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ABSTRACT

Dynamic Response of Intervertebral Joints of a Seated

Farm Machine Operator in the Range 5 - 50 Hz.

by

Oscar Antonio Braunbeck

There are a number of reports that consider vibrations

as a cause of low back pain in subjects operating tractors,

trucks, or buses over long periods of time. No objective

explanation exists which is able to describe even qualita—

tively the mechanism by which seat vibrations generate

spinal problems. An hypothesis is proposed which suggests

that if intervertebral joint deformations present distinct

levels at frequencies encountered in the seat of farm ma—

chinery, they will create a fatigue type loading of the

intervertebral joint sufficient to induce pain sensations.

A lumped parameter dynamic model of the upper torso and

head is proposed, whose main objective is to predict lumbar

intervertebral joint deformations. The governing differen-

tial equations of motion are written for a linear system

exposed to sinusoidal small amplitude displacement excita—

tion in the vertical direction through the pelvis. A
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Oscar A. Braunbeck

particular solution is found for the system of 58 second

order differential equations that provides an equal number

of complex amplitudes of motion, corresponding to each one

of the degrees of freedom in the system. The rheological

behavior of deformable components of the structure is

modeled by means of Kelvin viscoelastic elements. The

stiffness and damping coefficients for the axial mode of

oscillation are derived from impedance data taken from

isolated vertebral units.

The model is validated by computing seat to head trans—

missibility as well as driving point impedance coefficients

over the frequency range 5-50 Hz. The transmissibility and

impedance curves corresponding to the model closely resemble

the experimental curves even though the values differ

somewhat.

The magnitude of axial and shear deformations of inter—

vertebral joints are significantly affected by the frequency

of excitation and the characteristics of the seat or cab

suspension used.

Axial deformations can be as high as 20% of the amplitu—

de of base oscillation for an operator sitting on a bare

vibrating table. The use of a spring—damper—mass suspension

results in joint deformations about 1/4 to 1/5 those corre-

sponding to a seat with no suspension,

Cab suspension results in smaller joint deformations

than seat suspension for frequencies over 10 Hz. Between

5 and 10 Hz the seat suspension gives lower deformations.
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Oscar A. Braunbeck

Joint deformations increase with suspension damping.

The best protection is offered by low damping ratios (t=O.l)

provided the large amplitude of motion taking place at fre—

quencies close to the seat natural frequency can be controlled.
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Joint deformations increase with suspension damping.
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provided the large amplitude of motion taking place at fre—
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I. INTRODUCTION

1.1 Definition of the Problem

This investigation was primarily motivated by reports of

low back pains suffered by farmers. However, the range of

applications is much wider than just for agricultural situa—

tions. Truck drivers and operators of heavy equipment also

experience the same symptoms. Excessive intervertebral joint

deformation, over long periods of time, is probably a cause

of backaches in seated operators subjected to vibrations.

The conditions under which these deformations occur are in—

vestigated so that corrective measures may be taken.

1.2 Evolution of the Human Environment

Humans have been exposed to vibrations for centuries but,

as civilization has progressed, the range of vibrational

frequencies and amplitudes has become more severe. During

the last hundred and fifty years science has changed the hmmm

working environment more than in the thousands of years since

agriculture was first developed. So it is wise to look at

the possible consequences that environmental changes may have

on the human being.

During the period of the industrial revolution, productiv—

ity was the main concern, and very little attention was paid

to the effects of the high level of physical andgmydxflogunl

stress placed on the human being. A similar situation took



 



 

place in agriculture. Farm productivity increased with mech—

anization, but the farmer was subjected to higher levels of

physical and mental stress.

Power equipment possibly would not have become a health

hazard if farmers had continued farming about the same area,

but spent less time in field operations. However, because

of economic pressures, the number of working hours remained

about the same or in many cases increased, (machines do not

need to rest as do horses) and the cultivated area increased

to raise the economic output.

1.3 Vibrations as a Cause of Backache

Due to his inherent flexibility and great ability to

"adapt” man has, for the most part, been able to adjust to

the changing situations. But the "cost" in comfort, physical

and mental stress, and general health has often been high.

Too often solutions to environmental problems are not armid—

ered important until a problem becomes so acute that a solu—

tion is absolutely required.

Occupational health problems associated with operation

of farm equipment by a seated operator exposed to body vibra—

tion is a kind of problem for which there exists no quick,

easy, and conclusive evidence of damage to human health.

There is some epidemiological association between vibrations

and lumbar spine disorders, but conclusive evidence is not

available yet. Large intervertebral joint deformations

appearing over prolonged periods of time may not be the only

cause of low back pain. Nonetheless, the population at risk



 



is sufficiently large, Wasserman et a1. (1974), and some of

the associated complaints are sufficiently severe that an

attempt must be made to reduce the vibration induced joint

deformations at points where they are extreme, and toconan?

rently conduct studies seeking to explain the relationship

existing between the spine disorder and the vibration.

Even though there is no information on what magnitude of

disc deformation under sinusoidal excitation could be hmmiul

the present model will indicate the frequency ranges most

likely to present tolerance problems. This means that pro—

tective systems (seat or cab suspension) can be designed

without complete knowledge of the tolerance levels, with

assurance that whatever the tolerability, the protection

system will offer maximum protection.

Improper lifting habits are frequently considered to be

the main cause of back problems. The total bending and.mdal

load applied to the human torso when lifting a heavy weight

are undoutedly higher than loads resulting from low amplitude

seat vibration. But, in a lifting situation there is addi-

tional assistance to the spine through elevation of the intra—

abdominal pressure that transforms the thorax and abdomen

into a semi—rigid-walled cylinder, Eie (1972). This parttflr

1y counteracts the compression produced by the erector afinae

muscles and tends to elongate and straighten the lumbar qfine

anteriorly. The high intra—abdominal pressure which occurs

when lifting heavy weights explains why certain individuals





may expose their back to extremely heavy loads without damag-

ing their spine. This type of assistance is not available

to the spine in a long duration vibratory load situation.

1.4 Dynamic Model of the Spine

for Agricultural Applications

Most of the models reported in the literature have been

developed for automobile and aerospace applications, mainly

for short duration high acceleration seat ejection or front

collision phenomenon. Farm equipment operators are subjected

to vibrations of lower accelerations but for much longer

periods of time and in a frequency range where several compo-

nents of the body reach a resonant stage.

The vibration reaching the operator through the seat is

mostly sinusoidal in nature, originating at engine, tires,

transmission or some other moving component having rotary or

reciprocating motion. Some terrain-induced random vibrations

will also reach the operator with occasional transient peaks,

mainly when crossing deep furrows where the seat suspension

may bottom out.

The vertebral column of a seated tractor driver is fre—

quently overstressed as the operator turns around to look at

the machine pulled by the tractor. Yet some controls must

be adjusted during tractor operation as a function of crop

condition. This adds an extra load on the spine while it is

simultaneously twisted and receiving a vibrational input

through the pelvis.



 



1.5 Complexity of a Model of the Human Torso

The development of a mathematical dynamic model of the

human torso involves problems such as complexity of the

system; strong limitations for testing system components

under normal operating conditions (in vivo) to collect data

to validate the model; and materials as well as loads with

poorly understood behavior.

Because of the structural complexity of the vertebral

column and the difficulty of conducting experiments "in

vivo", the dynamic behavior of the spine must be investigated

through some kind of physical or mathematical model. The

model can then be successively adjusted until it predicts

the dynamic response of the human body with sufficient

accuracy.

By working with a mathematical model rather than with a

physical model it is easier to make modifications such as

changes of size, shape or rheological properties of the

connective tissue for any of the anatomical components of

the system. A physical model would require the construction

of new components, every time a dimension, shape or material

has to be changed.

Dynamic modeling of most engineering structures is nor—

mally done for well understood material and structural mem—

bers having known dimensions. The human body is very complex,

mainly because there are large variabilities of dimensions

from person to person, because connective tissues present

non—linear viscoelastic behavior and because muscles do not



  



behave as passive structural components.

Measurements made on cadavers are hardly sufficient to

permit production of statistically valid geometrical data of

the structural components involved in a lumped parameter

model. For some components approximations must be made

through standard geometrical figures in order to be able to

calculate the parameters required for a dynamic analysis.

For instance, the geometry of a rib can be approximated

by an elliptical cross section with variable ratios of the

diameters, dl/d2' over the length of the rib.

Body materials tend to change with age more than engi—

neering material do. The ideal situation would be to model

the human body using data (rheological and geometrical prop-

erties) taken in vivo from young subjects of different ages,

but in practice the properties are mainly measured from

older cadaver materials. This is a limitation since cadavers

have dynamic properties which are often different from the

in vivo case. More accurate results will become available

for modeling as new transducers are developed which are

capable of taking measurements in vivo.

The loading conditions are also quite different from

other engineering cases. This difference is mainly due to

the existance of muscle forces which load the body structure

following a stimulus mechanism not sufficiently understood

to be properly modeled. But, for steady state low-amplitude

Vibratory excitation, the back muscles can be thought as

exerting a constant axial force that contributes a great deal



 



to the stability of the spine. This assumption applies to

a subject sitting erect, and not performing any tasks that

could alter the symmetry of loads with respect to the sagit—

tal plane. This is in fact the situation for most of the

time of exposure to vibrations of a tractor driver. The

thoracolumbar spine is capable of supporting very low

compressive axial loads without muscle assistance.

1.6 Main Contributions Made by the Model

The number of approximations made when developing

models of this kind will probably lead to results signifi—

cantly less accurate than those reached in dynamic engineer-

ing structures made out of better understood materials. In

spite of these uncertainties, there are positive contribu-

tions, such as:

a) A better understanding is gained both of critically lmubd

areas of the body and of the most critical loading condi-

tions.

b

v

The need for specific geometric as well as rheological

properties becomes evident.

C

v

Interdisciplinary interaction becomes more effective as

the contributions made by the modeling work become known

in other related fields.

1.7 Objectives

The steps followed in studying the spine problem premymed

through this chapter can be summarized in seven basic objec—

tives:

1. Study existing reports on back problems of tractor
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vibration could be considered to contribute significantly

to the back pain.

Propose an hypothesis on how low amplitude vibrations

acting vertically on the pelvis of a seated subject can

adversely affect the lumbar spine.

Find the most realistic way to predict the dynamic

response of the spine to sinusoidal input through the

sacrum. This implies the simplification of a complex

system to a model that can be mathematically implemented

and solved.

Review existing data on the geometrical and rheological

properties of the system in order to reduce experimental

work to a minimum.

Verify the proposed model with existing data on overall

dynamic response of the human torso for a body in sitting

posture.

Draw conclusions and give recommendations concerning the

most critical vibrational inputs to be minimized by a

properly designed protective system.

Give recommendations on additional data required to reach

more accurate results using the proposed model.



 



II. REVIEW OF LITERATURE

2.1 Surveys on Spinal Problems

The existing reports on back problems in subjects ex—

posed to seat vibrations justifies the development of a

model able to identify the vibratory conditions most adver—

sely affecting the spine. The reports summarized in this

section lead to the conclusion that vertical seat vibration

is to some degree responsible for certain reported back

problems.

Paulson (1949) observed some of the distressing symptoms

of tractor driving during a period of several years of rural

medical practice. The complaints ranged from neck stiffness

and extremity pain, to digestive upsets, frequent stools,

heartburn, urinary frequency and dizziness; but the most

common complaint was lower backache.

Rosegger and Rosegger (1960) examined 371 tractor drivers

to assess the correlation existing between vibrations, shocks,

stomach troubles, and degenerative deformations of the tho—

racic and lumbar spine. They concluded: ”Adolescent kyphosis

can be caused not only by lifting or carrying heavy loads or

prolonged work in a bent position during puberty and adoles—

cence, but that it is also promoted by shocks and vibrations

which act as microtrauma upon the intervertebral discs while

the body is hold in a faulty posture. The degenerative spine
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deformations increase proportionately with the length of

service as tractor drivers".

Baker and Wilkinson (1974) conducted an occupational

health survey on 851 farmers. The study showed that one of

every 5 Michigan farmers suffers chronic back pain. One of

every 12 farmers had to make an adjustement in his farming

activities due to back or knee problems. Improper lifting

habits and exposure to machinery vibrations are suggested

by the authors as the factors most likely to be responsible

for the backache.

There are some types of dynamic loads acting on the

spine with sufficient frequency and time of exposure to be

considered a kind of vibratory condition. Fusco et a1 (1963)

examined sixty workers employed in the sheet metal stamping

industry. In 60% of the cases X—rays showed signs of lumbo—

sacral arthrosis. The vibrations are transmitted to the

operator through the legs and arms. The dynamic load is not

sinusoidal but periodic with a frequency of about 1 stroke

per second.

Long time exposure to vibration of young subjects will

very likely affect bone shape and structural characteristics.

Prives (1960) has investigated the influence of work and

sports on the skeleton of 3000 growing and scenecent orga-

nisms, over a period of 10 years. Significant variations of

bone shape and structure were found for matain<xmupathxm and

sports.

Some other effects of vibrations have been investigated
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that could be due to excessive motion of nerves in the spinal

cord. Hornick (1961) studied the effect of low frequency

vertical vibration ( l to 7 Hz ) on male subjects at several

intensities (.15 to .35 g). The subjects were seated on a

rigid chair upon a shake table. Tracking performance was

significantly (a<.001) affected by vibration but there was

no relationship to either the intensity or frequency of vi—

bration. Reaction time was not impaired by any frequency or

intensity until after the vibration ceased.

Several types of morbidity patterns related to whole—

body vibration were investigated by Gruber and Ziperman

(1974). The information was collected from 1448 interstate

bus drivers, and included the results of periodic physical

examinations. The results of the statistical analysis

indicate that whole-body vibration must be included in the

etiology of back disorders.

The basic bus vibrations are in the range 0-15 Hz, with

a mean acceleration of 0.05 g. A rough riding bus can reach

a mean acceleration of 0.1 g., Clevenson and Leatherwood

(1973). Equivalent information is not available for farm

machinery but it is reasonable to expect figures significant—

ly higher than those reported for buses.

Most of the work done in trying to identify etiological

factors related to various disorders of the spine are survey

type research. This approach has provided sufficient evi-

dence to support the hypothesis of existence of vibration

related spinal problems. Experimental as well as modeling



 



12

work are the next stage in the process of explaining the

mechanism relating vibrations to low back pain.

2.2 Hypothesis on Low Back Pain

There is a list of possible causes for low back pain,

but the tendency among orthopedic and neurological surgeons

is to attribute low back pain to abnormalities in the lumbar

intervertebral discs. Some clinical observations suggest

that the pain may originate within the disc, but anatomical

studies have failed to demonstrate the presence of nerve

fibers within the annulus or nucleus pulposus. This seems

to indicate that pain must originate in some of the neigh-

boring elements interacting with the discs, namely vertebral

bodies, posterior arch, and ligaments. All of them contain

nerve fibers able to sense pain, Brown et al. (1957).

The oscillatory relative motion between vertebrae creates

a fatigue type loading on the annulus fibrosus of the inter—

vertebral disc, the cartilages of the articular facets, and

the ligaments linking both vertebrae, which may be responsi—

ble for some tissue irritation that creates pain sensations.

The axial motion of vertebrae is the main vibrational mode

of the lumbar spine for a seated subject under vertical base

motion. Due to the curvature of the spine, the vertical

motion of the sacrum will also generate rotational as well

as tangential (shear) deformations of the intervertebral

joints in the sagittal plane. Relative motion between ver—

tebrae is considerably reduced above the 10th. thoracic ver—

tebra. The ribcage increases the stiffness of the thoracic
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spine. Therefore the larger deformations in the lumbar

spine together with the high incidence of complaints in this

region of the spine indicates that some relationship must

exist between backache and intervertebral joint deformations.

The sinusoidal compressive force applied to an inter—

vertebral disc simultaneously subjected to a constant com—

pressive force resulting from body weight creates a pressure

gradient between the disc and the vertebral bodies enclosing

it. According to the results of Brown et a1. (1957), 1.0

to 2.5 cm3 of volume losses occur on the lumbar interverte—

bral disc under axial (quasi—static) compressive load. It

is suggested by the authors that the transference of mass

from the nucleus of the disc across the cartilagenous plates

results in a less uniform stress distribution over the

annulus fibrosus and cartilaginous plates. A reduction of

hydrostatic pressure inside the disc means that a larger

share of the axial load must be carried by the annulus fi-

brosus. A similar phenomenon may take place when the inter—

vertebral disc is subjected to sinusoidal compressive loads

superimposed to a constant axial load.

Frequency and amplitude of motion as well as time of

exposure to vibrations are probably the main parameters to

be studied concerning spine problems. The combination of a

frequency with corresponding minimum values of amplitude and

time of exposure at which low back pain develops can be

considered as a "failure” of the spine subjected to cyclic

stresses. Such fatigue failure will not occur if the exposure
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time is short enough to allow repair by healing. The inter—

vertebral discs, because of lack of reparatory power, may

be particularly susceptible to this type of failure, Kraus

and Farfan (1972).

2.3 Existing Lumped Parameter Models of the Human Torso

Some of the lumped parameter models most closely related

to the one developed in this project are summarized in this

section. The limitations of these models to predict the

response of a seated subject to sinusoidal seat excitation

are pointed out in each case.

The lumped parameter model developed by Orne and King

Liu (1971) is capable of predicting the displacements of

individual vertebra subjected to transient loading condi-

tions. The behavior of the discs under axial compression

is modeled by a three—parameter linear viscoelastic solid.

The behavior of this model under compressive load closely

resembles experimental creep and relaxation curves. How—

ever, according to the analysis of the impedance data

reported by Kazarian (1972), the same model does not provide

satisfactory results for sinusoidal excitation over the

frequency range 5-50 Hz.

The model presented by Orne and King Liu, like some

others, considers the effect of the upper torso on the spine

by eccentrically, but rigidly attaching a mass (2050.0 gm)

to each vertebra. The magnitudes and moments of inertia of

these masses were measured by Liu and Wickstrom (1973). It

was felt that under sinusoidal excitation the model would
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be more realistic if a smaller mass, corresponding to the

tissues more closely attached to the spine, is considered

as being rigidly attached to each vertebra. The remaining

mass of the upper torso must be attached to the spine

through some kind of deformable elements that would allow

for the relative motion existing between the ribcage and

the spine.

Prasad and King (1974) developed a lumped parameter

model of the spine including Kelvin viscoelastic elements

for the three modes of motion in the sagittal plane; this

is axial, shear, and bending (rotational) motions. The

stiffness and damping coefficients of the Kelvin element

are considered to be constant. The behavior of the model is

satisfactory for transient type loads, but, according to the

results of the modeling work done using the impedance data

reported by Kazarian (1972), Kelvin viscoelastic elements

with constant damping and stiffness coefficients do not give

satisfactory results for axial sinusoidal excitation. The

upper torso is modeled in a similar way to Orne and King

Liu (1971). This model considers transmission of load

through the articular facets, which is a major new feature

when compared to other models that include only the inter—

vertebral disc.

Muksian (1970) proposes a lumped parameter model in—

cluding all the joints of the vertebral column, head, pelvis,

ribs, shoulders, viscera of the upper torso, and the action

of corresponding muscles. The proposed system with between
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65 to 70 separate masses is finally reduced to only seven

masses due to the complexity of the original system.

Individual vertebrae are not considered as separate masses

in the final model consequently it does not provide any

information on deformation of intervertebral joints.

Roberts and Chen (1970) developed an elastostatic finite

element of the human thoracic skeleton. It includes sternum,

ribs, costal cartilage and vertebral column. The soft

tissues were neglected. This model is acceptable for static

loads; it was used only as a first approximation toward the

development of a dynamic model for the study of anterior

chest trauma, occuring for example in automobile collisions.

2.4 Rheological Behavior of Deformable

Components of the Human Trunk

Up to the present time the need of rheological data for

human biostructural analysis has been such that almost any

result able to shed some light into the field was welcomed.

It is mainly because the required experimental material is

difficult to obtain. Moreover, the apparatus used to

measure rheological properties in most cases must be special—

ly built for the particular shape of the speciment being

tested.

It was felt that enough information is available in the

literature to model the human spine and draw some important

conclusion on its response to sinusoidal input through the

pelvis and at the same time get a better understanding of

what is the additional information more urgently needed
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that would lead to more accurate results. A through

literature search was done in order to keep the experimental

work to a minimum. Christ and Dupuis (1963) investigated

the motion of cervical and lumbar spine for a seated subject

under sinusoidal seat vibration. The equipment used was an

image intensifier and X—ray film equipment. The study was

not extended to the thoracic spine because of the very

indistinct pictures produced by this area. Only one fre-

quency, 2 Hz, was used for the experiment. No data is

reported on deformation of intervertebral discs. Probably

the definition of the X—ray film was not satisfactory for

such measurements. Bulk displacements of the spine and

stomach are reported.

The model under study requires stiffness and damping

coefficients for the Kelvin elements used to predict the

rheological behavior of intervertebral joints, neck, and

costo-vertebral joints. The three principal structural

connections between adjacent vertebrae, namely the disc,

plus the posterior facets, plus the interconnecting ligaments

will be refered to as the intervertebral joints.

Most of the required information is available in the

reports described in the following paragraphs. Due to the

wide ranges of variation given by some authors for some of

the parameters, more than one source will be cited whenever

possible so more average figures can be used. Most of the

rheological data available is focused on the axial behavior

of the intervertebral discs or the intervertebral joints.
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The data finally adopted for the model are given in Chapter

VI.

In those limited cases where there is a choice priority

was given to data obtained under experimental conditions

similar to the conditions of operation of the model; such

as parameters measured under harmonic loading were given

priority over those measured under transient or static

loading conditions. Measurements made on complete inter-

vertebral joints had priority over those taken separately

for discs or posterior arch. Data taken from fresh cadaver

material had priority over embalmed cadaver materials.

Data measured from cadavers being between 30 and 50 years

of age were chosen when possible.

Different components of the body trunk have different

stiffness characteristics. Ribs, head, pelvis, and verte—

brae are1nuch stiffer than intercostal tissue or interverte—

bral discs, Crocker and Higgins (1966). For the purpose of

this investigation head, vertebrae, and pelvis will be

considered as rigid bodies. Andriacchi et a1. (1974) found

that although rigid bodies were used to model calcified

portions of the ribs, vertebrae and sternum, the model

predicts cage deformations in close agreement with those

measured experimentally for static loading conditions.

The stiffness and damping coefficients involved in

modeling the axial behavior of intervertebral joints are

derived from the impedance data reported by Kazarian (1972)

for isolated vertebral units. Details on these data are
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described as needed in sections 4.1 and 6.4. The impedance

measurements were taken from preloaded vertebral units, sub—

jected to sinusoidal axial excitation; these test conditions

make the data particularly suitable for the model being

developed herein.

The rheological data for bending mode of oscillation of

intervertebral joints in the sagittal plane is adopted from

Markolf and Steidel (1970), who have measured stiffness and

damping of the intervertebral discs under harmonic loading

for the following modes of oscillation: lateral and sagittal

bending, torsion, and tension-compression. The disc was

fixed to a table by one end, and to a mass a the opposite

end. The mass was allowed to move as a single degree of

freedom system either in axial, bending, or torsional mode

of oscillation.

The stiffness was calculated from the measured natural

frequency of the single degreee of freedom system oscilla—

ting in free vibration. The damping factor was estimated

from the rate of decay of the vibration trace. Even though

there are no data to support the hypothesis that these

coefficients are frequency dependent, an exponential equa-

tion will be adopted by analogy with the axial behavior as

explained in section 6.4.2.

The measurements made by Markolf and Steidel were done

with the posterior arch sawed off for the axial test. It

was done under the assumption that the posterior facets and

ligaments play no important role for the transmission of
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vertical loads through the column. It may be the case for

static loading, but under dynamic loading conditions the

amount of damping present in the posterior arch may develop

significant velocity dependent forces being transmited

between vertebrae.

The damping data for bending oscillation is adopted from

Prasad and King (1974).

Very little is known about the shear rheological behavior

of intervertebral joints. An approximation done by Orne and

King Liu (1971) using data reported by Evans and Lissner

(1959) is used in section 6.4.3 to calculate the shear

stiffness coefficients required for the model.

No data is reported on damping coefficients for shear

mode of oscillation, so a range of values will be analyzed

in an attempt to bracket the real value, and see how sensi-

tive the structure is to this parameter.

The two dimensional model (sagittal plane) developed by

Prasad and King (1974) includes Kelvin models for axial,

shear and bending behavior of the intervertebral discs.

The axial stiffness coefficients modified from Markolf and

Steidel (1970) range from 29,000.00 x 105 dyn/cm to 14,000.00

dyn/cm from top to bottom of the thoracolumbar spine. These

data are within the range swept by the frequency dependent

stiffness coefficients derived from the impedance data

reported by Kazarian (1972), but leaning toward the lower

values. This is reasonable since Prasad and King assigned

additional stiffness to the posterior arch in parallel with
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the discs.

The axial damping coefficients used by Prasad and King

for intervertebral discs range between 18.0 x 105 and

44.0 x 105 dyn.sec/cm, which is close to the lower values

calculated using frequency dependent equations derived from

impedance data. No damping was considered for the posterior

arch.

The bending stiffness coefficients reported by Markolf

5 5
and Steidel vary between 3,884.0 x 10 and 23,305.0 x 10

dyn.cm/rad. Prasad and King increased these values to

67,853.0 x 105 dyn.cm/rad. for the lumbar spine, and to

135,706.0 x 105 dyn.cm/rad for the thoracic spine. Prasad

and King justified these stiffness increases by the fact

that Markolf and Steidel's measurements were made with no

preload. Moreover, the ribcage further increases the bend-

ing stiffness in the thoracic region of the spine. Although

this reasoning is correct the stiffness increases are much

too high.

Prasad and King considered the upper torso divided in

slices cut by a horizontal planes passing through the inter-

vertebral joints. Each slice was modeled as an excentric

rigid mass attached to the corresponding vertebra. These

excentric masses attached rigidly to a vertebra create much

more severe dynamic loads on the intervertebral discs than

those that would result from a model having some kind of

deformable element linking the mass of the upper torso to

the spine.
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King and Vulcan (1971) measured the gradient of force-

deformation curves under axial dynamic loading conditions.

Two segments of the spine were tested. One segment consis—

ted of half T11, T12, plus half L1. The second segment

included half L1, L2, and half L3. The rate of loading

used was approximately 9,000.0 Kg/sec. Each segment

included two joints, so the stiffness of each joint is

twice that reported for the segment.

Se ent Fresh Embalmed

5 5

T-12, aver. stiff. = 37,162.0 x 10 38,434.0 x 10 QflVCm

L—2, aver. stiff. = 23,7260 x 105 28,962.0 x 105 dyn/cm

These values are 27.0% higher than those calculated for 50

Hz using the equations for frequency dependent axial stiff-

ness coefficients. This is a result of compounding both,

deformation as well as velocity dependent forces into a

single stiffness coefficient.

In all cases there was no significant increase of stiff—

ness from fresh to embalmed specimen conditions at T—12

level.

2.5 Geometrical Data of Components Involved in the Model

The geometrical data required for assemblage of the

model presented in Chapter III involves dimensions of ver—

tebrae and location of their center of gravity, curvature

of the spine, and location of the center of gravity of the

head—neck system.

Most of the dimensions of vertebrae remfixed.finrthenndel

could have been obtained hitim LflfiraUnE from measurements
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taken by Lanier (1939) Prasad and King (1974), Schultz and

Galante (1970), and Roberts and Chen (1970). Since no data

is available on vertebra mass moment of inertia about its

center of gravity in the sagittal plane, measurements had

to be taken from an embalmed spine. All dimensions needed

were taken from a single cadaver.

The curvature of the spine adopted for the model corre—

sponds to a subject seated in erect posture on a seat

furnished with low back rest, Clark et a1. (1963). Data

reported by Kazarian (1972), Orne and King Liu (1971), and

Schultz et a1. (1973) were consulted to gather all the

information required.

The curvature of the spine considerably affects the

amount of load to be carried by the intervertebral discs.

A proper restraint system would keep the spine in an erect

position, which makes the posterior arch to share a larger

percentage of the load. Ewing et a1. (1972) found that

anterior compression of the lumbar vertebral column can be

reduced by restraining the shoulders and pelvis to the seat

back in a moderate hyperextended position.

The spine configuration used in the present study

approximately corresponds to average tractor driving condi—

tions. Moreover, the adopted relative position between

vertebra is close to that used to collect the impedance

data involved in modeling the axial rheological behavior of

the intervertebral joints. Other configurations would have

different stiffness coefficients for the intervertebral
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joints if their non—linear force-deformation behavior is

taken into consideration. Therefore more data should be

available on the rheological behavior of the joints before

any studies can be conducted in relationship to dynamic

responce and body posture.

2.6 Masses Involved in the Lumped Parameter Model

The weight distribution of components over the human

torso, head and upper limbs has been reported by a number

of authors, Dempster (1955), Damon et a1. (1966), Ingalls

(1931), Lowrance and Latimer (1967), Muksian and Nash (1974),

and Payne (1970).

Since the spinal data used for the model was measured

on a spine corresponding to a body weight of 85.0 kg, most

of the component weights will be calculated using Dempster's

data given as percentage of body weight.



 



III. THE MODEL

3.1 Mayor Aspects of the Modeling Process

Prediction of relative motion between vertebrae of a

seated human being under sinusoidal base excitation can be

done through mathematical formulation. The human torso can

be considered as an engineering structure whose dynamic

response is the integrated response of all the components

of the structure. Even though the spine is the only element

of interest for the present work, the remaining elements of

the torso (head, thorax) are included in the model only

because of their interaction with the spine.

There are five mayor aspects to the modeling of the ver—

tebral column:

1. Reduction of the real torso to a simplified version that

will be easier to formulate but having a dynamic response

close to that of the original system

2. Study of the kinematic behavior of the moving parts of

the torso

3. Study of the rheological behavior of the deformable

elements in the system

4. Derivation of the governing differential equations of

motion

5. Solution of the system of governing equations of motion

25
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3.2 Simplified Model of the Human Torso

The real system shown in Figure 3.1 has been properly

reduced to the lumped parameter model of Figure 3.2, which

is suitable for mathematical formulation. The simplifica-

tions involved in the process of reducing the actual struc—

ture to a model form are based on a number of assumptions:

1. Only the torso, head and upper limbs are included in the

model. The lower limbs rest on the floor and the seat

surface without actually loading the spine.

2. Vertebrae are considered as rigid bodies. Deformations

of the spine under load take place at the intervertebral

joints. All components of the spine are deformable, but

the stiffness of vertebrae is much higher than that of

ligaments and cartilages forming the intervertebral

joints. Bell et a1. (1967) reported a median vertebral

bone stiffness of 11.0 x 109 dyn/cm compared to about

2.0 x 109 dyn/cm for the intervertebral joint.

3. The forces developed at intervertebral joints are assumed

to be linear functions of deformations. The rheological

behavior of the joints is nonlinear, Brown et a1. (1957),

but for deformations sufficiently small the behavior

closely follows the equation of a straight line tangent

to the force—deformation curve.

4. No temperature effects are considered in the rheological

equations. The range of variation of body temperature

is very small.

5. Ribcage, internal organs of the thorax, upper limbs, and
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_____——————

Head

2? and

Neck

Vertebral column

Thorax

and

Pelvis Upper limbs

  

Figure 3.1. Components of a seated human body having

significant dynamic interaction with the

vertebral column.
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Figure 3.2 Simplified structure representing a seated

human body.
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shoulders are modeled as a single rigid mass suspended

from the upper 10 thoracic vertebrae by means of 10

Kelvin units. The most significant dynamic interactions

(resonances) between the spine and the imper Unmo tmqaplace

at frequencies lower than 10 Hz, Coermann et a1. (1960),

while the largest intervertebral joint deformations

take place between 30 and 40 Hz.

Vertebrae are assumed to move only in the sagittal plane.

Forces acting in a direction perpendicular to the sagit—

tal plane on both halves of a symmetric body will mutually

cancel out.

Muscles enter the model only as passive components having

dynamic interaction with the spine as a result of their

mass and viscous behavior. Transient or random excitations

that could trigger muscle activity other than the constant

stabilizing force on the spine, are not included in the

analysis. The response of the model attempts to predict

intervertebral joint deformations for subjects under

steady state sinusoidal excitation.

Head and neck are modeled as a single mass attached to the

top end of the thoracic spine by means of three Kelvin

elements representing the normal, shear and bending rheo—

logical behavior of the neck.

Since the abdominal organs are mostly resting on the pel—

vis they are considered as part of the pelvic mass. The

dynamic response of the abdomen would mainly affect the

values of driving point impedance that are used for validation
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of the model. According to the results of Coermann et

a1. (1960) the motion of the abdominal wall presents a

maximum at a frequency between 3 and 4 Hz for all subjects

studied. The abdomen displacement curve levels off at

about 7 Hz, with no other resonant conditions thereafter.

It indicates that the abdominal mass is not responsible

for any of the peculiarities presented by the impedance

curve of a seated human body.

10.The impedance data used to derive the frequency dependent

stiffness and damping coefficients were obtained from

fresh cadavers. There is no doubt the properties of

living tissues will deviate from those of the inert

material. The magnitude of the deviation has yet to be,

investigated. The overall response of the model indicates

that those deviations are not significant.

ll.The intervertebral joint is modeled as a set of three

massless Kelvin elements. The mass of the disc is

divided in two parts which are considered as part of the

two vertebral bodies enclosing the disc, see drawing in

Table 6.2.

3.3 Kinematics of the Model Components

There are a number of deformable elements in the human

torso that allow relative motion among components of the

structure. The ones included in the model are: interverte—

bral joints, costo—vertebral joints and the neck.

The patterns of deformation assumed for an intervertebral

joint along the disc axis (axial) as well as perpendicular
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to it (shear) are shown in Figures 3.3 and 3.4. Pure bend—

ing deformation is assumed to occur when the relative motion

between vertebrae takes place around the point of inter—

section, 0, of the longitudinal axis of the two vertebral

bodies, see Figure 3.5. These simplified patterns of joint

kinematic behavior are adopted under the assumption of small

deformations.

The kinematic behavior of the intervertebral joint

requires special techniques to handle geometric non-linear-

ities when large relative displacements are allowed between

vertebrae; for example in an hyperextended mode the articu—

lar facets on the spinal posterior arch will bottom out.

It significantly changes the kinematic behavior of the

intervertebral joint. Configuration and location of the

articular facets and posterior arch are illustred in

Appendix A.

The intervertebral joint flexibilities just introduced

allow for each thoracic and lumbar vertebra to have three

degrees of freedom in the sagittal plane that will be

identified by coordinates x,z,é as shown in Figure 3.6.

Sacrum and pelvis are included in the model as a single

mass. Only two degrees of freedom, (x,z), are assigned to

this mass. No significant pelvis rotations are expected in

light of the following assumptions:

a) For subject seated erect the point where the seat inter—

acts with the pelvis is almost on the same vertical line as

the intervertebral joint L5 — S, so that no significant
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Figure 3.3. Axial deformation of intervertebral joint.

The displacements between vertebrae is in

a direction perpendicular to disc middle

plane a — a.

 

Figure 3.4. Shear defonnation of intervertebral joint. The

displacement between vertebrae is in a

direction parallel to disc middle plane

a — a.
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moments are applied to the pelvis that could generate

rotational motion, Appendix F.

b) Due to the large dimensions of the pelvis, any tangential

displacement of a peripheral point of the pelvis is

translated into a small rotation about the center of

gravity of the sacrum — pelvis mass.

The ligaments holding together ribs and vertebrae at the

costo—vertebral joints will allow significant relative

displacements and rotations between a vertebra and a rib

when loaded individually, Schultz et a1. (1974). The

ribcage as a whole behaves very much like a hollow truncated

cone having mostly longitudinal and transversal displacements

relative to the thoracic spine. Any rotational relative motflxl

will be greatly inhibited by the line of costo—vertebral

joints placed on the thoracic spine. Therefore, the mass of

the upper torso, M is given only 2 degrees of freedom;
ut’

with motion in horizontal and vertical directions.

The head has three degrees of freedom in the sagittal

plane. None of them is inhibited to a point where its

elimination from the model can be justified.

Each one of the degrees of freedom just described

implies the existence of a corresponding coordinate if the

motion of the structure is to be fully described. Therefore

coordinates will be adopted according to the number of

degrees of freedom assigned to each mass.

3.3.1 Systems of coordinates 

A system of coordinates must be properly chosen before
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writing the equations governing the motion of the structure.

The resultant system of equations will have desirable

characteristics depending on the chosen coordinates.

For the model under study, the motions of each vertebra

and the head-neck lumped mass in the sagittal plane are

completely described by three x, z, 6 as shown in Figure

3.6. The z—axis is oriented vertically while the x—axis is

oriented horizontally from the spine to the anterior part

of the torso. The deflections are measured from a fixed

point in space where the center of gravity of masses would

be at rest if there were no excitation forces acting on the

system.

A clockwise rotation 6 of a mass about its center of

gravity is assumed positive. The sacrum-pelvis and the

upper torso masses are given only two degrees of freedom

described by coordinates x and z. Coordinates u, w, 6 shown

in Figure 3.6 are auxiliary coordinates used to facilitate

the derivation of the intervertebral joint stiffness matrix.

3.4 Rheological Behavior of Deformable Elements of

the Model

The rheological behavior of all deformable elements in

the system is modeled by means of Kelvin type viscoelastic

elements as shown in Figure 3.2 to model the costo—vertebral

joints. This decision was made in light of the results

obtained from the modeling work done for the axial behavior

of intervertebral joints, which is covered in chapter IV.

The numerical values assigned to each spring and dashpot in

the system are discussed in Chapter VI.





 

Figure 3.5. Bending deformation of an intervertebral

joint.

 
Figure 3.6. Local system of coordinates for calculation

of element stiffness matrix.
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IV. AXIAL RHEOLOGICAL BEHAVIOR OF INTERVERTEBRAL JOINTS

4.1 Driving Point Impedance of a Vertebral Unit

The axial rheological behavior of an intervertebral joint

can be modeled using the impedance test results reported by

Kazarian (1972). The data are available for the thoracic

and lumbar spine, with and without the posterior arch, and

for three age groups of people.

Some of the conditions under which Kazarian's tests were

conducted are summarized in this section for application in

Chapter IV. The thoracolumbar spine was divided in four

units: Tl-T6; T7-T12; Ll—L3; and L4-Sacrum for impedance

testing.

The vertebral units were tested in vertical position.

The superior end of the unit was fixed to a loading head

mounted on a ball joint designed to apply pure compression

load on the unit. The lower end of the vertebral unit was

mounted onto the shaker head, Figures 4.1 and 6.5. Each

unit was tested at a preload of 21.7 Kg. Thistestkg axfldtkm

forced the intervertebral joints to a deformed configuration

with higher values of stiffness and closer to the real

situation.

Following the impedance test of a complete spinal unit,

it was removed from the loading head, its posterior arch

separated and the vertebral bodies with intact anterior and

posterior ligaments were placed back into the loading jaws
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for impedance testing. The later test was conducted to find

out how the posterior arch contributes to the dynamic load

carrying capacity of the spine.

4.2 Mechanical Impedance

Electrical circuit analysis techniques can be applied

to complex mechanical systems. The mechanical impedance (or

mobility) is a relationship between force and velocity

represented by a differential equation in the time domain.

By transforming this equation to the Laplace domain the

computational work is considerably simplified since all the

differential equations become algebraic. For the present

investigation where harmonic excitation is the main interest

and the answers sought can be obtained in the frequency

domain, the Laplace variable, 3, will be repleaced by iw,

where i stands for the imaginary number /:1, and w is the

frequency of harmonic oscillation.

The impedance, Z, of the three basic elements (spring,

dashpot, and mass), equations (4.1), are used to derive the

impedance of the complete structure. The derivation of

element impedances are given in Vernon (1967).

Mass Damper Spring

z=§=ms Zd=c Zk=k/s (4.1)

m V

where:

Zm : Impedance of a mass ; F : Force

Z Impedance of a damper ; V : Velocity
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Zk : Impedance of a spring ; m: Mass

c : Damping coefficient ; k: Stiffness coefficient

5 : Laplace variable

It is convenient to use the concept of "mobility” at some

points in the analysis of the structure. The mechanical

mobility, M, is the reciprocal of the mechanical impedance.

M = l/Z (4.2)

Whenever simple elements of the structure are in parallel,

their velocities are the same, and the total force is the

sum of the forces applied to each element. Since impedance

is defined as the ratio: force/velocity, and the velocity is

a common denominator to all parallel elements, the overall

impedance of the parallel arrangement is simply the sum of

the impedances of the individual elements.

For elements in series the same force is applied to all

elements. Since ”mobility" is defined as the ratio velocity/

force, the denominator of all elements is equal, so the

overall mobility of the arrangement is the sum of the

mobilities of the components. The previous concepts are

summarized by equations (4.3) and (4.4).

  Elements in Parallel Elements in Series

_ _ 1
Z — 21 + Z2 Z — ————————-——— (4.3)

l/Zl + l/Zz

M= _———1————— M= M1+ M2 (4.4)

1/M1 + 1/M2

These simple concepts are sufficient to derive an equation
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for the driving impedance of a vertebral unit composed of

N masses (vertebral bodies) plus equal number of springs

and dampers located between the masses. The viscoelastic

elements representing the intervertebral joints were modeled

as a pair spring-dashpot in parallel (Kelvin model). The

damping and stiffness coefficients of the model are given as

exponential functions of frequency in the range 5-50 Hz.

Models other than Kelvin, including three to five

parameters were used in the modeling process in an attempt

to predict the mechanical impedance of the vertebral unit

using constant parameters. No satisfactory results were

obtained from these models, so the Kelvin model with fre—

quency dependent coefficients was finally adopted.

The driving point impedance of the vertebral unit shown

in Figure 4.1 is calculated from the impedances and mobilities

of the viscoelastic elements and masses in the system.

For the spring and dashpot in parallel the resultant

impedance Z!, is:

’ J

23 = ZC + Zk = c + k/s (4.5)

The impedance, 23, of the jth. Kelvin element in parallel

with mass mj is given by equation (4.6). It must be cmmmxted

to mobility, M3, so it can be added to the mobility of the

superior part of the unit, M(j—l)’ with which it is in series,

equation (4.7).

2; = c + k/s + m.s (4.6)

J
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The masses appear to be physically in series with the

viscoelastic elements, but they must be considered as being

in parallel for the impedance calculations using electrical

analogy.

n _ l _ 1

Mj _ 23 — c + s + mjs (4'7)

Substituting 3 by im,

 

l c i(k/w - mm.)

H = = ——.._______J_

Mj c — 'ik'7w ——+1me D0 + D0 (4'8)

D0 = C2 + ( mmj - k/m)2

The mobility at the bottom end plate of the jth vertebra,

Mj, is the sum of the mobility (Mj—l) at the bottom end

plate of the (jth-l) vertebra plus that corresponding to mass

mj in parallel with a Kelvin element.

r c . i
M.=M. +M'.'=M. +—+ M. +

J (J-l) J (J-l) Do 1 (J-l)

(k/w — mm.)

_____.____1_+ D0 (4.9)

Mr, M1 : Real and imaginary parts of mechanical mobility

respectively.

Equation (4.9) is sequentially applied from the first
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movable vertebra at the top of the unit down to the last

vertebra at the impedance head. The mobility of the first

superior vertebra is null for being attached to a fix loading

head. This known value is used in equation (4 9) to start

the sequencial calculations from top to bottom of the unit.

The impedance of the whole vertebral unit, Z, is computed

from the mobility, M , obtained for the nth vertebra (lowest)
n

of the unit using equation (4.10).

(4.10)
_ _ r - i

Z — 1/M - Mn / anIZ' 1 Mn / anl2n

4.3 Estimation of the Parameters of the Kelvin Model

The parameters c and k in the Kelvin model of the

intervertebral joint can be calculated using the approach

described by Beck and Arnold (1975). For the implementation

of this procedure a matrix of sensitivity coefffijgnt, [X],

must be calculated. Each sensitivity coefficient is the

rate of change of the real or imaginary part of the mechani-

cal impedance, Zr and Zi respectively, with respect to the

damping coefficient c, or the stiffness coefficient k.

 

 

aZr azr

80 8E

[X] = (4.11)

321 921

8c Bk

If 8 stands for either c or k, the two rows of the

sensitivity matrix are given by equations, (4.12) and (4.13)
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which were derived from equation (4 10).

 

 

1:

3M 2 r
azr = 5§—-|M| — 2 (fi38rM + 38Mi) M (4.12)

BB 1M!“

1 M 2 2 ——._. Mr + _§1fil Mi) Mi
§§__ = ;l 1 " 1% as (4.13)

as IMI2

31M12=_a_[(Mr)2+ mix] = 2[Mr aMr+Mi Mi]

88 BB 88 88

Where the partial derivatives of real and imaginary parts

of the mobility can be obtained from equation (4.9), and are

given by equations (4.14) to (4.17).

aMr

 

 

 

2

_§M: = (j—l) + D° ' 2C (4.14)

ac 8c wDoz

r aMr 2c(mm. — k/m)

_3M_ = (j-l) + 3 (4.15)

8k 8k Do2

. BMi (k/w — mm.) 2c
1

__§M_ = (j-l) _ 3 (4.16)

ac ac D02

. .1

  

8k 8k D02
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These derivatives are successively calculated for each

intervertebral joint from the loading head down to the

impedance head. The coefficients of the sensitivity matrix

are obtained from equations (4.12) and (4.13) using the

values of impedance and its derivatives calculated for the

last vertebra of the unit.

The parameters in the model are optimized by minimizing

the sum of squares function, SS, given by equation (4.18).

33 = [Y — z (3)]T wh [Y — z (sfl (4.18)

Y: Vector including real and imaginary parts of experimental

impedance.

Z: Vector including real and imaginary parts of modeled

impedance.

Yr Zr

'Y= 2(8):

Yi zi

The weighting matrix, Wh, is taken as an identity matrix for

the present work. The minimization of the sum squares is

done by the linearization method (Gauss). From this

minimization process the optimum values of the parameters

c and k are obtained, after successive iterations using

equations (4.19).

1T -1 -1 T _

B. + (x wh X)j xj wh ( Y — Z0 (8) )j (4.19)
B<j+1>= J



  



B. : 2 Vector of damping and stiffness coefficients

after j iterations

j

The sensitivity matrix X and modeled impedance Z (8) are

re—evaluated after each iteration because they are function

of the parameters c and k that change after each iteraction.

The iterative procedure continues until the parameters

change a negligible amount or until the sum of squares is

sufficiently small.

4.4 Frequency Dependent Stiffness and Damping Coefficients

A damping coefficient and a stiffness coefficient are

calculated for each data point consisting of a frequency,

impedance modulus, and phase angle. The stiffness coefficients

were found to increase exponentially with frequency while

the damping coefficients decrease exponentially in the fre—

quency range 5 to 50 Hz. Equations (4.20) and (4.21) give

good approximations for the stiffness and damping coefficients.

Coefficients k1, kg and c1, C2 are listed in Table 6.5 for

three age groups of people. They were approximated by the

least square fit method.

c = C1 (fq)C2 (4.20)

kg fq

k = k: e (4.21)
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4.5 Axial Dynamic Response of the Posterior Spinal Arch

The posterior vertebral arch contributes to the load

carrying capacity of the spine. The portion of the load

carried by the arch is dependent on the curvature of the

spine in the sagittal plane. The load on the posterior

arch varies with sitting posture. As the degree of

hyperextension of a seated subject increases, so does the

load on the posterior arch.

The impedance measurements made by Kazarian (1972) for

vertebral units with and without posterior arch suggest the

idea of modeling the intervertebral joint as a pair of

viscoelastic elements (Kelvin) in parallel, Figure 4.2.

The element, D simulates the intervertebral disc; the

second element, A, represents the posterior arch. The

mechanical impedance of a vertebral unit is calculated

sequentially from top to bottom of the unit adding impedances

or mobilities according to convenience, as it was done in

section 4.2 for a vertebral unit with single Kelvin elements

between masses.

1
M. = M . + 4.22

J (1—1) 2m + a + 2b ( )

Zm 2 ms : Impedance of mass representing vertebral

body (4.23)

k

Z = ——— + ca : Impedance of posterior arch (4.24)
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  Loading head

1 \—————> (fixed)

f(t) driving force

Figure 4.1. Spinal unit model for calculation of

driving point impedance.

 

 

Figure 4.2. Intervertebral joint modeled as two Kelvin

elements in parallel.
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k

Zb = —§— + cd Impedance of intervertebral disc (4.25)

kd, cd Stiffness and damping coefficients of inter—

vertebral disc

ka, ca : Stiffness and damping coefficients of posteriorard1

Substituting (4.23) to (4.25) in (4.22), and after introducing

s = iw for sinusoidal excitation, the real and imaginary

parts of the mobility are:

M1— = Mr + (Ca + Cd) (4.26)

J (j-n 13"

. . M — moo]

1 _ 1

Mj ~ M(j_1) + D0 (4.27)

(k + k ) 2

D = (ca + cd)2 + [mm — Lari] (4.28)

After the mobility for the last vertebra of the unit has

been calculated the impedance of the unit is obtained using

equation (4 10).

There are two damping coefficients, (ca, Cd), and two

stiffness coefficients (ka, kd) to be estimated in equations

(4.26) and (4.27). The coefficients corresponding to the
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intervertebral disc (c kd) were already calculated usingd’

the impedance data ”without arch” together with equations

(4.9) and (4.10) corresponding to a model with single Kelvin

elements between masses. Consequently only the stiffness

and damping coefficients for the posterior arch, ca and k3,

are left to be calculated from the impedance data ”with

arch".

In order to estimate the parameters ca and ka, the

coefficients of the sensitivity matrix (4.11) are to be

calculated from equations (4.12) and (4.13). Some of the

partial derivatives in Equation (4.12) and (4.13) must be

further expanded for implementation on digital computer.

Equations (4.29) to (4.32) follow from (4.26) and (4.27).

 

aMr BMr [n1— Eta—fidj

' _ ('—1) L02 (4.29)
37L — _5%—+2 (ca+cd)—————————————H

a a |Mj|

r r 2 _ 2

igi_.=_3§ii;1l + [M1] 2 (Ca + Cd) (4.30)

L.

SCa 80a |Mj1
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(k + k )

1 aMi [M.[2-2 mw—._§___9_

& = (j-l) + J m (4.31)

aka aka le14

(k + k)
. d

. 1 2(6 + c) m.» — —a———

ii = P’MO-JL) + a d m (4.32)

BC 3c [M.[“
a a j

The sensitivity matrix is assembled with the results of

equations (4.29) to (4.32). The optimization of parameters

ka and ca is done by iteration using equation (4.19).

The stiffness coefficients obtained from the data

”without arch” were in many cases greater than those corre—

spinding to the data ”with arch”, what would apparently

indicate that the posterior arch makes a negative or at least

null contribution to the load carrying capacity of the spine.

The phenomenon that actually took place is probably as

follows: by removing the posterior arch and keeping a

constant compression bias on the vertebral unit the disc

moved to a larger deformation configuration able to carry the

total load without the assistance of the posterior arch.

Given the non—linear rheological behavior of the disc, the

larger deformation imposed on the disc explains the larger

values of stiffness obtained for the vertebral unit without

arch.

The analysis in section 4.5 would probably lead to
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V. DYNAMIC RESPONSE OF THE LUMPED PARAMETER MODEL

5.1 Governing Differential Equations of Motion

The system of second order differential equations

governing the motion of an N—degree of freedom system with

viscous damping is as given by equation (5.1), Meirovitch

(1967).

[m] 111' m} + [c] 161m} + [k] 1c: (t>}= 11%)} (5.1)

Where the mass matrix [m], stiffness matrix [k], and damping

matrix [c] were calculated using the procedure described in

the three following sections. The displacement function

q(t) and the forcing function f(t) are discussed in section

5.2.

Each equation (row) of the system (5 1) can be derived

by writing the equation of dynamic equilibrium, Newton's

2nd. law, for each degree of freedom of each mass in the

system. The result will be a system of equations resembling

that shown as an example in Appendix B for the motion of a

vertebra in x — direction. A less involved procedure would

probably result from the application of Lagrange's equations.

But, due to the large number of degrees of freedom in the

system, a matrix approach was used that provides the equations

of motion for the discrete system by properly choosing a

coordinate system and applying some of the well established

51
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techniques of structural analysis to derive the stiffness

and damping matrices. This approach permits handling of the

equations in a more compact and systematic form, which are

more easily programmed for digital computers.

5.1.1 Mass matrix

A11 masses and mass moments of inertia entering the

system of equations can be grouped in a single matrix Efl

called the ”mass matrix". For the coordinates chosen in

section 3.2.1, the mass matrix results to be diagonal, reason

for which the system is said to be ”dynamically uncoupled”.

Coupling is not an inherent property of the structure but

depends on the coordinates used to describe the motion.

Mass matrix (5.2) corresponds to the model shown in

Figure 3.2. This matrix was assembled by lining up masses

and mass moments of inertia for all masses in the system on

the diagonal of an otherwise null matrix. The order to

follow is given in Appendix C.

5.1.2 Global stiffness matrix
 

The assemblage of the stiffness matrix is not as straight

forward as it was for the mass matrix. The stiffness matrix

can be obtained from the system of equations resulting from

application of Newton's 2nd. law, or Lagrange's equations,

but these approaches lead to quite involved calculations.

A simpler and more systematic method exists to assemble

the global stiffness matrix of the structure when it can be

done in a digital computer. This is conveniently accomplished
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(5.2)

SP

mut

ut  
Lumped mass of head and neck

Mass moment of inertia of head—neck about its center

of gravity

Mass of ith thoracic vertebra

Mass moment of inertia of ith thoracic vertebra about

its center of gravity

Mass of ith lumbar vertebra

Mass moment of inertia of ith lumbar vertebra about

its center of gravity

Lumped mass of sacrum and pelvis

Lumped mass of upper torso and upper limbs
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by superimposing the stiffness matrices of the individual

deformable structural elements, Martin (1966), which will be

called "element stiffness matrices”. There is a total of 28

element stiffness matrices in the structure corresponding

to: neck, 17 intervertebral joints, and 10 costo—vertebral

joints.

A generic (6x6) element stiffness matrix that applies to

all intervertebral joints is shown in matrix (5.3), where

the parameters Ka, KS, and Kb stand for axial, shear, and

bending stiffness of the intervertebral joint respectively.

The angle Oi made by the longitudinal axis of a vertebra

and the z-axis varies along the spine. The angle Oi, the

longitudinal axis of the disc makes with the z—axis, is tak-

en as the average of the angles corresponding to the two

vertebrae enclosing the disc. The angle Oi is shown in

Figure 3.3 as the angle made by the disc middle plane a-a

and the x—axis.

Appendix D shows the steps followed in deriving the inter—

vertebral joint stiffness matrix from the equations of static

equilibrium. A similar procedure was followed to calculate

the element stiffness matrices corresponding to neck, and

costo—vertebral joints.

Since matrix (5.3) was derived using a convenient system

of coordinates u, w, 6, Figure 3.6, which is not the global

system x, z, 6, adopted for the derivation of the equations

of motion (5.1), the intervertebral joint stiffness matrix

0&1] must be subjected to a coordinate transformation, a
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rotation, that makes it suitable for assemblage into the

global stiffness matrix [k] . The transformed matrix [ke]

is obtained from equation (5.4) which involves the rotation

matrix [R] and its transpose PEJ , Gere and Weaver (1965).

T

[Rt] [k1] [Rt] (5.4)

[Rt] =
(5.5)

'
—
—
'
I

z
"

(
D

t
—
J

II

[R] = sin 6 cos 5 0 (5.6)

5.1.3 Damping matrix

The same formulation developed for evaluation of the

global stiffness matrix holds for the global damping matrix.

The only difference being that stiffness coefficients must

be replaced by corresponding damping coefficients.

5.2 Solution of the System of Governing Equations

One way to solve the system of equations (5.1) would be

by finding a linear transformation of coordinates able to

uncouple the system of equations. Every equation of the

uncoupled system can be solved individually as normally done

for a single degree of freedom system.

A relatively simple method was presented by Foss (1958)



 



 

to find a matrix of orthogonal eigenvectors able to uncouple

the system of equations in an auxiliar system of coordinates.

Integration of individual equations is then done for the

forcing function of interest, and the auxiliary coordinates

transformed back to the original system of generalized

coordinates that have the physical meaning of interest.

The procedure just briefly introduced has thefxmenttfl_to

provide the response of the system to different inputs.

After the mass, stiffness and damping matrices are obtained,

a dynamical matrix is assembled. The complex eigenvalues

and eigenvectors of the dynamical matrix fully characterize

the dynamic behavior of the system, so that its response can

be calculated for a given excitation using the eigenvalues

and eigenvectors as input data together with a short

computation for integration of the uncoupled differential

equations.

This approach was tried in the present work, but some

inconsistencies were found in the results. The reason for

such behavior probably being the existance of some errors in

the eigenvectorsaseiremflt of the large number of degrees of

freedom of the system with some eigenvalues not very distinct

from each other.

The main objectives of this project are equally fulfilled

by using a less general solution of the system of second

order differential equations. The complementary solution of

equations (5.1) is not of major interest in the present work.

 



 .I
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If the vibrational input includes only sinusoidal oscfllatfixm,

a particular solution as given by equation (5.7), Thomson

(1972), Reismann and Pafljk (1975), will provide most of the

answers sought. The particular solution consists of a set

of functions qj(t) describing the steady state harmonic

oscillation of the same frequency w as that of the emfitathxr

Each mass in the structure will oscillate about its emfilihdum

position with an amplitude [Ajl and lagging the vertical

motion of the base by an angle wj which is related to the

amount of damping existing between the excitation point and

the point where the oscillation is being studied.

qj (t) = [Ajl ei<wt+¢j) (5.7)

The response equations (5.7) and their derivatives can

be written in a more suitable form for implementation of the

solution of equation (5 l) in a digital computer. The phase

angle is removed from the exponential factor and incorporated

as a complex amplitude, Aj’ equations (5.8) to (5.11).

. t = A. ei‘”t 5.8qJ() J ( )

A.=Af+'A3 .
J J 11 (59)

9j (t) = imAj ei‘”t (5.10)
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63. (t) = — 112 Aj eimt (5.11)

The base excitation zb(t), equation (5.12), applied in

vertical direction (42) to the pelvis of a seated operator is

a displacement type excitation, so the forcing function f(t)

entering equation (5.1) needs to be written in a different

form to be able to characterize the excitation by a displace-

ment amplitude and a frequency instead of a force amplitude

and a frequency.

iwt
(t) = A eZb b (5.12)

Ab 7 Real amplitude of base harmonic motion

The forcing function f(t) is calculated from the equation

of dynamic equilibrium (5.13) of forces acting on the operator

seat in z-direction. The forces applied to the seat are: the

action of the body f(t), plus those generated at the seat

suspension as a result of its stiffness Kc’ damping Cc’ and

the relative motion seat—base BS, Figure 5.1.

MC qs(t) = KC BS + CC BS — f(t) (5.13)

The displacement of the seat is assumed to be that of the

sacrum-pelvis mass qs(t), equation (5.14). This assumption
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is valid for an operator seated on a bare seat where the

stiffness of the tissues located between the pelvis and the

seat is sufficiently high; about 1000 Kg/cm proved to give

satisfactory results for the present model. No expenfimmtal

data are available.

_ iwt

98 (t) — As e (5.14)

As : Complex amplitude of pelvis-sacrum oscillation

BS = zb (t) — qS (t) (5.15)

From equations (5.12), (5.14), and (5.15) BS can be

written:

BS = (Ab - AS) eiwt (5.16)

Introducing equations (5.14) and (5.16) into (5.13) the

forcing function can be written:

imt
f(t) = [MC (1)2 AS + KC (Ab ~ Ag) + iCC (Ab - AS)]e (5-17)

Separating the real part, FE, and the imaginary part, F:, of

f(t),

f (t) = (F: + iFi> ei‘”t = F ei‘“t (5.18)
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r = 2 _ r 1

FS KC Ab + (m MC KC) AS + mCC AS (5.19)

i: 2 _ i_ r

FS (w MC KC) AS wCC AS + wCC Ab (5.20)

Substituting equations (5.8), (5.10) (5.11) and (5.18) in

(5.1), after cancelling exponential factors the system of

differential equations is turned into a system of algebraic

equations:

_ w2[m] {A} + i6) [cHAi + [k]iA} =11“; (5.21)

§A§ = {Ar} + i {Al}: Vector including complex amplitudes

of oscillation for all degrees of

freedon in the system.

131
{Fri + i {F1}: Vector including complex amplitudes

of all external forces acting on the

system.

Writing all amplitudes in complex form, equation (5.21)

turns into (5.22).

-..,2[ ] {Ar} - 1.25.1111} + 1.461111-w[c}§Ai}+[k]{Ar}

+i[k]{Ai}-‘—{Fr§ +4111} (5.22)

By equating real and imaginary parts of equation (5.22) the

system of N equations with complex unknowns is turned into

a system with 2N equations in all real numbers.

[[1] 4.4.111] {A} .1 [61111; “{1} (5.23)
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0 [c] {Ar} + [[k] 4.12 111]] {Ai} 4171} (5.24)

The dimension of vectors Fr and F1 is 58, but only one

component is different from zero. It corresponds to the

vertical motion of the sacrum, and is obtained from equations

(5.19) and (5.20).

  

 

   

o ’0 o

3, 91 0

KC {0 +002 Mc'Kc) [I] <0 + (”CC [I] 6.

Ab A: A:
o o: o

2 \o , .01 0 (5.25)

'01 '01 o

o 0 0
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o .
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There are two unknowns on the right side of equation

(5.25) that must be moved to the left side of the equation

to make the system suitable for computer solution. Equation

(5.26) was used to program the assemblage and solution of

the system of equations into subroutine ”AMPLTD" of program

”COLSOL".

  

8

r I
A Kc

A: = Ab § (5.26)

wéc

8

._0 -

0

on

(5.27)

'1

o

L o

oo 1

o

I (5.28)

1

0

L o   
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5.3 Driving Point Impedance of the Model

The driving point impedance of the seated subject was

used for validation of the model. Since no provisions were

made to represent the rheological properties of thecbfonmmle

elements existing between the sacrum and the seat, the seat

suspension spring (Kc) and damper (Cc) were used to model

the behavior of these elements in the validation process.

If the mass of the seat, Figure 5.1, is assumed to be null

and the base is thought as the seat surface, the seat

suspension left in between them would simulate the behavior

of the deformable elements separating the seat from the

sacrum.

Under these assumptions the driving point impedance can

be calculated from the velocity of the base, equation (5.29),

and the force transmitted through the suspension, equation

(5.17), which can be calculated after solving the system of

equations (5.26).

V(t) = iw Ab el‘”t (5.29)

The driving point impedance then results:

Z = (l — AS/Ab) [ CC — 1KC/01] (5.30)

5.4 Shear and Axial Deformations of Intervertebral Joints

A general expression describing the motion of every mass

in the structure is given by equations (5.8), which are
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renamed according to the direction of motion as shown by

equations (5.31) to (5.33) for horizontal, vertical, and

rotational motion respectively.

-— i001:
. t = . . 1XJ ( ) XJ e (5 3 )

. t = 2. iwt 5.32zJ () J 6 ( )

iwt

6. t =A. 5.J ( ) J 9 ( 33)

Kj, Zj, and Aj are complex amplitudes equivalent to Aj

The shear deformation, S, of an intervertebral joint is

approximated by projecting all displacements of two adjacent

vertebrae on the disc middle plane a—a, Figure 5.2. The

axial deformation, N, is calculated by projecting all

displacements in direction perpendicular to a-a.

S = [x1(t) - x2(t)] c030 — [21(t) — zz(t)] sinO +

+ [6,(t) z2 -62 21] 663012 (5.34)

2

ll [x1(t) - x2(t)] sin 0 + [21(t) - z2(t)] cosO —

— [61(t) 22 —62 21] sin 012 (5.35)
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3 =15, 54605 6— [2,- 2,] sin e +

+[A122 — AZZl] cos 012} eiwt (5.36)

N ={[).(1 - >712] sin5+[21- 22] C085—

_[A1 22 + 1221] sin012}elwt (5.37)

012: Angle made by vertebra end plate and disc middle

plane a-a

5.5 Seat to Head Transmissibility

The seat to head transmissibility is defined as the ratio

between the acceleration of the head and the input acuflrmatMII

through the pelvis. For harmonic motion the ratio of

accelerations is equivalent to the ratio of displacements.

Considering the same assumptions made for evaluation of

driving point inpemnme, that is, null seat mass and seat

suspension representing the deformable elements located

between sacrum and seat surface, the transmissibility Tr is

as given by equation (5.38).

E

Tr = Read (5.38)

b

2 Complex amplitude of head vertical motion
head
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Sacrum- elvis mass

\. “‘£b_z=A elwt
s S 

Mass of Seat Mc f(t)

   

Seat suspension

 

_%- Ab eimt

Base

Figure 5.1. Operator seat under sinusoidal

displacement excitation.

 

 
Figure 5.2. Displacements and rotations of two axmemnjve

vertebrae determine the axial and shear de—

formations of the enclosed intervertebral

joint.
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5.6 Computer Program

The computer program "COLSOL" assembles and solves the

system of equations (5.26), which involves 116 unknowns

resulting from the 58 magnitudes and 58 phase angles corre—

sponding to the complex amplitudes of the 58 degrees of

freedom in the system.

Since the stiffness and damping coefficients are frequency

dependent, matrices [k] and [c] must be recalculated for

every frequency analyzed. The same subroutines "HEAD", "DISC"

and "THORAX" are involved in the calculation of both matrices.

Before the computation of [k] all frequency dependent stiff-

ness coefficients are calculated by calling subroutine

"CALKDZ". Similarly, before the computation of LC] ,

subroutine "CALCDZ" is called to calculate all frequency

dependent damping coefficients.

After all required matrices have been calculated, sub—

routine "AMPLTD" is called to assemble and solve the system

of equations (5.26). Jith all amplitudes and phase angles

already known, subroutine ”OUTOUT" is called to calculate

and print seat to head transmissibility, equation (5.38),

and driving point impedance, equation (5.30), which are used

for validation of the model. Subroutine ”OUTPUT" will also

calculate and print axial and shear intervertebral joint

ckeformations, equations (5.36) and (5.37), which are the

response parameters of interest after the model has been

validated.



 



 

The flow chart shown in Figure 5.3 summarizes the steps
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described in the previous paragraphs.

 

[Data input and outpuf]
 

fq = 5 Hz

 

l
 

Calculation of frequency

dependent damping coefficients

Subroutine: "CALCDZ"

 

l
 

Calculation of damping matrix

Subroutines: ”HEAD", DISC",

 

and "THORAX"

l
 

fq = fq+l I

Calculation of frequency

dependent stiffness coefficients

Subroutine: "CALKDZ"
 

l
 

Calculation of stiffness matrix

Subroutines: "HEAD", "DISC", and

 

"THORAX" l

 

Assemblage and solution of system

of linear equations

Equation (4.52)

Subroutine: "AMPLTD"

 

I
 

 Calculation and printing of impedance,

transmissibility, phase angle, shear

and normal deformations

Subroutine: "OUTPUT"

  
 

Figure 5.3. Flow chart for computer program "COLSOL".

 

 



 



 

VI. EXPERIMENTAL DATA

6.1 Geometrical Data

6.1.1 Vertebrae

Most of the geometrical data required for a lumped

parameter model of the spine is available in the literature.

The curvature of the spine in the sagittal plane, Table 6.1,

was calculated from the coordinates (uo, Wo) reported by Orne

and King Liu (1971) for a seated position.

The existing data on dimensions of vertebrae, such as

that given by Lanier (1939), does not include values of mass

of individual vertebra or location of its center of gravity.

Approximation of the geometry of a vertebra by superposition

of bodies of known configuration, such as a truncated cone

or an ellipsoid was considered, but it presents some

difficulties. For instance there is enough variation of ver—

tebra configuration through the thoracic spine to justify the

use of more than one model. The cross section of the verte—

bral body at the first thoracic vertebra is approximately

trapezoidal, toward the fifth vertebra the body cross section

becomes approximately parabolic. The geometry of vertebrae

significantly changes when passing from the thoracic to the

lumbar spine so at least three different models would be

required to be able to calculate the properties such as

center of gravity and moment of inertia for the thorafic mfine.

70
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Table 6.1. Curvature of the thoracolumbar spine in

the sagittal plane.

 

 

 

Vertebral O

Level Deg.

Oi = arc tan (Eiiill_;_fliil) Th1 5.0(1)

w(1+1) ‘ “(n Th2 9.8

Th3 17.4

Th4 14.9

Th5 12.5

Th6 0.0

Th7 —4.6

Th8 —8.3

Th9 -15.l

Th10 -15.2

Thll —l4.0

Th12 -18.7

L1 -16.8

W(i+1) L2 -lO.6

L3 —2.2

L4 4.7

u . L5 14.2

—1}J—-—" Sacrum 45.0(2)

 
(1) Arbitrary

(2) Kazarian (1972): 45.0 deg.; Schultz et a1.

32.5 deg.

 
(1973):
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Even if the geometry of a vertebra coul be reasonably

approximated, there still remains the problem of estimating

the density distribution over the volume of the vertebra.

The end plates have different density from the nucleus of

the spongy vertebral body or the transverse processes.

Due to the problems previously stated, the geometrical

properties of the thoracic and lumbar vertebrae were

determined experimentally. A spine (C2 to L5) was removed

from an embalmed cadaver provided by the Anatomy Laboratory

of Michigan State University. The spine was considered

normal, with larger dimensions than the average reported by

Lanier (1939).

The moisture content was maintained by wrapping the

spine in a moist cloth and sealing it in a polyethylene bag

to avoid any drying that could change the mass or density

distribution within each vertebra; such changes would affect

the values of mass moment of inertia to be measured. The

dimensions measured on each vertebra are listed in Table 6.2.

The coordinates of the costo—vertebral joints are given in

the table, but were not used for the final version of the

model.

The location of the center of gravity in the mid—sagittal

plane was determined experimentally using the pendulum built

to measure mass moment of inertia, Figure 6.1. The vertebra

was hung from the pendulum frame by means of a thin spring

wire, .5 mm in diameter. The wire was soldered to a tiny
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Zi Xs

cm

Xi

Geometrical data for thoracic and lumbar

Z2

vertebrae.

Zl 

8
8
8
8
8
0
1
9
5
3
0
5

1
1
1
0
0
1
1
1
1
1
0

0
9
7
5
5
2
1
2
0
3
6

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

 

Table 6.2.

 Vertebra
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wood screw (5 mm long) at one end, and to a piece of razor

blade in the opposite end. The total weight of the support

wire is .42 gm.

Every vertebra was hung from two different points in the

mid-sagittal plane, and a vertical line passing through the

pivot point was drawn for each hanging position. The point

of intersection of these lines corresponds to the location

of the center of gravity. The distance "r" from the

pendulum pivot to the center of gravity as well as the

location of the costo-vertebral points of interaction were

then measured, see Table 6.3.

6.1.2 Head and neck

In the absence of experimental data, the location of the

lower end plate of the seventh cervical vertebra is assumed

to be 17 cm below and 3.8 cm behind the center of gravity of

the head-neck system, see Figure 6.3. Orne and King Liu

(1971) reported satisfactory dynamic model results using a

head neck eccentricity of 3.8 cm.

6.1.3. Pelvis

The sacrum-pelvis mass is included in the model with only

two degrees of freedom according to the assumptions made in

section 3.2. Therefore no geometrical data is required other

than the angle the axis of the sacrum makes with the z—axis,

which is given in Table 6.1.

6.2 Mass Moment of Inertia of a Vertebra

Rotation in the sagittal plane is one of the degrees of
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freedom considered in the model. The mass moment of inertia

of each vertebra with respect to its center of gravity in the

sagittal plane is required to write the equation corresponding

to the rotational mode of oscillation.

The moments of inertia of the thoracic and lumbar verte-

brae were calculated from the period of oscillation of the

vertebra in pendular motion in the mid-sagittal plane. The

pendulum, Figure 6.1, was constructed and then tested for

bodies of regular geometry (cylinder, ring) in order to

verify the concepts described in the next paragraphs,

particularly those relating to the accuracy required to

measure the time period and the distance from the pivot

point of the pendulum to the c.g. of the oscillating body.

The moment of inertia, Ig’ can be calculated from the

natural frequency of oscillation of the pendulum, Martin

(1969). The natural frequency, equation (6.1), is obtained

from the solution of the pendulum differential equation of

motion.

lg = w r UL) - E] (6.1)

21 g

T: Period of oscillation of the pendulum

r: Distance from pivot point to center of gravity of

oscillating vertebra.

The coefficients of sensitivity of the moment of inertia

IV I!

with respect to the period "T" and the radius r can be
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written:

31
100 g 2 g T

t g 3T g T2 - 4 rflz )

100 31 1 4 12 6 3
Sr=I—_fig_=100—r+—’—_ (7)

g 4r112-gT2

A .01 sec. error in measuring T, could give an error as high

as 120% for lg. A 1.0 mm error in measuring r could give an

error as high as 34% for lg. These figures are calculated

from equations (6.2) and (6.3) together with data from Table

6.3. The period of oscillation must be measured to within

.001 sec to keep the error of Ig below 12%.

The pendulum was first run at atmospheric pressure in an

environment with apparently no air circulation. The

variability among readings of T (over 2%) was considered too

high. By enclosing the pendulum in a glass chamber under

500 mm of vacuum, Figure 6.2, the variability of T was

reduced to 0.1%. Even though it can lead to errors as high

as 12% for Ig’ the final results can still be within what

could be expected for a biological material.

It was found that in order to take the variability of T

to within 0.1% the time period should be averaged over at

least 500 oscillations. An electric counter activated by a

photo—relay was used to keep track of the number of (mcilkmimm

The time elapsed was measured with a stop watch.
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10 mm

Razor blade

 

 

 

me

1%!

.__ 6.5mm

 Wood

Screw /j

(a)

 

     
Figure 6.1. a) Pendulum to measure mass moment of huntia

b) Support of vertebra

 

Figure 6.2. Pendulum installed in vacuum chamber to

minimize error due to air friction.
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The radius of oscillation, r, was measured to within 0.5

mm approximately. This resulted in an error for Ig no

greater than 17%.

6.3 Masses in the System

6.3.1 Vertebrae

The masses mj, listed in Table 6.3, correspond to the

vertebra itself. It does not include any of the peripheral

tissues normally attached to the spine that contribute to its

dynamic behavior, Figure 6.4. In order to be more realistic

the amount of mass to be ideally concentrated at the center

of gravity of each vertebra must be increased so that the

material most closely attached to the vertebrae and that

actually follows its motion is taken into account.

A total mass of 7712 gm, Muksian and Nash (1974) was

adopted for the spine and most closely attached ligaments

and muscle tissues. The distribution of the back mass on

the centers of gravity of the thoracic and lumbar vertebrae

was assumed to be proportional to the mass of each vertebra

as given by equation (6.4).

m.

m: = 7712 x _—J_ (6.4)

J tag

The numerical values are shown in Table 6.3. The mass

distribution just described is satisfactory for the lumbar

spine where the mass enclosed in the abdomen can be considered

to be resting directly on the bony basin presented by the





 

Table 6.3. Mass and mass moment of inertia respect to

Age = 51

79

the center of gravity of thoracic and lumbar

vertebrae.

Sex Male

Body weight; 85 Kg(1)

Cause of death =

Body height: 1.82 m(1)

cardiac arrest

 

 

Vertebral mj Hg r T Ig(y)

level grams cm sec gm.cm2

Tl 48.5 272.3 12 66 .722 175.61

T2 45.4 254.9 12 44 .724 326.34

T3 42.1 236.4 12 59 .727 284.06

T4 46.4 260.5 12.69 .730 320.60

T5 47.0 263.9 12.94 .732 223.26

T6 51.8 290.8 12.94 .734 294.87

T7 55.0 308.8 11.79 .710 472.88

T8 62.5 350.9 11 84 .720 765.44

T9 66.6 373.9 11.84 .717 731.23

T10 74.3 417.2 11.44 .704 738.25

T11 81.0 454.8 11.39 .703 815.20

T12 93.0 522.2 11.34 .702 947.79

Ll 106.5 598.0 11.66 .711 1110.82

L2 125.3 703.5 12.36 .726 1130.32

L3 140.2 787.2 12.49 .731 1367.2

L4 147.7 829.3 12.59 .733 1401.14

L5 140.2 787.2 - 1367.2

mj: mass of vertebra

Hg: mass of vertebra plus more closely attached tissues

r : radius of oscillation (pendulum)

T ; period of oscillation

lg: mass moment of inertia

(1): Estimate ; (2) : Arbitrary value.

 (2)

 



 

 



 

—17 cm

 

Figure 6.3. Location of the point of interaction of the

head—neck lumped mass with the upper end

of the spine.

   

 

  

Muscular

tissueGr ‘
Rib , “

      
  

/_./"“

Thoracic ' ’;4\_;/n

vertebra «zaigyfi

\ \i:::é/,

i sagittal plane

Figure 6.4. A fraction of the back muscles and other

tissues are closely attached to the spine.
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pelvis without any significant dynamic interaction with the

spine. The thoracic mass requires special consideration.

6.3.2 Suspendedgportion of upper torso
 

The rib cage, enclosed internal organs, shoulders and

arms have significant dynamic interaction with the spine of

a seated operator, mainly for excitation frequencies below

15 Hz.

A single mass attached to the first ten thoracic vertebrae

by means of viscoelastic elements, Figure 3.2, simulates the

action of the upper torso and limbs on the spine well enough

to give plots of seat to head transmissibility as well as

driving point impedance close to experimental measurements.

The suspended mass of the thorax can be estimated from

the weight distribution for head and upper torso shown in

Table 6.4.

Both arms and shoulders 9981.0 gm

Thoracic organs, blood and

diaphragm 4354.0 gm

Ribcage and muscles 16838.0 gm

Suspended thoracic mass 31173.0 gm

This mass should be reduced as a result of the arms not

being supported by the spine alone, and a fraction of the

mass of thoracic organs, blood, muscles, and diaphragm being

directly attached to the spine.

Part of the weight of the arms rests on the legs according

to the posture assumed by the subject in the transmissibility
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and impedance tests reported by Pradko et a1. (1967), which

are used for validation of the model. It is also the

situation of a machine operator with the arms resting on the

steering wheel. From these consideration it was decided to

reduce the suspended thoracic mass from 31,173 gm to 20,000

gm.

6.3.3 Head and neck

Head and neck are included in the model as a compounded

mass of 6078.0 gm, Table 6.4. The mass moment of inertia

about the center of gravity was adopted from Liu et a1. 0971).

(Mass moment of inertia of head + Cl_Tl)c.g.= 20.56 x 105

gm cmz.

Similar results were reported by Vulcan and King (1971); the

data obtained from 3 cadavers are: 21.1 x 105; 22.76 x 105

and 39.02 x 105 gm cmz.

6.3.4 Sacrum—Pelvis

The magnitude of the mass attached to the lower end of

the spine will affect the values of driving point impedance

of the model, which are compared with experimental values

for validation of the model dynamic behavior.

Assuming the total weight of the abdomen plus 45% of the

pelvis-legs weight as being directly interacting with the

operator seat, the sacrum—pelvis mass can be calculated from

Table 6.4.

Mass of sacrum—pelvis = 6623.0 + .45 X 30394.0 = 20300.0 gm
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Table 6.4. Body weight distribution used for the model.

 

Element Weight Mass(5)

1b. Dyn gm

(x105) (x102)

Head and neck(2) 13.40 59.60 60.78

Both arms and

shoulders<3> 22.00 97.86 99.81

Back(1) 17.00 75.62 77.12

Thoracic organs blood

and diaphragm(2) 9.60 42.70 43.54

Ribcage and muscles

in thorax(“) 37.12 165.12 168.38

Abdomen(‘) 14.60 64.94 66.23

Pelvis and legs(1) 67.0 298.04 303.94

Total 180.72 804.0 820.00

(1) Muksian and Nash (1974).

(2) Payne (1970).

(3) Modified from Payne (1970) to include weight of shouhkxs.

 

 
(4) Modified from Payne (1970).

 

(5) All values taken from literature were multiplied by a

factor:

Factor = (82000/reported body weight in grams).
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6.4 Rheological Behavior of Deformable Elements

6.4.1 Intervertebral joints. Axial.

Three stiffness and damping coefficients are needed to

characterize the rheology of the three modes of motion of

each intervertebral joint. The coefficients entering the

Kelvin elements that model the axial behavior of the disc are

calculated from equations (4.20) and (4.21) together with the

parameters shown in Table 6.5. These coefficients have been

calculated from the impedance data collected by Kazarian

(1972) using the loading frame shown in Figure 6.5.

The vertebral unit to be tested is placed between the

superior and inferior loading heads. The upper head was

designed in a manner so that a pure compression load could be

applied. The compression bias was adjusted by slowly

rotating the loading screw until the designated preload value

was registered on the strip chart recorder.

The impedance and phase angle data reported were calculat—

ed from force and velocity recordings taken from the load and

velocity transducer located underneath the lower loading

head. The data obtained with the experimental set up just

described corresponds to the axial mode of oscillation.

The exponential functions used to model stiffness and

damping frequency dependent coefficients present short

intervals within the range 5—50 Hz where the experimental

points separate from the curve. For most frequencies the

curves fit very well the experimental data as indicated by
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Figure 6.5. Loading frame for impedance testing,

Kazarian (1972).



 

 



 

the coefficients of correlation and standard error of esti—

mate given in Table 6.5.

The lumbar spinal units, which are shorter, only three

vertebrae, present the largest deviations from the prediction

curve. The reason for this behavior most likely being the

existence of errors in the data, mainly phase angle, which is

difficult to measure at resonant points where large changes

of angle take place for small changes in frequency.

6.4.2 Intervertebral joints. Bending
 

There are no data available to model the bending and shear

stiffness coefficients as functions of frequency as it was

the case for the axial mode of deformation. It is reasonable

to expect that similar frequency dependent parameters would

be required for the shear and bending modes of deformation

when modeled by Kelvin viscoelastic elements.

The bending stiffness coefficients were adopted from

Markolf and Steidel (1970) for the thoraco—lumbar spine,

T7 - L4:

Bending stiffness = (3884.11 — 23304.68)x 10s dyn.cm/rad

These values do not show any significant variation with

disc level. One might expect lumbar intervertebral joints to

be stiffer due to the larger cross—sectional area, but the

increased lumbar disc height compensates that factor making

the bending stiffness approximately constant.

These data were obtained using free vibration tests

carried on a single intervertebral joint. A resonant mass
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was attached to the upper vertebra.vhose oscillations were

recorded. The stiffness was calculated from the measured

natural frequency of oscillation, while the damping factor

was estimated from the rate of decay of the vibration trace.

The frequency of free oscillation corresponding to the

single specimen in bending was 36.7 Hz, so it can be expected

that bending stiffness will be lower for lower frequencies

and higher for higher frequencies. No compression bias was

used for the tests carried out by Markolf and Steidel (1970),

so that an intervertebral joint under real loading conditions

would have higher stiffness than those that resulted from the

tests.

Assuming that the stiffness of the intervertebral joint

under normal loading conditions is equal to the top value in

the interval, (23304.68 X 105 dyn.cm/rad), and adopting the

exponent factors k2 corresponding to axial stiffness from

Table 6.5, the coefficients k1 for all units of the spine can

be calculated, Table 6.6. The coefficients corresponding to

the thoracic spine were increased by 150% to take into acanmt

the higher stiffness the ribcage gives to this portion of the

spine, Prasad and King (1974). Only coefficient k,, of for-

mula (4.20) was modified (9074.4 x 2.5 = 22686.0), and the

same value was used for both halves of the thoracic spine.

In all cases the frequency used for the calculations is

36.7 Hz because it is the frequency at which the reported

stiffness were measured.

Very little data are available in the literature on
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damping coefficients of intervertebral joints for bending

mode of oscillation. Prasad and King (1974) reported the

following bending damping coefficients:

(Bending damping)T1 _ T10 = 226.0 x 105 dyn.cm.sec/rad

(Bending damping)T11 _ S = 113.0 x 105 dyn cm.sec/rad

These coefficients are not experimental; they were approxi-

mated in the process of optimizing the response of a lumped

parameter model to transient vertical accelerations. The

larger damping coefficients corresponding to the thoracic

spine are in agreement with the results obtained for axial

mode of oscillation from impedance data.

The frequency dependent damping coefficients for bending

are calculated from equation (4.20). The coefficients previ-

ously introduced from Prasad and King are assigned to an

intermediate frequency, 25 Hz. The parameters c1 are then

calculated for each one of the four thoraco—lumbar units

using the exponents c2 obtained from the impedance data for

axial mode of oscillation, Table 6.5. The results are shown

in Table 6.6.

6.4.3 Intervertebral john; Shear

No direct measurements of shear stiffness are reported in

the literature. Some insight into the shear behavior of the

intervertebral joints can be obtained from Orne and King Liu

(1971) through their analysis of the data reported by Evans

and Lissner (1959). The basic data consist of load defiectkm
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Table 6.6. Parameters for estimation of frequency

dependent stiffness coefficient k, and

damping coefficient c. Bending mode of

oscillation.

Vertebral Age k1 k2 c1 c2

level group

(x105) (x10—2) (Xl05)

G1 10865.7 2.14 584.1 —0.590

T1-T6 G2 7470.0 3.10 478.4 —O.466

03 5610.8 3.88 308.3 -0.193

G1 ‘ ' ' ‘

T7-T12 G2 9074.4 2.57 616.0 -0.623

G3 9552.9 2.43 525.2 -0.524

G1 14784.4 1.24 717.7 -0.718

Ll—L3 G2 11646.7 1.89 628.0 —0.635

G3 10982.5 1.05 608.1 -0 615

G1 12171.1 1.77 688.3 -0.692

L4—S G2 14199.4 1.35 742.4 —0.739

G3 13941.3 1.40 680.6 -O.685

k = k1 ek2 fq dyn.cm/rad

C2

C = C1 (fQ) dyn.cm.sec/rad
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curves for thoracic and lumbar spine under bending in the

sagittal plane.

The effective area, Ae' and the effective area moment of

inertia, Ie’ are unknown, so the values associated with the

cross-section of the vertebral body were used for the calcu—

lations. The shape factor for the disc, ks, lies somewhere

between that of a solid circular section (kS = 1.25) and

that of a thin-walled circular section (kS = 2.0).

12 E I

Shear stiffness = —————-———£———- (6.5)

13' (4c - 3)

3 E I k
e s

C = 1 + (6.6)
2

G Ae 1

G = 1516.85 X 105 dyn/cmz; E = 4550.78 X 105 dyn/cm2;ks=l.5

The shear stiffness coefficients resulting from equation

(6.5) are shown in Table (6.7).

The data reported by Schultz et a1. (1973), Appendix C,

show significantly lower values. Even though these data

correspond to intervertebral discs alone, no posterior

aspects, it still gives a word of warning for the data in

Table (6.6), which will only be considered as an upper bound

for shear stiffness.

A stiffness frequency dependence of the type given by

equation (4.21) was adopted for the shear mode of oscillation.
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The thoracic and lumbar spine were divided in four parts as

follows: Tl—T6; T7-T12; Ll-L3 and L4-S. All the interverte—

bral joints in one unit were assigned the same stiffness

coefficient, so the values in Table 6.7 are averaged for each

vertebral unit. The resulting stiffness together with the

exponents, k2, corresponding to the axial mode, Table 6.5,

were used to evaluate k1 from equation (4.21).

Since the data in Table 6.6 is on the high side, it will

be associated with the highest frequency, 50 Hz, in the

interval under consideration. An example is given below for

the evaluation of the parameter k1 corresponding to the top

half of the thoracic spine for age group G1. A similar

procedure is applied to the remaining units of the spine,see

 

Table 6.8.

(20426.91 + .... + 22672.91) X 105: 23324_5 x 105:

5

= k1 e0.0214 x 50

It follows that,

k1 = 8000.5 X105

No data are available on damping for shear mode of oscil—

lation, so the coefficients calculated for axial mode are

used for shear as well.
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Table 6.7, Shear stiffness of intervertebral discs of

thoracic and lumbar spine.

 

 

 

Disc A l I Shear

e e (1)
level stiffness

cm2 cm cm“ dyn/cm (XIO+5)

Tl 5.68 0.20 1.00 20426

T2 6.06 0.30 1.18 22179

T3 6.58 0.30 1.37 24337

T4 7.22 0.30 1.58 26089

T5 7.74 0.30 1.91 24240

T6 8.39 0.35 2.5 22672

T7 8.52 0.38 2.7 23338

T8 8.77 0.38 3.33 25227

T9 9.48 0.38 4.03 23070

T10 9.81 0.43 4.24 27914

T11 11.87 0.43 4.78 18102

T12 12 71 0.71 4.95 13188

Ll 12.52 0.96 5.62 14480

L2 14.32 1.00 7.03 15876

L3 15.74 1.00 11.73 15916

L4 l7 16 1.22 9.15 14223

L5 17 55 0.91 12.73 19502

Ae : effective area

Ie : effective area moment of inertia

1 : height of intervertebral disc

(1) Data approximated following Orne (1970)
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Table 6.8. Parameters for estimation of frequency

dependent stiffness coefficient k and

damping coefficient c. Shear mode of

oscillation.

Vertebral Age k1 k2 c1 c2

level group

(x105) (x10’2) (x105)

G, 8000 2.14 265.78 -0.590

Tl-T6 Gz 4950 3.10 320.56 -0.465

G3 3351 3.88 155.83 -0.193

G1 — - - -

T7-Tl2 Gz 6032 2.57 352.48 -0.622

Ga 6470 2.43 322.04 —0.523

G, 8297 1.24 117.65 —O.718

Ll-L3 G2 5995 1.89 137.38 -0.634

GS 5534 2.05 163.68 —0.614

G1 6959 1.77 55.90 -0.692

L4-S G2 8585 1.35 136.84 —0.739

G3 8373 1.40 82.83 -0.685

k = k; eszq dyn/cm

c = Cl (fq)C2 dyn.sec/cm
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6.4.4 Costo—vertebral joints 

Most of the dynamic interaction between the upper torso

and the thoracic spine takes place at the costo-vertebral

joints. Some data is available on the rheological behavior

of the transverse, inferior and superior costo vertebral

joints. Andriacchi et al. (1974) reported experimental val-

ues of axial, shear and bending stiffness. These data are

more applicable to a static, large deformation type of

analysis.

Since this work is mainly focused on the lower part of

the spine, the interaction spine-thorax was modeled in a

simpler way following the description in Chapter III.

Muksian and Nash (1974) developed a lumped parameter

model to study the response of seated humans to sinusoidal

displacements of the seat. The spine was modeled as a rigid

body attached to the pelvis through a linear spring and a

linear dashpot. The thoracic cage was modeled as a rigid

mass attached to the thoracic spine through a non—linear

spring and a non-linear dashpot. The non-linearity is given

by a term proportional to a cubic power of the spring

elongation or it first derivative (dashpot), which are negli-

gible for small deformations.

(Stiffness thorax — spine)Z = 525,42 x 105 dyn/cm

(Damping thorax - spine)z = 38 - 54 x 105 dyn.sec/cm
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Since the thorax is going to interact mainly with the

first ten thoracic vertebrae, the stiffness and damping

coefficients representing the interaction at each costover-

tebral joint can be taken as 1/10 of the values adopted from

Muksian and Nash.

(Stiffness costovertebral joint)z= 52.54 X 105 dyn/cm

(Damping costovertebral joint)z = 3.8 — 5.4 X 105 dyn.sec/cm

The critical damping corresponding to the oscillating

system representing the thorax can be obtained from the for—

mulation for single degree of freedom systems:

 

Critical damping: 2/k7i= ZJEEEfZZ x 31173.0 = 25.6 X 105

dyn.sec/cm.

So the damping range previously adopted corresponds to an

overdamped system. The value giving the best model response

was 5.0 x 105 dyn.sec/cm.

6.4.5 Head and neck

The cervical spine consists of seven vertebrae separated

by intervertebral joints and surrounded by ligaments and

muscles. The neck can be then considered as a viscoelastic

element linking the head to the upper end of the thoracic

spine.

Payne and Band (1969), reported an undamped natural fre—

quency of the head and neck, fn = 192.3 rad/sec (30 Hz),

from which a stiffness coefficient for the neck wasznmroxflmned.
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Mass(head + neck) = 6078.0 gm

Stiffness = Mass x f; = 6078.0 X (192.3)2=
(neck)

= 2248.0 X 105 dyn/cm

Critical damping<head + neck) = 2 Mass fn = 23.38 X 105

dyn.sec/cm

From the data on stiffness reported by Prasad and King

(1974) for the cervical spine the following value of stiff—

ness was calculated:

Stiffness = 708.33 X105 dyn/cm
(neck)

The model presented by Muksian and Nash (1974) reached

satisfactory results using the following parameters for the

Kelvin model:

Stiffness = 525.42 X 105 dyn/cm
(neck)

Damping<neck) = 35 - 54 X 105 dyn.sec/cm

From the previous data the following ranges of variation

for damping and stiffness of the neck were adopted.

Stiffness<neck) = 500 - 700 X 105 dYn/Cm
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VII. RESULTS AND DISCUSSION

7.1 Validation of the Model

The main objective of the model proposed in Chapter III

is prediction of intervertebral joint deformations. Direct

laboratory measurements of such deformations would be the

ideal way to validate the model. Since these measurements

are possible but not feasible with the present state of

transducer design, alternative indirect validation.tedufiques

were used. Mechanical driving point impedance and seat-to-

head transmissibility are two techniques described by

Hopkins (1970), that were adopted for validation of the

model under investigation.

Mechanical impedance and transmissibility are two well

known tools for studying the dynamic response of biological

systems. A seated human subject can be considered a "black

box” much as one would an unkown electrical circuit. The

response of the system is described by the location of

resonant points as well as the magnitude of the impedance

or transmissibility vectors over the frequency range.

The mechanical impedance gives an indication of thetmxbl

behavior at one end of the torso, the pelvis; the coeffihjent

of transmissibility indicates the response at the opposite

end, the head. If both ends of the model (head and pelvis)

have a response close to the experimental values, it is
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reasonable to expect that the assuptions made to model the

structure located in between those two points must be close

to the real situation.

Impedance—frequency curves can be obtained from transient

loading comfitimu; using Fourier analysis, Weis et al. (1966),

Sandover (1970), or a more direct method, called steady

determination, that includes measurements of force and

velocity for discrete values of frequency over the range of

interest, Coermann (1963), Pradko et a1. (1967). The results

of steady state and transient impedance determinations re—

ported by Weis et a1. (1966) show some unexplained discrep-

ancies, so the data reported by Pradko et a1. (1967), from

steady state tests, will be used for validation of the model.

There are three reasons for choosing Pradko's data over

other impedance curves existing in the literature:

a. The data cover the full frequency range of interest

b. The impedance curves are the mean of different

acceleration levels

c. The measurements were made using sinusoidal

excitation (steady state), which is the situation

being studied with the model.

The driving point impedance curve of the model is shown

in Figure 7.1 together with the experimental curve reported

by Pradko et a1. (1967). These data are in good agreement

with measurements made by Suggs et a1. (1969) on 11 subjects

for frequencies under 10 Hz. The impedance data reported by

Coermann (1963) show a much higher maximum between 4 and 5
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Hz. However the general shape of the curve is the same.

Even though the exponential functions, (4.20) and ULZl),

giving the stiffness and damping coefficients are based on

data in the range 5 to 50 Hz, the modeled impedance curve

is extrapolated to 3 Hz to show the sharp change in slope

taking place at 5 Hz. The impedance curve presents a steep

slope from 0 to 5 Hz which is a consequence of the structure

behaving as a rigid body at low frequencies of excitation.

The modeled transmissibility curve, Figure 7.2, closely

follows the 90% confidence interval reported by Pradko et

al. (1967). The maximun reached by the model curve at 5 Hz

exceeds the corresponding value on the upper limit of the

experimental confidence interval by approximately 5.0%.

The model transmissibility curve present a minimum at 14 Hz

that deviates from the corresponding minimum on the lower

boundary of the 90% confidence interval by approximately

18.0%. These are the two points showing the largest devia—

tions from the experimental values. The reason for this

behavior is most likely the fact that the upper torso being

a deformable continuum has been modeled as a rigid mass.

This will reduce the accuracy of the model predictions of

intervertebral joint deformations at the lower end of the

frequency interval 5—50 Hz.

From the results presented it is concluded that the res-

ponse of the model is close enough to what can be expected

from a subject seated in erect position and subjected to

vertical sinusoidal oscillations. Therefore, the model will
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Figure 7.1. Driving point impedance for seatedcmerafln:

Experimental curve from Pradko et al.(1967).

..... : 90% confidence interval

: Model 

 

 
10 20 30 40 50 '?Hz)

Frequency

Figure 7.2. Seat to head transmissibility. Confidence

interval from Pradko et a1. (1967).
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be used to investigate levels of lumbar intervertebral joint

deformations as affected by seat suspension characteristics.

7.2 Lumbar Intervertebral Joint Deformations as

Affected by Seat Suspension Parameters

Only passive suspensions are considered in the analysis.

The passive suspension commonly consist of a spring, damper,

and mass. It is the simplest and most widely used for farm

machinery. The mass associated with the suspension can be

as low as 60.0 Kg (including the weight of the torso), for

a suspended seat, and as high as 500.0 Kg for a suspended

cab. The spring stiffness coefficient results from assuming

a natural frequency for the suspended system between 2 and

4 Hz. The trend in the design of suspensions is toward

lower natural frequencies in an attempt to reduce as much as

possible the range of frequencies producing seat motion

magnification, (seat displacement/chassis displacement >1.0).

The limiting factor in the process of reducing natural

frequency is the increasing static deflection permitted by

the ”soft" spring associated with low natural frequencies.

The damping coefficient is set close to critical conditions

to minimize oscillations for frequencies close to the natural

frequency of the suspension.

The suspension parameters adopted for the analysis are

given in Table 7.1.

An active suspension uses a power input to help minimize

the motion of the seat under adverse terrain conditions,

Roley and Burkhardt (1975).
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Table 7.1. Seat and cab suspension parameters.

 

 

 

KC MC CC C C

Type of

suspension (dyn/cm) (Kg) (dyn.sec/cm)

x 105 x 105

seat 210.0 10.0 22.96 2.3 0.1

seat 210.0 10.0 22.96 15.0 0.65

seat 210.0 10.0 22.96 22.96 1.0

cab 1420.0 400.0 160.0 16.0 0.1

cab 1420.0 400.0 160 0 104.0 0.65

cab 1420.0 400.0 160.0 160.0 1.0

Natural frequency = 2.9 Hz

KC : Suspension stiffness coefficient

Mc : Seat or cab mass

C : Suspension damping coefficient

CC : Critical damping

C : Damping ratio = Actual damping/critical damping
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Joint deformations are investigated for the three

following conditions:

a) Subject sitting on a bare seat without suspension.

The seat undergoes sinusoidal vertical motion

b) Subject sitting on a bare seat attached to the

vibrating chassis through a spring-damper-mass

suspension.

c) Subject sitting on a bare seat rigidly attached

to a cab installed on a machine chassis through

a spring—damper—mass suspension

7.2.1 Subject sitting on bare seat. No suspension 

The lumbar intervertebral joints of a subject sitting on

a bare rigid seat, subjected to vertical sinusoidal excita-

tion are subjected to shear and axial deformations whose

magnitudes are strongly dependent on the frequency of

excitation, Figures 7.3 and 7.4. All deformations are given

as percentage of chassis vertical amplitude of oscillation.

The maximum axial deformation takes place at the joint

enclosed by the third and fourth lumbar vertebrae, level

L3 — L4, while the maximum shear deformation takes place at

the lumbo-sacral joint, level L5—S.

The axial deformation, Figure 7.3, sharply increases

from 1.0 to 5.0% as frequencies changes from 3 to 5 Hz. No

significant changes in axial deformations occur when vmsdng

frequency in the range 5 to 10 Hz. From 10 to 30 Hz defor—

mation increases rapidly to reach a maximum of 20.0% of base

amplitude between 35 and 45 Hz. Toward the end of the
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frequency range studied the curve shows a decreasing trend.

The L5-S shear deformation curve shows a similar pattern,

Figure 7.4, although the magnitudes are smaller. The 5—10

Hz plateau reaches a 4.0% deformation level. The maximum

of the curve is about 9.2% of base amplitude, and takes

place on the frequency range 30 to 35 Hz, which is lower

than the range at which the axial deformations reach a

maximum value.

The remaining lumbar intervertebral joints present

significantly lower levels of deformation, but the shape of

the curves is entirely similar; consequently only the

numerical results are given in Appendices K to N.

7.2.2 Subject sitting on a bare seat provided with seat

or cab suspension 

The magnitude of joint deformations decreases signifi—

cantly when the operator seat is attached to the vibrating

chassis through a spring—damper-mass suspension. Figures

7.5 to 7.10 Show deformation curves for suspended seat or

cab, which reach much lower levels than those shown in

Figures 7.3 and 7.4 for an operator sitting on a rigid tdfle.

Three levels of suspension damping are anlyzed corre—

sponding to 10, 65, and 100% of critical damping.

The magnitude of axial deformation at level L3-L4 are

shown in Figure 7.5, for the cases of seat and cab mnmensfixm

under critical damping conditions. For most frequencies in

the range 5-50 Hz the cab suspension results in lower joint

deformations than the seat suspension. At 6 Hz the axial
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(bformations corresponding to the cab suspension curve

exceed the deformations of the seat suspension curve by as

much as 22%, but for all frequencies over 9 Hz the cab

suspension offers better protection.

At 30 Hz the L3—L4 axial deformations corresponding to

seat suspension exceed those of cab suspension by as much

as 75%. A very similar situation takes place for shear

deformations, as shown by Figure 7.6.

By decreasing the amount of damping the joint deforma—

tions are reduced for both seat and cab suspension as shown

in Figures 7.7 and 7.8 which correspond to a damping coef—

ficient equal to 65% of critical. The trend is larger

deformation reductions at higher frequencies. For fre-

quencies near the natural frequency of the suspension there

is an increase of joint deformation, which can be clearly

seen when the damping coefficient is further reduced.

By reducing the damping coefficient to only 10% of

critical the deformations continue to decrease for fre-

quencies over 10 Hz, but a resonant condition becomes evi-

dent at 3 Hz which is close to the natural frequency of the

suspension system, Figures 7.9 and 7 10.

From the previous analysis it can be stated that a

damper furnished with a variable damping coefficient can

contribute to significant reductions of joint deformations.

It should provide, for example, critical damping for fre—

quencies close to the suspension natural frequency, but

otherwise very light damping.
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(%) ————— : Seat suspension

Cab suspension

./"“‘x c = 1.0

 
 

 

0 10 20 30 40 50 Hz

Frequency

Figure 7.5. Axial deformations of L3 - L4 lumbar

intervertebral joint.

(%): Percentage of base amplitude of motion
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Figure 7.6. Shear deformations of L5 — S intervertebral

joint.
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Figure 7.7. Axial deformation of L3 — L4 lumbar

intervertebral joint.

(%): Percentage of base amplitude of motion
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Figure 7.8. Shear deformation of L5 — S intenmntebral

joint.
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Since the motion of the seat at frequencies close to

its natural frequency is characterized by large amplitudes,

the damper can be designed so as to give a displacement

dependent damping coefficient capable of heavily damping the

system when the seat displacement exceeds certain levels.

But, it would provide negligible amounts of damping for

low amplitude high frequency oscillations; this means

minimum joint deformation.

7.3 Summary of Results

The main findings in this study are the following:

1. A lumped parameter model of the spine in the sagittal

plane as the one shown in Figure 3.2 can closely

predict the driving point impedance of an operator

sitting in erect position while subjected to sinusoidal

vertical oscillations.

2. The coefficient of transmissibility predicted by the

model deviates as much as 18% from an experimentally

determined 90% confidence interval reported in the

literature. These deviations take place in the range

5 to 25 Hz. For higher frequencies the model predictions

fall within the confidence interval.

3. Maximum axial intervertebral joint deformations take

place at the joint located between the third and fourth

lumbar vertebrae. The maximum shear deformation takes

place at the lumbo—sacral intervertebral joint. These

statements are valid over all the frequency range 5—50

Hz.
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Frequencies over 15 Hz will sharply increase axial and

shear joint deformations for a subject sitting on a

bare vibrating seat. Axial deformation of joint L3 —

L4 will almost triple when frequency is increased from

10 to 35 Hz. The shear deformation of joint L5 — S

more than doubles for the same frequency increase.

The use of a spring-damper—mass suspension located

between seat and chassis or between cab and chassis

results in sharp reductions of joint deformations.

The magnitude of the reduction depends on the type of

suspension, the amount of damping, and the frequency of

excitation.

Cab suspension can reduce joint deformation to almost

half the levels corresponding to a seat suspension for

frequencies over 10 Hz. Seat suspension can give joint

deformations as much as 25% lower than cab suspension

for frequencies between 5 and 10 Hz. Both types of

suspensions were given identical damping ratios and

natural frequency (2.9 Hz).

Low damping ratios (C= 0.1) give the lowest joint

deformations for most of the frequency range, but with

very high values for frequencies near the natural

frequency of the suspension system.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The conclusions derived from this study are as follows:

The lumped parameter model developed in this investiga-

tion has shown promising results in predicting inter-

vertebral joint deformations. It puts a word of

warning on the well established criterion for design of

seat suspension based mostly on comfort considerations.

The simplified substructure used to model the upper

torso (single rigid mass) seems to be responsible for

some discrepancies between the response of the model

and the experimental data in the lower end of the fre—

quency range 5-50 Hz.

When modeling the viscoelastic rheological behavior of

intervertebral joints by means of Kelvin elements, the

corresponding stiffness and damping coefficients vary

exponentially with frequency.

The deformations of intervertebral joints are maximum

for frequencies in the range 25 to 35 Hz. Since the

rated speed of most engines used in modern farm equipment

is between 1800 rpm (30 Hz) and 2600 rpm (40 Hz), the

operator is exposed to vibrations in the most unfavorable

range of frequencies from the stand point of joint de-

formations.

114
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Ride comfort has always been the criterion for the

design of farm machinery seat suspension. This approach

has led to the use of high values of damping in the

process of minimizing the amplitude of motion at

frequencies near the natural frequency of the seat. The

result is a sharp increase of joint deformations for

frequencies over 10 Hz that do not create immediate

discomfort sensations but could be the reason for low

back pain after years of exposure.

The joint deformations predicted by the model appear to

be very small, but there are no data on what levels can

be considered damaging under long time exposure condi-

tions. The alternative left is to minimize deformations

in order to offer maximum protection.

The joint deformations reach at most a 20% of the

amplitude of chassis oscillation which is already a

small quantity for the case of vibrations generated as

a result of minor unbalanced machine components having

rotary or reciprocating motion.

The use of a spring-damper—mass suspension located

between a seated operator and the vibrating chassis

results in joint deformations about 1/4 to 1/5 of the

values corresponding to a subject sitting on a seat

rigidly attached to the chassis.

The use of cab suspension is desirable over seat mnmen—

sion for the minimization of intervertebral joint defor-

mations for frequencies over 10 Hz. Below 10 Hz dmzseat
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suspension offers some advantage.

The use of a suspension damper capable of giving criti—

cal damping for excitation frequencies close to the

natural frequency of the seat and very light damping

for higher frequencies is desirable from the stand

point of minimization of joint deformations.

8.2 Recommendations

Some of the changes that could be incorporated to the

model to increase its range of applications and probably

improve the occuracy of the results for the lower end of the

frequency range 5—50 Hz are listed below:

1. The assumption made about small joint deformations must

be relaxed if predictions of joint deformations are to

be made in the range of low frequencies close to the

natural frequency of the seat. It requires additional

investigation of the kinematic and rheological behavior

of the joints.

By testing two consecutive vertebrae with the corre—

sponding intervertebral joint, the patterns of relative

motions could be studied.

After motion and load histories have been recorded, the

joint could be opened and all relevant dimensions taken

for proper modeling of the kinematic behavior of the

joint.

The seat to head transmissibility as well as the driving

point impedance curves corresponding to a seated subject

are quite sensitive to changes in bending stiffness and
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damping coefficients. Therefore, more accurate data on

bending rheological behavior of intervertebral joints

is needed. Bending impedance tests of preloaded units

similar to those carried out by Kazarian (1972), for

axial motion, would be one approach to this problem.

If more accurate joint deformations are to be predicted

for the thoracic spine, the ribcage requires a more

elaborate model than a single mass suspended from the

first 10 thoracic vertebrae. Ribs modeled as individual

masses separated by viscoelastic elements representing

the intercostal tissues, plus beam type elements

representing the costo-vertebral and the costo-sternal

joints would be an appropriate solution. The internal

organs of the upper thorax could be modeled as rigid

masses suspended from the ribcage by viscoelastic

elements.

The joint deformations as presented in this report

correspond to a point located in the center of the inter-

vertebral disc at the intersection of the axis of the

two vertebral bodies enclosing the disc. More severe

deformations most likely occur at the articular facets

on the posterior arch or at the opposite end of the

joint on the annulus fibrosus.

Some additional geometrical data plus some formulation

could be added to the existing computer program to canny

late those deformations.
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APPENDIX A

  

   

    

Articular
.Sagittal plane

facets

Superior end plate

Posterior

arch

Vertebral body

Intervertebral disc

Articular

facets I

Figure A.1. Main structural components of vertebral

column
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APHQEEX B

Governing Equation Describing the Mbtion of a Vertebra in x—direction

 
Figure B.1. Displacements affecting the equilibrium of

vertebral mass mi in x-direction.

From Newton's 2nd. law: m xi = (Forces acting on mi in

direction)

n = _ 2 _ _ _ . - 2—

m xi (xi+l xi) cos Oi+1 Ks(i+1) 4 (xi+1 x1) Sin %&1

— . 2 _ .—

Ka(i+1) + (Xi-1 x1) COS 91 Ks(i) + (Xi-1 xi)
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. 2 " _ ‘— . 5

Sin Oi Ka(i) + (zi+l 21) cos Oi+l Sin Oi+1

Ka(i+1) ‘ (21+1 ' 21) C03 E’1+1 Sin O1+1 Ks(i+1) +

+ (zi—l — 21) cos Oi Sin Oi Ka(i) — (Zi—l — zi)

Z1
C°S 91 51“ 91 Ks(i) + 51+1 1+1 Ks(i+1) °°S e1+1 '

- Gi—l ZZi—l Ks(i) cos Oi + f(t)

f(t) = 0 for all d.f. except z—motion of sacrum—pelvis mass.
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APPENDIX C

Table C.l. Distribution of degrees of freedom

corresponding to each rigid moving

component of the model.

Element Motion Degree of freedom

number

Head—neck x 1

Head neck 2 2

Head-neck 6 3

Th1 x 4

Th1 z 5

Th1 8 6

Th2 x 7

Th12 S 39

L1 x 40

L1 2 41

L1 8 42

L5 x 52

L5 2 53

L5 8 54

Sacrum—Pelvis x 55

Sacrum—Pelvis z 56

Thorax x 57

Thorax z 58
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APPENDIX D

Stiffness Matrix Corresponding to an Intervertebral Joint

 
Figure D.1. Forces acting on an intervertebral joint

The joint stiffness matrix can be obtained by applying

the definition given by Vernon (1967): " kij is the load

required in the direction of coordinate i when a unit

displacement occurs in the direction of coordinate j and all

other displacements are zero". So a unit displacement will

be given to one coordinate at a time of the system in Figure

D.1, and forces in all six directions calculated from the

equations of static equilibrium.

The equation of static equilibrium of an intervertebral
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joint are as given by equations D-l to D—3.

ZFu = f; + f5 = 0 ; £1 = — f1 (D 1)

ZFw = f? + f3 = 0 ; f3 = — fT (D.2)

2M0 = M1 + M2 - f; Z2 COS 012 - f5 21 C03 012 +

+ f? 22 sin 012 — f3 21 sin Q2 = 0 (D.3)

Calculation of stiffness coefficients kjlt

A unit displacement of the superior vertebra in u-direction,

while the inferior vertebra is maintained fixed, develops a

reaction at the intervertebral joint as shown in Figure D.2

(a).

= ' — = ' = =ZFu f1 RS 0 f1 k1, KS

ZFW = 0 no forces in w — directions f? = k2, = 0

2M0 = M1 — f; X ZZ COS 912 = O M) = K31 = K822 COS 012

 

From equations (D.1) to (D.3):
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f; = " f; = "‘ K kgl = "‘ KS

£3 = - fll’ = 0 k5} = 0

M2 = - KS Zl cos ksl = - KS Z1 cos 012

 

Calculation of coefficients ka:

A unit displacement of the superior vertebra in w—direction,

while the inferior vertebra is maintained fixed, develops a

reaction at the intervertebral joint as shown in Figure D.2

(b).

W1 = 1 k12 = fi k22 = f? kaz = M1

kuz = fi ksz = f? ksz = M2

ZFu = 0 no forces in u—direction fi = klz = 0

= " _ = I' = =

EFW f1 Ka 0 f1 kzz Ka

2M0 = M1 + f'l' 22 Sin 012 = 0 111 = kaz =-KaZZ Sin 612

 

From equations (D.1) to (D.3):

f5=~fi=0 k42=0
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f3 = - f? = *Ka ksz = — Ka

ll

M2 -Ka Z1 8111012 keg = "Ka Z]. 81111012

 

Calculation of coefficients kj3:

A unit rotation of the superior vertebra, while the inferior

is maintained fixed, develops the reactions shown in Figure

D.2(c) at the intervertebral joint.

51 = l kla = fi k23 = f? kaa = M5

kua = fi ksa = f? kes = M2

ZFué fi — K.S Z2 cosOlz = 0 f; = k13 = KS Z2 cos 012

ZFW= f? + K8. 22 8111012 = 0 f1, = k23 = - Ka Z2 sin 012

ZMO=M1 - Kb + 22(f'1'sin 012 - f; C030”), M1 = k33 = K.b + 222( Ks

coszelz + Ka singelz)

 

From equations (D.1) to (D.3):

f5 = — f{ f5 = kma = - KS Z2 cos 012

 

£12! = _ f'l'
f'Z' = k53 = Ka ZZ Sin 012

 

M2 = k63 = - Kb + 21 22 (Ka sinze,2 - KS cos2 0,2)
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Calculation of coefficients kj4:

Similar procedure is followed when giving unit displacements

to the inferior vertebra. Only the equations are shown below.

u2 = 1 (Figure D.2 (d))

klu = fi kzu = f? kau = M1

kuu = fi ksu = fi ks» = M2

ZF = 0 f5‘ kg“ — KS

ZFW = 0 f2= k5.. = O

2M0 = 0 M2: ksm = KSZ1 COS O12

 

From equations (D.1) to (D.3):

f; = — f5 f1 = k1“ = - Ks

fT = * f? f? = kzm = 0

M1 = - M2+ (f1 Z2 + f5 21) cos 012 — (f? ZZ — f3 Z1) sin 012

M1 = k3m= - KS 22 cos 012
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Calculation of coefficients kj5;

W2 = 1 (Figure D.2 (e))

kls = fi

kus = fi

EFu = 0 f5

ZFW = 0 f3

2M0 = 0 M2

From equations (D.

f; = - f5 ff

fy = _ f; f?

M1 =

kzs = f" kss = Ml

kss = f? kes = M2

= kus = 0

= k55 = Ka

= f3 21 sin 912

l) to (D.3):

= k15 = O

= k25 - - Ka

 

~M2 + (f1 22 + f5 21) COS 012— (f? 22 - f3 Z1) sin 912

M1 = k35 = Ka 22 Sin 012

 

Calculation of coefficients kj6:



 

  



134

62 = 1 (Figure D.2 (f))

 

 

k16 = fi k26 = f? kae = M1

kms = f; kse = f2 keg = M2

ZFu = 0 f5 = kg; = KS 21 cos 012

ZFW = 0 f3 = kss = Ka Z1 sin 012

2M0 = 0 M2 = kss = Kb+ Z12(KS cos2 012 + Ka sin2 012)

 

From equations (D.1) to (D.3):

 

 

f1 = — fé f1 = kls = - KS 21 COS 012

f? = - f3 f? = kze = - Ka Zl sin 912

M1 = k36 = — Kb + 21 22 (Ka sinze12 — KS cos2 0,2)

 



 



Funue D.2.
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Forces developed at the intervertebral joint as

a result of unit displacements of the adjacent

vertebra.
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Appendix E. Stiffness data reported by Schultz et a1.

 

 

(1973)

Stiffness x (10'5)

Vertebral Axial Shear Bending

level dyn/cm dyn/cm dyn.cm/rad.

T1 6863.1 5882.6 1960.9

T2 11765.3 10784.8 3921.7

T3 14706.6 13726.1 5882.6

T4 20589.2 18628.4 9804.4

T5 18628.3 16667.5 9804.4

T6 17647.9 15687.0 9804.4

T7 14706.6 13726.1 9804.4

T8 14706.6 12745.7 10784.8

T9 14706.6 13726.1 10784.8

T10 14706.6 13726.1 11765.3

T11 14706.6 10784.8 9804.4

T12 17647.9 9804.4 8823.9

L1 15687.0 8823.9 8823.9

L2 14706.6 7843.5 8823.9

L3 14706.6 7843.5 8823.9

L4 13726.16 6863.1 7843.5

L5 10784.8 5882.6 6863.1 
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   Pelvis
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—
0
—
9
—
0
—
0

vertical harmonic excitation

Figure F.1. Vertical excitation of the spine through

the pelvis.
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APPENDIX H

Table H.1. Transmissibility data, Pradko (1967)

 

 

Standard Confidence Interval (90%)

Frequency Mean Deviation Upper Bound Lower Bound

1 1.011 .032 1.032 .989

3 1.182 .105 1.253 1.111

4 1.389 .157 1.495 1.282

5 1.298 .302 1.401 1.195

7 .901 .282 1.092 .710

10 .76 .20 .836 .684

15 .74 .23 .828 .652

20 .76 .22 .843 .677

30 .63 .18 .698 .562

40 .49 .14 .570 .410

50 .35 .12 .423 .277

60 .25 .12 .302 .198    
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