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 ABSTRACT 

 

SOCIO-POLITICAL NATURE OF DISASTER IMPACT: 

TORNADOES, FLOODS, AND EXTREME HEAT  

 

By 

 

Jungmin Lim 

 

 Severe weather and climate events such as floods, heat waves, and tornadoes, are the 

most frequent and devastating extreme events among all types of natural disasters in the United 

States. Climate scientists predict that extreme weather phenomena are expected to increase in 

both frequency and intensity under ongoing global climate change. Given the anticipated 

growing risks and detrimental impacts on people of weather extremes, it is imperative to 

investigate past disaster incidents and uncover community characteristics that reflect 

vulnerability and resilience, in order to implement informed proactive policies to minimize 

future human impacts. To this end, my dissertation, titled “Socio-Political Nature of Disaster 

Impact: Tornadoes, Floods, and Extreme Heat” examines three types of extreme weather events 

in each of three chapters to investigate the determinants of community vulnerability to disasters 

and evaluate the life-saving benefits of disaster mitigation measures and practices.  

 Each of three chapters empirically examine tornadoes, floods, and extreme heat events at  

the subnational level – I consider the disaster experiences in about 3,100 counties in the 

contiguous United States. The integrated view of the physical, social, economic, and political 

elements of multi-faceted disaster vulnerability guides the empirical analyses. Each chapter 

employs different types of panel methods to address the county heterogeneity and potential 

simultaneity between governmental actions and disaster vulnerability – such as Poisson Fixed 

Effects (PFE), the Control-function(CF) approach within the Correlated Random Effects (CRE) 

framework, and the Random Trend Model (RTM). 



 

 Throughout the three chapters, I present evidence that people most vulnerable to 

disasters are those who have weaker economic and social bases; lower income, poverty, lower 

education, and poor housing quality increase disaster vulnerability. Also, I find that urbanization 

intensifies disaster vulnerability while learning from past experiences enhances communities’ 

coping capacity. In the case of heatwaves, vulnerability is greater in counties with higher 

proportions of elderly, the very young, and non-white populations. Findings suggest that the 

socially isolated elderly and the elderly living in poverty are the most heat-vulnerable population 

sub-groups.  

 My dissertation pays special attention to the examination of the degree to which local 

government plays a role in reducing the potential disaster fatalities. The first chapter on 

tornadoes and the second chapter on floods shed light on the role of local government resources 

devoted to public safety, protection, and welfare in mitigating disaster fatalities. The second 

chapter on floods also provides a new evaluation of the role of the National Flood Insurance 

Program (NFIP) in preventing and reducing the loss of human life from flooding as an important 

ex-ante disaster management scheme. The third chapter provides significant evidence on the 

benefits of the government-initiated Heat Island Mitigation (HIM) measures in lowering heat 

intensity as well as reducing the loss of life from extreme heat.  

 Taken together, my research increases our understanding of the socio-political nature of 

the disaster vulnerability. Moreover, this study underscores the need for more proactive and 

precautionary public measures and policies to counter the potential harmful effects of the growing 

risk of weather extremes. Findings of this research may inform targeting efforts designed to protect 

and assist the most vulnerable populations and provide guidance to future disaster mitigation 

policies at the local, state and national levels.  
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INTRODUCTION 

 

 

 Severe weather and climate events such as floods, heat waves, and tornadoes, are the 

most frequent and devastating extreme events among all types of natural disasters in the United 

States. In 2017 alone, weather-related disasters caused more than $300 billion in total damages 

and 508 fatalities. Climate scientists predict that extreme weather phenomena are increasing in 

both frequency and intensity under ongoing global climate change. Given this trend, it is likely 

that the economic and human losses from these climatic events will be even greater in the 

coming decades. Notably, we have learned that natural disasters are not all “natural.” Evaluation 

of devastating natural disasters have revealed significant differentials in terms of impacts across 

different population segments, depending on socio-economic and political status. Given the 

anticipated growing risks and detrimental impacts of weather extremes, it is imperative to 

investigate past disaster incidents to uncover characteristics that make communities more or less 

vulnerable. Within this context, it is particularly important to examine the role of government in 

mitigating adverse impacts, in order to implement informed proactive policies to minimize 

potential losses and damages.  

To this end, my dissertation, titled “Socio-Political Nature of Disaster Impact: 

Tornadoes, Floods, and Extreme Heat” examines three types of extreme weather events in each 

of three chapters to investigate the factors that make communities more or less vulnerable to 

disasters and to evaluate the life-saving benefits of disaster mitigation measures and practices. 

Thethree chapters empirically examine tornadoes, floods, and extreme heat events, respectively 

using subnational data – about 3,100 counties in the contiguous United States. The integrated 

view of the physical, social, economic, and political elements of multi-faceted disaster 
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vulnerability guides the empirical analyses. Detailed disaster data are collected from National 

Center for Environmental Information (NCEI) of National Oceanic and Atmospheric 

Administration (NOAA). Major socio-economic, housing, and local government finance data at 

the county level available from U.S. Bureau of the Census are also used in the analysis. Each 

chapter employs different types of panel methods to address the county heterogeneity and 

potential simultaneity between government decisions and disaster risk – Poisson/Neg. Binomial 

Random Effects and Poisson Fixed Effects approach in the first chapter on tornados, the Control-

function(CF) approach within the Correlated Random Effects (CRE) framework for the flood 

analysis, and the Random Trend Model (RTM) and Poisson Fixed Effects (PFE) approach in the 

third chapter on extreme heat. In addition, in the second and third chapters, the Zero-Inflated 

Negative Binomial model is applied to examine the original event data set in a Cross-Sectional-

Time-Series structure with the over-dispersed non-negative count outcomes. 

 Throughout the three chapters, I present evidence that disaster-specific physical factors 

such as intensity, location, and timing of events, the built-environment as well as socio-economic 

characteristics such as demographic characteristics, income level, poverty, education, and 

housing quality determine the overall disaster fatalities. I consistently find that disaster-induced 

fatalities are greater in communities with weaker economic and social bases; lower income, 

poverty, and lower education increase disaster vulnerability. Housing quality is also a critical 

factor in explaining disaster-induced fatalities; living in mobile homes or rental homes increases 

vulnerability to climatic  shocks. Urbanization intensifies disaster vulnerability. Also, results 

confirm the existence of learning effects from past experiences, where counties that suffered 

more disasters in the recent past tend to enhance their coping capacity against disasters and in 

turn are better able to mitigate the societal impacts. In the case of extreme heat, population 
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composition is an important factor; heat vulnerability is greater in counties with higher 

proportions of elderly, young, and non-white populations. Findings suggest that the socially 

isolated elderly and the elderly living in poverty are the most heat-vulnerable population sub-

groups. Notably, heightened heat vulnerability due to the growing elderly population is predicted 

to generate a two-fold increase in heat fatalities by 2030. 

 My analyses pay a special attention to the degree to which local government plays a role 

in reducing the potential disaster fatalities. The first chapter on tornadoes and the second chapter 

on floods shed lights on the role of local government resources devoted to public safety, 

protection, and welfare in mitigating disaster fatalities. The empirical analyses indicate that such 

local government expenditures appear to lead to better preparedness and faster responses to 

disaster events and improve overall safety/welfare of a community, thus reducing fatalities.  

 The second chapter on floods also provides a new analysis of the role of National Flood 

Insurance Program (NFIP) in reducing the loss of life from flooding as an important ex-ante 

disaster management scheme. Community participation in the NFIP program requires the 

participating communities to implement floodplain management requirements for flood risk and 

damage reduction. My findings provide an empirical evidence that flood-prone community 

participation help communities become more flood-resistant. My evaluation also shows that the 

life-saving benefits of the NFIP over the 20-year study period are estimated to be substantial 

enough to compensate for the program’s deficits accumulated during the same period. 

Nevertheless, the program’s current operational challenges and the public concerns regarding the 

fiscal soundness of the program necessitate a thoughtful reform of the NFIP, which must balance 

the affordability of flood insurance with financial solvency of the program. In this redesign 
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process, the life-saving benefits of the disaster management of the NFIP ought to be taken into 

account. 

In terms of extreme heat, the most relevant public efforts for heat mitigation and 

adaptation currently undertaken by state and local government are the government-initiated 

community Heat Islands Mitigation (HIM) activities (i.e. trees/vegetation, green/cool roofs, cool 

pavements). HIM strategies act primarily as heat-hazard mitigation measures by helping 

communities that are at higher risk of heat exposure to manage the fundamental meteorological 

risk of high temperatures. However, there has been no prior heat study that seeks to determine 

the extent to which government-initiated HIM measures have reduced heat-related fatalities. The 

third chapter provides new evidence on the benefits of HIM measures in terms of reducing heat 

intensity as well as reducing the loss of life from extreme heat. My estimate indicates that an 

additional measure that is locally implemented in a county is estimated to reduce annual deaths 

rate by 15.38 %. 

Taken together, my research increases our understanding of the socio-political nature of 

the disaster vulnerability. Moreover, this study underscores the need for more proactive and 

precautionary public measures and policies to counter the potential harmful effects of the 

growing risk of weather extremes. Findings of this research may inform targeting efforts 

designed to protect and assist the most vulnerable populations and provide guidance to future 

disaster mitigation policies at the local, state and national levels. 
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CHAPTER 1   

SOCIO-ECONOMIC DETERMINANTS OF TORNADO FATALITIES IN THE UNITED 

STATES: DIMENSIONS OF POVERTY, HOUSING QUALITY, AND GOVERNMENT 

 

1.1  INTRODUCTION 

 Natural disasters such as tornadoes result in the significant loss of human life, as well as 

substantial economic damages. For example, in 2011 there were a record breaking 1,701 

tornadoes in the United States resulting in 551 deaths (the most in the 62-year period for which 

we have records) and estimated total economic damages of over 28 billion U.S. dollars1. Given 

the recent demonstrations of the destructive power of tornado events and their largely 

unpredictable nature, improving our understanding of the factors that determine tornado-induced 

fatalities will help identify ways to potentially reduce losses. Surprisingly, to date there are 

relatively few studies that have empirically investigated the determinants of tornado impacts. 

This paper adds to this literature in several ways. First, this study considers a broader array of 

socio-economic factors that influence vulnerability. In particular, a range of alternative measures 

of poverty, including housing quality are considered. I also consider factors such as family 

structure as well as local government spending on emergency services.  

 As a prelude to full analysis, I find that counties with higher per capita income and per 

capita government spending on public safety and welfare have fewer deaths, whereas counties 

with greater income disparity and more female-headed households are more vulnerable to 

                                       
1 NOAA National Climatic Data Center, State of the Climate: Tornadoes for Annual 2011, published online 

December 2011, retrieved on January 6, 2015 from http://www.ncdc.noaa.gov/sotc/tornadoes/2011/13. 

http://www.ncdc.noaa.gov/sotc/tornadoes/2011/13
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tornadoes. Perhaps of most importance, housing quality as measured by mobile homes as a 

proportion of housing units is a critical factor in explaining tornado-induced fatalities. It might 

seem that tornado fatalities are simply a function of location – living in an area with a high risk 

of tornadoes increases the chances that one would die from a tornado. While this is certainly true, 

other factors are also at play. Blaikie et al. (1994) argue that Disaster = Risk + Vulnerability, 

where vulnerability depends on community and socio-economic variables in addition to location. 

Similarly, Cutter et al. (2003) discuss the interaction between social and biophysical 

vulnerabilities that determine overall place vulnerability. Overall, numerous scholars assert that 

underlying socio-economic factors such as poverty, access to social protection and security, as 

well inequalities with regard to gender, economic position, age, or race play an important role in 

determining disaster vulnerability (Aptekar and Boore 1990; Albala-Bertrand 1993, Cannon 

1994, Blaikie et al. 1994; Cutter 1996; Enarson and Morrow 1998; Peacock et al. 1997; Morrow 

1999).  

 A number of empirical studies of disasters sought to identify the major determinants of 

direct disaster impacts, where several focus on the role economic development plays in reducing 

disaster impacts using multi-national disaster data obtained from EM-DAT (Kahn 2005, Toya 

and Skidmore 2007, Stromberg 2007, Raschky 2008, Gaiha et al. 2013). Some of the above- 

mentioned studies evaluate the role of governmental conditions and structure, inequality, and 

education in determining disaster impacts. I build upon a study by Simmons and Sutter (2013), 

which uses U.S. county level tornado data from 1984-2007 to evaluate factors that determine 

vulnerability. They find that tornado characteristics such as timing, magnitude, and length are the 

major drivers of tornado-induced fatalities, but also find that economic and demographic factors 

such as education, race, community, and housing type are important. As discussed in detail 
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below, this study expands on Simmons and Sutter (2013) by using data from a longer period of 

time as well as considering a broader array of potential factors and, importantly, accounting for 

potential interactions between tornado severity and the socio-economic factors that determine 

vulnerability. 

 Based on a conceptual framework where risk is considered to be a function of physical 

natural hazard characteristics as well as socially constructed factors, the present study uncovers a 

number of the socio-economic variables that make people and places more vulnerable to 

tornadoes. For the empirical examination, panel structured tornado data are used with 

observations at the sub-national level - 3,107 U.S. counties(excludes Alaska and Puerto Rico) 

over the 1980-2014 period. The detailed data on tornado events in U.S. counties are collected 

from NOAA, while socio-economic, housing, and local government fiscal data are obtained from 

U.S. Bureau of the Census. Taking into consideration that tornadoes are localized events as 

opposed to other more geographically dispersed disasters such as hurricanes, or earthquakes, the 

county level data (as opposed to aggregated national level data) allow us to more accurately 

identify and thus better understand the determinants of disaster vulnerability. 

 By identifying the factors influencing tornado-induced fatalities, with particular focus on 

which dimensions of poverty seem to contribute most, this study provides insight that will help 

policy makers to better prepare for future devastating events and reduce societal vulnerability to 

disasters. The following section offers a review of the empirical literature regarding the 

determinants of the impacts of natural disasters. Section 1.3 discusses tornado risks in the United 

States, and section 1.4 describes the underlying theoretical foundation for my analysis and 

introduces the primary hypotheses. Sections 1.5 and 1.6 present the empirical framework of the 

analysis and empirical results, respectively.   
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1.2  EMPIRICAL STUDIES ON THE DETERMINANTS OF DISASTER IMPACTS 

 While many sociologists, geographers and other social scientists have studied how 

social, economic, and political factors potentially affect a society's vulnerability to natural 

disasters (Aptekar and Boore 1990; Albala-Bertrand 1993, Cannon 1994, Blaikie et al. 1994; 

Cutter 1996; Enarson and Morrow 1998; Peacock et al. 1997; Morrow 1999), most of these 

studies are qualitative in nature in that they use subjective identification rather than quantitative 

methods to suggest statistical evidence. 

 In addition, economists have studied the economic impacts of natural disasters, 

estimating the economic consequences of significant disaster events. However, there are 

relatively few quantitative empirical studies that investigate the underlying determinants of 

disaster impacts. This literature review focuses on research that empirically examines the major 

factors associated with the disaster-induced losses.  

 Many of these studies focus on the relationship between income/wealth and disaster 

impacts. The overall argument is that economic development plays an important role in 

mitigating the disaster vulnerability of a society. One of the first studies to identify this 

relationship (Burton et al., 1993) compares the post-disaster responses of high-income and low-

income countries and finds that the consequences of natural disasters such as drought, floods and 

tropical cyclones differ across countries not only by hazard, but also by income. Horwich (2000) 

draws a similar conclusion, arguing that the critical underlying factor in any economy’s response 

to disaster is its level of wealth. He explains that a rise in income will provide not only general 

safety but also improved protection from natural disasters.  
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 Many of the more recent empirical studies that examine the determinants of disaster 

vulnerability have been cross-national and use disaster data obtained from EM-DAT2. For 

instance, Kahn (2005) uses this data source to examine the relationship between disaster-induced 

death and explanatory factors such as income, geography, and national institutions in the context 

of multiple types of natural disasters in 73 nations from 1980 to 2002. He finds that while a 

nation’s level of development is not correlated with the number of natural disaster events it 

experiences, higher levels of development reduce disaster-induced deaths. Kahn estimates that an 

increase in per capita GDP from $2,000 to $14,000 results in a reduction in natural disaster 

deaths from 9.44 to 1.80 per million people per year. He also finds that democracies and nations 

with less income inequality suffer fewer deaths from disasters. 

 Toya and Skidmore (2007) expand on Kahn’s (2005) investigation of the disaster-safety-

development relationship by including other socio-economic measures. Specifically, they use 

disaster impact data from EM-DAT and several other sources for 151 countries over 44 years 

(1960-2003). Their study confirms that economic development as measured by per capita GDP is 

inversely correlated with both disaster deaths and damages. However, they also find that higher 

levels of educational attainment, greater openness, and a stronger financial sector are also 

associated with fewer deaths and less damage. 

 Other studies corroborate and expand on the cross-country link between economic 

development and disaster outcomes. For instance, Anbarci et al. (2005) in their study of 

earthquakes show that greater income inequality increases earthquake fatalities. Raschky (2008) 

                                       
2 Emergency Events Database EM-DAT that has been maintained by the Centre for Research on the Epidemiology 

of Disasters (CRED) contains essential core data on the occurrence and effects of mass disasters in the world from 

1900 to present. 
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also shows that economic development reduces disaster fatalities and losses, but this relationship 

is nonlinear. Economic development decreases disaster losses but with a diminishing rate. 

Kellenberg and Mobarak (2008) find a similar relationship between economic development and 

disaster vulnerability with losses increasing at first and then declining as GDP rises. Raschky 

also incorporates a national government stability measure and finds that more stability is 

associated with fewer losses. Similarly, Stromberg (2007) finds that greater wealth and 

government effectiveness (World Bank, 2006) are associated with fewer disaster fatalities. 

Finally, Gahia et al (2013) find that poorer and larger countries suffered more disaster related 

fatalities, but that experience from past disasters and more resources targeted to disaster 

prevention and mitigation can dramatically reduce deaths.  

 One cross-country study that does not find a significant link between GDP/income 

inequality and disaster vulnerability is Brooks et al. (2005). In an effort to develop national-level 

indicators of vulnerability and present a set of socio-economic, political and environmental 

variables that correlate with mortality from disasters, they include many additional socio-

economic factors beyond GDP into their analysis. They find that including factors such as 

sanitation, life expectancy, government effectiveness, and literacy are significant predictors of 

disaster fatalities, whereas GDP and income inequality are not. However, their significant factors 

may serve as proxies for GDP.  

 As noted earlier, most of the research discussed above incorporates multiple types of 

natural disasters across multiple countries and relies primarily on the multi-national EM-DAT 

data set as their source of information on disasters and their impacts. In contrast, this study 

focuses on a specific disaster type within a single country. As previously noted, the study most 

closely related to my study is that by Simmons and Sutter (2013); they employ detailed U.S. 
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county level tornado data from National Oceanic and Atmospheric Administration (NOAA) over 

the period 1984-2007 to examine the societal impacts of tornadoes. In this book, the authors 

examine the patterns in tornado casualties over time, by state and Fujita Scale rating, and provide 

a regression analysis on the potential determinants of tornado casualties. Using a Poisson 

estimation method, they show that not only do the elements of tornado hazards (timing, 

magnitudes, and length of incidence) determine tornado impacts, but that economic and 

demographic factors such as level of education, percentage of non-white and rural population, 

and percentage of mobile homes contribute to tornado vulnerability. However, the authors 

offered little evidence that income, poverty and income distribution were important determinants 

of disaster impacts. The present study extends this line of research by examining a wider range 

of potential socio-economic factors using U.S. county level data over the 1980-2014 period. 

 

1.3  TORNADO RISK IN THE UNITED STATES 

1.3.1  Tornado Frequency 

 As shown in Figure 1.1, the United States is the most tornado-prone country worldwide, 

with an average of 1,200 recorded tornado events each year. Canada is a distant second with 

around 100 tornadoes per year.3 Focusing on the United States, the average annual number of 

tornadoes (all intensities) by state for years 1980-2014 is presented in Figure 1.2. The darker 

green area shown in Figure 1.2 spanning from Texas to South Dakota is called "Tornado Alley"4 

because of the disproportionately high frequency of tornadoes. 

                                       
3 NOAA National Climatic Data Center, U.S. Tornado Climatology, retrieved on November 6, 2014 from 

http://www.ncdc.noaa.gov/climate-information/extreme-events/us-tornado-climatology 

4 Although the boundaries of Tornado Alley are not clearly defined, for this analysis I define the states of Texas, 

Oklahoma, Kansas, Colorado, Nebraska, South Dakota, Iowa, Illinois, Missouri, and Arkansas as the Tornado Alley. 
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Figure 1.1:  Global Tornado Activity 

 

1.3.2  Tornado Intensity 

 In addition to tornado frequency, the magnitude and intensity of tornadoes are also 

important in determining impacts. According to National Climatic Data Center (NOAA), over 

the 1950 to 2010 time period the vast majority of tornadoes (about 77%) in the United States 

were categorized as weak (i.e., Fujita Scale5 F0 or F1). Thus, nearly a quarter of tornadoes are 

classified as significant or strong/violent (F2 and above), with only 0.1% achieving F5 status 

(winds over 200 mph, resulting in near complete destruction of everything in its path). Given 

that, on average, about 1,200 tornadoes occur in the United States each year, about 276 will be 

classified as strong/violent, with perhaps one being F5. These strong/violent tornadoes account 

for the vast majority of tornado-induced fatalities and damage. For example, in May of 2013, a 

severe tornado produced catastrophic damage in Moore, Oklahoma and adjacent areas.  

                                       

5 Note that in 2007-2008 NOAA introduced and began using the Enhanced Fujita scale for measuring tornado 

intensity. I use the term Fujita scale throughout the paper since the majority of the data falls under this category. 
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Figure 1.2:  Average Annual Number of Tornadoes during 1980-2014 

 

 This F5 rated tornado was the most deadly and devastating tornado of the year, claiming 

24 lives and injuring 377 people. The tornado destroyed approximately 1,150 homes and caused 

more than $2 billion in damage (Insurance Journal, 2013). Another recent example is the tornado 

outbreak that occurred during April 25–28, 2011. This 4-day period included hundreds of 

tornadoes that struck communities across the southern plains and southeastern United States and 

was the largest and the deadliest tornado outbreak since formal record keeping began in 1950. In 

total, the National Weather Service (NWS) confirmed 351 tornadoes of which four were rated 

F5. In the four-day period 316 people died, more than 2,400 were injured, and economic 

damages totaled over $4.2 billion6. 

 

  

                                       
6 National Oceanic and Atmospheric Administration. Service assessment: the historic tornadoes of April 2011. 

Silver Spring, MD: U.S. Department of Commerce, National Oceanic and Atmospheric Administration; 2011. 

Available at http://www.nws.noaa.gov/om/assessments/pdfs/historic_tornadoes.pdf. 

http://www.nws.noaa.gov/om/assessments/pdfs/historic_tornadoes.pdf
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1.4  DETERMINANTS OF TORNADO VULNERABILITY 

1.4.1  Motivation 

 While it is clear that some places are simply more prone to tornadoes due to climactic 

reasons, this does not fully explain the differences in fatalities across the regions. For example, 

Figure 1.3 and 1.4 shows the differences between frequencies and fatalities of strong tornadoes. 

Figure 1.3:  Total Number of Strong/Violent Tornadoes (F2-F5), 1980-2014 

 

Figure 1.4:  Total Number of Fatalities from Strong/Violent Tornadoes (F2-F5), 1980-2014 
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The map in Figure 1.3 presents the total number of F2 or higher rated tornadoes (strong/violent) 

over the period 1980 – 2014 by state, whereas the map in Figure 1.4 shows total fatalities from 

these tornadoes over the same period. As is clear, the areas with relatively high tornado fatalities 

do not necessarily match up with the areas with the highest tornado intensities. For example, 

though tornado activity is relatively modest in Missouri, this state experienced a relatively high 

number of fatalities per year. The present research is in part motivated by this observation. Note 

that these differences could be driven by many things including that there may have been a 

higher ratio of violent (F4 and F5) events in Missouri relative to say Texas. My analysis below 

takes this into account and yet I still find significant evidence that specific socio-economic 

factors appear to be, at least in part, driving these differences. 

1.4.2  Conceptual Framework 

 As highlighted earlier, Cutter et al. (2003) discuss the possible interactions between 

social and biophysical vulnerabilities that determine overall place vulnerability. They explain 

that the hazard potential is either moderated or enhanced via a combination of geographic factors 

and the social fabric of the place. This social fabric can include a community’s experience with 

hazards, and its ability to respond to, cope with, recover from, and adapt to hazards, which in 

turn are influenced by socio-economic status, demographics, and housing characteristics. In their 

model, disaster fatalities are largely determined by socio-economic factors that shape a 

community’s vulnerability to disasters and in turn determine the impacts of disasters. 

 Similarly, Blaikie et al. (1994) note that vulnerability, in the disaster context, is a 

person's or group's "capacity to anticipate, cope with, resist, and recover from the impact of a 

natural hazard" (p. 9). The group’s disaster risk is determined purely exogenously by nature; 

however, a group's vulnerability against natural hazard is shaped by human components 
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(O'Keefe et al. 1976; Hewitt 1983). In the same vein, Cannon (1994) asserts that economic 

systems and class structures allocate income and access to resources, and this affects people's 

ability to cope with and recover from hazards. In general, it has been argued by many scholars 

that structural factors such as poverty, access to social protection and security, and inequalities 

with regard to gender, economic position, age, or race, cause or exacerbate vulnerability (Cannon 

1994, Aptekar and Boore, 1990; Albala-Bertrand 1993, Enarson and Morrow 1998; Peacock et 

al., 1997; Morrow 1999). Fothergill et al. (2004) point out that disaster researchers increasingly 

use a “socio-political ecology of disasters” as a theoretical framework of their disaster research, 

conducting analyses of minority, gender, and inequality issues in the context of disasters. 

1.4.3  Hypotheses on the Determinants of Tornado Vulnerability 

 Based on a conceptual framework where risk is considered to be a function of physically 

defined natural hazards and socially constructed vulnerability, this study seeks to identify key 

elements of tornado fatalities through empirical analysis using detailed data on tornado events 

and socio-economic data for 3,107 U.S. counties from 1980 through 2014. In addition to 

controlling for primary factors such as county population, lagged tornado frequency, and tornado 

magnitude (Fujita scale), I hypothesize that there are a number of demographic, socio-economic, 

housing, and governmental factors that may also play significant roles in determining tornado-

induced deaths. 

 Income/Wealth and Income Distribution   First, as one of the well-known 

determinants of disaster impacts. The robustness of the hypothesis is tested that the level of 

community's income/wealth plays significant role in vulnerability of disasters. Researchers such 

as Wildavsky (1988) contends that greater income and wealth translates to a safer society. Safety 
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can be viewed as a natural product of a growing market economy since higher income places 

have a higher demand for safety and more resources to invest in risk reduction measures, which 

in turn leads to reduced vulnerability to disasters. The income/wealth hypothesis has been 

supported by many empirical studies (Kahn 2005, Toya and Skidmore 2007, Stromberg 2007, 

Raschky 2008, Gaiha et al. 2013). Note that these studies use cross-country data where GDP is 

used as a measure of income/wealth, whereas in this study, U.S. county per capita income is 

used. 

 In addition to per capita income, I also include the county top ten percentile income level 

and county poverty rates in my analysis as measures of income distribution. If income 

distributions are similar across all counties and over time, the top ten percentile income level 

measure should be closely correlated with per capita income. However, since income disparity in 

the United States has increased over the sample period and more so in some counties than others, 

I speculate that controlling for per capita income, the top ten percentile income variable will 

capture the role income disparity plays in determining disaster vulnerability.  

 Similarly, I hypothesize that societies with a higher concentration of poverty might 

encounter higher tornado-induced human losses. According to Fothergill et al. (2004), the poor 

in the United States are more vulnerable to natural disasters due to such factors as place and type 

of residence, building construction, access to information, low quality infrastructure, and social 

exclusion. Furthermore, Moore (1958) highlighted the relationship between socio-economic 

status and warning response, reporting that lower income groups were less likely to take the 

warnings of impending natural disasters seriously. Gladwin and Peacock (1997) reported in their 

study of warnings and evacuation for Hurricane Andrew that lower income people were less able 

and thus less likely to evacuate, mostly due to constraints placed by a lack of transportation and 
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affordable refuge options. Similarly, an empirical study of natural disasters in Fiji, (Lal et al., 

2009) finds evidence that the level of poverty (measured by the HDI) negatively affects disaster 

outcomes. The authors argue that those living in poverty are more sensitive to disasters because 

they have lower economic and social conditions; that is, they are unable to invest in adequate 

preparedness and risk reduction measures. 

 Gender and Female-Headed Households   I also hypothesize that female-headed 

households are likely to be among the most vulnerable. According to the 2012 Census, families 

headed by a single adult are more likely to be headed by women, and these female-headed 

families are at greater risk of poverty and deep poverty; 30.2% of families with a female 

householder where no husband is present were poor and 16.9% were living in deep poverty. In 

addition, a study by Neumayer and Plumper (2007) suggests that for both social and 

physiological reasons, females are more vulnerable in disaster situations than men and therefore 

suffer higher mortality rates. 

 While this study attempts to shed light on the direct impacts of disasters on female-

headed households, the vulnerability of female-headed households in a longer-run framework is 

highlighted in the literature. Researchers focusing on post-disaster outcomes indicate the degree 

of disaster impacts vary by gender not only in terms of direct physical loss, but also during the 

periods of emergency response, recovery, and reconstruction. For example, Blaikie et al. (1994) 

argue that women have a more difficult time during the recovery period than men, often due to 

sector-specific employment, lower wages, and family care responsibilities. Similarly, two years 

after Hurricane Andrew, thousands of poor families headed by minority women were still living 

in substandard temporary housing (Morrow and Enarson, 1996). 
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Human Capital   The third hypothesis is that human capital as measured by percentage 

of population aged 25 and over holding a Bachelor’s degree is one of the major characteristics 

defining social vulnerability. Several cross-country studies found significant correlations 

between level of educational attainment and reduced fatalities (see Skidmore et al., 2007). 

Education attainment is linked to the emergency decision-making process; education influences 

one's ability to understand warning information and perform evacuation or other necessary 

actions. Cutter et al. (2003) explain that while education is clearly linked to socio-economic 

status (higher educational attainment resulting in greater lifetime earnings), lower education may 

also constrain the ability to understand warning information and access to recovery information. 

Additionally, they argue that those with higher levels of education are more likely to choose 

safer locations and homes constructed with more durable materials, thus resulting in fewer 

fatalities. 

In a recent study, Muttarak and Lutz. (2014) argue that education can directly influence 

risk perceptions, skills and knowledge and indirectly reduce poverty, as well as promote access 

to information and resources. These factors contribute to higher adaptive capacity and 

vulnerability reduction. The authors collect empirical evidence from a series of studies contained 

in a special issue aimed at investigating the role of education in vulnerability reduction; the 

authors provide consistent and robust findings on the positive impact of formal education in 

reducing vulnerability.  
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Housing Choice   The fourth hypothesis is that communities with a higher proportion 

of households living in mobile homes or trailers will suffer increased levels of tornado casualties. 

Aptekar (1991) argues that it is more likely that disasters adversely affect those with lower socio-

economic status largely because of the types of housing they occupy. Logically, people living in 

mobile homes are more vulnerable to natural events such as tornadoes because mobile homes 

typically have no foundation or basement and can more be easily destroyed. From 1996 to 2000, 

about half of tornado-induced deaths in the United States were in mobile homes7, even though 

mobile homes accounted for less than 8% of the nation's housing during the same period, 

according to the National Oceanic and Atmospheric Administration and the U.S. Census Bureau. 

Historical data on tornado fatalities (1975-2000) tell us that the rate of death from tornadoes in 

mobile homes is about 20 times higher than that in site-built homes7. 

Table 1.1:  Mobile Homes in the United States 

Year 
Mobile Homes (%) 

in U.S. housing units 

Total Mobile Homes 

in U.S. housing units 
Total U.S. housing units 

1950 0.7% 315,218 45,983,398 

1960 1.3% 766,565 58,326,357 

1970 3.1% 2,072,887 68,679,030 

1980 5.1% 4,401,056 88,411,263 

1990 7.2% 7,399,855 102,263,678 

2000 7.6% 8,779,228 115,904,641 

 2010* 6.7% 8,684,414 130,038,080 

Source: U.S. Census Bureau, Housing and Household Economic Statistics Division  

*2010 data are estimates produced by American Community Survey while data for years 1950-2000 are 

from Decennial Census. 

                                       
7 Brooks, H., & Doswell III, C. A. (2001). A brief history of deaths from tornadoes in the United States. Weather 

and Forecasting, 1-9. http://www.nssl.noaa.gov/users/brooks/public_html/deathtrivia/ 
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 As shown in Table 1.1, the proportion of households living in mobile homes increased 

significantly since 1950. While the quality of these homes is probably higher than in the past, 

they still lack structural characteristics (e.g. foundations and basements) that make other types of 

construction more resistant to tornadoes. Importantly, mobile home living is very high in many 

rural counties across the Unites States. As shown in Figure 1.5, in 2010 many rural counties had 

more than a third of households living in mobile homes. The increase in the U.S. population 

living in mobile homes is likely to have important policy implications for disaster management 

in the context of tornadoes and other high wind events (Brooks 2001, Merrell et al. 2005, 

Kusenbach et al. 2010, Fothergill and Peek 2004, Schmidlin et al. 2009).  

Figure 1.5:  Proportion of Households Living in Mobile Homes, 2010 
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Local Government Investment   My last hypothesis is that communities where local 

governments invest more resources in safety, protection and welfare will experience fewer 

fatalities. This type of expenditure number is not readily available, so I construct a measure of 

government spending on public safety and welfare by aggregating local government 

expenditures on fire/police protection and protective inspections/regulations and housing/ 

community development, and public welfare. Local government resources devoted to public 

safety services such as fire/police protection and protective inspection and regulation should lead 

to better preparedness and faster responses to disaster events, which, in turn, may play critical 

roles in reducing fatalities. It is also possible that allocating more resources to public welfare 

may reduce disaster vulnerability. In the context of local government, welfare services are not 

direct cash assistant (this comes from state government) but are for services like children’s 

homes or payments to vendors for substance abuse treatment and the like.  

  



23 

 

1.5  EMPIRICAL ANALYSIS 

1.5.1  Data Description 

 The county level panel data in the analysis consists of: (1) data on tornadoes from 

NOAA (1980-2014) used to develop detailed tornado information on locations, magnitudes and 

deaths, (2) data from U.S. Decennial census of population for the major socio-economic and 

housing factors in 3,107 counties from 1980 to 2010, and (3) local government fiscal data from 

the U.S. Census of Governments (1982 to 2012). Note that the Census of Population data are 

only available every ten years, whereas local government fiscal data are reported every five years 

(years ending in 2 or 7). Also, since, at the county level, the tornado data has many zero 

observations, the panel data is organized such that it contains county level tornado observations 

across seven time blocks between 1980-2014 (in five year intervals) : '80-84, '85-'89, '90-'94, 

‘95-'99, '00-'04, '05-'09, '10-'14. The detailed tornado data are aggregated and rearranged to form 

county level observations and the tornado variables are averaged over each time block and are 

assigned middle years of each time block, 1982, 1987,…2012. Decennial census data for 

demographic and housing variables are interpolated to obtain data in 1982, 1987,.., 2012. Lastly, 

averaged tornado data and the interpolated census data are merged with the local government 

fiscal data. Overall, seven time-blocks are constructed for each of the 3,107 counties8. Thus, the 

unit of observation of this study is counties, not tornado event. 

                                       
8 Given that county level socio-economic variables are only available every ten years, I use averaged tornado data 

in time intervals to avoid using interpolated data for all the socio-economic variables for all years except for years 

ending in 0, and interpolated government fiscal data for most time periods as well. By having a county as a unit of 

observation in this study, I am able to retain and explore a long-term variation in county socio-economic and 

government fiscal factors more accurately whose role in disaster events is the main interest of this study. 
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 When I average tornado data across time blocks, I include only strong/violent tornadoes 

rated F2 or greater for the main analysis or, for the additional analysis F3 or greater. 

Accordingly, the dependent variable is the average number of deaths9 caused by tornadoes rated 

F2-F5 (or F3-F5 in additional analysis). As noted earlier and shown in Table 1.2, most tornadoes 

are classified as F0 or F1 and those tornadoes commonly lead to very few deaths or do not claim 

lives at all. Since these types of tornadoes are effectively non-disasters, they are excluded for the 

analysis. As a result, county level panel data for my empirical estimation contains 2,120 counties 

that have experienced tornadoes of F2+ at least once over the study period. Table 1.2 presents the 

total number of tornadoes and resulting fatalities and injuries by F-scale over the years 1980-

2014. 

Table 1.2:  Tornadoes and Resulting Impacts by Fujita-scale (1980-2014)* 

 Tornado Fatalities Injuries 

F-scale Obs. % Total Avg. Total Avg. 

F0 22,028 51.31  12 0.001 536 0.024 

F1 11,977 27.90  128 0.011 3,945 0.329 

F2 3,907 9.10  330 0.084 8,427 2.157 

F3 1,193 2.78  880 0.738 13,586 11.388 

F4 301 0.70  869 2.887 13,055 43.372 

F5 27 0.06  639 23.667 4,567 169.148 

Total 42934 100 2447 0.057 39877 0.929 

* Only F2-F5 tornadoes are examined in this study. 

 

 

  

                                       
9 For example, a county A experienced two tornadoes each rated F2 and F0, having fatalities of 3 and 0 

respectively, in a time block B, then county A in year B is assigned 3 for its average fatalities per tornadoes F2 or 

higher. I exclude and do not count F0 and F1 tornadoes when I generate Avg. Fatalities_F2-F5 or Avg.Fscale_F2-

F5 variables. 
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1.5.2  Empirical Model 

 The dependent variable in this analysis is the average number of fatalities per tornado 

and thus, non-negative value. I employ Poisson model which properly treats the non-negative 

variables within the county level panel data framework (Wooldridge, 1991)10. Also, considering 

the large portion of zeros in the dependent variable, I repeat the analysis using a Negative 

Binomial model as a robustness check. In this study, many of the county socio-economic 

characteristics do not change much over time. Thus, there is little within-county variation for 

many of the explanatory variables. Given this, the fixed effects model is not necessarily preferred 

to random effects model.11 In his multi-national disaster study, Kahn (2005) points out the 

presence of sluggish adjustment and long latency in economic development, which makes the 

inclusion of country fixed effects problematic. Taking the same stance as Kahn, I estimate the 

model using both random and fixed effects Poisson, but mainly discuss the random effects 

estimates.12 

 The regression analysis is characterized by the following equation: 

𝐸[𝑌𝑗𝑡] = exp(𝛽𝑋𝑗𝑡 + 𝜌𝐺𝑗𝑡 + 𝛾1𝑍1𝑗𝑡 + 𝛾2𝑍2𝑗𝑡−1 + 𝛿𝐷𝑗 + 𝜃𝐷𝑇 + 𝛼𝑗 + ɛ
𝑗𝑡
) 

where 𝑌𝑗𝑡 is the average deaths per tornado in county 𝑗during time block 𝑡, 𝑿𝒋𝒕 is a vector of 

socio-economic and housing variables affecting deaths in county 𝑗at time 𝑡,𝐺𝑗𝑡 is local 

government spending on public/safety, 𝐷𝑗  is the dummy variable for Tornado Alley, 𝑍𝑖𝑗𝑡 is the 

average F-scale or the share of tornadoes of each F-scale levels (F2-F5) occurred in a county 𝑗at 

                                       
10 The dependent variable is an average value and can be non-integer. However, the Poisson (quasi-MLE) model is 

robust to distributional assumptions; it can be applied to any nonnegative outcome, either continuous or integer 

valued (Wooldridge, 1991). 
11 Wooldridge (2010) also discusses that when the key explanatory variables do not vary much over time, fixed 

effects methods can lead to imprecise estimates. 
12 The result of Fixed Effects Poisson is presented in the Appendix. 
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time 𝑡, 𝑍𝑗𝑡−1 is the number of tornadoes in county 𝑗at time 𝑡 − 1, 𝐷𝑇 represents a series of 

time indicator variables, 𝛼𝑗 is a time-invariant effect for county j, and 휀𝑗𝑡 is the unobservable 

error term. The detailed explanation for the variables in the model is provided in Table 1.3. 

Table 1.3:  List of dependent and explanatory variables in the model 

Dependent Variable  

 Avg. Deaths from tornadoes 𝑌𝑗𝑡 

Explanatory Variables 

 

Demographic 

Log (Population size) 

𝑋𝑖𝑗𝑡 

Log ( Land Area) 

Percent of population over 65 

Percent of population under 18 

Percent of people aged 25 and over holding Bachelor's degree 

Percent of female-headed households 

Economic 

Log (Per capita Income) 

Log (Top 10 percentile income level) 

Poverty rate 

Housing Percent of mobile homes in total housing units 

Government Log (Local government expenditures on public safety/welfare) 𝐺𝑖𝑡 

Tornado 

Magnitude of tornadoes 

(Avg. magnitude OR Percent of tornadoes of F2, F3, F4, and F513) 𝑍𝑖𝑗𝑡 
Lagged tornado frequency of F2+ 

Tornado alley 𝐷𝑗 

Time Dummy 1987, 1992, 1997, 2002, 2007, 2012 𝐷𝑇 

  

 Table 1.4 shows that over the 35 years from 1980 to 2014, a total of 5,428 tornadoes of 

F2 or greater occurred and caused 2,718 deaths and 39,635 injuries; 4,733 of these tornado 

events resulted in zero fatalities (Table 1.4). I aggregate tornado data into the aforementioned 

                                       
13 For a robustness check, I repeat my analysis using the percent of tornadoes of each F-scale among F2-F5  

tornadoes that occurred ( or among F3-F5 tornadoes for severe tornado analysis), instead of using the average F-

scale as in my main analysis. The result is presented in Table 1.8. 
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five-year intervals and form a panel structure. The county level panel data for this study contains 

4,757 county-year observations14 with at least one strong/violent tornado rated F2 or higher and 

1,016 observations had fatalities from those events. Using these data, I estimate equation (1) 

using a Poisson and Negative Binomial estimation procedures. 

Table 1.4:  Fatalities induced by Strong Tornadoes (F2-F5), 1980-2014* 

Fatalities Freq. Percent 

0 4,733 87.20  

1-5 577 10.63  

6-15 86 1.58  

16-30 26 0.48  

31-158 6 0.11  

Total 5,428 100.00  

* For this information, yearly tornado data from NOAA is used. However, this study exploits a panel data with county-

year observations. 

 

 Eight specifications are estimated to test my hypotheses. The dependent variable is the 

average number of deaths per tornado (of Fujita Scale 2-5) in each county in a particular time 

block. Some of the socio-economic determinants are highly correlated with each other, which 

may result in multicollinearity. To address this possibility, I conduct preliminary analyses using 

more parsimonious model specifications as shown in columns (1) to (7) of Table 1.6 and 1.7. 

Each hypothesized potential determinant of tornado impacts – for example, poverty rate, 

education level, female-headed household, and mobile homes – are examined separately but with 

a consistent set of control variables. Given that many prior studies found income level to be one 

of the most important factors, per capita income is included in every specification. Government 

spending on public safety and welfare also appears in every specification because this is the only 

                                       
14 County-year observations without any experience of tornadoes of F2+ are excluded. 
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variable that represents the role of government, although government spending might be weakly 

related to the economic variables discussed above. The last specification includes all the poverty-

related potential determinants, testing them in a single specification. In all specifications the 

following variables are included as controls: average tornado magnitude, population size, land 

area, percent of population over age 65 and under 18, lagged tornado frequency, and a 

categorical variable for counties located in the Tornado Alley region. 

 The EM-DAT data used in most of the prior studies discussed do not contain 

information on disaster magnitude on many of the recorded disaster events, so most studies using 

those data are unable to control for disaster magnitude. The tornado data from NOAA, however, 

does provide a magnitude measure for each tornado (F-scale), and thus I can more readily 

distinguish impacts on fatality due to disaster magnitude versus other explanatory variables I 

wish to explore. Specifically, I use the average magnitude of all tornadoes of F2-F5 that occurred 

in a particular county in a given period because the unit of observation of this study is counties, 

not tornado event.  

 Also, considering that Tornado Alley regions are more highly prone to tornadoes than 

other regions, I introduce a dummy variable in the model. (𝐷𝑗 = 1,if the county j is in this 

geographic region and 𝐷𝑗 = 0, otherwise) along with lagged tornado frequency of F2-F5 (or F3-

F5 in additional analysis on severe tornadoes). These variables allow us to test whether greater 

familiarity with this type of emergency makes the area more able to cope (e.g., building codes, 

population behavior during the event).  
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Table 1.5:  County Summary Statistics 

 Mean 
Standard 

Deviation 
Min Max 

Number 

of Obs. 

Dependent Variables      

  Avg. Tornado Deaths (F2-F5) 0.29  1.34  0  52.67  4757 

  Avg. Tornado Deaths (F3-F5) 0.77  2.45  0 52.67  1884 

Independent Variables      

  Avg. Fscale (F2-F5) 2.40  0.58  2  5  4757 

  Avg. Fscale (F3-F5) 3.25  0.44  3 5 1884 

  Pct Tornado of F2 68.03  42.78  0 100 4757 

  Pct Tornado of F3 24.50  39.31  0 100 4757 

  Pct Tornado of F4 6.95  22.91  0 100 4757 

  Pct Tornado of F5 0.53  5.76  0 100 4757 

  Lagged Freq. of F2-F5 0.58  0.96  0  9  4757 

  Lagged Freq. of F3-F5 0.20  0.53  0 5 1884 

  Tornado Alley Dummy 0.44  0.50  0  1  4757 

  Log (Land Area) 6.46  0.52  3.13  9.91  4757 

  Log (Population) 10.38  1.30  4.37  15.91  4757 

  Pct Over 65 14.01  3.93  3.06  35.99  4757 

  Pct Under 18 26.01  3.28  11.20  45.16  4757 

  Log (Per Capita Gov Expenditure 

       on Public Safety & Welfare) 
-1.55  0.70  -5.90  1.11  4757 

  Log (Per Capita Income) 9.79  0.25  8.80  10.93  4757 

  Log (Top 10% Income ) 11.52  0.28  10.73  12.07  4757 

  Poverty Rate 15.97  6.90  0  58.18  4757 

  Pct BA Degree 15.04  6.90  4.12  55.35  4757 

  Pct Mobile Home 12.46  8.05  0.05  57.21  4757 

  Pct Female-Headed Household 10.54  4.30  2.88  35.46  4757 

* Statistics are from observations with F2-F5 tornado experience that are used for the main regressions. For the 

additional regressions using severe tornadoes of F3-F5, only tornado statistics (Avg. Tornado Deaths, Avg. Fscale) 

are presented. 
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1.6  RESULTS 

 Table 1.6 and Table 1.7 presents the results of the regressions using F2 or higher tornado 

observations recorded in counties over 1980-2014 and a set of demographic, socio-economic, 

housing, and government fiscal factors as presented in Table 1.5. I mainly discuss the results of 

Random Effects Poisson and Negative Binomial15 specifications here; however, the Fixed 

Effects specification estimates outcomes are provided in the Appendix for the interested reader. 

 Before discussing the primary findings as they relate to the hypotheses, consider the 

estimated effects of the control variables. The F-scale variable which is an indicator of the 

average magnitude of tornadoes within a given time period, has a strong association with the 

number of deathsin all specifications. As expected, the analysis confirms the magnitude of the 

tornado is a critical physical determinant of the tornado fatalities. The estimated coefficient of 

the average F-scale in column (8) in Table 1.7 implies that an increase in F-scale to the next level 

increases expected tornado fatalities by a factor of 4.21 (≈ 𝑒𝑥𝑝(1.437)). Both lagged tornado 

frequency and tornado alley variables are estimated to be negatively correlated with fatalities in 

all specifications. Counties in tornado alley region who experience tornadoes relatively often are 

estimated to experience 13% (≈ 𝑒𝑥𝑝(−0.133) − 1) lower fatalities than counties outside of the 

tornado-prone area, all other conditions being equal. This result supports the idea that there 

might be some kind of learning effects from risk history, where counties that suffered more 

tornado outbreaks tend to put more efforts to reduce their vulnerability and be better prepared for 

disasters and in turn, better able to mitigate the societal impacts. McEntire (2001) asserts that 

                                       
15 I discuss both Poisson and Neg. Binomial regressions results here, however, the likelihood ratio test of α 

(dispersion parameter) = 0 strongly rejects the null hypothesis that the errors do not exhibit overdispersion. Thus, the 

Poisson regression model is rejected in favor of its generalized version, the Neg. Binomial regression model. When 

explaining the estimated effects of explanatory variables, I refer to the results of Neg. Binomial model in Table 1.7. 
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beliefs and activities play a major role in the creation of vulnerabilities and past disaster lessons 

reduce future consequences. 

 As a measure of density, both county population and land area are included in 

logarithmic terms16. The results show that counties with greater populations and smaller land 

area experience more deaths when tornadoes strike - together implying the higher the density, the 

larger the tornado impacts. The estimates suggest that for two counties of equal land area, if one 

has 10 percent more population, the expected fatalities increase by 4 percent. Also, as a control, 

proportions of the population over the age of 65 and under 18 are included. In all estimates it is 

shown that counties with greater proportions of elder and young experience fewer fatalities. In 

my initial assessment I expected that these population groups would be more vulnerable rather 

than less. One possible explanation is the older people and families with children may be more 

risk averse and thus heed tornado warnings, thus reducing exposure. It could also be caused by 

higher proportions of these individuals being in environments (schools, retirement communities) 

where warnings are more easily distributed. 

 Let's now turn to the primary interest in the role that the various dimensions of poverty, 

and social vulnerability play in determining tornado impacts. I begin this portion of the 

discussion by considering the factors that align with my first hypothesis regarding the role of 

income/wealth in determining vulnerability. 

 

 

                                       
16 Note that Population Density=Population/Land Area. Also, Log(Density)=Log(Population)-Log(Land Area). 

Thus, the estimated coefficients of Log(Population) and Log(LandArea) variables are similar in magnitude but 

opposite in sign. 
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1.6.1  Richer Counties Experience Fewer Tornado-induced Deaths 

 Consistent with most other empirical studies, I find that per capita income is a key 

determinant of tornado-related deaths. The negative relationship between income and tornado 

fatalities is significant and robust in both Poisson and Negative Binomial models, indicating that 

higher county per capita income results in fewer tornado-induced fatalities. The estimated 

coefficient on the log of per capita income suggests that a one percent increase in county per 

capita income is expected to reduce tornado fatalities by one percent17. As Anbarci et al. (2005) 

and Kahn (2005) argued in their studies, it is also found in this study that income distribution (as 

measured by the top ten percentile income level) a significant factor. Holding other factors 

constant, per capita income and the poverty rate, higher top ten percentile income level means 

larger share of lower-middle income group, which indicates wider income disparity in the 

community. The estimates suggest that greater income inequality tends to exacerbate the impacts 

of disasters. In addition, controlling for income, the poverty rate is not a statistically significant 

factor. However, this result is largely due to multicollinearity as per capita income and the 

poverty rate are highly correlated. Consider the estimates in column 4 in both Table 1.6 and 1.7, 

where the poverty rate is included but not income per capita in the specification. In this 

regression we see that the poverty rate is positive and statistically significant as expected. The 

estimated coefficient in column 4 in Table 1.7 suggest that one percentage point increase in 

poverty rate is estimated to increase tornado fatalities by 3percent.  

 

 

                                       
17 The estimated coefficients of log transformed variables can be interpreted as elasticities. 



33 

 

1.6.2  Human Capital Plays an Important Role in Reducing Tornado Vulnerability 

 The regression results indicate that human capital as measured by the proportion of the 

population aged 25 and over with a Bachelor (or higher) degree is also a significant determinant 

of tornado fatalities. As presented in specifications (5) and (8), the percent of bachelor degree 

holders is found to be negatively associated with the likelihood of deaths in disaster situations, 

though only statistically significant in specification (5). A one percentage point increase in the 

proportion of the Bachelor degree holder in a county is associated with 1.6 percent (≈

𝑒𝑥𝑝(−0.016) − 1)reduction in expected tornado fatalities. Educational attainment may be 

linked to emergency decision-making processes such as the ability to quickly comprehend 

warning information and perform evacuation or other necessary actions or to have work 

functions located inside, with more solid construction (e.g., office building versus pole barn). 

Thus, those with lower education attainment may be more vulnerable to disaster shocks. The 

estimated results are consistent with previous studies (e.g., Skidmore et al., 2007, Muttarak and 

Lutz, 2014). However, again, education and other economic variables such as income levels and 

poverty measures are highly correlated; thus, the insignificance of education in column (8) is 

likely the result of multicollinearity. 

  



34 

 

Table 1.6:  Socio-economic Characteristics and Disaster Impacts 

Poisson Random Effect Regressions Results 

 

Dependent variable: Deaths from F2-F5 tornadoes 

Independent variables (1) (2) (3) (4) (5) (6) (7) (8) 

Fscale_F2+ 1.551*** 1.550*** 1.553*** 1.555*** 1.550*** 1.575*** 1.554*** 1.576*** 
 (0.061) (0.061) (0.061) (0.060) (0.061) (0.060) (0.061) (0.061) 

Lag_Tornado_F2+ -0.003 -0.005 -0.004 -0.003 -0.002 -0.003 -0.006 -0.006 
 (0.045) (0.045) (0.045) (0.045) (0.045) (0.046) (0.045) (0.046) 

Tornado Alley -0.461*** -0.457*** -0.454*** -0.467*** -0.432*** -0.213** -0.421*** -0.206* 
 (0.105) (0.105) (0.106) (0.106) (0.107) (0.107) (0.107) (0.108) 

Log(Land Area) -0.039 -0.045 -0.037 -0.017 -0.018 -0.131 -0.016 -0.142 
 (0.094) (0.095) (0.094) (0.092) (0.095) (0.095) (0.095) (0.098) 

Log(Population) 0.323*** 0.322*** 0.312*** 0.260*** 0.337*** 0.443*** 0.294*** 0.432*** 
 (0.059) (0.058) (0.060) (0.054) (0.059) (0.059) (0.060) (0.062) 

Pct Over65 -0.044** -0.034 -0.043** -0.042** -0.053** -0.014 -0.039* -0.001 
 (0.020) (0.022) (0.020) (0.020) (0.022) (0.019) (0.020) (0.024) 

Pct Under18 -0.042** -0.044** -0.044** -0.042** -0.048** -0.012 -0.047** -0.011 
 (0.021) (0.021) (0.021) (0.021) (0.022) (0.021) (0.022) (0.023) 

Log(PerCapita 

GovtExp 

onPublicSafetyWelfare) 

-0.317*** -0.320*** -0.324*** -0.355*** -0.309*** -0.221** -0.344*** -0.232** 

(0.085) (0.086) (0.085) (0.084) (0.086) (0.086) (0.090) (0.092) 

Log (PerCapita Income) 

 

-1.367*** -1.916*** -1.020**  -1.058*** -0.539 -1.013*** -1.041 

(0.304) (0.527) (0.489)  (0.357) (0.336) (0.391) (0.854) 

Log (Top 10% Income) 

 
 0.777      0.668 

 (0.596)      (0.592) 

Poverty Rate   0.010 0.030***    0.001 
 

  (0.012) (0.007)    (0.017) 

Pct BA degree     -0.017*   0.008 
 

    (0.010)   (0.013) 

Pct Mobile home      0.053***  0.054*** 
 

     (0.007)  (0.008) 

Pct Female-Headed       0.025 0.004 
 

      (0.015) (0.019) 

Dummy 1987 0.377** 0.318 0.336* 0.225 0.352* 0.160 0.319 0.101 
 (0.192) (0.197) (0.190) (0.185) (0.192) (0.192) (0.201) (0.196) 

Dummy 1992 0.278 0.204 0.198 -0.029 0.239 -0.133 0.154 -0.218 
 (0.176) (0.180) (0.202) (0.169) (0.177) (0.187) (0.196) (0.227) 

Dummy 1997 0.718*** 0.611*** 0.605** 0.281 0.657*** 0.179 0.544** 0.063 
 (0.192) (0.200) (0.237) (0.177) (0.199) (0.209) (0.230) (0.281) 

Dummy 2002 0.973*** 0.809*** 0.839*** 0.454*** 0.909*** 0.343 0.762*** 0.169 
 (0.204) (0.230) (0.252) (0.170) (0.207) (0.222) (0.251) (0.308) 

Dummy 2007 1.106*** 0.868*** 0.956*** 0.548*** 1.059*** 0.469* 0.874*** 0.222 
 (0.215) (0.266) (0.279) (0.196) (0.219) (0.242) (0.277) (0.354) 

Dummy 2012 1.246*** 0.921*** 1.079*** 0.645*** 1.212*** 0.619*** 0.998*** 0.285 
 (0.220) (0.307) (0.288) (0.204) (0.224) (0.237) (0.276) (0.380) 

Constant 4.685 1.197 1.356 -8.350*** 1.945 -5.603 1.275 -8.441 
 (3.053) (4.117) (4.829) (1.264) (3.426) (3.437) (3.823) (6.838) 

No. of Observations 4,759 4,759 4,757 4,757 4,759 4,759 4,759 4,757 

No. of Counties 2,121 2,121 2,120 2,120 2,121 2,121 2,121 2,120 

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 1.7:  Socio-economic Characteristics and Disaster Impacts 

Negative Binomial Random Effect Regressions Results 

 

Dependent variable: Deaths from F2-F5 tornadoes 

Independent variables (1) (2) (3) (4) (5) (6) (7) (8) 

Fscale_F2+ 1.408*** 1.409*** 1.411*** 1.413*** 1.407*** 1.436*** 1.409*** 1.437*** 
 (0.051) (0.051) (0.051) (0.051) (0.051) (0.051) (0.051) (0.051) 

Lag_Tornado_F2+ -0.005 -0.006 -0.006 -0.006 -0.003 -0.007 -0.007 -0.010 
 (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) 

Tornado Alley -0.369*** -0.364*** -0.361*** -0.372*** -0.342*** -0.146 -0.327*** -0.133 
 (0.094) (0.094) (0.094) (0.094) (0.095) (0.097) (0.097) (0.099) 

Log(Land Area) -0.082 -0.086 -0.080 -0.059 -0.061 -0.159* -0.056 -0.163* 
 (0.087) (0.087) (0.087) (0.086) (0.088) (0.087) (0.088) (0.091) 

Log(Population) 0.315*** 0.315*** 0.304*** 0.253*** 0.326*** 0.422*** 0.283*** 0.408*** 
 (0.049) (0.049) (0.050) (0.044) (0.049) (0.050) (0.052) (0.054) 

Pct Over65 -0.029* -0.021 -0.028* -0.027* -0.038** -0.001 -0.024 0.010 
 (0.015) (0.017) (0.015) (0.015) (0.016) (0.015) (0.016) (0.018) 

Pct Under18 -0.038** -0.041** -0.039** -0.036** -0.044** -0.009 -0.044** -0.009 
 (0.017) (0.017) (0.017) (0.017) (0.018) (0.018) (0.018) (0.019) 

Log(PerCapita GovtExp 

onPublicSafetyWelfare) 

-0.301*** -0.305*** -0.307*** -0.336*** -0.292*** -0.196*** -0.334*** -0.213*** 

(0.072) (0.072) (0.072) (0.071) (0.072) (0.073) (0.074) (0.076) 

Log (PerCapita Income) 

 

-1.325*** -1.817*** -0.994**  -1.035*** -0.526* -0.929*** -0.921 

(0.273) (0.480) (0.443)  (0.321) (0.291) (0.344) (0.723) 

Log (Top 10% Income) 

 
 0.685      0.490 

 (0.551)      (0.549) 

Poverty Rate   0.010 0.029***    -0.002 
 

  (0.011) (0.006)    (0.014) 

Pct BA degree     -0.016*   0.007 
 

    (0.009)   (0.011) 

Pct Mobile home      0.050***  0.051*** 
 

     (0.006)  (0.007) 

Pct Female-Headed       0.027* 0.010 
 

      (0.014) (0.017) 

Dummy 1987 0.246* 0.194 0.211 0.109 0.220 0.047 0.176 -0.000 
 (0.148) (0.153) (0.152) (0.145) (0.149) (0.149) (0.152) (0.161) 

Dummy 1992 0.185 0.121 0.108 -0.114 0.148 -0.199 0.044 -0.270 
 (0.156) (0.165) (0.176) (0.145) (0.158) (0.163) (0.173) (0.196) 

Dummy 1997 0.627*** 0.538*** 0.519** 0.205 0.566*** 0.107 0.429** 0.014 
 (0.168) (0.182) (0.203) (0.146) (0.171) (0.179) (0.197) (0.238) 

Dummy 2002 0.869*** 0.728*** 0.743*** 0.373** 0.808*** 0.273 0.635*** 0.132 
 (0.182) (0.214) (0.225) (0.153) (0.185) (0.195) (0.220) (0.275) 

Dummy 2007 1.033*** 0.827*** 0.890*** 0.494*** 0.985*** 0.406** 0.770*** 0.209 
 (0.177) (0.243) (0.234) (0.153) (0.180) (0.193) (0.225) (0.307) 

Dummy 2012 1.110*** 0.826*** 0.952*** 0.532*** 1.073*** 0.506*** 0.835*** 0.245 
 (0.176) (0.289) (0.243) (0.155) (0.178) (0.191) (0.229) (0.349) 

Constant 7.076*** 4.094 3.873 -5.615*** 4.539 -2.871 3.282 -4.697 
 (2.730) (3.641) (4.349) (1.012) (3.098) (2.993) (3.383) (5.977) 

No. of Observations 4,759 4,759 4,757 4,757 4,759 4,759 4,759 4,757 

No. of Counties 2,121 2,121 2,120 2,120 2,121 2,121 2,121 2,120 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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1.6.3  Mobile Homes Residents Experience More Tornado Fatalities 

 The fourth hypothesis is that mobile home living results in more tornado fatalities. The 

regression estimates in specifications (6) and (8) show that the percent of mobile homes in a 

county is positively related to tornado fatalities, and the estimates are robust. The results confirm 

that more mobile homes in a county results in greater vulnerability to tornadoes. The estimated 

coefficient implies that one percentage point increase in the proportion of mobile homes in total 

housing units is expected to increase tornado-related deaths by 5.2 percent (≈ 𝑒𝑥𝑝(0.051)). 

Further, as noted earlier more households are choosing this type of housing arrangement over 

time, and thus vulnerability may be increasing. This finding may have important policy 

implications in the context of developing approaches to reduce tornado vulnerability. For 

example, mobile home parks could potentially provide common tornado shelter areas to be used 

in the event of a tornado watch or warning. 

1.6.4  Female-Headed Households Are More Vulnerable to Tornadoes 

 The second hypothesis is that female-headed households are more vulnerable to 

tornadoes. This hypothesis is examined in specifications (7) and (8) in the Poisson and Negative 

Binomial models. These regressions show that female headed households and tornado-induced 

fatalities weakly have a positive correlation. The estimate in specification (7) shows that a one 

percentage point increase in the proportion of the female-headed households in a county is 

expected to increase tornado fatalities by 2.7 percent. It is implied that all else equal, places with 

more female-headed households are more vulnerable, perhaps because female-headed 

households have limited access to resources during high risk events. The result is consistent with 

the previous arguments by sociologists (Enarson and Morrow 1998; Enarson, Fothergill, and 

Peek 2006). However, the estimated effect only achieves significance in specification (8). 
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1.6.5  Government Spending in Public Safety Mitigates Losses from Tornadoes  

 Finally, I test the degree to which local government plays a role in reducing the potential 

tornado fatalities. The regression results show a significant and negative relationship between 

tornado fatalities and per capita government spending on public safety, protection, and welfare. 

Such local government expenditures appear to improve overall safety/welfare of a community, 

thus playing a role in mitigating citizens’ vulnerability. For example, 10 percent increase in 

government per capita spending, which is $27.10 on average in my sample (in 2009 dollars), is 

estimated to have about 3 percent decrease in tornado-induced fatalities. Given the parameter 

estimate, if governments in each county had allocated 50% more funds to safety, protection, and 

welfare over the study period 1980-2014, 268 lives would have been saved from tornados18. 

However, considering the limited government resources available for public services, I offer an 

evaluation of whether it would be worthwhile for local government to allocate more funds to 

public safety, protection, and welfare, with the goal of reducing tornado fatalities. Specifically, I 

perform a straightforward cost-benefit analysis by comparing the amount of extra funds required 

to save a life in local governments from severe tornadoes with the benefit in terms of the value of 

life. On this benefit side, I follow the practice of giving an economic value to mortality - a value 

of a statistical life (VSL). The VSL that is currently being used in the U.S. government agencies 

when they appraise the benefits of regulations ranges from $8.2 to $9.5 million (in 2009 dollars) 

(Viscusi 2014). The cost-benefit comparison reveals that in order to save a life from severe 

tornado, each county would need to spend additional $508 per capita, on average, which is 

                                       
18 The expected number of lives that could have been saved by increasing per capita government expenditures by 

50% has been calculated across all counties who had experienced FS2+ tornadoes over the study period and added 

up. 
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approximately $30 million in extra burden to local governments19. Altogether, it does not appear 

that increasing government expenditures is a cost-effective way of achieving tornado fatality 

reduction, even after taking into consideration that the life-saving benefit is just one component 

of the multiple benefits that may arise from such government spending. My empirical analysis 

suggests that general increase in government funds on public safety, protection, and welfare is 

linked to the goal of mitigating tornado impacts to some extent but the cost-benefit analysis 

reveals that it is not an effective policy scheme for mitigating tornado fatalities in most counties. 

In this regard, further research is needed to investigate to better target which set of public 

services provided by local governments most effectively mitigates the degree to which their 

citizens are exposed to tornadoes.  

1.6.6  Additional Analyses 

 In Table 1.8, I present the results of additional analyses. The second set of regressions 

consist of four specifications: (1) and (2) use very strong tornadoes of Fujita-scale 3 or greater 

(F3-F5) in the same framework as in Table 1.6 and 1.7, and (3) and (4) exploit the magnitude of 

tornadoes in a different way compared to the main analysis presented in Table 1.6 and 1.7. 

 First two columns show Poisson and Negative Binomial regressions result for severe 

tornadoes rated F3 or higher. Focusing on the larger events reduces the number of tornado events 

                                       
19 Let Per Capita Gov Expenditure on Public Safety & Welfare =𝐺, Avg. Fatalities per FS2+ tornado=𝑌, and 

Yearly fatalities from FS2+tornado=𝐷. The extra funds needed to save a life is calculated using the estimated 

relationship between 𝐺 and 𝑌 where ∆𝑌/𝑌 = �̂�∆𝐺/𝐺 holds (�̂� is the estimated coefficient of 𝐺), and the 

relationship 𝑌 = 𝐷/(Yearly No.FS2+ tornado). The expression 𝐸(∆�̂�) is derived such that ∆𝐷 = −1 (i.e. yearly 

fatalities from FS3+ tornado decrease by one unit) using the sample mean (�̅� and �̅�) from the observations with 

𝐷 ≥ 1. I obtain 𝐸(∆�̂�)= $508, which implies if local governments that suffered at least one death every year from 

tornado increase per capita spending by $508, on average, one death would be avoided in each county every year. 

The average extra burden to local governments, $30M is obtained by multiplying county population by the per 

capita extra expenditure, $508. 
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by 3,907, leaving just 1,507 severe tornadoes. Thus, in my sample, only 1,245 counties are used 

for the analysis excluding those counties without any experience of tornadoes of F3+ during 

1980-2014. The estimates reported in columns (1) and (2) in Table 1.8 are very consistent with 

those in Table 1.6 or 1.7 with the exception of a few differences. When I consider only the very 

strong and more destructive tornadoes, the significance of the estimated coefficients on some of 

the socio-economic variables disappears or weakens in magnitude. However, tornado 

vulnerability related variables such as Tornado Alley, lagged tornado frequencies, and 

population density measure take on greater importance, while the coefficient on the mobile home 

variable remains statistically significant and similar in magnitude compared to the estimation 

results using F2+ tornadoes. Taken together, these findings suggest that the stronger tornadoes 

extend vulnerability to a broader array of people in a community such that social-economic 

status becomes less important whereas the intensity of natural force and physical factors become 

more significant in determining vulnerability. In addition, the larger coefficients on tornado alley 

and lagged tornado frequencies compared to the estimate from F2+ tornadoes suggests that the 

previous experiences of severe disasters bring a stronger learning effect in case where the 

community is hit by a severe tornado.   

 Let's now turn to the result presented in columns (3) and (4) in Table 1.8. I perform an 

additional analysis as a robustness check to my main analysis, by including the fractions of 

tornadoes of each F-scale among F2 to F5 tornadoes (or among F3 to F5 in specification (4))20 , 

instead of using the average F-scale variable. As shown in Table 1.2, tornadoes of different 

magnitudes can have widely differing degrees of impact. For instance, the average death from F5 

                                       
20 The fraction of F2 tornadoes (or F3 tornadoes in specification (4)) is a reference point. 
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tornadoes is 280 times larger than that of F2 tornadoes in my sample. In this additional analysis, 

I try to account for such differentiated impacts of each level of F-scale events. The results from 

the Poisson model21 using tornadoes of F2+ and F3+ are presented in column (3) and (4), 

respectively. As expected, tornadoes of different levels of F-scale have largely different impacts 

on expected fatalities. The estimates in column (3) suggest that one percentage point increase in 

the share of F3 tornadoes (while having a one percentage point decrease in the share of F2 

tornadoes instead) increases expected fatalities by 2 percent, F4 by 3 percent, and F5 by 6 

percent. For instance, if we consider a worst-case scenario where the percent of F5 tornadoes 

changes from 0% to 100% with an F5 tornado occurrence in a county without any other tornado 

event, the county is expected to suffer 365 times (≈ 𝑒𝑥𝑝(100 ∗ 0.059)) as many fatalities as that 

from F2 tornadoes. After accounting for the magnitudes of tornadoes in a detailed way, I obtain 

results that are mostly similar to my main analysis. The estimation results in column (3) again 

demonstrate that housing quality, population density, income levels, and government spending 

on public safety and welfare are critical factors in determining tornado vulnerability.   

  

                                       
21 Due to a convergence difficulty in Negative Binomial estimation process, Poisson model is only employed for the 

estimation. 
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Table 1.8:  Socio-economic Characteristics and Disaster Impacts 

Additional Regressions Results 

 
 (1) Poisson (2) Neg. Binomial (3) Poisson (4) Poisson 

Dependent variable Deaths from F3+ Deaths from F3+ Deaths from F2+ Deaths from F3+ 

Fscale_F3+ 1.508*** 1.339***   

 (0.096) (0.078)   

Pct F3 tornado   0.018***  

   (0.001)  

Pct F4 tornado   0.029*** 0.011*** 
   (0.001) (0.001) 

Pct F5 tornado   0.059*** 0.041*** 
   (0.004) (0.004) 

Lag_Tornado_F2+   -0.010  

   (0.045)  

Lag_Tornado_F3+ 0.070 0.057  0.074 
 (0.081) (0.075)  (0.091) 

Tornado Alley -0.296** -0.191* -0.191* -0.265** 
 (0.125) (0.109) (0.107) (0.125) 

Log(Land Area) -0.219* -0.272*** -0.158 -0.146 
 (0.124) (0.102) (0.099) (0.124) 

Log(Population) 0.459*** 0.423*** 0.411*** 0.422*** 
 (0.076) (0.061) (0.061) (0.075) 

Pct Over65 0.017 0.033* -0.006 0.004 
 (0.027) (0.020) (0.023) (0.028) 

Pct Under18 -0.012 -0.015 -0.014 -0.033 
 (0.027) (0.022) (0.023) (0.029) 

Log(Per Capita Govt Exp on 

Public Safety & Welfare) 

-0.232** -0.195** -0.199** -0.227** 

(0.113) (0.089) (0.089) (0.111) 

Log (PerCapita Income) 

 

-1.282 -0.654 -0.783 -1.091 

(1.035) (0.828) (0.840) (1.039) 

Log (Top 10% Income) 1.073 0.526 0.404 1.069 
 (0.713) (0.608) (0.586) (0.773) 

Poverty Rate 0.006 -0.000 0.003 0.008 
 (0.020) (0.016) (0.017) (0.020) 

Pct BA degree 0.009 0.007 0.007 0.005 
 (0.016) (0.012) (0.012) (0.015) 

Pct Mobile home 0.053*** 0.053*** 0.055*** 0.048*** 
 (0.010) (0.008) (0.008) (0.010) 

Pct Female-Headed -0.012 -0.001 0.003 -0.004 
 (0.022) (0.019) (0.019) (0.022) 

Dummy 1987 -0.047 -0.351* 0.117 -0.069 
 (0.255) (0.194) (0.197) (0.258) 

Dummy 1992 -0.419 -0.537** -0.270 -0.456 
 (0.274) (0.221) (0.227) (0.278) 

Dummy 1997 -0.126 -0.266 -0.006 -0.085 
 (0.359) (0.272) (0.275) (0.364) 

Dummy 2002 0.054 -0.116 0.160 -0.067 
 (0.372) (0.316) (0.307) (0.383) 

Dummy 2007 0.190 0.032 0.233 0.034 
 (0.433) (0.350) (0.346) (0.451) 

Dummy 2012 -0.022 -0.023 0.216 -0.161 
 (0.460) (0.390) (0.380) (0.506) 

Constant -10.482 -7.880 -4.305 -6.849 
 (8.154) (6.672) (6.713) (8.433) 

No. of Observations 1,884 1,884 4,757 1,884 

No. of Counties 1,245 1,245 2,120 1,245 

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1  
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1.7  CONCLUSION 

 While tornado activity is exogenously determined by natural forces, it is also true that 

socio-economic factors are critical in determining vulnerability. This study seeks to uncover 

these underlying factors. To this end, I investigate the relationship between tornado fatalities and 

the potential determinants of tornado impacts within U.S. counties over the period from 1980 to 

2014. Findings of the study enable us to identify which societal characteristics exacerbate or 

mitigate vulnerability to hazards, which in turn allow us to suggest policies that may help 

mitigate human losses from such events.  

The empirical analysis of this study consistently demonstrates that income level is a 

crucial determinant of tornado fatalities; this finding is consistent with an array of previous 

studies, but this study offers more detail on how the various expressions of poverty may 

contribute to deaths. The analysis also suggests that income inequality is a significant factor that 

may exacerbate the impacts of disasters. Also, counties with higher poverty rate and more 

female-headed households tend to be more vulnerable, while the higher the education level, the 

lower the vulnerability. In general, households most affected by disasters are those with weaker 

economic and social bases. The information presented here may help to target the most 

vulnerable households and provide improved access to safety resources.  

In addition, my analysis offers evidence that per capita government spending on public 

safety and welfare is negatively related to death tolls. This suggests that increased government 

spending in critical areas such as safety, protection, and welfare, reduce overall vulnerability 

within a community. For some counties with frequent tornado occurrences and higher fatality 

rates, extra funds on safety, protection, and welfare might mitigate the impacts and save lives 

effectively. However, a cost-benefit analysis that compares the estimated extra government 
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expenditures required to save a life from severe tornado on average and a value of a statistical 

life (VSL) as a benefit reveals that generally increasing government funds on safety, protection, 

and welfare is not a cost-effective policy scheme for most local governments for reducing 

tornado fatalities. Nevertheless, it may be useful for policy makers to consider allocating 

resources on specific public services that improve safety and reduce tornado vulnerability. In this 

regard, further research is needed to investigate which particular public service provided by local 

government mitigates the degree to which their citizens are affected by tornadoes. 

Another key finding is that the number of mobile homes in a county is critical factor in 

explaining tornado fatalities. This finding implies that housing quality is perhaps the most 

important factor in determining tornado vulnerability. Importantly, the proportion of households 

living in mobile homes has increased nearly three-fold since the 1970s, with much of this 

increase occurring between 1970 and 1980 (prior to the period of analysis). Though mobile 

homes offer a relatively inexpensive but comfortable housing alternative, it appears that this 

trend has made the United States more vulnerable to tornadoes over time. Given this trend and 

my findings, it is critical that federal, state and local policy makers consider alternatives to 

reduce vulnerability for those living in this type of housing arrangement. Policies aimed at 

strengthening the ability of mobile homes to withstand high winds and flying objects and more 

systematically require communal tornado shelters may be effective at reducing tornado fatalities. 

In particular, mobile homes are commonly classified and taxed as personal property placing 

lower tax burden to home owners. This tax advantage makes mobile home living economically 

more attractive, but at the same time the tax policy is in fact encouraging more people to live in 

housing that is more vulnerable to tornados. The external cost of being exposed to greater 

tornado risks may be ignored when households choose to live in mobile homes due to 
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affordability. One potential policy scheme to internalize this social cost would have governments 

i) require communal shelters in mobile home parks and communities22, ii) impose a higher tax 

rate to mobile homes where tornado shelter/safe room are unavailable, and iii) redirect the tax 

revenue raised from step ii) towards additional government funds for the local communities' 

safety/protection. In this way, local governments could broaden their tax base and target the 

revenue from that source to further mitigate human losses from future tornado events. 

Overall, this study reveals which types of households tend to have more difficult time 

when disaster occurs, thus informing policies targeted at reducing tornado fatalities. More 

generally, addressing the root of the issue by improving the conditions of those with lower socio-

economic status would reduce vulnerability over time. I expect that these findings will increase 

our understanding of the socio-economic nature of tornado impacts and enable decision-makers 

to improve mitigation efforts.  

                                       
22 There are communities that already require all mobile home parks to provide storm shelters for their residents, 

including the State of Minnesota, and some individual counties (e.g. Sedgwick County and Butler County in KS, St. 

Joseph County, MO, etc.) 
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APPENDIX 

 

 

Table 1.A1:  Socio-economic Characteristics and Disaster Impacts— 

Poisson Fixed Effect Regressions Results 

 

Dependent variable Deaths from F2+ Deaths from F3+ 

Fscale_F2+ 1.777***   
(0.094)  

Lag_tornado_F2+ -0.030  
 (0.059)  
Fscale_F3+  1.774***  

 (0.153) 

Lag_tornado_F3+  0.042 
 

 (0.099) 

Log(Population) 0.253 -0.503  
(0.448) (0.805) 

Pct Over65 -0.046 -0.171  
(0.076) (0.111) 

Pct Under18 0.025 0.041  
(0.071) (0.089) 

Log(Gov Exp on Public Safety & Welfare) -0.197 -0.189 

(0.206) (0.283) 

Log (PerCapitaIncome) 

 

-3.375* -3.846 

(1.963) (2.694) 

Log (Top 10% Income) 2.199** 1.835  
(1.011) (1.397) 

Poverty Rate -0.084** -0.070  
(0.038) (0.053) 

Pct BA degree 0.064 0.153  
(0.059) (0.099) 

Pct Mobile home 0.012 0.020  
(0.028) (0.036) 

Pct Female-Headed -0.159* -0.186  
(0.088) (0.118) 

Dummy 1987 0.471 0.498  
(0.312) (0.405) 

Dummy 1992 0.553 0.520  
(0.473) (0.520) 

Dummy 1997 0.616 0.677  
(0.686) (0.780) 

Dummy 2002 0.867 1.077  
(0.799) (0.855) 

Dummy 2007 0.786 1.091  
(0.881) (0.959) 

Dummy 2012 1.100 1.157  
(0.988) (1.128) 

No. of Observations 2,026 722 

No. of Counties 629 288 

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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 Though I do not offer a detailed discussion of the fixed effects estimates presented here, 

in general the statistical significance of the socio-economic variables is greatly reduced. Few of 

the variables are significant, but this is not too surprising given that within county changes over 

the 1980-2014 period are typically small for most of these variables. Note that in Table 1.A1 we 

observe a reversal of sign on most of socioeconomic variables except for income levels and 

government spending. However, those counterintuitive results are not robust as they are mostly 

insignificant in both columns (1) and (2). As noted by Kahn (2005) the fixed effects approach be 

problematic, given the presence of sluggish adjustment and long latency in economic 

development. Nevertheless, I present these estimates in Appendix for the interested reader. 
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CHAPTER 2   

FLOOD FATALITIES IN THE UNITED STATES: THE ROLES OF SOCIO-ECONOMIC 

FACTORS AND THE NATIONAL FLOOD INSURANCE PROGRAM 

 

2.1  INTRODUCTION 

 Over the 20-year period from 1996-2015, a total of 107,743 floods resulted in 1,563 

direct fatalities and over $167 billion in damages in the United States (US). Over the last 30 

years floods kill an average of 84 people annually. Floods rank second in terms of resulting 

fatalities among the different types of life-threatening weather-related events; floods claimed 

more lives than high intensity disasters such as hurricanes or tornadoes. Importantly, climate 

scientists predict increases in climate variability and frequency of weather extremes in the 

coming years. Floods are no exception; Milly et al. (2002) find that the trend of increasing risk of 

significant floods was substantial during the twentieth century and their climate model suggests 

that the trend will continue.  

 Floods are one of the costliest natural hazard types in the United States, imposing a 

financial burden on a large number of households and communities. A large portion of property 

damage during massive hurricanes such as Katrina in 2005 and Harvey in 2017 were the result of 

flooding triggered by those storms. Given the lack of flood coverage in the private insurance 

market, the National Flood Insurance Act of 1968 established the National Flood Insurance 

Program (NFIP) to provide an insurance option priced below actuarial risk-based rates. However, 

the subsidized premiums of the insurance program have resulted in operating deficits. After a 

series of devastating hurricanes and superstorms since 2005 (e.g. Katrina, Rita, Sandy, Harvey, 
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Maria, etc.), NFIP’s debt level to the U.S. Treasury has increased substantially23. To improve the 

financial solvency of the program, government officials attempted to increase the policy 

premiums to match actuarial rates (Biggert-Waters Flood Insurance Reform Act of 2012), but 

due to the strong opposition by policy holders, the premiums were not increased to the level 

where claims can be paid without continuing to rely on federal subsidies24. There have been 

mounting concerns and criticisms over the fiscal sustainability of the program25. 

 While the problems of the program have been debated, some of the beneficial 

components of the program have not been fully evaluated; to my knowledge no existing studies 

have empirically examined the NFIP as a disaster management scheme. It should be noted that 

the NFIP’s mission includes providing government-funded coverage for floods as well as helping 

to guide and manage community implementation of floodplain management and mitigation 

practices. In disaster management, ex-ante hazard prevention and damage mitigation is at least as 

important as ex-post recovery efforts, but only the former can help to avert irreversible societal 

damages and fatalities. By design, the prevention and mitigation efforts of the NFIP are 

interconnected with the provision of flood insurance; the NFIP enables property owners in 

participating communities to purchase insurance in exchange for the mandatory implementation 

of floodplain management ordinances for flood risk and damage reduction. In this regard, I 

                                       

23. As of September 2017, the NFIP owes $24.6 billion to the U.S. Treasury. In October 2017, the Additional 

Supplemental Appropriations for Disaster Relief Requirements Act canceled $16 billion of NFIP’s debt. As of 

February 2018, FEMA’s debt is $20.5 billion. 

24 The Homeowner Flood Insurance Affordability Act (HFIAA) was enacted in 2014 and reinstated certain 

premium subsidies and slowed down certain premium rate increases that had been included in the Biggert-Waters 

Act. 
25 NFIP has been identified by U.S. Government Accountability Office (GAO) as “High-Risk” federal program 

since 2006 as a result of its substantial financial exposure and operational challenges. 
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hypothesize that the NFIP has played a substantial role in preventing and reducing the adverse 

impacts of floods through ex-ante flood risk management. 

 To explore and test the extent to which proactive disaster management practices 

regulated by the NFIP helps to reduce disaster impacts, I rely on the integrated view of the 

physical, social, economic, and political elements of disaster vulnerability. Lethal disasters in the 

United States such as the Loma Prieta Earthquake in 1989 in California, Hurricane Andrew in 

1992, and Hurricane Katrina and Rita in 2005 and many other disasters reveal significant 

differential impacts across different population segments, depending on socio-economic and 

political status. That is, research is showing that natural disasters are not all “natural.” 

Consequently, the socio-political nature of disasters is increasingly the focus of attention in 

studies of disaster vulnerability. 

 Given that those with lower socio-economic status are more likely to experience the 

greatest impacts from natural hazards, I use a framework where the underlying social and 

institutional factors determine vulnerability to floods. To this end, I investigate the relationship 

between flood-induced fatalities and a wide range of vulnerability indicators such as 

demographic, socio-economic, and housing characteristics, as well as institutional factors. 

Considering that there might be a bi-directional process between the disaster-related government 

activities and disaster impacts, I test the endogeneity of institutional variables and implement the 

instrumental variable (IV) estimator by using the Control-function (CF) approach (Wooldridge, 

2014). This study explores yearly flood events that occurred over the 1996 to 2015 period using 

US county level data. In my empirical analysis, I control for disaster-specific physical factors 

(e.g. timing, duration of the incidence) and area-specific environmental characteristics (e.g. 

urbanization, the number of dams, and past flood experiences) to assess the socio-economic and 
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institutional factors that increase (or reduce) vulnerability to floods. Using county-year panel 

structured data, I employ the correlated random effects (CRE) framework combined with the 

Control-function approach, that allows unobserved county heterogeneity to be correlated with 

observed covariates (Wooldridge, 2010). 

 This study's contributions to the literature are as follows. First, my study provides a 

robust assessment of a broad array of structural and social components of disaster vulnerability, 

including urbanization, past flood experience, education, and housing quality, while controlling 

for the unique attributes of counties. Second, I examine the role of local government public 

safety and protection services in mitigating flood impacts, and I do so in a way that corrects for 

potential simultaneity bias by applying the IV method. Third, this study presents new evidence 

showing the National Flood Insurance Program (NFIP) has significantly reduced flood-related 

fatalities. The present study reveals range of factors that influence flood vulnerability, which can 

help local, state and national authorities to identify vulnerability “hotspots”. The analysis also 

shows the importance of the proactive mitigation measures and helps policymakers better 

prepare for future flood events. 

 

2.2  LITERATURE REVIEW 

2.2.1  Socio-political Nature of Disasters  

 In general, it has been argued by many scholars that structural, social, political factors 

such as poverty, access to social protection and security, and inequalities with regard to gender, 

economic position, age, or race, cause or exacerbate vulnerability (Aptekar and Boore 1990, 

Albala-Bertrand 1993, Cannon 1994, Blaikie et al. 1994, Cutter 1996, Peacock et al. 1997, 
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Enarson and Morrow 1998, Morrow 1999). Blaikie et al. (1994) note that vulnerability, in a 

disaster context, is a person's or group's "capacity to anticipate, cope with, resist, and recover 

from the impact of a natural hazard". While disaster risk is imposed exogenously by natural 

forces, the vulnerability of people to naturally occurring extreme events is influenced by human 

activity (O'Keefe et al. 1976, Hewitt 1983). Cannon (1994) asserts that people's ability to cope 

with and recover from hazards depends on economic systems and class structures that allocate 

resources and access to resources. Cutter et al. (2003) discuss the possible interactions between 

social and biophysical vulnerabilities that determine overall place vulnerability. In their model, 

disaster fatalities are largely determined by socio-economic factors that shape a community’s 

disaster vulnerability; hazard potential is either moderated or enhanced via a combination of 

geographic factors and the social fabric of the place that are influenced by socio-economic status, 

demographics, and housing characteristics. With special attention to the institutional component, 

my study uses this conceptual framework where disaster risk is defined by the combination of 

bio-physical hazards of nature and societal vulnerability which is shaped by social conditions 

and structure.  

2.2.2  Economic Development and Disaster Impacts  

Most disaster studies addressing social vulnerability are qualitative in nature, but there 

are several quantitative empirical studies that investigate the major factors associated with the 

disaster-induced fatalities. The relationship between the level of economic development and 

disaster consequences are primary focus of this research. Burton et al. (1993) argue that the 

impacts of natural hazard (drought, floods, and tropical cyclones) vary across countries by 

income level. Similarly, Horwich (2000) asserts that higher income enables an increase in 
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general safety of society as well as an improvement in protection against natural disasters. An 

economy's resilience and response to disasters are largely determined by its level of wealth. 

More recent empirical studies on the determinants of disaster vulnerability use cross-

country disaster data obtained from EM-DAT26. The work of Kahn (2005), Toya and Skidmore 

(2007), Strömberg (2007), Kellenberg and Mobarak (2008), Raschky (2008), and Gahia et al. 

(2013) examine the role of economic and institutional factors in determining disaster-induced 

fatalities. Kahn (2005) investigates the relationship between disaster deaths and income, 

geography, and institutions. He finds that disaster fatalities are negatively correlated with the 

level of development. Also, his research shows that democracies and nations with less income 

inequality tend to suffer fewer deaths from disasters. Another early study on the disaster-safety-

development relationship is that of Toya and Skidmore (2007). Using disaster data from EM-

DAT for 151 countries over 44 years (1960-2003) and other measures of socio-economic fabric, 

the study confirms that economic development as measured by per capita GDP is inversely 

correlated with both disaster deaths and damages. 

 Strömberg (2007) finds that greater wealth and government effectiveness are associated 

with fewer disaster fatalities. Raschky (2008) and Kellenberg and Mobarak (2008) find a 

nonlinear relationship between economic development and disaster impacts; economic 

development reduces disaster losses but with a diminishing rate. Also, Gahia et al. (2013) show 

that poorer and larger countries suffer more disaster related fatalities. Brooks et al. (2005) assess 

vulnerability to climate-related events by developing national-level indicators of vulnerability 

                                       

26 Emergency Events Database EM-DAT that has been maintained by the Centre for Research on the Epidemiology 

of Disasters (CRED) contains essential core data on the occurrence and effects of mass disasters in the world from 

1900 to present. 
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and adaptive capacity. They find that socio-economic, political and environmental factors such 

as civil and political rights, life expectancy, government effectiveness and accountability, and 

literacy are significant predictors of disaster vulnerability. 

2.2.3  Severe Weather Events in the United States and Disaster Vulnerability  

 Unlike the abovementioned studies on multiple types of natural disasters across multiple 

countries using the EM-DAT data set, there are a few quantitative studies that discuss U.S. 

natural disasters and the role of various demographic, economic, and political factors. 

Addressing this research gap, my study focuses on U.S. county level flood events, within the 

context of socio-economic and political vulnerability. Most empirical studies on U.S. natural 

disasters examine flood, tornado, and hurricane events. Simmons and Sutter (2013) and Lim et 

al. (2017) use detailed U.S. county level tornado data from National Oceanic and Atmospheric 

Administration (NOAA) to examine the societal determinants of tornado vulnerability. Both 

studies show that the physical elements of tornado hazard (e.g. tornado intensity) and 

socioeconomic and demographic conditions of localities are key determinants of tornado 

fatalities. Simmons and Sutter (2013) find that education, percentage of non-white and rural 

population, and percentage of mobile homes are key factors. Lim et al. (2017) expand the 

findings of Simmons and Sutter (2013), showing that local governments can and do play a 

significant role helping to reduce fatalities. The study also finds that income inequality and 

various dimensions of poverty intensify societal vulnerability to tornadoes, and confirms the 

existence of learning effects from tornado risk history. 

 In terms of flooding, Zahran et al. (2008) analyze flood events in Texas counties from 

1997-2001 to examine whether areas with higher concentration of socially vulnerable 

populations suffer greater fatalities from flood events. They construct an index of social 
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vulnerability using measures of poverty, median income, and race. Their empirical analyses 

indicate the built-environment and social vulnerability significantly contribute to the degree to 

which localities are affected by flood events. They consider FEMA rating scores of Texas 

counties based on the Community Rating System (CRS) and show that FEMA premium discount 

provides incentives for flood mitigation, reducing the flood casualties. This study further extends 

and adds to the work of Zahran et al. (2008) by investigating the US nationwide flood 

vulnerability over the 20-year period with particular focus on the roles of institutional factors – 

NFIP and local government – in mitigating flood vulnerability. 

 

2.3  CONCEPTUALIZING HUMAN AND ENVIRONMENTAL COMPONENTS  

OF FLOOD VULNERABILITY 

 Based on the conceptual framework where risk is considered to be a function of 

physically defined natural hazards and socially constructed vulnerability, I hypothesize that three 

key elements determine the degree of disaster impacts: i) disaster-specific climatic factors, ii) 

area-specific physical and environmental factors, and iii) socio-political conditions within 

communities. As shown in Figure 2.1, these three conditions together contribute to the overall 

place vulnerability to natural disasters. Although the third element of the disaster vulnerability is 

of my main interest, all three elements are integrated in order to conduct a robust examination of 

the socio-political determinants of flood-induced deaths.  
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Figure 2.1:  Key Elements of Disaster Vulnerability 

 

2.3.1  Disaster-specific Determinants of Flood Vulnerability 

 First, I control for disaster-specific factors, such as timing and the duration of the events. 

It is expected that the degree of disaster impacts would be different across the time of day when 

an event occurred. As in Simmons and Sutter (2011), each flood event is categorized by the time 

of day: overnight (12:00-5:59 AM), morning (6:00-11:59 AM), early afternoon (12:00-3:59 PM), 

late afternoon (4:00-7:59 PM), and evening (8:00-11:59 PM). The time of the day is related to 

the degree of vulnerability since people are better able to receive warnings, promptly respond, 

and take actions during the daylight hours. As a climatic element of flood vulnerability, I also 

control for the month of the flood event. One key factor is the duration of the event; the longer 

the exposure to the flood hazard, the more intense are the flood impacts.  
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2.3.2  Area-specific Physical and Environmental Determinants of Flood Vulnerability 

 I also incorporate area-specific characteristics that capture pre-existing physical and 

hydrological vulnerability to flood hazards. Those factors are the total number of dams (of all 

purposes) as well as those for flood control and storm water management located in a county, the 

percent of urban population, and the flood experience in the previous two years. Dams are 

constructed for various purposes, for example, water supply, irrigation, power generation, water 

flow control, and/or flood prevention, etc. In flood-prone areas, dams are constructed for the 

specific purpose of flood control and storm water management. The existence of such dams can 

aid controlling the flow of water during flood events. I thus hypothesize that the number of dam 

structures play a significant role in defining the area’s hydrologic vulnerability to floods. It is 

expected that the risk of flooding would be lowered in a county if more dam structures are 

available for water flow management in flood situations.  

 Another important environmental condition related to flood vulnerability is the pattern 

of land use and land cover as a result of urbanization. The idea is that urban areas are more likely 

to be covered by building structures and paved surfaces, and as a result infiltration capacity of 

the land is greatly reduced, causing greater surface water runoff. Consequently, urbanization may 

magnify the risk of flooding (Hollis, 1975). The percent of population living in urban areas 

(including urbanized areas and urban clusters) in a county is included as a measure of 

urbanization in the empirical analysis.  

 In addition, the frequency of fatal floods (i.e. number of floods that resulted in one or 

more fatalities) in the previous two years are included as a measure of flood hazard history of the 

area. Flooding is one of the most frequent disaster types that occur in most U.S. counties, but 

most floods are not large-scale events nor deadly. Thus, frequently occurring small-scale flood 
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events are not likely to alarm a community as a whole. However, significant events with 

fatalities are more likely to capture the attention of residents through local news and media about 

the dangers of floods and thus influence their perceptions and behaviors. Significant events may 

also stimulate local governments to increase efforts toward disaster prevention and management. 

In this regard, a community’s past experiences with fatal floods and lessons learned may play a 

critical role in reducing vulnerability and the future consequences of floods (McEntire 2001). 

2.3.3  Socio-political Determinants of Floods Vulnerability 

 I also hypothesize that demographic, socio-economic, housing, and institutional factors 

including the National Flood Insurance Program, are critical in shaping the overall vulnerability 

of people and places to disasters. Each key factor is discussed next. 

 Income   The level of income within a community is a key factor that determines 

societal vulnerability to disasters. Communities with higher income and/or wealth have a greater 

demand for safety and can allocate more resources to safety and protective measures (Wildavsky, 

1988). On the other hand, limited financial, physical, and social assets of the poor increase their 

susceptibility to disasters. The role of income (or wealth) and poverty in disaster contexts has 

been illustrated in many empirical studies (Kahn 2005, Toya and Skidmore 2007, Strömberg 

2007, Raschky 2008, Lal et al. 2009, Gaiha et al. 2013, Lim et al. 2017). I hypothesize that 

communities with lower income level (or higher rates of poverty27) suffer greater flood-related 

fatalities. In this study, per capita income of U.S. counties is included as a measure of economic 

status.  

                                       
27 The correlation coefficient between poverty rate and per capita income level of county is -0.71. Two measures 

both represent economic status of counties from different angles but considering the strong correlation between two 

measures, I only include per capita income measure in the empirical analysis. 
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 Education Level   Prior disaster studies suggest that education level is closely linked 

with disaster vulnerability (Brooks et al. 2005; Cutter et al. 2003; Lim et al. 2017; Simmons and 

Sutter 2013; Skidmore et al. 2007; Muttarak and Lutz 2014). I include the share of Bachelor’s 

degree holders among population aged 25+ in the estimation as a measure of education level of 

county population. Education enhances risk perception and promotes disaster preparedness 

against disasters (Hoffmann and Muttarak 2017), which are critical preconditions of disaster 

impact reduction at the individual level. More educated people who have better understanding of 

the hazard risks are more likely to take preventive measures and be better prepared for the 

shocks. Thus, I expect that counties with more educated population are less vulnerable in the 

face of flooding. 

 Housing Quality   I also hypothesize that communities with a higher proportion of 

households living in mobile homes will suffer increased flood-induced fatalities. People living in 

mobile homes face greater vulnerability due to the structural features of mobile homes that 

typically have no foundation and are less able to withstand shocks. Moreover, a higher 

proportion of households living in mobile home implies greater vulnerability in a different 

context because lower cost mobile homes are often occupied by those who have relatively 

limited financial resources. Scholars argue that disasters adversely affect people in lower socio-

economic status largely because of the types and quality of housing they occupy (Fothergill and 

Peak 2004). Similarly, minorities may be more likely to live in unsafe, substandard housing, and 

are thus at greater risk (Aptekar 1991, Phillips 1993, Pastor et al. 2006). For these reasons, a 

higher proportion of households living in mobile homes within a county indicates greater 

physical and socio-economic vulnerability of the community.  
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 Local Government Investment   I also examine the degree to which local government 

plays a role in protecting citizens from flood hazards. The idea is that more government 

resources allocated in safety, protection and welfare can increase overall safety of the localities 

and strengthen their ability to resist the impact of natural hazards, which can lead to the 

reduction in societal losses and damages. Lim et al. (2017) provide empirical evidence that local 

government expenditure on emergency services and community protection is a critical factor in 

reducing tornado impacts in the United States. Following Lim et al. (2017),I also test the role of 

local government in mitigating the flood impacts by constructing a measure of local government 

spending on public safety, protection, and welfare, which includes expenditures on fire/police 

protection and protective inspections/ regulations and housing/community development, and 

public welfare28. However, this type of government expenditure and the disaster occurrence may 

have a bi-directional relationship where frequent disaster events in a county would increase its 

spending on public safety, protection, and welfare. Acknowledging that such government 

expenditures may not be strictly exogenous, I apply two methods to address potential 

simultaneity. First, I construct a predetermined level of government expenditure by lagging the 

local government fiscal data, following the prior studies (Garcia-Mila and McGuire 1992, Cullen 

and Levitt 1999). The government fiscal data are reported every five years (in years ending in 2 

and 7 within a decade), so I interpolate the expenditures (inflation-adjusted) and match the yearly 

data with flood event data set to reduce the possibility of capturing the reverse relationship 

between consequences of disasters and government activity. Second, I transform the original 

                                       
28 In the context of local government, welfare services are not direct cash assistant (this comes from state 

government), but are for services like children’s homes or payments to vendors for substance abuse treatment and 

the like. 
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event data set into a county-year panel structured data and apply the instrumental variable (IV) 

estimator by using the Control-function approach (Wooldridge, 2014) within the Correlated 

Random Effects (CRE) framework. 

 National Flood Insurance Program   Lastly, as the main concern of this study, I 

evaluate the role of National Flood Insurance Program (NFIP) in preventing and reducing the 

loss of human life from flooding through ex-ante floodplain management and mitigation efforts. 

The NFIP is a Federal program established by the U.S. Congress through the National Flood 

Insurance Act of 1968. The NFIP enables property owners in participating communities to 

purchase insurance (administered by the government) as financial protection against flood losses, 

in exchange for the implementation of floodplain management ordinances for flood risk and 

damage reduction. Participation is based on a cooperative agreement29 between communities 

and the Federal Government. In order to participate in the NFIP, communities must meet (or 

exceed) the minimum floodplain management requirements, through building codes, zoning 

ordinances, subdivision regulations, health and safety codes, and stand-alone floodplain 

ordinances.  

 The Federal Emergency Management Agency (FEMA) manages the NFIP and oversees 

the identification and mapping30 of flood-prone communities, reviews community adoption and 

implementation of land use regulation and construction standards, determines flood insurance 

                                       
29 Once the flood hazard has been identified and an NFIP map has been provided to a community, the identified 

flood-prone community must assess its flood hazard and determine whether flood insurance and floodplain 

management would benefit the community's residents and economy. 
30 In support of the NFIP, FEMA identifies flood hazards nationwide and publishes flood hazard data such as Flood 

Hazard Boundary Maps (FHBMs), Flood Insurance Rate Maps (FlRMs), and Flood Boundary and Floodway Maps 

(FBFMs). These flood hazard data provided to the community by FEMA is the basis of community’s floodplain 

management regulations. 
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rates for different mapped zones of risk, provides flood insurance, and funds mitigation projects. 

The identification of flood hazards is an essential process as it creates an awareness of the hazard 

and provides communities with the information needed for land use planning, floodplain 

development, and for emergency management.  

 The 1994 NFIP amendment implemented through the National Flood Insurance Reform 

Act of 1994 directs FEMA to develop a standard form for determining whether the building or 

mobile home is located in the Special Flood Hazard Area (SFHA)31; in these areas for 

acquisition and/or construction of buildings, purchasing flood insurance as well as complying 

with specific building restrictions are mandatory as a condition of Federal or Federally related 

financial assistance. The floodplain management requirements within the SFHA are designed to 

prevent new development from increasing the flood threat and to protect new and existing 

buildings from anticipated flood events. The National Flood Insurance Reform Act of 1994 also 

strengthened the program by enacting a Community Rating System (CRS) that recognized and 

encouraged community floodplain management activities exceeding the minimum standards of 

the NFIP. With the CRS, the NFIP further incentivizes communities with discounts on flood 

insurance premiums to conduct mitigation and outreach activities that further increase safety and 

resilience of the area.  

 The NFIP also pays special attention to the vulnerability of mobile homes to flooding. 

FEMA P-85 titled Protecting Manufactured Homes from Floods and Other Hazards (second 

edition, initial edition of FEMA 85 published in 1985 and updated to FEMA P-85 in 2009) 

                                       
31 Special Flood Hazard Area (SFHA), which is defined as an area of land that would be inundated by a flood 

having a 1 percent chance of occurring in any given year (also referred to as the base or 100-year flood). 

Development within the SFHA must comply with local floodplain management ordinances, which must meet the 

minimum Federal requirements. 
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provides guidance on foundation design and installation of mobile homes in floodplains; these 

guidelines are designed to make mobile homes less susceptible to floods (and other natural 

hazards). For example, the NFIP require manufactured homes located in Special Flood Hazard 

Areas be elevated and securely anchored to resist floatation, collapse, or lateral movement. 

FEMA’s policy (as described in FEMA P-85) that addresses the vulnerability of mobile homes to 

natural hazards by establishing mandatory regulations and standards governing the mobile homes 

in hazard-prone areas contributes to the improvement in safety of mobile homes and the 

resilience of communities as a whole. 

 Risk-transfer mechanisms such as mandatory catastrophe insurance alleviate the impacts 

of natural hazards, reducing the burden of recovery and welfare losses (Kunreuther 1996, 

Luechinger and Raschky 2009). However, my hypothesis here is that by identifying flood 

hazards across the states and promoting and enforcing proper floodplain management and safety 

standards to mitigate future consequences of floods, NFIP plays a vital role in enhancing 

resilience and thus reduces vulnerability in flood-prone communities. To empirically evaluate the 

potential life-saving role of the program, a measure of the NFIP participation rate at the county 

level is constructed. Within-county participation rate is determined by the percent of 

communities (city, town or township, village)32 within a county that entered in the program at 

least two years before the year when a flood event occurred. I use lagged participation rates 

                                       
32 The comprehensive list of the communities – city, town or township, village – within a county (or county 

equivalent) is from the list of subcounty governments that are used for local government finance/employment data, 

where municipal and township governments are identified by government type code 2 and 3, respectively. 
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because the implementation of the NFIP requirements would not take effect immediately in 

terms of enhancing overall safety of the community.33. 

 

2.4  EMPIRICAL ANALYSIS 

2.4.1  Data Description 

The analysis uses individual flood event data within U.S. counties over the 1996-2015 period34. 

Data on fatalities from floods in the United States are collected from NOAA National Centers for 

Environmental Information (NCEI)35. Detailed information on time, dates, and locations of the 

events are also provided. Major socio-economic, housing, and government expenditure data at 

the county level are collected from U.S. Bureau of the Census36 and merged with the flood data. 

Detailed data on locations and built years of dams are from National Inventory of Dams (NID) 

published by U.S. Army Corps of Engineers. National Flood Insurance Program (NFIP) 

participation status of communities is from Federal Emergency Management Agency (FEMA). 

Table 2.1 presents the total number of various types of severe weather events in the United States 

and resulting fatalities and injuries by types of storm events during 1996-2015. At the county 

level, the total 175,863 storm events occurred over the period. Floods are the most frequent 

                                       
33 One might be concerned about reverse causality where greater flood impacts cause participation rates to increase. 

I performed the endogeneity tests for two institutional factors - the government expenditure on public safety, 

protection, & welfare and the NFIP participation rates. The test results suggest that only the government expenditure 

variable is endogenous and the predetermined NFIP participation rates are non-endogenous once I correct the 

simultaneity bias resulted from government expenditure variable. I thus, use instrumental variables methods to 

address the endogeneity of the government expenditure, taking the predetermined NFIP participation rates as 

exogenous. 
34 Note that flood events in 1996 and 1997 are only used for constructing the past 2-yr’s flood experience of a 

county. 
35 Data source: www.ncdc.noaa.gov/data-access/severe-weather 
36 Decennial census data for demographic and housing variables, and local government expenditure data are 

interpolated/extrapolated to obtain yearly data over the study period (1996 – 2015). 

http://www.ncdc.noaa.gov/data-access/severe-weather
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disaster type; floods and flash floods account for 60% of the total climatic events in the United 

States. The next most frequent event type is the tornado with nearly 1,400 events per year. These 

storm events induced total of 7,342 deaths and 52,216 injuries over the last 20 years. Heat caused 

the highest number of fatalities, followed by tornadoes and flash flooding. In terms of the 

average fatality per event, rip currents recorded the highest deaths rate, with 0.7 fatalities per 

event. Tornadoes caused the largest number of injuries in total, whereas heat and excessive heat 

together recorded the highest number of injuries per event. This study focuses on flood-related 

fatalities37. County level flood frequencies and fatalities over the study period are presented in 

Figures 2.2 – 2.3. 

Table 2.1:  Fatalities and Injuries by Disaster Events, 1996 – 2015 

1. This study explores flood and flash flood events. The definition/determination of flood and flash flood 

are provided in Table 2.A1 in the Appendix. 

2. The Hurricane/Typhoon category data only include fatalities, injuries, and damage amounts associated 

with wind damage (the other hazards are reported in their respective categories.).  

                                       
37 The historical storm data I have collected from NOAA contain injury data as well, however, the number of 

persons injured during flood events are not fully reported (whereas the number of persons killed by floods are 

extensively collected from various sources) and thus, county level injury data do not represent exact injury count. 

For this reason, I do not conduct empirical analysis using injury data. 

 Frequency Fatalities Injuries 

Event Type1 Total % Total Per event Total Per event 

Flood  39,893  22.7%    419  0.011    2,320  0.058 

Flash Flood  67,850  38.6%   1,144  0.017    6,282  0.093 

Rip Current 807  0.5%   569  0.705      561  0.695 

Hurricane2  162  0.1%   6  0.037       17  0.105 

HurricaneTyphoon2 1,350 0.8%       86  0.064      921  0.682 

Tornado  27,539  15.7%   1,680  0.061   23,089  0.838 

Avalanche 427  0.2%      219  0.513      153  0.358 

Heat 16,424  9.3%    1,966  0.120     8,956  0.545 

Excessive Heat 5,897  3.4%      422  0.072    5,185  0.879 

Debris Flow 429  0.2%      83  0.193        49  0.114 

Lightning 15,085  8.6%     748  0.050    4,683  0.310 

Total  175,863  100%   7,342  0.042  52,216  0.297 
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Figure 2.2:  Total Number of Floods by County, 1996-2015 

 

Figure 2.3: Total Deaths from Flood by County, 1996-2015 
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2.4.2  Empirical Model 

2.4.2.1  Base Model 

I first analyze the flood vulnerability preserving its original event data structure (also 

called Cross-Sectional-Time-Series), which contains observations of multiple cross-sectional 

units over multiple time periods. Note, however, that this data structure is different than a panel 

(or longitudinal) data structure because it can contain multiple observations of a unit in a year 

(e.g. +1 observations for a county in a specific year is possible if +1 flood events occurred within 

the county in that year). By retaining this original individual flood event data structure in this 

base model, the detailed information on each flood can be included. 

The dependent variable is the number of fatalities caused from each flood event. Among 

total 107,708 flood events during the study period 1996-2015, only 1,067 events resulted in 

fatalities; for a large portion of observations, the dependent variable is zero. Thus, for the 

econometric analysis of the flood event data (to which conventional panel data methods cannot 

be applied), I employ Zero-Inflated Negative Binomial (ZINB) model which properly treats the 

non-negative count variables with the over-dispersion (excess zeros) problem (Long and Freese, 

2006). Because of the distributional features of disaster-induced fatalities, ZINB model is 

increasingly employed in disaster studies (e.g. Kahn 2005, Zahran et al. 2008). In the ZINB 

model, the excess zeros are considered to be generated by a separate process from the count 

values and the excess zeros are modeled independently. The ZINB model combines binary Logit 

model for zero outcomes and Negative Binomial model for event-counts. The ZINB regression 

analysis is characterized by the following model:  

 

 



73 

 

(1) Log Likelihood: 

 lnL = ∑ ln[𝐹(𝑧𝑗𝛾) + {1 − 𝐹(𝑧𝑗𝛾)}𝑝𝑗
1/𝛼

]𝑗∈𝑆  

+∑[ln{1 − 𝐹(𝑧𝑗𝛾)} + ln Γ (
1

𝛼
+ 𝑦𝑗) − ln Γ(𝑦𝑗 + 1) − ln Γ (

1

𝛼
) +

1

𝛼
ln 𝑝𝑗 + 𝑦𝑗ln(1 − 𝑝𝑗)]

𝑗∉𝑆

 

(2) 𝑝𝑗 = 1/[1 + 𝛼 exp(𝑥𝑗𝛽)] 

(3) 𝐹 : the inverse of the logit link 

(4) 𝑆 : the set of flood observations for which the outcome (𝑦𝑗: death) is zero.  

(5) 𝑧𝑗 : Inflation variables for the binary Logit model predicting whether an observation is in 

the always-zero group where Pr(𝑦𝑗 = 0) = 1 

(6) 𝑥𝑗 : Covariates for counts model (Negative Binomial) 

 In my empirical analysis, the covariates𝑥𝑗 for the count model of Negative Binomial 

include the following variables: 𝑿𝒋, a vector of demographic and socio-economic characteristics, 

as well as institutional factors of the county that may determine fatalities of flood j, 𝑭𝒋, the 

disaster specific characteristics, 𝑬𝒋, a vector of physical and hydrologic characteristics of the 

county where the disaster 𝑗occurred. To control for the unobserved statewide heterogeneity, I 

also include state fixed effects along with year fixed effects. The detailed list of the explanatory 

variables in the ZINB analysis is provided in Table 2.2.  

In addition, four key variables are selected from the explanatory variables to serve as 

inflation variables of ZINB model that determine the probability of being in the always-zero 

group: previous 2-year’s flood experience, per capita income, the NFIP participation rate and per 

capita government expenditure on public safety/welfare. Each of these variables represent past 

flood history, socio-economic characteristics, and the institutional components of the affected 

areas, respectively. 
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Table 2.2:  List of dependent and explanatory variables in the ZINB model 

Dependent Variable  

 Deaths from each Flood event 𝒀𝒋 

Explanatory Variables 

 

Event-specific 

Begin time of the event: 
Overnight, Morning, Early Afternoon, Late Afternoon, Evening 

𝑭𝒋 Duration (days) 

Season: Spring, Summer, Fall, Winter 

Event Type:  Flood, Flash Flood 

Area-specific 
Environment 

No. Dams in Total within a county (all purposes) 

𝑬𝒋 
No. Dams for Flood Control and Storm Water Management 

Percent of Urban Population 

Past 2-year’s Flood Experience 

Demographic 

Population Size 

𝑿𝒋 

Percent of Population over 65 

Percent of Population under 18 

Socio-economic 

Per capita Income* 

Percent of Population over 25 with Bachelor’s degree 

Percent of Mobile Homes in Total Housing Units 

Government 
2yr-lagged NFIP Participation Rates within a County* 

Lagged Per Capita Gov’t Expenditure on Public Safety/Welfare* 

Year Fixed Effects Indicator variables for each year 𝑇 

State Fixed Effects Indicator variables for each state S 

 * These factors serve as inflation variables of the ZINB model. 

 

 The hypothesized socio-economic characteristics and institutional components are 

examined with a set of control variables: i) population characteristics: county population size, 

percent of population over age 65 and under 18, ii) area-specific physical and environmental 

factors: the number of dams in total and for flood control, percent of urban population, and the 

previous 2-year’s flood experience, and iii) event-specific climatic factors: begin time of the day 

and month of the event, duration of the incidence, and the type of the flood events. Summary 

statistics for all variables included in the ZINB analysis are presented in Table 2.3. The variable 

definitions and data sources are provided in Table 2.A2 in the Appendix.  
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Table 2.3:  Summary Statistics of Variables in ZINB Model 

* Summary statistics of year dummies (1998-2015) and 50 state dummies that are included in the ZINB estimation 

are not presented here.  

 Mean 
Standard 

Deviation 
Min Max 

Number 

of Obs. 

Dependent Variable      

  Fatalities from individual event 0.014 0.188 0 20 97,416 

Independent Variables      

  Total No. Dams (all purposes) 32.879 39.091 0 331 97,416  

  No. Dams for Flood Control  6.228 14.675 0 230 97,416  

  Pct Urban population  50.773 31.526 0 100 97,416  

  Past 2-yr’s Flood Experience  7.465 9.842 0 115 97,416  

  Ln(Population) 10.908 1.560 4.205 16.115 97,416  

  Pct Over65 14.068 3.631 2.148 43.641 97,416  

  Pct Under18 24.131 3.053 7.605 45.207 97,416  

  Pct Bachelor Degree 20.274 9.663 1.868 76.762 97,416  

  Pct Mobile home 11.878 8.662 0 61.29 97,416  

  Ln(Per Capita Income) 10.026 0.231 8.787 11.118 97,416  

  Lagged NFIP Participation Rates 62.937 32.366 0 100 97,416  

Lagged Ln(Per Capita Gov Exp 

on Public Safety in thousands) 
-0.949 0.678 -6.943 2.031 97,416 

  Duration (in days) 1.356 4.218 0 30.999 97,416  

  Flood  0.368 0.482 0 1 97,416  

  Flash Flood 0.632 0.482 0 1 97,416  

  Overnight 0.205 0.404 0 1 97,416  

  Morning 0.225 0.418 0 1 97,416  

  Early Afternoon 0.185 0.388 0 1 97,416  

  Late Afternoon 0.229 0.420 0 1 97,416  

  Evening 0.156 0.363 0 1 97,416  

  Spring 0.295 0.456 0 1 97,416  

  Summer 0.413 0.492 0 1 97,416  

  Fall 0.164 0.370 0 1 97,416  

  Winter 0.127 0.333 0 1 97,416  
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2.4.2.2  Instrumental Variable Model 

As discussed above, disaster-related government activities might not be strictly 

exogenous, rather bi-directional. In consideration of the potential simultaneity bias, I implement 

the Poisson Instrumental Variable (IV) estimator by using the Control-function (CF) approach 

(Wooldridge, 2014) which accounts for both endogenous regressors and non-negative outcome 

variable. First, the endogeneity tests are performed for two institutional factors - the government 

expenditure on public safety, protection, & welfare and the NFIP participation rates. Both the 

robust Hausman test and CF-based Hausman test results38 suggest that only the government 

expenditure variable is endogenous. I could not find evidence of the endogeneity of the 

predetermined NFIP participation rates. Hence, the instrumental variables methods is used to 

correct the endogeneity of the government expenditure, taking the predetermined NFIP 

participation rates as exogenous. 

I consider two variables as an IV for the local government expenditure on public safety, 

protection & welfare. One is the number of government entities (e.g. city, town or township, 

village) within a county and the other is the ratio of the highest and the lowest (census tract level) 

effective tax rates for real estate within a county39. As the county government expenditures are 

aggregated values that include expenditures of all subdivisions located within the county, an 

increase in the number of governmental entities is likely to increase government spending. 

                                       
38 For examining the endogeneity of the two institutional variables, I performed two tests.  First, a test statistic is 

used, defined as the difference of two Sargan-Hansen statistics: one for the equation with the smaller set of 

instruments, where the suspect regressors are treated as endogenous, and one for the equation with the larger set of 

instruments, where the suspect regressors are treated as exogenous. This statistic is reported after ivreg2 in Stata, 

which are robust to various violations of conditional homoskedasticity (Baum et al. 2007). Second, based on the 

Control-function approach, I carried out the regression-based Hausman tests of whether the suspected endogenous 

variables are actually endogenous (Wooldridge, 2014). 
39 Decennial Census and American Housing Survey data on the tract level aggregate real estate tax and the 

aggregate housing values are used to construct the effective tax rates of tracts. 
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However, changes in the number of local governmental entities is unlikely to have a direct 

impact on flood fatalities. A rationale for the use of the latter IV – the highest/lowest ratio of the 

effective tract property tax rates within a county – is that a greater difference in the effective tax 

rates within a county means higher inequality in property values and wealth as well as local 

government tax bases (and thus expenditures) within the county. Economic inequality and 

disproportionate police expenditures among nearby communities in a county might be a fostering 

ground for crime and generate negative spillovers across districts (Simon Hakim 1980; Furlong 

and Mehay 1981). The crime spillovers thus drive higher spending on public safety and 

protection within intra-county areas (Stephen Mehay 1977; Hakim et al. 1979;). However, the 

tax rate differentials within a county is unlikely correlated with flood fatalities. I formally test the 

validity of the two IVs by performing Weak identification test (Kleibergen-Paap Wald F 

statistic) and Overidentification test (Hansen J Statistic) as well as a regression-based correlation 

test between two IVs and the dependent variable (using Poisson CRE and Poisson FE). The tests 

of the validity of IVs I performed all suggest that the proposed instruments are reasonable. 

To deal with the county heterogeneity while at the same time handling the endogeneity of 

the government spending, I adopt the correlated random effects (CRE) framework, combined 

with the CF approach that allows unobserved heterogeneity to be correlated with observed 

covariates (Wooldridge, 2010). For the application of CF in a CRE setting, county-year panel 

structured data is constructed. Some of the flood event specific details are averaged or 

aggregated by year (e.g. average deaths per flood, total duration of floods) while for event timing 

variables including time of the day and season, I generate shares of floods in each category by 

year (e.g. % of floods occurred in Spring, % of floods occurred in the morning, etc.). Summary 

statistics of the variables included in the Poisson IV (CF) model are presented in Table 2.4. 
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Table 2.4:  Summary Statistics of variables in Poisson IV model 

* Summary statistics of year dummies (1998-2015) and the mean values of the explanatory variables for the Correlated 

Random Effects (CRE) estimation are not presented here.  

 Mean 
Standard 

Deviation 
Min Max 

Number of 

Obs. 

Dependent Variable      

  Annual Avg. Fatalities per flood 0.013 0.119 0 6 29,680 

Explanatory Variables      

  Total No. Dams (all purposes) 29.811 37.128 0 331 29,680 

  No. Dams for Flood Control  5.407 14.136 0 230 29,680 

  Ln(Population) 10.578 1.410 6.104 16.115 29,680 

  Pct Over65 14.291 3.725 2.148 43.641 29,680 

  Pct Under18 24.124 3.125 7.721 44.185 29,680 

  Past 2-yr’s Fatal Flood Experience 0.059 0.263 0 5 29,680 

  Pct Urban Population 45.565 30.880 0 100 29,680 

  Pct  Bachelor Degree 19.042 8.987 1.868 76.762 29,680 

  Pct Mobile home 12.844 8.882 0 59.950 29,680 

  Ln(Per Capita Income) 10.001 0.221 8.997 11.118 29,680 

Lagged NFIP Participation Rates 62.096 32.057 0 100 29,680 

Ln(Per Capita Gov Exp on Public  

Safety &Welfare in thousands) 
-0.974 0.667 -7.488 1.501 29,680 

  Duration (in days) 4.408 15.924 0 476.572 29,680 

  Pct Flash Flood 0.656 0.410 0 1 29,680 

  Pct Flood 0.344 0.410 0 1 29,680 

  Pct Overnight floods 0.194 0.309 0 1 29,680 

  Pct Morning floods 0.217 0.322 0 1 29,680 

  Pct Early Afternoon floods 0.185 0.306 0 1 29,680 

  Pct Late Afternoon floods 0.240 0.340 0 1 29,680 

  Pct Evening floods 0.164 0.292 0 1 29,680 

  Pct Spring floods 0.298 0.387 0 1 29,680 

  Pct Summer floods 0.414 0.421 0 1 29,680 

  Pct Fall floods 0.154 0.305 0 1 29,680 

  Pct Winter floods 0.134 0.291 0 1 29,680 

Instrumental Variables (IVs)      

  Number of Subdivisions 14.118 14.454 1 151 29,680 

  H/L Ratio of Real Estate Tax Rates 2.392 4.893 1 131.746 29,680 
      



79 

 

2.5  RESULTS 

2.5.1  Base Model Results from ZINB Estimation 

I first present in Table 2.5 the estimates from the Zero-Inflated Negative Binomial 

(ZINB) model using individual flood events recorded at the scale of counties during 1996-

201540. The dependent variable is fatalities from each flood event. The determinants of flood 

fatalities are estimated with three specifications, controlling for state and year fixed effects in all 

specifications. As a part of ZINB model, the results of the logit model for predicting whether an 

observation is in the always-zero group are presented in columns (2), (4), and (6).  

The key policy variable of interest, the NFIP participation rate, is introduced into the 

second and third specifications41. The estimated effects of the vulnerability factors on flood 

fatalities from specifications A, B, and C are largely consistent in direction but differ in 

magnitude once NFIP participation rate is included. In particular, comparing the specifications A 

and B, I find that the coefficients on income level and government expenditure variable decrease 

in magnitude as the NFIP variable is incorporated into the model. However, except for the per 

capita income, precision of the estimates of the other socio-economic factors and the government 

expenditure variable is low.  

                                       
40 Note that the previous 2-year’s flood experience is incorporated as an explanatory variable and accordingly, flood 

observations in 1996 and 1997 are used as pre-sample data. Flood observations during 1998-2015, total 97,416 flood 

events are used in the estimation procedure. 
41 In specification C, I test whether the result is sensitive to a change in the choice of inflation variables for the first 

stage logit model and whether the inclusion of the lagged variable - previous flood experience (although it is not 

exactly a lagged dependent variable) causes any complications in the estimation process and leads to any notable 

changes in the estimates. 
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Table 2.5:  Determinants of Flood Fatalities 

Zero-Inflated Negative Binomial Regressions Results 
  

  Model A Model B Model C 
Dependent Variable (1) (2) (3) (4) (5) (6) 
: Deaths from Floods ZINB Logit ZINB Logit ZINB Logit 
        

Overnight -0.292**  -0.283**  -0.270**  

 (0.125)  (0.127)  (0.127)  
Morning -0.363***  -0.344***  -0.336***  

 (0.117)  (0.120)  (0.119)  
Early Afternoon -0.244**  -0.228*  -0.232*  

 (0.118)  (0.120)  (0.120)  
Late Afternoon -0.409***  -0.394***  -0.387***  

 (0.114)  (0.116)  (0.116)  
Flash Flood 0.682***  0.703***  0.702***  

 (0.106)  (0.108)  (0.110)  
Spring 0.182**  0.193**  0.223**  
 (0.089)  (0.090)  (0.091)  
Fall 0.322***  0.333***  0.332***  
 (0.106)  (0.108)  (0.108)  
Winter -0.182  -0.189  -0.136  
 (0.128)  (0.129)  (0.131)  
Duration_days 0.029***  0.030***  0.026**  

 (0.010)  (0.010)  (0.011)  
Total No. Dams (all purposes) -0.004***  -0.005***  -0.005***  
 (0.002)  (0.002)  (0.002)  
No. Dams for Flood Control 0.008**  0.007**  0.007**  
 (0.003)  (0.003)  (0.003)  
PastFloodExperiences_2yr -0.009 0.025** -0.006 0.028**   

 (0.008) (0.011) (0.009) (0.011)   
Pct BA Degree -0.002  -0.002  -0.002  
 (0.010)  (0.010)  (0.010)  
Pct Mobile home 0.008  0.009  0.009  

 (0.008)  (0.009)  (0.009)  
Ln (Per Capita Income) -1.734*** -2.975*** -1.679*** -2.817*** -1.591** -2.904*** 
 (0.643) (0.879) (0.641) (0.849) (0.651) (0.892) 
Lagged NFIP Participation Rate  -0.018*** -0.011** -0.026*** -0.011** -0.026*** 
  (0.003) (0.005) (0.006) (0.005) (0.006) 
Lagged ln(Govt Exp on Public -0.141 -0.435 -0.053 -0.321 -0.037 -0.258 
Safety, Protection & Welfare) (0.290) (0.332) (0.281) (0.316) (0.295) (0.340) 
Constant 10.947* 31.743*** 10.963* 30.930*** 10.580 31.936*** 

 (6.486) (9.048) (6.409) (8.669) (6.513) (9.152) 
       

Observations 97,416 97,416 97,416 97,416 97,416 97,416 

1. Cluster-adjusted robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10 

2. The omitted categories are "Evening","Summer", and "Flood". 

3. Logit estimation indicates that counties with less past experiences, higher income, higher NFIP participation rates, 

and more government expenditures on public safety are less likely to be in the always-zero group. 

4. The estimates of several control variables (pct_elderly, pct_young, lnpopulation, pct_urban) and state and year fixed 

effects are not reported here.  
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Disaster-specific Determinants of Flood Fatalities   As the estimations in the base 

model examine individual flood events within the original event data structure, the relationship 

between flood event-specific details and fatalities can be more precisely estimated. Estimation 

results demonstrate that event-specific factors such as duration, timing of the event, and flood types 

are key factors that affect the degree of flood impacts. As expected, a longer duration of flooding 

significantly relates to the number of deaths from flood events. The estimates also show that the 

degree of flood impact is different across the time of day when an event begins to occur. My 

analysis suggests that the impact of a flood tends to be greater when it occurs in the evening. 

Estimates also show that fatalities from flood events are higher in the fall season (Sep. to Nov.) – 

when the frequency of flooding is typically low and thus unexpected. Comparing to floods, flash 

floods are estimated to be deadlier. 

Demand for Safety   The base model result is consistent with the well-known argument 

that communities with higher income have a greater demand for safety and allocate more 

resources to safety and protective measures, mitigating societal vulnerability to disasters. My 

estimation results support the previous findings that the higher income is associated with the 

increase in safety against disasters. A negative association between income and flood fatalities is 

statistically and economically significant in all specifications. Moreover, I could also see a strong 

negative relationship between the NFIP participation rates and flood impact. The estimates from 

specification B and C indicate that flood-fatalities decrease by about 10.4%, on average, for a 

ten-percentage point increase in the within-county NFIP participation rate. The underlying 

mechanism is that a higher demand for safety against flooding within a community can be 

translated into the adoption of NFIP, promoting proper floodplain management and mitigation 

efforts, ultimately reducing flood fatalities.  
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The base model estimation using ZINB provides evidence for the role of income and the 

National Flood Insurance Program in mitigating flood vulnerability. However, I acknowledge 

that there are limitations in this estimation method. By retaining the original event data structure, 

panel methods that would allow us to deal with the county heterogeneity and the possible 

endogeneity of institutional factors could not be applied. Thus, the estimates here may not reflect 

the true relationships due to these issues, which I am not able to address in the current data 

configuration. In particular, the ZINB model exploits variation across counties, rather than the 

within-county, and hence, the estimates here may not be the basis of the causal inference. We 

proceed to the next subsection to discuss the bias-corrected results using the Instrumental 

Variable method in a CRE setting. 

2.5.2  Instrumental Variable Model Results from IV Poisson CRE approach 

I present in Table 2.6 the estimation results from the Poisson Instrumental Variable (IV) 

model using Control-function (CF) method, correcting the endogeneity of the government 

spending on public safety, protection, and welfare. I use two IVs -the number of local 

government entities and the highest/lowest ratio of the effective tract property tax rates within a 

county. I exploit the county-year panel data spanning from1996 to 201542, controlling for the 

county heterogeneity within the Correlated Random Effects (CRE) framework. I discuss in detail 

the results of the estimated relationship between flood fatalities and key explanatory variables 

such as area-specific characteristics, and socio-political vulnerability factors.  

 

                                       
42 I incorporate the previous 2-year’s flood experience as an explanatory variable and accordingly, flood 

observations in 1996 and 1997 are used as pre-sample data. 
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Table 2.6:  Determinants of Flood Fatalities 

Poisson IV CF / CRE Estimates of Key Explanatory Variables 
  

  Poisson IV (CF) Correlated Random Effects Estimator 

Dependent Variable Model A Model B Model C Model D 

: Avg Deaths per Floods (1) (2) (3) (4) 
      

Duration_days 0.047*** 0.057*** 0.057*** 0.055*** 

 (0.014) (0.015) (0.014) (0.015) 

Total No. Dams (all purposes) 0.080 0.134 0.151 0.153 

 (0.138) (0.142) (0.142) (0.141) 

No. Dams for Flood Control -0.173 -0.243 -0.260 -0.253 

 (0.215) (0.221) (0.226) (0.226) 

Pct Urban Population 0.203*** 0.240*** 0.198*** 0.210*** 

 (0.055) (0.063) (0.061) (0.065) 

Past 2-yr’s Fatal Flood Experience -6.138*** -6.754*** -6.756*** -6.680*** 

 (0.804) (0.900) (0.934) (0.930) 

Pct Mobile home 0.194*** 0.207*** 0.241*** 0.241*** 

 (0.075) (0.074) (0.080) (0.084) 

Pct BA Degree  -0.316*** -0.383*** -0.380*** 

  (0.102) (0.108) (0.114) 

Ln (Per Capita Income)   11.720*** 11.821*** 

   (3.388) (3.468) 

Lagged NFIP Participation Rate -0.029* -0.028* -0.024  

 (0.016) (0.016) (0.016)  

Ln (Govt Exp on Public Safety, -3.433 -4.487* -4.698* -6.804** 
       Protection & Welfare) (2.492) (2.573) (2.684) (2.871) 

Constant -75.436* -90.287** -85.866** -113.841** 

 (38.667) (39.916) (41.212) (44.3742) 
     

Exogeneity Test (p-value) 0.069 0.031 0.032 0.005 

Observations 29,680 29,680 29,680 29,680 

1. Cluster-adjusted robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10 

2. The unit of observation is a county-year. U.S. counties with more than one flood experience in a given year are 

included. 

3. The estimation results not reported here are the first stage Control-function, the mean values of regressors for CRE, 

and the control variables estimates. The full results are available upon request. 

 

 

Area-specific Physical and Environmental Determinants of Flood Fatalities   A set of 

area-specific environmental and hydrologic characteristics of the affected area is considered such 

as past 2-year’s fatal flood experience and the number of dams in total and for flood control. The 

negative correlation between previous flood fatalities and current flood deaths implies that 

communities’ resilience to disasters increases through learning from their past experiences. The 
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results of all specifications consistently demonstrate that learning effects from risk history play an 

important role in increasing the coping capacity of communities, thus reducing disaster fatalities 

in areas that recently experienced lethal flooding.  

Contrary to the strong positive estimates from the ZINB model, the number of dams for 

flood control variable now has a negative coefficient (although insignificant with p-value of 0.24 

in specification 4). In the ZINB model, the positive coefficient of the number of dams for flood 

control appears to capture the positive correlation, rather than a causal relationship, between the 

level of flood risk and the number of structures for flood control. However, once I control for 

county heterogeneity and handle the endogeneity issue in the IV/CRE model, the estimates 

presumably reveal a causal relationship. An increase in the availability of dams for flood 

management helps localities prevent massive water flow into human settlements, thus reducing 

the risks of life-threatening floods. Also, the positive coefficients of the percent urban population 

suggests the urbanization worsens the flood impacts. One explanation for the greater flood 

vulnerability of more urbanized counties is that paved surfaces and concentrated building 

structures tend to reduce infiltration capacity of the land and consequently intensify flood risk. 

Socio-political Determinants of Floods Fatalities   In addition to the environmental 

and hydrologic factors of flood vulnerability, my findings reveal a significant role of socio-

economic and political factors in determining flood impacts. First, I find that the education 

attainment, measured by the share of Bachelor’s degree holders among population aged 25+, is 

closely linked with the flood vulnerability. The results indicate that counties with a higher 

proportion of educated people experience fewer flood-related fatalities. This result is consistent 

with the findings of previous empirical disaster studies (Brooks et al. 2005; Lim et al. 2017; 

Simmons and Sutter 2013; Skidmore et al. 2007; Muttarak and Lutz 2014). Higher education 



85 

 

level is associated with enhanced risk perception and proper disaster preparedness and responses. 

More educated people may have better understanding of the hazard risks and thus are likely to be 

better prepared for shocks, thus reducing disaster vulnerability. 

 I also examine the degree to which housing quality, as measured by the percent of 

mobile homes in the county, is closely linked to flood vulnerability. The estimations in Table 2.6 

show a robust and significant result; the estimates of mobile homes are positive with statistical 

significance. The result confirms that housing quality is one of the more important determinants 

of flood impacts. Mobile homes are increasingly filling a demand for affordable housing across 

the states; from 2006 to 2015 nearly half of new manufactured homes were shipped to the seven 

coastal states in the South region (Texas, Louisiana, Mississippi, Alabama, Florida, South 

Carolina, and North Carolina). Greater vulnerability of those living in mobile homes suggests 

important policy implications for disaster management and community vulnerability assessment 

(Fothergill and Peek 2004, Merrell et al. 2005, Schmidlin et al. 2009, Kusenbach et al. 2010, Lim 

et al. 2017).  

 Notably, once the IV method is applied to deal with the simultaneity between 

government resource allocation decision and disaster risk, I obtain a statistically significant 

evidence that local government spending in public safety, protection, and welfare plays a role in 

helping to mitigate human losses from floods. For example, a five percent increase in 

government spending is expected to reduce flood fatalities by about 20 percent. Consistent with 

the previous findings from an analysis of tornado impacts by Lim et al. (2017), it appears that 

overall safety of a county can be enhanced through local government public safety and protection 

services.  
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Contrary to the results of the base model, once I correct the simultaneity bias and control 

for the unobserved heterogeneity, I find a positive relationship between income level and flood 

fatalities. The difference in the estimated results is first attributed to the fact that ZINB estimator 

mostly explains the variation across the cross-sectional units, while the CRE method exploit 

within variation. we should also note that income level/wealth can in fact influence flood 

outcomes through various pathways, including those that are already taken into account – 

education level, location and housing choices, as well as local government resource availability 

for emergency management and disaster mitigation. For instance, in the first stage Control-

function estimation, the per capita income is estimated to be a dominant and significant factor of 

government expenditure decision. Thus, these pathways by which income translates to increased 

safety are included in the estimation, effectively capturing the effect of individual and 

community level attitudes and efforts for safety and preparedness against flood within a county. 

Controlling for these other factors, the positive coefficient on income may reflect the idea that 

growing income translates to increased housing in higher amenity areas such as near water where 

flooding risk is higher. 

The Role of NFIP on Floods Fatalities   We now discuss the results of the main policy 

variable of this study – the role of National Flood Insurance Program (NFIP) – in helping 

communities become more aware of and better prepare for the risks of floods, and avoid the 

adverse impacts. The NFIP participation rate is consistently estimated to have a statistically 

significant negative effect in both the ZINB and the IV Poisson estimations, while the magnitude 

of the effect is relatively larger in the IV estimation. In particular, the estimates from 

specification C indicate that flood-fatalities are reduced by about 24% on average if the within-

county NFIP participation rate increases by ten percentage point, whereas the estimated effect in 
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the ZINB model was about a 10% reduction in fatalities. Biases from the simultaneity and county 

heterogeneity may account for the differences in magnitude of effects and statistical precision 

between the two model specifications.  

Comparing the column 3 and 4, we observe that the coefficient on the government 

spending on safety, protection, and welfare greatly rise in absolute magnitude once the NFIP 

variable is excluded from the model. The enhanced resilience and increased safety of the place 

enabled by the implementation of NFIP are instead captured by the local governments’ efforts 

for public safety and protection services. One possible explanation for this result is that local 

government resources allocated to public safety and protection, and compliance with the flood 

mitigation measures required by the NFIP work towards the same goal of improved flood safety. 

Thus, when the NFIP participation rates are incorporated to explain the variability of flood 

fatalities, the explanatory power of the local government variable is reduced. The change in the 

estimated effect of this key institutional factor further highlights the importance of taking into 

consideration the role of NFIP when analyzing the flood vulnerability. 

Post-estimation: Hypothetical NFIP Participation Rates and Predicted Fatalities   

The average within-county participation rate was 27% in 1980 and doubled to 54% by 1990. 

During the study period from 1996-2015, the average participation rate has risen by 12% from 

57% to 69%. To calculate the effect of the flood program in terms of saving lives, I predict the 

change in fatality rates using the estimation results of model 3 in Table 2.6. I also compute the 

predicted outcome of several hypothetical cases: i) the participation rate had not grown at all 

from 1996 to 2015 in any county, remaining at the same rate as in 1996 for the whole study 

period, ii) the participation rates were 20% lower for all counties, iii) 30% lower, and iv) the 

participation rates were 50% lower (to reflect a NFIP participation rates of about zero). A 
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comparison of the predicted death rates in various scenarios and the actual flood deaths is 

presented in Table 2.7. 

Table 2.7:  Predicted Death Counts by NFIP Participation Rates  

and the Total Value of Lives Saved during 1996-2015 

 Prediction Valuation 

NFIP Participation Rates Death Rate1 
Expected Total 

Death2 

Difference 3 

: no. lives saved 
Value of Lives 

Saved4 

In-Sample .0137 1,563   

Hypothetical Cases     

Remain at 1996 level .0155 1,814 251 $ 2.26 billion 

Lower by 20% 5 .0213 2,442 879 $ 7.92 billion 

Lower by 30% 5 .0254 2,972 1,409 $ 12.68 billion 

Lower by 50% 5 .0359 4,327 2,764 $ 24.87 billion 

1. Death rate indicates the county-year average of predicted deaths per flood event. 

2. The actual number of total flood occurrence in the U.S. counties during 1996-2015 is used for calculation. 

3. The difference is between each hypothetical case and in-sample prediction. This indicates the potential loss of lives 

prevented by NFIP. 

4. The value of a statistical life used in calculation is $9 million (Viscusi, 2014) 

5. The standard deviation of the NFIP participation rate is 32.37% and the yearly averages range from 53% to 69%. 

 

 

Each row in Table 2.7 indicates the predicted death rates (i.e. fatality per flood event) and 

expected total death counts from floods by in-sample or hypothetical NFIP participation rates. 

Following the practice of giving an economic value to mortality – a value of a statistical life 

(VSL), I also perform a straightforward calculation of the benefit of the NFIP in saving lives 

from floods. The VSL that is currently being used in the U.S. government agencies when they 

appraise the benefits of regulations ranges from $8.2 to $9.5 million (in 2009).  

Table 2.7 shows that the predicted deaths increase as the NFIP participation rates fall. If 

the NFIP participation rate had not risen and remained at the 1996 level for 20 years for all 

counties, we would have suffered 251 more fatalities from flood events during the 1996-2015 

period. The estimated value of lives saved due to the expanded adoption and implementation of 
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the program since 1996 across the nation is $2.26 billion. Moreover, the impact would be greater 

if every counties’ participation rates were reduced by 20% relative to the actual rate; the 

calculations suggest that the same number of flood events would have resulted in additional 879 

deaths during the period. For the last scenario - the NFIP participation rates were close to zero – 

my calculations indicate that we would have experienced 2,764 more deaths from floods during 

the 1996 to 2015 period, implying that the program has helped prevent flood-induced fatalities, 

which is valued at $25 billion – about the program’s current debt level. Overall, my findings 

provide evidence that flood-prone communities become more flood-resistant due to the 

enforcement of floodplain management requirements of the NFIP, and in turn, the loss of human 

life induced by flooding is reduced in high flood risk areas across the United States.  

 

2.6  CONCLUSION 

 While floods are exogenously determined by climatic and environmental factors, this 

study shows that socio-economic and institutional factors are critical in determining 

vulnerability. This paper seeks to uncover the underlying factors that make people and places 

more vulnerable to floods in the United States. To this end, I investigate the relationship between 

flood fatalities and the potential human and institutional components of disaster impacts within 

US counties over the 1996 to 2015 period. The study findings enable us to identify the societal 

characteristics and government factors that exacerbate or mitigate vulnerability to hazards and 

the extent to which different population groups are disproportionally affected by floods.  This in 

turn allows us to suggest policies that may help mitigate human losses from such events.  

 The empirical analysis in this paper demonstrates that people most affected by disasters 

like floods are primarily those who have weaker economic and social bases, those who are less 
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educated and have limited risk perception and preparedness, and those who are living in homes 

less resistant to shocks.  People living in mobile homes are at greater risk due to the structural 

vulnerability of mobile homes as well as due to the lower socio-economic status. Another key 

finding is that urbanization and past disaster experience are critical components of flood 

vulnerability. The analysis using IV method shows that increased government spending in 

critical areas such as safety, protection, and welfare, is associated with reduced overall 

community vulnerability to floods.  

Above all, this paper provides new evaluation of the life-saving role of National Flood 

Insurance Program. To my knowledge, this is the first empirical study that presents evidence that 

the National Flood Insurance Program has played a vital role in reducing flood fatalities. My 

findings suggest that the benefits of the NFIP in terms of saving lives over the 20-year study 

period are estimated to be substantial enough to compensate for the program’s deficits that were 

accumulated during the same period. Nevertheless, the program’s current operational challenges 

and the public concerns regarding the fiscal soundness of the program necessitate a thoughtful 

reform of the NFIP, which must ensure a balance between the affordability of flood insurance 

and the financial solvency of the program. In this redesign process, the benefits of the proactive 

disaster management of the NFIP ought to be taken into account.  

 Overall, this study reveals which population subgroups are most vulnerable to flooding 

in the United States, as well as local and federal government public actions that serve to reduce 

vulnerability. Generally, these findings increase our understanding of the socio-political nature 

of disaster impacts, enable decision-makers to better prepare for and respond to pending 

catastrophic events, and guide mitigation efforts at the local, state and national levels.  
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APPENDIX 

 

Table 2.A1:  Determination of Flood-category Events 

Determination by Event Type   

Flood 

Any high flow, overflow, or inundation by water which causes damage. In general, this would mean the 

inundation of a normally dry area caused by an increased water level in an established watercourse, or 

ponding of water, that poses a threat to life or property. If the event is considered significant, it should 

be entered into Storm Data, even if it only affected a small area. Urban and small stream flooding 

commonly occurs in poorly drained or low-lying areas. These are types of areal flooding and are to be 

recorded as Flood events, not Heavy Rain. 

Flash Flood 

A life-threatening, rapid rise of water into a normally dry area beginning within minutes to multiple hours 

of the causative event (e.g., intense rainfall, dam failure, ice jam). Ongoing flooding can intensify to the 

shorter-term flash flooding in cases where intense rainfall results in a rapid surge of rising flood waters. 

Every Flash Flood event that occurred and meets the criteria will be logged in Storm Data, regardless of 

whether or not a flash flood warning was issued. 

Source: National Weather Service Instruction 10-1605 (MARCH 23, 2016) Operations and Services 

Performance, Storm Data Preparation. ( http://www.nws.noaa.gov/directives/ ) 

 

 

 

  

http://www.nws.noaa.gov/directives/
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Table 2.A2:  Variable Definitions and Sources 

VARIABLE DEFINITION SOURCE 

Flood Fatalities Direct deaths from a flood-category event NOAA NCEI* 

Overnight Begin time of a flood event is 12:00-5:59 AM NOAA NCEI* 

Morning Begin time of a flood event is 6:00-11:59 AM NOAA NCEI* 

Early Afternoon Begin time of a flood event is 12:00-3:59 PM NOAA NCEI* 

Late Afternoon Begin time of a flood event is 4:00-7:59 PM NOAA NCEI* 

Evening Begin time of a flood event is 8:00-11:59 PM NOAA NCEI* 

Jan – Dec Begin month of a flood event NOAA NCEI* 

Flood Type of a flood event is “Flood” NOAA NCEI* 

Flash Flood Type of a flood event is “Flash Flood” NOAA NCEI* 

Duration_days Duration of a flood event in days NOAA NCEI* 

Total No. Dams  
(all purposes) 

Total number of dams within a county regardless of the main purposes 
of dams 

US Army Corps 
of Engineers 

No. Dams for Flood 
Control  

Total number of dams within a county for flood control and storm water 
management 

US Army Corps 
of Engineers 

Previous 2-yr’s 
Flood Experience 

County level flood fatalities in the previous two years NOAA NCEI* 

Pct NFIP 
Participating 
Communities_Lag 

Percent of communities (city, town, village) within a county that entered 
in the National Flood Insurance Program at least two years prior to a 
flood event 

FEMA National 
Flood Insurance 
Program (NFIP) 

Pct Urban 
Population 

Percent of the county population living in urban areas (= urbanized areas 
and urban clusters) 

US Census: 
Geography 

Ln (Population) County population in natural logarithm 
US Census: 
Population 

Pct Over 65 Percent of population 65 years old and over 
US Census: 
Population 

Pct Under18 Percent of population 18 years old and under 
US Census: 
Population 

Pct BA degree Percent of people aged 25 and over holding Bachelor's degree 
US Census: 
Population 

Pct of Mobile 
Homes 

Percent of mobile/manufactured homes in housing units 
US Census: 
Housing 

Ln (Per Capita 
Income) 

County Per Capita Income which is derived by dividing the total income 
of a county by its total population in natural logarithm. 

US Census: 
Income 

Ln (Per Capita 
Gov’t Expenditure 
on Public Safety 
&Welfare) 

Local government spending (in thousands, 2009 $) on public safety, 
protection, and welfare in natural logarithm, which includes 
expenditures on fire/police protection, protective inspections/ 
regulations, housing/community development, public welfare 

US Census:  
Local 
Government 
Finances 

* NOAA NCEI: National Oceanic and Atmosphere Administration National Center for Environmental Information 
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CHAPTER 3   

GROWING HEAT VULNERABILITY OF AGING SOCIETY: 

THE POTENTIAL ROLE OF HEAT ISLAND MITIGATION MEASURES 

 

3.1  INTRODUCTION 

 Heat waves are the deadliest type of natural hazard among all weather extremes in the 

United States. Every year, more than 1,000 heat events occur, causing an average of 131 deaths 

during the last twenty years. However, according to National Center for Health Statistics 

(NCHS) (Kochanek et al. 2011), excess heat exposure actually contributed to a far greater 

number of deaths (directly and indirectly) – 658 deaths per year on average during the years 

1999-2009. The risk of extreme heat has been elevated in many regions of the world including 

the United States as extreme weather phenomena is increasing in both frequency and magnitude 

under the global climate change (Greenough, 2001; Beniston and Stephenson, 2004). The 

observed and predicted shifts in the variability and intensity of weather extremes that are driven 

by climate change, such as heat waves, flooding, droughts, and tornadoes have been substantially 

discussed in many scientific studies (Meehl and Tabaldi, 2004; Milly et al., 2002; IPCC, 2013; 

Strader et al., 2017). With regard to heat hazard, Meehl and Tabaldi (2004) and IPCC (2013) 

predict the future heat waves in North America will occur more frequently with greater intensity 

and longer duration. 

 Increasing outbreaks of stronger weather extremes in recent decades and the gloomy 

predictions about climate change and future weather extremes triggered policy efforts and 

community actions for mitigation and adaptation (Morss et al., 2011; Gago et al., 2013). Most 

relevant heat-related actions currently undertaken by state and local government in the United 
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States are the community-based “Heat Island” reduction activities (U.S. Environmental 

Protection Agency (EPA), 2008) 43. Heat Island reduction measures include Trees and 

Vegetation, Green Roofs, Cool Roofs, Cool Pavements; these strategies are implemented through 

demonstration projects (e.g. green roof installation), incentive programs (e.g. tax abatement or 

rebate), urban forestry and community tree planting programs (e.g. Million Trees Initiative in 

LA, NYC, Denver, etc.), and outreach and education programs. The primary goal of the 

community Heat Islands reduction measures is to lower a populated area’s elevated 

surface/atmospheric temperatures. Thus, Heat Island reduction actions serve as an important heat 

hazard mitigation measure by limiting temperature rise of the areas at risk. 

 Given the life-threatening consequences of extreme heat events and the predicted 

increase in the heat-related risks in the coming years, understanding the concept of heat 

vulnerability and examining the impacts of heat events are increasingly of significant interest to 

scholars from various disciplines. Epidemiologists, sociologists, and geographers have discussed 

heat vulnerability by examining the excess mortality due to high temperatures in certain areas 

(Bell et al., 2008; Huang et al., 2011; Loughnan et al., 2014; Sheridan et al., 2003; Stafoggia et 

al., 2006; Uejio et. al., 2011). Some studies examine the impact of an extreme heat event as a 

case study (Klinenberg, 1999; Browning et al., 2006). Another large set of studies focuses on the 

construction and/or evaluation of a heat vulnerability index for a certain region in the United 

States (Aubrecht et al. 2013; Harlan et al., 2006; Harlan et al., 2013; Hondula et al., 2012; 

Johnson et al., 2012; Reid et al., 2009). However, none of the previous studies empirically 

                                       
43 Total 172 statewide or community level actions database are publicly available from the U.S. Environmental 

Protection Agency (EPA) website https://www.epa.gov/heat-islands/heat-island-community-actions-database 

https://www.epa.gov/heat-islands/heat-island-community-actions-database
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address the role of heat mitigation actions initiated by state/local governments in reducing heat 

vulnerability.  

 Consolidating the prior findings and knowledge on disaster vulnerability from multiple 

disciplines, this study constructs an integrative perspective toward the climatic, built-

environmental, socio-economic elements of disaster vulnerability. Fundamental notion of this 

integrative framework is that heat vulnerability of a community is defined and shaped not only 

by physical and meteorological characteristics of hazard itself, but also, equally importantly, by 

various human components such as built-environmental conditions, population characteristics, 

and socio-economic factors. Within this framework, I empirically address the dynamics of heat 

vulnerability by analyzing an important linkage and interaction between heat hazard 

mitigation/adaptation efforts and heat vulnerability.  

 The empirical analysis involves a modeling of two critical phases of heat vulnerability 

dynamics. For the first-phase Heat Hazard Mitigation model, I use county-year panel structured 

data for years 1998 – 2011 to evaluate the role of Heat Island reduction measures in mitigating 

heat hazards intensity at county scale. I employ the Random Trend Model that allows for both 

the level effect of county heterogeneity and county-specific time trend. In the second-phase Heat 

Vulnerability – Fatality Model, I examine all heat and excessive heat events over 1996 to 2011 

periods in the counties of United States to analyze a wide range of meteorological and 

anthropogenic determinants of heat-induced fatalities at local scales. The Zero-Inflated Negative 

Binomial (ZINB) model that properly treats the non-negative count variables with the excess 

zeros problem is employed for the estimation with state and time fixed effects. Lastly, I perform 

a direct estimation of the effects of Heat Island Mitigation (HIM) measures on heat fatalities, 

using the Poisson Fixed Effects estimator, controlling for the unobserved attributes of counties.  
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 This study adds to the existing literature and fills in important research gaps. First, I 

apply an integrative conceptual framework of disaster vulnerability to model U.S. nationwide 

local scale heat vulnerability. Second, I synthesize U.S. trends of an aging population and 

deepening poverty with my estimates to predict the expected increase in heat-induced fatalities 

over the next few decades due to the growth of the most heat-vulnerable population segment in 

the United States. Third, I take into consideration government-initiated Heat Island mitigation 

actions and analyze their role in lowering temperatures across U.S. counties and further make a 

quantitative inference about a mediated effect of HIM measures on heat-induced fatalities by 

combining the results of the first and second phase models, as well as by using a direct 

estimation result. 

 Findings of this study are as follows. The two-phase analysis finds that due to the long-

lasting and synergistic effects of the Heat Island Mitigation (HIM) measures, the heat intensity 

lowering benefit of such measures are accumulated and thus, counties with more mitigation 

actions are progressively less vulnerable to extreme heat than counties with fewer activities. The 

Poisson FE results indicate that an additional measure that is locally implemented in a county 

reduces annual deaths rate (deaths per heat event) by 15.83 %. Notable findings from the second-

phase heat fatality model are as follows. Urbanization measured by the urban population density 

tends to increase the adverse impacts of heat waves, leading to more fatalities. My analysis 

confirms that higher income reduces vulnerability to heat waves, while poverty intensifies it. I 

also find that several housing related factors are critical predictors of heat wave vulnerability; 

living in mobile homes or rental homes heightens disaster vulnerability. Also, population 

composition is important; heat vulnerability is greater in counties with higher proportions of 

elderly, young, and non-white populations. Findings suggest that the socially isolated elderly and 
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the elderly living in poverty are the most heat-vulnerable population sub-groups. Notably, the 

heightened heat vulnerability due to the growth of the elderly population is predicted to generate 

a two-fold increase in heat fatalities by 2030.  

 The rest of this paper is organized as follows. In the next two sections, the risk of 

extreme heat in the U.S. and the community Heat Island mitigation actions are discussed in 

detail. In Section 3.4 and 3.5, I review the literature and present the conceptual framework. In 

Section 3.6, the empirical methodology and the data are described. In the Section 3.7, I discuss 

the results and draw a quantitative inference. Section 8 concludes the paper. 

 

3.2  RISK OF EXTREME HEAT IN THE U.S. 

 Heat waves are not as destructive as other types of natural hazards such as hurricanes or 

tornadoes, however, extreme heat is by far the deadliest type of hazard among all weather 

extremes in the United States. Heat waves put a lot of stress on the body, and can lead to serious 

health conditions, such as heat exhaustion, heat stroke, which could result in death. They can also 

exacerbate underlying health problems. Every year, more than 1,000 heat events occur, causing 

hundreds of deaths and even more heat-related illnesses. Over the last twenty years, heat resulted 

in an average of 131 direct deaths each year (NWS). However, a National vital statistics report 

from National Center for Health Statistics (NCHS) (Kochanek et al. 2011) showed that during 11 

years from 1999 to 2009, extreme heat exposure resulted in 7,233 deaths in total (658 per year) 

where it was an underlying cause for about 70% of the deaths and a contributing factor for 

remaining 30%. Notwithstanding heat-induced illnesses and injuries, 658 direct plus indirect 

fatalities are far greater than the number of deaths that are primarily and directly resulted from 

incidents of extreme heat. This manifests that the extent to which extreme heat adversely affect 
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people’s health and lives could widely vary across individuals – one might die from heat even 

with a relatively low level of heat exposure, perhaps, because of one’s own health conditions. 

Figure 3.1:  Heat Index Chart 

 

Source: National Oceanic Atmospheric Administration (NOAA) National Weather Service (NWS) Heat 

Index Chart. http://www.nws.noaa.gov/om/heat/heat_index.shtml 

Figure 3.2:  Summertime Average Maximum Heat Index vs. 

 Daily Maximum Temperature (1998-2011) 

 

 

 

 

 

Source: Authors’ own illustration. Data: NLDAS Daily Air Temperatures and Heat Index, CDC 

http://www.nws.noaa.gov/om/heat/heat_index.shtml


105 

 

 Before discussing the heat waves and their human impact, it is important to correctly 

understand the definition and related measures of heat event. Like the Fujita-scale for tornadoes, 

there is a Heat Index measure for heat waves. The U.S. National Oceanic and Atmospheric 

Administration National Weather Service (NOAA NWS) defines the Heat Index (in Figure 3.1) 

as “a subjective measure of what it feels like to the human body when relative humidity is 

factored into the actual air temperature44.” It implies that heat events result from a combination 

of high temperatures and high humidity. Figure 3.2 compares the average daily maximum Heat 

Index (= apparent temperature) and the average daily maximum temperature. It clearly shows the 

temperature alone cannot explain the risk of heat across the regions in the United States. 

Compared to dry hot areas in the West regions such as Nevada, Utah, New Mexico states, humid 

regions in the Midwest and Eastern U.S. have relatively higher Heat Index values. An excessive 

heat event or a heat event are announced to occur (and reported in NOAA Storm Events 

Database45) whenever Heat Index values meet or exceed locally/regionally established excessive 

heat warning or heat advisory thresholds, respectively. The definition/determination of heat and 

excessive heat are provided in Table 3.A1 in the Appendix. 

 Figures 3.3 and 3.4 show the average frequency and average fatality of extreme heat events 

by state in the contiguous United States over the 20 years from 1996 to 2015, respectively.  

In general, most heat waves occur in southern part of the country including western regions, and 

the Great Plains. The areas in the west of the Rocky Mountains exhibit high temperature, 

however, as both temperature and humidity are factored in to constitute a heat event, dry hot 

                                       
44 “Heat and Extremely Hot Weather” from National Oceanic and Atmospheric Administration National Weather 

Service (NOSS NWS). Retrieved from https://www.weather.gov/phi/heat. 
45 Storm Events Database managed by NOAA’s National Centers for Environmental Information (NCEI) is 

available at https://www.ncdc.noaa.gov/stormevents/ftp.jsp. 

https://www.weather.gov/phi/heat
https://www.ncdc.noaa.gov/stormevents/ftp.jsp
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areas in the west regions such as Wyoming, Utah, Colorado states rarely have heat events. 

Among all states, Missouri, Illinois, New Jersey, Georgia, and Kentucky are the top five states 

that experienced most frequent extreme heat events, whereas the top five states with the highest 

death tolls are Illinois, Pennsylvania, Texas, Missouri, and Nevada. It is shown that human 

impacts of extreme heat hazard are not proportionally distributed across the regions depending 

on the frequency of the heat waves. The disparity between two maps hints at the importance of 

societal and human components in shaping disaster vulnerability and determining adverse 

impacts.  

 Moreover, there are mounting concerns about the risk of heat waves in the United States; 

scientific predictions find that the future heat events will become more devastating with an 

increase in magnitude and frequencies of extreme heat phenomena (Greenough, 2001; Beniston 

and Stephenson, 2004). A scientific study (Meehl and Tabaldi, 2004) predicts future heat waves 

in North America will become “more intense, more frequent, and longer lasting”. Also, the fifth 

assessment report of the UN Intergovernmental Panel on Climate Change (IPCC) summarizes 

predictions from climate models as follows: “it is ‘virtually certain’ that there will be more 

frequent hot and fewer cold temperature extremes over most land areas as global mean 

temperatures increase and it is ‘very likely’ that heat waves will occur with a higher frequency 

and duration”. The observed and anticipated increase in risk of heat waves and their silent yet 

catastrophic impact draw considerable attention from scholars in various disciplines as well as 

policy makers and the media, becoming a global public concern. In the following sections, I 

discuss the U.S. state and local government activities to mitigate the growing risk of heat hazard 

(section 3.3) and briefly review multi-disciplinary literature on disaster vulnerability (section 

3.4). 
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Figure 3.3:  Total Number of Heat Waves by State (1996-2015) 

 
Source: Authors’ own illustration. Data: National Centers for Environmental Information (NCEI) 

Figure 3.4:  Heat-Induced Fatalities per Year by State (1996-2015) 

  

Source: Authors’ own illustration. Data: National Centers for Environmental Information (NCEI) 
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3.3  COMMUNITY HEAT ISLAND MITIGATION ACTIONS 

 Increasing outbreaks of stronger weather extremes in recent decades and the gloomy 

predictions about climate change and future weather extremes triggered policy efforts and 

community actions for mitigation and adaptation. Most relevant heat-related actions currently 

undertaken by state and local government in the United States are the community-based “Heat 

Islands” reduction activities46. The primary goal of the community Heat Islands measures is to 

lower the developed area’s elevated surface/atmospheric temperatures, which thereby reduces the 

risk of heat waves. Under the Heat Islands phenomena, annual mean air temperature of a city 

with one million or more people can be 1.8 to 5.4°F warmer than air in surrounding areas (EPA, 

2008). The main causes of Urban Heat Islands are reduced vegetation (i.e. more dry and 

impervious surfaces), materials used to build urban infrastructures (which reflect/shed less and 

absorb/store more of the sun’s energy), urban geometry (which affect wind flow, energy 

absorption, radiation), and anthropogenic heat emission (all the energy used for human 

activities). Increased temperature due to the Heat Islands have considerable impacts on human 

life, such as detrimental effect on health, added risk of heat waves, impaired water quality, and 

other adverse impacts on environment. (EPA, 2008)  

 Growing interest and concern among communities regarding the Heat Island effect have 

enabled development and implementation of Heat Island reduction strategies by state and local 

governments in recent decades. The Heat Island mitigation actions (currently active or 

completed) are listed by the U.S. Environmental Protection Agency (EPA). Communities use 

                                       
46 Total 172 statewide or community level actions are publicly available at the U.S. Environmental Protection 

Agency (EPA) website https://www.epa.gov/heat-islands/heat-island-community-actions-database 

https://www.epa.gov/heat-islands/heat-island-community-actions-database
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four main measures to reduce the urban Heat Islands problem: i) Trees and Vegetation ii) Green 

Roofs, iii) Cool Roofs, iv) Cool Pavements. Such strategies are implemented through voluntary 

or policy mechanisms. Voluntary mechanisms include demonstration projects (e.g. green roof 

installation), incentive programs (e.g. tax abatement or rebate), urban forestry and community 

tree planting programs (e.g. Million Trees Initiative in LA, NYC, Denver, etc.), and outreach and 

education programs. Policy mechanisms involve procurement, ordinances, and standards such as 

building/zoning code, tree and landscape ordinances, green building programs and standards, as 

well as comprehensive community plans and design guidelines for Heat Island reduction.  

Table 3.1:  Heat Island Mitigation Actions List by Initiation Year (1985-2017) 

 Trees & 
Vegetation 

Cool 
Roofs 

Green 
Roofs 

Cool 
Pavements 

Others 
(HVI, etc.) 

 

Years WITHIN-COUNTY ACTIONS Total 

1985 - 1989 2 0 0 0 0 2 

1990 - 1994 2 1 0 0 0 3 

1995 - 1999 4 2 3 1 1 11 

2000 - 2004 19 9 10 8 0 46 

2005 - 2009 35 19 18 23 1 96 

2010 - 2014 22 19 15 15 0 71 

Total 84 50 46 47 2 229 

Years STATEWIDE ACTIONS Total 

1995 - 1999 0 1 0 0 0 1 

2000 - 2004 2 2 1 0 0 5 

2005 - 2009 3 3 1 0 1 8 

2010 - 2014 6 2 2 3 0 13 

Total 11 8 4 3 1 27 

Source: Authors’ own calculation. Data : “Heat Island Community Actions Database” from the U.S. 

Environmental Protection Agency (EPA) website: https://www.epa.gov/heat-islands/heat-island-

community-actions-database.  

 

 Table 3.1 present total number of community and statewide Heat Island mitigation 

measures by types of strategies and by years from 1985 to 2014. During this period, total 229 

https://www.epa.gov/heat-islands/heat-island-community-actions-database
https://www.epa.gov/heat-islands/heat-island-community-actions-database
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within-county and 27 statewide strategies have been initiated. Except for completed 

demonstration projects (e.g. green roof installation), most of them have been active since 

initiated. The number of Heat Island mitigation adoptions and implementations substantially 

increased from early 2000s as communities became more aware of the Heat Island problem and 

harmful effects of the elevated temperatures. The trees and vegetation measure has been the most 

popular strategy of all, followed by cool roofs. About half of the strategies have been 

implemented through policy mechanisms such as building/zoning codes, ordinances, programs 

and standards. The other half have been carried out voluntarily through incentive programs, 

demonstration projects, and outreach/education. 

 Heat Islands mitigation measures address the root causes of the growing heat 

vulnerability by modifying and reducing the long-term likelihood and prevalence of heat risk. 

Heat Island mitigation strategies help communities manage the fundamental meteorological risk 

of high temperature, thus acting primarily as “heat-hazard mitigation”. For instance, we might 

not be able to prevent tornadoes or hurricanes from happening (we instead dedicate our disaster 

efforts to minimize harmful consequences through anticipation, preparedness, disaster warning, 

post-disaster relief, etc.), however, heat events can be potentially averted and thus negative 

impacts to people can be avoided if we devote our efforts to “cool down” at-risk communities. 

Given this context, I hypothesize and test the notion that communities that implement Heat 

Islands mitigation measures exhibit a lower Heat Index values (i.e. apparent temperature) and in 

turn, become less vulnerable to heat hazards relative to communities that do not. More details on 

the heat hazard mitigation model are presented in section 3.5. 
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3.4  LITERATURE REVIEW  

 Given the life-threatening consequences of extreme heat events and the predicted 

increase in the heat-related risks in the coming years, understanding the concept of heat 

vulnerability and examining the impacts of heat events are increasingly of significant interest to 

scholars from various disciplines. Previous studies on heat waves from a disaster vulnerability 

perspective have been mostly conducted by epidemiologists, sociologists, or geographers. These 

studies are primarily interested in the temperature-mortality relationship; they use daily all-cause 

mortality of the study area to find factors that can explain the increase in mortality during (and in 

the aftermath of) heat waves. Some studies discuss heat vulnerability by examining the excess 

mortality due to high temperature of certain areas in the U.S. (Huang et al., 2011; Sheridan et al., 

2003; Uejio et. al., 2011), or in international context (Bell et al., 2008; Loughnan et al., 2014; 

Stafoggia et al., 2006). Others discuss the impact of a large heat event as a case study 

(Klinenberg, 1999; Browning et al., 2006). Another large set of studies focuses on the 

construction and/or evaluation of a heat vulnerability index for a certain region in the United 

States (Aubrecht et al. 2013; Harlan et al., 2006; Harlan et al., 2013; Hondula et al., 2012; 

Johnson et al., 2012; Reid et al., 2009)47. 

 However, this study takes a different analytical approach. I examine every individual 

heat event and the resulting direct deaths that occurred across the United States at county scale 

for many years. This study differs from previous studies in several respects. First, societal 

outcomes of the heat waves modeled are structurally different – previous heat studies use all-

cause mortality while this study uses direct heat-induced fatalities. As a result of using all-cause 

                                       
47 Previous studies on heat vulnerability index for areas within the United States are only introduced.    
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mortality, it is not obvious in those studies whether the factors found to be significantly 

contributing to the mortality indicate true “heat” vulnerability factors, or just those associated 

with general mortality. Often, the interpretation of these relationships was left to the discretion of 

the authors. Second, epidemiological studies apply case-oriented approaches, thus their findings 

are often not comparable to each other and not easily generalizable across different spatial or 

temporal contexts. The present paper constructs a model of U.S. nationwide heat fatalities at 

local scales, utilizing both spatial and temporal variations while controlling for state fixed 

effects. Finally, none of the previous studies empirically address political and institutional 

aspects, whereas I seek to identify the role of community-based heat mitigation actions initiated 

by state/local governments in reducing heat vulnerability. However, in both strands of the heat 

study literature, the importance of social vulnerability components in defining overall place 

vulnerability to heat are emphasized. Building upon the findings of previous heat studies, I 

construct an integrative conceptual framework of heat vulnerability in the next subsection. 

 

3.5  CONCEPTUALIZING MULTI-FACETED HEAT VULNERABILITY 

 Devastating natural disasters to date have revealed significant differentials in terms of 

impacts across different population segments, depending on socio-economic and political status. 

Numerous social scientists argue that underlying socio-economic factors such as poverty, access 

to social protection and security, as well inequalities with regard to gender, economic position, 

age, or race play an important role in determining disaster vulnerability (Aptekar and Boore 

1990; Albala-Bertrand 1993, Cannon 1994, Blaikie et al. 1994; Cutter 1996; Enarson and 

Morrow 1998; Peacock et al. 1997; Morrow 1999). Over the last decade, a body of empirical 

disaster studies have emerged that acknowledge the multi-faceted nature of disaster vulnerability 
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and use socio-political ecology of disasters as a conceptual framework of their empirical models 

(Brooks et al., 2005; Donner, 2007; Lim et al. 2017; Uejio et al., 2011; Zahran et al., 2008). In 

general, this strand of literature highlights socio-economic conditions that exacerbate or alleviate 

disaster impacts, while some of them are paying a greater attention to political and institutional 

components in defining disaster vulnerability (Brooks et al., 2005; Lim et al. 2017). In 

international context, a set of multiple-disaster studies focuses on the relationship between 

economic development and disaster impacts, demonstrating the role of economic and 

institutional factors in determining disaster-induced fatalities (Kahn, 2005; Toya and Skidmore, 

2007; Strömberg, 2007; Kellenberg and Mobarak, 2008; Raschky, 2008; Gaiha et al., 2013).  

Figure 3.5:  Conceptualizing Multi-Faceted Heat Vulnerability  
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 Consolidating the prior findings and knowledge on disaster vulnerability from multiple 

disciplines, this study applies an integrative view of the climatic, built-environmental, socio-

economic, and institutional elements of disaster vulnerability for more comprehensive 

appreciation of heat vulnerability and more robust identification of heat risk factors. To facilitate 

the understanding of the important linkages and interactions among various components, a 

conceptual framework of the heat vulnerability model is illustrated in Figure 3.5. As shown in 

the figure, disaster vulnerability of a community is multi-faceted; it is defined and shaped not 

only by physical and meteorological characteristics of hazards, but also by various human 

components such as built-environmental conditions, population characteristics, and socio-

economic factors.  

 Each of three arrows in Figure 3.5 indicate important interactions and relationships 

among components, which this study is primarily interested in and attempts to empirically 

address. The first arrow that connects four key elements that shape “Heat Vulnerability” and 

points to the “Societal Impact” shows that societal outcomes of extreme heat hazards are 

determined and influenced by the key elements of heat vulnerability. My main analysis 

investigates this relationship to identify underlying societal and environmental factors that 

determine heat-induced fatalities and use the estimation results to predict future outcomes. The 

second arrow that connects “Societal Impact” and “Adaptation & Mitigation”, pointing to the 

latter, indicates a short-run societal and political pressure for public actions and initiatives for 

heat mitigation, as a reaction to the negative consequences of heat hazard. In the longer-term, the 

public efforts on structural hazard mitigation and adaptation, such as the abovementioned Heat 

Island reduction strategies, will modify and ameliorate heat vulnerability by fundamentally 

reducing the risk of heat hazard the society faces. This linkage is indicated by the green arrow 



115 

 

pointing to the “Heat Hazard” – the first element of heat vulnerability. Each major components 

of heat vulnerability and how they are empirically incorporated in my analysis are discussed in 

detail in the following subsections. 

3.5.1  Major Components of Heat Vulnerability 

 Based on the conceptual framework presented in Figure 3.5, I propose that major 

components that define and modify overall vulnerability to heat hazards are i) heat hazard 

profile, ii) climatic and environmental conditions, and iii) demographic and socio-economic 

characteristics. In addition, I consider institutional efforts for mitigation and adaptation as an 

external component of heat vulnerability that influences and interacts with heat vulnerability. 

 Heat Hazard Profile   The heat hazard profile includes event-specific physical and 

meteorological aspects of a heat event. I consider factors such as timing of the incidence (time of 

day, season of the year when an event occurred), type of the heat event (excessive heat or heat), 

and Heat Index value of the month an event occurred. Previous study on tornadoes (Simmons 

and Sutter, 2011) control for the time of day by categorizing it into overnight (12:00-5:59 AM), 

morning (6:00-11:59 AM), early afternoon (12:00-3:59 PM), late afternoon (4:00-7:59 PM), and 

evening (8:00-11:59 PM), and show that disaster impacts could differ depending on the timing of 

an incidence. I also include indicator variables for the seasons (Spring, Summer, Fall, and 

Winter) as a control variable. One of the most critical meteorological factors in my model is the 

Heat Index (also known as apparent temperature) that measures the intensity of heat hazard. The 

intensity of a heat event is approximated by the average maximum Heat Index value of the 

month the event occurred. Previous epidemiologic heat studies find the positive correlation 

between the temperature and all-cause mortality (Hajat and Kosatky, 2010). Although my study 
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examines the direct fatalities resulting from a heat event (instead of all-cause mortality) as an 

outcome measure, it is expected that a similar or even stronger positive relationship holds 

between the heat index (apparent temperature) and heat-induced fatalities. 

 Climatic and Environmental Conditions    Heat vulnerability is also shaped by 

characteristics of the place exposed to extreme heat hazard. I take into consideration area-

specific risk factors such as climatic and meteorological conditions of the area (annual average 

temperature, annual average of max. air temperature) and built-environmental conditions 

(urbanization, population density). If a heat event occurs in a community that is not accustomed 

to the extreme high temperature and heat hazards, the impact of the heat stressor can be deadlier. 

In this regard, the annual average air temperature and the average max. air temperature are 

included in my model. In addition, as discussed in section 3.3, the Heat Island effects magnify 

the heat vulnerability of the urban population due to the urban structures and land use pattern 

with less vegetated surfaces compared to rural areas. Considering that the urbanization is an 

important heat risk factor that would exacerbate the adverse impacts of heat waves, I include the 

urban population density in the model as a measure of urbanization of counties48.  

 Demographic & Socio-Economic Characteristics   As previously discussed, impacts 

of extreme weather events on different population segments can significantly vary depending on 

their social and economic characteristics. Those who are more vulnerable in societal context are 

more susceptible to harm in the event of extreme heat. Based on the previous findings from 

                                       

48 As an alternative measure of the urbanization, the percent of urban population was also considered. However, 

due to the strong correlation between the percent of urban population and the population size (correlation coefficient 

= 0.84), I incorporate the urban density, controlling for the population size in the empirical analysis. 
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studies on heat or other types of natural disasters, I stress that population composition, poverty, 

income level, as well as housing related factors are key aspects that shape heat vulnerability and 

influence societal outcomes. 

 In the heat vulnerability model, demographic composition such as the proportion of 

young and elderly population, and the proportion of non-white are considered. Many 

epidemiological studies have previously shown the differences in heat mortality risk by age 

where the elderly and children tend to suffer a greater health impact from heat stress due to their 

limited ability to thermoregulate (Å ström et al., 2011; Kovats and Hajat, 2008). Race or ethnicity 

are another key factor that must be taken into account when modeling disaster vulnerability. 

Prior disaster studies have elucidated that disaster effects vary by race and ethnicity across all the 

phases of disasters due to factors such as language barriers, housing patterns, community 

isolation, and social and economic disparities (Fothergill et. al.,1999; Hansen et al., 2013).  

 We also incorporate several socio-economic factors that are key indicators of population 

vulnerability. I consider economic status of communities measured by county per capita income 

and poverty rate. A core interest for research in the economics of natural disasters literature is 

how the level of economic development, or wealth, affects the disaster impacts (Kahn, 2005; 

Toya and Skidmore, 2007; Strömberg, 2007; Kellenberg and Mobarak, 2008; Raschky, 2008; 

Gaiha et al., 2013). These studies find in general, a negative relationship between income and 

disaster consequences – mostly, disaster fatalities – and explain that the wealthier countries have 

a higher demand for safety where economic resources they possess enable them to employ 

precautionary measures to mitigate disaster risk. On the other hand, some studies address the 

higher vulnerability of people who are economically insecure or living below poverty line (Lal et 

al., 2009; Lim et al., 2017). Lim et al. (2017) find a disproportionate concentration of poor 
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people at greater tornado risk areas, as well as how various dimensions of poverty aggravate 

vulnerability of people to tornadoes. Heat-episode case studies find that majority of the victims 

of the Midwest heat disaster in 1980 and Chicago heat waves in 1995 were low-income groups 

(Fothergill and Peek, 2004; Klinenberg, 1999).  

 A last set of human components factored in to my heat vulnerability model is housing-

related factors – the share of renter occupied housing units and the share of mobile homes 

among all housing units. Previous studies discuss that people who are living in a low-cost, 

affordable housing are exposed to greater risks of hazards due to the substandard quality of 

housing they occupy (Aptekar 1991, Phillips 1993, Pastor et al. 2006). Both housing factors are 

closely linked with structural and socio-economic vulnerability of people to natural hazards. 

Cutter et al. (2003) explain that housing ownership and mobile homes are one of the most 

important predictors of social vulnerability. Recent disaster studies (Lim et al. 2017; Simmons 

and Sutter, 2013) provide consistent empirical evidence that places with more mobile homes or 

renter occupied homes suffer greater human losses from natural disasters. 

 Extension: Poverty + Aging Society   Many heat studies find the elderly are one of the 

most vulnerable group of people to heat stress. The elderly is more vulnerable to heat due to their 

increased physiological susceptibility, but from the social vulnerability perspective, elders are at 

greater risk in that they are more likely socially isolated, having no one available to help them in 

disaster situation (Klinenberg, 1999). Furthermore, senior poverty is another serious issue that 

aggravates vulnerability of the elderly. Economic insecurity among senior households increased 

from 27 percent to 36 percent over the period 2004 – 2008 (Meschede et al., 2011). In this trend, 

setting aside the increasing heat risks in the coming years, the heat vulnerability of the United 

States that is characterized by two key risk factors – aging and poverty combined – is anticipated 



119 

 

only to increase if the trends continue and no actions are taken.  

 To identify the growing heat vulnerability of the United States given the expected 

substantial growth of older population and deepening poverty among them, my empirical 

analysis factors in senior poverty and elderly isolation along with a wide range of heat 

vulnerability factors and discusses implications to our society. In particular, I utilize the results of 

the empirical analysis along with the projected trend in elderly population growth, to make a 

prediction about the future heat vulnerability of the United States and anticipated detrimental 

consequences – measured by the expected increase in heat-induced fatalities – over the next few 

decades, due to the growth of the most heat-vulnerable population segment in the United States. 

3.5.2  Institutional Efforts for Mitigation and Adaptation 

 Lastly, I introduce another facet of growing importance in heat vulnerability framework 

– heat mitigation and adaptation efforts. I consider government-initiated efforts and interventions 

for mitigation and adaptation as an external component that influences and interacts with heat 

vulnerability. Many scientific simulation or experimental studies have been carried out to assess 

the microclimate cooling benefits of the Heat Island measures such as cool roofs (Rosenzweig et 

al., 2009; Synnefa et al., 2008), trees and vegetation (Perini and Magliocco, 2014; Tan et al., 

2016), and cool pavements (Akbari et al., 2001; Synnefa et al., 2011). However, there has been 

no prior heat study that seeks to find to what extent the government-initiated Heat Island 

mitigation measures (discussed in section 3.3) can enhance societal outcomes of heat hazard. To 

fill this significant gap in the literature, I construct a two-phase model in which the first-phase 

model estimate whether communities that implement Heat Islands mitigation measures exhibit 

lower Heat Index values than communities that do not. Using the Heat Index measure as an 

intermediary variable, I combine the result from the first-phase Heat Index model with the 
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second-phase estimation result of heat fatality analysis. I also conduct a direct estimation of the 

effect. My analyses enable us to evaluate the role of the Heat Island mitigation activities in 

reducing extreme heat risk and to identify a mediated effect Heat Island mitigation measures 

have on heat-induced fatalities. 

 

3.6  EMPIRICAL ANALYSIS 

 My empirical analysis involves modeling two critical phases of heat vulnerability 

dynamics. Each model is discussed in detail in the following subsections. 

3.6.1  First-Phase: Heat Hazard Mitigation Model 

Heat hazards are caused and magnified by human activities, but they can be also weakened and 

ameliorated by human efforts. The first-phase model evaluates the role of Heat Islands reduction 

measures in mitigating heat hazards at county scale. Factors that are known to increase heat 

hazards include anthropogenic heat emissions, urbanization, climatic conditions, and geographic 

locations (EPA, 2008). Considering these contributing factors to heat hazards, the first-phase 

Heat Hazard model is conceptualized in the following equation: 

𝑯𝒆𝒂𝒕𝑯𝒂𝒛𝒂𝒓𝒅𝒊𝒕

= f(AnthropogenicHeat𝑖𝑡 , Urbanization𝑖𝑡,𝐌𝐢𝐭𝐢𝐠𝐚𝐭𝐢𝐨𝐧𝒊𝒕−𝟐, Climaticconditions𝑖𝑡|𝒄𝒊, 𝒈𝒊𝒕, 𝜆𝑡)(1) 

where𝒄𝒊 = unobservedcountyfixedeffects, 

𝒈𝒊 = county − specificlineartrend 

𝝀𝒕 = timefixedeffects 

 For the dependent variable of the first-phase model, the Heat Index (also known as 

apparent temperature) is used as a measure of the intensity of heat hazards. Specifically, the 
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maximum for monthly average of daily max. A Heat Index measuring the most devastating 

summertime heat hazard that pose the greatest threat to people is examined. I hypothesize that 

community efforts for heat hazard mitigation through various “cooling” measures would lower 

the risk of the deadly heatwaves. I also explore alternative specifications using different measure 

of heat hazard. The number of heat wave days49 based on i) daily maximum Heat Index and ii) 

Net Daily Heat Stress (NDHS) are used as an alternative measure of the intensity of heat 

hazards. 

 Considering the long-lasting effects of heat mitigation strategies (planting trees & 

vegetation, use of cool materials for roofs and pavements), I construct a county-year Heat Island 

Mitigation (HIM) Actions variable that indicates a cumulative number of the Heat Island 

reduction strategies that have been implemented in a county by the given year. I then group 

counties by the number of mitigation measures they have been implementing. Importantly, as the 

realization of the heat-hazard-lowering effects of the HIM measures may not be immediate, I use 

2-year lagged values of the HIM Actions variables. In the regression model, three types of Heat 

Island Mitigation Actions variable are incorporated in each three specifications: a) an indicator 

variable that represents whether any Heat Island mitigation actions have been adopted (=1) or 

not, b) a continuous variable for the total number of actions, c) multiple group indicator variables 

that are constructed based on the number of mitigation actions taken (0, 1, 2-3, 4+). The number 

of measures of 0, 1, 2-3, 4+ are specifically used to group counties in order to have a sufficient 

                                       
49 The number of heat wave days is computed at the county level, the totals show the number of heat wave days per 

county per year. When the geographic area spans more than one county, an extreme heat event is counted for each 

county where measurable observations that met the heat event definition occurred. (National Climate Assessment, 

2015. Extreme Heat Events: Heat Wave Days in May - September for years 1981-2010) 
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number of observations for each group indicators in the regression50. 

 I use county-year panel structured data to estimate the heat-hazard-lowering effect of 

Heat Island mitigation measures and employ the Random Trend model, controlling for time fixed 

effects as well. The Random Trend Model (RTM) explicitly allows for two sources of 

heterogeneity – the level effect, 𝑐𝑖, and the county-specific linear trend, 𝑔𝑖 (Wooldridge, 2010). 

In the FE estimation, the unobserved effect is set to have the same partial effect on the heat 

hazard in all time periods. However, the length of the time dimension of my panel data (1998-

2011) is relatively long, during which each county could presumably have its own specific time 

trend. Allowing for this possibility, the Random Trend Model is estimated. We first difference the 

equation (2) to eliminate the level effect, 𝑐𝑖, and then apply the FE to the first differenced 

equation (3) to remove a trend effect, 𝑔𝑖.  

 By employing the Random Trend Model, I can control for the geographic location and 

many other area-specific physical factors that are related to heat hazard, such as proximity to 

large water bodies and mountainous terrain but are rarely changes over time (i.e. time-invariant 

county traits and characteristics, 𝑐𝑖) as well as county-specific trends that could affect the 

intensity of heat hazard (𝑔𝑖)51. In addition, naturally occurring meteorological temporal 

variations over time that are common to all counties over the periods are absorbed by a vector of 

                                       
50 In earlier years, there are very limited number of counties that adopted any HIM measures. For example, prior to 

2006, counties with 2 HIM measures make up less than 1% of total observation. 
51 For example, a well-known factor of Urban Heat Island – urban growth – is expected to be captured by the 

county trend effects. A continuing urbanization trends are found nation-wide, but the rate of the urban growth may 

vary across the counties. However, the county level urban population data are only available decennially. The 

interpolation method is commonly used in practice to treat the decennial data to obtain a monotonic interpolation of 

data, i.e. a linear trend. I include the urbanization measure in the FE specification (Table 3.A2) but do not in the 

RTM specification, as the trend effect 𝑔𝑖 in the RTM would capture county-specific urbanization trends that 

influence the heat hazard intensities.   
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the time-fixed effects, 𝝀𝒕. Thus, any global or macro-scale trend of heat intensity, such as global 

warming trend, would be captured by the year fixed effects while a meso-scale heat trend would 

be controlled for by the county-specific time trend. 

𝑯𝑰𝒊𝒕 = 𝑐𝑖 + 𝑔𝑖𝑡 + 𝜷𝟏𝑴𝒊𝒕−𝟐 + 𝛽 ∙ 𝑋𝑖𝑡 + 𝝀𝒕 + 𝑢𝑖𝑡 𝑡 = 3,… , 𝑇(2) 

∆𝑯𝑰𝒊𝒕 = 𝑔𝑖 +𝜷𝟏∆𝑴𝒊𝒕−𝟐 + 𝛽 ∙ ∆𝑋𝑖𝑡 + ∆𝝀𝒕 +∆𝑢𝑖𝑡,𝑡 = 4, … , 𝑇(3) 

 Annual air temperatures and monthly Heat Index data for years 1998-2011 are collected 

from North America Land Data Assimilation System (NLDAS) at CDC WONDER online 

database. Heat Wave Days data are from National Climate Assessment (NCA) at CDC 

WONDER.  The statewide or community-wide Heat Island mitigation actions data are collected 

from Environmental Protection Agency (EPA). Table 3.2 shows a list of the dependent variable 

and explanatory and control variables included in the Heat Hazard Mitigation model.  

Table 3.2:  List of Variables in the Heat Hazard Mitigation Model 

Dependent Variable  Source 

 Max. for Monthly Average Heat Index Value (°F) of year 𝑡 (𝑡=1998-2011)  
𝑯𝑰𝒊𝒕 

NLDAS 

 Heat Wave Days Based on Daily Max. Heat Index or Net Daily Heat Stress NCA 

Explanatory/Control Variables 

 
Heat Island 
Mitigation 

Actions 

Lagged Heat Island Mitigation Status (Yes=1, No=0) 

𝑴𝒊𝒕−𝟐 

EPA 

Lagged Total No. of Heat Island Mitigation Actions EPA 

Group Indicators (Lagged No. of actions: 0, 1, 2-3, 4+) EPA 

Climatic  
Conditions 

Annual Average of Max. Daily Air Temperature (°F) 

𝑿𝒊𝒕 

NLDAS 

Annual Average of Min. Daily Air Temperature (°F) NLDAS 

Population County Population Size U.S.Census 

County FE Time-invariant County Traits and Characteristics. 𝑐𝑖   

FE Trend County-specific Linear Trend 𝑔𝑖  

 Time FE A set of Year Indicators (1998 – 2011) 𝝀𝑡  
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 To understand the Heat Island Mitigation Actions adoption status across counties 

depending on the vulnerability to heat events, I present Table 3.3 that shows the average heat 

fatalities (as a measure of heat vulnerability) by Heat Island Mitigation Actions adoption status 

(binary; adopted or not) and by county metropolitan categories (metro, metro & micro, and all). 

Differences in rows by adoption status in Table 3.3 suggests that counties that experience more 

human losses from heat are more likely to adopt heat mitigation strategies. This correlation 

indicates that there is an immediate societal and political pressure for public actions and 

initiatives for heat mitigation, as a reaction to the negative consequences of heat hazard. It 

explains the interrelationship depicted in the red arrow in the heat vulnerability framework 

diagram (Figure 3.5) that connects “Societal Impact” and “Mitigation & Adaptation”, pointing to 

the latter. Across the columns of Table 3.3, we can compare mitigation adoption status (‘%’ 

column) and average heat fatalities (‘Avg.’ column) by county metropolitan categories. It shows 

that more urbanized counties suffer greater societal impacts from heat exposure and thus, they 

are more likely to put forth an effort into heat mitigation. 

Table 3.3:  Heat Vulnerability and Heat Island Mitigation Actions by Metropolitan Status 

 Direct Fatalities Resulted from Heat Events (1996 – 2010) 

Heat Island 
Mitigation Actions 

Adoption Status 

Metro + Micro + Rural Metro + Micro Metropolitan only 

Avg. Obs. % Avg. Obs. % Avg. Obs. % 

No Actions taken 0.031 39,128 84% 0.050 22,190 82% 0.074 13,879 80% 

1 or more Actions 0.094 7,447 16% 0.146 4,705 18% 0.196 3,461 20% 

Total 0.041 46,575 100% 0.067 26,895 100% 0.098 17,340 100% 

Note: 3,015 county observations for 15 years from 1996-2010 consist of the total observation of 46,575. 

Source: Authors’ own calculation.  Data:  EPA Heat Island Community Actions Database and NCEI 

Storm Events Database. 



125 

 

3.6.2  Second-Phase: Heat Vulnerability – Fatality Model 

 Based on the Heat Vulnerability framework discussed in section 3.4, I examine all heat 

and excessive heat events that occurred over the 1996 and 2011 period in the contiguous United 

States using county level data in the second-phase Heat Fatality analysis. Data on individual heat 

events in the United States are collected from NOAA National Centers for Environmental 

Information (NCEI)52. In the NCEI Storm Events Database, each entry for individual heat events 

has detailed information on time, dates, locations of the events, as well as (direct and indirect) 

fatalities. Each heat event is matched with the county meteorological characteristics. Annual air 

temperatures and monthly Heat Index data for years 1996-2011 from North America Land Data 

Assimilation System (NLDAS) are used. County demographic, socio-economic, and housing 

data are collected from U.S. Bureau of the Census53 and merged with the heat data. Note that the 

unit of observation of this study is individual heat event at the scale of counties. Thus, some 

counties may appear in the data set multiple times in a certain year but may not in a different 

year (so-called time-series-cross-sectional event data structure). 

 The dependent variable in the main analysis is the number of fatalities directly resulted 

from individual heat events. Among total 12,779 heat events during the study period 1998 – 

2011, only 849 events resulted in fatalities; for a large portion of observations, the dependent 

variable is zero. Thus, for the econometric analysis of the main model, I employ Zero-Inflated 

Negative Binomial (ZINB) model which properly treats the non-negative count variables with 

the over-dispersion (excess zeros) problem (Long and Freese, 2006). Because of the 

                                       
52 Data source: www.ncdc.noaa.gov/data-access/severe-weather 
53 Decennial census data for years 1990 and 2000, and American Community Survey data for year 2015 are used for 

demographic and housing variables. They are interpolated to obtain yearly data over the study period 1996 – 2011.  

http://www.ncdc.noaa.gov/data-access/severe-weather
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distributional features of disaster-induced fatalities, ZINB model is increasingly employed in 

disaster studies (e.g. Kahn 2005, Zahran et al. 2008). In the ZINB model, the excess zeros are 

considered to be generated by a separate process from the count values and the excess zeros are 

modeled independently. The ZINB model combines binary Logit model for zero outcomes and 

Negative Binomial model for event-counts. The ZINB regression analysis is characterized by the 

following model:  

(a) Log Likelihood: 

lnL = ∑ln [𝐹(𝒛𝒋𝛾) + {1 − 𝐹(𝒛𝒋𝛾)}𝑝𝑗

1
𝛼]

𝑗∈𝑆

 

+∑[ln{1 − 𝐹(𝒛𝒋𝛾)} + ln Γ (
1

𝛼
+ 𝑦𝑗) − ln Γ(𝑦𝑗 + 1) − ln Γ (

1

𝛼
) +

1

𝛼
ln 𝑝𝑗 + 𝑦𝑗 ln(1 − 𝑝𝑗)]

𝑗∉𝑆

 

(b) 𝑝𝑗 =
1

[1+𝛼 exp(𝒙𝒋𝜹)]
 

(c) 𝐹 : the inverse of the logit link 

(d) 𝑆 : the set of heat observations for which the outcome (𝑦𝑗: death) is zero.  

(e) 𝒛𝒋 : Inflation variables for the binary Logit model predicting whether an observation 

       is in the always-zero group where Pr(𝑦𝑗 = 0) = 1 

(f) 𝒙𝒋 : Covariates for counts model (Negative Binomial) 

 In the empirical analysis, the covariates𝒙𝒋 for the count model of Negative Binomial 

include the following variables: 𝑪𝒋, a vector of demographic, socio-economic, and housing 

characteristics of the county that influence fatalities of heat j; 𝑲𝒋, meteorological disaster-

specific characteristics of individual heat event j; 𝑬𝒋, a vector of climatic and environmental 

characteristics of the county where the disaster 𝑗occurred. My data set is in a time-series-cross-
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section structure and thus, the empirical estimation can exploit both cross-sectional & cross-

temporal variations. State fixed effects are included to control for unobserved statewide 

heterogeneity. Time fixed effects are also included. As the inflation variables of ZINB model, 

four key variables are selected from the explanatory variables to serve that determine the 

probability of being in the always-zero group: annual average daily air temperature, annual 

average of max daily air temperature, metropolitan status, and per capita income. Each of these 

variables represent the affected area’s climate normal, urbanization, and socio-economic status, 

respectively. The detailed list of the variables included in the analysis is provided in Table 3.4. 

Using the same notations specified in Table 3.2 and 3.4, I summarize two regression 

equations as follows:  

Heat Hazard Mitigation Model 

𝐸(𝐻𝐼𝑖𝑡|𝑀, 𝑋, 𝑐, 𝑔, 𝜆) = 𝑐𝑖 + 𝑔𝑖𝑡 + 𝛽1𝑀𝑖𝑡−2 + 𝜷 ∙ 𝑿𝒊𝒕 + 𝝀𝒕   (4) 

Heat Vulnerability – Fatality Model 

𝐸(𝑦𝑗𝑡|𝒙) = exp(𝒙𝒋𝒕𝜹) ∙ [1 − 𝑃𝑟(𝑦 = 0)] = exp(𝒙𝒋𝒕𝜹) ∙ [1 −
exp(𝒛𝒋𝒕𝜸)

1+exp(𝒛𝒋𝒕𝜸)
]  (5) 

where exp(𝒙𝒋𝒕𝜹) = exp(𝛿0 + 𝛿1𝐻𝐼𝑗𝑡 + 𝜹 ∙ 𝒙𝒋𝒕 + 𝑻𝒕 + 𝑺𝒋) 

Once the regressions results are obtained, I combine the result from the first-phase Heat Index 

model (equation (4)) with the second-phase estimation result of heat fatality analysis (equation 

(5)), using the Heat Index measure as an intermediary variable. Mediated effect of heat 

mitigation actions (𝑀𝑖𝑡) on heat fatalities (𝑦𝑖𝑡) is then derived from the product of two 

estimates, 𝛿1 ∙ 𝛽1. Given the sign of coefficient 𝛽1 to be negative and 𝛿1 to be positive, for one 
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unit increase in variable 𝑀𝑖𝑡, the expected heat fatalities decrease by (1 − exp(𝛿1 ∙ 𝛽1))% on 

average, holding all other variables constant.  

Table 3.4:  List of Variables in the Heat Fatality Model 

Dependent Variable  Source 

 Direct Deaths from Heat 𝒚𝒋 NCEI 

Explanatory/Control Variables 

 

Heat Hazard 
Profile 

Begin Time of the event : Overnight, Morning,  
Early Afternoon, Late Afternoon, Evening 

𝑲𝒋 

NCEI 

Season : Spring, Summer, Fall, Winter NCEI 

Event Type :  Heat, Excess Heat NCEI 

Monthly Average of Daily Maximum Heat Index (°F) NLDAS 

Climatic & 
Environmental 

Conditions 

Annual Average of Daily Air Temperature (°F) 

𝑬𝒋 

NLDAS 

Annual Average of Max. Daily Air Temperature (°F) NLDAS 

Population Size Census 

Urban Population Density (per 1,000 m2) Census 

Demographic 
Composition 

Percent of Non-White 

𝑪𝒋 

Census 

Percent of the Young (under 18) Census 

Percent of the Elderly (over 65) Census 

Percent of the Elderly Living Alone Census 

Economic 
Factors 

Poverty Rate among Elderly Census 

Per capita Income Census 

Poverty Rate Census 

Housing  
Factors 

Percent of Renter Occupied Housing Units Census 

Percent of Mobile Homes in Total Housing Units Census 

Time FE Year Indicator Variables 𝑻𝒕  

State FE Indicator Variables for U.S. States 𝑺𝒋  

Inflation Variables of ZINB logit model 

 
Climate 

Annual Average of Daily Air Temperature (°F) 

𝒛𝒋 

NLDAS 

Annual Average of Max. Daily Air Temperature (°F) NLDAS 

Urbanization Metropolitan Status (Metro=1, Micro=0, Rural=-1) Census 

Economic Status Per capita Income Census 
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3.6.3  Heat Island Mitigation Actions and Heat Fatality: A Direct Estimation 

 I also attempt to estimate a direct effect of HIM measures on heat fatalities, using the 

Poisson Fixed Effects estimator, controlling for the time-invariant unobserved heterogeneity of 

counties that might be correlated with the area’s susceptibility to heat. For the application of the 

panel method, I transform the heat event data, which is also called Cross-Sectional-Time-Series 

data, into county-year panel structured one. The dependent variable is now the number of 

fatalities per heat event which is no longer integer valued and still has an overdispersion problem 

due to the excess zeros. However, Poisson Fixed Effects (quasi-MLE) estimator is fully robust to 

any distributional failure and serial correlation (Wooldridge, 1991). In this analysis, I primarily 

focus on the effect of the Heat Island Mitigation measures on heat fatalities, controlling for the 

meteorological factors, demographic characteristics, and per capita income level of counties 

along with county fixed effects and time fixed effects. Summary statistics for all variables 

included in the first-phase, second-phase, and the direct effect analysis are presented in Table 3.5. 
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Table 3.5:  Summary Statistics 

 

 Mean 
Standard 

Deviation 
Min Max Obs. No. 

First-Phase Random Trend Model      

  Max. for Monthly Avg. Max. Heat Index (°F) 94.45 6.09 78.40 111.02 40168 

  Heat Island Mitigation Status (=1 if yes) 0.164 0.37 0 1 40168 

  Total No. of Heat Island Mitigation Actions 0.218 0.60 0 11 40168 

  No. of Mitigation Actions: 0      (=1 if yes) 0.836 0.37 0 1 40168 

  No. of Mitigation Actions: 1      (=1 if yes) 0.132 0.34 0 1 40168 

  No. of Mitigation Actions: 2-3   (=1 if yes) 0.028 0.16 0 1 40168 

  No. of Mitigation Actions: 4+    (=1 if yes) 0.004 0.06 0 1 40168 

  Annual Avg. of Max. Daily Temperature (°F) 65.31 8.99 40.84 89.79 40168 

  Annual Avg. of Min. Daily Temperature (°F) 47.11 7.66 22.71 72.01 40168 

  Population (in thousands) 91.73 295.33 0.055 9818.61 40168 

  Heat Wave Days Based on Daily Max Heat Index 7.36 6.75 0 52 43414 

  Heat Wave Days Based on Net Daily Heat Stress 6.62 6.93 0 51 43414 

Second-Phase ZINB Model      

  Direct Heat Fatalities 0.13 1.30 0 93 15050 

  Monthly Avg. of Max. Heat Index (°F) 96.91 6.16 78.80 111.02 15050 

  Annual Avg. of Max. Daily Temperature (°F) 67.00 7.02 44.36 89.04 15050 

  Annual Avg. of Daily Temperature (°F) 57.65 6.21 36.07 77.41 15050 

  Ln (Population) 10.69 1.54 5.70 16.09 15050 

  Urban Population Density per 1000m2 1.63 1.92 0 69.47 15050 

  Metro Status (Metro=1, Micro=0, Rural=-1) 0.12 0.91 -1 1 15050 

  Ln (Per capita Income) 10.01 0.23 9.23 11.03 15050 

  Poverty Rate 14.75 6.60 2.56 46.09 15050 

  Percent of the Young (under 18) 24.38 2.66 13.88 41.66 15050 

  Percent of the Elderly (over 65) 14.94 3.68 1.95 34.03 15050 

  Percent of the Elderly Living Alone 4.31 1.29 0.36 11.08 15050 

  Poverty Rate among Elderly 11.02 4.86 0 40.87 15050 

  Percent of Non-White 16.96 16.35 0.47 89.22 15050 

  Percent of Renter Occupied Housing 27.59 8.13 10.16 80.09 15050 

  Percent of Mobile Homes 11.46 8.58 0 59.36 15050 

  Excessive Heat 0.25 0.44 0 1 15050 

  Heat 0.75 0.44 0 1 15050 

  Overnight 0.20 0.40 0 1 15050 

  Morning 0.42 0.49 0 1 15050 

  Early Afternoon 0.04 0.19 0 1 15050 

  Late Afternoon 0.01 0.07 0 1 15050 

  Evening 0.20 0.40 0 1 15050 

  Spring 0.04 0.20 0 1 15050 

  Summer 0.91 0.29 0 1 15050 

  Fall 0.05 0.21 0 1 15050 

  Winter 0.00 0.04 0 1 15050 

Poisson FE Heat Fatality Model      

  Annual Heat Fatalities per Heat Event 0.47 1.92 0 35 1585 

  No. of Heat Island Mitigation Actions_All 0.22 0.83 0 11 1585 

  No. of Heat Island Mitigation Actions_Local 0.08 0.59 0 11 1585 

  Heat Wave Days Based on Daily Max Temp. 11.40 11.20 0 65 1585 

  Annual Avg. of Max. Daily Temperature (°F) 67.12 6.72 49.93 84.95 1585 

  Annual Avg. of Min. Daily Temperature (°F) 49.11 5.20 35.63 68.91 1585 

  Population (in thousands) 395.20 833.40 2.20 9737.96 1585 

  Percent Urban Population 67.01 28.98 0 100 1585 

  Percent of the Elderly (over 65) 12.68 3.29 3.64 22.24 1585 

  Ln (Per capita Income) 10.08 0.24 9.35 10.92 1585 
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3.7  RESULTS 

3.7.1  First-Phase: Heat Hazard Mitigation Model 

 Table 3.6 presents the estimates from the Random Trend Model (RTM)54 for the first 

phase Heat Hazard Mitigation Model. I test if community efforts for heat mitigation through 

various Heat Island mitigation measures would lower the risk of the deadly heatwaves. Two 

types of measures for heat hazard intensity are used – the Heat Index measure (i.e. the maximum 

for monthly average of daily max. Heat Index) in columns (1) – (3) and the number of Heat 

Wave Days in columns (4) and (5). In particular, the number of Heat Wave days based on daily 

maximum Heat Index (column 4) and Net Daily Heat Stress (NDHS) (column 5) are examined 

as an alternative measure to the Heat Index. 

 Three specifications are estimated to investigate the role of community Heat Island 

mitigation (HIM) actions on the Heat Index. In column (1), an indicator variable for Heat Island 

mitigation adoption status is incorporated to identify the expected change in heat hazard intensity 

by comparing the Heat Index values (apparent temperature) pre- and post- adoption. The result 

shows that counties that have initiated any mitigation strategies experience .697°F lower 

apparent temperature, on average, compared to the period they had not implemented any HIM. In 

column (2), I estimate a slope relationship between the number of Heat Island mitigation 

measures and the Heat Index values. It is found that one unit increase in the number of actions 

taken for heat hazard reduction is estimated to lower the heat index values by .258°F. 

 

                                       
54 I also estimate alternative specifications using the FE approach that allows only a level effect, but not a county-

specific time trend. The result is presented in Table 3.A2 in the Appendix. However, Wooldridge Test (2002) 

indicates that these FE models suffer from the presence of serial correlation, supporting the choice of the Random 

Trend Model with cluster-robust standard errors.  
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Table 3.6:  Heat Hazard Model: The Role of Heat Island Mitigation Actions 

Panel Fixed Effects & Random Trend Model Results  

 

 (1) (2) (3) (4) (5) 

 RTM_HI 1 RTM_HI 2 RTM_HI 3 RTM_HD 1 RTM_HD 2 

Dependent Variable Heat Index Heat Index Heat Index 
Heat Days by 

Heat Index 
Heat Days by 
Heat Stress 

      

HIM Status_lag -0.697***     
 (0.102)     
No. of HIM Actions_lag  -0.258***    
  (0.063)    
1 HIM Actions Group_lag   -0.685*** -1.664*** -1.958*** 
   (0.105) (0.247) (0.256) 
2-3 HIM Actions Group_lag   -0.896*** -2.809*** -2.632*** 
   (0.185) (0.444) (0.383) 
 4+ HIM Actions Group_lag   -1.932*** -3.994*** -3.942*** 
   (0.295) (1.496) (1.313) 
Population (in thousands) 0.018*** 0.017*** 0.018*** 0.006 0.012 
 (0.005) (0.005) (0.005) (0.010) (0.010) 
Annual Avg of Max Daily Temp 0.545*** 0.546*** 0.545*** 1.959*** 1.719*** 
 (0.011) (0.011) (0.011) (0.034) (0.036) 
Annual Avg of Min Daily Temp 0.016 0.014 0.014 -1.241*** -1.197*** 
 (0.018) (0.017) (0.017) (0.044) (0.041) 
Constant 0.241*** 0.240*** 0.244*** 0.945*** 0.947*** 

 (0.005) (0.005) (0.005) (0.012) (0.011) 
      

County Fixed Effects Yes Yes Yes Yes Yes 
County-Specific Time Trend Yes Yes Yes Yes Yes 
Time Fixed Effects Yes Yes Yes Yes Yes 

R-squared : within 0.434 0.434 0.434 0.405 0.397 
Number of Counties 3,093 3,093 3,093 3,101 3,101 
Observations 40,168 40,168 40,168 43,414 43,414 

1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10 

2. The omitted category for the group indicators in columns (1), (3), (4), and (5) is “Non-adoption (zero-actions) group” 

3. The estimates of time fixed effects are not reported here. 

 The specification RTM_HI 3 in column (3) include multiple group indicator variables 

instead, that represent different levels of heat mitigation efforts. The results imply that 

temperature lowering effects of mitigation measures are non-linear; adopting additional 

mitigation activities have a greater beneficial effect on lowering apparent temperatures. The 

estimated effect of implementing 4 or more mitigation measures is substantial; a county can 

lower the apparent temperature by 1.93°F, on average, by implementing 4 or more HIM 
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measures. However, the HI-lowering effect implied by the linear relationship in column (2) is 

approximately, 1.36°F, given that the average number of HIM actions among counties in 4+ 

actions group is 5.27. Also, the difference in the temperature lowering effects between 1 actions 

group and 2-3 actions group is - 0.21°F, meaning that a county is expected to have a further 

decrease in heat intensity by an average of 0.21°F by adopting one or two extra HIM measures 

(i.e. moving from 1 actions group to 2-3 actions group). The difference further increases to -

1.04°F if a county’s adoption status changes from 2-3 actions group to 4+ actions group. The 

estimated relationship confirms the long-lasting and sustainable nature of the heat mitigation 

measures that enables the environmental benefits to accumulate and synergistic effects to arise.  

 I find consistent results using a set of alternative specifications where the measure of 

heat hazard intensity used as an outcome variable is the number of Heat Wave Days. The 

Random Trend Model specification as described in equation (3) with the alternative dependent 

variables is estimated. As shown in column (4) and (5), the estimation results suggest that 

counties with more Heat Island Mitigation actions experience fewer Heat Wave Days. For 

example, the Heat Wave Days decrease by 1.66 or 1.96 days on average (depending on the 

measure used to define the Heat Wave Days), if a county initiates HIM activities by adopting a 

measure for mitigation. The Heat Wave Days further decrease as a county implements more HIM 

strategies; the difference between coefficients on 1 action group and 2-3 actions group dummies 

indicates that the reduction in Heat Wave Days for additional measure is 0.67 – 1.14 days. The 

estimates suggest that the first HIM measure implemented in a county has the largest marginal 

effect (1.66 – 1.96), and the marginal effects of additional measures decrease, but still having a 

significant hazard-reduction effect. The estimated effects of HIM actions on Heat Wave days 

using HIM status indicator and the number of HIM measures are presented in Table 3.A3. 
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3.7.2  Second-Phase: Heat Vulnerability – Fatality Model 

 Table 3.7 presents the estimates from the Zero-Inflated Negative Binomial models using 

heat events recorded at the scale of counties during 1998-2011. The dependent variable is direct 

fatalities from each heat event. Due to the high correlation among socio-economic variables, I 

estimate specification 1 as a base model and additionally introduce the poverty rate variable in 

specification 2, elderly poverty rate in specification 3, and percent elderly living alone in 

specification 4. Specification 2 and 3 connect the issue of poverty and the resulting increase in 

heat vulnerability whereas specification 3 and 4 highlights the implications of aging society in 

the context of the heat vulnerability dynamic. As a part of ZINB model, the results of the logit 

model for predicting whether an observation is in the always-zero group are presented in the 

lower panel of Table 3.7. 

 Heat Hazard Profile   First, consider the results of the heat hazard profile variables. A 

measure of the intensity of a heat event, the Heat Index level, is found to be one of the most 

crucial meteorological elements of heat hazard that determine the level of societal impacts. The 

results from all four specifications demonstrate that a significant positive relationship holds 

between the Heat Index and the heat-induced fatalities.  An increase in the maximum daily Heat 

Index value by one degree (F) would lead to 12% more heat fatalities on average. Timing of the 

event variables are also estimated to affect the degree of heat impacts. The societal outcome of a 

heat event is greater when it begins to occur during late afternoon hours (4:00-7:59 PM). This is 

perhaps because higher temperatures at night in urban areas (due to the impeded release of heat 

absorbed during daytime in urban areas) may further increase the nighttime atmospheric 

temperatures and exacerbate the impacts of extreme heat on human health. 
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Table 3.7:  Heat Vulnerability – Fatalities Model 

Zero-Inflated Negative Binomial Regressions Results 

 

 Zero Inflated Negative Binomial Model (ZINB) 

Dependent Variable (1) (2) (3) (4) 

  Direct Heat Fatalities Specification 1 Specification 2 Specification 3 Specification 4 

     

Monthly Avg. Max Heat Index(°F) 0.110*** 0.110*** 0.115*** 0.110*** 

 (0.017) (0.017) (0.017) (0.017) 

Annual Avg. of Daily Temp. (°F) -0.319*** -0.333*** -0.351*** -0.307*** 

 (0.104) (0.098) (0.108) (0.098) 

Annual Avg. of Max. Daily Temp.(°F) 0.220** 0.230*** 0.245*** 0.206** 

 (0.087) (0.084) (0.090) (0.083) 

Ln (Population) 0.932*** 0.927*** 0.946*** 0.953*** 

 (0.083) (0.082) (0.083) (0.084) 

Urban Population Density (per 1000m2) 0.072*** 0.067*** 0.050** 0.069*** 

 (0.022) (0.021) (0.020) (0.020) 

Percent Young 0.086** 0.087*** 0.074** 0.083** 

 (0.034) (0.033) (0.033) (0.033) 

Percent Elderly  0.103*** 0.094*** 0.092***  

 (0.027) (0.028) (0.028)  

Percent Elderly Living Alone    0.292*** 

    (0.068) 

Poverty Rate among Elderly   0.065***  

   (0.021)  

Poverty Rate  0.038*   

  (0.021)   

Ln (Per capita Income) -1.003* -0.290 -0.146 -0.899 

 (0.537) (0.644) (0.607) (0.551) 

Percent Non-White 0.016*** 0.012** 0.010* 0.014*** 

 (0.005) (0.006) (0.006) (0.005) 

Percent Renter Occupied Housing 0.021* 0.013 0.019 0.013 

 (0.012) (0.013) (0.012) (0.012) 

Percent Mobile Homes 0.029* 0.028* 0.027 0.032* 

 (0.017) (0.016) (0.016) (0.018) 

Excessive Heat 0.001 0.012 0.007 -0.002 

 (0.141) (0.141) (0.141) (0.141) 

Overnight -0.373** -0.361** -0.376** -0.375** 

 (0.166) (0.165) (0.166) (0.166) 

Morning -0.293** -0.289** -0.292** -0.289** 

 (0.123) (0.122) (0.123) (0.122) 

Late Afternoon 0.324 0.331 0.313 0.339 

 (0.222) (0.220) (0.218) (0.225) 

Evening 0.258 0.258 0.236 0.278 

 (0.538) (0.538) (0.548) (0.540) 
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Table 3.7 (cont’d) 

 (1) (2) (3) (4) 

Spring 0.143 0.120 0.119 0.151 
 (0.307) (0.304) (0.304) (0.306) 
Fall 0.328 0.329 0.345 0.321 
 (0.340) (0.332) (0.336) (0.337) 
Winter -12.981*** -12.353*** -13.236*** -12.935*** 
 (0.750) (0.727) (0.695) (0.733) 
Constant -15.679** -22.801*** -24.725*** -16.117** 
 (6.596) (7.865) (7.654) (6.937) 
     

State Fixed Effects Yes Yes Yes Yes 
Time Fixed Effects Yes Yes Yes Yes 

 Logit Inflation Model 

Annual Avg. of Max. Daily Temp.(°F) 2.433** 2.441*** 2.391** 2.482*** 
 (0.987) (0.854) (1.057) (0.877) 
Annual Avg. of Daily Temp. (°F) -2.947*** -2.953*** -2.898** -3.004*** 
 (1.110) (0.967) (1.189) (0.988) 
Metropolitan Status 1.001 1.043 0.915 1.118 
 (1.145) (0.986) (1.192) (0.977) 
Ln (Per capita Income) -10.807* -11.154** -10.639 -11.082** 
 (6.363) (5.337) (7.048) (5.523) 
Constant 110.309* 113.500** 108.592* 112.755** 

 (58.628) (49.431) (64.827) (51.001) 

Observations 15,050 15,050 15,050 15,050 

1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10 

2. The omitted category for the begin time is “Early Afternoon”. 

3. The omitted category for the season is “Summer”. 

4. The omitted category for event type is “Heat” 

5. The estimates of state FE and year FE are not reported here. 
 

 

 Climatic and Environmental Conditions   Our estimates confirm that climatic and 

environmental characteristics of the place are another important facet of heat vulnerability. The 

negative coefficient of the average daily air temperature suggests that counties in warmer 

climates tend to be less sensitive to heat as they are more likely accustomed to high 

temperatures. However, among counties with the same average temperature, those with the 

higher maximum daily temperatures may suffer greater heat-related fatalities. The result shows 

that susceptibility to heat hazards not only depends on the normal climate conditions of the area 

but also on the area’s meteorological variability (e.g. daily temperature range). Consistent with 
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the previous findings from heat studies, the level of urbanization is an important heat risk factor. 

I find that more populated counties experience higher risk of life-threatening extreme heat. Also, 

urban concentration magnifies the risk of heat by aggravating Heat Island effects. The estimates 

imply that if urban density (per 1,000 m2) rises by its standard deviation (SD) (≈ 2), a 15% 

increase in heat fatalities would result. 

 Demographic & Socio-Economic Characteristics   Our analysis provides statistically 

and economically significant evidence in support of the “socio-political nature of disasters” 

argument – those who are more vulnerable in societal context are more susceptible to harm in the 

event of disasters. First, I ascertain that demographic composition factors, such as the proportion 

of young and elderly population, and the proportion of non-white, constitutes essential facet of 

population heat vulnerability. Most of all, age is a key factor, in particular, the elderly population 

is estimated to have higher chance to be a victim of heat waves. The heat vulnerability model 

estimates that one percentage point increase in the share of elderly population is associated with 

11% increase in heat fatalities (specification 1).  

The relationship between heat vulnerability and the socially isolated elderly is notable, 

who are characterized by greater physiological and societal vulnerabilities. The estimate in 

specification 4 implies that our society would suffer an average of 34% more heat fatalities if 

isolated elderly people comprise one additional proportion of total population. The substantially 

greater heat vulnerability as a result of a growing share of socially isolated elderly is attributable 

to the individual vulnerability of elderly and population characteristics of aging society as a whole.  

 It is also found that different race groups experience disproportionate disaster impacts. 

Counties with more non-white population have greater fatalities from heat. One SD (≈ 16) 

increase in the share of the non-white population is associated with 17% - 30% greater heat 
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fatalities, depending on the model specifications. Because vulnerability of certain race/ethnicity 

groups are highly linked with their socio-economic status (Hansen et al., 2013), the estimated 

effect of the percent non-white variable decreases once I include poverty measures in 

specification 2 and 3.  

 Our analyses suggest that socio-economic factors are among the many essential factors 

contributing to heat vulnerability. First, my results support the idea that the economic level has a 

negative relationship with disaster consequences, which has been echoed by many disaster 

studies and vulnerability literature. This relationship holds in case of extreme heat, as well. 

Naturally occurring hazards do not discriminate among people thus, the likelihood of disaster 

occurrence is purely random. However, those with more economic resources can utilize their 

wealth to prevent the worst consequences of and better respond to heat hazards. People living 

below poverty line, on the other hand, are at a greater risk, as they possess limited financial, 

physical, and social assets, which limits their coping capacity. One percentage point increase in 

poverty rates leads to 4% increase in fatalities, whereas a one SD (≈ 7) increase results in 30% 

increase in fatalities.  

 A combination of two vulnerability factors - aging coupled with poverty - is considered 

in specification 3. One percentage point increase in senior poverty rates is estimated to result in 

7% more heat fatalities. Comparing with the estimated effect of unit change in population 

poverty rate (4% increase in fatalities), we infer that among the people living in poverty, elderly 

people have higher susceptibility to harm from heat hazards. Note that this is only a partial effect 

of senior poverty rates where other variables – including the share of elderly population – are 

held constant. To further investigate the growing heat vulnerability on account of aging 

population, I calculate the effect based on the projected growth in elderly population and elderly 
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poverty rates; i) the national share of elderly in the study period is 12.3%55 (14-year average) 

and is projected to rise to 20.3% by 2030 and 21% by 2040, and ii) 1 out of 10 elderly lived in 

poverty during 1990-2014 (10.34%, 25 year average) (U.S. Census Bureau, 2014). The 

population projections indicate that the share of elderly will rise by 8 percentage points by 2030 

and 8.7 percentage points by 2040, from 12.3%. Using these statistics, the predicted increase in 

heat fatalities for years 2030 and 2040 are estimated. I use the result of the specification 3 in 

Table 3.7 for prediction, assuming the poverty rates among elderly will remain the same at the 

average rate of 10.34% in 2030 and 204056. As shown in Table 3.8, I find that the heightened 

heat vulnerability due to the growth of the elderly is predicted to generate a two-fold increase in 

heat fatalities by 2030 and 2.23-fold increase by 2040, relative to the average fatalities during the 

study period (1998-2011). The heat vulnerability of the United States is predicted to substantially 

increase in the coming decades as the most heat-vulnerable group of people is going to comprise 

a growing share of the population. 

Table 3.8:  Increase in Heat Fatalities 

Given the Projected Growth of the Elderly Population in 2030 and 2040  

 Population aged 65+  65+ Population Growth Yearly Heat Fatalities2 

Year Share Number1 ∆ Share ∆ Number1 Pct ∆ Avg Deaths/yr ∆ Deaths 

1998-2011 12.3% 35,945    142  

2030 20.3% 72,774 8 % 36,829 209 % 297 155 

2040 21% 79,719 8.8 % 43,774 223 % 317 175 

1. Numbers in thousands. 

2. The predicted heat fatalities are calculated using the estimation result of the specification 3 in Table 3.7. Note that 

the predicted changes are average partial effects of the Pct Elderly variable, with all other variables being held constant. 

                                       
55 12.3% is the national level statistics while my sample mean of 14.94% in Table 3.5 is the mean of county level Pct 

Elderly with some counties are included multiple times for the computation of mean values. 
56 I am primarily interested in the projected increase in heat fatalities in relation with the growth in elderly in this 

calculation while considering the poverty rates among them. However. due to the assumption of Ceteris paribus of 

multiple regression, the coefficient of Pct Elderly in specification 3 means a partial effect of increase in Pct Elderly, 

holding other variables including the elderly poverty rates constant. Assuming the poverty rates among elderly will 

remain the same, I estimate the predicted increase in heat fatalities as a result of the aging population using the result 

in specification 3. 
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 Consider next the result of housing-related factors. The results show that housing 

ownership is closely related with heat vulnerability. One SD (≈ 8) increase in the share of renter 

occupied housing unit is associated with 16% increase in heat fatalities (specification 3). Also, 

consistent with the previous findings on the vulnerability of mobile homes (Lim et al. 2017; 

Simmons and Sutter, 2013), my empirical analyses show that mobile homes are a significant heat 

risk factor. For one SD (≈ 9) increase in the share of mobile homes in total housing stock, heat 

fatalities are expected to increase by 26%. It might be the structural vulnerability of mobile 

homes which are typically of lower quality than traditional homes in terms of inefficient cooling 

systems and/or insufficient insulation and windows, which make people living in mobile homes 

more vulnerable to extreme heat. My results also highlight greater vulnerability of the residents 

to heat who have limited financial resources and may have no other choice but to live in lower 

cost rental housing or mobile homes. 

3.7.3  Heat Island Mitigation Actions and Heat Fatality  

3.7.3.1  First and Second Phase Models Combined: A Mediated Effect 

As illustrated in section 3.6, I combine the result from the first-phase Heat Index model 

(equation (4)) with the second-phase estimation result of the heat fatality analysis (equation (5)) 

to derive a mediated effect of heat mitigation actions on heat fatalities. Using the estimated 

coefficients from three specifications (columns 1, 2, 3) in Table 3.6 and a coefficient of the Heat 

Index variable from specification 1 in Table 3.7, I compute the mediated effects on heat fatalities 

and present them in Table 3.9. Findings are as follows57. First, counties in the Heat Island 

                                       
57 Even though my findings provide evidence on the negative causality between the heat mitigation measures and the 

heat fatalities (where a positive statistical correlation is found between heat mitigation measures and the heat hazard 

as shown in Table 3.3), I acknowledge that one should be cautious in interpreting the magnitude of the effects. 
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mitigation adoption group experience an average of 7.38 % less heat fatalities than those in non-

adoption group. It is also found that one additional measure for heat hazard reduction reduces 

heat fatalities by 2.8 % on average. However, due to the long-lasting and synergistic effects of 

the heat mitigation measures, the temperature lowering benefit of such measures are accumulated 

and thus, counties with more mitigation actions are progressively less vulnerable to extreme heat 

than counties with less activities. It is shown in the lowest panel of Table 3.9 that counties in the 

1 action group suffer 7.26 % fewer heat fatalities, compared to the non-adoption status, while 

counties in 2-3 actions group experience 9.39 % fewer heat fatalities. The fatality reducing 

effects increase progressively if a county has taken 4 or more actions for Heat Island mitigation. 

The mediated effect analysis shows that counties in 4+ actions group could avoid a great deal of 

fatal consequences of extreme heat events due to their efforts and dedication to heat mitigation. 

They could reduce heat fatalities by almost 20 % compared to the non-adoption group. 

Table 3.9:  The Mediated Effect of Heat Mitigation Actions on Heat Fatalities 

  Estimated Coefficients Effects on Fatalities 

  �̂�1 and �̂�1 (1 − exp(�̂�1 ∙ �̂�1))% 

Heat 
Fatality 
Model 

Mediator variable   

Monthly Avg. Max Heat Index(°F) �̂�1 = +0.110***  

Heat 
Hazard 
Model 

Specification 1   

Heat Island Mitigation Adoption Status1 �̂�1𝑑  = -0.697*** 
7.38 % Reduction 
(vs. non-adoption) 

Specification 2   

No. of Heat Island Mitigation Actions �̂�1𝑛 = -0.258*** 
2.80 % Reduction 

(for one additional action) 
Specification 3   

 1   Mitigation Actions Group1 �̂�11 = -0.685*** 7.26 % Reduction 

2-3  Mitigation Actions Group1 �̂�12 = -0.896*** 9.39 % Reduction 

+4   Mitigation Actions Group1 �̂�13 = -1.932*** 19.15 % Reduction 

1. The reference group for these group indicator variables is non-adoption (zero-actions) group. 

2. *** means p-values <0.01 
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3.7.3.2  A Direct Estimation of the Effect 

 I also perform a direct estimation of the effect of Heat Island Mitigation (HIM) measures 

on heat fatalities, using the Poisson Fixed Effects estimator, controlling for the unobserved 

heterogeneity of counties. I use county-year panel structured data with deaths per heat event as a 

dependent variable. In section 3.6.1, the HIM measures are found to have significant heat 

lowering effects. In section 3.6.2, using the Heat Index as an intermediary variable, I show that 

how HIM measures influence the heat outcomes. To identify the effect of heat mitigation efforts 

on fatalities, I only include the HIM variables as a regressor along with controls, excluding the 

intermediary variable – the Heat Index measure. However, it is still important to capture the 

changes in heat fatalities due to the naturally occurring variations in heat hazard over the period 

that might not be explained by other annual max/min temperatures nor by the HIM variable. 

Thus, I include the days in which the county max air temperature58 reached or exceeded the 95th 

percentile of daily max temperature in May – September period, along with other meteorological 

conditions.  

 The results of the direct estimation of the effects of HIM actions on heat fatalities using 

the Poisson Fixed Effects are presented in columns (2) – (3) in Table 3.10. The Random Effects 

model results are provided in columns (4) – (5) as a robustness check. I find a statistical evidence 

that the more HIM measures a county has implemented, the smaller the heat fatalities in that 

county. However, the difference between the estimated effects of the number of all HIM 

measures shown in column (2) and the effects of the number of locally implemented measures 

(i.e. non-statewide activities) in column (3) implies that the heat-vulnerability reducing benefits 

                                       
58 The heat days measure is closely related with the Heat Index but it only accounts for the temperature component 

of extreme heat, but not the humidity component. 
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of HIM activities can differ depending on the spatial-scale and the main agents of HIM 

implementation. The results indicate that community-based, local government initiated HIM 

actions have larger effects on heat fatality reduction. An additional measure that is locally 

implemented in a county is estimated to reduce annual deaths rate (deaths per heat event) by 

15.38 %. The estimated direct effect is much larger than the mediated effect that is identified in 

the prior subsection (in Table 3.9).    

Table 3.10:  A Direct Estimation of the Effect of Heat Island Mitigation Actions  

on Heat Fatalities – Poisson FE and RE Model Key Results 

 

Dependent Variable (1) (2) (3) (4) (5) 

  Direct Heat Fatalities Poisson FE Poisson FE Poisson FE Poisson RE Poisson RE 

      

Monthly Avg. Max Heat Index(°F) 0.193***     

 (0.040)     

No. of HIM Actions_lag (All)   -0.044  -0.106  

  (0.065)  (0.066)  

No. of HIM Actions_lag_(Non-Statewide)   -0.167*  -0.180** 

   (0.088)  (0.092) 

Heat Wave Days (based on Max Temp)  0.017 0.017 0.010 0.011 

  (0.011) (0.011) (0.008) (0.008) 

Population (in thousands) 0.000 0.001 0.001 0.001*** 0.001*** 

 (0.001) (0.002) (0.002) (0.000) (0.000) 

Pct Urban Population 0.053 0.053 0.042 0.027*** 0.027*** 

 (0.045) (0.045) (0.045) (0.006) (0.006) 

Ln (Per capita Income) -1.875 -2.422 -3.456 -1.313** -1.333** 

 (2.458) (2.843) (2.812) (0.555) (0.558) 

Constant    4.465 4.715 

    (5.999) (6.017) 
      

Number of Counties 304 272 272 1,906 1,906 

Observations 1,746 1,585 1,585 6,635 6,635 

1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10 

2. The omitted category for the group indicators in columns (2) and (3) is “Non-adoption (zero-actions) group” 

3. The estimates of meteorological and demographic control variables, and time fixed effects are not reported here.  
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3.8  CONCLUSION 

Under the ongoing climate change, the frequency and intensity of extreme heat events are 

predicted to increase. Given the devastating consequences of heat events and the growing risks 

of extreme heat, it is critical to identify the major determinants of heat vulnerability to minimize 

potential human losses. My analysis reveals a multi-faceted nature of the heat vulnerability; 

event-specific heat hazard profiles, meteorological, climatic and environmental conditions, as 

well as, various socio-economic and housing factors are critical in determining heat vulnerability. 

The findings suggest that a trend of an aging population and continuing urbanization combined 

with the projected increase in heat risks will aggravate the adverse consequences of extreme heat 

to society. The heightened heat vulnerability due to the growth of the elderly population is 

predicted to generate a two-fold increase in heat fatalities by 2030.  

Importantly, this study provides an evidence on the benefits of the community Heat 

Island mitigation measures in lowering temperatures and further, reducing the loss of life from 

extreme heat events. Under the anticipated increase in societal vulnerability of the United States 

to heat hazard, the findings of this study underscore the need for more proactive and 

precautionary public measures and regulations to counterbalance the harmful effects of heat 

hazard. In this regard, a key area of further research is to closely examine each type of strategies 

for Heat Island mitigation and evaluate their life-saving benefits against extreme heat events 

from the cost-benefit perspective. Overall, findings of this study increase our understanding of 

the socio-political nature of heat wave impacts and inform targeting efforts designed to protect 

and assist the most vulnerable populations. 
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APPENDIX 

Table 3.A1: Determination of Heat and Excess Heat 

Determination of a Heat category event in NWS Storm Data  

Heat 

A period of heat results from the combination of high temperatures (above normal) and relative humidity. 

A Heat event occurs and is reported in Storm Data whenever heat index values meet or exceed 

locally/regionally established heat advisory thresholds. Fatalities or major impacts on human health 

occurring when ambient weather conditions meet heat advisory criteria are reported using the Heat event. 

If the ambient weather conditions are below heat advisory criteria, a Heat event entry is permissible only 

if a directly-related fatality occurred due to unseasonably warm weather, and not man-made 

environments. 

Excess Heat 

Excessive Heat results from a combination of high temperatures (well above normal) and high humidity. 

An Excessive Heat event occurs and is reported in Storm Data whenever heat index values meet or 

exceed locally/regionally established excessive heat warning thresholds. Fatalities (directly-related) or 

major impacts to human health that occur during excessive heat warning conditions are reported using 

this event category. If the event that occurred is considered significant, even though it affected a small 

area, it should be entered into Storm Data.  

Source: National Weather Service Instruction 10-1605 (MARCH 23, 2016) Operations and Services 

Performance, Storm Data Preparation. ( http://www.nws.noaa.gov/directives/ ) 

 

 

  

http://www.nws.noaa.gov/directives/
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Table 3.A2:  Heat Hazard Model: The Role of Heat Island Mitigation Actions 

Alternative Specifications: Fixed Effects OLS 

 

Dependent Variable (1) (2) (3) 

Max. for Monthly Avg. of  
Daily Max. Heat Index (°F) 

FE 
Specification 1 

FE 
Specification 2 

FE 
Specification 3 

    

HIM Adoption Status_lag -0.238***   
 (0.050)   
No. of HIM Actions_lag  -0.201***  
  (0.024)  
 1  HIM Actions Group_lag   -0.158** 
   (0.068) 
2-3 HIM Actions Group_lag   -0.278*** 
   (0.057) 
4+  HIM Actions Group_lag   -1.961*** 
   (0.235) 
Percent Urban Population 0.006** 0.007** 0.006* 
 (0.003) (0.003) (0.003) 
Population (in thousands) 0.002*** 0.003*** 0.003*** 
 (0.000) (0.000) (0.001) 
Annual Avg. of Max. Daily Temp.(°F) 0.691*** 0.689*** 0.685*** 
 (0.010) (0.010) (0.010) 
Annual Avg. of Min. Daily Temp.(°F) -0.138*** -0.140*** -0.139*** 
 (0.015) (0.015) (0.015) 
Constant 55.514*** 55.665*** 55.878*** 

 (0.649) (0.649) (0.654) 
    

County Fixed Effects Yes Yes Yes 
County-Specific Time Trend No No No 
Time Fixed Effects Yes Yes Yes 
R-squared : within 0.542 0.542 0.543 
Number of Counties 3,091 3,091 3,091 
Observations 43,250 43,250 43,250 

1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10 

2. The omitted category for the group indicators in columns (1) and (3) is “Non-adoption (zero-actions) group” 

3. The estimates of time fixed effects are not reported here. 
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Table 3.A3:  Heat Hazard Model: The Role of Heat Island Mitigation Actions 

Random Trend Model Using Heat Wave Days as an Alternative DV 

 

 (1) (2) (3) (4) 

 RTM_HD 3 RTM_HD 4 RTM_HD 5 RTM_HD 6 

Dependent Variable 
Heat Days by 

Heat Index 
Heat Days by 

Heat Index 
Heat Days by 
Heat Stress 

Heat Days by 
Heat Stress 

     

HIM Adoption Status_lag -1.744***  -2.005***  
 (0.240)  (0.249)  
No. of HIM Actions_lag  -0.756***  -0.991*** 
  (0.168)  (0.169) 
Population (in thousands) 0.007 0.006 0.013 0.011 
 (0.010) (0.010) (0.009) (0.010) 
Annual Avg of Max Daily Temp 1.954*** 1.959*** 1.716*** 1.722*** 
 (0.035) (0.035) (0.036) (0.036) 
Annual Avg of Min Daily Temp -1.240*** -1.245*** -1.197*** -1.203*** 
 (0.044) (0.044) (0.041) (0.041) 
Constant 0.938*** 0.932*** 0.942*** 0.938*** 

 (0.011) (0.012) (0.011) (0.012) 
     

County Fixed Effects Yes Yes Yes Yes 

County-Specific Time Trend Yes Yes Yes Yes 

Time Fixed Effects Yes Yes Yes Yes 

R-squared : within 0.405 0.405 0.397 0.396 
Number of Counties 3,101 3,101 3,101 3,101 
Observations 43,414 43,414 43,414 43,414 

1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10 

2. The omitted category for the group indicators is “Non-adoption (zero-actions) group” 

3. The estimates of time fixed effects are not reported here. 

  



149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

  



150 

 

REFERENCES 

 

 

Albala-Bertrand, J.M. 1993. Political Economy of Large Natural Disasters. New York: Oxford 

University Press. 

 

Anbarci, N., Escaleras, M., and Register, C. A. 2005. “Earthquake fatalities: the interaction of 

nature and political economy.” Journal of Public Economics 89(9): 1907-1933. 

 

Aptekar, L. 1991. The psychosocial process of adjusting to natural disasters. Natural Hazards 

Research and Applications Information Center, University of Colorado. 

 

Aptekar, L., and Boore, J.A. 1990. "The emotional effects of disaster on children: A review of 

the literature."International Journal of Mental Health: 77-90. 

 

Blaikie, P., Cannon T., Davis, I., and Wisner, B. 1994. At Risk: Natural Hazards, People’s 

Vulnerability, and Disasters. New York: Routledge. 

 

Akbari, H, M Pomerantz, and H Taha. 2001. “Cool Surfaces and Shade Trees to Reduce Energy 

Use and Improve Air Quality in Urban Areas.” Solar Energy, Urban Environment, 70 

(3): 295–310. https://doi.org/10.1016/S0038-092X(00)00089-X 

 

Albala-Bertrand, J.M. 1993. Political Economy of Large Natural Disasters. New York: Oxford 

University Press. 

 

Aptekar, L. 1991. The psychosocial process of adjusting to natural disasters. Natural Hazards 

Research and Applications Information Center, University of Colorado. 

 

Aptekar, L., and Boore, J.A. 1990. “The emotional effects of disaster on children: A review of 

the literature.” International Journal of Mental Health: 77-90. 

 

Åström, Daniel Oudin, Forsberg Bertil, and Rocklöv Joacim. 2011. “Heat Wave Impact on 

Morbidity and Mortality in the Elderly Population: A Review of Recent Studies.” 

Maturitas 69 (2): 99–105. https://doi.org/10.1016/j.maturitas.2011.03.008. 

 

Aubrecht, Christoph, and Dilek Özceylan. 2013. “Identification of Heat Risk Patterns in the U.S. 

National Capital Region by Integrating Heat Stress and Related Vulnerability.” 

Environment International 56 (June): 65–77. 

https://doi.org/10.1016/j.envint.2013.03.005. 

 

Bell, Michelle L., Marie S. O’neill, Nalini Ranjit, Victor H. Borja-Aburto, Luis A. Cifuentes, and 

Nelson C. Gouveia. 2008. “Vulnerability to Heat-Related Mortality in Latin America: A 

Case-Crossover Study in Sao Paulo, Brazil, Santiago, Chile and Mexico City, Mexico.” 

International Journal of Epidemiology 37 (4): 796–804. 

 

https://doi.org/10.1016/S0038-092X(00)00089-X
https://doi.org/10.1016/j.maturitas.2011.03.008
https://doi.org/10.1016/j.envint.2013.03.005


151 

 

Beniston, Martin, and David B. Stephenson. 2004. “Extreme Climatic Events and Their 

Evolution under Changing Climatic Conditions.” Global and Planetary Change 44 (1–

4): 1–9. 

 

Blaikie, P., Cannon T., Davis, I., and Wisner, B. 1994. At Risk: Natural Hazards, People’s 

Vulnerability, and Disasters. New York: Routledge. 

 

Brooks, Nick, W. Neil Adger, and P. Mick Kelly. 2005. “The Determinants of Vulnerability and 

Adaptive Capacity at the National Level and the Implications for Adaptation.” Global 

Environmental Change, Adaptation to Climate Change: Perspectives Across Scales, 15 

(2): 151–63. https://doi.org/10.1016/j.gloenvcha.2004.12.006. 

 

Browning, Christopher R., Danielle Wallace, Seth L. Feinberg, and Kathleen A. Cagney. 2006. 

“Neighborhood Social Processes, Physical Conditions, and Disaster-Related Mortality: 

The Case of the 1995 Chicago Heat Wave.” American Sociological Review 71 (4): 661–

678. 

 

Cutter, S. L. 1996. "Societal responses to environmental hazards." International Social Science 

Journal 48(150): 525-536. 

 

Cutter, Susan L., Bryan J. Boruff, and W. Lynn Shirley. 2003. “Social Vulnerability to 

Environmental Hazards*.” Social Science Quarterly 84 (2): 242–61. 

https://doi.org/10.1111/1540-6237.8402002. 

 

Donner, William R. 2007. “The Political Ecology of Disaster: An Analysis of Factors 

Influencing U.S. Tornado Fatalities and Injuries, 1998–2000.” Demography 44 (3): 

669–85. https://doi.org/10.1353/dem.2007.0024. 

 

Enarson, E., and Morrow, B. H. 1998. “The gendered terrain of disaster: Through womens eyes.” 

International Hurricane Center. Laboratory for Social and Behavioral Research, 81-94. 

 

Fothergill, A., E. G. Maestas, and J. D. Darlington. 1999. “Race, Ethnicity and Disasters in the 

United States: A Review of the Literature.” Disasters 23 (2): 156–73. 

 

Fothergill, Alice, and Lori A. Peek. 2004. “Poverty and Disasters in the United States: A Review 

of Recent Sociological Findings.” Natural Hazards 32 (1): 89–110. 

 

Gago, E.J., J. Roldan, R. Pacheco-Torres, and J. Ordóñez. 2013. “The City and Urban Heat 

Islands: A Review of Strategies to Mitigate Adverse Effects.” Renewable and 

Sustainable Energy Reviews 25 (September): 749–58. 

https://doi.org/10.1016/j.rser.2013.05.057. 

 

Greenough, G, M McGeehin, S M Bernard, J Trtanj, J Riad, and D Engelberg. 2001. “The 

Potential Impacts of Climate Variability and Change on Health Impacts of Extreme 

Weather Events in the United States.” Environmental Health Perspectives 109 (Suppl 

2): 191–98. 

https://doi.org/10.1016/j.gloenvcha.2004.12.006
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1353/dem.2007.0024
https://doi.org/10.1016/j.rser.2013.05.057


152 

 

Hajat, Shakoor, and Tom Kosatky. 2010. “Heat-Related Mortality: A Review and Exploration of 

Heterogeneity.” Journal of Epidemiology & Community Health 64 (9): 753–60. 

https://doi.org/10.1136/jech.2009.087999. 

 

Hansen, Alana, Linda Bi, Arthur Saniotis, and Monika Nitschke. 2013. “Vulnerability to 

Extreme Heat and Climate Change: Is Ethnicity a Factor?” Global Health Action; 

Jarfalla 6. http://dx.doi.org.proxy1.cl.msu.edu/10.3402/gha.v6i0.21364. 

 

Harlan, Sharon L., Anthony J. Brazel, Lela Prashad, William L. Stefanov, and Larissa Larsen. 

2006. “Neighborhood Microclimates and Vulnerability to Heat Stress.” Social Science 

& Medicine 63 (11): 2847–63. https://doi.org/10.1016/j.socscimed.2006.07.030. 

 

Harlan, Sharon L., Juan H. Declet-Barreto, William L. Stefanov, and Diana B. Petitti. 2013. 

“Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of 

Vulnerability in Maricopa County, Arizona.” Environmental Health Perspectives 

(Online); Research Triangle Park 121 (2): 197. 

http://dx.doi.org.proxy2.cl.msu.edu/10.1289/ehp.1104625. 

 

Hondula, David M., Robert E. Davis, Matthew J. Leisten, Michael V. Saha, Lindsay M. Veazey, 

and Carleigh R. Wegner. 2012. “Fine-Scale Spatial Variability of Heat-Related 

Mortality in Philadelphia County, USA, from 1983-2008: A Case-Series Analysis.” 

Environmental Health 11 (March): 16. https://doi.org/10.1186/1476-069X-11-16. 

 

Huang, Ganlin, Weiqi Zhou, and M. L. Cadenasso. 2011. “Is Everyone Hot in the City? Spatial 

Pattern of Land Surface Temperatures, Land Cover and Neighborhood Socioeconomic 

Characteristics in Baltimore, MD.” Journal of Environmental Management 92 (7): 

1753–59. https://doi.org/10.1016/j.jenvman.2011.02.006. 

 

Intergovernmental Panel on Climate Change (IPCC). 2013. Summary for Policymakers. In: 

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, 

Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA. 

 

Johnson, Daniel P., Austin Stanforth, Vijay Lulla, and George Luber. 2012. “Developing an 

Applied Extreme Heat Vulnerability Index Utilizing Socioeconomic and Environmental 

Data.” Applied Geography 35 (1–2): 23–31. 

https://doi.org/10.1016/j.apgeog.2012.04.006. 

 

Kahn, Matthew E. 2005. “The Death Toll from Natural Disasters: The Role of Income, 

Geography, and Institutions.” Review of Economics and Statistics 87 (2): 271–84. 

https://doi.org/10.1162/0034653053970339. 

 

Kellenberg, Derek K., and Ahmed Mushfiq Mobarak. 2008. “Does Rising Income Increase or 

Decrease Damage Risk from Natural Disasters?” Journal of Urban Economics 63 (3): 

https://doi.org/10.1136/jech.2009.087999
http://dx.doi.org.proxy1.cl.msu.edu/10.3402/gha.v6i0.21364
https://doi.org/10.1016/j.socscimed.2006.07.030
http://dx.doi.org.proxy2.cl.msu.edu/10.1289/ehp.1104625
https://doi.org/10.1186/1476-069X-11-16
https://doi.org/10.1016/j.jenvman.2011.02.006
https://doi.org/10.1016/j.apgeog.2012.04.006
https://doi.org/10.1162/0034653053970339


153 

 

788–802. 

 

Klinenberg, Eric. 1999. “Denaturalizing Disaster: A Social Autopsy of the 1995 Chicago Heat 

Wave.” Theory and Society; Dordrecht 28 (2): 239–95. 

http://dx.doi.org.proxy2.cl.msu.edu/10.1023/A:1006995507723. 

 

Kochanek, Kenneth D., Arialdi M. Miniño, Sherry L. Murphy, Jiaquan Xu, and Hsiang-Ching 

Kung. 2011. “Deaths: Final Data for 2009.” 

 

Kovats, R. Sari, and Shakoor Hajat. 2008. “Heat Stress and Public Health: A Critical Review.” 

Annual Review of Public Health 29 (1): 41–55. 

https://doi.org/10.1146/annurev.publhealth.29.020907.090843. 

 

Lal, Padma Narsey, Padma Narsey Lal, Reshika Singh, and Paula Holland. 2009. Relationship 

between Natural Disasters and Poverty: A Fiji Case Study. SOPAC. 

 

Lim, Jungmin, Scott Loveridge, Robert Shupp, and Mark Skidmore. 2017. “Double Danger in 

the Double Wide: Dimensions of Poverty, Housing Quality and Tornado Impacts.” 

Regional Science and Urban Economics 65 (Supplement C): 1–15. 

https://doi.org/10.1016/j.regsciurbeco.2017.04.003. 

 

Long, J.S. and Freese, J. 2006. Regression models for categorical dependent variables using 

Stata. Stata press. 

 

Loughnan, Margaret, Nigel Tapper, and Thu Phan. 2014. “Identifying Vulnerable Populations in 

Subtropical Brisbane, Australia: A Guide for Heatwave Preparedness and Health 

Promotion.” International Scholarly Research Notices 2014 (February): e821759. 

https://doi.org/10.1155/2014/821759. 

 

Meehl, Gerald A., and Claudia Tebaldi. 2004. “More Intense, More Frequent, and Longer 

Lasting Heat Waves in the 21st Century.” Science 305 (5686): 994–997. 

 

Meschede, T., and L. A. Sullivan. 2011. “SENIOR ECONOMIC INSECURITY ON THE 

RISE.” In GERONTOLOGIST, 51:322–322. OXFORD UNIV PRESS INC JOURNALS 

DEPT, 2001 EVANS RD, CARY, NC 27513 USA. 

 

Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth. 2002. “Increasing Risk of 

Great Floods in a Changing Climate.” Nature 415 (6871): 514–17. 

https://doi.org/10.1038/415514a. 

 

Morrow, B. H. 1999. “Identifying and mapping community vulnerability.” Disasters 23(1): 1-18. 

 

Morss, Rebecca E., Olga V. Wilhelmi, Gerald A. Meehl, and Lisa Dilling. 2011. “Improving 

Societal Outcomes of Extreme Weather in a Changing Climate: An Integrated 

Perspective.” Annual Review of Environment and Resources 36 (1): 1–25. 

https://doi.org/10.1146/annurev-environ-060809-100145. 

http://dx.doi.org.proxy2.cl.msu.edu/10.1023/A:1006995507723
https://doi.org/10.1146/annurev.publhealth.29.020907.090843
https://doi.org/10.1016/j.regsciurbeco.2017.04.003
https://doi.org/10.1155/2014/821759
https://doi.org/10.1038/415514a
https://doi.org/10.1146/annurev-environ-060809-100145


154 

 

National Weather Service Instruction 10-1605 (MARCH 23, 2016) Operations and Services 

Performance, Storm Data Preparation. ( http://www.nws.noaa.gov/directives/ ) 

 

National Climate Assessment - Extreme Heat Events: Heat Wave Days in May - September for 

years 1981-2010 on CDC WONDER Online Database, released 2015. Accessed at 

http://wonder.cdc.gov/NCA-heatwavedays-historic.html 

 

North America Land Data Assimilation System (NLDAS) Daily Air Temperatures and Heat 

Index, years 1979-2011 on CDC WONDER Online Database, released 2013. Accessed 

at http://wonder.cdc.gov/NASA-NLDAS.html on Jan 11, 2018 1:37:10 PM 

 

Pastor, M., Bullard, R.D., Boyce, J.K., Fothergill, A., Morello-Frosch, R. and Wright, B. 2006. 

In the wake of the storm: Environment, disaster and race after Katrina. Russell Sage 

Foundation. 

 

Peacock, W. G., Morrow, B. H., and Gladwin, H. 1997. Hurricane Andrew: Ethnicity, gender, 

and the sociology of disasters. Psychology Press. 

 

Perini, Katia, and Adriano Magliocco. 2014. “Effects of Vegetation, Urban Density, Building 

Height, and Atmospheric Conditions on Local Temperatures and Thermal Comfort.” 

Urban Forestry & Urban Greening 13 (3): 495–506. 

https://doi.org/10.1016/j.ufug.2014.03.003. 

 

Phillips, B.D. 1993. “Cultural diversity in disasters: Sheltering, housing, and long-term 

recovery.” International Journal of Mass Emergencies and Disasters 11(1): 99-110. 

 

Raschky, Paul A. 2008. “Institutions and the Losses from Natural Disasters.” Natural Hazards 

and Earth System Science 8 (4): 627–634. 

 

Reid, Colleen E., Marie S. O’Neill, Carina J. Gronlund, Shannon J. Brines, Daniel G. Brown, 

Ana V. Diez-Roux, and Joel Schwartz. 2009. “Mapping Community Determinants of 

Heat Vulnerability.” Environmental Health Perspectives 117 (11): 1730. 

 

Rosenzweig, Cynthia, William D. Solecki, Jennifer Cox, Sara Hodges, Lily Parshall, Barry 

Lynn, Richard Goldberg, Stuart Gaffin, Ronald B. Slosberg, and Peter Savio. 2009. 

“Mitigating New York City’s Heat Island: Integrating Stakeholder Perspectives and 

Scientific Evaluation.” Bulletin of the American Meteorological Society 90 (9): 1297–

1312. 

 

Sheridan, Scott C., and Timothy J. Dolney. 2003. “Heat, Mortality, and Level of Urbanization: 

Measuring Vulnerability across Ohio, USA.” Climate Research 24 (3): 255–65. 

https://doi.org/10.3354/cr024255. 

 

Simmons, Kevin M., and D. Sutter. 2011. “The Economic and Societal Impact of Tornadoes.” 

Amer. Meteor. Soc. 

 

http://www.nws.noaa.gov/directives/
http://wonder.cdc.gov/NASA-NLDAS.html
https://doi.org/10.1016/j.ufug.2014.03.003
https://doi.org/10.3354/cr024255


155 

 

Stafoggia, Massimo, Francesco Forastiere, Daniele Agostini, Annibale Biggeri, Luigi Bisanti, 

Ennio Cadum, Nicola Caranci, et al. 2006. “Vulnerability to Heat-Related Mortality: A 

Multicity, Population-Based, Case-Crossover Analysis.” Epidemiology (Cambridge, 

Mass.) 17 (3): 315–23. https://doi.org/10.1097/01.ede.0000208477.36665.34. 

 

Strader, Stephen M., Walker S. Ashley, Thomas J. Pingel, and Andrew J. Krmenec. 2017. 

“Projected 21st Century Changes in Tornado Exposure, Risk, and Disaster Potential.” 

Climatic Change 141 (2): 301–13. https://doi.org/10.1007/s10584-017-1905-4. 

 

Strömberg, David. 2007. “Natural Disasters, Economic Development, and Humanitarian Aid.” 

The Journal of Economic Perspectives 21 (3): 199–222. 

 

Synnefa, A., A. Dandou, M. Santamouris, M. Tombrou, and N. Soulakellis. 2008. “On the Use 

of Cool Materials as a Heat Island Mitigation Strategy.” Journal of Applied 

Meteorology and Climatology 47 (11): 2846–2856. 

 

Synnefa, Afroditi, Theoni Karlessi, Niki Gaitani, Mat Santamouris, D. N. Assimakopoulos, and 

C. Papakatsikas. 2011. “Experimental Testing of Cool Colored Thin Layer Asphalt and 

Estimation of Its Potential to Improve the Urban Microclimate.” Building and 

Environment 46 (1): 38–44. https://doi.org/10.1016/j.buildenv.2010.06.014. 

 

Tan, Zheng, Kevin Ka-Lun Lau, and Edward Ng. 2016. “Urban Tree Design Approaches for 

Mitigating Daytime Urban Heat Island Effects in a High-Density Urban Environment.” 

Energy and Buildings, SI: Countermeasures to Urban Heat Island, 114 (February): 265–

74. https://doi.org/10.1016/j.enbuild.2015.06.031. 

 

Toya, Hideki, and Mark Skidmore. 2007. “Economic Development and the Impacts of Natural 

Disasters.” Economics Letters 94 (1): 20–25. 

https://doi.org/10.1016/j.econlet.2006.06.020. 

 

Uejio, Christopher K., Olga V. Wilhelmi, Jay S. Golden, David M. Mills, Sam P. Gulino, and 

Jason P. Samenow. 2011. “Intra-Urban Societal Vulnerability to Extreme Heat: The 

Role of Heat Exposure and the Built Environment, Socioeconomics, and Neighborhood 

Stability.” Health & Place, Geographies of Care, 17 (2): 498–507. 

https://doi.org/10.1016/j.healthplace.2010.12.005. 

 

U.S. Census Bureau. 2014. “65+ in the United States: 2010”, U.S. Government Printing Office. 

Report Number P23-212. Washington, DC. 

 

U.S. Environmental Protection Agency (EPA). 2008. Reducing urban heat islands: Compendium 

of strategies. Draft. https://www.epa.gov/heat-islands/heat-island-compendium.  

Zahran, Sammy, Samuel D. Brody, Walter Gillis Peacock, Arnold Vedlitz, and Himanshu 

Grover. 2008. “Social Vulnerability and the Natural and Built Environment: A Model of 

Flood Casualties in Texas.” Disasters 32 (4): 537–60. https://doi.org/10.1111/j.1467-

7717.2008.01054.x. 

 

https://doi.org/10.1097/01.ede.0000208477.36665.34
https://doi.org/10.1007/s10584-017-1905-4
https://doi.org/10.1016/j.buildenv.2010.06.014
https://doi.org/10.1016/j.enbuild.2015.06.031
https://doi.org/10.1016/j.econlet.2006.06.020
https://doi.org/10.1016/j.healthplace.2010.12.005
https://www.epa.gov/heat-islands/heat-island-compendium
https://doi.org/10.1111/j.1467-7717.2008.01054.x
https://doi.org/10.1111/j.1467-7717.2008.01054.x


156 

 

Wooldridge, Jeffrey M. 1991. “Specification testing and quasi-maximum-likelihood estimation.” 

Journal of Econometrics. 48 (1–2), 29–55. 

 

Wooldridge, Jeffrey M. 2010. Econometric analysis of cross section and panel data. Cambridge, 

MA: MIT press. 

 


