imports of utilities. 1The APEX package was run on the CDC 6500. 121 This is not very realistic even though it is conceivable. The listing of the input cards is shown in Table A.3 in the Appendix. Before interpreting the computer output, some remarks must be made on the names of variables; The integer variables Bit are rep- resented by NBRth, number of projects in sector i in year t. The PRODth's correspond to production levels of sector i in period t, xit' The demand constraints are denoted by the slack variable asso- ciated with each as follows: —- IMPORTth stands for the slack variable zit —— UNUSEDth stands for the unused capacity of sector 1 in period t, uit —- MONEYLEFTt stands for the funds left over after investment in period t. The APEX package requires that bounds be set on integer varia- bles. The bounds were set equal to 16383, maximal value allowed in this package.1 3.3.2 Analysis of the MIP Results The MIP results are presented in Table A.4 in the Appendix. The solution was obtained after 101 seconds of Central Processing Unit time. The value of the objective function equaled 61369.063 millions of DA. The following facts can be observed: —- First, the funds, available each year, were almost all ex- hausted, the value of the slack variables associated with the 1In fact, the problem as formulated in section 3.1 is bounded by the investment constraints. 122 investment constraints are 0.24, 0.109, 4.511 and 1.291 millions of DA at the end of year 1, 2, 3 and 4 respectively.1 -— Second, the previous remark is complemented by the fact that Host of the sectors operated at full capacity in the fourth year with the exception of the following three: agriculture, food industries and construction industries. These sectors show positive slack for the capacity constraints (rows 82, 83 and 94 in Table A.4 under CON- STRAINTS). -- Third, three sectors show a negative row activity2 in each year of the four year plan: stone-c1ay products, mechanical-electrical and chemicals (sectors 06, O7 and 08). To understand this situation let us refer to the demand constraints. m Xit ' J2] aijxjt + zit = fit + eit + Sit ' S1(t-1) Omitting zit will transform the above equality into a less than or m equal constraint. A negative row activity occurs if x.t - Z a .x. i j=l ij jt is negative. This implies sector i production is not even able to satisfy the intermediate demand coming from other sectors, the nega— tive figure is equal to this deficit. For instance, the right hand side of the demand constraint for sector 08 products is 1014, the def- icit is equal to 166.736 (row 9), the sum of both of these figures, 1014 + l66.736= 1180.736, is the value of imports of chemicals for 1 and 93. 2cf. Tab1e A.4 under CONSTRAINTS, column: ROW ACTIVITY, rows 7 to 9, 30 to 32, 53 to 55 and 76 to 78. cf. Tab1e A.4 under the heading CONSTRAINTS: rows 24, 47, 70 123 the first year, this figure is the value of the slack variable (row 9). These three facts support the conclusion that if more funds had been available the MIP would have used at least part of them. More funds must have been allocated to the four year plan to achieve the goals represented by the demand constraints. The optimal sequence of investments to achieve the maximum sum of value added over the planning period is what the planners look for. This is in Table A.4 under the heading COLUMNS. the values of the integer variables NBRth are found in column COL ACTIVITY. Table 3.11 presents the value of investments in each sector per year. The investments are obtained by multiplying the value of NBRth (Bit) by the corresponding project, 91. The following facts can be observed in Table 3.11: -- The petroleum sector invested 27.76% of the funds available for investment expenditures in the four year plan, no other sector achieved this percentage. This sector has three characteristics: first, it has a high value added coeffiéient, .7145; second, it is a sector that is capital intensive; and, third, the petroleum sector is highly related to primary activities such as oil and gas extraction. By the way, the activities usually found in the oil industry were not very developed in 1969, which is the date for which the value added coefficient was computed. These activities have a much lower value added coefficient. -— The next three highest investments were made in the textile- 1eather, food and miscellaneous manufacturing sectors. They shared 124 Table 3.11 Structure Of Investments in the Four Year Plan. Unit: Millions of DA 1 2 3 4 1970 1971 1972 1973 Sector Tota1 % 01 Agriculture 1499.284 261.256 221.48 201.592 2183.612 10.81 02 Food 2416.128 377.52 327.184 327.184 3448.016 17.07 03 Petroleum 2180.472 3426.456 5606.928 27.76 04 Utilities 523.731 349.154 349.154 349.154 1571.193 7.78 05 Mining 76.937 43.964 43.964 164.865 0.82 06 Stone-clay 60.367 60.367 0.3 07 Mech. Elect. 08 Chemicals O9 Texti1e-1eather 511.27 2953.025 379.045 387.86 4231.2 20.95 10 Misc.mfc. 1056.056 1432.472 261.4 2749.928 13.61 11 Const. ind. 22.41 53.12 51.46 55.61 182.6 0.9 Total 5049.76 5050.151 5045.598 5053.22 20198.709 100.0 125 together 20.95 + 17.07 + 13.61 = 51.63% of the total investment. These activities are in the light industry area, where capital in- vestments are low compared to other sectors such as chemicals, mech- anical-electrical, and so forth. The sectors in question are labor intensive and are heavily dependent on agriculture which is a pri- mary sector "par excellence.“ -- Agricu1ture had a high level of investment in the first year, 1500 millions of DA, i.e., 30% of total expenditures of that year. In the following year there was a sharp drop in spending. From 1971 to 1973 the investment levels would have seemed to stabil- ize between 260 and 200 millions of DA. The reason has to do with production levels. For this the reader should refer to Table A.4 under the heading CONSTRAINTS. Even though there was a huge invest- ment in the first year, 1500 millions of DA, the slack capacity in agriculture was only 0.857 millions of DA (row 13). In later years, investments being much lower (between 260 and 200 millions) the cap- acity constraints showed a lower slack (rows 36, 59 and 82). One can conclude that the high investment level in 1970 was due to the agricultural output capacity having been far behind the demand im- posed on agriculture. The investments made in 1971 up to 1973, which were low, were carried out for the sole purpose of keeping up with the annual increase in demand for the agricultural products. This conclusion is also corroborated by the fact that demand CONE straints were bound in 1970, 1972 and 1973 (rows 2, 48 and 71) and had low imports in 1971 (row 25) of about 4 millions of DA. -- Next, the sectors generally capital intensive, such as chemicals and mechanical-e1ectrica1, had a zero investment level by 126 the end of the four year plan, even though they showed relatively high imports, 1686 and 1184 millions of DA in 1973, respectively, (rows 78 and 77). Furthermore, in 1970, both sectors had a total of 1180.736 + 717.177 = 1897.913 millions of DA of imports (row 9 and row 8), sensibly equal to the one obtained for textile—leather and miscellaneous manufacturing sectors for the same year, 1273.243 + 630.925 = 1904.168 millions of DA (rows 10 and 11); however, in the following year, sectors 09 and 10 were the best candidates for invest— ment. 2953.025 + 1056.056 = 4009.081 millions of DA (Table 3.11, column number 2) alnnst 80% of year 2 spending, even though the value added coefficients are not that different. The reason for this re- sides in the high cost of projects in sectors 07 and 08. —- The food sector followed the same pattern as the agriculture sector, huge investment in the first year (2416) and stabilization in the folldwing years, 377 in 1971 and 327 in 1972 and 1973. -- The investments in the utilities sector were quite steady, 523 millions of DA in 1970 against 349 in the following years. Their presence was due to the equality of demand constraints for this sec— tor1 which forced MIP to have strictly positive values for the cor- responding integer variables. In summary, the MIP solution favors investments in: 1) sectors of primary activities: petroleum, agriculture and mining. 2) sectors with low capital investments: food, textile-leather , and miscellaneous manufacturing. 1The first time MIP was run with less than or equal constraints for the demand of utilities, no investment took place in any of the years concerned and we ended up with imports of utilities. 127 These facts are in complete concordance with a certain theory of economic development that was formulated in the early 1950's and that is still highly criticized. According to it underdeveloped countries starting economic plans should invest in sectors with low capital investments. The reasons behind this theory are: l) underdeveloped countries are characterized by a high level of unemployment. 2) a low level of savings that can be invested in different industrial projects. So it seems logical that these countries undertake projects with low capital ratios and in sectors being more labor intensive than others.1 This theory is confirmed by the investments obtained in the agriculture, food, textile-leather, miscellaneous manufactur- ing and construction industries sectors. But, how can the huge in- vestments in the petroleum sectors of the last two years be explained? However, Professor Lewis adds, Capital works with natural resource as well as labor, and a poor country's natural resource advantage may be such that it pays to develop some rich but capital intensive natural resources.2 This explains why large investments are present in the petro- leum sector. The results obtained by MIP in the four year plan con- firm this theory. The only way the validity of such a theory, at 1Some of the proponents of this theory are: Rugmar Nurske: Problems of ca ital formation in underdevelo ed countries (New York: Oxfora University Press, I953). Gunnar Myrdal, Economic theor and underdevelo ed re ions (Lon- don: G. Duckworth, 1957). 2 William Arthur Lewis, Develo ment lannin : The essentials of economic policy (London: George Allen and Murw1n, Ltd., 1966, p. 55). 128 least in the present case can be tested, is on the time horizon, be- cause a four year plan may not be long enough to do so. The opponents of the above theory are the advocates of the so- called'hnbalanced growth" theory of economic development.1 This theory claims that economic growth and development can be achieved by invest- ing in some'Strategic" industries characterized by: 1) a high capital ratio 2) inducing the development of downstream and upstream indus— tries. Examples of "strategic“ industries are the steel and the petro- leum industries. Almost any underdeveléped country wanted to have its own steel industry, hoping that it would bring economic growth and de- velopment by some magic formula. As Professor Kindleberger pointed out,2 In dynamic terms, Bruton3 has suggested that the industries which embody external economies are frequently capital inten- sive. These capital intensive investments must be undertaken before one can take advantages of opportunities for investment in labor intensive industries.... It is believed that capital intensive industries are more effective producers of savings than labor intensive and hence likely to speed development faster despite a possibly lower static level of output. To test the validity of these conflicting theories, it was decided to increase the time span of the plan from four years to eight years. This is the subject of the next section. 1Albert 0. Hirshman, The strate of economic develo ment (New Haven: Yale University Press, 1961). 2Charles P. Kindleberger, Economic development (New York: The MacGraw Hill Bdok Company, 1958). 3H. J. Brutton, "Growth models and underdeveloped countries," Journal of Political Economy, August 1955. 129 3.3.3 The MIP Solution to the Eight Year Plan The mathematical formulation of the eight year plan is identical to that of the four year plan. There are 16 m variables, 8 m for the integer (Bit) and 8 m for x. There are 8 (2m + 1) constraints; m 1t‘ for demand constraints, m for capacity constraints and 1 for invest- ment constraints; that is 2m + 1 constraints per year. All assumptions, stated in the four year plan case, are used again. The same input-output matrix is used. The rates of increase of final demand and of exports are used to arrive at the right hand side values of demand constraints. This is presented in Table 3.12. Table 3.12 The Right Hand Side of Demand Constraints for 1974—1977 Unit: Millions of DA Sectors 1974 1975 1976 1977 01 Agriculture 2622 2758 2901 3051 02 Food 6113 6420 6743 7083 O3 Petroleum 6248 6965 7767 8663 04 Utilities 280 299 319 341 05 Mining 294 326 362 401 06 Stone-c1ay 154 163 172 181 O7 Mech.Elect. 1046 1176 1330 1513 08 Chemicals 1357 1465 1584 1715 O9 Textile-leather 2998 3229 3484 3764 10 Misc. mfc. 1064 1163 1276 1406 11 Const. ind. 2424 2558 2699 2849 130 The values of the right hand side of investments constraints are in Table 3.13. The first part of Table 3.13 is the same as the one in Table 3.10. The second part, dealing with year 5 up to year 8 of the plan, requires an explanation. Table 3.13 Available Investment in the Eight Year Plan. Unit: Millions of DA k Year til nt 1970, k=1 5050 1971, k=2 10100 1972, k=3 15150 1973, k=4 20200 1974, k=5 33010 1975, k=6 45820 1976, k=7 58630 1977, k=8 71440 Sources: 1970-1973 Ministry of Information and Culture, The four year plan (Algiers: SNED, 1970); 1974-1977, Secretariat d'Etat au Plan, Tab1eaux de 1'Economie Al erienne (Alger: SNED, pp. 280-281). The second four year plan covering the 1974-1977 period made 64,688 millions of DA available to invest in directly productive sectors.1 This figure is stated in 1974 DA. To get the corresponding value in 1Secretariat d'Etat au P1an, Tab1eaux de 1'Economie Algerienne (Alger: SNED, 1975, pp. 280-281). 131 1970 DA a discount rate of 6% was used to take into account the de- crease of purchasing power in 1974 due to inflation. Its rate in the capital goods area was between around 5 to 7% in the early sev- enties.1 The corresponding 1970 value is 51,239 millions of DA. Here again, an equal amount available each year, 12810 millions of DA, is assumed. The listing of the input cards is shown in Table A.5. The re— sults of MIP are given in Table A.6. Both of these tables are in the Appendix. Before interpreting the results, it must be pointed out that the funds available for investment in the 1974-1977 p1an-—51239 mil- lions of DA-—are more than two and a half (2.5) times the funds for 1970-1973 p1an (20200 millions of DA). The structure of investments is shown in Tables 3.14 and 3.15. If the part of the eight year plan covering the first four years is compared with the investments made in the four year plan, it will be discovered that they are very close. The percentages of total in- vestments as shown in the first column of Table 3.15 are almost identical to the ones of Table 3.11. The only differences are the non existence of investments in mining and stone-c1ay products sectors and the presence of investments in mechanical—electrical industries. Moreover, the distribution of investments in the given years remained the same: huge investments in agriculture and food indus- tries in the first year, to fill the big gap between the production 1U.S. Department of Labor, Bureau of Labor Statistics, Chartbook on prices, wages and productivity (Editors James McCall and John Tschetter, Vol. 2, No. 11, May 1976, p. 25). 132 —0.005—5 .N00.N5~—0 050.0—0N— 0N0.——0N— 000.0—0N— 55.—00N— 0N0.50—0N —00.—000 50N.00o0 20.0000 N00.0000 :50.— N—.005 00.00N 00.05 00.00 00.00 5.00 00.00— —0.00 N—.00 00.00 —5.NN .05 .0200 —— N00.N005 5N5.500N 05.000 00.050 5N0.500 5N.0—5 0N0.005N 500.—0—— ~00.0NN— N0—.05 .00... .3.—z 0— 0N5.N000 000.000N 000.000 0—5.500 0N0.505 05.055 00.05N5 005.050 000.00 2.003 50.000 Lozaaw—ue—paxmfi 00 000.505—— 000.505—— N—.o0—5 050.5005 000.000N m—mo_Eu;0 00 00.050—— 00.00N—— 0.—05— 00.055— 0.5N—N 0.0000 N0.050 N0.050 .uuo_0.;omz 50 0—0.500N 0_0.500N 005.—5N 005.—5N —0.——0— 500.00 0050102000 00 000.500 000.500 000.50. 0—0.00 0N0.50 005.NON 0:—:.= 00 —5N.0—05 000.0_0N —05.0N0 000.000 000.000 000.000 0—0.000_ 50—.050 50—.050 50—.050 50—.050 mwvu——5uo 5o 0N5.—0__N 500.00N0— ~00.5050 N00.5050 005.0050 550.0005 5N5.0_00 050.000— 055.0505 Saw—00000 00 55.00—0 N00.005— N0_.055 N0—.055 000.5N5 N00.N00 050.NN50 500.5N0 50—.5N0 N00.N00 0N—.0—5N 5005 N0 50.00—0 005.000 N—N.00N 00N.05N 55N.55N 0—5.00— N5—.50—N 00—.00N 0_5.50— 50.00N 005.500— assu—au—00< —0 0 cu — 0 ca 0 550— 050— 050— 550— 5 cu — 050— N50— —50— 050— 000000 5:0 5:0 0 5 0 0 5:0 5 0 N — .3 .3 2.2:; 5:5 .5: :2 220 55 5 3553...: B 2562: z.” 2.5 133 capacity of these sectors and the demand, smaller amounts invested in later years for the sole purpose of catching up with the annual in— creases in the demand for their products, steady investments in the utilities sector, big investments in the third and fourth year in the petroleum industry. Logically, such a similarity of investments distribution, in both plans for the first four years, could be expected because the same demands and investments constraints are used. 0n the contrary, it has been thought that lengthening the planning period from four to eight years nay have produced completely different results. Such results could have been the implementation of projects in "strategic" sectors such as mechanical-electrical, chemicals, stone-clay products and petroleum in early years of the plan. If this were true, the proponents of the “unbalanced growth" theory of economic development would have been completely right in arguing that growth could be achieved by investing in industries having a huge potential of induc- ing the creation of upstream and downstream industries. From the previous remarks one can draw the following important conclusion--lengthening the time horizon of the plan fron four to eight years does not have any nnjor effect on the structure of invest- ments during the time period connnn to both plans. Now let us analyze the results of the second part of the eight year plan, that is the l974—l977 period. All the funds made available between l970 and 1977 were exhausted, 7l439.9l out of 71440 millions of DA. The tenth column of Table 3.14 shows the total investments made between l974 and l977. These figures are computed in percentages in 134 column 2 of Table 3.15. The comparison of the first two columns of Table 3.l5 shows a pattern of investment totally different between the l970-l973 and the 1974—l977 periods. With the exception of two sectors, petroleum and utilities had steady percentages, all others showed a big decrease or increase. These changes can be grouped in two categories, labor intensive and capital intensive. First, for labor intensive sectors such as agriculture, there is a decrease of their shares in total investment from 10.88% in the l970-l973 period to l.95% in the subsequent period. The same situa- tion occurs for fOOd industries, textile—leather, miscellaneous man— ufacturing and construction industries sectors. Second, for capital intensive sectors such as chemicals there is an increase of their share in funds spent from 0% to 22.84%. The same thing can be said about mining, stone-clay products and mech- anical-electrical sectors. I In sumary, investments — in labor intensive activities decreased from l0.88 + l6.95 + 2l.04 + l2.32 + .92 = 62.ll% to l.95 + 3.39 + 4 + 4.67+ 0.5 = l4.5l% — in capital intensive sectors increased from 29.3 + 6.92 + l.68 = 37.9% to 29.79 + 5.11 + l.l8 + 4.59 + 2l.92 + 22.84 = 85.43% Here again the same reason, used to explain the decline of investments between l970 and l973 in labor intensive activities, is given--the projects built after the first year (agriculture and food industries), the second year (textile-leather) and the fourth year (miscellaneous manufacturing) served the sole purpose of catching up 135 Table 3.15 Structure of Investments in the Eight Year Plan. Unit: % Sum of Years Sum of Years Sum of Years Sector 1 to 4 5 to 8 1 to 8 (1970-73) (1974-77) (1970-77) 01 Agriculture 10.88 1.95 4.47 02 Food 16.95 3.39 7.22 03 Petroleum 29.3 29.79 29.65 04 Utilities 6.92 5.11 5.62 05 Mining - 1.18 0.85 06 Stone-c1ay - 4.59 3.3 07 Mech. Elect. 1.68 21.92 16.2 08 Chemicals — 22.84 16.38 09 Textile-1eather 21.04 4.0 8.82 10 Misc.mfc. 12.32 4.67 6.84 11 Const. ind. 0.92 0.5 0.66 Tota1 100.0 100.0 100.0 136 With the annual increases in demand for their products. Besides this reason, the cost of projects in these sectors was rather low compared to the othersgthese projects created more capacity for each monetary unit invested. This made these projects more attractive than capital intensive projects with comparable value added coefficients, when funds available for investment expenditure were scarce (20200 mil- lions of DA were available for the 1970—1973 period against 51240 for the subsequent four year period). The implementation of projects in capital intensive sectors, delayed by MIP until the fifth or the sixth year, can be explained by three elements: First,the low value added coefficients of these sectors made them unattractive compared to similar projects with low value added coefficients but with smaller cost and greater capacity created per monetary unit invested. This explains their delay. Second, the funds available for investments in the entire per- iod, extending from 1974 to 1977, were huge compared to the invest- ments opportunities offered by labor intensive industries, since they only required enough investment to satisfy the annual increase of demand for their products. Third, the situation of non—investment lasting until 1973 created a backlog of unsatisfied demand,for examp1e, rows 77 and 78 (under CONSTRAINTS of Table A.6) shows imports of 1091.86 millions of DA by the mechanical-electrical sector and 1664.61 millions of DA by the chemicals sector. The results of the eight year plan support the theory of econ- omic development, that is, underdeveloped countries should first 137 implement projects that are labor intensive even though they should also take advantage of their natural resources requiring more capital investment. The sole development of capital intensive industries is not recommended because the economies of Underdeveloped countries are so disintegrated that investing in these "strategic" activities does not improve things, in fact, they create idle capital that could have been employed productively somewhere else. As shown in the eight year plan, investments in capital intensive industries were only undertaken when the funds available for investment exceeded considerably the in- vestments required to take advantage of the opportunities existing in labor intensive activities. CHAPTER IV CONCLUSIONS AND SUGGESTIONS The purpose of this research was to investigate the problem of allocating investments in a plan of economic development. The prob- lem was formulated as a mathematical program where the objective func— tion was to maximize the value added over the planning period subject to constraints of demand and capacity. Leontief input-output coef— ficients were included in demand constraints. The solution of this mathematical program provided the optimal sequence in which invest- ments must be carried out to get the maximum value added. The optimal sequence of investments was defined as the answer to the following three questions: - in which sectors should investments be made? - how much should be invested? — when should investments be made? Their answers are important in economic planning because: - First, economic planners want to know in which sectors invest- ments must be decided so as to differentiate activities by their con— tribution to economic development. This contribution is perceived through increases in value added by the whole economy. - Second, economic planners do not want to invest more than what is needed to achieve the goals of the plan because investment is in 138 139 short supply (in underdeveloped countries). Furthermore, capacity and demand constraints of the model set limits to the amount invested. - Third, an investment made in a given sector this year does not contribute to economic development in the same way as if made next year or after. For example, there are more benefits in invest- ing this year in the mining sector to support the production of steel next year than in delaying the investment to next year. To answer these questions two approaches to solving the sane mathematical program were given: - the dynamic progranming approach, and - the mixed integer programming approach. The first one was presented in Chapter 2 and was applied to a numerical example. The dynamic programming approach involved two types of input—output coefficients (domestic and foreign coefficients) to reflect the importance of foreign trade in underdeveloped countries. This approach was not used in the application to the Algerian plan because first, data is lacking to compute both types of input-output coefficients and second, a computer program must be written to deal with all details of the solution procedure. The second approach was presented in Chapter 3 and applied to the Algerian plan. The MIP solution is different from the dynamic programming approach in one crucial point: the constancy of value added and input-output coefficients. MIP cannot be applied if these coefficients are not constant. In fact, the dynamic programming solution is more preferable than the MIP one because the assumption of conatancy is relaxed. MIP answered the triple question of where, how much,and when investment must be carried out? 140 This approach permitted to test partially the theory of econ- omic development that reconnmnds to underdeveloped countries to under- take projects in "strategic" sectors.1 According to this theory, in- vestments must be made in upstream industries which will induce the implementation and development of downstream industries. These “strategic" activities have a high capital ratio, meaning that a sub- stantial investment outlay must be made to carry out any project. Ex— amples of these are steel, chemical, petroleum activities and so forth. Characteristics of underdeVeloped countries such as high level of un- employment, investments in short supply, high rural population, and shortage of food contradict this theory. This research showed that this theory claims were not verified by the MIP results. However, the MIP solution indicated that investments must be carried out in sectors such as agriculture, food, etc., in other words in activities with low capital ratios. The number of jobs created per monetary unit invested is much greater in activities having low capita1 ratios than in those with high ones. Investing in these sectors is a way of re» ducing unemployment. This makes agricu1ture the "strategic” sector "par excellence,“ around which other activities should develop for three reasons: first, agriculture is a big user of manpower, second, underdeveloped countries have a high rural population (between 50 and 80%), and third, they have a problem of food shortage. The MIP solution also showed that investments were carried out in labor intensive industries in the early years of the plan to meet the demand requirements imposed on them. It was only later that high 1 Albert 0. Hirshman, The strate of economic develo ment (New Haven: Yale University Press, 1961). 141 capital ratio projects were implemented. It was also shown (in sec— tions 3.3.2 and 3.3.3) that high capital ratio activities could be developed if there were more funds available for investment than needed to implement low capital ratio projects (to satisfy final demand). The funds available for investment in the 1974-1977 period were two and a half times greater than in the 1970-1973 period. Since labor inten- sive projects were carried out for the sole purpose of catching up with the annual increases of final demands, more funds were made available for possible investments in capital intensive industries. This ex— plained their implementation after 1974. Labor intensive activities did not need that many funds to satisfy the increase of demand require- ments from one year to the other. So the next choice for spending the funds left over was in sectors with high capital ratios and low value added coefficients. The conclusions reached previously were based on the results obtained with MIP. As it is often said, results are no better than the information upon which they are based. Problems related to this kind of situation are looked at. These include: - errors in data -sector aggregation. 1) Errors in Data Errors in data are a very severe limitation to results. They have different origins. First,they may come from collecting the data necessary to make input-output tables. Collection of data for such a purpose is not always exhaustive for several reasons: a) Data were not available although they existed. The most 142 important state owned firms were created between 1966 and 1969.1 During that period and the coming years, their main concern was to get things going such as implementing projects. Moreover, there was a lack of skilled people who could organize data to get meaningful information on these firms. b) Shortage of means and skilled people necessary to collect data. Both of these affect quality of data. c) Underevaluation and nonexistence of data are characteristics of the Algerian private firms.2 Second, errors in data can come from the methods of estimating final demands. This research took data as given. The following question can be raised, did these figures repre— sent estimates obtained with forecasting methods, or targets aimed at? Both of these may not give the same values of final demands be- cause targets are of political nature. Third, cost of projects as computed could be questioned. The cost of a project was defined as the average investment made to acquire the necessary fixed assets to achieve an average output level. In this cost,two elements were missing: first, the cost of building the project was not taken into account; second, the cost of shipping equipment3 were ignored. There was no way of determing both of these costs. Their sum could be quite substantial. 11969 is the year the input—output table refers to. 2When the author worked in a research agency he found out that interviewees underevaluated or concealed their figures. They feared interviews because they thought they were for tax purposes. 3Most of the equipment were imported. 143 2) Sector aggregation Eleven sectors were considered in the model. The 1969 input- output tab1e made this choice compulsory. If the sector aggregation had been performed at a much lower level, i.e., eleven sectors had been broken down into a much larger number, the MIP results would have been more meaningful. For instance, the American input—output tables are available in two formats: 70 and 450 sectors. This is an import— ant factor in results analysis, a greater number of sectors will in- crease the level of homogeneity in each sector. For example, the American sector corresponding to the mechanical-electrical sector comprises 25 groups of industries and each of these contains 6 or 7 categories. When a sector like this is broken down into several in- dustries, the level of homogeneity in each of these will increase tremendously, because they are very different. Two project costs can be far apart in two different industries belonging to the mech- anical-electrical sector. Other sectors such as agriculture, food and petroleum, are more or less honngeneous and would not be affected very much by a higher level of disaggregation. But the mechanical-electrical sector would, and, this may make a big difference in terms of investments in this sector; much lower investments would be shown by MIP. Besides having high capital ratios, the mechanical-electrical industries, to be via- ble in economic terms, must turn out a high level of output exceeding demand underdeveloped countries have, twice or more than that. That is why an increasing number of economists are urging underdeveloped 144 countries to share investments to speed up integration.1 The demand of many industrial goods is so small in underdeveloped countries, that it is not worth producing them. But if several count- ries decide to share investments (because the project costs are too high), their total demand will become so meaningful that it will be worth implementing such projects. In this way, production capacity will not remain idle and funds will not be tied up in equipment and machinery. For instance, to be viable an automobile plant must turn out an output of at least one hundred thousand cars per year. For an average population size of an underdeveloped country (twenty million inhabitants) the demand for cars could be one third of this amount (this is an optimistic estimate). The amount that could be sold in foreign markets is very small because of a very strong international competition. Although there were problems raised on the results provided by the MIP solution the following fact should not be overlooked; the previous analysis gave indications to where investments must be made, and in what sequence they have to be carried out. Before deciding where and when investments should be made, economic planners can get a guideline if they use this model. It might provide them with fur- ther insights. In this research, maximization of value added was assumed to be the economic planners' objective. In section 1.5, three reasons were mentioned for such a choice: first, value added is a quantitative criterion; second, it is also the origin of all types of incomes; and 1Such a study was made on the Arab scale. Abdelhamid Brahimi, Dimensions et perspectives du monde arabe (Paris: Economica, 1977). 145 third, it contributes to lessen unemployment. Planners may want to achieve other objectives. Improving quality of education or medical care could be objec- tives planners would like to pursue. It is not easy to assign a fair quantitative criterion for them. Being less dependent on foreign countries could be another objec— tive. For instance, if a country decides to manufacture commodities previously imported, it may end up importing equipment and machinery for producing them. So, one form of dependence is replaced by an- other. Minimizing imports of commodities could express this goal. In the same line of reasoning, economic planners may want the trade deficit not to exceed a predetermined level. Adding a new con— straint (the difference imports-exports should not exceed this trade deficit) to the model accomodates this requirement. Political leadership might require that some projects be carried out in the plan. For example, if a country had natural resources (like oil,iron, and so forth), downstream activities related to these could be developed. If the political leadership required their im- plementation, the economic planners would need to add constraints to the model. Before doing so, the planners could have used marginal analysis to find out the consequences of these requirements if they had already had an optimal solution. They may have more than one objective to optimize. If this is the case, MIP cannot handle this situation; and they must turn to another technique. Goal programming is such a technique that ranks goals within the objective function optimized. Maximizing value added, employment, and exports might be an objective function of a 146 model solved by goal programming. It will be interesting to formulate a Leontief nodel in a goal progranming format. This could be a subject for further research: applying goal programming in economic planning is a possibility that remains to be explored. APPENDIX 147 .3oc as“ ago—u can. .usauao coupe» u be :o—usa—Lumvu use umm ca ”m=55—oo ogu ago—m vmuc .Louuom a we meanz. we =o.a—moasou as“ “aw o»— ..n--~ .aa .mso— .auzm "com— Nm». p.o~ ..N m.~ ..e o. a.. _ ..N. m.oo a ¢.m .u=_ .umcou __ “.me n.om u.~_e m._e ¢.~v. ~.c_ N..~ o.»— ~.¢ n.¢ a.~ ..cw “.mm 8. deg .ua_= c. ~.~e w.m_. o.nmm_ o. w.m m.-o m.o a.. m.m a.. Lessee—-a_,axap so m.m~ _.va ”.mwm e.m~ ~.m~ he a.m~_ ~.e~ m.o 5.». .~.om a... ~.ae. m_au_so;o no m.wo m.m~ m._m¢ ~.~¢~ n.n_ m.- m.~_ _.-m “.m_ ~.ap m.- e.om~ «.aw N. .ao.m..;umz No _ ~.m~ ~.ma ~.~m_ n.m a.. m.e ma e.c 8.8m ..op n >m_o-a=oSm go 9.9m. m.e~ m.o_ ..c m.m_ ow m=_=.= me New o.m h.m e n.¢ n.m m. ~.~ ..cc ..o. ..m_ n.em m0.u...a: co .o__n. 4.?» awe 4.54 a.” ~.m m w.m_ ~— m.o o.e_ ..mau ..a. m.om saw—eta“; me m.em~ ~.~c~ ~.~men a.~ a.~_ ~.¢m ..NNQ me eooa No ~.eo~ w.oo_ mna. m.mn ~.me. a.-a. m.mm~ oc=u_=u_tm< .o “coaxm xwmmmnwo camfiwn p. o. as no No no mo ea me ~o .o accuuam oom— cc m_n~h u=au=c-u=a=_ _.4 ~_ac» >>>p>>>>»r>>>»>»> >>>hp>>~> >>>r>>p>>>yb>>>> v>>>hp >>>>>hpr>>p>p>>>>>>>r>>>> >>> 55‘ mfi‘fi-I-F‘nc‘eflflhflheth—I nmhemnuc— "(QCFHC‘GEQ—flhfi- nflflfifi- nooc-c-nocau—nonemmI-onnv—a ”I‘D awceaoa—acccz-‘caecugcc— :ac-aeoc— ==_—==aec—ea:::a eeraac— cac——9=cc~=a===-=s:3—c==- 2e; M—Fmab__——C——hbc——h MC’M ”pup--WQ—o-e-o-b- u—v—I—I—o-u- I-u-t-I-co-o-r-t-o-cb-up—o-cp—l-o-c—I-o- hu- -’M8K=KH‘I¢K¢UCIKSUK‘C ‘s‘SUKKCK “caucuxzzuuxzzx K2: 3“ ‘KK‘U¢3&I=HKKC‘¢UK“SKU‘C‘ “‘0 JUhl-OUOCOWOOOCUU‘OOGQCSOUO 5099400660 CDC§W°°°OO~3°C°OO OOOOOC Dooomccocamcaocomcocomaee DC z:zzamau:uuae=sz;z=aas thiaahLL LLLL=LBLEL=QLL$B “.3.th KLQL:‘—LBLL=LLLL t=k§li=€53§ LL5- aco—c::x:::u=:zzztz:x:x azaxzzxxx ‘XSI’Z‘XEZS-‘Sut: =1$=LS Stltzttttizttttx=x:‘Zzttt Kt!“ cm——-~:—————=————:——— ———=——-— ——_=_~——;-———— -———.-— ~—~;_————=—————3—_——:~—~ ——— a“ coo-OucduuawnMC-d-a—co c-I-Mo-nmn -u¢~o-~co=o-caoc ~~AO~D~5N okcmooc—ow-A—uacI-nc—o—o-ce -Iv-t\ ‘56 u-nGA-w-chdl'h—I‘C nul‘nO-F b’l-M LTF'QQ ~~cc-¢l~~&l~u‘.—=I~hf.mh can am 00 unseG—uicumu-c its-“0’ n~.o—v~ u‘.-t~. N s-—e°cl~¢=ooe-a—c—«U~c mechartum c—ecacachnaoa—enc vac-cur— ccmorn—..eaehceaaa—e-anneo Ode a o . FOG cancacaahca 9'.“ 0:66: cc: ccu’zecccac: G 96 cease ‘GU‘FQGGGQNI'OOGGDSGBBFOG 06: ““5 cu. no ...-~u~-'o o- .... o... - .0. a u a... ... too-o 00'.- o - Ill IIIII III! III. I- I’ll III—l ll IIIII I‘ll—Iblll-II‘I Illll IIII Illl I-Ill 001- W .a—— ———- na— ——-— —-—— «nun—a ——-——u- “...-n— .........__._ ——.-— "Nun." mafia“ New.“ NRC; a“. vb» h’>’>’P>))>>—’>>’—>Fh-)>P- I->->>->—- >p>b>>>>> —>>r>>—r>>>)—>~>>>>u—>>= »>-5>>>>~»>>>—>>>hx— rag-tuner“. —_;.4 7-.' —-c $-—-ese 1.0-- -~.al~: --.-N —.‘r.-:r~: -~.t.‘ ; ‘- .”‘_lu¢§;—--¢h;om_t -I~: -¢..r.¢-r-'. emu-GE—Lavacut :-~=L°°°°—5—=OG’L=:fl-kfi—S—L-GB—KGB-GLQ- -‘_GGG—bfiahF‘u‘B‘o-uu:a6~.c—==—&====—§=G=—b€.—=b‘5‘ amt-h—o-o-u-p—a—u—no—p—n—c-u—c-—€.u———.v-———o-r;——~—~o-——pa————o-v—c-¢.———o-——Lp—u—u—u-p—po-u—u—n—o-u-u-I—u—v-r»~——;——~ dw¥hfll58¢=9ulC‘UCK-‘hbtsbblngbufiU95“:BUI‘K‘iSbIZBmesflflflth‘KKE-‘EzcziGISJBCUSC¢-UKSBUZ;] uiWK;-LC==G-LC:;G—J;G - =‘.—:3'“;~C~QUZ'_.;:=L—:C'~;;_-GC:- -;:de‘é _ -Jnl U;$CCuLGGGC'—CGC:_; .2..- ' , :33C1LLSKI—1—L ;b&1&3—& 1Qu7‘iflfiLL5238Lt-L1LO-E—LL ‘JGLEL31hifi-oi- - LEL1QLL~L53J iLLfiLLB;‘-Bb=’:5‘u {ZZ‘CSXSCL‘KSZ‘tzctinLI=72;a:LHLEKs&-:XII;ELI:SIEL=ZZ-LS=L LI:)1:5:£ZLSC:SL&¢SI::LL£2== :5:a—————g-_——‘_———- ;_—-3.;—_.—_;———'_5————o—————¢~——- .;,.__——— b————¢_————g—————g_———g——=c— ., ————-—-n-—e—-l-—o—————-—u—I———--—nun-.mm—u-m-I—n—m—w—m N “INN“ (UNC- NNF—‘N NNNNNN PINK“ f cco >>>r>p>>>r>>>>h>>>hpp>>>>p>>»>>>>>>>>>>>>>p>r>>>pp>>>pp>>>>>>>>r>p>>p>>>>rr>>>>>>>>> ->>- ———~—e:t.o.c.mn.rr It)! C‘Oddvu‘L‘L’m Pfii‘udQFNFNFéLLKKiL ': D 5 . .‘ . . . _;.. _———-—————-—o.f.t\r.f.r.r "Tflfnttflfirh re- eao“:9=:=‘=tc5é==:;=b;LDIJGLGCZ—'O=C‘G=CS:C c: -c:u———-————————:;:s:=c=c::.::r_~==t cecco‘s 9"— cccuaauccu::.::::.I:.:L::.;=;::.:::c:.=:.:c.cr:=:.: ccccaz aha:;;::;:cc:: L;c:::cac:< me=:c.cc: :czz:90cc:-cccc:=:=cc:oc:oceocrsc=cccaccc‘.occ:;:caucc acouacoacacac:acccacc;ccc=c=ceco::: igwxxzasxuxuzzxxzssnxz— zazwzxuuawxacu r. z.- n 36:38::-xuxxx:xxxxzwxzuzflxxuuxuxxuxzm; 5a. xmLLAsanzag—s 39.833.30.‘ l—-— ' ;;~‘—B LL-‘Lsa LLbLLaL n :31; an. aggn ..hfl.6-i.l‘-‘—ALH.B HBBBGL5;I. Skibglbaiau - MOCCBNN “JNU‘I'IL‘JII'O“BBBONMCGQWJWF»-¢I-fl-hfi°aONMfldnfifl06°9N5‘GJHFMFQGNNH351000GN‘dh-Ibfi. , Jove:necnnnnn—p-gmmannnnnnmww aramnv—hokmaqooca‘nm u-u-oanuionfinnmlnvnwfifihhwmh—donnn—uflfinmngmwegp unenceecott COGSOC'QECELOCO—uddt'nh-I MUN, r‘.‘ IIBGB'.‘CG‘..tGilOfi-IQCfib'EU‘9HnOOIICIQQ‘S'C—Ct‘ ' countlonooo toeon.II.one-eon.uncle-ooocooo-oeo Cocteau-Queen... ooo-aoo-o--.-..... gooennnnoorvcsooecee flan—u—ocoooeeocmnUvO-auocooo nn—uoceeeoU-ncur area I —.;;.1;’ .m‘.‘.—-—— ...-o— nun-u-v-o-s—c-qoo-aauo—u— «nu-— Nn—u-hh—e—nouO‘n—u —¢- N-h-u.- nun—.4 ulna—~— «nu—n van-n— on... g- _ w.IfinCGfiI.Q—«m—NPIQ—NfiUND‘IQNH‘. canohncnficnnvunoum “minnow”: nanomcnlndnl acne-r cncndtovou to q ...-”punu-c-h—un-p-w—u-I—a-hu-u-I—np—r—u—v-b—u—u-u-u—p—p—a-c-v-p—u—u-pp—u-u-p—u-m»—~m—o——o———————————~mu buuunmmmuuu “fibula-uh.hillsi-SUI-l.l.uhh.“ll-lbubk“bib“45$thchm];“Kbhlkfl-Lbkhbhafibfibkktybb ““501-6an Laun—qumboI—‘b-usu_ umwuuu—uuuuuh—Luubb— uJUI—hoI-IHUI-u— “Wuuflhbfluflbuubhbhfih-bh—HL - --. Mud-JJddd—Jdd-Jddd—lddddd—J—Id—l—ld—J-‘J-‘d-ddd—4—Jd—l-}d-ld—l—l-l-l-J—I_Jd—l-J-ldd—Id—ld-‘dJ-fi-‘J-Id-J-ddd—ldddddd-d—lu—‘I‘. >r>>>>r>>>>>>>>>>>>>>>>p>>>>p>>>>b>>>>h>>>>>hen»,rubrrrrt-rh>>>>>b>>>~b>>>>>rb>>>>>>>>>>pp wwubu;I—uuukbk-uuu.auuu.&auhhuuu“ gnu—mi. uuwwl—I-‘dbh-hUthUbhdmhfihUhUt—I—bfih uth-Iulsa. haunt—-5...» 22:22:222222222222222222283:2222222222==2222222 zzzzzzzzzzzzzzz:zz:zzz:zz:zzzzz:.=z::2. OCOOCGOOOC cceaacc:sac:canoe-cacao:cccccocaeaoccaneeacooaoocaaaooocccaocoaocoocac:=c=ece stutxttxz“taut:at::xtxtuzxttxtuttztxzzzzxx::ttzzxzxxtnzxzxxxzxxxzztx:txstzxzuxx coccuflz‘tcalflmnédadO'ICCQ-cdvt£06r$wor$mmrocooo¢awm «hoe.¢c$d~aau-owfieflncovvasnmw¢cc~é-‘aonac5.: “EM—an”I'Q——-.:oln-."\Ibi-rl-iI~€.Ey4'16;5"»qn—Oar"OI—Inn...uncl—IrIb'Zu‘n-iflwfluurd‘OFF—mVI—a-CO—a- 1.2‘,‘ :“51.-. _ . tun ‘l”..‘ = D40 ..--u-hhfiV-QGG‘IFH ‘ceah Fhlhh—I-a- 1r.==.’u'M—u—I-sI—ahehbaeI-hI-h—o-s' ' :QDO-g-ap; 5;»-5- o outset-locust a...-......ooooococooouoac-onuu-s ...... nnm.1a:ocr. ct¢¢=c¢¢< moor ml I InnfimifimLfihho-phhvnmnnoca «izfiuoomw I “at Inlnhhhmflmact-maaocnnl. :v-h. I... “nun-annann . I I I I I I 4 I I I “'5‘.”th I I-o-v-nnneIa-an I I I l I I I I wnhhn—I I——r.nI-~I a I I I I r.h— I'Illl'llilll lllllllll 'IIIIIIII IIIIII IIIIII III "AN—Nfid—fl" f'fint—f. U7.—.‘.frr.!‘.'9.‘I-‘ onnqnnowncwficmowrtw p>>~>>> >rp>>>> by. >pr. pa, -r" ,, k» t y»: >>->> >)>>r > ‘u‘s‘:~'~f~~n -62..) -.-.hr-Is. coca-.caccccc: .ac..-u-——-——u-c-r_ : 5Ga—a-CGDS ace: cc: ==a_cs ECG:’_;r :c::c:.e.=.c:: C" -.th—I—I—a—s—“uh-n—b-—~h I. Il..~.- C ...I...‘...I.'..'~ v" v C .3... '. nOhm.Nnomono-1mcncn¢ndfionnncncrc¢ I... p)»; pr»: b>>>>>>>p >>>>>>>>> >>>p; ,,_ ., >I i. ::.: -.————c-a-.:.r.r-ch‘-..-. his- ;' 2: ‘3:::QG=CCLQ5;GLLLC:&: 32:22:33- 3; D sszzases=ezes .-———-—~_-———_~_————_—nunt.mmnnmmwmnnnnmuhwnnnmnaNeutraanar‘n- nmnnnnnn-znmp rr'J nrooovtsd ' >>>~>>r>p>>p>>p>>p>>>>>> ’>>>>>h>>> >>hh>>r>>>>>>>>bb>r>>b>b)>>>>>>>>>h> >¥>>Pr>>’>>)>h>> - 0€M¢h7~~~:1$=. t ?Q«-=§;——-————1‘.r.l~""‘ C'C.‘.u‘~|{'".‘v¥ -'~~a-¢tc-. ca;———-—r~~nnntusmu¢r~r :=::=.:a-——-r_v-.:.'-v~- cocc;. e:::~c=cc==————-——-:c=:gca:nc-._c==::=c.=:==:sac—.....u-m-ccsu-:cccaaoccccc:.e————===sc=;: xzxs- c'gxxzxxga: .axu:ze.z:=‘.:.u.-zxu._". use: It mass l;¢uu.-LL¢.E¢==B¢G l' ggzazmxxrxm‘uzz. '.‘_-.~.'. Jib.“ u_n - . ~ ~ ~-' r - - " '- , -- * -. ' ..:L;;;... ‘.:L-.z~.~_:..- ’._‘_;.».-—_.—‘.__'L—';__:_- e...;.;.-- ‘22-. -.s’n-u.‘-—'——LL-ZZ=;2-‘z—Z=2d=‘.’:—zi‘zzz‘dzdn'2:2:2‘4'.40 - balk-'1 -._z_'.‘...z_>a.-.‘- —'- :zz:cz..£ 151 wean Snrnc ~—anc a¢¢n MG: aa—n ~_;‘ ~¢—o N‘amm unhna may. run econ =‘—n a—ece naea— name awn mean nucc =99: roe—c pea: as: sa—c ape: ...-con v00... 0. coo.- IIII- IIIIuIIIII— III—III I—II‘I II OONFNQ V‘Gufi Cflfigfi. I‘d—B “cameo lIr—N B¢°G=°o 3:36 -.-u~h 3 9 I 2 '. mnnmocvccttdovaovd ttt #1000000. CCCOOCUICUGQQI’OI 001.00 Otto. — >>p>rh’r>>»>>>>>>>>>>>>>> bp>>>>>>> >>>p>>pp>>>~>>r> >>>>h> r>>>r -I fistau—r‘atcauflwccmuhctnhn IIuII~crIn~£n~ ma:l~~c~ac—¢:Imc\— —nu‘t~q~—- neat... .. c::—-—::c;—:=a=r~=c=;—:=g— ;¢r-e==':— sac—eonau—c; P.‘ a- :cccc— ==;—— — u—p—Q—u-I-c—u—Q—u—c-I—a—cu-u—hc—a-I- —I-—o-cp—o-_ pun—bca-u-c—p—a-p—y-y. -—-»_ ...-pp: x KZKKU‘KIKCHExxflngfi‘UZBK BK‘EUKKE‘ “EKE‘ZCSSBEIKZK S838“: CKKZH J Occameoaa;mcweomooccwaoe GCCOV’ODCG OOOOMCGOCGWGOI-‘GO OOOCCO 69904!) 3 LP.&L=;:;Q&=LLLLL==QE 5.:ka Lhthkhkh ‘ u—LE=GLSL—=~LLL3 BELLE; BELL: : SttsztkterI‘IZISZXZIJZ‘: £85.22:le :xtxzxzxnztzzz" ItILII :3.th — ——_=————;————=_—_—=——~ —-_—=—.—-_ ——-—=——-.——=_-—_— ___......._. ...—...: N Ghflcfu¢.-CWQ—NU~RMC”G‘G€ *Nfld-NM‘ flflwhw—CMO-‘GOC -0006“ GFIQ‘GIV h1=mWCCOC—- NOG‘.‘.‘ABOHHS- c emu.nut—mam—u-t'uuc~——tr.ul~¢‘.\>—P m-Ntmh-Gs' --. c—‘hcpm—ILFMJtH ‘..—~-I'.O ‘NIIIsG c-mn—c-«u —¢:~4..-—«.I~~.i.—Ir.m.o. \ - \‘Gtu-TIUF-—=B=FGB°=G-O-GNIITC =v=~oucrn -€C°¢=GNM‘=-DV G «ac-anu- wanes -¢=NF~6=f.~hnLSQr-VINQC< . n Ire—=B-i-ccC‘Dm1'ce:Chccochme vaaaeqoec tamamcaocgreaee o==6=~ Ira-cf nu" v-\ u-I'II". an - . IIbo-00.00....loo...alooobal.0000000-Itocoolacetate-nooooulllloelefl c-IIII II—I IIIIIIIIIII—IIII—III an nrnn (00.: 0.0.. 40v. cot coo: tc>~pp>>—>>»>~p>>>>h—>)>>->pp—I>>>>>h>h~>prr~>>r>>—>:p->—»>>>>>—>>>r >>b>~>>‘» r»>>>—r>u>. =25:~:—_L¢~t—.Lx~;—_c;h—u-Ls-a-a—-c~ WLIF:—~L-~:——L€L-C‘h€‘-—:UVN:— ‘ nuuczo—ucece—g:=~=—-ac:—g=—su;u-_&gi—augac—gss sc—‘ezu—cbs-G;——_acc— nc—————~————_~——————————-——g——————n——L——_———_————————~-—————~-p———— x:“;muzz¢¢=u:x=zu¢c ubsxsxuam4wuzzzzu- -gLKKU“=&‘bUKKBi: usgg: . -‘ "u:;_—_:-h-::=. b v :31..- QBLWLBB'. 1LL=1BL 4533 L_ =5L‘.$L nbe—IQ .a-‘-'.=7L‘_ELL—1'—BI'—L :i‘xI-ILZZXSL ZZLSLII --——_— , __—c._..;_ ..—.__¢.._— -c————u—-—~—o-——-——:L~-——-=G-—-- nnmn-rncocococcooccocvotoocdcocoooccoqtoucvcecvcccooonvcn'00.... 0v >>>>>P>>>>b>>->’hh>>> >>>>u>p>>r>>p>h>>>>>>>>>>>>rb>>r>>>>>>>>>>>>> LE——————~————hhnth9m relfcfi-fivufxug‘FFFFKatt;i—' -o:::r::r.- ‘--—'—-—===;§ QL===G==-: ; L: i;; S :9. =5:;.’ f.C—’C‘ ;; Cfcw S 51:80; :=-———-_~———-:— COCCGGCCGLa—LDLC-LOCCLGG CC CG“:CQ€CL=LCCC=GC;EEGLBCCCCLLI: 2:: C;EL=&.’_ °°°GCO°=C 'uGG—‘nGGCOCCOCC‘CCCS-CvCOC C==6 : C;¢GG;=E;C :G: CDCC CGC=C= E: 506650 s-tzczuumxmzxxx;x::s¢uzz==aa¢z—cx:z:¢=x.zaaxz;‘za;xuz;¢:z=zzxzzzxxx _ _ LuBitllk $h§55“$&h&LhE&EBhL-L;-—L " LLL-LL-.LB—&a—BV_LG—;L3Lkab L; QBLA'. GCCGGHI—hI—CCI—‘LLGCGGS_. U: K m: “Ind rum-wan I‘Cnfi WOI‘R‘NI. MOI) 0|)OM (VI-0'19 "C" ('3‘ 30m h-Ifl‘ VBOHJ nI-AVIO I-F'Hlfl 8‘ch QG-Ifl MO- 'Cflfit tmrem Gifioh' “(l—9 94835051 CL'IN'IG J O n . -Vm°= “e-.. (BGFIG -‘==',° FOQWOC PAD-N ~_g.e v.3;c—I .In C fl—fa ‘6‘ 801-!) THU“. F‘Hlfl' .4596“ Q‘B‘LF veIna ruck; I'IOGN "141:6 nono- weG'IO 0° :. GFCE “co aoevs aha-I: eaaéac Dee: . :96: ‘66:: so: can cc—u =I~ca Lac: acefic aegfig ~==tg ...... a..-coonucooIaoa -.oao- a... .06.. on no a. e a... a. Ito-o on. 00—Oct v-al 1| llll-Ill I-‘III I llll IIIIIII IIUI—Illlll-III-Ill l—III-I ll Illi—Ol. I-Illllllll INM‘NN mannunmcawnunmn NNNNNA (molar. nun-Innnnnr' nan-morninnn nnnnnnnnn nnnnr.nnnnnnnnnun unfri- ~>>>>> >>>>>>>>>r>>>p>> >>>h>> >>>>>>>>>>p>>>>>>r>>>>>>> prb>>>>rh >>>>>>h>>>>b>> > " 2r2¢§n Q¢§=huge¢=&—pmo— unuhfi- rota——numo_—n¢&a«'nhcnnh— nnhccnen— no¢=h~coccnqn~;— -nnhm -=-=-— -g-—.:.:——-a=a;— ecvcu— c::—u==-~— :cac:~::==—c:c— ==L—=:=:— :rg-C:;c:—§acc=— Fact: .:;::: :::—u::—:—Sp—-—— ______ ————c—pp—pg_————=~p——c——— ————c—»—— ——p—Q~————C————— _—-—_ ‘u _ q :u s c cszlz :z:§xx czxzuxxzxzbzzxzzua-‘zux:¢ :xzuu' zxkxuzzcxz a: -2?930 ‘99-:IE‘GFCOCEOAOFIOG OOOu‘JF GOOOWCCOGDMCCOCOmQGOCVIOGG OGCOI/Zgggg OCOOWCOUGC:g=Oéé gggéz -:—_fl.& L—L.-_-LLL-'_=_-|L REEF—L: bB—;:’. ' ' ’ “:LI—BgLZL;‘_3: .3‘— LLLL=SLLL E;=—:-=GL;l'-:L'—LLL ;;'_’_.5 . xxx- :1::z:x:xa.z-._xzz Itfitto :3‘:Z=Iétk2:t:xzz:= x:z::x 2:12:1t‘: zztxzxxtxxzzaxzz ‘28 t <=-—— —_-:—-—_-;——.—— —-—-——.— ———_:—————:————3_=——:——— _—_—:———_ ~———:-———-—:~—-~— _—_—.. l.l-'50" “.aso—a-OI-Ofi—C‘uifi ddt‘nflKo =F€=N~J\C~~b~‘mmf)fin.~hB-C° -Flunl’ilflwln QIUN°~¢ICPEMC‘OC . . . _ _ . uwaw .. hung»: .....- 5‘5 .--.~c.ne.r~ -..—‘Uf ~mn~a—ncufi—-o~£tv~—-—.-Il\l~hw—-I~ g,—¢\.ch~—ag u—ul—Chwhv a-akhwnnh - anw -e¢¢s e. u-coaaccru;=S-~:r76 CD—t3- — “hawk—u-CaefiGaaca—a—o—uaac ‘cohcccazh ‘06:: enr.==—-cn: qE—Our 5066c .€.‘o=cce=:erhee= CGGGQF I.——cv1~cc=:=r'==a=ur~ceebhae '66::(‘66 ocmacteceac Ion-0.0 I... .00... oo-o one IODOOOQQOIIanon-neooooolott one-noon..- iI l—III Illll IIII—IIII—III IIIII OIIIIIII I—IIII III—I II IIIIII .m «nun ~th nnhnm unth unmNNn hmnn [- IP-VDkfiv))D)—P%)>F—>>>P>—>>>F)>Pfi>>>hbbh. nr nnrm nmnfi nnr nmnm mnnn nnnn nmnnn ”any, ur-m _ . pup>>>ppprrpr>>»—>»>»~»>>»—p>>>—>>>>>—>>>>r—>->> -d:1_'-_—s‘.-"-:. "h—‘Si.—_'-L-€\\ seFo—I MINT—‘1‘ ’\:-.Jsb'_1- skS"»i-Ulfi:mUCP-L~hl_'.fi F—l-fah. .-(.‘ .—-==— :¢:—5=:- -a—gGL:——56=€=-—u5CE-5‘C-L—g—G‘ P‘Gefl—gg—cgcanuu=c-ruac:—$:=‘Q~gb=O—G5=CC‘ -————u;u-a—————~——~—~pc::—h———r—I-Q————r—c-u—u-u-p—pI—u—c—u-u—u-u—I-o—I-I-I-c-:———~p——~I-cv-————p—p—w—I-v—v-pg—u-u-a-a- -ugsgusa‘-¢u§§uxfbu'_gE~§§§§§gu=¢§¢ugaL=:u_a‘%‘b=¢¢uuxa-bzb-zuazzhbc;zxuz¢acub- a;—Us¢—s -_;.-.__--7=.--—_ *‘:"L—""TL=‘ ----L;:__n - ------___s---_-_~__._::uLu‘-c-_-~ .-- —; .-?::—-?§£L_ nL-L—-?&-kk=1t._'=f.___ -;555k.’.£;§$5' LAWL' ‘QPuLz uiL-L‘vi—LL31LLLL1fi ‘0‘ -h-ZI.:-.:'— E‘.: —:?-—L£Z:LI‘ 4(L:2-ZiZ—L Ii: ..n'.-b¢.=l— LLLLSIL..X£ 4.1:; ‘L‘. L;£=£L2£-==&:KE sI-LILIIBLI‘.BZ--;: -‘ —‘m! —.———__—--—g.—-——; —.——_:. ~——-—:C—~——"-——-v .——-——g—- ——¢,—_: ————C-———-‘_—-—-~c-—e-——L—-—-;. ---— 5 Newman“:rrntxnnemnmnnnwnnummmnmfiwo«mnrnnnnrnrnnnnnmnnnnrrrmwrnanr-nnmrrnnrnnrrrrr-nn--r >>>>>>>>>r>p>>>>>>>>>>>hp>>>>>>pp>>>>>>>>>>>>>>>>>>y>>>>>>r>>>>>>>>>>>>>>>>>>>>>>>>s>>>> . ..;;;_\-- ' ‘:‘;;- __.~—~——-————n-‘r.4.r.I I'mcac.‘ ‘~u~L‘¢7~~I—~1\-;:‘_L' II—‘EErF—EZE LE;————-——.———€ '~ -CL .=“- bl—LC:&._-~Z_ L'Ci‘:—'—=:=C.====‘ c==rbc=g _- gtcagu ‘::12: :LL' ‘C—GC; EchCCZCCCZGCbCLCCCC- (.5: :LL 2L2: :CC CC. :_~_c:--‘ --o '- :c-:c:::::=ccc: vcc: cc:9Lc;cgc:cuc=occc=o;uc;o¢4om_xu5¢ I cum: 44¢u uuuunuec ~ u H I x u t q on.~:-:u ux- -\o~\o- Uhca 154 o- mu .zzumsx... they‘d; ache» >195: 4<¢hzwu z— hzwoummx um< uzxz az< :22: .502 xcuz .uhoz omhaw an: mpwm =2 0 munhmH-F—m mmozf. 01.00 a at 9 Nm 9 a: a «m :4 u a >m a am a .3 a a.— a nr 0 a... a 04 .3 4a a N: a wN c kg maze I wtqz IIII 0-nn0 nunhmuhafim mezzan— 00... a ... mxuaaa .3.-00¢“. a ...Jeuv “2&4 04 v. e~oa on. 3...; mom a . wxox u.— 4ou ... mu=4<> ..qho— m»; roux~z ¢u>< anew; oo. .3 .... 0...: nm - 45:: I 92¢ . :- mux< ee«:mu ... .34; 25. u o 2: an mazn - mzm can :- wuau<> mac—z: whu . 4’2: 0: :- 4wnmzuo No . .mra. mnn< « ... mza cc - :- u._ nonhuwaoo n qco - :- mug—rm «02:. .30 ... ...ou. nan< co ... mztaaou 0 c .m. cm .8uh¢<823m has...“ 0000000000 155 . hboaoaa 112.5. 0 :uz1aa ozutuz hDDQOKK 0 K¢u§ 4u a a mo mmaecmzz. .32: EA: whum a ...;n a . wkum Omxucxo ..«nuwam msuhu< a Mu4a<~¢<> away—Zn u: hu< .... muaocnx; h2u4=~a u>~hu< .- Inn!!! >r «meat: GUXHI au~0m4mm IIIIII n . uzxzx v hum ”wax—2. maze I . ozazx w hum mozaoo 939.9 0 _ 93.101! — I — a..—5.05. . dawn azuo a: a: a: .0 n a o. swam—z“ can-N onnmoacae:-o omacdusua :206 u: .: ha an a O Cuuuuzu con-n ~uu~«~.ue:~o owmouuxua 2:99 o: s; 04 nQHOu . n Cwuw~2n u:n-n um~oo~cuowuo emsoausuo &: n: 34 n4 nono« nan cu xuom~2u use.“ nenausuuatuo ammoaugua a: a: ma 4: J c o— swam—z» nun-n ccu~::o«o:uo auaoauxdc :20: n4 :0 n4 .0 c o “mum—2n oo~on ununm40ue:«o cmaoau>wu xxoo no a: «a non0¢ u n uuum~z~ sen.» nooasnoquuo euaadu>ue m: «4 N: u: «c u o Cuuu—z— moo.“ ¢~_:oo.ue:un ousoausuc .!oa a: «a .0 nomad «an on «wen—2n neucn m-unoo.uo:uo Guacauuun &: on a: 0n n c an «mum—Zn soc.“ «wotnocue:—o ammoausuu 2:00 on ¢n on honed a n xuuwbz— :unou .msuo-oua:—o aucoaaawe m: fin on b» NJ - a Cwuuuz— o~mou nmrhom.na4qo outeausae 2:0: an ~n on waned «an on «mow—Zn ouoou .«om~ooua:—o ammodasua a: an an an o 0 cu zweunzn nae." ~¢c-uo~c¢uo auaoau:ua zzca :» m» :n waned n u tuuw~2~ sunnn ooheoanqu~o amtoausaa a: an :n an none: - «d «muu—zu »u-~ nocmonnuaauo omuoausac A: «a an an n: n: «n zwew—z~ Ana-N ouoou¢o~ceao ammoausua :30: an N» an nono~ o~n an Cuuwuz~ goo.“ nn—mnn-:e:~o categuxua a: on an on s c ou Cweuth saucw ceantou0ae—o ewaoausuo 2:9: as an em a a nn «mum—zn «Jun» annaQOotoJ-a auscausma :30: .~ aw .~ 0 a .n xuuu~z~ con.» ¢a~§unomoJ~o ammoJuuua 220a nu cu um sun unq an Cuuunz~ mac.» oGNMmO-motua ama°ausua t: On an on nono‘ acu «u duuu—z~ soc-n nerQQOomot—o ammaauuuo m: an an on sna . un zmuuuz~ «as.» :oQNJoomo:.a cunaausma 2:0: a~ mu an :0 o o «wow»2u mason oasnam.o=:—o outeausua zxoe n~ :u an n-no‘ u u luau—zn «swon no~nmnooa:uo awnOJusuo a: - n us no a o zueu—z— sono: «mos:nooa:~o auaeauuuo 210a ‘u «w —u nonOu u n xuuupz~ ocuoa unnqmoooea—o owneduaua t: ¢~ «u ON a a on cuuwuzn unnon oanaa00000«o awmoaa:uc a: o. a~ o“ nonO¢ a h~ Kwuwh:u can.» earmeeoss:«o GMLOJHsua A: on an Ca acne. at an uuumhz~ swoon sumo:uo~o:uu amzouurua L: s. .— hu nano‘ nu an Sued—Zn n30.» som90aosc:~o amtcduswa 5: c« an ca na nu tn awoupz~ one.» o~esa~oaetuo outcauxua 230° m¢ 0“ an no c Q swam—Zn when: a~a~auuac:uo am304u>uo 23°: 0. ma 4‘ u o nu cuuwHZn done: smmmm4.oa:uo aflaoauxao zsoa nu :u n- o . ca swomnz~ oaucl unueum.r=:‘o amAOJu’ua 220: Nd n— u« o . fin xuuw~2u .tncm coma~ooe~:ao amtouuzua zrco «— ~— uu n-noq nu on xuouhzu enact n-~900uutqo auaoauaua L: Cu ~« .« waned ¢u an uuuu~=~ nu. a~2~m~.~«:~o ammoau’un m: a an o 00 no u ¢uuu~z~ on. 4 uuuuuqoo«0—o awacauyuo a: a a Q none: on an xuewhz~ «Jug: nuahnuoo«eao GMAOJu)uo a: h n h a O c N Canary; mO30m doouutpn—.:o aumcduxuc 230° 0 h o u 0 an xwuu—z~ n~oon no.0-.o«:qo emanausua :10: m o n honed a 5n unuth~ nos-u nscnm00-tua ammoausuo m: J m o nomad u an xuouhzu unman «nah—sountno em;oawsua a: n a » nonOu u nu uuoupxu nun-n c~n~onomn¢_o nwmoauswe &: M n a non0¢ n a xuuubz~ N anOou no=:~n.n::«e cmmaamsua a: a N a xenon 0n~a:n.@~:qo augoaurua o u nuns: 12<¢ I butnd dust: pain; Cuzoa Iucxna ucpp I axo~b0<¢E w34<> xaupozau march“ oxua .02 .oz bocaowuu .l I to 2:0 w>_huw9ao .auc woo: ace: I I I I I I I Uun<~¢<> 89nn1¢un zxoo «cu Nod .A and nano‘ 0:.- ..n IUUMFZM m4... 050noacfianua auanusuo a: can new Qua Hanan so: n~ away—Zn awn. m~4noo-Oonun ammoauyua a: on. ecu 00 0.0 :0 MN ¢uuuhz~ am... Ok:no°0m0n «o culc‘zuuc ....On 00 $0 0’ m« nu n.— muowhzu mama 05:6069m0nuo Ouacduawo 22°: 59 um 50 ~ N n« 1w0m>z~ eo~a Quanoeavonua OMAOJuawO 2209 am no mo 0 n 0‘ xuwu—ZH :cwu otiéuvwonquo ammoquwa 2:0a m¢ an. no cum 9 Nu zwumbzu nun. oo:msa o$onuo awLOJuxwa 2:8 :0 mo :¢ Nana sun» « «mowhzn ~nn. :n:~.-oown«o awaOJuaua a: no :0 no ”chow mo: n~ ¢wuubZH Nnno :=:N«~oaanuw am¢94uaua a: No no ~¢ ¢¢ 36 I: tmuwhz~ mslo JcJNuN omonda ommOau swa 22°C «0 N0 «0 a 0 No nn «mum—.2" thu 4°4~u~amonua ownedusdu 2:00 on. «r e@ nonOd No an away—:— ms.‘ Jea~u~000nua ammoausfia a: on am. 0o 05% 9 Nu Kwumhz~ mum. :u:Na~oOonuo awaogu :MO 230: no 00 no mnn mnn aw lucmnz— mam. Jav~uwcmwnuo oum644:ua a: so Q0 so manna mu nu KUOWhZK nuuvu momnuuo¢wnuo omnoamxwa L3 on so on NK 50 a: xmowhz~ coo. Ahwnwoomwnuo ammodmuuo 23o: mo 00 mo named so 4: Zuouhwa ":0. h-n~00m0ndo OmtOJu >ma 1: Jo mu :0 nanod 40 NN Kuwwhz— cad-u hanneomwnuo am¢04u§ma 5 no ... no n n 0. mucw bz~ mnanw huNnNOImmnqo awtoau>mn 2:06 No no N. AN LN an xuuutfi an-u ~u~n~aomanuo aulcdmsuo 23°C «a N. do Nana nan» . d «unfit: has.“ skwnNG-mnfiuo aua04m>ua 2300 an no 0Q n omen aunn u «woubz~ :am 0‘ sunnuo-monuo ama04a>ua m: on u. 05 pa an an mum-whim. :umcw nun—,Neomrnao ammoauaua 2:00 on 95 on M N V kn ¢u¢whz~ Gun-a ~s~n~=nmmnuu emaoausua 2209 up on nu N N ON Kuauhza mam-u ~A~n~aom¢n~o amLOJJ’wQ 2100 ws up 0h 6 c a: “mount” Mnm-w ANNnNQ-mmnqo amm94u3uc 23QG ms 65 as a I ¢n mushy—2H :Nw -« -onomvmmnuo owaoau>ma 2290 as as an a a a: uwuuh2n cam 0.— «gunman-manna ammoausua 22°C nu as "5 an «a an zwowta mmcw fua®loommnqo cmaoausua 220: MA as NA 3 a an amuw~2u ON“ I“ 4~mfls¢um¢nwo ammcaw>ua 2300 «5 Nb an mu mu . n: luau—in woe." normeuvomfiuo am «.04.... am: 2300 as .2. as. a: a Na xuuwwzH ao~.~ :OJMen o@Onun ammoam>ua 2:06 00 ch 60 nomad an n: Cuwubzn «QN0N :msa~«v~mn do ammoa33wa &: no mo 00 m: a N: KmothM osuuu ovuwnoohmnua am104m>wa 238 so no no u h mu Know—2H .msaoN m:mo:hIomnuo Oumcqu>wa l: 00 he we : a an uwumhzn annn~ comaos ocfin «a auaOau>un m3 mo 00 ac mined do . nn xw¢wth mmooN @eumcuonOnuo GMQOJM ywa a: aw $0 3 nonod ..N n: Guam—Zn own a” cecman-oonaw amaOJu xuo a: no :0 no a 9 Ga Cum-why: 0:“ cu ~n~m05090ndo cmmoausu: 2:60 No flu NW 9 a h.— Guuth; :OeoN Gcoh—Ooomnuo outcau’uc 2:0a «6 N. «a a c Q xwolu»z~ QNuoN 1mg fine-omnuo ammoausmo zxco an no .0. a a on Cwowhz~ a..—.w NoauoaoGOnuo omm04u>Wa 2305‘ on C‘ am new «Bu an mwuu~z~ own 0N ano¢»~.orn «a amaOuu>ua 2200 cm. 00 om I n n zwuusz 100 on nachmu0¢vn do omacduao 230° km. 0. ha 0 o o xuuuhzn n~u.u cauhOunmonuo ‘ uwuwuwnm% an“. n“ u! on o I who: nnu-u cucn«~.00nuo $0. man "an “a (”ben dn~0~_ $m~NONIOOI~¢ OULOJHBG i9. 0. _ 158 suns. manna. O w~u03ol 5000».I 0~uatol nuaNIoI oeuumul O—nnn.l O u.:--I C «hmosol eenhmoo :eono.l O MaoNnuI I 0 0 ~a¢nmol «~o~:.I cornt.l nnnnaoI «comm-I U m:~mhol I annoool I 0 I I 0 ~mnmm.I am:so.| o:n-.o O h:N0o.I O aqzuequ ...... ...-.u I .:noa.o¢nuo u weubomfin° Lo u341> nn~|iu§< m:~snnuem O U deWo«o oomo..« 0 a a 0 gunmen: . ~°o:~oan u :o«~u.oon owm~o. mnomunmona ::owo.—mo :mso:omo~ nuno«.a~ O oNomnpoma I nccwaon can:~. n~0:~0 :noa~ou o-0m.o onm~n.mn I ¢~nmcu O «om~0.anw sun:~un~Nu momnsoeoan suns-ohun wonea.ao~ mums:.~ 0 ¢:no°oownnoI xo<¢m I 9:. maze I Dza mm-n.¢~m: eeoua.n:mm aaoa=.u~n~ aoaono$¢=ou :«onu.u:a~ cc°aauo¢: agenacn10~ coauaonaJ cacaa.om~— eaaaaoeun conga-man acucn.:on cocoa.¢no: cwom~.onmn aooaa-N—nn aaoa°.nw=~ wanna-5:: ~o:uo.:u4~ mnomu.OonI :sooo.«OI :msa:.:hI usuao.:o« ooeua.anu :nu:~uwmo: acaeocuo~m sQuuauumNN 99:95.0:om swamncntau 90996.00: aeoua.n::d aeouaonm: ae9o9.0m~u cacao-own wonmh.ncn :nwua.~0n co:~o.onov acaaoomwmn ac~:«.«wnn aoaac.:mafl o@:~a-:n« anamuonnm momnh.oo«a s-~uounl cannc.wm| cocoa-:mu oeecancw~ eaaaaumma: ma:~m.~N=m aoaaa~m:a~ o:»oo.@£n~a >h~>npo< 20¢ 2014n uz~o:~a ozucznm x014” yocgm uzuozna etuoznm Ozzina oznozum oxaazmc uzuaznm ¥u<4m uzunznn xu<4m QZHQZHQ quazHa xu<4m ¥unobmomxn an ma n>~urxoaxu $4. m4 n>uahxour~ a: ma ~hmwa>uzoz 5:. w; ~>=oumaz= a... w.‘ N>4«CJm:z: m4 ma ~>oocuw=za :1 ma ~thauw=zz n: w; ~>~ecumaza ~3 wd ~>aocumaz= «: u; ~>m°awmbza a: ma ~>4aaumazs on m; ~>naoumaza on ma ~>~oowmaz= 5» NJ ~>4ccumsza an MA u>u«»¢omxu mm ud ~>anbxomt~ :n ”4 ~>oahxomxu an we ~>aahmoazn um u; ~>~u~¢oaz~ «n ma ~>oohcoazu an ma ~>mo~xomru mu cu ~>:ohxca:~ on ma ~>noh¢0gt~ um u; ~>~ah¢¢¢t~ an ma ~>uohzomx~ mu Ma «uku4>uzot :N ma «hanCuwaz: nN ma u>9ucumaza Nu m; u>mocumaza «N m4 q>ouaumzzn an m; «>hocumaz: o— wa «>090umaz: nu ma «>moaumaz: su we «>Jacumaz: on m4 u>noaum=z= m“ u; «>Na:um=z= :- ua «>«ecmmsz: nu ma «>anwzomxn Nu ma ~>znbuomtn —« m4 «>mahxomru cu m; «>nchxomtn 0 m4 u>~ohmomzu a ma «>wuhxomtu s u; «>mahx01:~ a an a>q¢h¢omzn m u; «>nethmzu 4 m4 u>~ehsomtn n m4 u>uohzoazw N «u pumhumsao « unph ux!ot mm - 323:3..«5 Lz~I ~ouo:o« onoum.u:=~ 30:“ w; 4>aufiuwazn ~o mennm.l 9:33.23 Lz~l o use: .03: 92— ozum m4 :>a«oum:z: «m euwnaol cocoa-n :0” ...zul u cocoa 5.1: qu32nw w.‘ :>ma:mw=z: on 4~¢nqcI aaeeocnoa ...zHI . aeecQ.noJ uZNGZHm ma :>oo.5m:z: an n««~:.I geese-omnn szl o sauna-cmwu oznozua u... :>~aaum:z: on oammmol noeaaoa—n u2nl I cocoa-awn uz~oz~n ma :>oa:um:z: so Oun~nol aooeafioq 5:0 . eeocaumou 2:93”: m.— s>m=aumaz= on . sauce-mom m2»: 390944. 99.3,» Inc» ” v.93” u.— ariuauwzz: mo «a:-oa 2:23.05»: uZHI I 2:30.05».— oz~02Hm wd 1393532: .3 . eaeaeomomn uz—I n~nn~o:n mnawsénmn xoqdm m4 :>~a1um::: an I cocoa-35 uz»! dance. Quinn-«u: xuqam u; :>qaaum:z= Na ocnnmon cacaouho- mznl o genes-swan” ozHozum m4 :>~«w¢omzw do . cacao-chm mzHI coco—non “3.39-com. xo<4u u.— :>u:..,._om:n ea I cacao-son“ uZHI fame-u nm@:«-0s- v5.3” m4 :rmuhzomxn as o cacao-awak— mZNI . ~...;o.mooq ~343¢Im~31 xuaim ma :>owh¢cm:n on . aeocefiwno uz~l aeoeuuaoqu «amouuo:~l xuqam ma 3>h=huoazn up . cocoaow': uzul o«:o~ .omm avail-”3| 233% NA 3395.03: up o eooeaomo~ IZHI nhnooém h~o~oi3~ xu<4m u.— ..»nuhxomzu ms 4.3m..- sea—33 ow cooua.no~ . anone.no~ cznazHo am 1>40hxomxn ..s . usage-090m mzHI anyone}: monavn camNm xqum m4 ¢>nchxomzu n» oa~0o on 99254:; 5:. . gage-«Nam uznazHa ma J>~ch¢oatu up «nomool oaaaa.:m4~ uz~I . eeooa.:@:~ azuosz ua :>~ahxomzu : o cocoa-amuma mz—I anger... oaao:.m4«m« xc<4m ma «buw4>uzot as I 23994:.“ azul muonu. hacno.~¢°~ xgjm u; n>zammaza on o 2.993.004 mz~l ~a~h~.« ooomnuow: xuqaw m.— nbuqowmaz: an amenaol cocoa.» ...; mxm! . ace—2.3.2: uz—ozna m; n>macumaza ~o aunumol 2:39.23 uz~l . sauce-nay: oZuoznm w; n>occumaza co oao~aun ence—...“mNu uZuI . ooosecom~u 326sz m4 nrnaaumaz: mo :Mm:m.n ceaaaaaun IZHI - angulzn 02:.sz ma n>oooumnza 0% masofiol aeoeo.mo« “.th . aaoac.mon “Ewe—Ha m.— n>maaum=23 no . cacoaoOOn KZHI onosnIN uO¢~o50n 2915 m._ n>:caum:z= uw muonh-I cacao-«no: uz~l I sauce-mhw: cznozHa w4 n>naoum=z= do I oooae-mwmn uznl «damn-u: «Eachonwmn 29:” ma n>~ecjfiaz3 oo . eeeeanwunn IZKI man‘s. ho~o~qunn zuc‘fi .ua n>uqouwaza om enaom: caeeuoshnw m2»! I a:aca.hnu~ azuozum m4 n» 3551:” an canan .0 eaaeanovc ...z—I . 9223390 3:93“; ma n>auhxomx~ hm . canon; mm~ mz~I «9:4. oanom.~¢.n~ xo<4m ma n :énxoaxn on . aocaa£ha¢ mxml oun~:.~mm« cantioonu xu<4m u.. n>oohxontu mm o cause It; LZNI ououromeau ¢~anwoow«l v.01; w; n». sprout" 4m . aoaaaonhu u2nI auwunéwN oq¢qn.~.0| zucqn MA n>o=hxcar~ an . aaaaa.¢n~ uzno noemn.o« savoééuu ¥o<4m u.— n>mah¢oaz~ ~m camn‘oon aaaooco:~ eaaaa.¢o~ . cage—..azn QZQZHQ cu n>¢ahxomXH an 43:23: twat: mxm «meJ mxm 2014» >h~>Hhu< 30x mP—F—w ..E>~ ...:~p0ufig ma u=a<> hbahao uhmaazou I Zeubmo 525.1 N we}. 2;.— uuuoxunc u .— z u < a h a z o n. =m.~o.:« mxm» onxu~\wo up a 160 n:— :3 p:— :3 :3 A:- .2: h:— ~2— .5: .7: ~2— bz~ ~2— nzu pl" .3: th :3 =3 hz~ :3 n:— ..z— 52— p:— ~2— .5.— .5: h:— u:— h:— u:— hzn :3 fix— bx" I 52: I I uz—I I I KZM. I I “.2: I I 5:. I I uzno I I 3.33:: I .3: eanmIN cacao-none“ I 003m.» 92:33:0— I 5: again“ no.3.» on: I a¢< machoJ‘ occaeon snow I 92 «wand; cage—ano— . 2: moans.» egg; :3 I 32 I 3:33:04 I 2: mocha...“ 92:3.” on: . $2 I cue—342,3 . I 393; an: o I oceeoInanou I a: Sign 2.25 on: . 2: 23:; cage-n on: I 9: ms»: .m~ 3233:: . m3 noa~u£~ :23.” on: . n¢< «nONeIo~ cocoa; anon I a..: fauna; case: In dawn . a: . 2.3:... on: . 3.: “00:3: :9an on: . E: I 2.33.2.2: I I .533; on: . 52 I 232..» on: I as «ans... :2...» an: . 3: I334: 22:3.” 33 I 93¢ mae-I~n ecu-e3 onan I o: Shun .3 9:93.27: . 3: 23:35 egg on: I as u-o~.: 2:23.. on: I a: . 3;: .n on: . 3: 3.3.3: eon—340nm. I o: . gaging: I 02:. goo-.33.: . 3: I 2.33 on: . a: cunt; :93; one. . woumIInu :23.” :4: I 3: 330.3 2.2:. on: . a: oonnmdm cacao.» on: I as nanninn 2.33.22: I S: 32%.: :oacononou . 0.: I secooInoHOu I can unaooIo$u cocoa—In and“ I as: dunno... gaging: . an: onus. :23.» one . 4:25:32 «mat: can umxod ozn 2.2.5 I 9529:. gee-c I «mozuau 9221‘ I mzxmmu ocean—I I spent: QJnOQIOuHua I u>~bumfino no u34<> « muIt :9; :unxmm< ens-0. awmcao eumnsI am:«ho seas". swans. o I I 0 I I I I 0 I I I I o I I I I I I I I I I o I 0 I o o I I I o 0 I I I I 0 o I I uwou «do I 921 “020 I 9:. nzxaaou eoaeo.o«n u>~ho< In «>oeoozm om mouom.nn~ u>ubu< In IImacoua o; Isoqn.ma: u>n_o< It IIIIInII II oo4.¢.¢noo u>-o¢ I; «Inseam; II ne:o~.noam u>-u< I; I>~oooua I: aoIan.oIom uI~—u< II «Ideooum m: eaaaa.ha «Izod .. Ix" IIIquz II eeeaa.m~ «use; .2“ I>a~Imz I: eageo.:: mums: Izn I>mammz NI . «axe; Izu I>ocmwz «I . muon .z~ I>Io¢mz a; . maze; Izu :yaaumz on aooaa.: Iago; b2" I>mo¢az on caeoa.~ xuzod .. .zu :Iaaxoz In aoeou.«u auon .2“ IIncmaz In aaoe=.nI «uzoa .. .=u I>~a~az mn aoaaa.o:I «axe; .. _=~ :>quoz In oaeae.~o gaze; .. Iz~ "Iqumoz In aeaaa.~n« auxOI _=u IIIIVIz un aa¢u=.n: IUIOI IzH n>oa¢mz In . «axe; »:~ n>o=xmz an . «I:04 .zu IIIIIIz IN canoe.« «use; bzn nIIIIIz I~ aae==.4 muxoa .zn nImaaaz IN goaa=.~ auon .. I=~ n>I=maz In egaoe.. «Ion I=H n>nommz m~ eao=°.nu «Ugo; .. Izu n>~owaz 4~ anoue.oo: «use; .. Izu n>uauuz ”u aaaea.:o «Izod .. .2» ~>Iqmoz - Iooeo.—II maze; .zu ~>uummz «I cacao.mnn Imzca ~z~ NIIIzrz IN . IIxOI IzI ~>Iozaz o— . «use; b2. ~>Iomaz a“ . cuxod hzu ~>o=¢mz II . waxed .2“ ~>meaoz I“ aeoao.~ xuzog .. .zH ~>I°uoz ma . «use; Ix" ~>nazmz II 2.23.3 5.33 I; :3 ~>~o~mz n— aaea¢.oum «mam: Iz~ ~>uacmz ~I IIII°.- xuzoI .. hzn «Iauuaz II . auxoa hzn «Ioumwz II aeooe.om «man: bzu «>oaxmz o . ~u134 Izu I»Ia¢az I . «Izod .zu «>Iaumz I . «axe; hzu a>oo¢az o oeaaa.s auon .2“ «>mamcz u ocean.» «uzod .. Izu IIIexmz I . «ago; .zu «Inca»: » 233.50 «use; 2: :35: ~ eeaaa.nann «u:04 hzu I>onmz I >p~>n~u< Joe mapnpuI 4; .pquO¢a .. ..~=n..a~. u>~.u¢ I; ¢»a«=nan I. ......Innn u.-u< I; ..aconxn .. ...-a..oo u.-uI In ..oeaegm .. .oogs.an~. u>~_uI I; :»~.anua 4. ...»m.m~n m.~»u< I. .»I.ooz¢ .. a.....uou u>~u9I I; ,>aocoga u. ..u.n.n~m wanhuI I; .>,°anug I. a.~e...aoo u>~_uI a; ....ocII ... ..o...omoa u>-u< an .»~°ca.s «I oo~o¢..a- m>__u¢ I; .»d.oeua .. I..~o..mn~ u>u.u< I; "IIIIOKI .. .99.“..wo. u>__uI I; n.9«ooua on ..III...oa a..—9‘ I; n»ruao¢¢ .. ..ac..»oc u>~_oI I; n>eaaoII .. ..ua..om~« u,u_u< In n>naao.g ». ..:nn.m~n u>__u< In n»oeao¢g I. ..em~.no~ u>—_uI I; .»maooca .~ «33.3.. mix: 2 2:82.. 2 sonoo.oauu w,~_uI I; n>naooma Io a.uon.-oo u’—_o« I; np~aaou¢ Io ..~,...n~o u>uhuI I; n»uooo.I .o :_o...a-~ u>_.u< 4a ~>u.¢o.¢ a. ..Im...~¢ u>__u< as ~>ouaoug a. o...m.~no. u.u_u< .; ~>oacoug .o ......no: u.__u< I; ~>eeaoug no .eaeo.on~_ u.~_UI I; ~>Leeoga uo Isaac...» u,~_u< I; ~>aaoc¢¢ “a ...o~.:nu m>.—u- I; ~>muaaua .o ...-.nm: u.~_uI I; ~>.9aoun om ......o~o. u,~_u< I; u»naao¢. .n .oooz..ano u>~—u< 4m ~>~eaous Ia o...:.n.no u,~.u< as ~»«eoocg ca sunan.ooa~ u...u< as .»..oo.m a. ..oge.oo. a..—94 I; I>=.oeu. .u a..-.nuo. u>u.o< 4g .»oaoo¢g ”9 ..°.°.na: m>npuI a; .>..ooa¢ u. ....o.omua m>-u< I; I>N.ooua .. >»»>~IoI Ion m=—<»m ug.. uz.z «mega: I ”:29 . qaou u~_:.-.: I a~e az>hbbr>>>>r>you-)->>>>>r>>>>>h>>>>’>-p>>h>>>>>>p>>>>h>>>>>hbhhrr>>>>r>>hh>>hrrp>>hp>>>h>b bugghuwu'ug HUI—Hh—bI—b—bh-vbbh$hwifilfibhflduwdhbb—mh—th-flwbI—I—ut-UbUUWBUt—ubbuwumbhth—thh‘bmh - 222-423222222223222222222-2321'222222; zzzzzazz z=2:2222222zzzzzzzzzzzz:zzzzzzz:zzzz=zzra» ‘- aOGOOOOQGOOODOOOC :00: ac GOQGOO:CCOG966°C9°60:°°°€O°C$O=°O°°°C$O=°C OOGOOGOOOCGOOOOOOG CQOGL .xztzxttzxtuztnttzxxzutszxzsntxuztsxztuxt:txzzzzrztxzzxstuztuzzuxsxtxxuststxxa '0".OONMflI'JMCCCCOCCC(0‘0.Q“Saufinwlb3flaflOGOOOO‘QO'G'C'CUJdJdaflifidWOG’Q’U‘OU‘OGFOFM‘HNNNhof G:=‘¢»~F~thmn—~‘lfi ,n n—n—u—u—uu-c ¢~I cccv-a—-—~‘.nn|fiuiaanovué~eVan‘sc:ru-m~o.c.s=ecc:v~v~~c~v—n—— mmpnp»—-——-—~n 5 a. rt: 5:1; core—,‘mq _~-————-I-I~ PFFFBGOOCG hh~~r4~9€==e¢l~h Fhmhfihh” 0.0000000000000000... 0.00 I... O 00.00-00.00. 0.0.00IOIIDCIUO 000.0. 3" '. ...-'IUI- is Ilfmrhl-hh—l-hhmhhhu‘. mmwwxaeaeeaeuuflfinh mma‘u‘cu‘ccococcuumfiuwfll I I I I Immnsamurmmm. b‘ALAFFn-hhhhfi ‘v-v-I-hh-t—uu-na—I I I I I I I~——————r.n7wtnnne.~e.n&e.c.I I I I I I I I I o i I I I I I I I I I I nuu~~wv~~~v~-u~~u~ul I IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIII fiwflcnmcehcwncnmh tr-ncmuu- at“: K:uFanfIflQFGNF:Cu‘-£hudntlfichomtlflwbanu‘.dfi‘f'féfiSnoflJFC' csfi‘h‘fle >>ph>>>>>>>r>>>>a->.->>> >»—~ >>) >> h>r>>>> >: >p>>ab>>--r>r»h>>»>>>>>>r>p> >-I-a-> >>r>>>> ; ) »‘>>>>>. - , "- :loetfr; .‘{.:.u —-~~L~¢~I~I~I~hl~~~a.'_:.:':'=:=w‘.' . .L'._'-;_;c.._—~——————————a—I. (nu-e. ,IF- :- --.000->>»)-»’-x->>p>>p>pr>>>>>r>>a»>>p—>—»>)—>—>>»->>>>~>>h>>>>>>>r>’»>>>>>>>p>>h>>>>>>>>>r>>>>>7~»p; 'rnrmuv¢n¢'vcccnmrItu'nncauwas :hv-I—hr-hhumnaccsrreavaoceccccc...—-.—-—mr.e.csunr.nrnr>.r0t¢cccn‘.; .aoooeacaoaaoecceezcceaeusL:=accuaegceccacaeecca:———-—-~——~——~—r_ca==9cc==:=e::;;¢ c=====o- :xzazxazazszzzruzzagg xi: a‘swcxmz- zszchzSBL: uszzzuzasgxzarxzi cxzxzmzqsz; usxzxrzgzzzz- . ézzrc: -azx‘saz "L--—___¢L—‘.i-n-- ‘_LL-L:—ZL-F_Q.;'—&JJ=IL'—;&-L;; —“—1-:'—&L - ‘- ‘_-:I-_-'.— L 53;-L \——‘—-‘I -5. —'- -LISS. -“~£- ;:zz‘z¢ Z‘Jiflufind‘“ZzKZ‘ZZ&AKJZK‘¢-L‘“ ZQ‘ZZ‘32c-i2- z¢zzzna ‘z;;-xaazz::. "I wwwOQdemhfihm—fimFWOG“BGGBHNMNMNnml‘lnu‘onnmow‘ueofiwoeaacaBBNNMINNNQQQSacg‘ shrew-IrBwth—r-I-I-pormoaoaaoufiouweauooocsnnmnnnn—gc—umaminnmnnnnnnnnmnnmmnmnu¢g¢“" «ocvoccoulnnmnmnnc‘v‘ u-awonnnnu GEOGCGOO CC.'OC.°E‘D‘CCC "f‘. “‘d““'..'...-"“ u..o--.I~Iun.--uoco .--ooso¢ou-~Inonoa-~o-non...con-~uu-o ...-o 00......0'0000Il00'000, Mun-00... oovaoceoeoaoo9°96eévunfmmlnmmfihhfiv‘firnoflaofinoaaaeeae L117me “mnmhhfihhhbhmOiwfiflioauuflfiaI—n—m «ma-u «alumna. manna-sun.“ nun—......— . Io-«ntau'ho—«nrnrcM—Nto." JM—Cimfl'n‘FO—N'rOfiOFO-NP-Cflwmfl. (unkno-«aremafia—«mumahswnnfiwhclundn‘O-‘v| Wu—u-I-n—yup—p.-a—p—p—o-p—I—p—u—u-p—p—pc-u-c-v-u-t-I—o-u—a—u—I-I-u—o-u-u-I-u-t-v-mph—w—I-I—o-p—u-p—p—o-u-u-n—ph—o-u-m... “MLMKMKu.uk‘hmlfikuKMLwhumukufluI‘d-“MILLIblsLI.“I.mkkumttkhkhfiflublfihhkbfihuuuu 'Ui—Ib a-.-awn. nun-I...“ mhlnI—‘Wb—vWHI—‘HUI-nuu—uh.L.UUH-Jabb_ I-Ih-I-hu‘luhn-n— hing-HULL". ubdbflUhudb-UU-fl-‘fib-f‘ .ld-b—I—l-l-J-ad-I—ld—l-ldd—Id—Oddd-Jo‘dJ—Jd—de—L—l—IJ—d-Ld—I—l-Jd-I—I-Ad—O—l-‘d-fi—AJM“dd-ld-ld—l—‘d-n—I—IJ-J—ld—ldd—dd“ . >>I~r>h>>>rb>>>p»>>>»>>»>>->>t->>>>>>>r>uu>p>>>>>>>>p>>>y>r>>~>>>>>>rbpurgpp>>>>>>rh>>>>>ypp haw-III.u“...uwubwmwuuwukqumuuqu—wmuuwuuu-uuuuuub‘bbuumuuhuh-gtbh=uguu=I=uI=uI:I—:==.. :zazzzzzzzzzzzz===zzz:z::zzzzzzz:zzgzzzzzzzzzzzzzzzzzzzzzzzzzzzzzgzz--zz:z-z::-z..z..§--- .. 900°:OGGOOOCDODOCO‘IOCOCOOOCOCD09653§OO°°°°OQO¢OOC360°30099606acct-IOQDGJO-OCOGuOCGGChOOOQ§ xxxtxzzuxxxtcxzxzuzsautzzctzutxzsxzutzuxxuuxxxztcxIn:xtlzxzzzxuxztzzzzzxxxnh oaamaamu-uwmwum‘ocotqocean...cotsout“:oumnmnmmooaowoo-‘occovccou‘aeoogoocoocowogwgraq. (asecceaccpr-Mhh»...——--—-—nnnnnnnnu———————eode a oc-r———-—~——Inr.s chunky.“ ..-~_.auc¢m¢.au.r.‘.x.r.m sphhnhpv—v—phmnhm—mmu-Ifif I: M10acaccasc‘wrt‘maoru-u-a-u-c-p—u-hhhv-nhI-v-ccoecacahhhfihhmeQGBD-‘v '00...OOOOO‘COIIICCIOO'QQOO 000000.00.0.0.0.00000.I...000l‘0000.00..O'IOOOO'IIIOO:I::OI rnrhmn .mnI-v-hfi-hl-v-I-v-I-hhhv-ML‘.Innmufimr-Inaeeccone-nur- IIIflfiflGOGI‘GI-GfloCOOOQGORNNNNNNhI I I I I I Iflb’dud'M-AL: Ist-v-c-um—-———u—I I I I I I I .--—~—-~nnn-‘.nn”"{lfl human I I I I I I I I I I I I I I I I I I I I I I I «unnum- IIIIIIIIIIIIIIIII IIIIIIIIIII-IIIIIIIIIII III-III no — n . -v~ — n H'c—caf maul-gnu», Ivan—«Mir.@Fo—NnorOhc—cuncmaha—tuftuuhowncmuhmrccw» ::2»»;:Ciy3-IE;>=>§,:E§I-p> : >>p>’>>>-'-r ->>>>>>—>>>~>-»r>>>>—>‘>>>> -)—>7-> >>>>b>pb>>>>>> >>r>f5 Q":fllb~‘f".hl £(‘i‘ld’t If}. ...>& 5". _'\‘,\'v--<-;7‘"f~~h.‘l‘~&f‘f!":;&:r[50'32‘0‘ :5‘lLGGG—-——-——--——~—-—(.l ..‘Il cc. Gas;as:cccacsccec:ac:ca===c-_.—.:c: :cu: ==ccec=:=: cno:ac.:ee—n—q—"———f———:e=co=c=ac EEG:- CGG==L=£=~=$DC€IG=CGCGLJGGQCE“3COCQGBLQC-E caccmccccaagaccu C;D=CG=CC—O€GbBC=CEC=Q=——=L‘-- inn-“l.l-“h-b—uu.hfidhbbm—bkbbBhohu-I-hl—I-oh-I-UI—b—Uh-hflh“h-nubbuiwhwhbwb—*fiu-.u- “wan-25920. ..L:I..4-~' Li.:'..~...&.—..' L ..I. LnHIZy: “minis";szv.¢-..u'.L.‘I.‘«L‘( wile/1'. ..2L‘wL1v." an‘w'vumn. ..4 I m~-—~— "d—fiw—w—mumM—fi~————~-~—~m-—muu—~mJ «WhfiNNNN anf.Y‘.l\l'- v>»>>>>>>>>>h>>>>>rr>>>>>>rh>pp>>>h>>>>>>>>>>h>r>>>>>>>>>>b>rr>>>>>>>>>>>r>>v>>>>>fir>>>D:_ .Anm- n-vnmoccc etc-Inmrmmmswhcet-aew _~LI~I~7~V~~I~U—~¢:. >>,.>>:->>->p>>>>)->p>;.~ ,‘hy,-)—»;>E>pp>-:>>5> y. I ‘ Pr ; ‘ c: __= = r . - ,. ,>>>>p-~»>>>>,; -=‘I=c ‘ “ _ ~ . - . _ -. 1’ {C P "5“ ’ G_-DE=&:_‘&:CL—_—GhLL ‘ CC ' ’ C 5 ~ e ‘ ;_ _LGG—£_ G‘ H-;:~$ “Ccccbcu' _' ' '- ‘-R W 51....— _U-I.‘.I..I_I.-I.u.qu-_.I_~I.qu._u unbuhui :61 al‘ ‘II'. ‘F ULTOFCU‘H‘F I'I ”' I’ Y. .-.C‘U‘b’zlflf-‘ITIDIf-L' ->>>>>7-»:->>>—>7-> 'rtvnr.¢¢ccnr.;nmx -..:c ~ ”’>>">>’> I g: I: ‘ I . _ , >>:»a-’ -¥F§=-B'lfi=zmzu —? cuccccaececgc new “rt-crann‘unI-hhcc: 3* ---—;‘.g-g5'—_:.. " ‘~ S£3Z:ZK22“"Z? _ . —:u.¢¢==u¢.::=a=:::¢z- “3:33.25: ’-' . . ;:-—--—- _ ~ L--J.:h—-L ' 7.:- - _ l ' - ' .- -..a-- zr‘zz‘¢“ --a:¢“d-‘- 3e“‘i::::.;25:3:? . Ohoflwuwcccaacmnnmnmmnomanmnnmnnnmgueu.‘paMQpFI-Iw-opowoaococnnucnnnnn———.n ...-......” I—ppaoeaoounummmntfiMWdGuIAB usecuuwmnocnoewowamhumn~ap~-~eeoaamw nodular-Ir. It ' 090v- mmnaacaaaoo :5 OOGCCICO' COCO ownucrvco ooootunlflnflwt Warn”! nn‘ cacao. (O‘DCLE .0 ...IO'OOOQII.ll.DOCIOCCQOBIICOOI-IOJIOOIIIOI-OIICunluthIlill..IIDIIIOIQIOODOOIUI‘O . ooeaoeemnmmnnooownowndneoaq flflMIfi-I-‘dc-C'0.0.69.6.6B°°¢flmfiflwofififllflu°° wMOOOUOO“-UO—Md aw Numflm—nmmmowuflnaouflua m ”finnnm-fl uv-I—‘c- . nomcudfichmIBI-Gflcfidhoho 10h“. anon-I‘mvchureI-ccnwoq enomcI-cou' wuqmcr-ccnwhcdm~oonehccn mwhhuppp—D-h»—P”-m—m~m—,~——-m-mbpp~~ Db—m—w——”-F»F-~FF*M’FW bfihbuhnuhfibt““.5“Mum“ILLI.M.I‘M-kmKLLLuLb‘u-LLM-uuhhkwhhhkbumkKhulfiflnuuuhuhflhufl finUhfi-‘HWUHBH—UMUbh-bfibe'Hdh-UHHMU-“Wu—UHMI—b-JL'UH-hfi' b—uufldwihh-‘U- d—Ui—WUUDELUUUi-b—flub... dud-{JJ-I—Jd-LJJ-J-ldddwde—J-l-l-J—‘d—Id—id-‘d—l-l-fid—ld-ld—I-‘J-lAdd#dedeJddA—l-‘Jdd—IJJ—Ld-J-JJJJM ,y’ppppp’p, pppppp >>pp>p>ppp>,,ppppppppppppppyp p».ppp>ppp>pppp>ppp>>>»>>»>p>>>>pp>>ppp. huh. I-hhhhhflUHI-‘I-th-HBUL bhmmhdL-‘l‘hh-b—l-I-hfl—‘I—I‘bL-th' habhbhub‘hb. bkbbbfib-lflbwhfldh—‘u-bI—UUUHL 2:2 33222222272222:2:22:22222222222 =2zzzzzzznzzz:zz==z=:z:zzzzzzz:zzzzzzzz=z::zz=: 1‘: 560°C OCCOGDSOOOGGOO DO: cacaoeoooecer.ccocaaoocccooooooeocoocaoeooeac COO°D°°O°OO°°°G :cc: :3 suxsttus:tzxttzzxuz::zzzxtxtxxxzxutzxxxxu:txzzts:zzxxxzxzxxzrtzuzttxczzuzzsxtn OOOOCOCCCOGCIAGCImam“h1-100WOO¢COQ"Qn'l0OOviwddwa,MOOC-OU‘O‘MNNMCOCOOOCCQBEGOOIflflflnmfi‘u-Gufitt qfl-nfiFimt;m_——QOCQCQ“——~.K.utrlfllfiQUU‘I-“Z‘A-‘ENNMINB596i-mFl—n-mnr”Kn—mn—OQ'CO—u-a-C—‘Z... mnmgfim-nssactucaec H»c~a———I———I~I~I~I~I-I~;moans—uhhoeaacpnwmhhh—Ww r. LS:‘;D9¢Po~—Inmhr IQCOUI O. O.l'lO.IOIOIOOOIOOOIOOOllIOOOIIDIOOOOIIIOOO.AQOOOOIIDOI ...... OIOIOU'IOI I-hhmu'l aux-.as eeeu’ufl .J‘nmctnatodc'v .NMNNN IIIJIInInInI-‘IIDE muamhm~v~v~t~ . .Inceeaoh‘. .nircwsko I I I I-M—u—n-Innnnswmnl I I I I I I I I I I I I I I I I NOIE.~IIII-IM~I~I~—~c--—I I I I I--——-rlm”73M-NNN| I I II I IIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII II-IIIIIIIIIIII lush-Iv!cma-cnomoI-cnoficI-onom-w-cn.nuke-1:11wutomoh~¢mascot}:—:cvehccmvch;cmcr~ccmchnwohmm¢hc0.n nppy-r'rp>r»>>>—>>>»>>>>>>) >>,->>b>>>>‘ >r->> pr>>->»p>>>>I-; >>>>>>>h>>>pb >>> >>>>>>>>r>>p>r>’m : . I.‘ mu;~.~.-l~l~v~~~~¢‘=r‘e I: 3 .‘r : ';-:=: t————~—————I\r.¢uu¢.u:nu at»... ‘ car; u-h-L‘ -~-g\ ~~I~p~~¢ I, -.Ve" \ » . 3 _. cacao;ca:accoaeceusccoaececg——a——_——————¢ a:a:==-=e=ca:===ce=ec esaee.=‘—:a=~aca=ae=¢.;uac——. :GLCOGI. CL=GGCOG==~1SCI-15m:CC:==;:=::‘G:=C=mcacc=:=::GEL;QUE:==:;=c: C=C===u°Cp°CC2LCG'—' ' I.hhh-hbh—dhth-h-bh.beLbhbbb—-bbI.- 'L’ ' ‘ ‘ 2‘: was . 1.7.. up - Erna-1- tnrvarnnnnn' amnmnmnr‘nnnnnmnnnccroccocooootoood QCCOOGOOOQ¢COOCIOOOCCOO'C'00:. - p>rpp>>rw>>>p>>>>>r>>>>b>>>r>pb>>r>>>>->>->ph>>>>>>>>>>>>>>>>>>>>>>>)-»>>>>>r>>>>~>h>>>p>r .tnnm-cuz‘gg- 'MFFFF&CSSSIQM-DO-$GcLia: ————~——q——nmnwnnnmnncocto; .r rmccwgghI-I—I-I-gggmggg bag: eeoocgsact accosccacceo::=:=:u_-—~a~-———oc=9c=c==c=cac==cceecct-ccsca==DC=ncc===aceoaG—-— :ufus’ Bax—usaxzaczlsilxc zgxszcu¢¢u=x=1rLuxuzzzx‘.¢=zuaxa.¢zz-;:¢xr.¢=a=us IxI‘am stanzaiasxv '.¢-;_->_-:.__-:.J.'_. :‘.:._ _; "“‘ ’ ‘ ""’ ‘ " ‘ ‘ ‘ :3 - —._—n -s - ---;.‘.-——-.--13.. _-\.~—.’——.-——=£ -~- _'. —’—L—‘_-‘. :-—'—5'—;l£'—.h—s. zzzz‘zz.’:zz¢zzz:zzuz¢z =z=£;2242—"2 a:zzzaz:=£azzzz;;;=zza.:zz..::z;:;-zz;::zz.~=&z-azz=‘4- 167 “ 0"?!“ HFNI'IE “an ,Cfl-"C‘IC N05"- DEMN. “It-PHD 9N.“ Ifl.‘ POM l.l-OD ind-’0 HNNU‘B *OD|I7 'CNMJC P ...1 mo— ranno Ont-Gan 606515- I-¢-I° Nana-In sauna ‘fl'. a.“ econ Duo-n nnm— 0!:an 0513-90 l‘OIL‘hC I» c-a—un yea-Ac ”Gena haeuee ”Ir—u N—G'c ”003— name non mean rune: —a—~ woo-Io a.--Io FQBNBG '1 case can: aaaac aacsea cost: I'm-see ounce —aa ace 6.3—6 ups: Bea-a cacao cub-re caocfiu c 0.. DO. I... I 0.. OI ...IIOCOOOOOI 0.... .....OIOO'OOOQ O I. .0. I II-lil IIII|I I III! IIIl—Iifll-ICIII— '0 v-lll "..~. ll IIII—lll I-Illl I llllll I I..- Wm —-u-.—_— ~~a~unhfm¢x~~m~~-nnh~~~fi ~NNF.EINNI\I\ ~s-«umt.~~n~n~~nc. NnNMN N r» >r>>>>>>>b>>r>>b >»->>> >bhb>Fh>>fi>>b>h>>bbbhh>h> pup>>>r>r >pp>b>>r>>>>r>>h >>>r>> >- a-- m::=r~¢ycu¢=¢.—rn~o— ..nmI-a— none—unraccu-Inacemmhennr—q nmhenmcn— nchkwcwnec—mfi— unanno— n ;— ens—csaec—csaac— =c:ca— e:=——c===—=aec.~~ea==—ca=— Gag—aoen— ace—ncgce—zccs ca- scans—I : —- t-u-I—I—CI—I-I-I-I-GI-c—o—I-I- I—I-I—I—I—I- ~p-Q—pI—P—Lp—I—I—u=v-I-I-I-GhI—I— ...—.QI-I-u-I- nb—pe—I—h—I-aI-I-bpu- I-I-I—I—I—I- .- :s lxxzuzncmuzxzx cxsxa- c-zsu-acxxzbzcxacmxlxbzux xxazusm xsxxuzxzzucxzsl Ian‘s: I: 33 °°°°W=UUO=WGCDOU $09990 QCGGIfiDCGOOI-‘IGGGQCV‘OQOUVIGOO GCUOl-SOOOO ooocmcoocmaaeoc CC:GOC U ;'_ itLL=lLLfluL= LLLL “LLLLA. LLLL: am. ;ZIBLLALDM-f-l‘ 30.33 ukkkakLlfl. fih‘thLLSG-éabuék Lhthta fl ‘8 nztzztuxzxxxzx :1: 3‘8 xzxtzzzzztzta ‘ISZZSIKZZIC 3.13:2: ax: L‘szzttxls-ZSSEIL‘ IS an: I. my. ma—uu—n—ua—I—I-I— _-———-— —-—_;————-:~———-:———:——— —-——-:~-—-— u_—-:——-—:———— --—- — ea ~0N“-..\°°-fl.~fl. -OC v4.0a *JHNJWO~6%~UD~MWQ*°-OB nil-MOW.) Odom—.MW-DOIJC “o‘eau E c.- -‘.—‘I~¢I~I’.-shmfln tr—cec «muse—1.: ...—UtocI—n-u-uw-ne—h “moan—co u‘o—cI-ghu a-ghlvnhh V.» —-¢;q I. .3“ ‘Oeceannaas—ena I .a—am— “N60 hn-OOQF‘BBGG—G—e—I-U‘D ecosato; :. necoooeaneex-onc cc—er— s a. «cacaogcoaoncoco ccecav- e—eaheececk‘: accheace~5= cc ueoceeo cercotccoesmccec cceeoh . O.......OIIOOUI'll...-IIOOIOOOOCODOOII......OOOOIOOIIII...-ICQOIIICIOOIIOCOOIUIOODCIIOII IO-l IIIIIII IIIIo-IIII—III IIIII IIII IIII I—IIII III-II IIIIIIIIIII—IIII—I .— -.....- -c-—-— -an—u— I-u-u-u-I—c- ——.-o- «r.h.rat mauve.“ «rut-m. tam» «“an nume- .3“le nt-N‘.“ Nanny“ (Mama-c. hh»hh>>—>>>a}-—>->>>—> >>p>>—>>>>—>>>>>I—. r'»»-pp>>>—’>> —)h>P—>>>>-I-F>’7-P-> )-- >~b>>~)——>>r->>p— 5“»... I‘- —9 '-.’"~- u-Lr"- — N .I.‘ Oxwu- .19-I qu-Ih. —vu¢l~?—.—ceh—uc-cvt9;~'- Ch : Hal-i 4.;- :‘Ffi-UNIA s' vu'Ifhhbu _ E-‘bco"flp:¢=!.—g9=B-EI‘BGScMBQG'ILGGGG-LGGis-‘bcv—‘FLH‘GGE ~gca—eueac—Lcc:e—k-:a—cu:=e=——I. b-C—bI-I-I-p—hu-I—PWI-g—I-I-I—I-I- ‘_I-—I-—a-o-—I—I—o-——I-u-—I-I-—I-I———u——p;u-u-u-p—c—I—I-I-uI—I—I-p—u-pI—I-I-p—I-p—I-gp—u-I-u-pgp -sausat‘u“;x‘gu.zx=_~uxnxs-wztxuaxuzcbnxzé UCKKSUB‘bUZSKBUSSBUUI‘BIH-‘nlzzzusfiihbflleizh-h . .m-.;:;.o..:~c=- ;.I.::IC (uh—C 355C G‘s—MI. :ézci-ICGCIZCL. :¢;—;L-‘vu:‘£c;lat f. GELG-ZO - I—S:CL;I.'. 51:56- ;s-I. In. #3:- ‘—LL-&' -tL- ui‘L'.:-LI1§8&‘ -fi ;B1€.L“-'—L§&LQ3$5EBL-3$L= LQILG 16C 6: IELLJL vLLILLc 1KCL’. -LLL12- ' :’ II‘ESLS“ LL:- ‘tL8H-L' £=:=:—&;Z:E=L=;=SXE:£- "‘ -AZA zzxzxga=22_=x=-z;- ‘32:; LSC;ZE“L:SX= =—--. ——:S~—_:————L————_g——§ :———-;_—_——c———;_———o——= =_—_g-——:g——:—¢,——~—-a—_—;;—-——-—:: .I I I mill u—M-m-c—n—“W—a—mh (vouch-N NNNNMNMJNNNC-hkNM-N nt’ume-muhtxh has human-whwncuswufin tux ->.>>>>>>>>»> >>>>>~>>>>>>p>r>up p>>>>>>>>>>>»»>>.—-»>>>>>>>>p>> >>>>rh>>>>>>>>b>>>>b>>> h o;~I~I~hI~I~5.\-:: . .; : .I ————--——-——f.l\t\l‘o.(\rv‘r9"p(0.9.7 bk“.1~.'-“.’l~hb F- -..;:.x:_:-;- .--:‘_‘-— hcsccacesbcac c.;c=————-I———————ct._.:t ;;»;L--:: -c- =:.;: =;r.= GGI—F.=¢€=GGE-F==:I¢K I —_—_—_—- Lcém;mGC=G5—CCCCG—I‘C:Ci :h—lC—IGCL—352LGP——L;.‘;:G=:C= LL;-.= C—I—CLCC=E.=CL:=GC‘—CC;'— :;;:=:;:; 2655:; 3C:=€JG€C=C°GGC=CCCGSGOOCOSOECC uccaococaceu==c5c=ccc:zycee =2CC=GG€=DCCCGC=€°CCCG= xczazxauxxzuzxuxuxuwzfizzzaglue-128:” ass¢¢¢M53~‘xxtzagu-zzcxgzax;sza- 51:32:83 ¢x543333a -“fiEth‘bbL‘L¢&LL—o-'——Lé‘ - — LLgL S‘s- b8LL;B&LBLLkL“QL-LELILb-h'—B-&Qfl.&'.; ..‘hfl-bLG; .GI-u-L-thi I )- c on «my umm—meemmnn-Jueouwmumca Ch?” who 0““ I!“ .G-I'. a.FPOH‘OOGink—rmnflflGOFOQQn—m NCO.” WNI‘G 32;: 3".“ ‘6." J. .WI9OEMOCC‘WOC‘ICI—‘Iflan0 C. h—GQ: III-III...I.......III....II I. ragga peas-4:39. sang d..-00.06“ 0M". rn—ouevnooo 0 I I I *N—OO.== ..q W“: .- IIII-IIIII— III-III I-II-II Inn—u. n— F h h CFGFG.“.G¢DOQ“ ~-—wm—m —-———-—— .W.m.—p:—:———”——I-—m———v~—I-‘ >>>>>>>>===>pz=a~zrfl=> :h:_p>u Nuwmuwmm‘uuwuuh O m‘QO-u—‘I M a o- I:. out-I‘ Mums HuwwmuuuuuuubIdI—I-u “HUM-‘5 cc;_—:cc::—ecaa—ccc— a:c—c-.., d—I—ldd—l-fldJJdd-Hd-JJ—l-IJJ-L—I—ldd-I—I-fl-Jz I-I-I-I-I-cI-I—I-I—I-appI-I-QI-pp w—g» nob>>>>rhhb>>>>>>>>>>>>>h>>>hpu zuxxxuxuzzguzluuzzc 5:33.; . Jbuubuh=I-=I:—UI-I.UI_I.I.Lhubuhv—n—uwr oaooamoecaoc. oooowgeo goponc. 322222: -==:-2zxzzzzzzzzzzzz:zz=z 1:3;:=-c.-a.:>asa. 35L -Auk3a. QOOOGQO OOOCOCO ”a OGOOOOCOOOOOOD— =-:=:£2:EZIKZIL::EE‘= {ISSZIU 3:38“: :t“ ‘8 xleztztxxtusxuu ———-u-=————=-—-:I—-—- Inn-u:— G moo cw‘enncunoco own-Iotaunc-Namhno—flo-oe «III-Maf- ”:znmzflnrw‘.'“i.rfl*‘~¢l‘~l~.—me ‘c:st——:u;:==¢:h:2fi;g -=:¢.Cu‘:- I-I—I-u- n‘ ~— FFGOFBFF-UI O—FC tun—cc: e - I- at- I O . I I 01‘.- o l‘oola a.. I I I I ¢ I I I I 0‘: O I I I #:gu:er.¢.cacr.v~ceeel~¢e oeesaq. mrlhhshmmaob- K‘OCNNIInnI-hmancon o I I I. I co. 0' I. II II I I o. I. I..- h—u—II—MnnnIIIIIIIV-o-I—OIIVIII I IIII IIII I—IIIII IIII IIIIII III III ‘ :h I- I- h I~¢I~ ta:x¢z:‘cac -..—- m...- cl—n-n- —-—— ...—.- . .::»»:>$5>3>:__>5»»>»>u>p»>-- —>>;->»-I->.->;-—>>_>I-I->>>—>>_b>o~ 'v‘r ser..‘-~l~v~,¢:: = ¢'———r.I-:.I ...-h .; .3.-s .r cI-r—uru-hcv—uc -H.—b€='b o7. -. ace=;c_=ce_a¢¢—a——cec :5:=:5.-c u.c=r-=>u,s=~=c—Is===-u.°~su.c-b-‘I CCU-ECG G::£—O£—"— ' :agmacaoucécc- ———I———»I—I——mI-I-bI-I—I—CI-a——a-»— - -IIILJI-UI—h-hh-L.L—‘LI—IuLI—huHNUl-bl—bI-blfll-X 515.5ngunggtusgsgbtagrbéyzx: ' ‘ ' mount»: ---_‘::..: .: - .. .- ---. : =:::'< figssmc. 1;;3: E?£.‘—L gang: 2;.._: I. . 222223. Ait'le‘Iszz ‘.:zx:=xt: :‘ch- :::=a- :—————;————-5————c_—=E -...-.- “u-c-Wc-I-a-m—m—p—I-u’ 'WF~»FFF~FHRFFFWII=& necwa“ >>>>>>2r>>>h>r>>>>>>>>>>rg>’ l’p)>>>>>>>’-p>>—h)—r> >-)-»>I-Iv>->>-'r -_————-—t. IMP ‘JCO-‘I- - - - ~ up.r-om:...~:wr~~a =TB‘CGI-0-Iu-Nflflf»¢l. 2: :I- : -;-¢:=r—C-: bcnc==5cceooea_:6_‘ maec===e=99c=e c.————c4=e: ::===—— 2‘ =c::-—c;“cc.=;:; ==GGCGLe=bG- sun-axuczezc.‘ Aczuzu 3x85; xxx. saga: :c:cc:=:;:=cocc:ccccccc.ec=- snag—4 '_~L‘.a.;£:.- u:=.:¢.;;=.LI—LEBLG— zgzzxzzx -zxxzxcuxsxz: 3.51-3- 3-&Z'—'¢ ““‘Z;='—‘“L‘.Z- $1.: "Z‘Z‘u— '—L-L&.‘.¢LB&-T-is&fl.3&‘-&SL ‘_‘.-Lb£ 168 v-c-Inc wénw nhma uhCflIfl asst-«c l¢;m ail-sow: N~¢n° a - n , \ I-n ~— GG—In- Inno- scum enact: Ogoa‘v Nae «Douala :mne 0E2. 95-1.: 3:00 002 puree Ina—I- woe!”- use»: Nee“: “raw (I—GQG “ace—I non: up...» - c=u ”Inca 6N: Gees beau: ass“: '- 05.3: asau can :e—o €1.69 CC. I .lt“ 0... O IOOIIIIDI I-l III-Ill I-‘II-‘I II 00.000.00.00. I—III I‘III I -Ifl233 cocoa. octoocooccccccvc too... 00ccq-nnnoomncunmnumammn . . ‘ momma-n5: 1 . 1 . . m >b:b>> :>>>>b)->>> >>>>hh >>>h>> >>>>b>>>>>>>>:>>>>>>>i->££: >r>>>>>2£ ;E;L53315£32—»£3 g“: "Fa-I .gfchqoececfmm— ~06th- non:—nw‘euum=amml~cnuu~— nmI-GI‘NQ— nwscmcw¢e¢wnrw~a~u ea- — e .—=g=---c---e— =c-:-.-— c-e:——..onu.—:.==&a~c===—c=e— :cr—eeccu ecu—reacc—cee-‘e— :er: :z:;e:;:;:3:——:; :zm b—ppgp—hmap—h—I—epuI—hgpp— Input-o”— u—a-n-I-D—t-u—o—I-QI—bI—uun It: . _ “_ xx. xxxxwzxxcuzuxxuxxxi—zxx ¢=xau‘¢¢x canxuuzzxsuxu a 2:552: 999:9??509352E32 229-9? gé‘cgzyz9EOg:2:—UDWSCOG§C°C CQCCL‘IGODO COfialI‘GGCGOG'ICCOgO _ —— =—— _fl.-I ’_ .b— ‘I-_ -u- — 8 3' ' =—L‘ B L;‘_ LELL=;=&I}. 131-".36 LL; =EL 2““: :x:=_xt:.x:z:....:: :zszzx «It.‘2‘!!::==a£i=:l‘§tz:=x :ztszxxx: :xuzletgzztgté -:-—-—— —-—3—~—I—:——-— _———— --_=--—:——-—=--=—-— ...—gun.— —-—=.—-—~—:——-— nc-‘n‘g ea anon—CMa—ccuo .nh—c; mr-chwuu —¢I~e.I-.I..I— haunt. ucccaconflaaa—en: *GGMUO~»Q~\_‘JH‘IC*°_CG ”two-n6“.- “ONO—OQOMC‘Q' ~Q.‘ %::E:.Ia;:-£‘.h-"' “Film-Ch u'mCIfiN—ew \Ch—h‘l‘h‘a—yFfif-M Sh I-\ ‘ _ g - '- -I— e beecG—a-G—kac SQGFGE'M’J‘.‘ -ac:°=eunao¢—anc C —' 0006:: a ococccecn GI'...‘ cecacv- I. :a—ct. heaceauweewaaeahac cgcesacee cemscceeaaomaooc 12:: I... ... In 0'. 0'. In. IIIIo-IIIOI-Io-IIIIIIII-Ioono-IIIIIIoI-Icoooouo II III—I II IIIII IIII-IIII-III Illll IIII IIII l- IIII III—l II IIIII II '0 {I Inch-Ia, man‘s‘. (I'M-tum: ICE-firm rm. :v:&. -.c. I..-....I—..‘-.;4..-~..'-.. -‘.I..‘; 5 -::.:-.'.‘.-:- . IL KlutL: :15QLL1B&;=-L’.:flfia&bb;-lt ...—=3“;- gl:z.’.saxxzr_:i 1:...thgngtxzsxSsnazxksthz- _ _-~¢,~_:g_—_-H—_—;-- _....—:. —-—_-g~——-;g_—— JZ‘hCZSI-QI zzxxzsaraz. —..- .__, ;—_—_\__—_._;——_..- 9;b:1LALL 'IQQCQL1EI.‘ - I! K p H II F P I' y r) P F. ,. I. n 'N IN "1' IP" I'PII P 'J HIP __;———;;___-g..——-—_: OQOOOOOOvvootoccvoooccfi vocc~ctooccn‘ ImnlncIrInImrmnnn‘InIn . . '. 4 .‘ K ‘ ' 5):»>>>>>p»)>>>>b>>h>>r>>>rpr>>>>br»)ph>>:-n»-r>5)»23::ESE2:23:22£3;::£:;=:£1£;£:2225:£:- ... ‘;“gr~p~r~r~g:’_..¢‘:."t 1‘. . —' r _—-—_-~-Fl:deruldf.r'.'..r'..‘.y .II. .,-;-G-r~v~~~hx;g€-;' ’ 22g.5‘°°c;=‘5 i=:= : s f :——:=—-.-—u—-———I.-I ,9. a: =I‘. ..::: ca=== :s;;Pe:.:-;:c= 309:: sec c-c. a: 6"? G§§C§C§__=C59f~ “5.1::GGEQ- LEN—2::‘r‘ C:I—.‘_LGC&CC=~C=CL= EKG: :LGCIGCILCCCEC==LCC=—‘=J:L. . “::E:;?L_Dr0¢:b_~ CL—v'Le.‘ ccg--cc ' ~C5CC§GCC33€ :ccccoccucccc:cvc:=ace-aecgcazcaccocc. “LB‘L-‘L‘ - f! -_ _ ' _ $59“? ____sx--u‘g ;:‘I_.t:;x¢=:=1==uuaa.:=n 8:31:3‘3‘38 8‘ U szczzs‘rslzxmaxx- L -L-s C._—L&—-£ _-_L—--—.3.—Ina.-.I-—L—b&-LLCL“—BQBLB$LBBL&AOEbLLB“- 34.53;-‘o—J —EbL(I.I'.- #2.. E c a fivnnn 00m :no-Nc «none cuts-F. Anne 00-!) l-c-uou. one manna) calm. one. and neon um—un o—h (VI-ova mean- none N‘s-1 neon luv-e act: rceca wanes 09cc 6:: sa—e :v-en .0 ....Il‘ 0.... I. 0.. 000...... l I I I- I I l an In! I u- I mm -Nflfl 9‘ “NFC-I “06‘ Q” FM Nd? I)° 00m It,“ 0‘ antac- Db‘l'alfl O‘DOFQ FOO-6 “‘90“ '1'- CO H O69" ”cane heafi=a Fur—n n—sce rams nvur. 6:990 DEED: cease: Goal: a-aeaa weed 966 I I OO‘IIOOUOA III-p. 000.00.... coca-III I III I huumnnmnnmnnmnnnmnm nnmnnmn mnnnvvnnmnnnnnn ”13'7“” n”nnfl-'¢...(COQOCC'CCCCCC >>>>h>>>v>>>>>>>>-)>h>r> DbI-Pb’»), nbhbprbrbpb>>>b >>b>bh >>b>>>>b>h>>>vr ->>>>r>>>> Qua—n—nouuumcunnnsennh— nun—en" 0"! NQ¢V~NO¢°°C~MIKG -flKIF°‘-I nanomaooa—mwuemcmnnhn en—c-eaez—zencz—écce—ccc- :cc—eeca— =r=~cgrce—=:m=a— Geese-I ca:——ce=c—c=c=:—co==—OGG- —»O—-I——o—Dp—-—I—a—:——I—wG—t—O— I-I-I-I-CO-I-v-u— —I-»I-c——I-u-—c——I-—I- I-I—I-o-I-I— I-I-o-v-uo—I-I-l-I-sl-O-nt—I-CI-u-I—c-au—I-n- ‘IKN‘CSSKU‘C‘S‘HKEIUh-ng ¢¢uu¢z¢z ukxuzxzxxuuzsxt SKZQKK SKICUE::=‘|~S‘KKCN“K¢U=KK GDCMQQDWVIOOOOOWCGOOVIOGG cooomaaaa OODGUIOGCC‘OI‘DCOOG JOODGC 9COOMDGGGCWOOGODVICOQGGICOG LLL=LLAB32IEILLLL=ILL£L=50L ll:C—=‘—LL& LL‘ zilkusfikfiflfl. 33.3. LLB. Lklfl-3Lfl ca;asr.:.ac.=gaa.r.=a;c. LSZZIZESIZZSZSZIT-tfltle“ x::xztxxx L‘ZSIZII‘ZZIISISX =1:I.:& xxtxztzxx ==tt8£2:l2=2$ti man—u—u-Ig—I—II—n-a—u-n—snn—I I-II-I-o-Q-II-nu-I I-—-——:—--I-II-=—-I-—— I-II-u-u—I-I m:————:—-—-—:———:u—I-- NGMUCfliQmM-lhmc—ha—ve -l-«nc-In-an =u¢~o—-ou~°:~—ccac ~chda GNGSNHOt—O‘Omoflhh‘lO-M—CE .a- n N‘ ~O—Il‘Ulnwf‘GfF-Ofififlhn0—F r.-I\¢InI~-c¢ ~0—‘h‘ht’v—{FNRNF ‘l'l—‘GC wNE‘&-13551--°-dfl~——.v-r—Fnc ash -—‘ at EFF-Q—CBOF‘IGOBO-‘OGGGBOC (dcheenfin uecaeecntvaec-ocna canoe..- Genoa h-—°=°F€OOEB—G—°~W= G I»! ‘ o—a'haaaaahceacchegaehso ocuoeoee: camceacaceeuanc: caaaas I.e—-_ol-cacacnccncehecacktc .65! I I I I IOIO‘CQOOOIIIOIIIOIOICOOOIO‘O... III cocoa-III.ooooooooIIIIoonIIostoIOIIIIIoooocI-oI-o III IIIII IIII IIII I—III I ... II—I II IIIII IIIIHIIIl-III IIIII IOII IIII «No-u nanny: Min-In ornn nun-n firmer: mnr‘. lan-fin nit-Er. mar—n nnr‘rrnr nv'nn U'COI’ 310.0 0.0: cc. '1 >>>>~r~>>>>~>>>>> >r>>>t~>>>-»p>>—>>>>-—» ,,...>. >>> > I-h) >>>v~>v>p> >I—y» >>I—>—».~>>n—>>> >»>’->»v->>--I-pv Ch. —o....rl~: -—_’I-< I~I. ...; -é-auc adv-r- ..I-uchc \ -.V—g .....I-I.~-. —U#'I'i$\ 5.9.9:: _‘-u¢!~ ' u-gr.4v-c —I.r.ov~cu-yl ;;—I.'e- . -- I:Lc—I.£a~¢—g:a&emba——I—;~=uefltau-b.-c—cmacc—I.=cc=—u.cue—:Isb==:——I.hneweace—ucacc—uscc—gc—Gs I-I—p—I-I-p-I-u—I-wc-I-I-I-I—u-v-u-p-pI-gp——pI———I——cu-w—u-o-I-u-I-u-I-I—I—I-II-u-éu-I—u-I-I-I-CI-ppu—u—o—a—u—I-I-u-I—Ip—I—I—v—I—I-I—u—I-b—C-o» \I‘Cfibhfikz uU‘SKKBHK‘L’ auguuxxsg Hf.“ 59¢K81U3584—5I‘“ KKWGBKhK—ESJ=SUB “II-‘8 USSKKKUBKKEUSQ ugh-t 3:: "b: =G;."..3-.’ 96;. CC=Q~~312593 5--C- é-LthZéngfiLUI—I ::CL‘IM.;:CU;51—;-c¢m;=‘:~;'—-L;C~ $-=:=;~;f — -‘ L;'— 1LLKLC1 B‘bGlfi LCLVQL=5bLLL1LG32-‘ILLtLQQL—RL =3LLL:1L;ELL=5ELB“—1Lbfiiafihtztfitkkzfi' 55h :xzuzszsrxxzxsu;xsz;&:z;xxzzg:z:...:zzxxgzx:xx:zx:xz::txx:_:r.:r.a “—11=KSKKL£2I:ZKRB :-~ _———;————_- —-——— —_)—I_—I-. ——:c,——_—I,.—I—:c——_—c ..———-—c—I-——:9I—.~I——I_=‘_..__..¢ ...———- 9....--” —_——°-‘. _;— nwuwnnmv nnnnnnnrnnv‘nnrnnnmr nm- nnvfirnv‘nnnmnr‘nnntnnnnnnmnr‘finrncccccooccttodfcodcoqeels >>r>>>>>>>>>>>>>>>>>>>b>>>>>>>>>>>>>r>>>>v>>>>>>>>>>>>>>>>>h>»»>>>h>>>>>p>>>>>>>>>>>>> "-”"——EIC.C‘;\(\-wr - r-Iovcth‘ In ,~u¢e¢~~c~hha‘::u=s -‘ V § 6': —; I. ; .' _ - ———————-———(.l.:u(¢h(‘f' -‘r'.--' 1'93- - a.-—on; u;==:c-:c=er.=ec.c;=r:ce= : n:c'.- VL:L::u=====cceu . a-n—o-I-u—I—u—I—u-cc I.c-_:.a==;=:=cc=e==:=;a¢( C:UGG-L=G;:;GCC CL;€=C:CCCLG=C:C=‘£DQ=;GCQ= =GCCC;GGC=-‘ .1: ‘:C:=C:CBC "3LCCCC::==CLCCE:L= =C°CCCC=CO°COOC=OCGGGCOCCSCCOGOCCCCUCCGCOCCLEOLOCCCSCOCCGCSCOCSCSOC CGCCRCCJQUCCGUGCIJCO; uxzzzzurxxxsxzzzzc“Ix-5:5axzuxxx:“augusmuuuxkazzza'— smzx=¢z=x=ngzxxgbgzzxzzxzxxzz‘eagga-_A~ 3BELC—éhfi‘ LKLLEII C ARE; L3L&5¢.L-LLL—KG {I 3~h-‘B‘BHL;—t-bbL——‘ ESSL355—é ‘—.’.L- IL-I'.L- i.‘—~ .‘nILI‘I-II LlfikLflL; '- -- l I 169 «on... nhsna unfit-ac U‘GNPNG roar. chem «um-Io ooun Inn-t- rec-n haw: 6w»: ”hem-1c «ho-Mn mmfiu acnmc onoem ¢¢°ahc he—o Nxenm tonne ¢nov w—N econ O‘HM nna- wane. cnaaa uenu oeavn noon: hashes ”can u—ece ucaa— man: man racw nfiaa —°—u .96". Hanna case :=_-: =B=m° occafie can: racco :66: ace; :9: :-—° GFGG 69;: -zsue 596$: CIOQOOIOIOOOOIOO ....I. In... a. O 0...... ......OOOOOIICOI IIII-‘III I-IIII I IIIIII IIII— dill I-lOII-I II llII-III I‘IIIII Mhhhhhfifi MFMFMF»- firth” »FMC“U‘°‘.8.~‘1‘c-GCQS C‘.¢..‘¢‘ =““.0IGQUC“O‘ >p>>>>>h> >)r>>>pppp>b>~>h bhrbhb >>b>r>>rrhhrbbrhb>h>hpp>> >>>>b>>hu~ >-»J->I-i->7-I-)-p)->>> nfih‘fiit‘“- mcemceccxur FP- mnFa-I re.a.1:—-un¢ae——n-¢c unnn‘nnh— nmnennacu WOC:FI\"‘G I-HFO-i cca—eccs- :sa—cccas--~_-r a» :g:c.-:— c--=-—:_ -=¢,~-u:¢_.=—= -I:=¢-c:'.;— :cr—e;c:— r==—=-== -:==cc— nun—cw».- u-v-a-u-Ga—u-uc—o—ct-c—b—t- I-I-u-t-o-u- I-F—a-Lo-p—l-u-cv-a-u-u-r-cp-u-u-u-cp-a-c- u—u—u-hcr-a-c-t- u—c—u—u—Cpn—u—u-a—OI-u—a-u—o— ‘BKII-‘SKK :IKMC‘BKI—‘S'zlx “SK-=8 KICGUBKKK‘UIICKKUKl‘SbBKK ICESUKKZK KS-IH$¢K€K‘UKI‘CB COOOMOCDG COOCMOOCOWCOGCC OCCOOO acoumaacocu.:caoamaccamoco OOCQVIOGOG OSGCWCOOL‘CWOOCOG LLLL:'-'—LL L0: uLLLBL=LLL~Lb BLLLLL L- ' ' _‘L=L LLL=QLLLL=LLL—=LLL LLLL=LLL LiLL;-’—LL ‘LFLLE-LL ZZSSZIIZI ustzuzxxxztzxa- 2:1:12 IZII=ZIEuZSLa SslettZl‘: :zuzau: :xz:4x=:a.:.->)->-’-—>w->> —>—> Av—t- r-b>’ > —>>—>;—>~—>>r->s—>>>>~>> >—>-->.- > >>—>> >>h>>>->>>o—>>->—>>p>y-—>>—p-p-—>p>>> 0-: .. o-L-ll‘f ~»-c~. -9- : h —».~.a 1 W. .‘"e\-‘-‘. _-~' ~‘ —-e-c-r~r —~r-.rr‘., —~.-¢_——gcs .b-fs'. -u<'~ -uc 1‘: —\.«~-- FP—ut-Efl - . :‘cao—ucc-cgc GL~L=Ei—&==:—:\L= a- ”5:6— -ILC‘ Oanucau:v|.=-s L—bivflb LGhG-b—L-;b=€=—K—' :5. —-===—; bI-h—o'o-o-u—u-u—Ln—u—pu-c-p—u-v-p—u—c-—-:'-pu-”p5—a—p—a-L—o-p-b—pa-u-v-o-uu-a-n—...-p:p—c-a-pa—u-r u—L—n—n-n-I—v—u-u—u—v-I—n—p—n-h- I—U,‘J~£h&‘bl—-5 .ssub; LKi—HKC zlubLtLEi—L—‘flLaL :3“; stzxubzszzuzuubnzzuu-- LuzKKKHLmnbauu= .‘85 u. ——4. a-'—:rrvt v-;"‘ ...‘C; f—CC- L ..;:L k;---:L':: :t—C:CLC_J;;=L:CL.‘.J:=G-L2;.» L;:=L'-:C;C -J—‘Lfi- :fiLLLL filLL:§.‘—L' _ uLLLLL‘LLEL- =LLLLI: 3-..;1'. WLLL—a WLLLLfl-ILLLL‘. l—1LL: L‘vLL:='-'LLLL1:.‘.IL LL'NLLLL "L“k‘:==:====-‘~LI'LLZLLSECRIXILK-1LLILLL: :z;x:xx:zxzuzzazgzzax‘.“2:L::=:;:L SLEI-tt :g———c——-_;———~:—————g——--— —:uL———_:.‘—:——:—————5——-——y———-g——;c—u—~—co———; ;——-——g—-—-—--—G——-- ~~spunphnpshhhhphphnnuhunpswphhhhhsphwPh-uan::caoz -:¢on¢azac¢=:an¢: ssz=xn=a‘¢¢a:ncsccsx= >>>->>>>>>>>—>>>>pr»)>>>>>>r>p»>>>r>>>>>r>>>h>r>bhhrp>>>rpp>pp>>p>>r>r>>>>>>r>>>>>r>>bp> ...: I‘L“~;~b"'~ FF“-6'———~-UL"; I—‘i‘L—N—u-a—on—a-OD—I—I. f. ‘ . ' 'FP~F\:" I-L'IY'Q ." -===:GGG‘¢=L:L=t CL:-——'—»£E _¢-—-—_->———'L‘=FG-M= CTCEGCL‘LCG:LL=§€L;;—:G=L§Lf. -..?EQEGEGF :ccacccc:cc;:;:;u:;::cc==c_rcn:cgzauzzg"cace:ccan:acccuaczucscsc::uacgcaa::p;c;c;:ca=cc SGGCOGCGHLCCLGCCQCCLLGG Cuc:-~coccccc&=cc;c:=cc:c=cc¢=:g=cc:ec::g;ccc:c: c:::sc::=:=cc:¢cu ‘xaazzasxauusz‘: “KKEBL‘ CKVKKILK’CCKIL‘SS-ELJNI‘L'O LLLLK‘KE- =~azzlaz-‘szx—-.’=z- ‘H‘&‘K=K=BKC3§§ bLLLLbbLLLLLLL-—L_L.LL-LLLLLLLL—LLBL-LLLLLLLLLmL—LLL-LBL— LLLLBLBLLLL-—L-—h»hm-Lb-hbBELL- on. 9.\Gr Ohm um NS" not mac-'1 No “he fihfin. —mn OINMD oawh c-wm-o «Ia-one 960” (mm #0 FOG-- Noam crime and. 0—05 econ cu—«n mo— .fialmno Groom nacho Nil-Q «seam tau-fig out. I'M .9 nun—n. etc-ova none-I Iver-Q than "can. nuac coo—u- wean. neon; fiOQNOQ I'm-aw I‘M-06.9 racco— Fauna !.‘pl 93 ace: ' one: o :9: Gas aa—e CFO: use: ' 09w: anon: aeeaaa coca .- aaae €696 ween as... no. no. no no... In. my. a o. .9000. o. ...-no Ibo-ooillcooooo000000-500. IIII-IIIII-OIIIII-IIII-IIII lull-l II IIIl-IIII Until I IIIIII IIII— Illa—Illll-IlI—III “I! mt1“m09€6‘0000¢i0$"000¢ "OGW’DN‘ ‘OOOQ‘OGC‘QO‘uROQ *‘0“€ oaooefi~hm~~l~m-mr up >>>P>h>>b>r>>>>r>>>>>h>>> >>>>>>>>> >>p>>>>pr>>>r>>r >>>>>p >burr>>>>>>>>>>>>>brpbrb> I - nucg—n‘ngamnancmnhonnh— 'NFNIanC—I ”O‘QFQUGCC‘H»O~- “nth,“ ”COG-UII'M.‘B—uibflflflM)-1Fefltht o— CCQ—u—CGCC—PGEL6—CEee—‘HQG— =¢=~=c<=— a==—¢==;:—c===a— c=c==— eccwcczc—ccoae—ecco—ca u..- pp—GbumcI—ht-O-I-Ca-O-U-v-ga-r-o- v-mDv-uo—o- u—u-c—hCJ-c-u-U-o-ou—a—u-u-n- uni-pub:- U-o—II-LD-Pt-D-Pch-l-DI-I-CI-O-I-O'Cl— - ‘ I““u¢K¢&h=¢KCSI-“KIKHKKK “Cat-1‘12: KKKCh-IXIK‘UGKKXK KICKS: (SKM‘B‘IU‘IK‘KuKKKLSln 2 DODGIAOGDL OmDOOGCWOGDCMOOO OODOWOCOO COOCWOCOOGMOOUOO 006300 aoccuooooawuoooowauaomca: 8 .... LLLL=LLL-L=LLL‘ BDLLLula-Qw LL..." aififl‘ BLLL=' IciaLI-L‘L L Lug-"L L LL=LLBLL=LLllL-LLEL= '.. zzzxzzxzzxixcz‘izzzttxzxn txxxzzxa'i :xxzzi'ixxz: =33: xixxxx: :Ezzzxxzzxzzxxszhxzu‘iu m:——n——;~-——:————=—L -_-—-:———~ _--=———I-—I:—~—_ ...—...- ~—-—:—————=———-——:——~—:—-o aha-u‘o-sc‘au—thno-d-n-oe uhMO-Mn B‘JNB—n—vMo—tnuc wowcm oh-ouduwo—oowa—manhenc—N-o: O ‘NCLO-ncIZ—a-Os‘vfi‘h—qnflfinau-F mar-Ofl-t-O-d We—“Qhw—tfiflhnh =11 ~~£wc \uNInI-Di-i' .fi—u-mwh-c-CMNh-Imc-P — ‘0u:c:~~—e=ot~m°°¢e-e~e—Nc c (cahaccu N —eoaaaaNnae¢—cna cat-cmc- d:fla:-P~—-¢°eh-afie:-°—G—¢.Ju .. . reuse!-gaecanccesgsccoohse ¢¢:c=to=c onccecaaeeev!eoec cecseh ins—rm!-aeeasnfisaeacpeeacpg. OOQOCIICCQOIll-..Cbooooo. .ooocaoooo-o-c you... . ¢ II II Qulboniclo II II II III I t .- (“hi-'- Kiln-III“ ‘6‘5‘ 0060i 5‘6i s09 i‘Wi quO ‘06:; 6‘61”; viédh‘. ¢€¢W¢¢ y‘G‘G F~F~F FFF» FF” ~' ; > >r>>>>r>p2v>~->>»»>—h»>>u>-’r-ph> >;-—r->>>—>->>pu—>>r->> p)»> >r-o-> pr h>>u—>—rI-;- h»p>>>~>»>>>—7~>>—F)' -65v.~‘. wuq h: any—«c5: u-uc»..—UO—tud szo Lci-c :51 ~»' —u>u F: u-unt; :L 'E.¢\;- - ‘ yrh .— —_r r~T—utu"~ .7 tuc~ - —\.~' nun-LG;D—gaécangaece‘sob—L;~LG:G—u;=-:L=:c—LeaaG—Lcc:a-cm;::=——b=:=—u=:ga-gscr-‘c—g‘cssabza ubCh—LL—FL-uc-p—a-u-y-L-c-u-u-o-u-u-u-u-Cu-t—a-u-u-v-t-a-p-g u-u—pp—L—v-u—u-p—Lpgpp—u-u-pcnu—u—t—o—c—u—u—c—c—t—pc—c—u—t-LL—u-t-t-u-p- ‘be'xZBSUK-EL‘BKUHESKSUKZC—szhuflu. L‘fll‘l—Ufl.’ KE KU‘LLK‘UG‘K‘LI—ICEIILHI a-beI—IKCILU.5¢H x5:xn3~-t n J». L: :LCL;&J;—_==E;;L3—C—:b»:=hi$ I 53CL—23h'. 53:: C LC=::§L;C;U’L—€c=;~;b’h L; ~ ‘CL:JL‘:S-C~C¢CLC;C .. - LL=1LLLL7LL—LL5‘LLLL1LLLL55L37LLLL— LL-L=7LLLL70- " ELL ”ALA L=ELLLLL=3LLLL7$LLAL .LlugaaLLLL .Ll. LIZ-Box£3.28LLLLZBSKLZIGS_ZIQLKZEIIISLLZ‘ZSISL‘LCLLttI-‘t =3. "‘ ..WL =Snle=XE= ICEE— 3';- ‘- ——;o————-_-——_-—————c————w—-=o——-_c-—_;c_-—_c____-o————:c—::__;e_—__g:____¢—_———c_———cm éfi~o¢w~st¢¢ d‘iOOOS-‘DFNFV-hl- ~~F~~h~r~~v~~c~h~ Ilih-fifllflr-VOGQW¢ dw‘.’0€¢¢06hiflGI£€G¢~ON¢d‘fluflufiw‘fl‘flo‘fid >>>>>>>>>>p>>~p>~>>>>>>h>>pbb>>>>>>>r>>>>>>>>>>>>>> h>>>>>>r>>>p>>>>>>>>>>>>>>>>h>>>>>pq -as --——_—————e.r.~ue;r.- rrr‘ncrcccv.‘u‘x..’.. ‘~:_l~r-I~V~-‘ =a.s_=:. : \.' c P - :;-. ..———————————¢\;I\r.nr.o.nr- A ~~—————:CL:a:=:cc:c:c=su==—=€ =u=~=-r= c cc: c=;===c=;:; :c——_——-——————¢ ;: ===::cs=c:ec==c:~ LCGLCLl—CLCDCLCLLCCCCL‘L“:DCmCGCCCCCEECL :CDCCCELCCSCCCLG—LCLS C—A:—L‘LCA-CCE:CC=DCCCGHL=—'CL— ‘CGDCODPCGGGCOOCUC=GGLC=LQGCOCCCL‘OCCOCUOSCGCCGCCOC CCCGCSUJCCL‘OCGDLCCUC: CGGCCGCCCCGQJ-3— a ui-=xx-azzzuzzzgxzasuztkz razmzucxxzz‘xzzxm-«.1:3.1::zxazaxz:«zxux¢¢¢x&==zxzx¢u¢=::zac3:61~ LLL..-L-..-_L LI-_£LbL—L—LLLBL ALLLLLLALLLLLLL: I-B 5.1;- r.- L‘bfiLbLL—LL‘LLLL- -—B'—:..‘.n...—-..:.-Lr.a-‘.'.‘._-. ,. 170 cahefinm9~wfiawncrawn¢¢ooth=cout: ‘6-5350n'7 Gnaaanmndmnemmms anncncmhmflaecttamn: ..cwmnna—m ’ob‘hC‘—‘MN-K‘U- Ci (ati—C‘FID‘MJC‘EI-G-wfi‘Lc-Ifi I-II’M-i.(dhfl U‘C-Lfiwl‘flfl—flF-OL—f-F700N=0~D~LFOL€FS- F‘Ffihwficb‘tnh" 'NMNI‘TI. a..—'5‘“ a ccra‘I-huu—an: cancer —n~-r¢a aefi'rrmu-nct. at. Manna-n“. OOGCU‘FhOw-Onnz '~‘-1m$m—h.t\d 01-:ch a... unhe ODOCOQIIQOQQf' >>r>>>>>>>r>> - s-v cue—deeacacs .-o hen-Ow u-dnu-(m'n. - —- «and» c-ui’unouflv.‘ . — Nu-Nul- u—nn—u Dir. - :- wank h n I In- ~l €05 lf-L‘s'hflf-nLmm..1“..'m.lfi|-‘-Ifib~l..n2u1¥15¢€J‘LH‘WG—¢I'-d¢~D-D\£ ‘MI‘AE‘FFHF»»»~F»FFFFFFFFFLL >>-’ >>>>)->>>>-;—»>>: >>>>—,->>->-> r r>> ~>>h>>r>>> '>»—»>>>>’. >»>>: >>>>r'—~.->»>y -..<-\-.r- '.’-r~a. ——(.- c. \~.r. ~s.o-( a. "pa... -.—e.r.e. ‘55. :.-.. PC" .- ‘h -: ...... - e- . -.--..._- _. ;—v<~.=:c=:e€'~G—~;c:=6rua _-—ur...'.' :ccccs ——cs=:~=== ::-—u‘_¢c=‘_;'. c ...—.51...- LL-.-—.—-‘¢ »>—~:=G:Lc:l;l C G—Jb»wb—hw—~CL;:L=G—LQJ-v-l—l-Fb-Fh—O-C‘bacL‘l—GzogdphpC-b—hkFPDG-GL‘u;‘b~.fl-" DDZLZL KELL— cc;.:..:=::;c:c CCLL- ;:;D; CL L L:DC . 6:2: - CLCE LLCC 222::Z=n2ZZZZZZZZZZZLESK22222222212:22:2222222 ‘<¢:<-(< «<¢(§<<¢¢¢‘¢<<bhFF’ buy-r» “Gimp.“ ')GC¢O‘ Era-=63.- L—:—— ...—U..— t-o-v-u-c sun‘s: “KEL- COGOCG 06°C” 5L3. :- LLLL: xxx“: 2:822 m -—~—: -fl.“~ Git-OGN EDI-6" WNILG con-av- ma°$ u'e—cm a... .0 IIII --I III ““&5 :58‘ —>>>r->;-» >>p § :.c ‘3. . 50h. .— L‘BGC-cnhccg— n—u-u-o-u-c-cr-c-pc—c- uuunx_h.£-¢.= Km —_L.T:~Jla —. ...- 1LLM_=5L'_LL LSLHSSZIL- =33: L—u—c—I—L ;———.- cccxccencczx ->>>>>»>>>>>> e: —- -L a. --.—u.— —_—_u_———___ .SLLGUCLSCCCO eac:===c=cga a¢=su§¢z¢zax LALLL—LLLLLL “um.O:Qflh‘Iwag‘hfio‘1"):ntIIGI'I‘O“ICHM)PU‘U’DV.n15"?Gun—umunflhNflmc-OGOW‘II'IMC(Nnm . O'Im-c‘ IVB‘v-tK‘ ‘Ji’wFGL-nw“.mILI—In-P‘Wt—(JLFQFQC-O" I CC. CFQF‘vCflV OFU FF—‘Fi‘I—f-C cccufimc»: L'G.‘ I-C GNMGNFODUAwr‘I-‘VCi'OC C OC-Nmfth-FCC flank-Ori—I‘A\¢CQ GMCDF‘N U—Ifl: —fi3nul.wnflc OCGOIQ“! fl. «.1. nu mu). .- .- r.u‘.t~.mc —r. c— .- lsa..- x: —(. r 7n- 0 —- a-n 04. Man". at .— -—m—~-——-w~iwd_—-'WCINNNR“If-IVAN .nwncu‘.umt.e.(~ «hmnnrmnr nnnnnnn-znm-znnnu. ot- 0 44' »»> >>:-:->7->>;-> >>>>> >r>>p>>>>~>>>hh >>»>;->>’->-> b»—>> b) >r. ton->5 >.-;->>»>>>>—>>>> > -4‘...~'U. -I-_; . —-n-’.c.‘.;r~:.- I—L-‘~’.."‘( 4%.; .——'nrc.n< ~...1'-‘—\.-r~. r.‘¢r~: . —-—~.r-« [.uhg: =—a..—.--.~ - . agazc ;:==—or.=:: area: ——-=:=;:; = Lian—LP. =c=:-‘ =¢——.._;L=-==;r.——; cg :s:c==——-:=c=c- hFPU-bF—D-O-FFGUGG:GCGLGL’FFh—a-o—l-V-O-I-O-GLDQCL'E‘CGC .JI-n—c-u—u-a-p—a—u—u-cc—CGEGQLLL..u-v-F—I” zzuzsxazsanuLLL-Luunzmuuxb “a ~L—:C~-;€='~"J.~4:L limb he. 01. w. .'CCGC‘ :Cf;:l‘ S-t -‘.-‘.LZ-.u.‘ L; LELLSLBLL== IXLEIItL': =12:§="E§§_Zf2 :SLIZ'! ILZIEI 22 .. -.. I:- C:::. c: 2.21:5“- can: 265:- =CCLA-CESG—L. "a. Lcaaszccm cccc. cc:===::c :=:=:’:zzzzzz=zzzzzzzzzzzz=2:z=2=::====22z=zzzzzzzzzzz:zzzzzzzzzzz <<¢<¢¢m .ow-cuwzuu. 2°—h§u8¢u> xut< .au’¢~w2uuvf pH-u wacxmzwu— h¢<$ baa—.30 .Ou~o ...—w04do .an.x<:.u>Jom—xm&¢ 0 etc“ adcu uu~uxU¢< ...-no a. :- Egua ecu: ....u unnaxut¢ : < I o e C t .- o I p z a u — ~ ~ I x u t c nnioiu n.3- css-n\ . Buds 173 nu: ma .xZnu>¥av thuzwd ache» >¢czu= a<¢_:uu Zn hzwanmua u¢< 02¢: :21 5:0: Jen: sou: .mpoz amhmwua< mhum Oz IIIOI “Du—MHNChn mmuz0 . «L a a: c 04 a n: o a: c as an as a N: o «N 9 xx .401: maze I wr a4—oh .... 3°¢s~z ¢m>< coax». ... ~Q.Jn our new . . Japan I uzu . ... mutt: unwanazu -.o Jouxuz ww31 oedema ... _..4u 2—2 « ... ‘2' ma mean I oz. «an ... «was.» mac—z: aura Jinan up“ ... a<—Op e - a nu. we az:zuo I ":1 nou.n ... ox. >_umzua and o . anxx. ”qnc A ... n81 Qua ... .4. U; ~om—omsao I fine . ... m¢o¢¢u cox—t has: ... .aou- ms-c emu ... mvraaou - ... .u. «U zo—. 8 ¢ 8 S a n u a m 2 u III-III-II 174 Isoaexa xxus<: . :onga ax~x.¢. .sogay. . axu..= o:ux.xs :uzII. oo:ago.~«emn« . w>..ouq.o .zo~_=aom 4<:__.o ..n.» I can: :Iu ........ . 4.x..a «gun‘s .. :uz.«a . I m4 455- via: any» a mm)» . “hum nucuaxo acuuuau Numb": . . muue Sway—2n flaunt . nmaa¢~¢<> hzu4<>ua washed - III-tn >xtxzam u4m¢~x<> dam-whim denz awhuuuun IIIIII I a @212: - hum nuuz<¢ we; I . czar: . bum «9230- I a £320.: . I . nvcxuzx - 23.9. 5257-32: uuz:_u I . wxzmgx . 92¢:Un I . azurx . Mann czcxc—zu—I .3.. I . «60:9:— . I - .52398 c 29:35; u>mhuufiao 3.31:0 Hunt—:2. I . Unix - one..- I - amount a no. hum-£5 I . 9:02: . ..Ouhuzau u>=uufino nag; Jauo dawn zaupnxan vovtll zanhuumua IOIII a.-:cl “Kuwaauhd... III-I I mug-cu: cuhuuaum III IIInIzoubuwaunIIIoI :n..~ I own: :50 IIIIIIII bcuawn u 9&2! hum — oznzx bun u ":58. hum - $602: bmm :3. .39.: pun duflzx cxuqi ... I 3921'- 175 ~.s.~ ~.an~ ..IJ. ..~a~ . on~ 0.:nu u..nu ~..- ...- ~.-~ ~.ou~ o.n«~ o.~°~ I.».~ n.no— c.4ou ~.oo« ...o¢ n.n-— u.-‘ u.n~¢ u.«- n.nm_ «.aou nomad ...mu n.oau I...“ o.~n¢ a..u. n.n~u ..o«— n.;«« ....— ...a. a.no ..II 0.00 0.“. ..d. ...~ ..n~ ¢.oo o.:o ..ao a..“ ..n» ...: n.~: ...» ...» ..nn o.nn ~..~ abu’n muuzoumu .duno “Inmlbn O.‘NH:$O~Oo°-Iuntwosomodfln:nosnocuun:uog.. u«uuu«««u-uuuuuuuuuunnnnnnnnnna:oaoa;.¢. I “ND-'Utih. noo.- rcu I nono« an Hand. on n-nou nonou unno~ as 00 an Ow ”anew ea Nd ”anew I none“ none“ none“ nu : u a named a n-HOu n ma 4‘ an gonad a: ”anon o~ no none“ nonOu nonuq named a- :u an nono¢ none“ nono¢ nonoa u none. untuu cums: I I I I I I WJn<—¢<> JusOonoon-o o. d N D's-:CtflunOOCUOOIDo-.. u ID. ”.0 ...-“IN Ci '1‘— ”0N1" II nut—4 (used I cum: :30 IIIIIIII do am so a. - as up u: on a: an u an as .0 a» on nu as no on a: an .4 on an sn a mu mu «0 an no so 4» a~ :5 no a u I. «0 up a: on 54 «a on on an kn ca .: xuaxax «wow»:— (wow-:— umauwzn yuan»,- (meuuz~ uuou_x~ «muu~z~ yuan—z— dumw~,~ Cmau~z~ Guam—z— smoubz~ «mum-z» vacuurn tuna»:— Imam—z» cmnuuzn vweuhzn ruuu-rn (you—z— (mum—v" Cmuu~2u xuuu.z~ cwuubz— vonbZH runs—:— amen—z» xunuhxn «numb:— tumuuzu duou~z~ «won—z— swan—z— zuoubz— swan—ya zmuubZn «womb:— (muu_z~ cueu~2u cwnuhxu «unwhz~ swam—z— xmuwpzu ammu»2n uuuwbxn wwuu—Zn (mun—v“ (mumps— Imuu~z~ ¢muunzu amen—Zn mwnwbz— us.— I xo—-¢¢nhumfiso cu&944>wa Dumoaa>uo numnau>Un auacaa>un auteua>uo outcaa>ua emanauzua nann44>mn cascad>Un aut044>ua aumcau>ua euthau>ua numnau>ma ou&944>un aumoaa>ue nutcdu>uc awaoau>ua numnau>wn aut044>un outoam>wa cumoau>uo ammoaa>ua nu¢n4w>ua nwaoau>uo nunodu>wn owmoau>UQ auacau>uo oumoau>wa aumeau>wa nuan4u>Un autoau>un awtoaa>wo cutoau>uo emanau>uo numnau>un oakoauaun numoauauo cumoau>ue autoau>ue nusaau>wn aumauaauo outcau>un ouLOau>uc aumoam>wc ousn4m>uo ausoda>ua numn4w>Un euLOAA>Un auaoau>uo ousoau>uo autodaa nutnau>un aumaau>wn aumoam>uo mahgbm s: t: a: 2:09 a: a: t: I: ‘9 L: 2:09 a: k: L: ‘3 2:06 230: s: 2369 2:90 2:0c a: a: L: 23°: 219a 2300 230: t: 2300 t: I: 239: L: 2200 5‘ 2:09 a: 2:09 136: s: I: L: I: 2390 2:06 2.0a A: t: s: L: 2390 t: .uuo our: «N I‘D .0- Jill! “FIJI‘JI~ .,J.I:.I: II I. .96 I’M-f nus-oeuuntmOA nunnnnnnnnnnn gaunt NNNNN .dunom‘hooouuntmoh-O d“'_‘dd~-fl .0: mac: waxtm Ja '1 III" I‘V‘ .Q. 3‘“ NDJU‘~ : I : t 4 o Godun-fmfiulficq n nlfl'§I,FIF nun-IPI: : b..! NN Ind NM NH: NNN .‘ NM dflntnflh.fi Inducing-Icon «unlnfihoO. CI .62 woe: 176 aIQn: uI~ns nuana ~Iun: ~.u~¢ coon: ..nuo uouna noo‘o ..o_: n.n«: ...—o u.nas coma: «.~.a nova» u.~0n ..nnn IIaon .~.n o.non s...- ~.aon Inn» o.4~n n.mo— n.-on o.¢on ~o~nn ..onn u..mn .:n .as» Couon OIOnn o.mn- n.3nn nI‘nn docnn o.n~n a.u~n ~.~qn i.ean 0.3”» o.uun p.99» p.30» nod-o cocoa .nou nonou ou~o~ cot." hon-u . as" .n- ..n- ..ma- ~.oo~ :.no~ nu¢ oa- nae "a“ «a. cu¢ can can so— o-« mau cod no« u.— qou on .0 no 00 no In no no no ow a. on so w. n. a. n. u- as on up on uh :u n. u» «5 ch 00 no so no on ’0 no aw do .0 on on ~n on an .n s“. ..I ”on.“ .» ..~ II» .n« ..n.. ... a. a. on. n.noI ... n.».¢ ..I I“ an 0:» :N none. nomad mu nonou mm om ”snag cn - on ha l.l-IOIaa ...-.0 an an me ~: an an au n: «a an an an n: u: «u on we no as so c~ no cu as :o .- an nu on on 0» ma on an «a e. «a «u on nu n: a. no a. an no no so do so no nu no 9~ on u: an n- no suuu~2n Inna—z" «mum—2n cunwhz— Known:— uwum~z~ amen-Zn «mantra smuu~z~ xwuu—2— xwowhz~ «wow»:— vunu~7_ cmuuhz— «mum—Zn gnaw—zu «mum—Zn «nowhzn uu«w—z~ «mouhxn (www.2— kuupz— «mam»:— «mum—z— xuuuhzu smuuuzu uuuwpxu runwhzu ¢wowuz~ xwuuhzu «mum—zu «wmw»2~ amuu~z~ «wow—z~ «mum—2— cuuu—z~ vuguhz— «mum»:— «mum-an duou—zu umuuhz— ~mu-2~ «wow-rn luau»:— ¢u9u~z~ cIoubxu rmnw~z~ anew—rm cunu~z~ cuuwpz~ unambzu yuan—zn «unwav— «mum—an cwuuazn «mow—Zn awowhzn vumuhvu uuusz~ anon—Zn umou_x~ ~noon gun‘s anus. 90:6 an» J s0u-fi sue-o «no.0 55:.0 ~m~.o ou~.o .«~.a 3o 6 I: d 23 .. oou.~ n¢a.~ :.~.~ «06.5 oom.» ans-n ococu van.- ouo.o an: ate 5 :mo.s ::u o o- p Odo-u o»~.~ noo.~ «an .5 ao~.~ «on.» «an.— ~na.~ 900 J «no.0 as. . noo.o n~«.o «to . coo.o one coo-o ooa.°u «00.9u ooouea «~=.«« ash-ow cu~Iau nmo .au won .9“ :na.uu cue-on « nauuoo.tn~:nu ao-oo.:m~:m« :OOon~.am~:m~ Lounwo.:m~:mu unouuo.:nutmu n»o-a.:m~1mu aao:oo.:m~4ma cocoa .amuann ”canon-tan:md u¢o-o.:m~:mu amawua.mm~:nu :moOma.mm~:n« :mumua.mm~:m_ ouuooa.mm~:o« o~o~u«.mm~:mu ooeasaomm~:nu 9’94-.nm~:na :aonuuammnanu nn—:u~.mm~:m« 004¢oa.mm~:mu coo-cw.mn~:n~ coo-no.mm~:o~ used .om~:au acam-.0m~:mu u;nu~a.¢m~:na ~om-:.om~:mu «Janna-nouauu «oomoNIananu ou0eo~.ns::n« cnommooto::mu nae—a~.mo:¢n« up-~ .oo::mu ownn-.oo:1mu aamoaa.~¢::mn u.»0mm.~o:4m_ «a:«so.~a::n« «nonauouotlmn adm-~.~.::mu :om-~.~o:auu ouamon.ea::nq ouu-:.co::n« ocuua~.oc44nu nonuou.oaaana ncaqo~.og::mu soconu.oo::n- soaoou.¢o::nu scooo~.¢n::n« nooonn.ooaaou noo.»».oo::mu moumon.on::nu nooso:.o-::mq ooo»:o.¢o:4&« oosooooo:an— 09o~oa.Oo::mu cucso:.mn¢:mn caoso:.00::m« coo~o¢.¢o::uq smounmoooa:nu canamcooatsnu ‘ .~.qocauu -.no::¢u awaoau>ua ouaoau>un aumaaa>wn autoau>ua euknau>wa euaoau>ue nuaoau:we outcau>mn auaoau>uo aum643>un oumoau>uo nuccaw>UQ cuA644>uo ammoad>uo oatsau>uo awtouu>ua augndu>un ouaoau>un ou¢a4u>ua aumoau>ua ou304m>wa numoau>un outoaa>ua ouaoaa>uo numeau>ua outcam>ua aanauaun autodu>ua amtoau>uo outoam>ua owacuu>wa ouanaw>Un aumofiv>ufi aumoau>wn ausoauaua cuscauauo numn4m>un autodu>ua owmoau>ua ammodu>wa awtoau>ua «unnau>uA aumcaa>un awL94u>wo ouaaum>un euaoau>ua nusnumawn aumcau>un awacaa>wo auacaw>wa auto;u>wo numnau>UA outeda>un autoaw>wn owneaw>uo outogu>wo numoau>wn auhodu>ua cusoau>un auLOJM>U° aus04u>uo 280: L: 220: a: 2200 s: 2x65 2305 s: a: t: 2300 2309 c: s: t: :20: Ln 5: 5: 2:00 a: ti 23°: 23°: 2309 L: ta zxon t: 230: L: :30: t: 220° 2:90 2:0: 2:09 xzoa 220° 220° 2209 $3 2:09 2:09 A: 236: 2:09 2:09 t: 2390 2:05 2209 2:00 22°: 2x0: 2309 :xco 2299 t: tion can and sa— au— ..u oon no“ ~ou can as“ and no« «ow aa— 09‘ no ow kw no no :0 ma «0 do no on n. ~o an I I o. no no a. a. o~ o» h» as us as n» as as °~ co co uv on an an no no do .0 an o? no on an on 177 ...~¢ n.n~n ¢.¢~m ..oou ..nom -.nom ~.¢on 0.0mm ..nnm ..nmn u._mu o.-an -.~au 3.,I. ¢.~an ...om ~.¢nu ¢.onn -.;¢0 4.¢nn ...". n.-. n.num ,.-. n.¢~. ~..¢. 0.0¢0 a.m¢m ~..¢. ~.~¢I 0...- ~.... ¢.moa o.~.m a...» 0.oaa ¢.oaa o.noo ¢.¢04 ".004 ¢.-. n.3n; ~.~.4 9.9.4 ~.¢~4 ...». n.n~4 o..~4 quso ~.-04 ¢.¢00 n.404 ...oa o.-m4 p.9na ....o ...n: ~..ao ...;c ..ne4 ¢.~:o 0~¢ m~¢ 45¢ n¢¢ u~¢ ¢~¢ 05¢ 00¢ 00¢ ~0¢ 00¢ 00¢ 40¢ 90¢ ~0¢ ¢0¢ 00¢ 00¢ u0¢ ~n¢ 00¢ 00¢ 4m— n0¢ um¢ ¢0¢ 00¢ 04¢ 04¢ 54¢ 04¢ 04¢ 44¢ n4¢ N4¢ ¢4¢ 94¢ on¢ 90¢ ~n¢ 0n¢ 0n¢ 4n¢ nn¢ un¢ ¢n¢ 0n¢ o~¢ ou¢ -¢ 0~¢ u~¢ 4u¢ n~¢ un¢ ¢~¢ ou¢ o¢¢ 0¢¢ ~¢¢ 0¢¢ 0¢¢ nono¢ ¢¢¢ n0¢0¢ 0¢¢ n0n0¢ 0¢¢ n0n0¢ o~¢ nan0¢ ¢~¢ n0n0¢ -¢ n0n0¢ 0¢¢ non0¢ n~¢ n0n0¢ 4~¢ nan0¢ 0~¢ non0¢ 0~¢ non0¢ s~¢ n0n0¢ c¢¢ ncn0¢ n» nan0¢ 40 0N¢ n0n0¢ o~¢ non0¢ on¢ non0¢ ¢n¢ n0n0¢ ~n¢ non0¢ nn¢ n0n0¢ o¢¢ un «nan non0¢ non0¢ m. 00 04a non0¢ 4n¢ nan0¢ n0n0¢ 05¢ n000¢ 00¢ an non0¢ an In 0. 40 as 40 as an ¢~ In nu em on an 00 o¢¢ ~0 40 as an m0 In :0 I» no 40 «0 a.. no «u 00 40 .0 40 an 40 on 40 so 40 an on an 00 - sunn hunn ~u no 0¢n 4n 40 a» nm 40 um an on on n: u: n; ~4 no u: n4 «4 n4 ~4 n4 u: n4 n4 ¢~ «4 n4 «4 n4 «4 n4 «4 n4 «4 n4 u; ¢u uu «n 4: an n: N: n4 N4 04 a: n: «4 n4 ~4 »4 u: ¢~ ¢¢ «— s» - -~ «4 n; ~n «4 n: u: n: no :u an nuau-z— umuw_’¢ zmuu—z¢ umn0¢2¢ 'mou—zu «went:— u w—2¢ zmuw—z¢ eunuh2¢ uwoupzn «wuu¢2¢ umuu¢z¢ vuuU¢2¢ mmuw¢2¢ zuuu¢z¢ uwuu—7¢ ¢m0U¢z¢ umuw-2¢ uuuu¢z¢ ¢u0W¢2¢ vmuu¢z¢ «mum—z¢ swam—z¢ ¢u¢u¢2¢ zuuw¢2¢ «mum—vu luau—2¢ rmuu—z~ rueu_2¢ uuow~z¢ ¢w00_2¢ «muuuzu mumw¢2¢ kuw—zu «mum—Z¢ ¢u0m¢2¢ cmnwhzu swam—2¢ «mnwh2¢ wwuu~z~ wwnu_7¢ Imam—z¢ zuuw¢2¢ swam—Z¢ vun0¢2¢ vwmm—z¢ «mow-z— xwuupz¢ zmou¢2¢ wweu—Z¢ muow¢z¢ «www.2— uwuu¢z¢ «mum»:— vuewnz¢ uunu¢z¢ xuew—z¢ umaw—z~ cuou¢2¢ unuuuzu canon 05¢.0 nun.4 08 3 o¢m.4 oao.4 «~0I4 004.4 0~¢IJ n¢o.4 on~.4 90¢.4 ¢o~.4 ¢n0.o annI4 009.4 090.4 500.0 ~¢~.0 000.4 ~00I4 9¢-.0 m~°.u ~4n.4 000.0 00¢.4 090.4 n¢M J n40.4 ”00.4 osuc4 onu.4 050.4 ¢sc.4 000.4 .90.: 0moo4 03 ... 005.: 90¢.4 ¢n:.0 004.4 ¢¢n.4 noa.4 con“ 53.4 0~¢.4 00¢.4 oenom 09nd 404.0 590.0 040.0 0Nn.0 «50.0 000.0 ¢¢mI0 ohn.0 ¢¢4I0 400 .0 am~Ia ago-0 .amu4m¢ 0¢n4.¢.am~4m¢ n¢o~¢e.¢m~4m¢ 90n0n¢.¢n~40¢ ¢0o~m¢.¢m~4m¢ n00¢0~.¢m~:m¢ ooonnn.¢m~4m¢ ¢0n4on.¢m~40¢ ¢m¢044I¢m~4m¢ 0000emo¢m~4m¢ omenom.¢m~4m¢ ~¢4o~0.¢n~4m¢ ~4¢0n~.¢0~4n¢ -0¢m~I¢m~4m¢ 40n~¢~I¢m~4m¢ n444~oI¢m~4m¢ ~0¢no..¢m~:m¢ .mo0oo.¢m~:m¢ nan-Neoumu4m¢ 4~4o¢¢I~m~4m¢ .sun.-.u0~:m¢ 000¢4~.um~4o¢ n~n0¢n.uo~40¢ mam40n.um~4u¢ 00nn04.~m~4m¢ ¢~an¢4.~m~4m¢ 900594.Nm~40¢ n¢4000.~m~4m¢ n¢4oo0.~mu4m¢ n¢40a0.~n~:n¢ n¢4090.un~:u¢ n¢4000.~mu4n¢ un°~»¢.~m~4m¢ 004nm~.~m~40¢ n0m4m¢o~m~4u¢ :amao .~m~4m¢ noassa.~m~4m¢ 040nae.nm~4m¢ 0omoo~nmm~4m¢ 40m0.¢.nm~40¢ 4¢¢-~.nm~4n¢ c40nnn.nm~40¢ o~044nonm~4m¢ ¢0o¢0n.nn~4n¢ m4¢~04.nmu4m¢ m4¢¢04.nm~4n¢ 04¢¢m4.nm~4n¢ m4¢~04.nm~4m¢ 04¢~04.nm~40¢ m4¢~04pnm~40¢ 04¢~04.nm~4u¢ m4¢¢m:.nm~:m¢ m000¢:.nm~40¢ a00000.nm~4m¢ a000onvnm~4m¢ an~n~0Inmuan¢ 0~¢~¢~Inm~4m¢ mn~00~.nn~4n¢ noo~¢0.nm~4m¢ soon o.nm~4n¢ oooo¢¢.:m~4m¢ nuaoag>un adaodd>uo oaandm>uo Snfluao numodu>un auaoduawa ouso4d>ua augnauaua numn.u>uo ouaodm>ua ewgoau>un auaoau>ua ammodu>ua .mao;u>u. ofiodag auncaa>ua aumcdu>ua aumnau>ua auaogm>ua euaodu>ue =u¢oau>un oum04.>un aunoau>ua nuan4u>ua 3.3433 ouaodu>ua ato3>3 eumndu>uo nuan4u>un auaoau>ue aumodu>un auaodu>uo amaodu>ua Bzfluin auzodu>ua aumcdu>ue ou¢o4u>ua auaodu>ua nugn4u>un oUIOJu>ue nuuoauaun adtoa4>ua cuuodu>ua 8.31:9 ougadu>ua nu¢n4u>Un au¢oa~>un owneda>ua augodw>uo aumaduaua nm¢04u>un ougoda>un outa.u>ua ougodu>ua aumoaa>uo efindfin a.goa;>un auaou4>ua ougo4m>uo aumoau>ua nuanduaun 236° ‘9 2:0: g: 2206 L: 2306 5: 2300 a: 2:00 a: 2:0: I: an a: 22¢: 5: 230: 3: 230a a: 23°: L: 2106 a: s: t: a: a: 2:0: 2:06 a: xxon $5 2300 0: 2x09 1: 2309 I3 220a L: k: :20: 2300 sq m: g: 2109 m: an 2300 a: A: 2206 t: 230: L: g: 2299 0»— 45¢ nu— u~¢ ¢¢¢ °s¢ 00¢ 00¢ ~0¢ 00¢ 00¢ 40¢ no- ~0¢ ¢0¢ 00¢ 00¢ 00¢ ~0¢ 00¢ 00¢ 00¢ nm¢ ~m¢ ¢M¢ 00¢ 04¢ 04¢ ¢4¢ 04¢ 04¢ 44¢ n4¢ u4¢ ¢4¢ 04¢ on¢ 0n¢ ~n¢ 09¢ 0n¢ 4n¢ nn¢ ~n¢ ¢n¢ on¢ o~¢ 0~¢ -¢ 0~¢ 0N¢ 4~¢ n~¢ -¢ ¢~¢ o~¢ 0¢¢ 0¢¢ ~¢¢ 0¢¢ n¢¢ 0~¢ 0~¢ 1¢¢ n~¢ -¢ ¢¢¢ 05¢ 00¢ 00¢ 50¢ 00¢ 00¢ 40¢ n0— ~0¢ ¢0¢ 00¢ 00¢ 00¢ 50¢ 0m¢ 00¢ 40¢ nm¢ ~m¢ ¢m¢ cm¢ Q4¢ 54¢ 04¢ 04¢ 04¢ ntu ~4— ¢4¢ 04¢ 0n¢ ¢n¢ sn¢ 0n¢ nn¢ 4¢¢ nn¢ ~n¢ ¢n¢ on¢ 0~¢ 0~¢ ¢~¢ ¢~¢ 0~¢ 4~¢ n~¢ -¢ ¢~¢ n~¢ o¢¢ -¢¢ ~¢¢ 0¢¢ 178 0.400 ¢.n00 ~.¢00 0.000 0.000 n.¢00 0.40— ¢.¢00 ~.400 0.u00 n.¢00 9.040 n.¢4¢ «.040 mo~40 9.440 4.040 0.440 0.n40 u.¢40 ¢.0n0 0 ¢n0 n.~n0 0.0n0 4.mn0 0.4n0 honn0 ¢.~n0 -.¢¢¢ ..an¢ ¢.on0 ¢.0~0 4.0n0 ¢.m~¢ ..4~0 u.u~4 0.¢~¢ ¢.0¢¢ 0.~¢0 n.0¢¢ ~.0¢0 ¢.¢¢0 -.¢¢0 o.oe¢ ~.¢a¢ 0.000 ~.¢.¢ «.00. 0.¢on ”.000 «.400 ..mam n.qe¢ 0.0-0 ¢.000 ..nom ~.¢0¢ ..¢¢. snu 0n~ 0n~ 4”“ ans unu ¢n~ can o- 0- uun 0- muu 4- nnu uwu ¢- o- 0¢~ 0¢~ ~¢~ 0¢u 0¢~ 4¢u n¢~ ~¢~ ¢¢~ a¢~ oo~ can sun 0o~ mau 4e~ non nan ¢o~ ecu 00¢ 00¢ 00¢ 00¢ 00¢ 40¢ na¢ ~o¢ ¢0¢ 90¢ 00¢ 00¢ ¢¢¢ 00¢ 00¢ 40¢ n0¢ 00¢ ¢4¢ 00¢ 05¢ c~¢ 50¢ on non0¢ ¢¢¢ n0n0¢ 040 ¢o0 mnnn 00 n¢n0¢ 00 090 non0¢ 090 ¢0n0¢ n0n0¢ N 96°.”OUnO-OJU‘COOD‘J III 4 II 4 ¢ n0n0¢ N h o¢n ¢¢ ~¢¢ 4¢¢ non0¢ m¢¢ non0¢ on 00 ~¢¢ no 000 ounn 00 0pm 40 non 4¢n 000 000 00 n0 n0 40 .u eunn «a ¢a so ~0 ¢¢0 470 4 41'!)- ¢.¢IIm Ctr-IanI-OF’ollo-tlbolaplbu ¢ N so: s-l-I I! a. 0¢n I-I ¢I 0¢¢ 40 50 40 00 40 so o¢ ¢~ 00 00 u¢ "M an nu ~¢ nu ~¢ ~¢ 00 NN "N nn ¢¢ 00 0- 44 44 up 00 s0 an 04 n¢ 4m 04 em 9» 0m ¢¢ 0» 04 on 0¢ 04 0» pm 0N o¢ 40 N» n4 40 N4 0N ¢n ¢~ n4 n4 n4 ~4 amuw¢Z¢ 532:. mucu—z~ zwuw¢2¢ xwew¢z¢ umn0¢z~ vmuu¢z¢ m000¢z¢ amuw.2¢ amou¢z¢ xuuuuz¢ muaw¢2¢ yuan—z— unuw¢2¢ cwuu—2¢ ~000¢2¢ zwaw¢z¢ xwoubz¢ «muu¢z¢ «mum»:— xwou¢2¢ «mum-z— 1000—2— xmnw_z¢ wuuw¢2¢ Imam»:— cumm—Z¢ ¢000—2¢ zuow¢z¢ vuuw¢2¢ ”www.7— «mum—z— zununzu ~000¢2¢ ummw¢2¢ c000»,— «mnm_2¢ vmow¢z¢ vmuw¢2¢ ~000¢2¢ um00¢7¢ xmuu¢2¢ x000¢z¢ «mew—z¢ 4000»:— mama-vu ¢m00¢2¢ zunu_z¢ vueu¢z¢ zwuu¢z¢ du00¢r¢ «mmu.z¢ xuou¢z¢ «wou_2¢ vuuu¢2¢ munuhvu «mow—z— ¢m00_z¢ amen-2¢ r000»:— ruuw—’¢ ns4.~ n¢¢.~ ~nn.~ o~e.~ one." n¢4.¢ mmn.¢ 000o¢ m00.¢ 9.0.. ae~.~ o¢o.¢ e04.~ n~m.~ nmm.~ one.~ o¢¢.~ muc.~ nn~.~ nn~.~ 0¢0.u 4m~.~ 40~.~ 4~n.~ can.» ¢m4.~ can.“ oom.~ som.~ o~e.n 900.4 ohn.: 099.4 0.0.» 40,.» 400.» 400.» 000.4 450.4 050.» ~oo.» nae.» ¢-.4 004.4 o:a.4 .49.: e49} 000.» smn.4 ¢s0.4 049.4 049 J ¢-.m ¢ow.4 ¢oo.m 00¢.4 no~.0 4n0.4 mso.4 45¢.m 040.4 4~04so.an~4m¢ 4~04¢aIan~4n¢ 4~04¢0.on~4m¢ mn4a¢n.04u4m¢ onn¢m4.m4~4m¢ -u¢aoc04~4m¢ suenae.04~4m¢ -0¢aa.04~40¢ uuenoa.04~4m¢ swunea.04~4m¢ -enno.04~40¢ -en09.04~40¢ -anau.04~40¢ -0n00.04~4m¢ -0n00.04~40¢ ¢uenae.04~4m¢ ¢~0n99.04~40¢ -=noc.04~4m¢ -anue.04~40¢ swan-0.04w40¢ ¢~enea.04~40¢ ¢~anoo.04~40¢ hweneo.04~4m¢ -anae.04~4m¢ swonoo.04~40¢ swoneoo04~4m¢ -an0..04~40¢ -0nae.04~40¢ -onee.04~4m¢ ¢~enaa.04~40¢ -0h00.04~40¢ ¢~u¢ee.04~4n¢ -anee.04~4m¢ -0nao.04~40¢ o¢0ooa.04~4m¢ O¢o¢e¢.04~4m¢ 0-~a¢.04~4m¢ 0¢-¢¢.04~40¢ 0¢-a¢.04~40¢ 00~0¢¢.04~40¢ s-~¢¢.04~4m¢ 4000-.04~40¢ ~0040~.04~4m¢ ~004a~.04~4m¢ ~0040~.04~4m¢ ~004¢~.04u40¢ ~004o~.04~4m¢ 4040mn.04~40¢ mn»¢nn.04~40¢ ~00¢44~04~40¢ 00¢.nm.04~40¢ 0¢00n~.04~40¢ ~000n0.s4~4m¢ 4n°4mm.c4~40¢ ¢~0-0.04~40¢ 40e0n0.04~40¢ 4000n0.04~4m¢ 00¢~40.04~40¢ ¢0o4.4.em~40¢ 0~0-~.am~4m¢ n°0¢-.am~4n¢ outc¢u>wc oumn¢w>un ou¢64¢>0n cum000>0a ach¢u>ua o¢&04¢>0a n05n¢u>wn O¢LO¢¢>un awaoaa>ua 505a¢u>un auLO¢u>00 awtO¢u>un a0m0¢u>un auaoaa>ua owLO¢4>wo nua043>wa oumoau>ua auaoaw>wn outed. >0: aumnaa>un D¢LO¢¢>0H numOJ¢>uo aun°¢u>uo autoau>wa Aumn¢4>uo 90AO¢¢>mc nume¢u>0a nume¢¢>uo nuaa¢a>uo n4LO¢¢>wn O0LO¢¢>ua auaoau>ua nuan¢u>wa oumeaa>un num044>0n cucu¢¢>wo a¢LOJu>wo numn¢4>un aumn¢¢>un auaoau>ue o¢tn¢¢>0n cuto¢u>wa numn¢u>wo 00L044>un auacau>wn o¢LO¢u>un oumo¢u>0o auAn¢u>wo euaoau>un cwmc¢u>wn OHLO¢¢>0n auto¢4>uo cunngu>uo omQ04u>wa numn¢m>0n aumo¢¢>un ouao¢u>ua aumc¢u>uo 60l°¢u>u° numogu>wa a0t°¢u>0o a: L: 2305 t: 6: 2300 2.06 2:00 A: a: s: a: a: 2:00 a: 1: 2:00 a: t: 2209 L: L: 1: 23°: a: L3 2:05 2:60 a: 230° 2200 2206 2:00 2200 2:09 2:09 2:00 2:00 230a 230a 2206 2:09 2:09 2:06 2:09 2:05 2:09 zxoa 2:60 23°: 2205 a: a: 236° 2100 2:00 2:00 2300 a: :30: s: 0n~ mam 4n~ nnu ~n~ ¢n~ onu o- ouw -~ 0- m- 4- nun -~ ¢- o- o¢~ 0¢~ n—n 0¢~ m¢~ 4¢~ n¢~ ~¢~ ¢¢~ o¢~ saw 0a~ Law 0a~ ma~ 4e~ new new ¢e~ 0¢~ 00¢ 00¢ ¢o¢ 09¢ 00¢ 49¢ ne¢ ~o¢ ¢0¢ 00¢ 00¢ 00¢ 00¢ 00¢ 00¢ 40¢ n0¢ ~o¢ ¢¢¢ 90¢ 0¢¢ 00¢ ~¢¢ 0~¢ saw 0¢~ m¢~ 4n~ nan unu ¢n~ onu omn a- ¢~n 0- 0- 4~N n- Nun ¢N~ awn o¢~ 0¢~ ~¢~ 0¢~ 0¢~ 4¢~ n¢~ ~¢~ ¢¢~ n¢~ Gen can ¢c~ ouu new 4am naw unu ¢¢~ ecu 09¢ 00¢ ¢o¢ 00¢ 00— 40¢ nm¢ ~o¢ ¢0¢ 00¢ 00¢ 00¢ ¢0¢ 00¢ 00¢ 40¢ no¢ ~0¢ ¢0¢ 00¢ o~¢ 0~¢ ~¢¢ 179 400.000 I Own: Dan 00.. 036—30 > 4020¢~ozau z_¢x .00“ Mac: 00 azaou 20¢~=¢ow Cuuw_Z¢ <¢xmh~¢0 ututaoum 00 100 20aun 230° 00~ 00~ 0.000 00~ ¢n0 ¢n0 on vuum¢0~ 00¢. 400000.0nu40¢ 900644000 2305 40~ 00w ¢.~00 400 ~40 040 00 cmuu¢z¢ 00¢. 400040.0nu400 cm0040>wa 2200 now 40~ 0.000 n0~ ”no 004 04 «mum—Zn 00¢. 400040.0nu400 nuangu>w° 2209 now now 0.000 N0~ 0N0 0~0 4n cumw¢2¢ 00¢. 400040.0nn40¢ cuLoJu>uo 2x9: ¢0~ "on 4.400 ¢0N 004 004 nu «wuu_z¢ 00¢. 400040.00N40¢ OuLO¢u>ua =xoo 00w ¢0~ 0.000 00w 000 000 00 uuuwbzn 00¢. 400040.00u400 Outedu>wo 220° 00~ 00~ 0.m00 00m N0 ~¢ 00 ”mum-Zn 00¢. 400040.00N40¢ numn¢a>wn L: 00w 000 0o¢00 00s 00 00 00 cumu_0¢ ~04. 000n¢0.0n~40¢ autou¢>ua a: ¢0~ 000 u.¢00 00“ 00 00 00 xmow—z~ ~04. 0n¢¢0soen~40¢ awaa¢u>uc 5: 00m 00~ 0.000 00w 00 no 00 wwuuuz~ 0¢0. 4~04¢0.0n~40¢ numn¢u>00 L: 00~ 00M ¢.-0 00~ 00 ”0 00 uwmwnZ¢ 0¢0. 4~0400.on~40¢ cutoam>ua 5: 40a 00w 0.000 40w 000 000 00 0w0002¢ 0¢0. 4~0400.=n~40¢ 00Lo¢u>ua c: n0~ 40w ~.0~0 n0~ 000 ~00 s0 xunw¢Z¢ 000. 4~0400.°n~40¢ au¢c¢u>ua a: ~0~ nan 0.000 ~0~ 040 040 00 ¢wcwhz¢ 000. 4~0400.0n~40¢ Guacau>w° &: ¢0~ ~0~ ¢.0¢0 ¢0~ 004 nn4 04 "Maw—z» 00¢. 4~04¢0.0n~40¢ nu500¢>un 2300 00w ¢0~ 0.0¢0 00~ n0n0¢ 904 04 wmaw—v— 4N¢o¢ 4~m4o0.un~40¢ o¢mO¢¢>uo t: 040 00s 0.000 04~ 00 ¢0 00 ¢w00¢z¢ 004.¢ t~0400.en~40¢ au¢O¢u>uo 2:00 04M 04M 4.4¢0 04M 00 L0 44 ,xmow—z~ 004.0 4~0400.on~40¢ 00AO¢u>wc 230° ~4~ 04“ 0.000 ~4~ s0 00 NM zmuu¢x~ 000.0 4~0400.0n~40¢ DULO¢¢>UO 22°: 04~ ~4~ 4.0-0 04w n0n0¢ 0&0 4n wwuw¢2¢ 000.¢ 4~04¢0.0n~400 numa¢a>un 0: 04M 0:0 4.¢¢0 04a 0000¢ 004 40 wqu¢7¢ 0s4.¢ 4~0400.an~40¢ 000040000 0: 44~ 040 0.000 44m 00 00 00 zmnw_z— 004.0 400400.0n~40¢ 001°4¢>¢a zzea n40 44w u.0~0 no" 00 00 00 zwuuhz~ 0~¢.¢ 4~0400.°n~40¢ nwmndu>uc zxoo N4~ n9~ 0.000 u4~ 40 00 00 Kwuw¢z~ 00¢.¢ 4~0400.=nu40¢ outaau>uo zxoo ¢4~ u:~ 0.000 ¢4~ 00 00 nu wwoW>z~ 004.¢ 4~04¢0.0n~40¢ nat=¢u>UA zxoa 04w ¢s~ 0.000 04~ 00n0¢ 004 am puuw¢2¢ 004.¢ 4~0400.0n~40¢ aute¢0>ua a: 00w 04~ 0.000 0n~ n0n0¢ 40H n~ xmuw¢2¢ 000.0 4~04e0.0n~40¢ D¢004¢>uc a: 0mm 000 ¢.¢00 000 0¢ 0¢ N0 uwuu-z¢ ~¢0.¢ 4~0400.on~40¢ autnad>uo a: 000 00~ 180 . .0n.0 5..- . 04040.00 000.00 .0004 200.0 0. 0.00000..." 00 00000.- 0. 00.0400 020. . ......»400 0:09:00 0.. n>~..¢o.=.— 04 con—0.! 000....0nn 02-: . 0......0n~ ...—30:0. 0. 05.000902. 0.. . 0.00.0030 5.00 00.00;. ...04.oo..« 200.0 0. 00004.26: 04 . 0.... 54.0 020- n..040.0 00.04.0080 200.0 .. 0:00.002... 04 0.00n.n 0.000.004 ..z—I . .... .00.. «209:. 0.. 0.0.0.0032: 04 . .0... .0440 .20: 00000.4 «0000.3... 200.0 0. 0.0.0003... 44 40000... ......nn; 020: . 0.0.0.00: 0225—. u. ~>0.ounaz= 04 00000.! 00.0.5000 .020: . 0.0.0.0030 0200:". u. 0.0.0.002... ~4 . 0.....1-0 50: 0:00»... .0~.0.0- 200.... u. N>o.=uma:= .4 . .0... .000 020. ...o. .000 . 290.0 0. 050.0003... .4 n40~n...u 0.00. .000 .020- . ......000 9.09:. 0. 0.4.0003: on 00.00... ......0000 0.... . ......0004 0:32.. 0.. 0.0000032: an . ......000n .0:- 00040 .0 00000500.” 290.0 0.. ~>~.cwmaz: 0n . 0.0.0.000» .0... «0004.0 «00.0.2.0» 200.0 0... “.00000320. 0» 0N440.c 0.....n000 5.0. . .... .noeu 0209.2. 0.. ~>uu0¢oax~ 0n . ......0u0 Lz—o 00:04.40" 440.0.nn0 290.0 m. "...—.090:— 40 00000.: .0....0...~ ...-.0. . ....0.00..~ 023.... u. ~>000000tu n» . 0.0.0.0... 5.0. 00.00.0000 00.00.00Nn 200..» u. ~>000¢0¢2~ ~n . 0.... .00 02—: 00004.0“. 00004.00I 200.0 0.. «.000000... .0 . ......«n. 020. 04090.00" 04.00.0nul 200.0 0.. 0.0.0090... .n . 0.... .000 ...—v .«0~0 .400 0.0.0.00: 200.0 0.. 0.0.2.9.... 00 00.00.: 0.0.0.000 ...... 0n" . ......enN a..—e... cm «.40—19.:— on . ...... .0004 02—- 00004.044 04000.00... 200.0 m. “pun-«9:; 00 0.0.0.- 0......0N0 .02.- . .... ...u0 9.00:0. m. ~>~00¢oazu on 00400.. 0.....00- 0:0: . 0.0.0.0000 oz~a=~m 0.. N>02¢o§0~ 0N . ...0. 50.0 ..zuo 00.04.40 00.00.0000 20040 .0. 00000>wzox 4n . ......»4.~ 02—: sud... 0.0.0.0400 200..» u. 0»..aum?.: an 0000» .a ......0... 0200 . 0.0.0.904 02:50. 0.. «p.0owmaza - 3.000.- ...... .04... 020' . ......004— 0.39;. 0. 0.0000032: 00 40.00.: ......0... 0:0. . 0... .004 02—023 0.. 0.0000032: .N 00n4n.0 0.0.0.0000 uzuu . .... .00Nu 2.00:0. u. 0.0000032: 0. . 00......» 020- 0000.00 4.0m0.~0~ 200.0 0. 0.0000032: 00 . 0.... .000 5.0- .0.0..000 . 200.0 0. 0.0000022: 00 0.000.... ......00» ...... . ....0.ncn o..~o..~. 0.. 0.4.0.0032: 00 . ......0004 .020. 000~0.0.. .000 .00.... 200.0 0. 0.0000035 00 cont..- ......000n ...uu . ......0000 0.39:... 0.. 0>~aoumaz= 4. . ......uunn ...—.00 000....0 04400.03.» 200.... 0.. 0pu0awmaz: a. 0.000.» 0.... .4000 .20: . 00.00.3000 0:09;. 0.. unuupznmru 00 . .0... .000 E... .000~.~00 00040.”..- 200.0 m. .>.~.¢o.=.~ 0. . 0......000 .20. 000003.000 n.000.4000 200.0 0. 0.000.005: 00 . 0.... .4... .020: 0~00~..0«0 0.000.000! 290.0 u. 0.0.0.30... 0 . 0......00 030- 404~0.n00 404N0.nn 200.0 0. 0.0.2.0.... 0 . ......40— 02.: 04.00 .000 04000.00I 200.0 0.. 0.000005; 0 . .00... .40. 020- 400:0.nnu 4n040.mnl 200.0 0.. 0.0.0000tu 0 00000.". 00....0.~ 0.0.0.0.u . ......0.~ a..—02.. aw 0.40:3...— 0 «0400.. 0.....mmo4 .020- . ......00... 020...... 0.. «>000uomxn 4 . 0.0.30.0 $.01 «0000.4 0.4.4.0~.0 200.0 m. .>~.0uo....~ 0 4.0.0.- 0.....0...~ .020. . 0.0.0.0.... 2.2—.... 0.. u»..0¢00xu u . 0:0. 020- n-~0 ..nu40da a~n~0..n~40« 200.0 ... .90000900 0 .3.—000.. 00...: m... 00.3.. 07¢ >0~>0.u0 20.. 0300—0 00:. 0:02 0002:: 0... 0 I 0:55.... 0...... I 0.00:9; I 0..“ I 05.9 I «nae 0002020.. I 0.9 0.....— I 0110... ......I I 0.000.... 00:0 I a..: 02020.. I 0:... 0000.00.00 u «.09 2000000440 I 0.00.. nunu0.0n~:0u I 0.0000000 00 0:40. .3005: ...—0.3.00 I 200000 02030 0 000.. 000.. 000.0000 0 .— 2 u 0 x h n 2 o u , .0500... a..- 00:00.0 0000 181 . cooca.oan- u‘u- :Nuon .~V.« o~30£9o xu<4n u... m>sabrouxu ee— . 999°...qu 5:7 ~u-uoaen ~c-—.mm~u 29“. ma “Eu-:35.— an. umnmm: cacao-Jon x..—a . ego—...;bN E: 9:. u.‘ mums—«o5; or em4~a.o 99:34:. uaoeeéow. . saga. new ..x.~a:~_ Cu m>ac~¢o§u pa sink: :9: ....u.» “...—- . anon—5.75.. 9.39:. m._ m>na§ouz~ we ~00~o.| aaaea.n:o uZu. . cocoe.n:o 2:93“ u; m>~2xcmtu mo unmz.o oeooo.~mn.~ 5:: . ooaoa.-o~ 2:95. a.. m=3¢naxu :0 . aooou.ec~e~ ..2-1 °u-u .u canning“ an. xo<._m m... J—uwu>wzoz no . coca—.443 uzuu 99:2... «hummiieu zonaw w; ..=u=wm::: um mqnonoo sees: .00.. 5:. . 99999.3.- u::=:_ ma c>auoum25 ‘o . sauna-mi; 9;- ommmn .N u::o~.o::u Xuoeowm25 so . .99: $0.. L‘uo o:..m:.o~u «mm¢m .mm xo<4m m4 apmoawmzz: on amo~wt=o 99399.0: uzuu I ne-ea.mon ozHE—E— ma 31.909942: m. asuoo: econ—comma: uzul o 9.3.9.20: o:~oz—. u; atnooumaza :- - cocoa om0mn uzuu wanna; seawefimmn ¥u<4m NJ 1>~eown=za no . Genoa-Mann uz~u ~c«:n.:n nonmo.:~n xo«..m m4 :>«aewn:=: ~o m~::m.| .asae.~o- uzuu . eaaaofiowu 6.39:; mg .;:—¢oa:— «a . 99°27»; mxm. acadeio mauooine xu¢4m w.— 4>ezcomzu as «owns .- ooeao.~=~ uzac . 03.39.35“ 3:925. ma a>09-xnmru as . can-a .aouu 5:0 omnuooizu awn—woooel ¥ooeucomzn on . cocoa-o; uz~a 2:: Joan canon-maul xucam m.— 4>~3¢oazu s. o ocean .ca‘ azuu nomom.e- oamomn:~un ¥o<4m u.- apoguomru an . oocao.mo~ an: Nit; £m~ omnmJ; XQ¢4w ma arms—«om!» up {wnon .au cocoa .non 99999.nou . ocean.no~ «.2223. cu :>:o.—«n¢x~ J~ . =0: .03» “.an Duosc.:nu ~en~1u~nm xu<4n ml. :>na~¢oa:~ as coma»: noao=.-nn uZn. . oooaa.—~om czaz~u a.. tnuohxonxn - noOuu-t see—3.4T." u‘nu . cacao .¢o:~ uz~o:—u w.— ..»uebcomxu an . cause .emqmu uzun canon.» oohn~54um~ ¥o<4w u; n—uu4>uzot as . 999995;: in: o~nuo.o cocoo.cna~ x015 a.. n>uuowmzz= on miss»: nos-36w: 5:. . cane-.3.. uzuozuu m4 nus—aum-Z: oo nmaon.| eaaea.n;:u k2”. . aaa°°.nq:u 023.3. m: n>uacwmaz= ~o uaomnoo aeeaaono: uz—n - 9930.2... czngzm u; n>09auwazz co coon»: use: .ommw uz~n . aaeac.mm~u 339;. m4 n>~eoum=z= no 9023.: eaeaoénn ...z—u I 99:96:, 259:7. a.. n>Oacwmaza ac . coo—3.0." uz~u 9%.:on mucoeéo xumooumaz= no :aauaodnl 90909.2: .2~c . cooaoéon czuozum ma n>3aumaz= no ”5‘00: ocean-mun: uz~| . .ooeainca 339:. u._ n-ncuwwaza «a . =9: .momn “=3: n~¢¢~3~ summnéamw. xo<._m m4 n>~aomm=zs an . enoaeouqnn 5:: miwsuomu mmn-.~a~n 2915 NJ unaccwmaz: ¢m 000nm: aeoee.-—~ Lzur . coco..:«~ uzmcznu ma n>~ub¢cazu on . ooeee..oo Lz~u 32:: .«on chancfiua ¥u<4w ma n»3—¢OL:~ um o gouge-nmmr. u»:- noeso-ow— sno~¢.na:~ xo‘am ma anaeucnmzn om . ocean‘s: uzu- maunnécmu oo~n~..~nu ¥o<4m m4 n>oepxnmt~ mm . 3°92..an uz»: munouémm m-aqimua 20¢4m “a n>~3¢omt~ :m . aeeg .mnu mz~- oiomoonu ooiaméafil xutdm ud area—~33; nu . cause .ona uz~c oumumivu .3134: 201.5 mg arms—20%; um com: o: 99999.0»; cacao-oam . neeao.o:~ Baa—in om n>:n~¢emz~ an ah~>-o< 20¢ mah:quno .3 2.5:. V b39240 uwqurou I zenbno :38; u acct can; nn—uwa¢ w h z a c x h m z o o «n.so.au uzub Duh—as: and: 182 uz~azna ud demanoa ...-..ooou uz—n a ceaaoomoou spuquomxu en— . one-o.¢-u uz~o 1wu°s.o~ anno~.ma~« ru<4m u; ~hodbzamzu mad o~¢:o.n ecu-9.4.:n azun . ooaee.:¢4n uz~o=um ma upoe~¢o¢2u ozu . one.a.oomu mxm. n~e~0.-N« muono.nan xu<4m ma ~>oc~¢on:~ std one: I aooeo.ann- mxm- . eeaoo.onnu czuozuo ma ~>~e—¢on:— 04¢ «:00» I ooeon.-u mznl o nose-.as“ azuozu. u; ~>oo~¢omx~ m:— . aesea.~¢n uz~n deems. 000°".uan ¥o<4m m; ~>n-—¢omz~ «an nua:o c oaeoa.oun nae-9.9«n - ousao.9un oz~o:~a an ~>oohxnmzn at“ mo:no 0 ca .~o~s LZa» . once..~a~n u=uazno ma ~>noh¢oaxn NJ“ JOJO .auoc.no~m Lzuo . oe-eo.n:~o u=~oz~— ma upwnbxoaxu ~:u anJQQ couscouann mxm: . ca.oo.uea~ c:~o:—. a; ~>unproaxu a:u . aeo°°.a~oma mama canOquu cahao.oeom: xu<4m ma cpuw4>wzox on- . eoeoe.»oa~ K‘ua own-«co eucao.nna~ ¥o<4m u; cpuuoumaza can «eoem.u oaaoa.no4 mz—o . couao.oo: exuo:~_ w; opeuowmaza Kn. ~o~:¢on oe¢o°.—;:u uz~a . 0.9a .n::u uzuaznu ua o>0aoumaza ca— =:onm.n .aaee.nna uz—u - econ .nw: uz~oz~m ma epooawmaza and . aocea.dm~¢ uz~o ~«nu:os n-NJm.c:~u zu<4m m4 o>~oawwaz= :nu ao°o°.aun L2H. n:—o~.: smo—~.men x9<4a ua opossumaz: and .as .mo— mxm: teouo.: canoo.aou xo<4m ma o>moaum=z= ~nu ace-a.non uzn. sOeOn.0 anaeo.~on ¥u<.w ma o>:aowm:z: uni essen.o~ua mxm: m~:0o-m momnu.¢~c: X9naowmaza an- ooeeagmamn Lzuo ~0m:o.o« Ou:mn.oamn xuqaw u; epnuowmaza ouu eoea°.~unn uz~| ne-n. ~o-o.«unn xu<4m u; o>uoawm=z= o~u ooeeo.oam~ blul o oeooo.omm~ uz«Q:H_ NJ o>uuhuoazu -~ eac.°.nm_u uzuu Quuuo.us "coon-doeu Xudum ma o>°—»¢Otxu an. . caea..o-n hz—t nanum- ~o~oo.o-n xu<4m ma o>oaurnmz~ mmu . cocoa.noou mxm. ~m~sooooou ~m~:0.uu~0 xo<4m u; o>oopuomzn auu Ioueo.| cacao.o~_u Lam: . coca-.ouuu ozuo=~_ u; o>~e—¢oar~ n~u n:oo~ I oaooo.no‘ nZun . oe-e9.nou oz~a=- ma o>uo_¢omx~ and mun:o.o eooea.0~n uznn I neoua.o~n uzua:ua u; o>mapxoutu auu $9930 . naaeoomou 90:09.00" . onauooaou uzwozuw an choc—unatu o~u Nann9.n page-.mcoo man. . oeoac.momo e=~o=n. a>nu_¢omtn ad. nonoo.u e.eoa.ou3a Lz~. . coco. 9~40 oz~o=~; opuoncoazu .«u nun-0.: oneeu om- 52”: I once. mun uz—ozua ma Oran—«omxu ~¢~ . ooae°.ou=nn mxm: a°~.~.ou caoo~.¢oo~n xvsnm ma nuuUJ>uzcx ow“ . ceoeo.naou b.~n -m0uoo ou:po.one~ 20(40 NJ m>auowmaza ma. :na:m n oneaa.om: mxm: o cage-.as: uzno:n_ ma who¢=wmazs Jud Neona.l .auoa.n::— mxm. . aaaaeona:u u=H0:—m ma mpoaowmaz: nu“ msoam.o aeeae.nu: K‘s- . aaoao.no: uz~o:~. w; n>oaoumaza nu— nnnna u ooaeu.am~« man. - no.9..amwu oz~a=~u u; arsooumaz: «a. «comm.l aaooeoann uznl . ...oo.o«n oznozuu ma m>onouwaza can . nae-o.m¢. uz—a nunm¢. n:44u.oo— Xu<4m ma m>muauwaza can . e°°o°.oan Lz~u oossm.~ ~u-:.«on xoaoaumzz= on¢ . ooaeooasma uzuo noa°¢.nm mneom.m~o: xo<4m mu m>n°oumazz ~0¢ . aaaaoumOmn Lz~a ~«m:~.au no¢m~.:mmn ¥O<4m ma m>~oaum=za oau . ..see.munn Lz~n aoe~:. —on~m.«qnn ¥u<4m u; muuoeumaz: mou anneo.n asaaa.:u:~ uz—a . ooaoo.:~:~ u2uo:uu ma n>uuuxoax~ 49a . coo-e.aan‘ mxm. an:0«.a¢ o:m=..a~o ¥uouhxomtn nan . o-ooconoou h‘uu «GJOI. nannm.~oo~ ¥u-xuuu< 3oz map<~w -c>h w:¢z syntax ooae.9 I mzx:umu con-.c I floozunu I ozx I ”:10 I finou wnuzuxct I c—a .aao.- I mrxmmx ...-..I I snout: maze I :26 ozcvwo I «:~ hum—unfimo I 960 acubcucua< I mzcz hazpao Upwamzoc I zo~>no bz—It n-um.an~:mu I U)~—uufino no uzdt> nun-vuud a u z n 1 8 h m z o u s...“ mxm» .~\.n\- u-qa n wu nu-numn< aeaoa. m0:cw.:u amcn~I~ «weanII O CucumIon nooooI: ~moumIon :0mo:.0 O u¢~emIJu ~m:om.son human-«n I o«:~nI oamOuoo nmooo-a I ocean-u O ~m~enIeu who—0.0 onoo~Ia~ camouInc :uahu.- ~nun:. xu<4m I uzu maze I aza eeQIOIOHJuK mamnnIQ~e~ amnc~.¢o: apvoa.on:« ooaa¢.—o: Nnuo:.o«~u ~uaqa.man cauo:.a¢« we:no.omn aaoeu.a~n: om~oqummn eaoo¢.~—nn eooae.o:e~ cacao.mc¢u cease-noun nJmo:.emo soon. mama eeoao.uou oaaoo.uu: eaeaa.—:n nao:n.«nco ueeea.nea~ «unho.om9n camno.a~cem o4qnu.nna~ acco- ow: °o~«~.~::~ ease..nma n:~ou.m:- o~nonInen aesae.mou wean~.amn camo~.m—¢: ¢n¢~a.~:mn occum.u~nn >—~:-u< :cx n m=xo 62¢2w° I m2: w p z u 1 x h m z o u xo<4m ma o~uwa>wzoz mam xuaaawmzza 4o— xocdm ma e>nuaum=zs no— xuceowm=z3 —a« Xu<4m u; opsocwmaz: so. xu<4m ma o>oocwmaz= o- xu<4m w; a>meoumaza cud xo<4m UA a»:acwm:z: ss— oz~azun ma e>naoumzzz as“ ¥o¢um ma o>~eoum=:: ms“ uzuoznm u; o>aocwm=== a~u uzua:~— ma n>uauxosxu n~u Q.ua=~— u; a>°«_zn&:~ us— cz—ozna m4 o>oehxonzn «~— XQ~auroatu on. uznozna m4 o>oohzoax— cod aquZHH ma o>map¢aax~ bog oznmzua as o>:e—¢otxu 00¢ Xunohuonxu mad uznaz~_ ma o>~a~annzu aw— xu<4m ma o>aa~¢amxu no“ xu<4m ma shuwa>wzox no— xuuam ma u>au°~m:z: «an cz~o:~_ ma ~>ouawwaza ecu :014m U4 ~>eecwmaz= own oz~oznm ma ~>oucwmaz= om— xo<4m uJ ~>~ocwn=z= nmu xo<4m U4 sheeowmaz: emu uzuozuu ma ~>m°cum=za mn- xo<4m u; s>¢eawmnzz :mu xo<4m wJ ~>n99mm223 nmu Xucam ma ~>~oOUnaza um— xo<4m ma Asqaaumazs «ma m:—<-w ug>h uzcz wunxzz I «coo UNuI—x12 I bum—uufin: I panhzo abu4azoo I zoubao .z—xn .a.~a.o— mzuu .sxanxae unto can Sac zonucuoud< I wzuz 184 ~2— p:— n:— ~z~ bx" ~2— >z~ »:~ .2— h:— 2; ~2— .hz~ p:— n:— ~2— _z~ urn pz~ ~2n —x~ —z~ ~2— ~2~ —z~ uzu hzu hzu pz~ ~2— hzu pz~ ~2— ~2— bra b2u ~2— hz~ uzu h2— u:- ~2— bz~ sac oma:oI- oeaeaInunmu I out oooomIa eoaoaInnna« I me: I sooaoInonuu I a¢< oumaanm aaeaaInancu I a¢< I au;oa.non0« I m¢< :uo~oI eoooaInonou I I eccenInona— I a¢< NucnnIa .aoInoncu I szi conauIn oceaoInonou I a¢< oumaoIno aoeeuInanan I o¢< conunInm aaeaaInanou I ma. ooomhI- sauoaInnnou I ma: oo-omI: aeeeoInonou I au‘ conncIoou accenInonau I c¢¢ --~qua aoaoaInane« I mad I oes.u.n.nn‘ I au< :«owo. ace-eInnnoq I n¢< I eeueaInonuw I an: monnquu aeaacInono— I ¢¢< :Jsmnqu .aaaeIncno. I ma. -oo—.u~ aoauaInnnm— I 01‘ ac~n~Ian oeocoInana— I c¢< ~onooIo aaeeuInnnau I out ooeomI: uaaaaInano« I a¢< a::mn.~mn .aoocInonc— I u¢< mmmnqucu cacaoInnno— I am: I aoaocInonou I uu< :«oon acaeaInono- I I uocaeInnnou I ax< 04m4:.n« aaeooInonou I a¢< JanmnIau oaecoInoan I o¢< mono:I‘u .ueecInoncu I m¢< comaoII: aoeaoInnna_ I u¢< Nona... encoaIncnou I a¢< .oeomI: eeoeuInono— I ncucwIaom eaeoeInonou I n¢< o~o=¢.:~u naaooInono— I mac I noaoaInonm_ I as: :uouoI ocoeoInono« I I space-nono« I auaa-Imu ooaaaIngnon I m—00:In. eeooaInonou I n¢¢ acu~4Ioo uaoaoInuno¢ I a¢< ¢~04~Imm assuaonono_. I 91‘ nanoo . aoeaeIn.nm. I ex< nanomIa a-eauInanou I meanqua pageaInon0¢ I a¢< °~oo:.:—~ oeaeaInonou I 9:4 uuomnIm‘ oooooInano— I mu< Juana. aaaaeInnnmu I 4(2_u¢<: yuan: ozn uwxoa aza aoeaIa I mxxzukc ee=QIa I fiao:umu aeoeIu I mrzwma aeoqua I Seaman n-~MI°n~:mu I u>__ousao mo w341> u uu¢c noqu unnoxuma cacao.“ oesoeInw 09:99.: aeeeoI1u caeeeI:u acaeQInn: eeueo.~o eeeoeI:—< aoaeaI- I 95:99.: oceaoIN aaaeoIo caeaeInu ooeaeIe~m scan-.:w aaooaqu uuoeaIn sooaeInu ceeaoInq ooeaoIea: ceaaQImo eoooeI~—« eooaannn eeoaaI~ 9.999.:u oaeaoImom .eoeoaIs~ cacooII cocoa-mu anaequ I aQQQQIco coco-IoNnn I I I I o I I I I I I I I I I I I I o o I I I I o I o I I I I I I I I I I I I I I I I I I I I I I I quo no: >->~hu< 400 I ...-E I mzxu maze I 5:: nxw n>0auaz om m>meaoz o4 m>40¢m2 a: m>ncxaz h: mpuammz a: m>ae¢nz m: :>u«uaz :; arouzmz n: :xOsxmz ~J o>ooxaz a: :>~ezmz a: :nwamoz an 3>mo¢mz on 1>Ja¢mz s» :pnexcz an a>~nuaz ma :pnammz :n n>~uxnz n» ”reuxwz um n>Oewnz ~n n>ou¢mz an assume: an n>o=acz ow numorm: nu n-:auoz an n>nexnz mm n>~°¢mz :u n>uaanz nN ~>~—~mz Nu ~>auunz «N Numeaaz =~ ~>oexmz ea ~>~a¢mz u— ~>o=zmz nu ~>ma¢az @— ~>:a¢az m— ~>nuxmz on ~>~axmz nu upqeuaz Nu «puuaoz ‘— ¢»o«~oz ea «peace: ~>oo¢¢2 a>~°¢mz ~>oo¢nz q>me~bz ¢>Je¢mz u-naxaz upueuaz «>«ocmz o o s o m a n u — w2¢z rwoxaz I 5000 U-z~x_~>_.u< 490 u mzzu oznhu4 u>—_o¢ u>_—o< u>~_o« u>_puc u>~un¢ w>-uI :uzod w>-u< u>upu< u>-n¢ m>H—u4 xuzaa xu:04 zuzoa zmzod zu:ou xuxod xuroa xuxo‘ xuzod ¢u=od xu:04 xw:od euro. xuxn‘ «42o; xuzo‘ ¢u=04 xuzo_ yu10a zuzod muzod xu29a auxag :u20a :uxod mu:o. xuzca razed muzod xuxo. xuxcd xuzaa xuzca taxed xmzod xuzo. gazed cured mane—n bum—nwsao I II I D D. 5‘ .9 .- lo ‘I 0' DD Q. I! I. 1. D. O. V. 43 ~>aeoocm .9“ 4L u>a—cezn an at «Iouocma on an «>moooun so a; —>oaaozm c¢ a; up..°0¢¢ no a. ~>ooaeaa I, 4; u>meooun no at «>Iooozn no 4L u>naooan —o a; «pueoomc av 4; «Iaaaomn an hzn opuuxnz on uzn o>°~¢mz so —:u armaumz oo bx" o>oexaz on hzn chuoccz :0 .:~ opoaxoz no bzu oymaxcz ~o —:H o>19umz «0 —:~ o>no¢wz a. ham o>~a¢oz On —:~ o>uoxmz on _:n spuqumz Is _=~ ~>a~¢mz on —;u uuoazaz mu .zu ~poe¢az :~ .zm synoumz n» _:H uroaamz - hzn Apnoea: as ~:u ~>¢emmz an —:~ ~>nemmz an »:~ ~»~o¢az no ~=~ ~>ua¢oz ~o _:~ ¢>uuzmz 0o ~=~ ope—um: mo uzw 0>Oemmz Jo hzn a..-um: nw —z~ o>~uraz no ~zH o>oo¢oz do ~z~ opaque: no nzu ¢>¢u¢mz em bzn 0>ncwmz on p:« o>~°¢mz gm h:u o>~a¢oz om ~=u m>uu¢ax mm ~2m mus-um: :m hzm m>oa¢w2 nu ~:« m>oeaoz mm ~=~ Mysozaz an Harp uruhu« J: o>~aoomt .mu . bx". . .«~»4. ~m~ns.oos u>npu< at o>oeooua m:— . Lz—o . sumo:. canum.uo: m>-o< an o>moaozs cad . uv—o . cumuuo unuco.o:o u>n~u< 4m o>:.c°wn 54¢ . gru. . om:«~. nuannoummh w>~—u‘ a: ouneaozn o:u . m2". . °¢o-. Oo~a-.o-~ w>npu¢ a; o>~¢ooma mJu . mxm. . nouns. ~anuo.~ao~ u>~ho< at cum-comm Jag . uz~o . oaoom. onuooowcc~ w>unu< 4L m>—_ooxn nJ~ . ur—. a auo::. aoNuc.o«9~ w>~_o< 4a n>o‘oc¢¢ Nan . uzn. . ouson. eon—~.eo~m u>~hu< a; m>Gecozm «:— . nan. . oqsoan cacao-no: u>~no¢ a; nuoeooza 9:: . uz~o . ao««:. camnm.onmn u>~pa< 4L m>~°aoum on" . uz~o . auna:. aa:nm.m~n u>u~o< 4L opaaooxm gnu . “7.. . aumot. m:ao~.~:n u>u~¢£ a; m>m°covm 5n“ . uzn. . oum-. u—uoo.:~m u>—bu< a; mpaeoous can . uzu. . om:u~o unsoo.n~«n w>u~u¢ at apnocoua mn‘ . Lz~c . °w¢-. noaau.oans w>unu¢ at upmoooua an. . uz~o . scum». uenmo.~s:~ w>u~u< 4L m>uocoum nun . uy—o . cocom. ¢n~_~.mr:~ w>~hu< a; :>«uaozn Nnu . mzu. . oun::. ae~ma.n~au w>-u¢ 4L cpaucoua «nu . uz~o . ausgn. u4o«u.~mnm u>~nun A; s>o=ocmm an¢ . Lam. . o«~o:o cause-Hm: w>~hu< 4L a>o°ooun o~u . mZ—o . ec«u:. ao-~.o~nu w>-o< 4; :yuaaoam on“ . uv—o . eu~n:. cocoa.a~n w>Hho< 45 :>caoonm -u . uz—. . eumo:. «mm:m.mm u>-o< a; :pmooors w~q . Lzuo . auvuso aeo~u.-m w>~hu¢ a; :>:acoun m~¢ . uz~¢ . am:«~o oa-:.-«o u>~—u< 4L t>neooza :n— . uzu. . coauw. sumo-.wm¢o u>~nu< A; 4puaocua and . u7-o . swung. nn:a;.cfia~ u>-o< 4* J>~eoozm MN“ . LGo . aooom. °¢~n~.mmn~ u>~hu< at npuuaoct and . uzn. . euu::. aeoo:.~oau m>~nnq at upeuoozc aNu . uz—. . cu~onI secoo.o~s: w>-u¢ an n-oacooa od— . mz—. . au~=:. aaeeo.no4 u>u~o« at ”pmonoua o_« . uv—. . ea~«:. cane-.omwa u>H~u< a; n>~ooozm saw . LG. . ousoa. euaoa.a~n u>~hu« a; n>w°ooua o_« . mxm. . cum¢:. mm:oa.~o w>upn¢ 4L n>m°ooma mcu . Lz—o . auwuuo °c~no.m~: u>~pu< as n>aoooxn au¢ . mzuo . em:u~. aa~«~.nocm u>~»9¢ 41 n—maaeza n¢u . u7~o . awasno ~u-n.ouco u>nuo< 4a n>~oaowm ~_— . .uzu. . awash. mwmsa.~¢co u>~hu< a; n>~ooaam «a. . Lz—o . eoocmn ~mu~m.-N~ u’upu- 4; ~>aaoozk aua . uzmo . oua::. coom:.~o=~ w>nno< 4L ~>n¢ooua 09‘ . uz_o . ouncn. uohno.mno: u>nhu< a; upmoooxt can . ur—o . au~°:. ease..no: w>H—u‘ 4; ~>oocoaa sun . u2—. . eauua. oa-ee.mm~— w>~uo¢ a; ~>~coe¢n ecu . mxm. . auno:. °o~ao.o- w>~bo< a; NpocGOVt we“ saoea.. 52". . oumo:o . xwzca an meeoonk :9. . mz_. . euowso 99.03.99: u>~pu< 43 ~>:-ao¢& new . uv—o . sm:u~. ooaeo.o~o¢ u>uho< 4L ~>n9¢0ua Nun . uzn. . aorh~. ma~::.nona w>~pu< 4m ~u~eoocs «cu 4——>——u< Joe mnqun uaph . wzqz «maxaz .a.e.a I m:¢:o¢¢ 999°.9 I fioozutu I uzx I nzzu u fiaoo w-znx-uwsoo to w3a<> hzabao unwanzou I zc—uto pznxm n mods coo.» unuvxwmc w z 2 a J o u «n.~e.0~ wrap onxanxou uuqo 187 ~:~om9699 a .41-0O— Xmuo me move: own: on: ‘c«.noo I own: age I uuxw zzunth¢ a; 9>uuaoxu on- o u,_. . 9a9::. 9muuo.9u- m>m_u< an 9>9¢90~A m~¢ . uzuo . 9u~9nI o~ono.«:- u>~hun 4L 9»o.°0¢1 49¢ . uzuo . 9‘993I 999uo.mnun u>~ro< 4; 9>onnowt an“ . 92—. . 99au:. -mn~.~e:m w>-o< at ohsonoua -a c 92—. . 9a~o:. huon9.9_w w>uhu¢ 4m 9>oooozm as“ I uv—o . 9~m9JI 9:.m~.0nm w>~—u‘ 4A 9-m9oaun 9~u I L2—o . 9uouu. 99900.9o~ w>-u< an 9>:oocuu oo« . 5’9. . 9m4us. 99~—~.-9a u>n—u4 4. apneooat oo— . u:~. . 9oo-o om~4:.—ooc w>u—uq a; cpnoacwa 59¢ . uz—I . 90‘s». 999N9.99¢9 m>nun¢ a; 9>u9aowm 99¢ . u’_. I 99009. 94999.~9=n w>Hhu< A; ~>duaozt mwu . mxm. I 9~uJJI 999¢~.~nn~ u>u~o< 4k ~houa6un :a« . uz—I . eukom. 9999n.n9~o w>-u< 4L ~909a0mn no“ . mz~. . 9u~9:. 99mnm.-- w>~hq< a: ~>990°¢A ~o« I uz~o . 99~aao namcm.9~9: u>~nnc 4; s>~900w5 .9— . ur—o . 9959:. 9~n~9.~:o w>nuo< a; upceoOcm 99— . man. . oumo:. 9999m.oo: w>~bo< a; ~>m9cozm omu . uz—o I cuw-. noduo.m=~ w>uhu< at ureooown ouu . mzno . 9maan. 99009.:m90 m>~hu< 4L ~>nnaoun um; . uz—o . 9oo-. 09n-.9oue w9H—n‘ 4; ~>~9D°¢a wmu I uruo I ooun~o ao~99.-no u>~—Q< 4; ~9¢9°Out own o u:—. I 9900“. 9m~o~.—no~ u>-U¢ a; opaunoua am« I uzn. . 9«9J:. 999~n.o~9~ w>ub09 at o>9ucozn am. I uzu. . 9a~onI 99w¢9.~9~o w>~pu¢ 4a o»oocOua ~mu I u:—. . 9d~9:I 99990.nuuu w>u~o< 4L o>99noza «mu adzuuwaz uwaaa 92¢ xuzoa :20 gave as: >->~_u< gnu mzpcnm warp wrcz amazbz 9999.9 I “.2209... 9999.: I a..—920$ I 92.9 I wzwu I soon w-x~xu9owsno ma w=u<> bznhao uuuatzcu I zc—bmc 92—1; : uu¢k 999.9 unulxum< m z z a 4 a o an.~°.o— wrap .~\99\99 w—«a 188 U I 5 6 i 7 BIG 1 1 1 l #60 0 0 0 6 III I I I R ”0 1 a l b O on E 8&56 I 30 I I... 00 Y 0 32 £90 I. s O! I ‘- 33 6 0 NB 3 b..—to. 0 1L 7IIIIII 000 0 721°C “- oz 2 2 7 P 2 “O...“ u 3 6 1577M U 00 9 9 h H X 7 5 95333 B .L IAN/lin- o? 9 9 n. ... ..L I VI U1 15...: I. 03 I9LU I 0 I I I U I. P 0 I OI C0 7UUUlz U ‘312LL C D b I a I [L Ll ZLLLGQ s “ Ink/BA a o 9 o 0 ‘ul. X RAIRC L [0R0 V E 0)L L 0 I NOPI ES tVVV 0 01 Inn 0 3A A a O 7.010. U n- '10 0 .0 | U I.1135 H 1 I IXII I 53. 0 A E OILDI U. I I 0H n- 1735~ OP 0 I 11.051L‘6 I “Z k N J I I I 09 9 POE N truly" I 73.0C51 E 6 6 X1 8 24 O 1; 0!. Cl. I ICSDflOE 0 fl 0 ‘0 1 .0 ER. CIC SSILU z 20": ID. a I O I 5" 61. PP—v-l. £1.51! II‘ OJ! NS A I 19E E IUIAIUEI S SZOhZVP R OIOBPD T 0 “EL L 0.. HDHIX 5 19h9 5 0.0 R I a I “'50 CD 0900 EAIEPUth97E$ L 00.. I .I a II gL'E 'E at. 9 "RR. P6030 I I III:— T D 15 C U 0 R JDCH CM OIIOT l.l 0&037IUG s a IQ, I900 0‘ I I 0°05 c Gun". .INP. h IognZP‘ W oooLfib CNUOSPCUCUO(IA IAOUUJOIY o 657063lflP 600‘s- Ex: I- EOE,- vA VI: .0206. IL“. 01—150 0 SYDAZCU 5'1 SLSOSE ELY} 7095- “TI IL25 C2 "Obs-tl 0 '0‘ F o 1 P I I A703. I... 3'. UEEE 2 $3 URN .hPCO PEPTDO I h 0 I HI 9? DSSSLU H6 GTSSPV 909 l? IZE XE Co I 5 UUUInI . aNSNIA.’ ...-.L. LZLLEL Elitlu. X9 Ila BkO—t‘UQ-POLPPUDFPLP‘ZIAFILDXO D I O C IPPFPHO' IINQJBLRUCCNRCIC3:NRKZFilFNRE H ICICTI 7IIIIIIIIIII.IIIIIIIII-IIIIIIIIIIIIIII-III-II [565667777777£355686999300999111111999999999.» 03005000.5§I8003§313111222333333331.3333330 3IIIIIIIIIIIIIIIIIIIIIIIIIIII .IIIIIIIIIaIIIII [77771777???’77717777777777777777775555955557 O09009000OOOOIUEODOUQOOUDOBJSHUHBabb .Ib b I b.- 3.. an...I...OOIDIII.UOOOCIOCOOOIIIOIIOCIODIOIOO. 9.399999999999999999999993999999999999999999 11111111111111111111111111111111111111111111 BIBLIOGRAPHY BIBLIOGRAPHY Books Amin, Samir. Accumulation on a World Scale: A Critique of the Theor of Underdevelogment. New York: Monthly Review Press, l974. Ballinger Pub. Co. Sixth International Conference on Ingut-Outgut Analysis. l976. Bellman, Richard E. Dynamic Programming. Princeton: Princeton Univer- sity Press, 1957. , and Stuart E. Drefus. A lied D namic Pro rammin . Prince- ton: Princeton University Press, i962. Bettelheim, Charles. Planification et Croissance Acceleree. Paris: F. Maspero, l965. Brahimi, Abdelhamid. Dimensions et Persgectives du Monde Arabe. Paris: Economica, l977. Dantzig, George B. Linear Pro rammin and Extensions. Princeton: Princeton Univer51ty Press, igég. Dowidar, Mohammed. Schemas de la Regroduction et la Methodolo ie de la Planification Soc1a iste. Alger: Editions du Tiers Monde, i964. Drefus, Stuart E. and Averill M. Law. The Art and Theor of D namic Progranming. New York: Academic Press, I977. Hadley, George F. Nonlinear and D namic Pro rammin . Reading, Mass: Addison-Wesley Pubi. Co., 1964. Hirshman, Albert 0; The Strategy of Economic Develogment. New Haven: Yale University Press, 96 . Kindleberger, Charles P. Economic Development. New York: The MacGraw Hill Book Company, l958. Lange, Oskar R. Essays on Economic Planning. 2d ed. Bombay, New York: Asia Publishing House, 967. Lecons d'Econometrie (Paris: Gauthier—Villars, l970). 189 190 Lasdon, Leon S. Optimization Theory for Large Systems. New York: Macmillan, l972. Leontief, Wassily w. The Structure of the American Econom : l9l9- l939. 2d ed. eni. New York: Oxiord Univer51ty Press, l95l. Lewis, Arthur W. Develo ment Plannin : The Essentials of Economic Policy._ New York: Harper and Row, l966. . The Principles of Economic Planning. New York: Harper and Row, l969. Myrdal, Gunnar. Economic Theory and Underdeveloped Regions. London: G. Duckworth, 1957. Nurske, Rugmar. Problems of Capital Formation in Underdeveloped Countries. New York: Oxford University Press, l9 3. Spiegel, Murray R. Mathematical Handbook. New York: MacGraw Hill Book Company, 1968. Spivey, Allen w. and Robert M. Thrall. Linear O timization. New York: Holt, Rinehart and Winston, Inc., 1970. Wagner, Harvey M. Principles of 0 erations Research. 2d ed. Engle— wood Cliffs, N.J.: Prentice Hall, Tnc., I975. Articles Ara, Kenjiro. "The Aggregation Problem in Input—Output Analysis.“ Econometrica, Vol. 27, l959. Arrow,Kenneth J. “BnportSubstitution in Leontief Models.“ Econo- metrica, Vol. 22, No. 4, October, l954. Brutton, Henry J. "Growth Models and Underdeveloped Countries.“ Journal of Political Economy, August, l955. Chakravarty, S. "Optimal Programme of Capital Accumulation in a Multi— sector Economy." Econometrica, Vol. 33, No. 3, July, 1955. Chenery, Hollis B. and Kenneth Kretschmer. "Resource Allocation for Economic Development." Econometrica, Vol. 24, No. 4, October, l956. . “The Role Of Industrialization in Development Prograns.“ Papers and Proceedings of the 67th Annual Meeting of the Amer- ican Economic Association, Detroit, Michigan, 1954, American Economic Review, Vol. XLV, No. 2, May l955. Dantzig, George B. "Optimal Solution of a Dynamic Leontief Model with Substitution." Econometrica, Vol. 23, No. 3, July l955. 191 Fei, John C. H. ”A Fundamental Theorem for the Aggregation Problems of Input-Output Analysis." Econometrica, Vol. 24, No. 4, 1956. and Gustav Ranis. "Innovation, Capital Accumulation and Economic Development." American Economic Review, Vol. LIII, No. 3, June, 1963. Ghosh, A. "Input—Output Analysis with Substantially Independent Groups of Industries." Econometrica, Vol. 28, No. 1, January, 1960. Leontief, Wassily W. "Lags and Stability of Dynamic Systems." Econ— ometrica, Vol. 29, No. 4, October 1961. Montias, J. M. "Planning with Material Balances in Soviet Type Econ- omies.” American Economic Review, Vol. XLIX, No. 5, December 1959. Sanberg, I. W. "A Nonlinear Input-Output Model of a Multisectored Economy." Econometrica, Vol. 41, No. 6, November 1973. Sen, Amartya Kumar. "Some Notes on the Choice of Capital Intensity in Development Planning." The Quarterly Journal of Economics, Vol LXXI, No. 4, November 1957. Sheahan, John. "International Specialization and the Concept of Balanced Growth." The Quarterly Journal of Economics, Vol. LXXIII, No. 2, May 1958. Sutcliffe, Robert B. "Balanced and Unbalanced Growth.“ The Quarterl Journal of Economics, Vol. LXXVIII, No. 4, November 1964. Wagner, Harvey M. "A Linear Progranming Solution to Dynamic Leontief Type Models.” Management Science, Vol. 3, No. 3, April, 1957. Statistical Sources Ministry of Information and Culture. The Four Year Plan. Algiers: SNED, 1970. Secretariat d'Etat au Plan. Tab1eaux de 1'Economie Algerienne. Alger: SNED, 1973. United Nations, Statistical Office. Statistical Yearbook. New York: U.N. 1975. United States Bureau of the Census. Census of Agriculture, 1969, Volume II General Reports, Chapter , arm anagement, arm Operators. Washington: U.S. Government Printing Office, 1973. Census of Construction Industries, 1972, Volume I, In- dustr Statistics and Special Re orts. Washington: U.S. Govern- ment Printing Office, 1976. 192 . Census of Manufactures, 1972, Industry Series, Volume 1, 2, 3. Washington: U.S. Government Printing Office, 1975. . Census of Mineral Industries, 1972, Subject, Industry and Area Statistics. Washington: U.S. Government Printing Office, 1976. United States Department of Labor. Bureau of Labor Statistics. Chartbook on Prices, Wages and Productivit . Washington: Editors James McCail and John Tschetter, Volume 2, No. 11, May 1976. United States Federal Power Commission. Technical Advisory Committee on Finance. National Surve : The Financial Outlook for the Electric Power Industr , the Re ort and Recommendations of the Technical Advisory Committee on Finance. Washington: U.S. Gov— ernment Printing Office, 1974.