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ABSTRACT

The numerical solution of plane elasticity problems in which

the body is of arbitrary shape and is subjected to various loading

conditions is first considered. The method employed is based on

embedding the body of interest in the infinite plane and satisfying

prescribed boundary conditions using a collection of concentrated

loads acting outside the body. The procedure developed is then

extended to include internal sources of stress such as body forces,

fields of edge dislocations and their dipoles, isolated cracks,

and finally dense arrays of cracks. In the treatment of crack

problems, the actual crack boundary is replaced by a dislocation

dipole which acts as a passive radiator of stress in the presence

of an applied external stress field. Since each crack is given

this status and since the strength of any given dipole depends

on the stresses produced by its neighbors and by boundary tractions,

there is a high degree of interaction between dipoles. The approach

yields a system of matrix equations to be solved for the dipole

strengths which are subsequently used to determine the state of

stress anywhere within the body. Comparison of numerical results

to known solutions indicates that the dipole model of a crack is an

accurate one for most applications and that the numerical methods

developed perform satisfactorally. This work should therefore be



 



useful in the study of damage due to progressive crack growth in

engineering materials such as metals and rock.
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CHAPTER I

INTRODUCTION

The linear and nonlinear theories of elasticity, plasticity

and fracture mechanics are cemposed of two parts: the develop—

ment of constitutive equations describing the material response

to applied loads and the determination of the stress fields resulting

from an application of these equations to boundary value problems of

interest. This dissertation deals with the latter.

Beginning with Chapter 2 the numerical solution to linear

elasticity problems with emphasis on efficiency is addressed and

the method developed is then extended to include body forces,

fields of dislocations, dislocation dipoles, isolated cracks and

finally a dense array of microcracks. Common to all solution

methods in problems of plasticity, nonlinear elasticity and frac-

ture mechanics is the need for an accurate assessment of the stress

fields arising from distributed internal sources of stress, such

as a body force field. Also common to these methods is the incre-

mental nature of the approach. Consequently, the basic process

of solving a linear elasticity problem must be performed repeatedly,

requiring the numerical procedure to be both accurate and efficient.

In classical plasticity theory, a rearrangement of the elas-

tic—plastic Navier equation shows that the plasticity problem can



 

 



be regarded as an elasticity problem with a suitably modified body

force [1,2]. The body force carries the effects of plasticity

for a given set of constitutive relations and is typically not

known apriori since it is expressed in terms of the displacement

field. The same is true of nonlinear elasticity problems [3].

The nonlinear terms occupy the same position in the Navier equation

as does the body force term. In both plasticity and non-linear

elasticity, the determination of the body force distributions for

a given loading system is typically done iteratively. The load

is then given an increment and the procedure is repeated until some

predetermined loading program is completed. It is therefore

necessary to solve a series of elasticity problems with body forces

for each increment of the load.

Attempts to obtain the stress field due to body forces by

replacing the distribution with a collection of point loads [1],

gives poor results near the points of application of these loads

due to the singular nature of the point load solution [4]. The

same is true of quadrature rules used in numerical integration

techniques [2] which are aimed at smearing the point load solution

over polygon-shaped areas. The finite element approach [5] of

dividing the body into elements and assigning some simple distri—

bution to the body force over each element is cumbersome and

numerically inefficient. In Chapter 2 it is shown that the problem

can be treated very effectively by characterizing the body force

field by a set of Fourier coefficients which are then used to

determine the stress field at any point from simple expressions.



 
 



Equally important is that the integrals associated with the

smearing of point loads over an area to obtain a body force distri-

bution are exactly the same as those required to smear dislocations

and dislocation dipoles over an area. In problems where the dis-

location distribution is known, the methods of Chapter 2 allow for

the calculation of the associated stress field with a minimum of

effort. A known distribution however is likely to be the exception

rather than the rule. As with plasticity and nonlinear elasticity,

the distribution is usually determined iteratively by satisfying

some kind of constitutive criterion [6]. Nye [7] and Eshelby [8]

have independently developed continuum theories of dislocations but

both are described by a set of partial differential equations which

are unlikely to be solved in even the most elementary problems.

In fracture mechanics [9], the prediction of stress levels at

which crack growth takes place is of primary importance. The deter-

mination of stress intensity factors [5, 9, 10, 11, 12] is aimed at

accomplishing this. The subsequent problem of following the pro—

gression of crack growth is an area of current research [13, 14, 15,

16, 17, 18, 19]. Fundamental to the success of this research is

the ability to characterize the stress field of a collection of cracks

with a minimum of effort. It has been customary to focus attention

on one or two cracks in simple geometries under conditions of uniform

stress [9, 10, ll, 12]. The solution to the problem of a single

crack in uniaxial tension in the infinite plane is no simple matter

and therefore points to the need to develop unconventional methods

of solution. In Chapter 3 a dislocation dipole model for a crack



 

 



[6] is proposed which simplifies matters considerably while preserving

the general features of a crack and eventually allows for the solution

of general boundary value problems in which the body contains an

arbitrary array of cracks with varying sizes, orientations and locations

within the body. The application of this model to problems with

known solutions indicates that it compares favorably with more refined

models and requires very little effort to apply numerically. Ultimately,

this model is used in conjunction with the results of Chapter 2 to

treat the limiting case of a dense array of microcracks characterized

by a 'microcrack density'. It is hoped that, when used with consti-

tutive models of crack growth (yet to be developed), these results

will prove to be an integral part of the problem solution process.

No attempt has been made to develop or incorporate already

existing crack growth models into the material presented here. Efforts

to classify materials according to their behavior in the realm of

progressive crack growth [13, 14, 15, l6, 17, 18, 19, 20] indicate

that this stage of the problem needs further development. Dragon

and Mroz [14] come closest to defining the state of the art approach to

crack problems. In their approach, they use an abstract quantity intro-

duced by Vakulenko and Kachanov [21] called the crack tensor and pursue

a potential theory development similar to that used in plasticity.

Their development, however, is largely phenomenological and lacks

justification in many places. The crack tensor idea is nevertheless

an advantageous contribution and is very similar to the'dipole state'

used here to represent a crack field. In view of the successes met

with in the example problems presented in Chapter 4, this type of

approach looks promising for future use in the incremental treatment



 



of crack growth problems. For the sake of clarity, the methods

presented in the following chapters deal with the treatment of body

forces, dislocations and cracks individually. The versatility of

the numerical approach must however be emphasized; there is no res—

triction preventing these methods from being used in concert to

treat the general problem of elastic-plastic-dislocation-fracture

mechanics.



 

 



CHAPTER 2

THE NUMERICAL SOLUTION OF ELASTICITY PROBLEMS

BY THE SUPERPOSITION METHOD

2.1 Background

The governing equations of linear elastostatics applied to

a homogeneous isotropic body in a state of plane stress are [4]

the equilibrium equations,

1.
.
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and the strain-displacement relations,

6.8;:
x ax’

av
= __, 2.48y 3y ()

—3_U§l
ny — 3y + 8x’

where ox, Oy’ Ixy are the stresses; Bx’ By are the body forces;

ex, 6y, ny are the strains; u, v are the displacements; E, G,

v are the usual material properties.

In what follows, the body will always be assumed to be in a

state of plane stress. The interested reader can easily convert

any results to satisfy plane strain conditions. Any stress field,

(OX, 0y: Txy

compatibility is a solution to some boundary value problem in

), which satisfies both the equilibrium equations and

elastostatics. Satisfaction of compatibility insures the inte-

grability of Equations (2.4) to obtain a displacement field, (u, v).

Of particular importance in the theory of elasticity are the

principle of superposition, which follows from the linearity of

the governing equations, and the uniqueness theorem due to

Kirchhoff. The principle of superposition allows one to construct

new solutions from linear combinations of old solutions. The

solution to a typical problem in elasticity involves the satis—

faction of the governing equations at every point inside the body

and the matching of boundary conditions at every point on the



 

 



boundary of the body. The theorem of Kirchhoff guarantees unique-

ness of the solution provided that the boundary conditions are

of the form usually encountered,

(2.5)

where Bt and Bu are those parts of the boundary on which tractions,

t:, and displacements, u:, are prescribed, respectively. Conse-

quently, a solution obtained by any means is the only solution.

Two basic solutions, the concentrated load and the edge

dislocation solutions, will be used in what follows. Figures

2.1a and 2.lb show concentrated loads of magnitudes PX and P

acting at the origin in the infinite plane in the absence of body

forces. The resultant stress and displacement fields shown in

matrix form are

u Lube ln r + L2]
x G l+v r2

u _ L . 5.x

.v 46 F2

P (l+v) 2

_ X X X

Ox ‘ ‘ T' "2‘ (B + ‘2‘) (2-66)
Y‘ Y‘

x y2
__ _ + __

0y l"2 ( 8 r2)

y X2
Txy ”2—(B+—’2‘)



 

 



 
a. A concentrated force acting in the x direction.

 

b. A concentrated force acting in the y direction. 
Figure 2.1. Concentrated loads in the infinite plane.
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l 3-v x
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= __l____._. y _ X

0x 2n ‘ ‘2” 8 + '7) (Mb)
r r

y yZ

o —(B+—-)

y r2 r2

x y2
Txy ;§‘(B + :f) 9

respectively, where

(2.7)

An edge dislocation is given the symbol,J.. Operationally,

the dislocation is formed by slicing the infinite plane along a

line and inserting a slab of material of width b into the cut.

The stem of the.J_refers to this slab of material. Figure 2.2

shows dislocations of various orientations situated at the origin

in the infinite plane. The accompanying 'Burger's vectors', 9,

represents the net discontinuity in the elastic displacement

taken counterclockwise around a closed circuit enclosing the

leading edge of the inserted slab [6]: in Figure 2.2, the leading



 

 



 

 
a. An edge dislocation with Burger's vector, bx'

 

b. An edge dislocation with Burger's vector, by. 
Figure 2.2. Edge dislocations in the infinite plane.
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edge lies along the z axis. An excellent discussion of edge dis-

locations and their stress and displacement fields is given in [6].

The stress fields corresponding to Figures 2.2a and 2.2b are

2 2

= , y(3x +y)

0x Kx 4 ’
r

y<x2- 2)0y = -KX - —TL, (2.8a)
r

X(X2- 2

T = —K . ,

xy x r4

and

2 2

o = K ' X( -X ) ,
x y r4

2 2

oy = 'Ky ' x(3:4: l , (2-8b)

r

2 2

_ K ,y(y —><) ,

xy y r4

where

be

Kx = 4F_ ’

(2.8c)

E

K = —1.
y 4n

It can easily be shown that the so—called Burger's vector is in

fact a vector. Referring to Figure 2.3a, the proof is effected

by writing out the stress field for this rotated dislocation
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a. A rotated edge dislocation with Burger's vector, b.

(b) (b-cose) (bosine)

b. The vector nature of the 'Burger's vector'.

Figure 2.3. Transformation properties of edge dislocations.
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referred to the Ely system,

—2 —2
_ ,y(3x +y)

O__K _4 9

Y‘

_: K,§(Y2 -Y2) (29a)
0 __4 ’

.

Y‘

——2 —2
T—=K'X( 'X)

xy F4 ’

where K = 45"

This state of stress may now be transformed back to the x—y system.

For example, with sin e = s and cos a = c,

_ 2 2

ox — o;c + oys — 21;; sc. (2.9b)

Substituting Equations (2.9a) into (2.9b) and rearranging gives

K [—3 X2_ — 22 ——2—2
oX — F7? y + y (3c —s ) + 2x(x —y ) sc]. (2.9c)

Finally, using the coordinate transformations,

>
< ll xc + ys,

‘
<
l

u

-xs + yc,

Equation (2.9c) becomes after simplification
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0X = EE—[y(3x2+y2)c + x(y2—x2)s]. (2.9d)

r

The stresses, 0y and Txy, can be treated in a similar manner. Now

if one defines bx = b . c and by = b - 5, Equation (2.9d) can be

written as

2 2 2 2

= , y(3x +y ) . X(y -x )
OX KX r4 + Ky “-7—— , (2.98)

which is recognized as the superposition of the states of stress

given in Equations (2.8a) and (2 8b) with Kx and Ky defined as in

Equation (2.8c).

This result is shown symbolically in Figure 2.3b where the

expressions in parenthesis below each symbol correspond to their

Burger's vectors.

2.2 The Superposition Method in the Absence of Body Forces

An efficient compact numerical technique for the solution of

plane elasticity problems in which the body is of arbitrary shape

and is subjected to any boundary conditions of the form mentioned

in the uniqueness theorem can be developed using only the concen-

trated load solution. The procedure is as follows (see Figure 2.4):

1) Embed the body of interest in the infinite plane of the same

material.

2) Place 2n concentrated loads at arbitrary locations outside the

body. The orientations of the loads are as shown in Figure

2.4 and the magnitudes are as yet unknown.
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<+———-Infinite Plane —————4>

Actual Body

Congruent

Boundary 

Figure 2.4. Embedding the body in the infinite plane.
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3) Satisfy boundary conditions by adjusting load magnitudes so

that the superposed effect of all 2n loads acting in concert

gives the desired conditions. Since there are 2n unknown

magnitudes, one has the capability of satisfying boundary

conditions at n points on the boundary.

For simplicity, the concentrated loads are arranged so as to act

on a contour which is congruent to the actual boundary at a

distance 5 from it. The parameter s is arbitrary and can be used

to prevent C_from becoming too ill-conditioned.

Let w be the column vector containing the magnitudes of the

2n concentrated loads and let Crbe the square matrix whose element,

jj,lrepresents the contribution of the jth unit concentrated

load to the ith boundary condition. Finally, let b_be the column

C

vector containing the prescribed values of the Zn boundary condi-

tions. The superposition of the Zn concentrated loads to satisfy

the boundary conditions is represented by

b =_C w, (2.10a)

and if C'is nonsingular,

b. (2.10b)

The stresses and displacements at any point in the body can be

calculated by summing the contributions due to each of concen-

trated loads, the magnitudes of which are now known.
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The numerical procedure just described solves an elasto-

statics problem in the sense that equilibrium and compatibility

are satisfied at every point inside the body and boundary condi-

tions are satisfied at a finite number of points on the boundary.

The approximation therefore lies in the neglect of boundary con-

ditions not directly accounted for in the matching technique.

Refinements in the solution may therefore be made by considering

more points at which conditions are to be satisfied. This of

course necessitates more concentrated loads so that the size of

the matrix, C, and hence the amount of computation increase

considerably.

An alternative procedure allows for the satisfaction of an

arbitrary number of boundary conditions in a least squares sense

while maintaining a constant matrix size. The problem is still

defined as

yet,

where C_now has 2N rows and 2h columns with N > n. Since C>is

nonsquare, the inverse of C_does not exist and there is no way in

general to choose the Zn unknowns in w_so as to satisfy the 2N

conditions in 9, Therefore, for a given w, one may define the

l'lOYlZEY‘O EY‘Y‘OY‘ VECtOY‘,



 

 



 

that

6(E2) = 3T6__+ 6_Tg_= 29T62_= 0.

However,

6§_= - §_§w, (2.13)

so that

which must hold for arbitrary 5w, Therefore,

uT—E§m=0,

or, transposing,

££E=JE- can

In retrospect, this merely amounts to premultiplying the original'

equation,
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Equation (2.14) has the property that §:§_is square so that

w’is uniquely determined by

E: <29) 22- (2.15)

It should be remarked that the least squares approach may not be

desirable in certain cases. If, for example, the boundary conditions

vary rapidly over small distances, this approach will tend to

smooth out these fluctuations giving conservative values in cases

where accurate values are desired. As a final note, one may

generalize the type of boundary condition prescribed to the form

auX + buy + coX + doy + 8Txy = f, (2.16)

where the constants a, b, c, d, e, and f are specified. The

matrix element, ij, is then the influence given by the left hand

side of Equation (2.16) at the boundary point i due to a unit

concentrated load applied at point j outside the body. The right

hand side, f, appears in the ith row of the column vector, b, Of

course this type of boundary condition forces one to forfeit cer-

tainty about the uniqueness of the solution, but is nevertheless

useful for contact problems and problems in which the boundary is

subject to friction and spring loading.
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2.3 The Superposition Method in the Presence of Body Forces and

Other Sources of Internal Stress

The presence of body forces does not seriously complicate

the numerical solution to an elastostatics problem. The procedure

is as follows.

1) Embed the body in the infinite plane of the same material and

let the body forces act.

2) Determine the stresses and displacements on the boundary of

the embedded body caused by these body forces.

3) The difference between these boundary values and the pres—

cribed boundary conditions is then eliminated by adjusting

the magnitudes of the concentrated loads outside the body.

This procedure gives a unique solution in the sense that the

equations of elasticity with body forces are satisfied at every

point inside the body while boundary conditions of the type men—

tioned in the uniqueness theorem are partially satisfied on the

boundary. The stresses and displacements at any point inside

the body can be calculated by superposing the effects of the body

force field and the concentrated loads, the magnitudes of which

are known at the conclusion of step 3.

It is important to note that the solution inside the embedded
 

body is unique. The difference referred to in step 3 is certainly

dependent upon the body forces acting outside the body but this

difference is compensated for by the selection of the concentrated

load magnitudes.



 
 



22

The only difficult part of this procedure is the calculation

of the stress field produced by an arbitrary distribution of body

forces (step 2). One may approximate the continuous body force

field by a set of concentrated loads acting at various locations

throughout the body, but due to the singular nature of the con—

centrated force solution, the stresses and displacements near the

points of application of these loads are highly exaggerated and

even diverge at the points themselves. For the sake of accuracy,

the only alternative is to continuously distribute infinitesimal

point forces over the body. For example, using Equations (2.6),

the stress, ox, at the point (a,b), caused by the body force,

Bx(x,y), acting inside of an area, A, embedded in the infinite

plane is, by superposition,

ox(a,b) = f _ %%X_(1+V)(a-x)(l—v . l + (a—x)

A r r

  

where

and

dPX = BX(x,y) dA.

With BX known,



 

 

 



 
  

(2.17)

As mentioned earlier, the field, Bx(x,y), may be allowed

to act over the entire infinite plane without affecting the solu-

tion to the elastostatics problem, provided that the stress and

displacement fields caused by this do not diverge as a result.

To insure convergence, one may assign to Bx the desired value

inside the body and any value whatsoever outside which does not

accumulate influences to the point of divergence. Such a dis-

tribution may, for example, be the Fourier series representation

for B ,

X

1] L L

B (x,y) = Z Z c.. cos 115-cos All . (2.18)

i J' x y

Here, the body is embedded in a rectangle as shown in Figure 2.5 and

the Fourier coefficients, Cij’ are evaluated by point matching or

 

by

Ly Lx - -

c1. = L f f f Bx(x,y) cos %15 cos %11 . (2-19)

3 x y o 0 X y

It is not necessary to place the rectangle in the first quadrant

but it is imperative that it be placed in one of the four quadrants

to the exclusion of all others since this distribution is an even

function in both x and y and consequently forces BX(x,y) to be even



 

 



 

Figure 2.5. Embedding the body in a rectangle in preparation

for its Fourier series representation.



 

 



 

 

The completion of the stress field produced by Bx and By follows

in the same manner, altogether requiring the evaluation of four

basic integrals,

Ik -mf a-x 3;: b' )k cos mx - cos ny dA, (2.21)

where

k = 0, l, 2, 3

61nd

r2 = (ax-x)2 + (my)?

Note that m and n need not be integers. These integrals are

difficult to evaluate and appear in Appendix A. From Appendix A,
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Io- (g—+l)a,

I - (1-1)b,

l 77 (2.22a)

12 = (7' ])a:

I3=(-721+1)b,

for m=n=O. Otherwise,

2 2

I0 = ImAg—igflél-sin ma - cos nb,

(m +n)

_ nn(n2-m2) .

I1 — ——§——§—§—-cos ma - Sin nb, (2.22b)

(m Hi)

2 2

I = EEKEL431—A sin ma ~ cos nb,
2 (m2+n2)2

2 2

I3 = IDI%_i%E§l.COS ma - sin nb.

(m +n)

The stress, ox(a,b), due to constant body forces, Bx = c00

Eilnd By = doo’ acting over the entire infinite plane is, from Equa-

t;ion (2.20),

_ l—v l

Ox(a’b) _ -‘__— C [1+v ' 2'(Io+12) + Io:l

 

(2.23)

1

2h 00 [' ‘13'2‘(11+I3) + 117’

where the values for the four integrals are taken from the m=n=0

case of Equation (2.22a). After simplification, this becomes



 
   

 



Performing similar operations for the remaining stresses and

making the interchanges, a+x and b+y, the stress field at the

point (x,y) due to constant body forces is

_ l+v l+v

Ox " ' 2[Coo(1+ TV + doo (V ' TUJ’

o=—ltc (v-flwd (Ml—3m (224)
y 2 00 n 00 n ’ '

_ l l+v

Txy - ' 2'( 7"F_) (Cooy + doox)

1’1: is a simple matter to verify that both equilibrium and com-

F>£a.tibility are satisfied.

The extension of these results to body forces of the form

B = 5 mx - cos n

x Cmn CO y

(2.25)

By = dmn cos mx - cos ny

acting over the entire infinite plane follows in exactly the

same manner. The complete stress field at the point (x,y)

generated by these body forces for m and n not both zero is
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_ 2 2 2 2 .
Ox - R[m(m + (2 + v)n )cmn - P + n(vn —m )dmn Q]

o = R[m(va-n2)c - p + n(n2 + (2 + v)m2)d . Q] (2 26)
y mn mn ’ '

_ 2 2 2 2 .
Txy — R[n(n -vm )cmn Q + m(m - vn )dmn P],

where P = sin mx - cos ny,

Q = cos mx - sin ny,

l
R — — ——————-——.

(m2+n2)2

lngain, it is easy to show that both equilibrium and compatibility

£3 r‘e satisfied. The body forces are now completely characterized

tDJV' their Fourier coefficients, cm and dmn’ and the state of
n

55 1: ress associated with these is given by Equations (2.24) and

( 23 .26). The displacement field can be obtained by inserting the

SS‘tLresses into Equation (2.3) to obtain the strains and then

i ritegrating the strain-displacement relations of Equation (2.4)

'Fc3r the displacements,

 u = — R(;+V) [(m2(l-v) + 2n2>cmni + nm<i+v>dmn51

- my + d,

(2.27)

v _ _ R(E+V) [mn(i+v)cmns + (n2(l-v) + 2m2)dmnT]

IF
;
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where R is defined as in Equation (2.26), and

S = sin mx - sin ny,

T = cos mx . cos ny,

w, a, B are arbitrary constants.

One may choose w so that the rigid body rotation is zero and a and

£3 so that the displacements at the origin are zero,

0.E

n

a = R(1E+v)
 [m2(l-v) + 2n2]cmn,

(2.28)
B = R(E+V) [n2(l-V) + 2m2]dmn. 

23 - 4 Fields of Edge Dislocations and Their Dipoles

Fields of dislocations can be handled in a manner similar to

Tltiat used for body forces. Ascribe to the field a Burger's

\Iector density given by

= s - os ndA cmn co mx c y,

(2.29)

I_l_= .
dA dmn cos mx cos ny.
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Recalling the edge dislocation solution given by Equations (2.8),

the stress, ox, at the point (a,b) due to this field acting over

the infinite plane is

E_

4n

(b-y)(3(a-x= ) .ox(a,b) ob r cmn cos mx cos ny dA

 

. cos mx - cos ny dA,
4n°° r4 mn

or ox(a,b) = E? [cmn(311+13) + dmn (IE-10)]. (2.30)

For a constant density, m=n=O, and this reduces to

E
ox(a,b) = g} [(V'I)Coo - dooa]. (2.31)

(3therwise,

2

ox(a,b) = ——%fl—§—§ [ncmn cos ma - sin nb - mdmn sin ma - cos nb].

(m +n ) (2 32)

The remaining stresses, oy and Txy’ are obtained in a similar manner.

The complete state of stress at the location (x,y) generated by

the dislocation field described by Equation (2.29) acting over the

entire infinite plane is

l"



 

 

 



 

 

for m=n=0, and

_ 2
o - Rn [ncmnP — mdan],
x

_ 2

oy — Rm [ncmnP - mdan], (2.33b)

Txy = Rmn[-ncan + mdmnP],

1=c>r'm and n not both zero, where

E
R = —_—— ,

(m2+n2)2

P = cos mx - sin ny, (2.33c)

Q = sin mx - cos ny.

Equilibrium in the absence of body forces is satisfied at

every point whereas compatibility is satisfied nowhere since

 



 

 

 



V (0 +0 ) = -E(ncmnP - mdan) (2.34)

It is not surprising that compatibility is violated in view of

the fact that the hallmark of a dislocation is its discontinuous

elastic displacement field. Nonetheless, the significance of

Equation (2.34) is not understood. Of course, violation of com—

patibility destroys the integrability of the strain-displacement

relations so that the stresses are the only influences obtainable,

—y

except in the case where D is irrotational,

V'x D = O, (2.35)

for which

V2(ox+oy) = O

For this case, a displacement field exists.

Closely related to the edge dislocation is the dislocation

dipole, which is useful in the modelling of cracks. There are two

basic dipoles, the normal and the shear dipoles. Both are the

limiting cases of two edge dislocations of equal and opposite Burger's
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vectors approaching each other in such a way that the product of

their separation and Burger's vector remains constant. Figure 2.6

shows normal and shear dipoles at various orientations. In

Figure 2.6a, let o(x,y) be the state of stress at the point (x,y)

generated by the edge dislocation with the positive Burger's vector,

bx’ situated at the origin. Let o*(x,y) be the combined effect of

this dislocation and its opposite, located at a distance, hy, above

it. Then

0*(X9y) = 0(X9Y) ' o(x,y-h ) h U(X,Y), (2'36)

y yW

as hy+0. The stress field, o*(x,y), is defined to be that generated

by the normal dipole of Figure 2.6a in the limiting case, hy»0 and

bx+m, in such a way that the product, dx=bxhy’ remains constant. This

product is termed the strength of the dipole. The important result

here is that the stress field, 0*, of the dipole can be obtained

from that of the edge dislocation by replacing the Burger's vector,

bx’ occuring in the stress field, 0, by an operator, dX 2y“ and per-

forming the indicated operation. Symbolically,

(b +d 8—) » (o+o*), (2.37)
x X By

which is read: the replacement of bX by d generates the stress

x57

field 0* from 0. Similar operations, listed symbolically in

Figure 2.6, hold for shear dipoles.

Upon performing the operations indicated in Figure 2.6, the

following stress fields are obtained:
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(b »d 8—)+(o+o*>

a. A normal dipole With dX = bxhy'

h (b 'P-dy—X)—>(0—+O*)

b. A l d' l 'th d = b h .norma ipo e Wl y y x

.___. _> .+ *

xy 8x) (0 O )

 
d. A shear dipole with d = b h .

XX y y

Figure 2.6. Normal and shear dipoles in the infinite plane.



 

 



 

  

for the dipole shown in Figure 2.6a:

_ 4_ 22 4
a;—Ky(x 6xy HI).

4 2 2 4
*= + _0y Ky(X 6xy 3y).

_ . 2_ 2
T;y - Ky 2xy (x 3y ),

Ed

where K = _._SXE

y 4hr

for the dipole shown in Figure 2.6b:

2 2

x ny - 2xy (y - 3x )Q

F
I
-

II

o; = K - 2xy (X2-3y2),
Xy

1* = K - (x4 - 6x2y2 + y4),

(2.38b)

(2.38c)



 

 



de Ed x

where KX = — ———%— or - __XE

y 4nr 4hr

for the dipoles shown in Figures 2.6c or 2.6d.

If a dipole is not located at the origin of coordinates, then

the x and y coordinates appearing in these equations are relative

coordinates,

x = xP — XD’

y = yp ' yD:

where (xP,yP) and (x0, yD) are the coordinates of the point P, at

which the stress field is desired, and of the point D, at which the

dipole is located, both referred to some global coordinate system.

Evidently,

2.2
EX _ Bxp’

and

2.22
By " Byp’

so that there is no ambiguity in the operation, dX gy, if the relative

y coordinate is replaced by the global y coordinate of the point P,

irrespective of the location of the dipole. It is for this reason

that the stress field due to the dipole density,

X = cos mx - cos ny, (2.39a)
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acting over the infinite plane can be calculated easily from

Equations (2.33) by replacing the scalar, Cmn’ by the operator,

3

Cmn 5y
, with dmn = 0. Having done this, cmn is associated with

the dipole density of Equation (2.39a). The smearing of dipoles

over the infinite plane is equivalent to the smearing of edge

dislocations with their Burger's vectors replaced by the operators

described in Figure 2.6. Therefore, this trick merely takes

advantage of the interchangeability of the order of integration

involved in the smearing process and partial differentiation

involved in the process of generating dipole stress fields from

dislocation stress fields. For the distribution of normal dipoles

whose density is given by Equation (2.39a), the corresponding

state of stress is

0x = 2E-'Ecoo’

o =Lc (2 39b)
y 2h 00’ '

T = 0,

XY

for m=n=O, whereas for m and n not both zero,

_ 2
0X Rn cmn cos mx cos ny,

2
:

I

2.oy Rm cmn cos mx cos ny, ( 39c)

: 7n o .Txy Rmncmn Sl mx Sln ny,
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2

En

where R = —-——-——-.

(m2+n2)2

The normal and shear dipoles of Figures 2.6b and 2.6c can also

be continuously distribued over the infinite plane with densities

similar to that of Equation (2.39a), with dX replaced by dy and

dxy respectively. The corresponding stress fields are obtained

by replacing cm and dmn in Equations (2.33) by the operators
n

3 _
dmn + 'dmn 5;- and cmn - O, (2.40)

and

c + -c §—-and d = 0
mn mn 3x mn ’

thereby obtaining for the distribution,

d(d )

_dfix_': dmn cos mx - cos ny, (2.4la)

E

0x _ 2F'doo’

O = 3:1.Ed
(2-4lb)

for m=n=0. For m and n not both zero,



 

 



 
 

With R = 7—237.

m+n

For the shear dipole distribution with density

J: C COS "1X ‘ COS ny,

=E_
Txy 2n Coo’

for m=n=0, and for m and n not both zero,

_ 2 . .
ox Rn cmn Sln mx Sln ny,

o = Rmzc sin mx - sin n
y mn y,

Txy — RmnCmn cos mx - cos ny,

with R = Em“
(m2+n2)2 '

(2.42a)

(2.42b)

(2.42c)
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Of course, for the stress fields of Equations (2.39c), (2.4lc),

and (2.42c), equilibrium is satisfied at every point in the infinite

plane while compatibility is satisfied nowhere. Both the normal

and shear dipole may be rotated through an arbitrary angle and the

resulting stress fields calculated. The topic of dipole transfor-

mations is taken up in Appendix B and is later referred to in the

discussion of crack fields.

The numerical procedure for the solution of elasticity problems

described earlier can now be extended to include sources of internal

stress other than body forces, such as edge dislocation fields

and their dipoles. As with body forces, the field is first charac-

terized by a set of Fourier coefficients chosen to represent the

field inside the body without regard to what it represents outside.

These coefficients are then used to ascertain boundary conditions

already present as a result of the field, and the concentrated loads

acting outside the body are used to adjust these boundary conditions

to those desired. The resulting interior stress field is obtained

by superposing the separate effects of the concentrated loads and

of all sources of internal stress. The only restriction placed on

this method when used with dislocations and dipoles is that dis-

placement boundary conditions may not be prescribed. Violation of

compatibility prohibits the integration of the strain—displacement

relations so that displacement fields for distributions of dislocations

and dipoles are unobtainable. This inadequacy can be attributed to

the fact that a continuum of dislocations is physically unattainable.

The initial continuum into which the body is embedded is altered by
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the introduction of dislocations which add and subtract material at

every point, thereby creating a new continuum. The preceding results

are nevertheless useful, for if a large but finite number of dis-

locations are known to exist in a given area, the stress field caused

by these is much more easily and accurately approximated by proceeding

to the limit and assigning a density to this collection than by

treating each dislocation individually. Furthermore, since the

displacement field will oscillate rapidly inside this area and

since uncertainties in the displacement field due to the approxi-

mations used in the linear theory of elasticity are on the order

of magnitude of the displacements themselves [6], the value of

such results is questionable.



 
 



CHAPTER 3

THE NUMERICAL SOLUTION OF CRACK PROBLEMS

3.l The Modelling of Cracks by Dipoles
 

Edge dislocations can be used advantageously to model cracks

in both tension and shear. Figure 3.la shows a slit crack of

length 2c situated in an infinite plate in uniform tension, 0,

applied at infinity. Figure 3.lb shows the same plate with the

crack removed and a line distribution of infinitesimal edge

dislocations in its place. The distribution can be made to model

the crack by requiring that the total stress field satisfy traction

free boundary conditions along the portion of the x axis, |xl <c,

representing the crack. That is,

o (x,0) = TX (x,O) = O, (3.l)

for Ix] < c. These tractions result from the combined effect of

the external stress field, 0, hereafter referred to as the resolved

stress field, and the stress field due to the dislocations them-

selves, hereafter referred to as the self stress field. The shear

condition is satisfied automatically by the type of dislocation

chosen to represent the crack. That is, for the single edge

dislocation of Figure 2.2b, the shear stress on the x-axis is

zero by Equation (2.8b), whereas the normal stress is

42
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a. A slit crack in an infinite plate under uniform tension.

—l-l-ll-—l—F— ———»x

F—ZC—i

 

b. A slit crack modelled by a dislocation line.

Figure 3.l. A slit crack and its dislocation equivalent.
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-Eb

= _._JL
oy(x,0) 4nx .

By the principle of superposition, the stress on the x-axis cor-

responding to Figure 3.lb is

_ c :j; l .
oy(x,0) - O + [C 4n 1;:E7— 8(5) d5: (3'2)

where B(g)dg is the Burger's vector of the infinitesimal dislocation

lying in the interval, (g, E + dg). Equating this to zero and

rearranging gives an integral equation which must be satisfied

identically in x for |x| < c. The solution makes use of the Hilbert

transform discussed in [6]:

—4no _ fc B(E)d€
(3.3a) 

 

8(a) = — E—-?E§:E:Sj7n, . (3.3b)

Physically, this corresponds to inserting a slab of material of

length 2c and of variable width into the slit crack of Figure 3.la.

This results in a compressive self stress field at the crack faces

which is subsequently removed by the tension, 0, at infinity. The

distribution, 8(E), is valid only for the loading shown in Figure 3.

However, a stress, ox, may be imposed without affecting the

results. The stress, 0, may be assigned negative values, provided

that the crack is regarded as an 'open crack'. That is, it is
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assumed that a compressive stress is never large enough to close

the crack, thereby effectively eliminating the presence of the

crack.

When the loading in Figure 3.l is changed to a constant shear

stress, T, the dislocations in Figure 3.lb are rotated clockwise

through a right angle and distributed according to

The only nontrivial boundary condition to be satisfied in

this case is

~ ~— - B(E)d€- (3.5)
 

The solution to this equation is identical to that in Equation

(3.3b) with 0 replaced by T.

The self stress field of Figure 3.lb at any point in the

infinite plane can now be obtained by superposition, using the

known distribution of Equation (3.3b). Figure 3.2 shows such a

point, P, with rectangular coordinates (ac, bc), and crack tip

coordinates, (rc, e), where c is the crack half—length. The

determination of the stress field requires the evaluation of

four integrals,



 

 



 
Y‘C

Figure 3.2. The self-stress field at point P.
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where n = 0, l, 2, 3. These integrals are treated in Appendix C.

Using Equations (2.8), (3.3b), and (3.6), the self stress

field for a crack in tension becomes

ox = E; (1:9) (I, 1,).

0y = - % (l23—1) (311+13), (3 7)

Using Equations (2.8), (3.3b), and (3.6), the self stress

field generated by the dislocation model of a crack in a state

of shear becomes

Ox ‘ 7? (T) (312”0)’

0y = - E7931) (12-10), (3 8)

Txy = _ g5'(:glq (I3'Il)

Substituting the asymptotic expressions for the integrals, In,

as r + 0 from Appendix C into Equations (3.7) and (3.8) yields

the stresses in the immediate vicinity of the crack tip. For a

crack in tension, the self stress of the dislocation distribution

is, after simplification,
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K
I 6 . 6 . 3e

0 = ——————————cos —-[l - Sln —-51n-—— ,

x (2nrc)]/2 2 2 2

o =-——J:L———— cos 6 [l + sin g—sin 3e (3 9a)

y (2nrc)1/2 2' 2 2—

K
I - 8 G 36

and T = ————————-— Sln —-cos -cos —-3

Xy (2nrc)]/2 2 2 2

where KI = o(nc)]/2.

Similarly, for a crack in shear, the self stress is

K
II . e 6 36

o = - —————————— Sln [2 + cos cos 2~J,

o = ——Ell————-cos g-sin g-cos i9 (3 9b)

y (Zfirc)l/2 2 2 2

K
II 6 - e . 39

T = ———~—————-cos —-[l - sin —-s1n ——-,
xy (2nrc)1/2 2 2 2

where KII = T(WC)]/2.

The load and geometry dependent terms, K and K11, are the

I

classical mode I (tension) and mode 11 (shear) stress intensity

factors of fracture mechanics, derived here in a different way than

that used by Irwin [22], who found a series expansion of a stress

function obtained by complex variable methods for a highly eccentric

elliptical hole in an infinite plate. It is important to note

that the values for o and T in the stress intensity factors are

the resolved stress values; that is, the stresses due to all
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influences excluding the crack itself. More specifically, in

the event that the resolved stress field varies appreciably over

the length of the crack, 0 and T are the resolved stresses at

the crack tip.

Now to an observer situated at a point several crack lengths

away from the crack itself, the dislocation equivalent of Figure

3.lb appears as a superdipole, or simply a normal dipole at the

origin of strength dy, consistent with the notation used in Figure

2.6b. Moreover, the stress fields of the original dislocation

distribution and the dipole at points far from the crack do not

differ significantly provided that dy is chosen properly. The

strength of the infinitesimal dipole formed by the dislocations

of Burger's vector, B(x)dx, at the points (—x, 0) and (x, 0) is

80
2

d(d ) = (sum) - <2x) = — ffiiéjT/T (3.10)
C -X

2 2

d = - 59- IC X dX - Zlc o. (3.11)
0 I;2j;23i72“ ' “'E

The same reasoning is used for the shear dipole which models a

crack in shear:

 d = — ZICZ (3 l2)Xy E T. .



 

 



 

 

 E 0y, ' (3.13)

 

If the crack is now rotated through an angle, 9, as shown in

Figure 3.4a, the dipole state referred to the XL; system is

 

given by

d—= o,

dy= - 2132 0y, (3.14)

dw‘ ' gEc—Z 79

Using the transformation properties of dipoles described in Appendix

B, this dipole state referred to the x-y system is

2
x dy-51n e - diy-51n 9 cos 6,D

. II

2 .
= _ + — .dy dy cos 9 dXy Sln 9 cos 9, (3 l5)

 



 

 

   
 

 



a. A crack in a general state of stress.

 
b. The dipole model.

Figure 3.3. A crack and its dipole model.

xy

xy



 

 
 

 



 
a. A rotated crack in a general state of stress.

 
b. The dipole model referred to the i; system.

Figure 3.4. A rotated crack and its dipole model.

XY

T

xy
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_ - 2 . 2

dxy — —2dy-s1n 9 cos 9 + dig-(cos e — s1n 6).

Substituting Equations (3.14) into Equations (3.l5) and transforming

the stresses to the xy system yields the dipole state in terms of

the stress state, both of which are referred to the xy system. In

matrix form,

i=39’ (3.l6a)

where

 

dT=(d,d,d ),
—- x y xy

(3.l6b)

T _
g_ — (o , Oy’ Txy),

and

a 0 B

2nc2

P_— - E 0 l-q B (3.l6c)

B B l

with a = sinze and B = —sin 6 cos 9.

It can be shown that P is singular. This means that the

inverse problem of specifying the dipole state and determining

the corresponding stress state for a given crack geometry is not

possible. Restated, a given dipole state is not necessarily

the model of some crack in a state of stress. Rather, a very

limited class of dipole states are admissable as crack models.
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3.2 Solutions to Crack Problems

Numerical techniques, as presented here, for obtaining the

stress and displacement fields in bodies containing cracks can be

divided into two categories, iterative and direct. Both techniques

use the dipole model for cracks and are capable of handling any

finite number of cracks of arbitrary size, orientation, and location

within the body. 0f the two techniques, the iterative one is simpler

in content and will be presented first. The input information

required to solve the problem consists of the locations, lengths,

and orientations of all cracks as well as prescribed boundary

conditions. The iterative method proceeds as follows:

l) Solve the elasticity problem in the manner described in

Chapter 2 (see Equations (2.lO)) initially as if there

were no cracks present.

2) Having determined the state of stress, g, at each of the

crack sites, infer what the dipole state should now be from

Equations (3.l6), using the actual crack lengths and

orientations.

3) The nonzero dipole field of step (2) perturbs the boundary

conditions previously satisfied at the conclusion of step (l),

thus requiring an adjustment in the external concentrated

loads of Figure 2.4 to remove these perturbations.

4) This having been done, repeat steps (2) and (3) until con-

vergence is obtained. That is, until successive iterates

of the dipole state cease to change.
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Recall that Equations (3.l6) apply only to open cracks. If a

crack is allowed to close (to touch faces) under a compressive

stress normal to the crack face, then the dipole strength, dy,

of Equation (3.l4) should be set equal to zero. This necessitates

changing the E_matrix of Equation (3.9) to

 

a -q —B

271C2

E_= - E -q a B (3.l7a)

-B B Y

where a = sin2 e - cos2 a,

B = sin 9 cos 9 (cosZG- sin2 e), (3.l7b)

y = (cos2 6 - sin2 e)2.

The appropriate P_matrix is chosen according to the situation

encountered in step (2).

As with any iterative technique, convergence depends upon

the initial choice of the iterate. In this case, the iterate is

the dipole state and its initial value is zero. If convergence

is not obtained by this choice, step (l) may be performed on an

initial dipole state which is based on an intelligent guess as

to what the end result should be, or, the entire iterative method

may be used to refine the results obtained from the direct method.

In the direct method, several vectors and matrices are used

with the convention that a lower case letter, such as b(n x l),

represents a column vector with n rows while an upper case
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letter, C(n x m), represents a matrix with n rows and m columns

Let there be n prescribed boundary conditions and m crack sites

assigned to the interior of the body.

Introduce the following quantities:

b(n x l), containing the prescribed boundary values.

w(n x l), containing the magnitudes of the concentrated loads

outside the body.

d(3m x l), containing the dipole states for each of the m

crack s1tes; part1t1oned as m tr1plets, (dx’ dy, dxy)'

o(3m x l), containing the resolved stress state at each of

the m crack sties; also partitioned as m triplets, (ox, oy, Txy).

P(3m x 3m), relating the dipole state to the stress state via

Equation (3.9); tridiagonal.

Q(n x n), relating the influence of the concentrated loads

on the boundary conditions.

H(n x 3m), containing the influence of the dipole field on

the boundary.

G(3m x n), containing the influence of the concentrated loads

on the resolved stress field.

Q(3m x 3m), containing the influence of the dipole field on

itself.

The context in which these vectors and matrices are used should

serve to clarify their meaning. Satisfaction of prescribed

boundary conditions requires that
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E=£!+_Ii_d_. (3.18)

The resolved stress field at the crack sites is due to both

the concentrated loads and the dipole field acting in concert,

g=§fl+gg. (3.19)

The modelling of cracks by dipoles is represented by the expanded

version of Equations (3.l6),

9= 32- (3.20)

The principle of superposition provides the justification for the

form of the above equations. Substituting Equation (3.20) into

Equation (3.l9) and solving for the resolved stresses yields

0 = B w, (3.2l)

where

(l- QEY] G. (3.22)C
D ll

Equation (3.20) now becomes

9=E§ua (3-23)
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which is substituted into Equation (3.l8) to yield

b. (3.24)

Now that w_is known, the resolved stress field can be calculated

by Equation (3.2l). Hence, the stress intensity factors, KI

and K11, are known at each crack site. One may now refine the

stress field in the vicinity of a crack by removing the repre-

sentative dipole there and returning to the original linear

distribution of infinitesimal edge dislocations from which the

dipole state was created (see Figure 3.l). That is, return to

each crack the spatial extent which it had before being reduced

to a set of dipoles acting at a point.

The well known Griffith criterion,

KI = o (11<:)]/2 = 2yE, (3.25)

may also be used at this point to determine which cracks, if

any, will propagate. This criterion is founded on an energy

argument applied to the crack in Figure 3.la. Basically, it states

that a crack will propagate when the release of elastic strain

energy stored in the plate accompanying an incremental increase in

crack length is at least as great as the energy absorbed by the

crack in the creation of new crack surfaces. See [6] for a more

detailed discussion. The terms appearing in Equation (3.25) are

c, the crack half-length, v, the surface energy density for the
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material considered, E, the modulus of elasticity, and 00’ the

nominal stress normal to the crack face at which propagation takes

place, and which should be compared to the resolved stresses, g,

of Equation (3.2l).

Experimental evidence [6] indicates that for granular media,

-l/2
Go a d , (3.26a)

where d is the grain diameter, whereas Griffith's criterion

implies that

com c‘I/Z. (3.26b)

The two can be made compatible by assuming that cracks are the

result of unbonded surfaces occurring on grain boundaries and

that statistically,

Now since

d a L,

where L is the circumference of a typical grain, the ratio of

the crack length or unbonded length to the grain circumference is

expected to be a material property,
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(3.27)

1
—
|
n

11

m /
\

_
_
.

u

specifying the extent to which the body is cracked. Strictly

speaking, e is not a material property in that it cannot be

ascribed to every point in the body. Rather, it is a property
 

assigned to a very small but nevertheless finite area, Ag, the

grain area.

The transition from a discrete distribution of finite sized

cracks to a continuous distribution of microcracks can be accom-

plished by replacing the dipole representing the single crack

associated with a particular grain site by a constant distribution

of infinitesimal dipoles acting over the grain area. From

Equation (3.20) the dipole model of a single crack is charac-

terized by

 

Dividing this expression by the grain area and using Equation

(3.27) gives

d— = — EE— (L—) o. (3.28)

The continuous distribution of microdipoles replacing this single

dipole is now assigned the density
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_ d(d) _ d _ 2n 2
A-__dA -A_--E_eso, (3.29)

2

where s = %—.

9

Density is a property at a point in a continuum. The point at

which A is assigned can legitimately be taken as anywhere within

the grain area since the context in which it will be used, namely

elasticity theory, suffers from ambiguities of a similar nature.

The right hand side of Equation (3.29) also qualifies as a property

defined at a point since both 5 and s are grain shape_dependent

not grain size_dependent. Of course, 0 and E are already properties

defined at a point. The modelling of a continuum filled with

microcracks by a density of dipoles is therefore characterized by

a relationship similar to Equations (3.l6),

A: 39, (3.30a)

where

AT = (A A A ) (3 30b)__ X, y: xy 9 -

and

a O B

3 = — g1 525 0 1—01 (3 (3.30c)
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The densities may now be expanded into Fourier series re—

presenting the dipole distributions inside the body and with the

aid of Equations (2.39c), (2.4lc), and (2.42c), the Fourier coef—

ficients determine the stress field anywhere in the body. As with

the discrete distribution of cracks, either an iterative or a

direct technique may be used to solve problems with a known dis-

tribution of microcracks inside the body. The iterative method

is almost identical to that described earlier with only minor

alterations and consequently will not be recalled here. The

direct approach involves the introduction of some new terms:

l) A(3m x l), containing the dipole densities at m arbitrarily

chosen sites. Crack sites are now everywhere and Equation

(3.30a) must be satisfied at every point in the body. This

of course poses an enormous problem so that one must settle

for satisfaction at m points only.

2) f(3m x l), containing the Fourier coefficients associated

with A.

3) F(3m x 3m), relating f_to A,

The satisfaction of prescribed boundary conditions requires that

E:_C_L‘L+fl:' (3.3l)

The resolved (now total) stress field at the chosen crack sites is
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2=§2+Qfl
(3.32)

The model of a cracked continuum by a dipole continuum is defined

by

2:39, (3.33)

and the Fourier expansions satisfy

i: 5.4- (3.34)

When used in the context above, E_is highly redundant; that is, it

is nine times the necessary size. Substituting Equation (3.33) into

Equation (3.34) and the result into Equation (3.32) yields a

relation which can be solved for g,

(3.35)

I
O 11

[
s
o

I
?

where

0
0 11

A I
H I

1
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I

_
—
1

C
D

(3.36)

Now

I:EEE=EEE% (3-37)



 

 



is giant; f_can be calculated, and the E

(rwlgoint in the body can be obtained by the application of

E@Wuii0n$ (2.6), (2.39c), (2.4lc), and (2.42c). Therefore,

    

procedurally, the problem is straightforward.

 





CHAPTER 4

APPLICATIONS AND NUMERICAL RESULTS

4.l The Basic Computer Program

The basic program which is responsible for the satisfaction

of prescribed boundary conditions appears in its skeleton form

in Appendix D. The superposition method of Section 2.2 is used

in connection with Equations (2.l0). The program accomplishes

the following: it solves any plane stress/plane strain elasticity

problem without body forces or other sources of internal stress

where the body is of any shape and is subjected to pure traction

boundary conditions. It is also self-contained in the sense that

it uses no computer library subroutines. The variables appearing

in the program are:

NB The number of boundary points at which boundary conditions

are prescribed. Note that there are two conditions to be

satisfied at every point so that there are 2 - NB unknown

load magnitudes to be adjusted.

NF The number of field points inside the body at which the

stresses are desired.

XB(NB x 2) The matrix containing the x and y coordinates of

the boundary points.
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XS(NB x 2) The matrix containing the source coordinates. The

source points are those points at which the concentrated

loads are located outside the body.

XF(NF x 2) The matrix containing the field coordinates.

PHI(NB) The vector containing the normal angles, a, shown in

Figure 2.4 (in degrees).

C(2NB x 2NB + l) The influence matrix of Equation (2.l0).

S The distance between the actual and the congruent boundary.

See Figure 2.4.

8 Line separator — equivalent to another card.

The traction boundary conditions to be satisfied are read into

the last column of C, the first half of this column contains the

prescribed tractions in the x—direction and the second half in

the y—direction. The calculation of the C_matrix uses an important

characteristic of plane traction boundary value problems, namely

that the internal stress field is independent of the material

properties, E and u. As a result of this independence, u may be

treated as an optimization parameter which can be assigned any

value whatsoever, in spite of the fact that a value of v outside

of the range, 0 :_v 5 .5, is physically meaningless. For simplicity,

v is chosen to be equal to l here since this simplifies Equations (2.6)

by making 8 = 0. Furthermore, instead of treating PX and Py as

unit loads, they are assigned magnitudes of —n. In this way, at

the conclusion of the problem, the load magnitudes at the source

points are multiples of —n instead of the actual values of the
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loads themselves. At each source point there are two loads, one

in the x-direction and one in the y-direction. The first half of

the vector, w, of Equations (2.l0), which incidentally is stored

in the last column of §_at the conclusion of the solution to the

system of equations, contains the magnitudes of the x-loads and

th
the second half, the y-loads. The influence of the j x-load on

th
the i b0undary point is then, from Equations (2.6a),

ox = x3/r4,

o = xy2/r4, (4.la)

y

_ 2 4

Txy - x y/r ,

and for the y—load, from Equations (2.6b),

ox = xzy/r4,

o = y3/r4, (4.lb)

y

_ 2 4

Txy - xy /r ,

where x and y are the relative coordinates between the boundary

point i and the source point j. These stresses must of course

be converted to tractions before they can be assigned to C,
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t = 0x cos a + Txy Sin a,

(4.lc)

ty = Txy cos a + 0y sin a.

Finally, the solution to the system of linear equations in

Equation (2.l0a) is accomplished using SUBROUTINE MATRIX. This

subroutine solves an N x N system of equations using the CROUT

algorithm [23]. The values to be satisfied by the equations are

stored in the augmented column, C. N+l’ and are subsequently

replaced by the solution vector.

The values printed out by the program are

DET The determinant of the influence matrix, C.

XF, P, Q, S The field coordinates and the stresses, where

P = ox, Q = oy, S = Txy.

As an example of the accuracy and efficiency of the super-

position method, this program was applied to the problem shown

in Figure 4.l. The Airy stress function [4],

¢ = y4/24 — x2y2/8 + x2y/2 + 2y2,

corresponding to the stresses,

oX = 4 - x2/4 + y2/2,
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2
= - 4,

0y y y/

Txy = —x + xy/2,

was chosen to test the program. These stresses are the exact

values and were used to generate the traction boundary conditions

at twenty points on the boundary. The data for this problem

appears in Appendix D along with the program. The program was

run on the CDC 6500 computer, the results of which appear in

Table 4.l. The program execution time is labeled CP; here, CP =

.065 seconds. As the distance, S, between the congruent boundary

and the actual boundary increases, the results get progressively

better until a point is reached where the procedure breaks down.

This breakdown is due to the fact that the C_matrix is ill—con-

ditioned to begin with and becomes progressively more so as S increases

since the matrix elements of C_are inversely related to S. The

initial ill-conditioning of C_is due to the following observation:

the sum of the rows in the first half of C is extremely small.

That is,

N

f. = X C.. << l, for j = l, ..2 NB. (4.2a)
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o 3.7311/3.75 -.oo42/o -l.0046/-l

3 2 o 3.0105/3 0/0 -2/-2

4 3 o 1.7315/1.75 -.oo44/o -2.9956/-3

5 4 0 .0012/0 .0431/0 -3.9994/—4

6 o 1 4.5/4.5 .7686/.75 0/0

7 1 1 4.2533/4.25 .7467/.75 -.5/-.5

8 2 1 3.4991/3.5 .7504/.75 -1/-1

9 3 1 2 2532/2.25 .7468/.75 -1.5/-1.5

1o 4 1 .5/.5 .768l/.75 —2/—2

11 o 2 6.0004/6 1.0430/1 0/0

12 1 2 5.7335/5.75 .9962/1 .0040/0

13 2 2 5 0095/5 1/1 0/0

14 3 2 3.7338/3.75 .9963/l -.oo40/o

15 4 2 2.0004/2 1.0414/1 .0004/0

DET ~ 10'121

c2 = .065

Table 4.l. Numerical results for the beam problem.
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2-NB

g. = Z Ci‘ << l, for j = l, ..2 - NB. (4.2b)

J i=NB+l J

The vectors, fj and gj, are the net x and y tractions, respectively,

due to the jth point load, obtained by summing the tractions

generated by this load at each of the NB boundary points. Now

since the body is in equilibrium, the integral of the tractions

over the surface is exactly zero, and therefore the sum of the

tractions at a discrete number of points must be very small.

Furthermore, since the determinant of a matrix is unchanged

by the addition of rows to each other, the C_matrix may be

regarded as being Composed of two nearly zero rows, fj and gj.

An expansion of the determinant about either of these rows must

then yield a very small result; that is, C_is ill-conditioned.

As a result, computer roundoff error accumulates to the point

of producing divergent results.

The greatest errors incurred in problems solved by the

superposition method typically occur at corners or cusps on

the boundary. This is due to the fact that discontinuous trac—

tions are usually specified there. For example, in the problem

considered here, at points on the boundary just above the corner

located at the origin, tX = -4, whereas for points just to the

right of it, tX = 0,

4.2 The Inclusion of Body Forces
 

The numerical solution to body force problems requires that

the body be placed in the first quadrant for reasons given earlier

and that the Fourier expansions representing BX(x,y) and By(x,y)
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be known beforehand. Irregularly shaped bodies may be embedded

in a rectangle with sides AA and BB in the first quadrant and the

values of 8x and By outside the body and inside the rectangle

may be assigned as desired. It is best, however, to maintain con-

tinuity of value and slope across the boundary since the assign-

ment of discontinuous values usually leads to a Fourier series which

converges slowly. The Fourier coefficients may then be evaluated

in the usual way,

 

 

= max . nny
8X 2 Z Cmn cos AA cos “BB“ (4.3a)

m n

and

_ 4 BB AA mnx . 31y _

mn - AATBB' g 3 FX cos AA cos BB dx dy. (4.3b)

Of course, the above equation is valid only for m and n not both

zero. Minor alterations are needed for the remaining cases. It

is not necessary to evaluate the coefficients in this manner;

point matching is also a viable method, as long as it represents

 

the function BX accurately inside the body.

The computer program for body force problems appears in

Appendix E. It uses the basic program of Appendix D with the

following additions;

NX The number of Fourier coefficients in the truncated series

representing Bx' The m=n=0 coefficient must always be

counted even if it is zero.
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MX(NX x 2) The matrix containing the values of m and n in the

series of Equation (4.3a). The first row of MX is always

(0,0), corresponding to m=n=0.

FX(NX) The vector containing the Fourier coefficients, Cmn’ cor—

responding to the values of m and n in MX.

NY, MY, FY Similar quantities for By“

AA, BB The lengths of the sides of the rectangle into which the

body is embedded. Or, if the coefficients are not evaluated

in this manner, the values required to bring the series of

Equation (4.3a) into agreement with whatever technique is used.

V Poisson's ratio.

TXX, TYY, TXY The stresses, ox, Oy’ Txy.

The only additional calculations that are performed are those

which alter the original boundary conditions prescribed to take

into account those conditions already satisfied by the body force

distribution (see LOOP llll) and the addition of the body force

effects to the stresses at the field points (see LOOP 4). The

subroutine, BFORCE, accepts points x and y and returns the stresses

at these points using Equations (2.24) and (2.26). The subroutine,

MATRIX, in the program in Appendix E has been replaced by a more

general subroutine, INVMTX(N,0PT,R), (not shown). This subroutine

used hereafter but now shown, either computes the inverse of an

N x N matrix (OPT=D), or solves an N x N system of equations (OPT=l).

It reduces roundoff error by using full pivotal condensation

(Gauss-Jordan elimination). It transfers back R, a measure of the
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degree of ill-conditioning of C, and the solution; C'] in place

of C (OPT=D), or the solution vector corresponding to OPT=l,

stored in the first column of C.

The body force problem treated here is the rotating disk

problem, shown in Figure 4.2a, where the body force is centripetal,

with p, the mass density of the disk, w, the angular velocity,

and r and e are polar coordinates. This problem has been solved,

[4]

giy-pw2(b0 2—r2)
r 8

9

Ce =1§pw2((3+v)b2 — (l+3v)r2), (4.5)

Ire = 0.

Choosing pw2= l2, b = 2, and v = %, this solution becomes

_ 2
Or — 20 — 5r ,

_ 2
.

oe — 20 - 3r , (4.6)

T = O.
Y‘O
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a. A disk rotating about the z-axis with angular velocity, u).

 

b. The same disk embedded in a 4” square.

Figure 4.2. The rotating disk body force problem.
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The x and y body forces corresponding to Figure 4.2a are

B = Brcos e l2x,

(4.7)

W

H

Brsin 0 = l2y.

In Figure 4.2b, the disk of radius 2” is shown embedded in a 4“

square. Referred to this coordinate system and expanded in a

Fourier series,

B = l2(x-2) = -l2(

(4.8)

B = l2(y-2).

The data necessary to solve this problem is easily generated by

the computer in a DATA subroutine and consequently does not appear

in the INPUT list in the program in Appendix E. For the sake

of clarity, some of the data is listed below. There are twenty

boundary points at which zero traction boundary conditions are

satisfied, along with twenty Fourier coefficients for BX and

twenty for By. Also, the entire second column of MX and first

column of MY are zero and

MX(i,l) = MY(i,2) = 2i-3,

where i = 2, 3, 4...NX = NY 20.
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and AA = BB = 2.

The numerical results shown in Table 4.2 are in excellent

agreement with the exact values of Equation (4.6). It should be

noted that the C_matrix for this problem would be unchanged if

there were no body forces present since C_depends only on the

relative geometry of the source and boundary coordinates. In

the case where there are no body forces, the choice of boundary

points at which conditions are to be satisfied is made based

on the magnitudes and variations of these conditions over the

boundary. However, in the presence of body forces, a choice based

on the prescribed boundary conditions may not be the best choice

since these conditios are altered early in the program. Therefore

it is advisable to compute the boundary conditions already present

as a result of body forces at many points along the boundary and

then select the points at which conditions are to be satisfied

based on the difference between the prescribed conditions and

those generated by the body forces.
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FIELD ,
POINT STRESSES. NUMERICAL/EXACT

X y ox oy Txy

1 2 2 19 9999/20 19 9999/20

2 2.4 2 l9.l998/l9.2 19 5199/19 52

3 2.6 2 l8.l997/l8.2 l8.9l99/l8.92

4 2.8 2 l6.7996/l6.8 l8.0799/l8.08 All on

the order

5 3 2 14.9995/15 17/17 of 10-12'

6 3.2 2 12.7993/12.8 15.6799/l5.68

7 3.4 2 10 1991/7.2 14 1199/14.12

8 3.6 2 7.l988/7.2 12.3196/12.32

9 3.8 2 3.7985/3.8 l0.2790/l0.28

10 4.0 2 10']3 7 9982/8

CP = .l seconds.

DET = 10'13].

Table 4.2. Numerical results for the rotating disk problem.
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4.3 The Inclusion of Edge Dislocations and Their Dipoles

Edge dislocations, dipoles, and body forces may all be in-

cluded in the same problem simultaneously. However, for the sake

of simplicity, only a distribution of edge dislocations will be

treated here. The scheme for handling these is identical in form

to that for body forces. One need only replace the subroutine,

BFORCE, of Appendix E, by EDGE, of Appendix F. Of course, the

'COMMON' and 'CALL' statements must also be changed. It is

somewhat pointless to pursue specific problems here since, to

the author's knowledge, there are no known solutions to problems

of this type with which comparisons can be made. Instead, consider

the following observation:

In the confines of linear elasticity, a body free from dis—

locations and the same body filled with a constant density

of dislocations are indistinguishable.

That this is true follows from the results for a constant density

of edge dislocations distributed over the entire infinite plane

Inspection of Equations (2.33a) indicates that the stresses satisfy

both equilibrium and compatibility. Consequently there is an

Airy stress function which will remove these stresses at all

points in space, namely,
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The stress field inside of a body which is free from tractions

on its surface is the superposed effect of the stresses in Equation

(2.33a) and those derived from the Airy stress function. Therefore

a traction free body filled with a constant density of dislocations

is internally stress free. This result is not surprising since

a constant density of dislocations introduces an equal amount

of material at every point inside the body. The same observation

can be applied to a constant density of dipoles. The Airy stress

functions which remove the stresses of Equations (2.39b), (2.4lb),

and (2.42b), for the case m=n=0 are

 

 

 

4 — E23" [x2 + (Tr-102).

¢ = 5:20 (Y2 + (n-l)x2), (4.10)

0 = - Ezio xy,

respectively.

4.4 Analytic Solutions to Crack Problems

The types of problems considered here and their method of

solution are discussed in Section 3.2. The 'direct' approach

will be used at all times. Consider the problem shown in Figure

4.3a in which an array of cracks of the length and spacing shown

are situated in the infinite plane under tension. The exact

expression for the mode I stress intensity factor is [l2],
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a. An infinite array of cracks in tension.

 
b. An infinite array of cracks under a general state of stress.

Figure 4.3. An infinite array of cracks.
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k1: emf/23%) tan %1U72- (4.11)

Recalling that K may also be written in terms of the resolved

I

stress, 0*, at the crack site as (see Equations (3.9)),

KI = o*(nc)1/2,

the resolved stress is

0* = 0%}- tan %b]”2, (4.12)

which reduces to the result for a single crack in tension,

and gives o*+w for the case where the spacing between cracks is

made to vanish. In terms of the dipole model, Equations (3.l8),

(3.l9), and (3.20) define the problem. These must be altered in

this case since there is no boundary. In fact, Equation (3.l8)

bec0mes nonexistent and Equations (3.l9) and (3.20) become

(4.l3)

where gt is the vector containing the resolved stresses at the

crack sites and 0 is the influence of the tension at infinity,
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0T = (0,0, 0, 0,0, 0, 0,0, 0...) (4.14)

Rearranging Equations (4.l3) gives

(I-QE>2*= 9 (4.15)

The expected form of the resolved stresses is

0*T = (0,0*, 0. 0. 0*, 0, 0. 0*.0...), (4.l6)

which indicates that only the normal dipoles of the type shown

in Figure 2.6b are needed to model these cracks. Now from

Equations (2.38b) the stress produced by such a dipole located

at the origin at the point (x,0) is

O._.Ed_yi_
y 40 X2

The same dipole located at the point (x2,0) produces a stress

at the point (x],0),

Ed
Oy:——4_i/T.—12—

’ (4.17)

X

12

where x12 = x2—x]. Taking advantage of symmetry and using the

labelling of Figure 4.3a, the 0 matrix used in Equation (4.l3)

has the form,



 

 



 

0,0,0 0,2x;§,0 0,2 {5,0 .

Q=-E— 000 000 02x'20__ 4W 9 9 9 9 a 239 -

0,0,0 0,0,0 0,0,0

2

and g: - 27E” g, (4.l8)

where J is the m x m diagonal matrix whose diagonal elements are

0 O O

011 = O l O ,

O O l

and whose off diagonal elements are the 3 x 3 zero matrix. This

form for P_was obtained from Equations (3.l6). In a tedious but

straightforward manner it can be shown that

2
_ c 4

SIB—7' ("E—“‘9-

Substitution of this result into Equation (4.l5) and inspection of

the result shows that this system of linear equations can be

reduced to a single equation,

] 0* = o. (4.l9)
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But

I n2 n2
= 2 o _— . = 2.

(4-20)

12b

 
 

Substituting this result into Equation (4.l9) gives

2 2

0* = 0/[1 - 24:2] (4.21) 

which should be compared to the exact result of Equation (4.l2).

Before doing so it should be pointed out that this result could

have been obtained easily (in this case) by applying Equation

(4.l7) repeatedly to the crack at the origin. That is, for

 

 

x1=0,

Ed w nEd

0*(0,0) = 0 + (- 40x9 2 z —%—-= 0 — g, (4.22)

i=2 x]. 48b
1

and using the dipole model,

2

d = - ZIC 0*, (4.23)
y E

the result of Equation (4.2l) is obtained.
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Now, defining

_ ha
2 - 23, (4.24)

and expanding Equation (4.l2) in a Taylor series in z,

2
_ z l9 4

O*-O(I+—6—+§-6'—OZ ...), (4.25)

whereas the expansion of Equation (4.2l) is

° 22 Z4

0* = 0(1 + T6'+ ———...). (4.26)
3

Evidently, the dipole model produces acceptable results for this

problem. In fact, the error in Equation (4.2l) does not exceed

l0 percent for ratios of (c/b) up to .76 and any error is due of

course to treating the crack as a point source, ignoring its

spatial extent.

These results can easily by extended to cover the more general

case shown in Figure 4.3b. At the origin, the resolved stresses are,

from Equations (2.38),

Ed Ed

= __1_ _ __X

O; 01 + 40 3R 40 R,

Ed Edy

*: __..__. _._._
oy 02 40 R 4W R, (4.27)

d

* =~ EXYR,
 



 

 

 



 

 

Substituting Equations (4.28) into (4.27) and rearranging gives

a system of linear equations to be solved for the resolved

stresses,

O;(l+3pa) - 0§P(l-a) + T;y(2p8) = 0],

-0;(pa) + o;(l+p(l-a)) - I;y(2pB) = 02, (4.29)

-O;(pB) - 0;(p8) + T;y(l-p) = T12,

“ZCZ
where p =-——7?,

24b

0 = sinze,

B = -sin 0 cos 0.
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For 0:0, Equation (4.2l) is recovered and

O P, 2

0* ‘ 01 + 175’

O

_ 2
O; — T_—p , (4.30)

T* = :l— ,

xy -D

For 0=90°, Equations (4.29) produce

 

C’1
*:

Ox l+3p ’

o; = 02 + 01p, (4.3l)

T
_ l2

Tiy—m.

The reduced resolved stress, 0;, of Equation (4.3l) is attributed

to the shielding effect of the cracks in front of and behind the

crack at the origin. Evidently, the straining mechanisms find it

difficult to 'reach behind' the two cracks on either side of the

origin to produce the resolved stress, 0], which would appear if

these cracks were not present. A similar situation arises in

quantum mechanics when first order perturbation theory is applied

to orbital energies in atomic arrangements. The electrons in

outer orbitals are shielded from the electrostatic field of the
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nucleus by electrons in inner orbitals resulting in a reduced

field as seen by the outer electrons.

4.5 Numerical Solutions to Crack Problems

A computer program which handles bodies of arbitrary shape

in a state of plane stress/plane strain, subjected to pure trac—

tion boundary conditions and containing an arbitrary number of

cracks of any (reasonable) size, orientation and location within

the body is shown in Appendix G. The program uses the direct

method described in Section 3.2. The labelling used in the COMMENT

statements is the same as that used in Equations (3.l8) through

(3.24) with the additional abbreviations, "...stored in RH of C,

NBB + ...”, which indicates that a particular matrix is being

stored in the right half of the general purpose matrix, C) beyond

column NBB, for reasons of economy. The additional variables

not already accounted for are described below.

NC The number of cracks.

XC(NC x 2) The coordinates of the crack sites.

D(NC x 2) The lengths and inclinations (in degrees) of the cracks.

P(3NC x 3) The E_matrix of Equations (3.l6) for each crack.

C(a x b) General purpose matrix where a = max (2NB, 3NC),

b = a + 3NC + 2.

B(3NC x 2N8) The B_matrix in Equation (3.22).
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The program prints out the determinant of (I-QP), the determinant

of (C + HPB), the crack coordinates and the corresponding resolved

stresses. The particular problem chosen for solution appears in

Figure 4.4 and the results are shown in Table 4.3. The results

for the resolved stresses in the x—direction for the two cracks

located at the section, x=.5, are consistent with the crude ob—

servation that since the amount of material left to carry the

load at this section after the introduction of the cracks is

reduced by an amount equal to the sum of the crack lengths,

the average stress (an approximation to the resolved stress) is

lx2
= 2-2 .1 =1.111...

Moreover, it is easily demonstrated that the imposition of a

uniform stress, 0y, on the top and bottom faces of the block

in Figure 4.4 alters only the resolved stresses in the y—direction.
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Figure 4.4. A square block containing five identical

cracks at symmetrical locations in a

state of uniform stress.



 

 



 
CP = .4 seconds

Table 4.3. The results for the problem of Figure 4.4.



 

 

 



CHAPTER 5

CONCLUSIONS

A new point of view regarding the numerical treatment of

distributed sources of internal stress has been presented in

Chapter 2. The Fourier series approach to smearing point load

type singularities over the infinite plane was emphasized because

of its effectiveness in the numerical treatment of linear elasticity

problems with body forces. Since a large class of nonlinear problems

can be rearranged to look like linear problems with pseudo-body

forces carrying the nonlinear effects, the numerical method is

applicable to nonlinear problems as well. In addition, any source

of stress whose influence on the surrounding medium is of the

same functional form as that of a point load qualifies for a

similar treatment. Dipoles of these sources are also admissable.

Hence, the numerical procedure is also applicable to distributed

crack problems which use dislocation dipoles in their treatment.

Although the dislocation model for a crack has been in use

for quite some time [6], there appears to have been no attempts

made to use it in fracture mechanics problems involving more than

one crack. This is surprising since the model is easily incorporated

into a numerical scheme (see Section 3.2 and Appendix G) which

produces stress intensity factors for crack configurations which

94
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are not easily treated by conventional methods [ll, l2]. The

dipole model is however not without limitations. There are two

possible sources of error in the model. The first occurs in

treating the crack as a point effect and the second in ignoring

the variation in the resolved stresses over the length of the

crack. The first source of error can easily be removed by using

the results of Equations (3.7) and (3.8) in conjunction with

Appendix C to refine the dipole stress fields of Equations (2.38a,

b, c) taking into account the spatial extent of the crack. Similar

to Equations (3.l8), (3.l9), and (3.20), the problem would be

defined as

where the H and Q_matrices are a bit more involved computationally

but are nevertheless straightforward. The removal of the second

source of error, however, presents an almost insurmountable problem

since the distribution cited in Equation (3.3b) is valid only

for a straight crack in uniform tension. If the stress field due

to external sources (the resolved stress) varies appreciably over

the length of the crack, as would be the case if the crack were

near the boundary or another crack, this result is seriously in

error. The true distribution is determined by satisfying Equation

(3.3a) with 0 replaced by 0(x). The solution to this integral

equation for a given 0(x) is no simple matter and is further
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complicated by the fact that for finite bodies, 0(x) is not known

until the end of the problem. Consequently, the removal of these

errors involves as much work as would be required in solving the

problem by conventional methods [ll, l2].

An inherent source of error related to the practical aspects

of crack modelling deserves attention. The treatment of cracks

as straight slits is obviously an oversimplification. Naturally

occuring cracks in, for example, metals and rock are expected to

violate these conditions regularly. Fortunately, the straight

line model is justifiable insofar as crack propagation is con—

cerned since the Griffith criterion utilizes only gross properties

of the crack, the crack surface area and the strain energy change

in an infinite medium associated with the crack's presence, both

of which are relatively insensitive to local variations in crack

geometry. That is, it is reasonable to expect that there are a

large number of crack configurations possible, all of which have

the same surface area and produce the same strain energy change.

The modelling of a continuum of microcracks by a field of

dipoles (latter part of Section 3.2) is an area which needs

development. The dipole density concept was introduced in Chapter

2 primarily to facilitate the transition from a small collection

of cracks, which would be handled by the method in Appendix G,

to a dense array of microcracks, where the individual handling

of these cracks would be prohibitively complicated. The utility

of this approach remains to be seen and will undoubtedly find

its application in the study of progressive damage due to crack

growth.
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APPENDIX A

THE EVALUATION OF FOUR BASIC AREA INTEGRALS

The four basic integrals to be evaluated here are

I <a-x)3"‘(b-y)k
Ik(a,b,m,n) = ——————7f——————— cos mx 3 cos ny dA, (A.l)

8

.
5

r = (a-X)2 + (b-y)2-

Figure A.l will be used at all times in reference to these inte—

grals. Each integral will be evaluated in four parts,

I = I I + I
STRIPl (A'Z)PATCH + STRIP2 + IPLANE'

It is to be understood that R+m, the limit being effected at the

appropriate time. The integral below occurs frequently and can

be found in any standard table of integrals,

 

_ w cos kx _ n -|ka]
©(k,a) ‘6 X2+a2 dX — m e . (A.3)
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Initially, the parameters m and n will be assumed to be greater

than zero (unless otherwise specified). Odd integrands over sym-

metric limits are encountered frequently and are zero. Finally,

the substitutions,

C

II

x-a,

v = y—b,

will be used throughout.

Cons1der IO:

R (a—x
I = IR f 4 cos mx cos ny dx dy.

0 —R -R r

 

The integral over the PATCH is zero because the integrand behaves

like %-over the finite region of area, 4ab. The integral over

STRIPl is

I = f'R+2b dy cos ny IR

5] -R —R+2a r

(a-Z) cos mx d x, 

which can be written as

IS] = fIR+b dv - cos n (v+b) fR'a du ' —~$1L————

-R-b -R+a (u2+v2)2

(cos mu - cos ma — sin mu - sin ma),

OY‘



 



-R+b
I = 2 sin ma f dv -

sl -R-b

where

3 .

w u s1n mu

J — ——~—————— du.
(u2+v2)2

Now,

3
J = l . a
 

 

3

° ¢ (m9V)9
8v 8m3

and since v is negative in Isl’

- 1.1.2 v -m<-V> :1J - ~ 2?— 8V 3m3 [§(:VT e ] 4(2+mv)e

Consequently,

Isl = % sin ma f-R+b (2+mv)emV cos n(v+b) dV,

—R—b

which vanishes in the limit since the integrand behaves like Re

over a finite range of width 2b.

—R+2a d

R

152 = 7 x(a-x)3

which can be written as

—R+a 3
152: f -du-u cos m(u+a)

—R—a

COS mx

lOO

cos n (v+b) - J,

The integral over STRIP2 is

 

[R cos ny

4
-R+2b r

f

-mR

dy,

R—b cosnv-cosnb - sinnv.sinnb dv
 

-R+b (u2+v2)
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or

I = —2 cos nb f'R+a du - u3 cos m (u+a) - J,
52

—R-a

where

cos nv
= w —-——————— dv.

J f0 (u2+v2)2

Now,

2 _ l_.§_. n -n(-u) = ;1_ _ “UJ 2u Bu [2 —u e ] 4u (nu l)e .

Consequently,

Is2 = ' E cos nb I'R+a (nu—l)enuCOS m(u+a) 9”,
-R—a

which vanishes in the limit since the integrand behaves like

-nR

Re over a finite range of width 2a. It appears then that only

the integral over the PLANE contributes to IO:

 

4 cos mx cos ny dy dx,

-R+2a —R+2b r



 
 



2y,udnégneed only extract from the expanded fOrm 0f O that part

 

which is both odd in u and even in v. This results in

I = 4 sin ma - cos nb f0° du - u3 . sin mu - J,

o o

where

w cosnv-dv

J = f -——-———-—.
o (u2+v2)2

As before,

_ l a
J - - 2U'EU'Q (n,v),

and since u is positive in 10,

l 3 n -nu

703.4209 1
J = = —E§-(l+nu)e'nu.

4u

Now,

 H
r

  



 



l03

 

IO = n sin ma cos nb [m (l+nu)e'nu sin nu du.

0

Introducing

K = f00 e—nu sin mu du = 2m 2,

o m +n

IO becomes

_ . 8K
I0 — n s1n ma cos nb (K-n 53),

giving

nm(m2+3n2)
I = sin ma - cos nb. (A.4)
0 2 2 2

(m +n)

Consider next, I]:

R R (a-x)2(b-y)
I1 = f fl————~7f—————-cos mx cos ny dx dy.

The integrals over the PATCH, STRIPl, and STRIP2 are all zero

for the same order of magnitude reasons used previously in the

evaluation of Io. The only contribution to I1 then, is that

due to the integral over the PLANE,

= I = fR fR IglllfiélllI1 P 4 cos mx cos ny dy dz,

-R+2a -R+2b r

which can be written as



 

 

 



 

12;. é

I1 = 4 cos ma sin nb I" duouz-cos mu-J,

o

where

w v sin nv
J = I -——-—-———— dv.

o (u2+v2)2

By inspection,

133

fifi'gfi'gfi' @(n,v),C
.
-

II

giving

Finally,

. 00 -

I1 = nn cos ma Sin nb f ue nu cos mu du,

0

which, upon using the previously defined K, becomes



 

 



 _ o I 0 8K
I1 — nn cos ma Sin nb am’

giving

nn(n2-m2) .

I = ——§——§—§—-cos ma . s1n nb. (A.5)

‘ (m+n)

The remaining integrals, I2 and I3, can be obtained from 11

and I0 respectively by interchanging a with b and m with n. That

this is true can be seen by making these exchanges in the original

definitions of the integrals along with the dummy variable exchange

of x with y. That is,

Ik(a,b,m,n) = I3_k(b,a,n,m). (A 6)

It should not be assumed that these results are valid when

either m or n are zero, the reason being that the order of magnitude

arguments used in the STRIP integrals break down in this case. How—

ever, independent evaluation of these integrals reveals that the

above results are applicable if either m or n is zero, but not both

zero at the same time. That the validity of Equation (A.5), for

example, is suspect for the case, m=n=0, is made apparent by the

fact that different results are obtained for the limit depending

on the order of the limiting process,

lim lim I1 2 lim lim 1,.

n»O m+0 m+0 n+0
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Consider Io(a,b,0,0). The PATCH integral is zero by the

usual order of magnitude analysis. The STRIPl and PLANE integrals

are zero because their integrands are odd functions of u, inte-

grated over symmetric limits. Therefore,

or,

10 = -2 7"R+a du 03 0,

-R-a

where

R-b dv

J = f .
o (u2+v2)2

The upper limit on this last integral can be replaced by R without

affecting 10 since the net result is to add to J an amount not

exceeding b/R4, which when coupled with the integral over u produces

a result of order 4ab/R which vanishes in the limit. Hence,

 

R dv l -l R Ru
J ‘ f = ——— (tan —-+ )

o (u2+v2)2 2u3 R2+u2

I R n

Note that tan— U-cannot be replaced by é-at this point because

u assumes unbounded values. Now,

I
t



 

 



which, in the limit as R becomes large approaches

 

—l R Ru 0
I - -2a[tan —-+ ] = a(—+l).
o u R2+u2 U=_R 2

Finally, consider I](a,b,0,0). As before, the PATCH integral

is zero as are the STRIP2 and PLANE integrals due to integrands

which are odd in v integrated over symmetric limits. Consequently,

-R+2b R (a—x)2(b—y) d
I = I = f f x dy,

1 S] -R —R+2a r2

or,

11 — —2 I‘R+b dv-v-J,

—R—b

where

_ R—a u2du

J—f 222.

o (u +v )

Replacing the upper limit on the last integral by R adds to J an

amount, a/4R2 at most, which couples with the integral over v to

produce a term of order ab/R which vanishes in the limit. Hence,

R u2du l

(u2+v2)2 2v

 J = f [tan-1 5-— RV ],

0



 



 

and in the limit,

11 = -2b[tan'1 %- -§-"—2-] = b(l} - 1).

The remaining integrals follow directly from Equation (A.6), which

applies for all values of m and n.

 



 

 

 



APPENDIX B

DIPOLE TRANSFORMATIONS

In the generalized normal—shear dipole of Figure B.la, let

0 be the stress field generated by the edge dislocation located at

the origin and let 0* be the state of stress generated by the

dipole shown. Then

0*(X.y) = G(x.y) - (x—h. y-k), (8 l)

which for small h and k becomes

or, reverting back to the difference form,

0* = [0(x,y) - 0(x-h.y)l + [0(x.y) - 0(x,y—k),l. (B 3)

Figure B.lb interprets this result symbolically.

Now examine the rotated normal dipole of Figure B.2a. Using

the vector nature of b and adopting the notation,

lO9
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a. A generalized normal-shear dipole.

 

b. A normal—shear dipole decomposed into a normal and a

shear dipole.

Figure B.l. The normal-shear dipole and its equivalent.
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a. A rotated normal dipole of strength bh.

 

b. A normal and a shear dipole superposed.

Figure 8.2. The rotated normal dipole and its equivalent

normal—shear dipole pair.
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b - s = b sin 0

b - c = b cos 0

h - s = h sin 0

h - c = h cos 0,

the normal dipole can be reduced to the pair of normal-shear

dipoles shown in Figure B.2b. Finally, with the aid of Figure

B.lb, each of these normal-shear dipoles can be reduced to a normal

and a shear dipole, yielding the four dipoles shown in Figure B.3a,

which, when taken altogether, are equivalent to the rotated normal

dipole of Figure B.2a. This quartet can be reduced to a trio by

recalling that the first and fourth configurations generate the

same stress field. Figure B.3b depicts this equivalence symbolically;

the dipole strengths are written in parenthesis below each symbol.

The rotated shear dipole of Figure B.4a is treated in the same

manner resulting in the equivalence depicted in Figure B.4b. That

these transformation properties of dipoles bear a resemblance

to the transformation properties of second order tensors is not

surprising since the dipole strength is itself like a tensor in

that it is the outer product of two vectors, the Burger's vector

and the spacing. These properties can now be used to transform

a general dipole state, (dx’ d , d ), to a rotated coordinate

Y XY

system. That is,

(0;, d—, d——) s (d , d , d ), (13.5)
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Y Y

J4.
X

x T
_.,, —> bC

bc

Y Y

a. Two normal and two shear dipoles superposed.

>4:

(bh)

TEFD—II—EFDiT

(bhcos20) (bhsin 20) (2bhsinecose)

b. The transformation of a rotated dipole.

Figure 8.3. Transformation properties of the normal dipole.
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a. A rotated shear dipole of strength bh.

>42 “6041-094
(- bhsinecose) (bhsinecose) (bhcos20)

b. The transformation of a rotated shear dipole.

Figure 8.4. Transformation properties of the shear dipole.
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where the latter dipole state is given, provided that

d cosze + d sinze + d sine cosO ,

x y XY

o
. I 11

_ - 2 2 .

d—-— dX s1n 6 + dy cos 0 - dXy $10 6 cos 0, (B.6)

_ . 2 . 2
diy-- 2(dy—dx) $10 0 cos 0 + dxy (cos 0 - Sin 0).

It is worthwhile to note that the above transformations mgy be

cast into a form which is consistent with second—order tensor trans-

formations by redefining dXy in Figure 2.6c to be

6 h. (8.7)

This amounts to replacing dxy in Equations (B.6) by dey' The

same type of situation is encountered in the transformation of

strain; there are two definitions of shear strain in use, 6

X7

and ny' The choice of

I

8xy 2'ny

results in tensor transformation rules for strain.
 



 



 

) I Under the substitution,

x = -c . cos 0,

the four basic integrals quoted in Equation (3.6) assume the form

”3-n n
I = _fn b (a+cosg) cosg dg (C.l)

" o [(a+cos¢)2+b2]2 ’

where

n = 0, l, 2, 3.

The workload can be reduced to the evaluation of two simpler

integrals,

J = f“ cos -d ,

o o (a+cos¢)2+b2

(0.2)

J = In (a+cosg) cosg d9

0 (a+cos¢)2 + b2 ,

ll6



 

 
 



 

It will be assumed hereafter, that a>0 and b>0.

Now,

 
2 (c050 -0)(cos¢ —0*),(a+cos¢)2 + b

where

a = -a + bi,

and 0* is the complex conjugate of a. It is easy to verify that

J =11;Im(K),

(0.4)

C
:

.
.
a

I

- n + Re(K),



 



 

    
complex quantity, K, respectively.

 

z = tan %,

K becomes

K = ' TEE 5: 22:2,

where

B= (%1/2=u+iV.

with

u = (4.41/2.

and

Under the substitution,
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where

F = ((1—a2—02)2 + 402)1/2,

e = ((1—a)2+bz).

and

H = 1-a2-b2 + F.

Now,

I - dz

K = _OL_ (2+8)

where the circuit integral is taken around the closed path shown

in Figure C.l. The integral over the circular part of this path

vanishes in the limit as R+w. Also, since 8 lies in the region

enclosed by the path and since the function, l/(Z+B), is analytic

everywhere inside this region, by Cauchy's integral theorem,

. l niq
K =-Jl—' 201 —— = .

1+0 8 B(I+q)

Substituting this result into Equation (C 4) and simplifying

yields



 

 

 



  

Real

Axis

pole

 

Figure 0.1. Integration in the complex plane.
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J _ _ g_ 2b + a-a —b )H

0 b H2011)”2

(C.6)

_ b(G+F)

J 'TTU -—'——),

1 H2014)”2

which can now be used in Equations (C.3) to produce the desired

integrals. An independent reevaluation of the four basic integrals

for the special case, b=0, gives

I0 = I1 ‘ 12 = O, (C 7)

whereas

I3 = 0, for a < l (C.8a)

and

I = n(————§————-- l), for a > l. (C 8b)

3 (62_1)1/2

In what follows, the crack tip coordinates, (r,e), pre—

viously referred to in Figure 3.2 and defined by

a = l + r cos 0,

b = r sin 0,

will be used. Of particular importance is the limiting case, r+0.

For small r, it is a simple matter to show that, asymptotically,



 



(r, - - ,«3‘414‘5.»

[Mg will.“ b ‘1 a) 3'

 

1 .3.
= . cose 3

3b _ Sine
3

5F'+ r 36’

the first of the relations in Equation (C.3) becomes

2 . 2 SJ SJ

_ r Sin 0 . o cose o J
I _ ___2__(51ne VIP ___r_._a_e_) .

After tedious but straightforward manipulations, this and the

remaining integrals are found to be, for r+0,

. 3 0
I = 2 Sin 2'(] + 4 cos2 6)

9

I1 = -2 sin2 g-cos g-(l - 4 cos2 g),

(C.ll)

I2 = 2 sin g—(l + cos2 g(l - 4 sin2 9)),

I3 = 2 cos g-(Z + sin2 g-(l - 4 cos2 %)),

where

- 2(2r)1/2'
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APPENDIX E

THE EDGE DISLOCATION SUBROUTINE
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