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ABSTRACT

DEVELOPMENT OF A FAST AND ACCURATE TIME STEPPING
SCHEME FOR THE FUNCTIONALIZED CAHN-HILLIARD EQUATION

AND APPLICATION TO A GRAPHICS PROCESSING UNIT

By

Jaylan Stuart Jones

This dissertation explores and develops time-stepping schemes for computing solutions

to the Functionalized Cahn-Hilliard (FCH) model. It is important to find a scheme that is

both fast enough to compute evolution to the long-time states and to give enough accuracy

to capture important geometric events. The FCH model is relatively new, and very little

work has been done to develop efficient numerical schemes for its simulation, so much of this

work is based on the extensive work done on the Cahn-Hilliard (CH) model. For each of

the methods, the spatial approximation is computed with a Fourier spectral method. All of

the schemes are adapted to be computed on a graphics processing unit (GPU) which gives

significant improvements in the speed of the simulation.

First, an implicit-explicit (IMEX) method will be introduced that is based on a convex

splitting of the right hand side of the equation. This splitting guarantees that the solutions

will decay in energy for any size time step, which gives numerical stability for very large time

steps. With this splitting, a novel iterative method for solving the implicit portion greatly

improves the numerical efficiency.

Second is the development of a fully implicit method that attains high accuracy. The

method uses a conjugate gradient method to solve the Netwon’s method iterations, and is

preconditioned using a physics based approximation to the operator that is easy to invert

and numerically efficient.



Lastly, exponential time differencing (ETD) methods are derived for the Cahn-Hilliard

and Functionalized Cahn-Hilliard Equations. The ETD methods are all explicit which affords

computation speed, and higher order versions are natural extensions giving accurate time

stepping.

Finally, numerical experiments for the three types of methods compare the accuracy

and speed. These simulations are performed for both fixed time-step simulations as well

as adaptive time steps. This gives a clear picture of the strengths and weaknesses, and

it gives enough information to determine which time-stepping method will work best for

approximating solutions to the FCH equation.
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Chapter 1

Introduction

1.1 Order Parameters and Phase Field Models

In 1937, Lev Landau published two papers on the nature of phase transitions [1, 2], wherein

he used the idea of an order parameter to describe the nature of the material at different

points in space. This parameter was a function of space and could be used, for example, to

understand the average direction of spin at each point in a magnetic material. The order

parameter was later used in the Ginzburg-Landau theory of superconductivity [3]. This

order parameter function was the foundation for phase field models many years later.

The phase field model was introduced in 1983 by George J. Fix to model first order liquid

to solid phase transitions [4]. Later, J.S. Langer compared the model to similar models in

solidification theory and described the value of such a model when describing the physics of

phase transitions [5]. Since then, phase field models have been used to describe the physics

of many different systems including grain growth and coarsening, microstructure evolution in

thin films, surface-stress-induced pattern formation, crack propagation, crystal growth in the

presence of strain, multiphase fluid flow, stress and electromagnetic driven void migration,

tumor growth, vesicle dynamics, and multicomponent interdiffusion (see [6] and [7] for a

list of various references). In general, phase field models have become a valuable tool in

analyzing and modeling systems where multiple phases of a material separate due to high

interaction energies.
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Phase field models are powerful in describing microstructural evolution because they

eliminate the need to track the evolving fronts that describe phase boundaries. In one

dimension, an interface-tracking model can easily describe the sharp interfaces and calculate

their motions, but when describing complex phase separations in two or three dimensions,

it is no longer practical to track the interface directly. Instead, a phase function, u (t, ~x) is

introduced into the model to delineate the amount of each specific phase that exists at that

place and time. The evolution of the phase function is governed by a set of equations which

balance diffusion against driving forces. The primary advantage of a phase function model is

that the boundaries between phases have finite thickness and are therefore easier to analyze

mathematically. Phase field formulations can also simplify the numerical simulations of such

systems because the derivatives of the phase function remain finite across the interfaces.

Phase field models are typically used to track the motion of interfaces, and the ther-

modynamic and kinetic coefficients are chosen to match the coefficients in a corresponding

sharp-interface model. The phase function evolves in time, and when a sharp-interface

representation is desired, the solution of the phase function can be projected into the sharp-

interface model. This research will be working with a phase field model similar in nature to

the well known Cahn-Hilliard model.

1.2 The Cahn-Hilliard Model

What is now commonly termed the Cahn-Hilliard model was originally developed by van

der Waals in 1893 [8, 9]. The model was essentially forgotten until 1958 when, without

knowledge of van der Waals’ work, John Cahn and John Hilliard rederived the model to

describe the separation of liquid metal alloys as they coarsened due to cooling [10]. The

2
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Figure 1.1 Potential energy function W (u). For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this dissertation.

model is expressed in the energy form

ECH (u) =

∫
Ω

ε2

2
|∇u|2 +W (u) dx, (1.1)

where ∇u is the density gradient of one of the phases and W (u) is a function that represents

the potential energy of the mixed states of the phases. A symmetric, double-well potential

is typically used for W (u), which defines local energy minima for pure states with u = ±1

and an endothermic energy for the mixed states (Figure 1.1). In 1989, Pego defined the

chemical potential [11]

µ =
δECH
δu

.
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We calculate the variational derivative
δECH
δu using a formula similar to the Euler-Lagrange

equation. If

F [ρ (~r)] =

∫
f (~r, ρ (~r) ,∇ρ (~r)) d~r

then

µ =
δF [ρ]

δρ
=
∂f

∂ρ
−∇ · ∂f

∂ (∇ρ)
. (1.2)

Applying formula (1.2) to (1.1) and substituting into Pego’s equation for the chemical po-

tential we obtain

µ = −ε2∆u+W ′ (u) ,

so that the diffusion equation becomes ut = ∆µ = ∆
(
−ε2∆u+W ′ (u)

)
from Fick’s second

law of diffusion [12]. When written this way, it appears in the form of a conservation law

ut = ∇ · j (x) where j (x) = ∇µ. The conserved quantity is the total mass of each of

the phases in the system. This makes the evolution of the Cahn-Hilliard model a mass

conserving H−1 gradient flow for the energy (1.1). The resulting differential equation is

commonly called the Cahn-Hilliard equation.

ut = −∆
(
ε2∆u−W ′ (u)

)
. (1.3)

Due to the importance of the H−1 gradient flow and inner product to this work, it is

useful to recall some definitions. First, Lp is the Lebesgue function space defined such that a

function f is in Lp if
∫
|f |p dx <∞ on the domain of interest (which could be unbounded).

Further Hs, for non-negative integers s, is the Sobolev space of functions that contains all

functions f such that f is in L2 and all of its first s weak derivatives are in L2. H−1 is not

a Sobolev space, nor is it even a space of functions, but rather the space of distributions (an

4



extension of functions) that acts as a dual space to H1.

We introduce the operator ∆−1 :
{
u ∈ L2|

∫
Ω udx = 0

}
→ H2 (Ω) denoted

f := ∆−1u

with the property that

〈∆f, v〉
L2 = 〈u, v〉

L2

for any v ∈ L2 (Ω). This mapping requires boundary conditions to make it unique (e.g. ∆−1 :

L2 (Ω) +u|∂Ω = 0→ H2
periodic (Ω)). Further, we recall the following equivalent formulations

of the H−1 inner product when u, v ∈ L2 (Ω) satisfy periodic boundary conditions,

〈u, v〉
H−1 =

〈
∆−1u, v

〉
L2

=
〈
u,∆−1v

〉
L2

(1.4)

The global existence of solutions to (1.3) was shown by Elliot and Songmu in 1986

[13]. Solutions to the Cahn-Hilliard equation undergo a rapid spinodal decomposition into

domains of the two pure phases (u = ±1) separated by a boundary layer with thickness of

O (ε). The evolution of the separated phase domains was studied first by Pego, who showed

that the motion of the interfaces is a Mullins-Sekerka type flow [11]. Later, asymptotic

analysis by Alikakos et al. derived the rigerous convergence of the Cahn-Hilliard equation

to the Mullins-Sekerka flow [14]. Further analysis was performed by Modica and Sternberg

showing that solutions of the Cahn-Hilliard equation minimize the area of the interface

surfaces [15, 16]. Work by de Mottoni and Schatzman, showed that the motion of the

developed phase interfaces is driven by the mean curvature of the surface [17].
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1.3 Sharp Interfaces and the Canham-Helfrich Model

The limit ε → 0 corresponds to sharp-interface boundaries between phase domains. A

common assumption is that the potential energy stored in such interfaces depends exclusively

on the area of the surface and curvature of the interface. For a surface in three dimensions

and a point, p, on that surface, consider all the curves on the surface passing through p.

Each curve will have a curvature at p defined by κ = 1
R , where R is the radius of the circle

defining that curvature. Take the minimal and maximal curvatures over that set of curves

to obtain κ1 and κ2 respectively. We can then define the mean curvature and Gaussian

curvature as

H =
1

2
(κ1 + κ2) K = κ1κ2.

The Canham-Helfrich free energy is a generic model for the bending of thin elastic films

which truncates the dependence upon curvature at quadratic order. Canham derived the

model when studying the biconcave shape of human red blood cells [18], and separately,

Helfrich developed it to describe the minimum energy geometries of lipid bilayers and vesicles

[19]. In three space dimensions, the Canham-Helfrich energy is

EC (Γ) =

∫
Γ

[
a1 + a2 (H − a3)2 + a4K

]
dS, (1.5)

where a1 is a constant that denotes the energy density per unit of surface area, a2 and a4 are

the energy densities attributed to the respective curvatures, and a3 specifies the intrinsic, or

zero-energy, value of the mean curvature.

Due to the fact that phase separation is dominated by interfacial energies, the Canham-

Helfrich model must be taken into consideration. Du et al. show that the Canham-Helfrich
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model is sufficient to generate many important geometrical structures [20], and the Canham-

Helfrich energy is considered to be generic [21]. However, the model brings with it some

challenges. As a sharp interface model, Canham-Helfrich models do not have the ability to

account for topological changes, nor can it predict the dependence of its parameters on the

interfacial structure.

To address some of these issues, Gurtin and Jabbour proposed a diffuse interface model

that accounts for the smoothing of sharp corners found in grain boundaries of crystalline

materials by limiting the energy dependence on curvature to a constitutive framework[22].

1.4 The Functionalized Cahn-Hilliard Model

The Functionalized Cahn-Hilliard (FCH) model was developed by Promislow to describe

nanostructure morphology changes in functionalized polymer chains that have been hydrated

with a polar solvent [23]. Hydrocarbon backbones of long polymers are hydrophobic, and

when they are made into membranes, they exclude any polar solvent such as water. To make

such a membrane useful in applications such as Polymer Electrolyte Membrane (PEM) fuel

cells, there must be a porous network of thin water channels to allow conduction of protons

while excluding electrons [24]. The immiscibility of the water and polymer can be reversed by

a functionalization process whereby acid terminated side-chains are added to the polymer

backbone. This functionalization embeds latent energy into the membrane that can be

released when water is introduced. This energy reduction occurs when the polymer and

water phases separate, and a polymer-solvent interface is formed. At the interface, the acid

groups can minimize energy by releasing their protons and solvating the bound negative ions.

Most phase field models are obtained from a perturbation about a spatially uniform
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density. The FCH model is fundamentally different because it is obtained by perturbing a

model which stabilizes preferred geometries. The Functionalized Cahn-Hilliard energy is

E (u) =

∫
Ω

1

2

(
ε2∆u−W ′τ (u)

)2
− ε

(
ε2η1

2
|∇u|2 + η2Wτ (u)

)
dx, (1.6)

where the first term in the integral comes from the variational derivative of the Cahn-Hilliard

energy (1.1) which stabilizes bilayer, pore, and micelle structures. The second term gives

the perturbation which promotes the growth of interface and competition between these

geometries.

As with the Cahn-Hilliard energy, the function u takes values from −1 to 1 and defines

the volume fraction of the polymer and water phases (1.1). The parameter ε defines the

thickness of the boundary layer separating phase domains. η1 and η2 are O (1) or O (ε)

constant parameters that govern the nature of the energetic interations. η1 can be compared

to the electrostatic energy of solvating the side chains, and η2 describes pressure associated

with differing mixtures of the two phases.

Wτ (u) is a double-well potential energy function as before, but it is no longer symmetric

due to the difference in self-energies of polymer and water (Figure 1.2). Typically Wτ (u) =

1
2 (u+ 1)2

(
1
2 (u− 1)2 − τ

3 (u− 2)
)

, where the positive parameter τ defines the amount that

the well is tilted. This asymmetry, along with η1 and η2, gives rise to various geometries

that can each minimize the energy. This behavior is not observed in the CH model with a

tilted well because the addition of a linear tilt is eliminated by the H−1 gradient flow. In the

FCH energy, the slope of the introduced linear term remains hidden in the positive squared

term.

Solutions of the FCH equation evolve on time scales ranging from O
(
ε2
)

through O
(
ε−2
)
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Figure 1.2 Tilted potential energy function W (u)

[25]. At the fastest time-scales, O
(
ε2
)

and O
(
ε1
)
, initial data relaxes to form the proper

front profiles between domains. When time is O (1), domains form according to a nonlinear

diffusion equation which has stable equilibria at the zeros of W ′ (u), specifically u (x) = −1.

At longer O
(
ε−1
)

time-scales, geometric structures evolve with a quenched mean curvature

flow for the normal velocity of the domain fronts. Finally, for the longest time evolution,

O
(
ε−2
)
, domains that are separated in space compete for the minor phase, u = +1. The

aim of this work is to accurately capture all of these disparate time-scales.

Work by Gompper and Schick used small angle x-ray scattering data (SAXS) to motivate

an energy model similar to the FCH model that describes amphiphilic systems such as

two immiscible fluids mixed with a surfactant [26, 27]. In their study, they show a strong
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connection between the Ginzburg-Landau energy model, the Canham-Helfrich surface energy,

and experimental data. This connection can be combined with asymptotic analysis by Gavish

et al. that shows convergence of the FCH energy to the Canham-Helfrich energy in the limit

as ε → 0 [28]. Taken together, the analysis and experimental results suggest that the FCH

model can be useful in probing the physically relevant geometries created by functionalized

polymer/solvent systems.

1.5 Proposed Experimental Nanomorphologies

Recently Gavish et al. described the nature of geometric minimizers to the FCH model

[28]. In three dimensions, energy minimizing geometries include cylinders, inverted micelles,

and bilayers. Experimental and numerical studies of a functionalized polymer, Nafion, have

yielded a multitude of predicted geometric structures, some of which are shown in Figure

1.3. Nafion is a membrane made from sulfonated tetrafluoroethylene that was discovered

in the 1960s by Walther Grot [33]. It is composed of long, hydrophobic, polymer chains

that have been functionalized by attaching short, sulfonate-tipped, side-chains. Hydrolysis

of these sulfonate groups can release latent energy, so small domains of water form inside

the membrane to lower the free energy. Any continuum model for Nafion must be inherently

binary due to the rarity of water embedded in the membrane. Water and low hydration ions

form a common phase, so the value of u (x) represents the density of ions in water at each

point in the domain.

One of the first characterizations of Nafion was performed by Hsu and Gierke who pre-

dicted cluster chain pores [29]. A study by Ioselevich et al. attempted to combine experi-

mental data from many experiments, and they believe that the Nafion backbones group to
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Cluster chain morphology from work by Hsu
and Gierke [29]

Nafion backbone groupings suggested by Iose-
levich [30]

Cylindrical pore morphology predicted by Ru-
batat et al. [31]

Morphology fit to SAXS data by Schmidt-
Rohr and Chen [32]

Figure 1.3 Proposed Nafion nanomorphologies based on experimental results

provide a higher number of solvated acid groups per unit length [30]. Rubatat et al. used

small angle x-ray scattering (SAXS) and small angle neutron scattering (SANS) to probe the

structure of Nafion, and they concluded that the water domains were cylindrical in shape [31].

Schmidt-Rohr and Chen predicted parallel cylindrical pores and then numerically adjusted

the two dimensional cross-section until it matched SAXS data [32]. From essentially the

same experimental data, many different geometries have been predicted. Through simula-

tions on the Functional Cahn-Hilliard equation, we intend to investigate the range of possible

nanomorphologies that minimize the FCH energy and provide tools to better describe the

balance of curvature and surface energies.
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1.6 Functionalized Cahn-Hilliard Equation

Before running simulations on the FCH model, we must convert it into a differential equation.

The FCH energy (1.6) can be formally derived from the CH energy (1.1) by assigning a

negative value to the interfacial energy via the Cahn-Hilliard energy, ECH , then balancing it

against the square of its own variational derivative. Thus the FCH energy can be written as

E (u) =

∫
Ω

1

2

(
δECH
δu

)2

dx− ηECH , (1.7)

where we have simplified to the case η = εη1 = εη2. Physically this describes electrostatic

energy competition. The square of
δECH
δu describes phase separation that lowers energy by

separating the polar solvent and non-polar polymer. Opposed to this is the negative Cahn-

Hilliard term, −ηECH , which lowers the energy by solvating the ionic polymer side-chains.

Again, we introduce the chemical potential using formula (1.2) and note that the variational

derivative of (1.6) can be written in terms of
δECH
δu to obtain

µ =
δE
δu

=

(
δ2ECH
δu2

− η
)
δECH
δu

= −
(
ε2∆−W ′′ (u)− η

)(
ε2∆u−W ′ (u)

)
. (1.8)

If we reintroduce the different values for η1 and η2 we obtain

µ = −
(
ε2∆−W ′′ (u)− εη1

)(
ε2∆u−W ′ (u)

)
− ε (η1 − η2)W ′ (u) . (1.9)
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As before, we take the H−1 gradient flow on the chemical potential. This gives the working

form of the FCH equation,

ut = −∆µ = ∆
[(
ε2∆−W ′′ (u)− εη1

)(
ε2∆u−W ′ (u)

)
− ε (η1 − η2)W ′ (u)

]
. (1.10)

A similar derivation has been shown by Gavish et al. for the Allen-Cahn like version of the

equation [28]. That version of the model does not conserve mass, so it must be explicitly

accounted for with a zero-mass projection at each step. This is accomplished by subtracting

off the average change in solution from every point in the domain.

With the FCH equation we need to specify initial and boundary conditions. The initial

condition is simply u (x, 0) = u0 (x), where u0 is a function that identifies the composition

of the material at each point in space and varies between −1 (pure polymer) and 1 (pure

solvent) over the entire domain, Ω. The boundary conditions can take many forms depending

on the set up of the experiment, but for now we use periodic boundary conditions since we

are simulating a small domain inside bulk material of the same composition.

1.7 Numerical Challenges for the CH and FCH

The Cahn-Hilliard and Functionalized Cahn-Hilliard equations both have some significant

numerical challenges when simulating solutions. When the CH equation (1.3) is written out

with the standard double well potential, W (u) = 1
4

(
u2 − 1

)2
, we have the equation:

ut = −∆
(
ε2∆u− u3 + u

)
.
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This equation is notoriously difficult to approximate numerically due to the small time

step size required to maintain stability of the solution. The behavior is often referred to as

stiffness in the numerical approximation, and for this equation, it is due to both the harmonic

operators and the nonlinear operator [34].

As an example, if the forward Euler method is used and ε = 0.01, the time steps must

be on the order of 10−7 for the method to be stable. What makes the problem worse is

that the fastest evolution in the solution is O
(
ε2
)
∼ 10−4 and Ostwald ripening (growth

of large phase domains at the expense of smaller domains) is on a much slower O (1) time

scale [35]. This means that an explicit method requires far too many time steps to get any

reasonable results from a simulation. On the other hand, if backward Euler is used with the

hope of obtaining a larger time step, the nonlinearity causes implicit solvers to fail due to

large time steps moving the solution out of the basin of attraction (as in Newton’s method).

The implicit time step restriction is not quite as dramatic as the restriction for an explicit

method, but it is still unreasonably inefficient.

When attempting to simulate solutions to the FCH equation (1.10), the set of numerical

challenges includes the difficulties from the CH equation, but it also has other challenges as

well. The equation includes a third laplacian operator and the tilted potential well increases

the complexity of the polynomial terms (Figure 1.2), but the biggest difference is not nu-

merical but physical. In the CH model, the complexity of the solution geometry decreases

in time because a decrease in phase interactions leads to a decrease in energy. In the FCH

model the solution can also decrease energy by increasing the amount interface between

phases, so solutions to the FCH equation can become more complex as time evolves. These

extra challenges require a researcher to think carefully about the types of methods to use

when working on the FCH equation, but methods that have worked for the CH equation are
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the best place to start looking for useful ideas.

1.8 Numerical Methods for the CH Equation

Since the FCH model is new, numerical methods to simulate solutions to it have not yet been

developed. Development of a time-stepping method for the FCH equation is the purpose of

this research. Due to the strong connections between the CH and FCH models, a review of

methods for solving the Cahn-Hilliard equation is necessary. A literature search returns far

too many papers to discuss here, so this review will only touch on a few papers from each

of the most relevant numerical methods. I divide the review into two parts: spatial schemes

and time-stepping schemes. Any good numerical method for simulating the CH or FCH

equation will require both a spatial and temporal component, and the connections between

the two could be very important to the performance of the method.

1.8.1 Spatial Schemes

The most common numerical method for solving the Cahn-Hilliard equation (1.3) has been

the method of finite elements. Elliot and French were active in this area of research in the

late 1980s. In their research, they developed several different finite element methods, each

with slightly different properties. In the first paper, they present a method for solving the

CH equation in one dimension and discuss the severity of the time step restriction due to

stability [36]. Two years later with Milner, they propose a method that is second order

in space and only requires the elements to be continuous [37]. In a second paper in 1989,

Elliot and French present a non-conforming finite element approach and give proofs for the

accuracy and convergence of the method [38].
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In 1991, Du and Nicolaides presented a semi-discrete finite element method that has

the advantage of a Lyapunov function [39]. The existence of a Lyapunov function for their

method makes it possible to prove convergence of the approximate solutions without any con-

ditions beyond the existence and uniqueness of solutions to the original differential equation.

Later, Barret et al. used a finite element method to model solutions to the CH equation with

non-constant surface diffusion [40]. In the last decade, Feng and Prohl developed and ana-

lyzed a mixed finite element scheme, and they proved some error bounds that were O
(
ε−1
)
,

rather than O
(

exp
(

1
ε

))
which was the previous result [41].

A common thread through several of the methods, including the finite element schemes,

was the use of multigrid techniques. In 2006, Kay and Welford gave a multigrid finite element

scheme with mesh independent convergence rates [42]. It is interesting to note that this paper

also discusses the difficulty of time step restrictions. An earlier paper by Kim et al. uses a

conservative multigrid method to solve the CH equation. The solution is then coupled to a

projection method to solve fluid flow with the Navier-Stokes equation for a two fluid system

[43].

In the last few years, several papers have been published by Wise and his colleagues using

non-linear multigrid finite difference schemes on the Phase Field Crystal model [7, 44, 45].

The Phase Field Crystal model is an extension of the Cahn-Hilliard model that has strong

anisotropy so that it can effectively model crystal growth and formation. Their schemes

are unconditionally stable with respect to time step size because they use a convex splitting

technique developed by Eyre [46, 34]. The technique will be used for the method developed in

Chapter 2, and it will be discussed extensively there. Previous to the Wise papers, Furihata

published a finite difference scheme that was second order in time and space but suffered

from the severe time step conditions on stability [47].
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Spectral methods have also played an important role in simulating solutions to the CH

equation. In 1999, Zhu et al. applied a semi-implicit spectral method to the CH equation to

study the long time behavior in a two dimensional domain [48]. In their scheme, they treated

the principle elliptic operator implicitly and all the other terms explicitly. Later, Vollmayr-

Lee and Rutenburg used a spectral method to identify an O

(
t
1
3

)
time step size which

can control accuracy for a certain class of convex splitting schemes [49]. They came to the

conclusion based on Eyre’s Theorem [46] and von Neumann analysis. In 2005, Ye and Cheng

published a paper discussing the inheritance of energy dissipation and mass conservation in

spectral methods [50]. Recently, Shen and Yang published the results of error estimates for

several methods used to simulate the CH equation, and in their conclusion, they recommend

spectral methods because of their effectiveness in capturing the interface fronts in the solution

[51].

Lastly, discontinuous Galerkin methods have been applied to the CH equation with some

success. In 2006, Wells et al. discussed a discontinuous Galerkin scheme and compared the

results and convergence to a standard finite element method [52]. A year later, Xia et al.

presented a local discontinuous Galerkin scheme that comes with a proof of energy stability

[53]. The paper includes numerical accuracy results and also some results on a ternary

system which could be of interest to our group in future research.

1.8.2 Temporal Schemes

Chapters 2, 3, and 4 will discuss in depth three temporal schemes for the Functionalized

Cahn-Hilliard equation: convex splitting, fully implicit, and exponential time differencing.

Before delving into the work of this dissertation, I will review these three temporal methods

for the Cahn-Hilliard equation and other partial differential equations.
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In 1998, Eyre proposed a gradient splitting method for stabilizing the numerical com-

putation of equations that have the form ut = F (u) = ∆δE
δu . Eyre applied this method to

the Cahn-Hilliard equation (1.3) to take advantage of the convexity of the associated Cahn-

Hilliard energy (1.1). By appealing to convexity, the implicit portion of the discretized

equation discussed in Section 1.7 will have a unique solution. This small adjustment in

the method completely removes the time step restriction. The method is discussed in two

papers, but only one of them was actually published [34, 46].

Several other authors have used convex splitting of the CH energy or similar models to

improve performance of their numerical simulations. These methods are valuable because

the convex splittings derived guarantee a unique solution at each time step and provide for

methods that decay in energy at each step. In 2009, Wise, Wang, and Lowengrub presented

an energy stable scheme for the phase field crystal equation [54]. Following this in 2010, Wise

used the same scheme to approximate solutions to the Cahn-Hilliard-Hele-Shaw system of

equations in a nonlinear multigrid framework [45]. Later, Gomez and Hughes developed a

convex splitting based on the fourth derivative ofW (u) that attains second order convergence

in time [55].

A method that does not fall into the convex splitting category but retains gradient

stability is the implicit-explicit stabilized scheme. Stabilization comes from adding and

subtracting a term that stabilizes inversion of the linear portion of the operator. Papers in

2010 by Shen and Yang develop a first order version of the method [56] and review several

other energy stable methods [51]. A later paper in 2012 by Shen, Wang, and Wang extends

their analysis to a gradient stable scheme that is second order accurate in time.

Before the development of gradient stable schemes, simulation of the CH equation was

primarily performed with implicit schemes since explicit computations suffer from severe

18



time step restrictions. An early paper on computing the CH equation with implicit time

stepping in one dimension comes from Elliot and French [36]. Further work with Milner

provided a second order in space calculation [37], and French alone published a paper on

an implicit scheme for the CH equation in two dimensions [57]. Lastly, a paper by Du and

Nicolaides established a scheme with better stability properties [39].

More recently in 2008, Kronbichler and Kreiss published a paper on two phase flows where

they used implicit time stepping for the Cahn-Hilliard portion [58]. In 2011, Willoughby

completed his doctoral dissertation with Brian Wetton on implicit time stepping methods

for the Allen-Cahn and Cahn-Hilliard equations [59].

The third method I implement in this dissertation is the exponential time differencing

(ETD) method. ETD methods for ordinary differential equations originated as early as

1960 in work by Certaine [60] and Pope [61]. In the nineteen-sixties and seventies, A great

many papers followed that refined the idea, but it eventually fell out of favor because it

was infeasible on the current computing hardware. An extensive review of ETD and other

similar methods was published by Minchev and Wright [62].

With recent advances in computing hardware and parallelism, ETD methods have finally

become effective for partial differential equations. In 1994, Hou, Lowengrub, and Shelley

used an exponential linearization to remove the stiffness from the computation of interfacial

flows with surface tension [63]. This lead to a rash of papers being published within the

last fifteen years on the topic of ETD methods for PDEs. In 1998, Beylkin, Keiser, and

Vozovoi develloped discretization schemes for nonlinear PDEs [64]. Four years later, Cox

and Matthews expanded the schemes to include higher order Runge-Kutta methods [65]. In

2004 and 2005, Du and Zhu published a pair of papers analyzing the stability of ETD-Runge-

Kutta (ETD-RK) methods and proposing a complex integration for stabilizing higher order
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terms [66, 67]. Kassam completed his doctoral dissertation on high order time-stepping for

semilinear PDEs and published a paper with Trefethen [68, 69]. In 2005, Hochbruck and

Ostermann published a pair of papers on ETD-RK methods for parabolic problems [70, 71].

They later published a review paper on “the construction, analysis, implementation and

application of exponential integrators” [72], where they focus on the two dominant types

of stiffness; equations where the Jacobian has eigenvalues with large negative real parts, or

highly oscillatory problems with large, purely-imaginary eigenvalues. Tokman has published

a series of papers focused on efficient computation of the exponential coefficients that arise

in ETD schemes, particularly how to compute the coefficients for large scale computing [73,

74, 75]. Most recently, Koskela and Ostermann published a paper on extending exponential

time differencing to higher orders using Taylor expansion [76].

1.9 Spectral Method

To effectively study temporal schemes we employ a Fourier spectral method in space. We

consider a standard Fourier pseudo-spectral discretization of (1.3). The function u is ap-

proximated by the vector U defined on a discrete grid of N points (xj = jh, j = 1, . . . N)

equally spaced with spacing h = 2π/N . The discrete Fourier transform of U is denoted by

Û:

Ûn =
1

N

N∑
j=1

e−i(j−1)(n−1)/NUj

which we can write in vector form as

Û = FU
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where F is the matrix representation of the discrete Fourier transform. In the pseudo-spectral

setting, U can also be considered to approximate u in the sense

u(x, t) ≈
N∑
n=1

Ûn(t)ei2παnx

where αn are the appropriately aliased n values. We then use the usual spectral approxima-

tions for derivatives on grid points

uxx ≈ F−1ΛαFU := ∆hU

where Λα is the diagonal matrix with entries −α2
n. The inverse discrete Fourier matrix

F−1 = NF ∗. Note that the matrix ∆h can be formed explicitly [77] but we only need the

property that it is possible to multiply by it efficiently using the FFT.

With these approximations, we can write a method of lines (MOL) discretization (a

semi-discretization in space but keeping time continuous) of (1.3):

dU

dt
= −ε2∆h∆hU + ∆hW

′(U). (1.11)

where by W ′(U) we mean the vector with entries W ′(Uj).

Throughout this document we will focus on the approximation to the time-stepping and

treat the analysis in a semi-discretized form. All of the computer codes are discretized in

space using this Fourier spectral decomposition, and the operators are built explicitly in the

frequency domain to obtain efficiency.
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Chapter 2

Convex Splitting for the FCH

Equation

2.1 Gradient Splitting Method

We begin by giving a detailed description of Eyre’s convex splitting method. If an energy,

E (u), is strictly convex, then its H−1 gradient is contractive. By definition, a functional,

F (u), is weakly contractive in the H−1 Sobolev space if it satisfies

〈F (u)− F (v) , u− v〉
H−1 ≤ 0,

for all u, v ∈ H2 (Ω). Using integration by parts on the H−1 inner product with periodic

boundary conditions, this is equivalent to

〈∇ (F (u)− F (v)) ,∇ (u− v)〉
L2 ≤ 0, (2.1)

Such a function gives energy decay in the approximation to differential equation, i.e.

Un+1 − Un

k
= F

(
Un+1

)
⇒ E

(
Un+1

)
< E (Un) , (2.2)
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where Un+1 and Un are the numerical solutions and times tn+1 and tn respectively, and k

is the size of the time step. On the other hand, if the negated energy, −E (u), is strictly

convex, then F (u) is expansive, we have 〈F (u)− F (v) , u− v〉
H−1 ≥ 0, which gives

Un+1 − Un

k
= −F (Un)⇒ E

(
Un+1

)
< E (Un) . (2.3)

Neither the Cahn-Hilliard energy (1.1) nor the Funcionalized Cahn-Hilliard energy (1.6) are

convex, however, they can be split into convex and concave terms. After the separation of

energy terms, we obtain the splitting of the gradient function into

F (u) = Fc (u)− Fe (u) . (2.4)

Fc (u) and Fe (u) are the respective contractive and expansive parts of the function F (u).

With the gradient function split, Eyre proved that the scheme

Un+1 − Un = k
(
Fc

(
Un+1

)
− Fe (Un)

)
(2.5)

is consistent, gradient stable for any k > 0, and possesses a unique solution for each time

step.

The ability to use any size of time step is a massive improvement over the previous

restrictions, but the method is only first order in time. We believe that we could improve

the method by applying a deferred correction step to the time updates [78]. The essence of

the method is that we take an explicit step on the expansive terms, and it comes with a large

amount of error, but the implicit step on the contractive terms makes up for the instability

of the explicit portion and keeps the solution decaying in the energy landscape.
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2.2 Gradient Splitting Example

To better understand the gradient splitting method, take the Cahn-Hilliard equation in one

dimension,

du

dt
= −ε2uxxxx +

(
u3
)
xx
− uxx.

The first terms is contractive since it come from a convex term in the energy, ε
2

2 |∇u|
2. and

respectively. Using (2.1), we can show that it is contractive as follows,

− ε2 〈∂x (uxxxx − vxxxx) , ∂x (u− v)〉
L2 = −ε2

〈
∂5
x (u− v) , ∂x (u− v)

〉
L2

= −ε2
〈
∂3
x (u− v) , ∂3

x (u− v)
〉
L2

= −ε2
∥∥∥∂3
x (u− v)

∥∥∥2

2
≤ 0 (2.6)

The second term also comes from a convex term in the energy, namely 1
4u

4, and can be

shown to be contractive in a similar fashion.

〈
∂x

((
u3
)
xx
−
(
v3
)
xx

)
, ∂x (u− v)

〉
L2

=
〈
∂x

((
u3 − v3

)
xx

)
, ∂x (u− v)

〉
L2

=
〈
∂3
x

(
u3 − v3

)
, ∂x (u− v)

〉
L2

= −
〈
u3 − v3, ∂4

x (u− v)
〉
L2

= −
〈

(u− v)
(
u2 + uv + v2

)
, ∂4
x (u− v)

〉
L2
≤ −

〈
u− v, ∂4

x (u− v)
〉
L2

= −
〈
∂2
x (u− v) , ∂2

x (u− v)
〉
L2

= −
∥∥∥∂2
x (u− v)

∥∥∥2

2
≤ 0
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The third term is the backward heat operator and is expansive since it comes from −1
2u

2.

We can show that it is expansive by again using (2.1),

− 〈∂x (uxx − vxx) , ∂x (u− v)〉
L2 = −

〈
∂3
x (u− v) , ∂x (u− v)

〉
L2

=
〈
∂2
x (u− v) , ∂2

x (u− v)
〉
L2

=
∥∥∥∂2
x (u− v)

∥∥∥2

2
≥ 0 (2.7)

Thus we can split the right hand side into (2.4), where the contractive and expansive

functions are

Fc (u) = −ε2uxxxx +
(
u3
)
xx

Fe (u) = uxx.

Using (2.5), the gradient splitting scheme is

Un+1 − Un = k∂2
x

(
−ε2∂2

xU
n+1 +

(
Un+1

)3
− Un

)
(2.8)

To see the nonlinear Newton solve needed, rewrite the equation as

Un+1 − k∂2
x

(
−ε2∂2

xU
n+1 +

(
Un+1

)3
)

=
(

1− k∂2
x

)
Un.

For each time step, this equation can be solved by calculating the right hand side from

the solution at the previous time step, then using Newton’s method to iteratively solve the

nonlinear implicit portion, and thereby obtaining the solution at the next time step. Due to

the contractive nature of the implicit terms, Newton’s method is now guaranteed to converge

for any time step size, k > 0, as discussed in Sections 1.7 and 2.1.
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2.3 Splitting the FCH Equation

The gradient splitting method depends on the choice of mixing potential function W (u),

since a different choice would give a different collection of convex and concave terms. The

tilted, double-well potential used in this research is

W (u) =
1

2
(u+ 1)2

(
1

2
(u− 1)2 +

τ

3
(u− 2)

)
(2.9)

and is shown in Figure 1.2. The parameter τ governs the amount of tilting in the double-well

and has a significant impact on the possible minimal energy geometries.

With the potential substituted into the FCH equation (1.10), we obtain the full PDE:

ut = −ε4∆3u+ε2∆2
(
u3
)

+
1

2
ε2τ∆2

(
u2
)
−ε2 (2 + εη1) ∆2u+3ε2∆

(
u2∆u

)
+ε2τ∆ (u∆u)

−∆

[
3u5 +

5

2
τu4 +

(
1

2
τ2 − 4− εη2

)
u3 − τ

2
(6 + εη2)u2 +

(
1 + εη2 −

1

2
τ2
)
u

]
(2.10)

Considering this equation with a first order approximation of the time derivative, most of

the terms on the right hand side of the equation can be classified as contractive or expansive

gradients of their corresponding contribution in the energy functional (Equation 1.6). One se-

rious exception is the term ε2∆
(
∆u3 + 3u2∆u

)
, which is from the Euler-Lagragian variation

of the energy component
∫

Ω−ε
2u3∆udΩ. This energy term is neither convex nor concave.

Note that 3u2∆u + ∆u3 = −6u |∇u|2 + 6∇ ·
(
u2∇u

)
. To guarantee gradient stability for

the scheme, we must adopt the semi-implicit terms −6un+1 |∇un|2 +6∇·
((
un+1

)2∇un+1
)

while classifying the other terms as previously discussed. This gives the unconditionally
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gradient stable nonlinear semi-implicit scheme

un+1 − un

k
= ∆

[(
4 + ε2η

)
(un)3 −

(
2ε2 + ε4η

)
∆un − ε4∆2un+1 − 6ε2un+1 |∇un|2

+6ε2∇ ·
((

un+1
)2
∇un+1

)
−
(

3
(
un+1

)5
+
(

1 + ε2η
)
un+1

)]
.

(2.11)

Unfortunately, the mixed implicit-explicit terms make the numerical scheme more com-

plicated and significantly decrease its speed and efficiency. We therefore chose to treat the

difficult term fully implicitly and include it in Fc (u). The additive splitting can then be com-

pleted term by term and substituted into Equation 2.5. This gives the nearly contractive

function

Fc (u) = −∆
[
ε2∆

(
ε2∆u− u3

)
− ε2

(
3u2 + τu

)
∆u+ 3u5

−τ
2

(6 + εη2)u2 +

(
1 + εη2 −

1

2
τ2
)
u

]
, (2.12)

and the corresponding expansive function

Fe (u) = ∆

[
ε2∆

(
(2 + εη1)u− 1

2
τu2
)

+
5

2
τu4 +

(
1

2
τ2 − 4− εη2

)
u3
]
. (2.13)

Even though we cannot prove that this splitting is guaranteed to give energy decay for every

time step size, every simulation we have performed with this method has demonstrated a

decrease in energy. This slight deviation from Eyre’s original method seems to have little

impact on the numerical stability of the scheme.
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2.4 Stability and Solvability

First, we will prove that the semi-discretized scheme is indeed unconditionally gradient

stable. The proof is algebraic, relying simply on the integration by parts and Young’s

inequality. We will prove stability for the simpler version of 2.11 which is the L2 flow on the

energy,

un+1 − un

k
=
(

4 + ε2η
)

(un)3 −
(

2ε2 + ε4η
)

∆un − ε4∆2un+1 − 6ε2un+1 |∇un|2

+6ε2∇ ·
((

un+1
)2
∇un+1

)
−
(

3
(
un+1

)5
+
(

1 + ε2η
)
un+1

)
. (2.14)

Theorem 2.4.1. The semi-implicit scheme (2.14) is unconditionally gradient stable for any

time step size k, i.e. F (un+1) ≤ F (un)

Proof. Choose the test function φ = −
(
un+1 − un

)
, multiply it to both sides of (2.14),

and integrate over the domain. On the left side, we have −1
k

∥∥un+1 − un
∥∥2 ≤ 0 which

approximates the theoretical decay rate −k ‖ut‖2. Here and after, we use || · || for standard

L2 norm in the inner product space. On the right side, we will recover the form F
(
un+1

)
−

F (un) +R with R ≥ 0. This is computed term by term beginning with the linear terms.

• −ε4∆2un+1: we have
〈
ε4∆un+1,∆

(
un+1 − un

)〉
, which equals

ε4

2

(∥∥∥∆un+1
∥∥∥2
− ‖∆un‖2 +

∥∥∥∆un+1 −∆un
∥∥∥2
)
. (2.15)

• −
(
1 + ε2η

)
un+1: we have

〈(
1 + ε2η

)
un+1, un+1 − un

〉
, which is

(
1 + ε2η

)
2

(∥∥∥un+1
∥∥∥2
− ‖un‖2 +

∥∥∥un+1 − un
∥∥∥2
)
. (2.16)
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• −
(
2ε2 + ε4η

)
∆un: after integrating by parts, it reads

〈(
2ε2 + ε4η

)
∇un,∇

(
un − un+1

)〉
,

and therefore can be written as

(
ε2 +

1

2
ε4η

)(
‖∇un‖2 −

∥∥∥∇un+1
∥∥∥2

+
∥∥∥∇(un − un+1

)∥∥∥2
)
. (2.17)

• −3
(
un+1

)5
: it reads

〈
3
(
un+1

)5
, un+1 − un

〉
. We shall show that

〈
3
(
un+1

)5
, un+1 − un

〉
≥ 1

2

〈
1,
(
un+1

)6
− (un)6

〉
. (2.18)

Define a new function

f
(
un+1

)
= 3

(
un+1

)5 (
un+1 − un

)
− 1

2

((
un+1

)6
− (un)6

)
.

We show that f
(
un+1

)
≥ 0 by first noting that f (un) = 0. Further, f ′

(
un+1

)
=

15
(
un+1

)4 (
un+1 − un

)
which is non-negative for un+1 > un, non-positive for un+1 <

un. Thus (2.18) holds.

•
(
4 + ε2η

)
(un)3: a simple calculation gives a result similar to (2.18), i.e. (un)3 (un − un+1

)
≥

1
4

(
(un)4 − (un+1)4

)
. Thus

〈(
4 + ε2η

)
(un)3 , un − un+1

〉
≥
(

1 +
1

4
ε2η

)〈
1, (un)4 −

(
un+1

)4
〉
. (2.19)

• −6un+1 |∇un|2 + 6∇ ·
((
un+1

)2∇un+1
)

: note that for the first term we have

6un+1 |∇un|2
(
un+1 − un

)
≥ 3

(
un+1

)2
|∇un|2 − 3 (un)2 |∇un|2 ,
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therefore

〈
1, 6un+1 |∇un|2

(
un+1 − un

)〉
≥
〈

1, 3
(
un+1

)2
|∇un|2 − 3 (un)2 |∇un|2

〉
. (2.20)

The second term gives

〈
6
(
un+1

)2
,∇un+1

(
∇un+1 −∇un

)〉
≥
〈

1, 3
(
un+1

)2 ∣∣∣∇un+1
∣∣∣2 − 3

(
un+1

)2
|∇un|2

〉
.

(2.21)

Adding (2.21) to (2.20), we obtain

ε2
〈
−6un+1 |∇un|2 + 6∇ ·

((
un+1

)2
∇un+1

)
,−
(
un+1 − un

)〉
≥

ε2
〈

1, 3
(
un+1

)2 ∣∣∣∇un+1
∣∣∣2〉− ε2 〈1, 3 (un)2 |∇un|2

〉
. (2.22)

From (2.15 - 2.22), we conclude that F
(
un+1

)
≤ F (un), with F (u) defined by (1.6).

Next, we will show that there is at most one solution to the nonlinear equation (2.14) for

any time step k, therefore, there shall be no restriction from the solvability of (2.14)

Theorem 2.4.2. The nonlinear equation (2.14) has only one solution in H2(Ω) for any

time step k.

Proof. Assuming un+1 = w, v are distinct solutions, by subtraction it follows that

w − v
k

= −ε4∆2 (w − v)− ε2
(

6w |∇un|2 − 6v |∇un|2
)

+ 6ε2∇ · w2∇w

−6ε2∇ · v2∇v −
(

3w5 +
(

1 + ε2η
)
w − 3v5 −

(
1 + ε2η

)
v
)
. (2.23)
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Multiplying both sides of (2.23) by w−v and integrating over the domain, the left hand side

of (2.23) becomes
〈

1
k , (w − v)2

〉
≥ 0. It suffices to show that the right hand side of (2.23)

is non-positive, thus w = v in H2 (Ω). The right hand side gives

−ε4 ‖∆ (w − v)‖2 − 6ε2
〈
|∇un|2 , (w − v)2

〉
−
(

1 + ε2η
)
‖w − v‖2

−
〈

3
(
w5 − v5

)
, (w − v)

〉
+
〈

6ε2∇ · (w)2∇ (w)− 6ε2∇ · (v)2∇ (v) , w − v
〉
.

It suffices to show that

g (w, v) = −ε4 ‖∆ (w − v)‖2 −
〈

3
(
w5 − v5

)
, w − v

〉
+
〈

6ε2∇ · w2∇w − 6ε2∇ · v2∇v, w − v
〉
≤ 0. (2.24)

It is easy to check that 3
(
w5 − v5

)
(w − v) ≥

(
w3 − v3

)2
, therefore

g (w, v) ≤ −ε4 ‖∆ (w − v)‖2−
∥∥∥w3 − v3

∥∥∥2
+
〈

6ε2∇ · w2∇w − 6ε2∇ · v2∇v, w − v
〉
. (2.25)

Integration by parts gives

〈
6ε2∇ · w2∇w − 6ε2∇ · v2∇v, w − v

〉
= −ε2

〈
6w2∇w − 6v2∇v,∇ (w − v)

〉
= 2

〈
w3 − v3, ε2∆ (w − v)

〉
.

Using Young’s inequality, it follows that

〈
6ε2∇ · w2∇w − 6ε2∇ · v2∇v, w − v

〉
≤ ε4 ‖∆ (w − v)‖2 +

∥∥∥w3 − v3
∥∥∥2
. (2.26)
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Adding (2.26) to (2.25), we have g (w, v) ≤ 0, therefore ‖w − v‖2 = 0, i.e., w = v.

So far, after assuming existence and regularity of the solution to (2.14), we have shown

that the semi-discrete scheme (2.14) is unconditionally gradient stable and admits at most

one solution. We would like to comment that

Remark 1. When the finite element method with solution base H2
h(Ω) is used, the above

analysis holds with suitable boundary conditions. However, Theorem 2.4.1 and 2.4.2 may

not be true for other spatial discretization. The motivation of designing such a scheme is

due to the fact that one of the major difficulties for the numerical simulation of (1.10) is an

accurate time stepping strategy.

Remark 2. The generalization of this proof to the conservative H−1 flow (2.11) in the

semi-discrete framework is straightforward by using the test function φ = ∆−1
(
un+1 − un

)
.

2.5 Fixed-Point Iteration

To solve the implicit portion of equation (2.5), we apply Newton’s method

G′ (Ur)
(
Ur+1 − Ur

)
= −G (Ur) , (2.27)

where r is the iteration number, and we define

G
(
Un+1

)
= Un+1 − Un − kFc

(
Un+1

)
+ kFe (Un) . (2.28)
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We desire to iteratively solve for Ur such that G (Ur) < ε with ε a desired tolerance. First

we calculate the Fréchet derivative

G′ (Ur) v = v − kF ′c (Ur) v, (2.29)

with peturbation v and F ′c defined as

F ′c (Ur) v = −∆
[
ε2∆

(
ε2∆v − 3 (Ur)2 v

)
− ε2 (6Urv + τv) ∆Ur − ε2

(
3 (Ur)2 + τUr

)
∆v

+15 (Ur)4 v − τ (6 + εη2)Urv +

(
1 + εη2 −

1

2
τ2
)
v

]
. (2.30)

The Fréchet derivative is necessary in this use of Newton’s method because G (u) is a func-

tional on H6 (Ω). The Fréchet derivative of a function f (u) is defined as the linear operator

A (u) that satisfies the following limit,

lim
‖v‖→0

‖f (u+ v)− f (u)− A (u) v‖
‖v‖

= 0.

It can be easily calculated by computing f (u+ v)− f (u) and then keeping only the terms

that are linear in v. This is precisely how we obtained (2.30) from (2.12).

It is important to note in equation (2.29) that G′ (Ur) is a complicated function of Ur.

Computing this operator for every step of the iterative solve is computationally infeasible.

Instead, we approximate G′ with the operator

G̃′ = 1 + k∆

[
ε4∆2 − c2ε2∆ + c1 +

(
1 + εη2 −

1

2
τ2
)]

(2.31)

which is independent of the phase-field solution Ur, and be computed entirely spectrally
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which is a very quick calculation. c1 and c2 are O (1) empirical constants that approximate

the maximum values of the terms depending on Ur. With this approximation, the new

fixed-point method loses the second order convergence of Newton’s method, but the total

computational cost is much lower for each iterative process.

We do not yet have a proof that this splitting applied to the FCH equation (1.10) is a

contraction mapping, so we will present a proof that is applied to the Cahn-Hilliard equation

(1.3) [79]. The proof is in a finite element framework, even though our method uses a Fourier

method. The approximate Newton iteration for the CH equation is

(
1 + kε2∆2 − kC∆

)
ur+1 = k∆ (ur)3 + un − k∆un. (2.32)

We will prove that (2.32) is a contraction mapping for small enough k. We first change

(2.32) into a system of equations,


U − kC∆U − k∆P = v

P + ε2∆U = u3 − v
, (2.33)

where v = un. For the partition
⋃
kh

in the finite element space σh = H1
h (Ω), we look for a

pair (U, P ) ∈ σh such that


〈U, φ〉+ kC 〈∇U,∇φ〉+ k 〈∇P,∇φ〉 = 〈v, φ〉

〈P, ψ〉 − ε2 〈∇U,∇ψ〉 =
〈
u3 − v, ψ

〉 (2.34)

holds for any φ, ψ ∈ σh. We define a mapping Πv : σh → σh for any v ∈ σh, so that

U = Πv (u).

Lemma 2.5.1. For given v with ‖v‖2 = α, there exists a constant β > 0 such that Πv
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maps the ball S = {u ∈ σh : ‖u‖2 ≤ 2α} into itself if k ≤ βε2hδ. hδ is the mesh size related

parameter.

Proof. Letting φ = ε2U and ψ = kP in (2.34), we have


ε2‖U‖22 + kCε2‖∇U‖22 + kε2 〈∇P,∇U〉 = ε2 〈v, U〉

k‖P‖22 − kε
2 〈∇U,∇P 〉 = k

〈
u3 − v, P

〉 . (2.35)

Summing the two equations gives

ε2‖U‖22 + kCε2‖∇U‖22 + k‖P‖22 = ε2 〈v, U〉+ k
〈
u3 − v, P

〉
, (2.36)

and applying the identity a2 − ab = 1
2a

2 − 1
2b

2 + 1
2 (a− b)2 leaves us with the inequality

‖U‖22 + 2kCε2‖∇U‖22 +
2k

ε2
‖P‖22 ≤ ‖v‖

2
2 +

2k

ε2

〈
u3 − v, P

〉
. (2.37)

Using Young’s inequality, it follows that

‖U‖22 + 2kCε2‖∇U‖22 ≤ ‖v‖
2
2 +

k

ε2
‖u3 − v‖22. (2.38)

By inverse estimates in the finite element space, there exists C̃ > 0 independent of hδ and

α such that ‖u‖2∞ ≤ C̃αh
−1

2
δ for ‖u‖2 ≤ 2α, where hδ only depends on mesh size. C̃ only

depends on the degree of the underlying polynomial, so we can choose C =

(
C̃αh

−1
2

δ

)2

or
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more practically ‖u‖2∞ so that

‖U‖22 + 2kCε2‖∇U‖22 ≤ ‖v‖
2
2 +

2kC2

ε2
‖u‖22 +

2k

ε2
‖v‖22

≤ α2 +
8kC2α2

ε2
+

2kα2

ε2
. (2.39)

Thus it suffices to require that 8kC2 + 2k ≤ 3ε2 or equivalently k ≤ 3ε2

8C2+2
≤ βε2hδ.

Similarly, we can show that Πv is a contractive mapping if k ≤ βε2hδ for some β > 0,

but the proof is nearly identical so we will not repeat it here.

2.6 CPU version of code

We found solutions to the Functionalized Cahn-Hilliard equation by applying a spectral

method to (2.5) with Fc and Fe given by (2.12) and (2.13) respectively. We wrote the

computer code in C++, but any number of languages could have been used. There are two

primary reasons we chose a spectral method; thin interfaces between phases and simplicity

of taking numerical derivatives.

First, spectral methods offer the highest possible spatial resolution. Due to the physics

of the materials modeled, solutions to the FCH equation develop O (1) changes over O (ε)

intervals in space, so high spatial resolution is critical. We find that we can obtain reasonable

solutions when we have as few as three grid points over the length of ε. For a cubic domain

with 128 grid points along each edge, this resolution allows us to effectively capture up to

forty-two changes in phase from polymer to water or visa versa, which is far more than we

need in any reasonable simulation.

Second, the properties of a spectral method simplify derivatives in higher dimensions. The
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number of Laplacians needed to calculate the solution at each time step becomes difficult

with other methods, but in the frequency domain, each Laplacian is a simple element-

wise multiplication of the Laplacian operator array against the target array. The spectral

method brings with it some other challenges. First and foremost is the computational cost

of transforming large arrays back and forth between the frequency and spatial domains.

Fortunately, the FFTW package provides the tools to do Fourier transforms quickly and can

easily be adapted to parallel computing on multiple CPUs.

Another restriction that comes with spectral methods is limitations on the domain shape

and boundary conditions. Domain shape is limited to rectangular prisms since grid points

must be spaced regularly in every direction. Further, the number of grid points in every

direction should be a power of two to use the full speed of FFTW. When computing solu-

tions spectrally, periodic boundary conditions come automatically, but any other boundary

conditions become difficult or impossible to compute. Fortunately for us, periodic boundary

conditions are reasonable for our simulations, but in future work, we may need to apply

Dirichlet, Neumann, or mixed boundary conditions. At that time it will probably be neces-

sary to switch methods.

2.7 Adaptive Time-Step

In addition to the advantages of a spectral method, we can speed up the simulation by

adapting the time step to the evolution of the solution. The balance between Cahn-Hilliard

like coarsening and surface interface generation causes periods of rapid change in the solu-

tion interspersed between slow evolution. Due to the unconditionally stable nature of the

numerical scheme, we are free to choose a time step as large as we would like at the cost of
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numerical error. When choosing a time step size, we estimate the evolution with a completely

explicit calculation based on the previous time step size. The residual is

Rn = k [Fc (Un)− Fe (Un)] ≈ Un+1 − Un. (2.40)

Then we determine the new time step

knew =
ct

max
x∈Ω

(Rn)
, (2.41)

where ct is a constant that allows us to control the time step sizes globally and is typically

a value near 1. In future work, we intend to replace this crude estimate with a control on

the error rather than the change in the solution.

A simulation that captures the importance of adaptive time stepping for the FCH is

that of a sphere with an O
(
ε2
)

perturbation. A sphere that has too large of a radius is an

unstable steady state of the equation, so with a small perturbation the solution has very

little change for a long time period. Eventually the evolution moves the solution away from

the unstable steady state and collapses into a lower energy geometric solution. A graph of

the energy that shows the necessity of adaptive time stepping is in Figure 2.1.

It is easy to see the value of a time step that adapts to the solution. For evolution

before T = 600, large time steps can be taken because there is very little change, but as the

solution begins to change rapidly very small time steps must be taken in order to preserve

the integrity of the approximate solution. Figure 2.2 gives still shots of the solution at

important time intervals. Comparing to the energy, we see that the solution changes very

little between T = 1 and T = 600 and it would be a severe waste of computing time if we
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Figure 2.1 Energy trace of solution with unstable equilibrium initial condition.

used uniform time steps that were small enough to capture the changes at T = 630 and

later. After T = 700 the evolution of the solution slows, and it is reasonable to take larger

time steps again.

2.8 FCH on Graphics Processing Units

A recent development in scientific computing is General-Purpose computing on Graphics

Processing Units (GPGPU). In the 1990s, Graphics Processing Units (GPUs) were developed

to accelerate the building of 2D and 3D images for output to a display. Since then, the

stream processing capabilities of GPUs have been turned to scientific computing, and the
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T = 1

T = 640

T = 600

T = 650

T = 630

T = 10000

Figure 2.2 An unstable steady state solution for the FCH equation

application to scientific computing has lead to commercial lines of GPUs that have hundreds

of computation cores but no display output hardware. GPU computation can be much faster

if a problem or computation lends itself well to many lightweight computation threads. We

used Nvidia GPU cards and the CUDA programming language which is C++ with extra

functions to control the device (GPU) from the host (CPU).

When simulating the FCH equation spectrally with the gradient splitting detailed in sec-

tion 2.3, there are three main types of mathematical operations; Fourier transforms (FFT),

inverse Fourier transforms (IFFT), and multiply/add calculations. All three of these oper-

ations can be adapted very well to GPU processing. Three dimensional Fourier transforms

can be computed extremely fast on a GPU by breaking the domain into lines of grid points,
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then handing each line of grid points to a separate processor for calculation of the one di-

mensional FFT. After each processor is done computing the frequency representation of the

data, the GPU can recompile the data back together. Inverse Fourier transforms can be

easily computed for the same reason. The cuFFT package has already been developed to

implement FFT calculations on the GPU, and it’s easy to implement because the syntax

and structure matches almost exactly with the FFTW library for C++.

Once the data can be quickly converted into either the spatial or frequency domain, the

entire equation is simply element-wise multiplication or addition in the appropriate domain.

This plays directly into the strength of the GPU, millions of lightweight computation threads.

There are however limitations to GPU computing that cannot be overlooked. Unlike a CPU

that has access to any memory location, GPUs multiprocessors can only access the data

that is stored in the GPU card’s memory. This leads to two complications; limitations on

array size and movement of data. The GPU card we used had only 4GB of memory on the

card, so for the number of double-precision, complex-valued arrays we used in the simulation,

the size of the domain was limited to 223 total grid points. For a cubic domain, this limit

corresponds to 128 grid points in each dimension. It is important to realize that this is a

rigid memory limit because it is defined by the GPU card’s hardware.

The second complication is moving data to the memory on the GPU. The movement

of data on and off the card is the only way to access the solutions to the PDE, and data

movement is much slower than computation speed. Moving arrays onto the card for every

calculation would erase all of the speed-up obtained from using the hundreds of processors.

Our answer to this limitation was to put the initial condition array on the card at the

beginning and not take the array off the card except when the simulation ended or we

needed to record the data. Without this adjustment when porting the code from C++ to
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CUDA, the change would have been pointless.

The final limitation that needs mentioning is the limit on double precision computations.

There are some GPUs that are not capable of performing double precision calculations, but

on the GPU we used, there was one double precision core on each multiprocessor, as opposed

to eight single precision cores. This made the simulation much slower when we used double

precision, but recent advances in GPU technology have rectified this. The newest GPUs

for scientific computation have only double precision cores, which gives them up to sixteen

times more double precision capability [80].

2.9 GPU Speed-Up

We conducted a speed test to compare simulation code written for parallel CPUs against

the code written for the GPU. The CPU code was written in C++ and fully parallelized

using OpenMP. The parallel version of FFTW was used for the Fourier transforms. The

code was run on two Intel E5530 processors with four cores per processor. The processors

have a clock speed of 2.4 GHz. The GPU used was a Tesla M1060 with 240 multiprocessor

cores with a clock speed of 1.3 GHz, and it had 4GB of global memory. The two hardware

configurations were both about two years old at the time of the test, so the speed result are

comparable. The test was performed on initial conditions of random initial data for time

up to T = 0.001, which required approximately 20 time steps. The solutions given by the

two codes were exact up to implicit iteration precision. The simulation length was relatively

short compared to our typical FCH simulations that compute solutions up to T = 10, 000 or

even T = 100, 000. This was to show the impact of slow transfer of data between the host

and GPU device.
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Figure 2.3 gives the speed-up comparison for single and double precision calculations.

For both the single and double precision experiments, the speed-up for a single time step

was much higher than the total time speed-up due to the slow transfer of initial data onto the

GPU card at the beginning of the simulation and transfer of the final solution off the card

at the end of the simulation. As the simulation time grows longer, the total time speed-up

converges to the speed-up per time step value since the data transfer to and from the GPU

will become insignificant. The jagged nature of the single precision, per-time-step curve

is due to the error in measuring extremely small computation times. If the same speed-up

experiment was run on a state of the art GPU and parallel CPUs, the results are expected to

be similar, however the improvement in number of double precision cores per multiprocessor

on the Fermi line of GPUs leads us to expect results more like the ∼ 25x speed-up of the

single precision experiment [80].

2.10 Comparison of results to experimental data

A mathematical model is only as good as its ability to describe real materials. Unfortunately,

three dimensional images of Nafion are not available, but there are systems composed of

amphiphilic diblock copolymer systems that obey similar surface energy dominated physics.

Figure 2.4 shows a comparison between a previous 2D simulation on the FCH equation

[28], and images from an amphiphilic diblock copolymer system experiment [81]. Three

dimensional simulations also show pore network solutions that self-assemble from random

initial data. Figure 2.5 shows a three dimensional pore network along with two other solutions

that all had identical random initial data. The difference between the geometries is small

changes in the parameters η1 and η2 in equation (1.10).
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Another geometry that has been seen extensively in experiments is the pearled pore.

Figure 2.6 shows an image from an experiment performed by Bendejacq et al. on a diblock

copolymer system [82]. Next to the experimental image is a simulation of pearling from

the FCH equation. The numerical simulation had initial conditions of a straight pore with

radially symmetric O (ε) noise. The periodic boundary conditions prevent the pore from

extending or contracting, and thereby force the solution into a frustrated quasi-steady state.

We have not yet been able to find steady state pearling from random initial data in three

dimensions, but we hope to find pearled pores and other interesting structures with a future

parameter scan.

2.11 Conclusions

We extended Eyre’s convex splitting scheme to the Functionalized Cahn-Hilliard equation

and obtained a numerical scheme. We proved that the scheme had only one solution and

that the energy could not increase for any size time-step. This shows that the method is

unconditionally gradient stable with respect to the size of the time-step taken. The right

hand side of the equation could not be split additively as desired, but by moving the mixed

term into the implicit portion, we were able to obtain an effectively gradient stable method.

A novel iterative technique significantly increased the calculation speed by eliminating

the need to rebuild the inverted operator for each iteration. The operator is built once at

the beginning of the computation saving computation time. Using this temporal scheme

with a Fourier spectral method for the spatial discretization made a scheme that could be

implemented on a graphics processing unit. The GPU code is extremely efficient, and the

speed up allowed us to study large, three-dimensional domains over long evolution times.
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Figure 2.3 Speedup of GPU over parallel CPU for a short FCH simulation computed using
single precision (top) and double precision (bottom).
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Figure 2.4 Two dimensional FCH simulation results (left) compared against images from a
diblock copolymer experiment [81] (right)

Pore network Lamella network Inverted micelles

Figure 2.5 Geometries that minimize the FCH energy for slightly different values of η1 and
η2. The images show a level set near u = 0 with blue on the water side of the level set and
green on the polymer side
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TEM experimental image

Experimental diagram

Figure 2.6 Experimental results for a diblock copolymer pore showing pearling instability
[82] (left) compared against result of a numerical solution of the FCH equation (right)
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Chapter 3

Fully Implicit Method

3.1 Introduction

Many material science problems require an understanding of the microstructure that develops

in a mixture of two of more materials or phases over time as it phase separates during

a casting or annealing process. One such equation is the well-studied Cahn-Hilliard [10]

equation, written below in equation (3.2) in a one-dimensional (1D) setting, that describes

a binary alloy during annealing. The parameter ε in the model describes the width of

the layers between the regions. Such regions form in O(1) time in a spinodal evolution.

Subsequently, they merge in a ripening process. Ripening happens on longer time scales,

generically O(eC/ε) for 1D Cahn-Hilliard [83] and O(1/ε) in higher dimensions [11]. We

extend the use of the terms “spinodal” and “ripening” to describe similar regimes in the

evolution described by other equations. Phase regions undergoing Cahn-Hilliard evolution

increase in size over time in a coarsening process. The statistics of this coarsening process

are of interest [84].

The Cahn-Hilliard model is a sub-class of phase field models. A review of the use of such

models in material science applications can be found in [6]. It can be shown rigorously that

as ε→ 0, solutions of Cahn-Hilliard equations have layers that tend to interfaces that move

with a nonlocal geometric motion known as the Mullins-Sekerka flow [11]. Other phase field

models also limit to geometric motion of other kinds. Understanding the limiting process
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and studying it directly is of interest. In addition, Cahn-Hilliard equations and variants can

be used in computational approximation of moving interfaces in so-called diffuse interface

methods [85, 86] in which the problem for u is coupled to other variables describing other

physics. While the computational approach developed in this chapter might be useful to

some diffuse interface computations, we are motivated by a general class of pure (uncoupled

to other physics) energy gradient phase field problems described below.

There are several interesting generalizations of the Cahn-Hilliard equation. A lower order

version (two instead of four spatial derivatives), the Allen-Cahn equation (3.1) [87] is also of

interest in materials science, describing the evolution of crystal grains of the same material

during annealing. This equation can also be called a Ginzberg-Landau equation.

The aim of this chapter is to develop a numerical approach that can be applied to a wide

range of phase field problems that can easily be adapted to new terms, higher order problems,

and extension to vector solutions. It should be made clear we do not attempt to outperform

well-developed codes with space and time adaptivity with fast, multi-grid solvers that have

been developed for particular problems. Rather, we develop a reasonably fast time-adaptive

technique with general applicability.

Since many questions of interest in materials science are about the microstructure of a

bulk material far from boundaries, it is reasonable to consider problems in periodic domains.

We use a Fourier spectral discretization which is a natural choice in this setting. Although

this does rule out spatial adaptivity, it does admit a fast implementation on Graphical

Processing Units (GPU) in the computational framework we develop. We discretize in time

using Backward Differentiation Formula (BDF) methods [88] of low order, which have good

stability properties. Temporal error estimation is done with Adams-Bashforth (AB) [89]

predictors. Newton’s method is used to solve the resulting nonlinear problems. The Jacobian

49



matrix in the solve for the Newton update is symmetric since it is the second variational

derivative of an energy functional. It is also positive definite for time steps small enough (this

is discussed in more detail below). Although the Jacobian is dense for spectral discretizations,

multiplication by the matrix can be done quickly using the Fast Fourier Transform (FFT).

This motivates our use of the conjugate gradient method [90] to solve the Newton updates.

Such an approach used on high order problems requires an efficient preconditioner. We use

a constant coefficient version of the problem that is a linearization at pure phase states,

which will dominate the solution during ripening. This idea is similar to that used in [91] in

fixed point iterations for time stepping for Cahn-Hilliard with operator splitting. Efficient

performance is seen with our approach for a wide selection of scalar and vector problems

from second to sixth order. Mild increase is seen in preconditioned conjugate gradient (PCG)

iteration counts per time step as the time step is increased and ε is decreased. Exploration

of the performance of the method specifically for the 1D Cahn-Hilliard problem, which has

a well understood structure during ripening, shows that the number of PCG iterations per

solve scales as O(
√
δt/ε) for large time steps δt and small ε, independent of the spatial

discretization.

There have been many contributions to the numerical solution of the Cahn-Hilliard and

related equations. Our work is novel in four ways: we exploit the symmetry of the Jacobian

matrix for the fully implicit time stepping problem in a CG method; we propose and analyze

the preconditioner for this Jacobian solve and show that it is effective for a number of

problems; we implement the method in modern GPU architecture and get fast performance;

we demonstrate that the Jacobian matrix is not singular for large time steps during ripening

and that fully implicit time stepping leads to accurate solutions with these large time steps

with energy decrease.
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We discuss further the issue of time-stepping. For arbitrary discrete initial data, the

fully implicit time discretization problem is known to have a unique solution only when the

time step is small enough [39]. As the spatial grid size h = ∆x is reduced and the initial

data on the refined grid is again allowed to be arbitrary, the time step that guarantees

unique solutions to the implicit time discretization problem is reduced. In addition, it is

not possible in general to show that a fully implicit time step leads to a decrease in the

underlying energy. Guarantees of solvability for any time step δt and energy decrease are

possible for some models with an operator splitting approach due to Eyre [46]. Although

never published, this work has been very influential and some of the results are summarized

in [49]. Several of the computational approaches cited in Chapter 1 use variants of this

splitting approach. Some of the splitting techniques lead to nonlinear problems and we show

that our ideas lead to efficient solution of these problems (with preconditioned CG iteration

counts independent of δt and ε).

Guarantees of energy decay and unique solutions for any chosen time step δt are very

attractive and so splitting techniques have dominated the thinking in numerical methods

for these problems for many years. Our use of fully implicit time stepping may be seen

as controversial. We first considered this approach because of some motivating high order,

vector models for which the process of splitting the gradient terms into convex and concave

parts was not straightforward. When implemented, we discovered that fully implicit time

stepping did not suffer from severe time step restrictions as the literature predicted. That

previous analysis was really for a “worst case” scenario and the solution structure through

ripening processes allowed for large time steps to be taken. We also discovered computation-

ally that Eyre’s splitting can lead to disproportionately large temporal errors during ripening

and prohibits the use of large time steps appropriate to the dynamics there if time-accurate
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solutions are required. This poor behavior can be understood with formal asymptotics on

a simple problem shown below. Our fully implicit time stepping is able to take appropriate

large time steps and maintain accuracy. While not the original intention of our work, our

results suggest that fully implicit time stepping strategies are more efficient than popular

splitting techniques when time accuracy is desired, at least for the selection of models we

consider.

We outline the following sections of the paper. In Section 3.2 we present the equations

for the various models we consider and how they arise from an energy gradient flow. In

Section 3.3 we give a basic description of the approach in a 1D setting using simple backward

Euler time stepping. This is done for clarity of exposition, but it should be made clear that

the approach has wide applicability, shown in Section 3.5 for a number of models in 2D and in

Section 3.6 where a GPU implementation to Cahn-Hilliard in 3D is described. Higher order

time stepping methods are discussed in Section 3.7. The performance of the preconditioner

is examined numerically and with formal asymptotics in a simple 1D setting in section 3.4. A

similar approach is taken in section 3.9 to investigate time stepping with operator splitting.

3.2 Models

We consider first the very basic model for a scalar function u(x, t) in a 1D setting of the

Allen-Cahn [87] equation

ut = ε2uxx −W ′(u) (3.1)

and Cahn-Hilliard [10] equation

ut = −ε2uxxxx + (W ′(u))xx (3.2)
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where W (u) = 1
4(u2 − 1)2. This is simply the one-dimensional version of 1.3. We consider

x ∈ [0, 2π] and u to be periodic in space.

Qualitatively, the reaction terms W ′(u) drive the solution to the two pure states u = ±1

and the other terms smooth the interface between regions of different phases over a width

of O(ε). These equations can be written with the ε in different places corresponding to

different time scalings. It is important to note that the results discussed below on the

condition number of the preconditioned conjugate gradient method and its dependence on

time step δt and ε are with respect to the scaling shown in equations (3.1) and (3.2) above.

Higher dimensional versions of these equations are obtained by replacing ∂2/∂x2 by the

Laplacian ∆.

The models above are gradient flows on the Cahn-Hilliard energy defined in 1.1. The

fact that the evolution is a gradient flow leads to a symmetric Jacobian matrix for the

implicit time step of the discretization, allowing the use of the conjugate gradient method

for its solution. Note that the Allen-Cahn model is a gradient flow in the standard L2 inner

product:

(u, v) :=

∫ 2π

0
uvdx. (3.3)

However, the Cahn-Hilliard model is a gradient flow with respect to the H−1 inner product:

(u, v)H−1
:= (u,∆−1v). (3.4)

In addition, we consider the scalar sixth order problem 1.10 where η is a given positive

constant (note that with this sign, this term promotes the formation of phase interface).

This is also a gradient flow of a certain energy in the H−1 inner product. Models of this

form are of current interest in the study of pore formation in functionalized polymers [92].
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We also consider the following vector model for u = (u, v):

ut = −ε2∆∆u + ∆∇uW (u) (3.5)

where here

W (u) =
3∏
i=1

|u− ui|2 (3.6)

and ui are the points in the (u, v) plane that correspond to the cube roots of unity. This is

a volume preserving model that forms symmetric triple junctions between three phases. It

can be seen as the higher order mass preserving version of the Ginzberg-Landau equation

presented in [93].

The extension of our computational method to higher dimensions and more complex

(higher order, vector) models is relatively straight-forward. We consider this the main

strength of our approach.

3.3 Basic numerical approach and results

3.3.1 Spectral discretization in space

In Section 1.9, we discretized the Cahn-Hilliard equation in space using a Fourier spectral

method. The sixth order and vector models are discretized in a similar manner. It is a direct

computation to show that the MOL discretizations above guarantee a decrease in a discrete

energy:

d

dt

ε2h2 |F−1ΩαFU|+ h

N∑
j=1

W (Uj)

 ≤ 0
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where in the left hand term |·| is the Euclidean norm and Ωα is a diagonal matrix with entries

iαn. The left hand term in braces is the discrete analogue of the energy (1.1). Since the

MOL discretization has this property, we can expect time discretizations to have the property

also, at least up to the order of the truncation error of the method. This is observed in the

variety of computational examples shown in the rest of this work. In fact, with the adaptive

time stepping strategy we use, an increase in this discrete energy is never observed in any

accepted time step including very large time steps used during ripening events. We continue

with a description of the time discretization of these models below.

3.3.2 Adaptive, implicit discretization in time

We consider the fully discrete approximation of u

u(jh, tm) ≈ Umj , j = 1, . . . N and m = 0, . . .M

with t0 = 0 where initial conditions are given and time steps δtm = tm − tm−1 are chosen

adaptively as shown below. A basic, first order approach is shown here. Higher order methods

are presented in section 3.7. They provide some efficiency gains but are not overwhelmingly

superior for modest accuracy.

Consider the semi-discrete Allen-Cahn equation (1.11). Starting at tm−1 we form the

explicit, forward Euler predictor U∗ for the solution at time tm:

U∗ = Um−1 + δtm

[
ε2∆hU

m−1 −W ′(Um−1)
]
. (3.7)

We use this as an initial step in a Newton iteration for the solution to an implicit, backward
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Euler time step

G(Um) := Um − δtm
[
ε2∆hU

m +W ′(Um)
]
−Um−1 = 0 (3.8)

We describe the solution procedure for this problem in the subsection below.

Expanding the predictor and corrector steps in Taylor series, it is easy to show that the

exact local truncation error ηe for this step can be approximated by

ηe ≈ η :=
1

2
‖U∗ −Um‖

as is well known. We use maximum norms for all error calculations in this work. In time-

adaptive computations below, we specify a given tolerance σ > 0 for the local truncation

error. If a time step fails the accuracy check (η > σ) then we fail the step and repeat with

the time step reduced by a factor of 1.3. This particular value is a somewhat arbitrary factor

but there were very few failed steps in the computations shown in this work and changing

this value does not change performance. A time step is also failed if the Newton iterations

do not converge or if the step leads to an increase in energy (although as noted above, this

failure was never observed in any of the computations described in this chapter). After a

successful step, the next step is taken with time step

δtm+1 = δtm max

(
0.8

√
σ

η
, 1.3

)

where the local truncation error is assumed to be dominated by its leading order quadratic

term and 0.8 and 1.3 are “safety factors”.
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3.3.3 Solution of the implicit system

Consider (3.8), the implicit problem to be solved at each time step for the discretization of

the Allen-Cahn equation (3.1). Let U(r) denote the r’th Newton iterate approximation of

Um. The next iterate requires a solve with the Jacobian coefficient matrix

J = I − δtmε2∆h + δtmΛ2 (3.9)

where Λ2 is the diagonal matrix with entries

W ′′(U (r)
j ) = 3[U

(r)
j ]2 − 1.

The matrix J is dense but symmetric and multiplication by J can be done efficiently using

the fast fourier transform and diagonal multiplication. This suggests the use of the conjugate

gradient method as a solution technique. However, the condition number of J is large and

the equivalent matrices for problems with higher order derivatives have even larger condition

number. Efficient preconditioning is clearly required. We propose the preconditioner Q−1

where Q is the discretization of a constant coefficient problem

Q = I − δtmε2∆h + 2δtm (3.10)

which can be inverted efficiently. This is motivated heuristically by the observation that

during ripening, the solution will have values approximately ±1 at most grid points. The

behavior of the preconditioned gradient solver is examined in computational studies below

and analytically in section 3.4. For the discretization of the Allen-Cahn equation, it is shown
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that the condition number is O(δt) for large δt independent of ε during ripening.

For the discretization of the Cahn-Hilliard problem (3.2) we have the following Jacobian

matrix JCH and use the preconditioner QCH

JCH = I + δtmε
2∆h∆h − δtm∆hΛu (3.11)

QCH = I + δtmε
2∆h∆h − 2δtm∆h. (3.12)

Note that for this problem and the ones below, the matrices are symmetric in the discrete

version of the H−1 inner product (3.4). In the preconditioned conjugate gradient (PCG)

algorithm [90] these inner products are used. The preconditioned Jacobian matrix is shown

to have condition number O(δt/ε) in ripening states in this case.

For the discretization of the sixth order problem (1.10) we have

J6 = I − δtmε4∆h∆h(∆h + ηI) + δtmε
2∆h∆hΛ2 (3.13)

+δtmε
2∆h(ΛLΛ3 + Λ2∆h + ηΛ2)

−δtm∆h(Λ2
2 + Λ1Λ3)

Q6 = I − δtmε4∆h∆h∆h − δtm(ηε4 − 4ε2)∆h∆h (3.14)

−δtm(4− 2ε2η)∆h

where here Λi, i = 1, 2, 3 is the diagonal matrix with entries

diW

dui
(U

(r)
j )

and ΛL is the diagonal matrix with entries ∆hU
(r). Here, the preconditioner is derived with
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the same heuristic reasoning as above, that at pure states u = ±1, Λ1 = 0, Λ2 = 2I, Λ3 = 6I

and ΛL = 0.

For the vector problem (3.5) we consider the solution components (Uj , Vj) at a grid point

as a block and have

JV = I + δtmε
2∆h∆h − δtm∆hΛV

QV = I + δtmε
2∆h∆h − 18δtm∆h.

where ΛV is a block diagonal matrix with 2× 2 blocks

 ∂2W
∂u2

∂2W
∂uv

∂2W
∂uv

∂2W
∂v2



where the vector potential (3.6) is considered above and the partial derivatives are evaluated

at the corresponding grid values (U
(r)
j , V

(r)
j ). A straight-forward calculation shows that for

values of u in any of the three symmetric potential wells, this block is diagonal with diagonal

entries 18. Hence, the preconditioner follows the same reasoning as above.

3.3.4 Basic numerical results

We consider the 1D Cahn-Hilliard equation as the model system in this section. Starting

from initial data

u0(x) = cos(2x) +
1

100
ecos(x+1/10) (3.15)

and ε = 0.18, the system moves to an intermediate state at t = 300 with two intervals with

u ≈ −1 as shown in Figure 3.1. This time is roughly where the slowest ripening evolution
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Figure 3.1 This figure corresponds to the solution of the 1D Cahn-Hilliard (3.2) with initial
conditions (3.15) for ε = 0.18 at time t = 300. This is the type of solution at which the
preconditioner performance is examined in more detail in Section 3.4.

occurs, marked by the largest time steps taken by the method as shown in Figure 3.5. The

second term on the right above is a small perturbation so that these two intervals are not

symmetric, so that we will see generic behavior. At much longer times, these two intervals

will slowly evolve and merge [11, 83] as shown below. The fixed time step δt performance of

the method is examined at a short time t = 0.2 in Tables 3.1 and 3.2 . First order convergence

in the time step and spectral convergence in N is seen as expected. Also observed is that

N = O(1/ε) is needed to spatially resolve the interfaces of width ε.
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δt Eδt
2e-4 1.32e-5
1e-4 6.6e-6
5e-5 3.3e-6

Table 3.1 Error estimates Eδt = ‖Uδt −Uδt/2‖ for fixed time step δt computations of the
1D Cahn-Hilliard model with ε = 0.18 to short time t = 0.2. Spatial discretization is fixed
at N = 128.

N EN for ε = 0.18 EN for ε = 0.09
32 2.0e-3 0.139
64 9.3e-7 4.4e-3
128 9.0e-13 1.3e-6

Table 3.2 Error estimates EN = ‖UN −U2N‖ for computations of the 1D Cahn-Hilliard
model with ε = 0.18 and ε = 0.09 to short time t = 0.2. Fixed time steps of δt = 1e− 4 are
used.

The performance of the adaptive time stepping method through a ripening event is shown

in Table 3.3. In these runs the Newton solve has residual tolerance 10−8 and the PCG solve

at each step has tolerance 10−9. Starting from initial data (3.15) the solution contains four

transition layers at short time as shown in Figure 3.1. Over a very long time, the middle

transitions move closer together and merge as shown in Figure 3.2. The final state with two

transition layers is steady. The energy, time step size and PCG iteration history for the are

shown in Figure 3.5 for the tolerance σ = 10−4. One or two Newton iterations are taken

at each time step. Note the sharp transitions in the energy E at early times (the spinodal

evolution) and at the ripening event at which the time steps are small. The ripening time

estimates shown in Table 3.3 correspond to the time t at which the midpoint value u(π, t)

changes from positive to negative. This ripening event happens at a very fast time scale

after the long, slow transient. The results in Table 3.3 show that the method can accurately

capture the time that such events occur. Since local truncation error is O(δt2) it is expected

that as the local tolerance σ is reduced by a factor of 10, the number of total time steps
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σ time steps ripening time total PCG iterations
1e-4 848 8180 19,105
1e-5 2580 (3.04) 8273 39,942 (2.09)
1e-6 8072 (3.13) 8304 87,563 (2.19)
1e-7 25446 (3.15) 8314 227,799 (2.60)

Table 3.3 Performance of the adaptive time stepping through a ripening event of the 1D
Cahn-Hilliard model with ε = 0.18 and N = 128. The numbers in brackets are ratios to
quantities in the previous row.

should increase by a factor of
√

10 ≈ 3.16 as is observed computationally. This validates our

simple error estimation strategy. Note that the number of PCG steps increases by a smaller

factor, indicating that the condition number of the implicit system decreases as δt → 0.

Note also that the performance of the solver is independent of N (for fixed ε).

It is well known [94, 83] that ripening is exponentially slow in ε in 1D Allen-Cahn and

Cahn-Hillard models. With error tolerance σ = 10−4 and N = 128 we compute ripening

at time approximately 34,200 using 948 time steps and 22,950 PCG iterations for ε = 0.16

and ripening time 218,000 using 1081 time steps and 28,417 PCG iterations for ε = 0.14.

This demonstrates that our approach behaves well when computing through ripening over

very long time scales. It is known that to resolve the dynamics for increasing small ε, higher

precision arithmetic is needed to resolve the exponentially small interactions of the layers in

this 1D setting [83].

The method performs similarly well on the lower order Allen-Cahn equation (3.1). Spin-

odal evolution leads to similar layers to those shown in Figure 3.1. In this case the equations

do not preserve mass and so ripening involves the separate collapse of the intervals of state

u ≈ −1 leading to a steady state of u ≡ 1.
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Figure 3.2 This figure corresponds to the solution of the 1D Cahn-Hilliard equation (3.2)
with initial conditions (3.15) for ε = 0.18 during the final stages of the ripening process at
large time.
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Figure 3.3 The energy history for the adaptive time approximation with tolerance σ = 10−4

of the 1D Cahn-Hilliard equation (3.2) with initial conditions (3.15) for ε = 0.18.

64



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

120

140

160

180
Time step size k

t
Figure 3.4 The time step history for the adaptive time approximation with tolerance σ =
10−4 of the 1D Cahn-Hilliard equation (3.2) with initial conditions (3.15) for ε = 0.18.
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Figure 3.5 The PCG iteration count history for the adaptive time approximation with
tolerance σ = 10−4 of the 1D Cahn-Hilliard equation (3.2) with initial conditions (3.15) for
ε = 0.18.
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3.4 Investigation of the preconditioned system

3.4.1 Preliminaries and numerical results

At a ripening state u of the 1D Cahn-Hilliard model evolving from the initial data (3.15),

we examine the structure of the preconditioned Jacobian matrix

A = Q−1
CHJCH

as presented above. We can consider the operator A in the continuum limit. Since JCH is

a low order perturbation of the elliptic operator QCH , the limit operator A is a relatively

compact perturbation of the identity (see [95], chapter 6). Thus we can expect the condition

number of A to be relatively insensitive to the spatial discretization level N for N large

enough to resolve the problem. In the discrete 1D setting, A and its eigenvalues can be

computed explicitly using built-in MATLAB commands. The eigenvalues for the ε = 0.18,

δt = 10 at the solution shown in Figure 3.1 are shown in Figure 3.6. Note the clustering

of eigenvalues near 1 as expected from the preconditioning. At this slowly evolving state,

there are small eigenvalues as ε → 0 and δt → ∞ that determine the condition number of

A and limit the performance of the CG iterations. The eigenfunction corresponding to the

smallest eigenvalue for parameters ε = 0.18 and δt = 10 is shown in Figure 3.7. Notice that

it is composed of pulses at the locations of the transition layers in the solution in Figure 3.1.

For this state u there are M = 4 transition layers. It is shown using formal asymptotics in

section 3.4.2 that it is expected that there will be M − 1 = 3 small eigenvalues as observed

computationally. We consider the dependence of the smallest eigenvalue on ε and δt in

Table 3.4. Note that these results give evidence that the smallest eigenvalue scales like ε/δt,
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Figure 3.6 Eigenvalues of the preconditioned Jacobian matrix for the model situation de-
scribed in Section 3.4 for parameters ε = 0.18 and δt = 10.

giving a condition number κ of A that scales like δt/ε. This is confirmed in the formal

asymptotics below.

A similar study with the preconditioned Jacobian for the Allen-Cahn equations reveals

M small eigenvalues of identical magnitude that are ndependent of ε and have values ap-

proximately C/δt with C ≈ 0.41 for large δt. This behavior is confirmed in the formal

asymptotics below.

Remark 3. Since the condition number κ scales linearly with δt and the number of CG
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Figure 3.7 The eigenfunction of the preconditioned Jacobian matrix with the smallest eigen-
value for the model situation described in Section 3.4 for parameters ε = 0.18 and δt = 10.

ε = 0.18 ε = 0.16 ε = 0.14
δt↓ T → 300 2000 10000

25 3.36e-3 3.14e-3 2.83e-3
50 1.68e-3 1.58e-3 1.45e-3
100 8.43e-4 7.89e-4 7.26e-4
200 4.22e-4 3.95e-4 3.63e-4
400 2.11e-4 1.97e-4 1.82e-4

Table 3.4 Dependence of the smallest eigenvalue of the preconditioned Jacobian matrix for
the Cahn Hilliard problem on δt and ε. The time T at which eigenvalues are evaluated is
roughly where the slowest evolution occurs. The values are not that sensitive to the value
of T .
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iterations to reach a fixed solution accuracy increases as
√
κ [90], taking larger time steps in

ripening regimes will lead to higher numerical efficiency. Thus, we advocate taking as large

time steps δt as accuracy will allow. This is a further motivation for our consideration of

higher accurate time stepping techniques below.

3.4.2 Formal asymptotics

3.4.2.1 Allen Cahn

Consider first the Allen-Cahn equation (3.1). In an infinite spatial domain this problem has

a translationally invariant steady solution

u0 = tanh

(
x

ε
√

2

)
.

In the ripening phase, solutions take the form [94]

u ≈
M∑
j=1

u0[(−1)j(x− xj)] (3.16)

where xj(t) are transition layer positions. This is the structure seen in Figure 3.1 with

M = 4 transition layers (M must be even in our periodic setting). The approximation above

is valid up to exponentially small terms in ε. We denote such an approximation by =e in

what follows. Linearizing (3.1) leads to

vt = Lv := εvxx − (3u2 − 1)v (3.17)
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where v is the linear disturbance to u(x, t). The spectrum of L at ripening states (3.16) is

well understood:

Theorem 3.4.1 (Carr and Pego 1989 [94]). L has M exponentially small (in ε) eigenvalues

λj. The rest are negative and bounded away from zero. The eigenfunctions of the small

eigenvalues φj(x) are given by

φj =e
d

dx
u0(x− xj) =

1

ε
√

2
sech2

(
x− xj
ε
√

2

)
(3.18)

which in words are spikes of width ε centred at the interface location.

The eigenvalues λj govern the exponentially slow motion of the fronts xj(t). The theorem

stated in [94] allows for more general potentials W (u) and the results below can be extended

to these cases. Consider now the spectrum of the preconditioned Jacobian for the Allen-Cahn

problem at ripening states:

Aψ = σψ

where A = Q−1J where Q and J are given by (3.9) and (3.10) respectively. This can be

rewritten as

(I − δtL)ψ = σ[I − δt(L − 3(u2 − 1))]ψ (3.19)

where I is the identity operator. Recall that we are interested in the small eigenvalues σ

that determine the condition number of the PCG iterations for this problem and that there

is computational evidence that these σ are O(1/δt). Thus we make the ansatz σ = β/δt and
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consider (3.19) formally in powers of δt:

O(δt) : Lψ = 0 (3.20)

O(1) : ψ = β(L − 3(u2 − 1))ψ. (3.21)

The first equation above forces ψ to be in

V = span{φj}

at highest order where the φj are the eigenfunctions corresponding to small eigenvalues of

Theorem 3.4.1. With ψ ∈ V , (3.25) is satisfied to exponentially small terms in ε. Now (3.21)

becomes

ψ = 3β(1− u2)ψ

We take ψ = φj ∈ V and take the L2 inner product of the equation above with φj leading

to

β =
1

3

∫
φ2
j∫

φ2
j (1− u2)

(3.22)

Considering the ripening form (3.16) and the local nature of φj (3.18), the value of β only

depends on the local layer structure up to exponentially small terms and we thus obtain M

copies of

β =e
1

3

∫
sech4x∫

sech4(1− tanh2 x)
≈ 0.4167 (3.23)

which agrees closely with the computational results in the previous section. Note that so far

(3.21) is satisfied only in the projection on V . Correction terms of order O(1/δt) in ψ in V⊥

can be derived that give a complete picture of the formal analysis.
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3.4.2.2 Cahn-Hilliard

The analysis of the small eigenvalues for the preconditioned Jacobian matrix for the Cahn-

Hilliard problem can be done similarly, with a few additional technical difficulties. Our

results here depend on a conjecture on the rank of a modified square distance matrix. Here

the relevant eigenvalue problem is

(I + δtDL)ψ = σ[I + δtD(L − 3(u2 − 1))]ψ (3.24)

where D is the second derivative operator. We use D here rather than ∆ to be clear that

the analysis that follows is only applicable to the 1D case. The extra difficulty here arises

essentially because D is not invariant on V (the span of the eigenfunctions φj) or V⊥. We

make the ansatz σ = β/δt as before and consider (3.24) formally in powers of δt:

O(δt) : DLψ = 0 (3.25)

O(1) : ψ = βD(L − 3(u2 − 1))ψ. (3.26)

As before, (3.25) forces ψ ∈ V to highest order which we make explicit here

ψ =
M∑
j=1

cjφj . (3.27)

More carefully said, Lψ must be a constant to satisfy (3.25) but this constant enters as a

O(1/δt) term. Turning to (3.26) we first notice that ψ is a second derivative of a periodic
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function and so must have average zero which gives the discrete condition

M∑
j=1

cj =e 0. (3.28)

Let P be the projection onto the set of functions with average value zero:

Pφ = φ− 1

2π

∫ 2π

0
φ(x)dx.

Let φ∗j = Pφj . Because of (3.28), (3.27) can be written equivalently as

ψ =
M∑
j=1

cjφ
∗
j .

We can apply D−1 (taking the result to have zero average value) to (3.26), obtaining

M∑
j=1

cjD
−1φ∗j = 3βP (u2 − 1)

M∑
j=1

cjφj .

Taking the inner product with an arbitrary element of V with zero mass, then normalizing

with
∫
φ2
j = K/ε (consider the form (3.18) to see that this gives an absolute constant K) we

obtain

− βAC
ε

K
PBPc = βc (3.29)

where c is the vector of M values cj , P is here the discrete projection onto the subspace

of vectors that sum to zero, βAC is the constant from the Allen-Cahn eigenvalue problem
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(3.23), and B is the M ×M symmetric matrix with entries

bij =

∫
φ∗iD

−1φ∗j . (3.30)

As above for the simpler Allen-Cahn case, (3.26) is so far only satisfied in the massless sub-

space of V . Full matching can be done with O(1/δt) terms in V⊥ plus constants. Considering

(3.29), the expected behavior of the small preconditioned Jacobian eigenvalues of size ε/δt

will be observed as long as PBP is full rank M−1 and has O(1) eigenvalues. Consider (3.30)

in the limit as ε → 0. The integral
∫
φj =e 2 remains fixed in this limit and so φj is seen

to be an approximate delta function at xj with weight 2. Thus, D−1φ∗j is approximately a

quadratic with second derivative −1/π except in a region of width ε around xj :

D−1φ∗j (x) ≈ d− d2

2π
− 2π +

4π2

3

where d is the distance between x and xj on the periodic interval [0, 2π]. The integral (3.30)

can then be approximated by

bij ≈ 2dij − d2
ij/π (3.31)

where dij is the distance between points xi and xj on the periodic interval and we have

adjusted the entries of B by a constant as allowed by the expression (3.29) to simplify the

expression. Note that the expression above is only accurate to polynomial terms in ε. We

have strong computational evidence that the matrix PBP with limiting entries (3.31) has

rank M − 1 whenever the layer positions xi are distinct. Thus, we conjecture

Conjecture 1. If {xi}, i = 1, . . .M are distinct points in [0, 1] and the entries bij of the
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M ×M matrix B are given by

bij = dij − d2
ij

where dij are the distances between points xi and xj, taken either as absolute values or on

the periodic interval, then the matrix PBP has M − 1 strictly negative eigenvalues. Here P

is projection onto the subspace orthogonal to constant vectors.

In the statement above we have scaled the interval to [0, 1] for convenience. It should be

noted that without the first term in bij , linear in distance with scaling proportional to the

interval size, the square distance matrix PBP has rank at most 3 [96].

3.5 Performance on a variety of models

One of the main advantages of our approach is that it is easily extensible to higher order and

vector models. The Jacobian matrix and preconditioner are straight forward to generate for

these more complicated models. There is no need to determine how to split the potential

into convex and concave pieces, as is needed for the popular class of splitting methods based

on Eyre’s method [46] which we discuss in section 3.9 below. While we do not claim that

our approach is the most computationally efficient methods for every (or any) problem, they

are reasonably efficient and can be tried on any new problem with little effort. Here, we

apply them to the Cahn-Hilliard problem (3.2), the sixth order model problem (1.10) and

the vector model problem (3.5), all in 2D. We conduct these numerical tests with first order

time stepping for simplicity.

In the examples below, convergence in ripening times and the behavior of the number of

time steps and total PCG iterations with tolerance σ is observed as in the preliminary 1D

Cahn-Hilliard example shown in section 3.3.4 .
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3.5.1 2D Cahn-Hillard

We begin with initial conditions

u0(x, y) = 2esinx+sin y−2 + 2.2e− sinx−sin y−2 − 1 (3.32)

which after some initial ripening of u = 1 states (mass fraction 0.4556) leads to two circular

states, one of which captures the other in a long time frame. The results for the ε = 0.08

model, using N = 128 and σ = 10−4 are shown in Figure 3.8. This simulation took 3,305

time steps and a total of 84,138 PCG iterations. The similar computation for ε = 0.16

using N = 64 and σ = 10−4 past ripening took 1,471 time steps and a total of 30,051 PCG

iterations. The MATLAB code used for this example will be available on the publisher’s

web site for this article.

3.5.2 Sixth order model

We begin with the same initial conditions (3.32) shown in Figure 3.8 upper left. The results

for ε = 0.18, η = 1 computed with N = 128 and σ = 10−4 are shown in Figure 3.9. The

influence of the interface promoting term is evident. For larger ε the final steady state is a

regular array. The final pattern shown here is not at steady state. This simulation was done

in 2,229 time steps with a total of 234,582 PCG iterations.

3.5.3 2D vector model

We begin with initial conditions (3.32) for u and v0(x, y) = sin y. After some initial ripening,

regions of the three states form, separated by interfaces which meet at triple junctions. Unlike

grain growth [93] this model preserves the area of each of the three phases. The results for
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the ε = 0.32 (the ε value compared to other models is larger due to the larger magnitude of

the reaction term for this model), using N = 128 and σ = 10−4 are shown in Figure 3.10.

This simulation took 2,229 time steps and 51,985 total CG iterations. We believe that the

final result at t = 100 is an approximation of the steady state of the problem.
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2D Cahn-Hilliard initial conditions u (x, 0)

2D Cahn-Hilliard solution u (x, 150)

2D Cahn-Hilliard solution u (x, 0.5)

2D Cahn-Hilliard solution u (x, 300)

Figure 3.8 2D Cahn-Hilliard example computation.
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Sixth order model solution u (x, 2)

Sixth order model solution u (x, 500)

Sixth order model solution u (x, 25)

Sixth order model solution u (x, 2200)

Figure 3.9 2D sixth order model example computation.



81

2D vector model initial conditions u (x, 0)

2D vector model solution u (x, 15)

2D vector model solution u (x, 0.5)

2D vector model solution u (x, 100)

Figure 3.10 2D vector model example computation. Contours of cos(arg u + iv) are plotted. Two of the phases have value
cos(2π/3) = −1/2 (light blue in the plots) and are separated by dark blue lines.



3.6 GPU implementation

A recent development in scientific computing is General-Purpose computing on Graphics

Processing Units (GPGPU). In the 1990s, Graphics Processing Units (GPUs) were developed

to accelerate the building of 2D and 3D images for output to a display. Since then, the stream

processing capabilities of GPUs have been turned to scientific computing, and the application

to scientific computing has led to commercial lines of GPUs that have hundreds of double

precision computation cores with error checking. GPU computation can be much faster if

a problem or computation lends itself well to many lightweight computation threads. We

used Nvidia GPU cards and the CUDA programming language, which is C++ with extra

functions to control the device (GPU) from the host (CPU).

When simulating the Cahn-Hilliard equation implicitly with the spectral method detailed

in Section 3.3, there are three main types of mathematical operations: Fourier transforms,

element-wise multiplication or addition, and array reductions (the inner products in the PCG

method for example). The first two of these operations adapt very well to GPU processing,

but array reductions pose some challenges.

Three-dimensional Fourier transforms can be computed extremely fast on a GPU by

breaking the domain into lines of grid points, then handing each line of grid points to a

separate multi-processor for calculation of the one dimensional FFT. After each processor

is done computing the frequency representation of the data, the GPU recompiles the data

into its three-dimensional representation. The widely available cuFFT package implements

FFT calculations on the GPU. With the solution available in both spatial and frequency

domains, multiplication by the Jacobian matrix and the preconditioner can be performed by

element-wise multiplication or addition in the appropriate domain. This plays directly into
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the strength of the GPU which has millions of lightweight computation threads.

The third type of operation performed when computing solutions to the Cahn-Hilliard

equation is array reductions. Reductions must be used when computing the inner products as

well as maximum residual values for the conjugate gradient and Newton method iterations.

In a CPU calculation, array reductions are performed serially so they are simple to implement

and run quickly compared to other parts of the calculation. However, array reductions are

particularly troublesome for GPUs. Besides having hundreds of processors, GPUs are fast

because they hide latency by scheduling calculations in a first come first served manner.

Thus it is impossible to know before computation time in which order the 221 evaluations

will take place. The solution to this problem is to synchronize all threads after each set

of evaluations, even though setting such a thread block increases computation time. An

example of the proper way to approach array reduction on GPUs is given in the CUDA SDK

provided by Nvidia.

There are limitations to GPU computing that cannot be overlooked. Unlike a CPU that

has access to any memory location, GPUs multiprocessors can only access the data that is

stored in the GPU card’s memory. This leads to two complications: limitations on array size

and movement of data. The GPU card we used had 6GB of memory on the card, so for the

number of double-precision, complex-valued arrays we used in the simulation, the size of the

domain was limited to 222 total grid points. For a cubic domain, this limit corresponds to

128 grid points in each dimension. It is important to realize that this is a rigid memory limit

because it is defined by the GPU card’s hardware. It is certainly possible to increase the

domain size by using multiple GPUs for a computation, but this would require significant

effort to reduce the data movement between domains that would limit the computational

speedup. The second complication is movement of the data into the memory on the GPU.
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The movement of data on and off the card is the only way to access the solutions to the PDE,

and data movement is much slower than computation speed. Because of this, the number

of times the solution array is moved from the card must be kept at a minimum. This places

some limitations on the post-processing of solutions.

3.6.1 GPU Speedup

We conducted a speed test to compare simulation code written for parallel CPUs against the

code written for the GPU. The CPU code was written in C++ and aggressively parallelized

using OpenMP. The parallel version of FFTW was used for the Fourier transforms. The code

was run on two Quad-core Intel Xeon E5620 processors (eight total cores). The processors

have a clock speed of 2.4 GHz. The GPU used was a Tesla C2070 with 448 multiprocessor

cores with a clock speed of 1.15 GHz, and it had 6GB of global memory. The two hardware

configurations were about one year old at the time of the test, so the speed results are

comparable. The test was performed on initial conditions of 3D random initial data on

cubic grids with 128 grid points per dimension. Computing to time T = 40, the parallelized

C++ calculation took nine hours and seventeen minutes to complete compared to the Cuda

GPU code that took one hour and twenty-five minutes. The solutions given by the two codes

were identical. We realized a speedup factor of about 6.5 with the GPU implementation over

the eight core CPU calculation in this computation in which data transfer on and off the

GPU card was negligible. This speedup factor was confirmed in timing tests of individual

time steps. The computed solutions are shown in Figure 3.11 and the time step and PCG

profiles are shown in Figure 3.12 and Figure 3.13, respectively. The sequential decreases in

time step size correspond to ripening events.
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Figure 3.11 Solution at times T = 5, 10, and 40 of the 3D Cahn-Hilliard computation used
as a timing test for the GPU implementation. Shown are the zero level sets of the solutions,
with blue indicating increasing and green decreasing solutions at the interface.
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Figure 3.12 Time step size δt for the 3D Cahn-Hilliard computation used as a timing test
for the GPU implementation.
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Figure 3.13 PCG count per time step for the 3D Cahn-Hilliard computation used as a timing
test for the GPU implementation.
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3.7 Higher order time stepping

We now consider second and third order adaptive time stepping methods. We use the

multistep methods Adams-Bashforth (AB) and Backward Difference Formula (BDF) as our

explicit predictor and implicit corrector respectively. With the same notation for the fully

discrete approximation of u given in section 3.3.2, the second and third order versions of AB

for the predicted U∗ solution at time tm are [89]:

(AB2): U∗ = Um−1 +
δtm

4

[
6f(Um−1)− f(Um−2)

]
,

(AB3): U∗ = Um−1 +
δtm
12

[
23f(Um−1)− 16f(Um−2) + 5f(Um−3)

]
,

where for example for the lower order Allen-Cahn equation,

f(u) = ε2∆hu−W ′(u).

Again we use these as an initial state in a Newton iteration for the solution to the implicit

BDF time step. The second and third order versions of BDF lead to the nonlinear systems

G(Um) for the solution at time tm given below [88]:

(BDF2): G(Um) :=
3

2
Um − δtmf(Um)− 2Um−1 +

1

2
Um−2 = 0,

(BDF3): G(Um) :=
11

16
Um − δtmf(Um)− 3Um−1 +

3

2
Um−2 − 1

3
Um−3 = 0.

The solution procedure for these systems is the same as described in section 3.3.3. The

combination of AB predictor and BDF corrector has several advantages. BDF methods up

to order 6 have good stability properties for stiff problems and have a high ratio of accuracy
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to implicit solves [88]. Like forward and backward Euler methods, AB and BDF methods

of the same order p share the same form of dominant local truncation error, proportional to

the order p+ 1 time derivative of u. Because of this, the exact local truncation error ηe for

the second and third order steps can be easily approximated by

ηe ≈ η := C||U∗ − Um|| (3.33)

where C is 4/9 and 2/5 for order 2 and 3 methods, respectively. These higher order methods

require p previous values for order p methods. Standard AB and BDF methods require

these previous values to be equally spaced in time. This is the major drawback of standard

multi-step methods. Initially and after every time step change, we compute the necessary

additional previous values using minimal stage L-stable Singly Diagonal Implicit Runge

Kutta (SDIRK) methods of second or third order [97].

In our time-adaptive computations below, we again specify a given tolerance σ > 0 for the

local truncation error η. Because changing the time step requires additional computational

computational cost we only increase the time step if the local error is sufficiently below

tolerance,

η

σ
<

1

γ

where γ > 1 is user defined. We chose γ = 3 based on computational evidence [98]. Total

time step counts are relatively insensitive to γ around this value. If the condition above is

met, we allow a time step increase with multiplier

ξ = (0.8γ)1/(p+1).
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where again 0.8 is a safety factor. If a time step fails the accuracy check (η < σ) then we

fail the step and reduce the time step by a factor of 1
ξ and restart the computation.

Although SDIRK steps are more accurate than BDF steps for the same time step size,

the errors are different and so the error estimator (3.33) cannot be used directly after a

restart. However, the error mismatch decays with a fixed number of steps in a numerical

initial layer effect. Because of this, we only check the error after a preset number S of time

steps following a restart for both an increase and decrease in the time step. The values of

S used are 4 and 8 for BDF2-AB2 and BDF3-AB3 respectively (the numerical initial layers

for BDF3 have a slower decay than for BDF2).

3.7.1 Numerical Results

We consider the same 1D Cahn-Hilliard model problem as in section 3.3.4, where the initial

data u0(x) is given by (21) and ε = 0.18. In these runs the Newton solve has residual

tolerance 10−9 and the PCG solve at each step has tolerance 10−10. The time step size and

PCG iteration history are shown in Figure 3.14. Note that the time step history for the

first order method (FE/BE) is different in Figure 3.14 than in Figure 3.5 because we apply

the same accuracy threshold to changing time steps here that we do for the higher order

methods.

3.8 A Pair of Fourth-Order Accurate Methods

In recent work with Dr. David Seal, we discovered and implemented a new family of high-

order time-stepping Lax-Wendroff schemes. The fourth-order implicit method is A-stable

and effectively avoids the Dahlquist barrier by using the derivatives of the right hand side of
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Figure 3.14 The time step and PCG iteration count history for the adaptive time approxima-
tion of the 1D Cahn-Hilliard using BE-FE, BDF2-AB2 and BDF3-AB3 with initial conditions
(21) for ε = 0.18, σ = 10−7.
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the equation. The fourth-order explicit method has the same error term as the corresponding

implicit scheme allowing an adaptive time-stepping procedure.

For the general PDE,

ut = f (u)

the two-stage explicit scheme is given by

u∗ = un +
δt

2
f (un) +

δt2

8
J f (un)

un+1 = un + δtf (un) +
δt2

6
(J f (un) + 2J f (u∗)) , (3.34)

and the implicit scheme is

un+1 = un +
δt

2

(
f (un) + f

(
un+1

))
+
δt2

12

(
J f (un)− J f

(
un+1

))
, (3.35)

where J is the Jacobian of the right-hand side of the differential equation, f .

For the CH equation, f = −ε2∆2u+ ∆
(
u3 − u

)
, so the Jacobian acting on some object

v is J v = −ε2∆2v + ∆
[(

3u2 − 1
)
v
]
. We compute the explicit solution and then solve for

the implicit solution as above. The adaptive time-step is computed in the same manner also,

except

δtnew = δtold ·min

(
0.8 · 5

√
σ

E
, 1.3

)
. (3.36)

The preconditioner we use is derived in the same way as the first order preconditioner.

For the fourth order method applied to the CH equation,

G′ (ur) v = v − δt

2
J f (v)− δt2

12
Hf (v) , (3.37)
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with Hf =
∂utt
∂u computed by hand. Assuming u = ±1 and ∆u = 0 for the majority of the

domain, we obtain the physics based preconditioner,

Q = 1− δt

2

(
−ε2∆2 + 2∆

)
+
δt2

12

(
−ε2∆2 + 2

)(
−ε2∆2 + 2∆

)
. (3.38)

For the Cahn-Hilliard equation, we observe fourth order convergence for this pair of

methods. The physics based preconditioner made a significant difference by reducing the re-

quired number of CG steps by a factor of one hundred throughout most of the computation.

During the spinodal phase separation exhibited by solutions of the CH equation (computed

from random initial data), time steps for the fourth order method were ten to a thousand

times larger than the first order implicit method (Section 3.3.2). When the solution became

smooth (or if smooth initial conditions were used), the first and fourth order methods main-

tained approximately the same size time steps when controlling the error. This comes from

the fact that when using a fixed time step, the first order method was numerically stable for

a time step size slightly larger than the fourth order method. The Newton and conjugate

gradient solves required nearly the same number of iterations per time step, but as expected,

the fourth order method required more computation per iteration.

The results in Table 3.5 shows the performance of the methods on the test problem for

various values of local tolerance σ. Ripening times can be computed very accurately with

the higher order methods. The PCG count is an accurate measure of computational cost and

includes all iterations from SDIRK restart and failed steps. Efficiency gains are obtained

with the higher order methods, with the biggest gain moving from first to second order. As

in section 3.3.4 the first order method shows the correct asymptotic behavior in the number

of time steps (ratios of
√

10 ≈ 3.16 of times steps as σ is decreased by 10). The second order
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method results are also consistent with the correct asymptotic behavior ratio 3√10 ≈ 2.15.

The third order results have not reached the asymptotic regime. Considering the accuracy

of the ripening times in this case, it appears that the error estimation is over-estimating the

local error.

Remark 4. Experiments with other higher order strategies were also done, for example using

SDIRK2 stepping with SDIRK3 for error estimation. However, for tolerances σ leading to

accuracy of practical interest, this error estimation was also not asymptotically valid. It is

known that constructing good error estimators for IRK methods applied to very stiff problems

is difficult [99]. We conjecture that the relatively large higher derivative terms pollute the

error estimation in this case. The problem of accurate error estimation for higher order

time stepping for this class of problems is an interesting open question. With such error

estimation, arbitrary precision could be achieved to solutions of these problems: spectral

accuracy in space and high accuracy in time using spectral deferred correction methods [100]

or high order Radau methods [88].

3.9 Investigation of splitting methods

3.9.1 Preliminaries and numerical results

We present a splitting approach of Eyre [46] in the framework of the implicit approximation

of the 1D Cahn-Hillard model. The standard backward Euler time stepping approximation

of this model leads to the problem

Um + δt∆h

[
ε2∆hU

m − (Um)<3> + Um
]
−Um−1 = 0 (3.39)
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Method σ time steps ripening time total PCG iterations

1e-04 792 8206.11 41475
BE-FE 1e-05 2114 (2.67) 8272.16 69166 (1.67)

1e-06 6371 (3.01) 8303.81 125879 (1.82)
1e-07 20216 (3.17) 8314.15 277079 (2.20)

1e-04 191 8301.34 22663
BDF2-AB2 1e-05 660 (3.455) 8316.19 36535 (1.612)

1e-06 1484 (2.248) 8317.97 44987 (1.231)
1e-07 3279 (2.210) 8318.47 70580 (1.569)

1e-06 374 8318.43 25443
BDF3-AB3 1e-07 981 (2.623) 8318.61 37582 (1.477)

1e-08 2041 (2.081) 8318.63 53079 (1.412)

Table 3.5 Performance of each adaptive time stepping method through a ripening event of
the 1D Cahn-Hilliard model with ε = 0.18 and N = 128. The numbers in brackets are ratios
to quantities in the previous row.

where by (Um)<3> we mean the pointwise values cubed and δt is the time step as before.

This is the system solved with the methods in this chapter. A slight modification to this

system, taking explicitly the linear term that otherwise makes the system non-convex, Eyre

[46] considered

Um + δt∆h

[
ε2∆hU

m − (Um)<3>
]
−Um−1 + δt∆hU

m−1 = 0. (3.40)

Note that the implicit solve is still nonlinear but now convex. There are two attractive

theoretical properties to this approach:

A: The discrete problem (3.40) has a unique solution for every δt and every Um−1.

B: The unique solution above is guaranteed to reduce the energy.

The nonlinear system can be solved with the same Newton, PCG approach as the unsplit

discretization we have considered up to this point and we can examine the condition number

of the preconditioned Jacobian matrix in the same framework as the preconditioned unsplit
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method in section 3.4. Here, the matrix of interest is

AS = Q−1
S JS

where QS = I + δtε2∆h∆h − 3δt∆h and

JS = I + δtε2∆h∆h − δt∆hΛS

where ΛS is the diagonal matrix with positive entries 3[U
(r)
j ]2 where U(r) denotes the r’th it-

erate for Um as before. Note that JS is positive definite for every δt and U(r) (a consequence

of the convexity of the implicit problem), unlike JCH (3.11) from the unsplit discretization.

The eigenvalues of AS like those of A in section 3.4 also cluster around 1 and have a mini-

mum value that determines the condition number of AS . Here, the minimum eigenvalue for

large δt at ripening states is approximately 0.290 independent of δt and ε. This matches the

value predicted by formal asymptotics shown in section 3.9.2 below.

It is possible to set up a linear fixed point iteration and avoid the machinery of newton

iterations with PCG solvers. Consider the iterative scheme with iterates U(r) for Um to

solve (3.40):

U(r) + δt∆h

[
ε2∆hU

(r) − 3U(r)
]

= δt∆h

[
(U(r−1))<3> − 3U(r−1)

]
+Um−1 − δt∆hU

m−1

This approach is taken in [91]. Note that the linearization of the fixed point iteration has

matrix I − AS , so the small eigenvalues of AS will determine the convergence rate of the

iterations. The convergence factors will be approximately 1-0.290 = 0.710 for the 1D C-H

95



ripening solutions considered in this section, independent of δt and ε. Eyre also considered

other operator splitting possibilities, including one that only requires a linear implicit solve

Um + δt∆h

[
ε2∆hU

m − 4Um
]
−Um−1 + δt∆h(4Um−1 − (Um−1)3) = 0 (3.41)

which retains properties A and B above under the assumption that ‖U‖∞ remains bounded

by 1.

From the point of view of solver efficiency, the splitting methods are ideal. However, the

accuracy of time stepping with the operator splitting can be much lower than that of the

conventional (non-split) solvers considered in this chapter. We repeat the 1D Cahn-Hilliard

ripening time computations of section 3.3.4. The results are shown in Table 3.6 for the split

step method (3.40) using the PCG solver for the time stepping. Comparing to Table 3.3, it

is clear that the splitting method is much less efficient than the pure implicit time stepping

proposed in this chapter. It is clear from Table 3.6 that this is not just an artifact of the

error estimation, since even with the large number of time steps, ripening times are not

found accurately. The linear splitting (3.41) performed similarly poorly, taking 193,673 time

steps for σ = 10−4 in the same computation listed in Tables 3.3 and 3.6, obtaining a (very

inaccurate) ripening time of 15301. Although the solve at each time step is more efficient and

the method has the same order of accuracy, the errors from the operator splitting are much

larger than those from pure implicit time stepping for large time steps. Poor performance

of splitting methods is observed in 2D computations and in the other models considered in

section 3.5. For example, using Eyre’s method (3.40) on the 2D Cahn-Hilliard computation

described in section 3.5 leads to 83,862 time steps and 1,069,416 PCG iterations for the

ε = 0.08 run (compared to 3,305 and 84,138 respectively for our fully implicit approach)
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and 18,891 time steps and 207,252 PCG iterations for the ε = 0.16 case (compared to 1,471

and 30,051 for our approach). The accuracy limitations of splitting methods has previously

been observed [55, 91]. Using higher order implicit-explicit (IMEX) time stepping methods

[101, 102, 103, 104] (which retain property A above but not necessarily B) does not allow

significantly larger time steps through ripening, although they achieve the specified order of

accuracy as δt→ 0 of course. The accuracy loss can be explained in the 1D Allen-Cahn case

using simple asymptotics below.

Remark 5. The recent method in [55] is different from Eyre’s splitting ideas. Their technique

ensures property B above but not A. The implicit problem they solve at every time step (with

incomplete LU preconditioned GMRES) has the same structure as the fully implicit time

stepping considered in the current work, although it is a modification of the implicit midpoint

rule which does not have strong stability properties. We believe our PCG solution strategy

could be applied to their discretization and should be more efficient.

Remark 6. It should be made clear that these 1D problems with exponentially slow ripening

events are extreme cases. It is not clear whether Eyre’s type splitting methods might be made

more efficient in some 2D and 3D problems where motion is generically only polynomial slow

in ε. If one relaxes the strict requirement of time accuracy and considers a computational

time step as just an efficient step down the energy landscape[91], the comparison is even

less clear. See also [105, 106] for time stepping strategies that preserve coarsening statistics

but not pointwise accuracy. A hybrid strategy might also be considered, where efficient time

steps based on operator splitting are taken during the spinodal phase or when other physics

limits the time step size and our fully implicit time stepping strategy is used only during long

ripening events. We consider the comparison of the efficiency of the approaches an open
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σ time steps ripening time total PCG iterations
1e-4 70,517 13147 1,039,676
1e-5 202,549 (2.87) 9582 2,368,051 (2.27)
1e-6 618,431(3.06) 8695 5,205,739 (2.19)

Table 3.6 Performance of adaptive time stepping through a ripening event of the 1D Cahn-
Hilliard model with ε = 0.18 and N = 128 with Eyre’s splitting (3.40). The numbers in
brackets are ratios to quantities in the previous row. Compare to values in Table 3.3 for the
fully implicit time discretization.

problem of interest. This is a question of accurate time stepping with lengthly solves versus

time step size limited computations with fast solves. However, we remind the reader that

the main advantage of the numerical framework described in this chapter is the generality of

problems to which it can be easily applied rather than its potential as an efficient approach

to any particular problem.

3.9.2 Asymptotics

We extend the asymptotic framework developed in section 3.4.2 to explore the solver effi-

ciency and accuracy limitations of Eyre’s splitting method.

3.9.2.1 Accuracy in Allen-Cahn equations

We highlight the accuracy limitations of Eyre’s splitting in the simple, low order setting of

the 1D Allen-Cahn problem (3.1). Consider the linear problem (3.17) in ripening states at

which Theorem 3.4.1 applies. Applying a fully implicit BE time stepping method to this

problem leads to the discrete problem

Vm = Vm−1 + δtLVm (3.42)
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Consider now taking large time steps. Components of V in V⊥ are strongly reduced in a

single time step. Components of V in V change slowly and represent the dynamics in the

problem that need to be captured accurately during ripening. This characterizes the 1D

Allen-Cahn equations as an extremely stiff problem, in the sense that it is even more stiff

than the second order parabolic part acting on V⊥. For that reason, we strongly advocate

the use of L-stable [88] time stepping schemes on this problem rather than weakly stable

schemes such as trapezoidal rule or implicit midpoint rule. To consider the accuracy of the

method, we make the standard ansatz

Vm = Gmφj(x) (3.43)

where G is a constant to be determined and recall that φj is an eigenfunction of L with

small eigenvalue λj . Inserting (3.43) into (3.42) leads to the expected

G =
1

1− δtλj
≈ 1 + δtλj + δt2λ2

j + · · · (3.44)

where we have expanded the expression in terms of small δt. Comparing to the exact

G = e
δtλj we see the term above has an error of 1

2δt
2λ2
j , again as expected. We presented

the standard analysis above to be able to compare it to the result from Eyre’s method.

Linearizing Eyre’s method in this case leads to

Vm = Vm−1 + δt(L − I)Vm + δtVm−1.
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Here, it is seen why the Allen-Cahn equation is used for this discussion, since Eyre’s splitting

preserves the eigen-structure of V in this case. With the same ansatz (3.43) we obtain

G =
1 + δt

1 + δt− δtλj
≈ 1 + δtλj + δt2(λ2

j − λj) + · · · (3.45)

in this case. Here the dominant error is λjδt
2, which is exponentially larger than the error in

the fully implicit case. Another way to view this accuracy loss is that for the fully implicit

method, if δtλj is small, the scheme is “accurate” but for the Eyre’s case, δt must be small

when (3.45) is considered. Thus, exponentially smaller time steps must be taken with Eyre’s

scheme than with a fully implicit method. In this context, higher order splitting methods of

Eyre’s type based on standard implicit-explicit (IMEX) splitting do not solve this accuracy

issue. While they are formally higher order accurate, they require time steps unreasonably

small before they begin to be accurate, just as the lowest order scheme described above. We

conjecture that this is true for all such IMEX approaches. For example, the “G” value for

SBDF2 [102] is

1 + δtλj +
1

2
δt2λ2

j +
δt3

6
(3λ3

j − 2λ2
j ) + · · ·

and for implicit-explicit midpoint rule [103]

1 + δtλj +
1

2
δt2λ2

j +
δt3

6
(3λ3

j/2− 3λ2
j/2) + · · ·
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3.9.2.2 Condition number of solver for Eyre’s method for Cahn-Hilliard prob-

lems

Here the relevant eigenvalue problem is

(I + δtD(L − I))ψ = σ[I + δtD(L − I + 3(u2 − 1))]ψ (3.46)

where I is the identity operator and D is the second derivative operator as before. The

fundamental difference to the analysis in section 3.4.2.2 is that the operator multiplied by δt

on the left is now L− I (which does not have small eigenvalues) rather than L (which does).

This indicates there are not O(1/δt) eigenvalues to this preconditioned system as δt → ∞

but rather they remain O(1) in this limit as observed computationally above. Formally

considering (3.46) as δt→∞ leads to

(L − I)ψ = σ(L − I + 3(u2 − 1))ψ (3.47)

where it can be justified dropping the integration constant for σ 6= 1 at leading order due to

the structure of u2 − 1 at ripening states. The operators on either side above are negative

definite and symmetric, so we obtain upper bounds for the smallest eigenvalues when we

take ψ = φj (the eigenfunctions of L with small eigenvalues so Lψj =e 0) in the expression

above and then take the inner product with φj . This gives asymptotically

σmin ≤
1

1 + 1/βAC
≈ 0.294
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where βAC is the value (3.23) found previously for the relevant integral. We have not

given convincing evidence that this should be the minimum eigenvalue. Considering (3.47)

heuristically, the eigenfunction ψ for the minimum eigenvalue σ should minimize the size of

(L − I)ψ and maximize the product with 1 − u2, which elements of V do. In addition, the

value does correspond to that observed computationally.

3.10 Conclusions

We have presented a new approach to the computational approximation of energy gradient

flows from material science models such as Allen-Cahn, Cahn-Hilliard and higher order and

vector variants. The approach allows accurate time stepping with large time steps when

the evolution is slow during ripening events. Some evidence is given that approaches based

on Eyre’s operator splitting require much smaller time steps to maintain accuracy in these

settings. Fully implicit time stepping with matrix-free Newton steps solved with the CG

method are proposed in this work. An efficient preconditioner is identified. Computational

evidence and formal asymptotics show that the solver has mild computational increase as ε

is decreased and time step δt is increased. The approach is shown to work well on a number

of problems in a general class and allows for an efficient GPU implementation. It is possible

that the computational approach may also be useful for other models such as those from the

study of liquid crystals or epitaxial growth [107, 108] that share the same structure.

There are several avenues of study for theoreticians opened in this work. Arguments made

using formal asymptotics backed by computational evidence in 1D could be made rigorous

and extended to higher dimensions. The authors believe this is more than a technical exercise,

but that real insight into the efficiency of different computational approaches can be obtained
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from such a study. In addition, there is the conjecture in section 3.4.2.2 on the rank of a

modified distance matrix.

There have been many computational approaches to the Cahn-Hilliard equation, which

is used widely in materials science studies and as a computational approximation to moving

interface problems. In this well-developed computational field, a test suite of benchmark

problems is clearly needed. A review of the methods in the literature, including a comparison

on the benchmark problems, would be a valuable contribution.
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Chapter 4

Exponential Integrator

4.1 General Exponential Integrator

A significant challenge in simulating the Functionalized Cahn-Hilliard equation is finding

the proper balance between time accuracy and reasonably fast computation times. Eyre’s

method uses a convex splitting of the equation to guarantee energy decay for any size timestep

[46, 34], but the time accuracy suffers [109]. Alternatively, a fully implicit preconditioned

conjugate gradient method gives the proper time evolution and time accuracy, but the New-

ton solve is severely restricted [109], resulting in a method that is too slow to reasonably

capture the long-time dynamics of the solution. Our goal is to develop a method that is both

time accurate and is computationally efficient enough to describe fully relaxed solutions to

the FCH equation.

The exponential integrator method can provide the performance we desire under certain

limitations, and it is also computationally efficient. The limitations are much less restrictive

than the fully implicit method, and has much greater time accuracy than the convex splitting

method. A review of the literature for exponential integrator methods is in Section 1.8.2.

The work in this chapter follows the the papers published for ODEs by Du and Zhu under

the name exponential time differencing (ETD) [66, 67], and by Cox and Matthews for stiff

systems [65]. In this chapter we will present the ETD method for the CH and FCH equations,

along with some variations in the time stepping to obtain greater stability and increased time
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accuracy.

We desire to solve the general PDE defined by

ut = F (u) .

We first separate F (u) into linear and non-linear parts,

ut = Lu+N (u) . (4.1)

By moving the linear portion to the left hand side and multiplying the equation by e−tL, we

can obtain a total time derivative.

ut − Lu = N (u)

e−tLut − e−tLLu = e−tLN (u)(
e−tLu

)
t

= e−tLN (u) .

Integration in time gives the general exponential integrator formula,

u (tn+1) = eδtLu (tn) + eδtL
∫ δt

0
e−sLN (u (s+ tn)) ds (4.2)

Up to this point, the derivation is exact, but we must now make approximations because

we do not know enough about N (u (t)) to compute the integral. The first approach is to

obtain an explicit scheme that is first order in time by taking N (u (t)) ≈ N (u (tn)) over
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the interval of integration. We then compute the exponential integral by hand to obtain

un+1 = eδtLun +
eδtL − 1

L
N (un) , (4.3)

where the notation un = u (tn) is used here and in subsequent sections. Schemes that are

higher order in time will be created by improving upon the approximation to N (u (t)).

We use a Fourier spectral method to compute solutions to the CH and FCH equations

(1.3 and 1.10). The spectral method comes with both advantages and disadvantages. The

primary advantage is that the operators can be computed quickly and efficiently by hopping

between the spectral and physical domains. This reduces nearly all of the calculations to

element-wise operations on the arrays which can be computed extremely efficiently in parallel

on a graphics processing unit (GPU). Further, solutions to the FCH equation develop layers

with slope on the order of ε−1 [28], and the spectral method only needs a few grid points

to capture such layers. The primary disadvantage of using a spectral method is that we are

limited to periodic boundary conditions on rectangular domains. We expect to employ a

finite element or discontinuous galerkin method when we need to change the domain and

boundary conditions.
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4.2 Stability and Linearization of the CH Equation

The most straight forward way to split the CH equation into the proper form (4.1) is to

define

Lu = −ε2∆2u−∆u

N (u) = ∆
(
u3
)
.

Unfortunately, this splitting is not stable with respect to inversion of L. This can be seen by

looking at the one-dimensional form of the operator in the frequency representation, where

k is the wavenumber,

L = −ε2
(
−k2

)2
−
(
−k2

)
= −ε2k4 + k2. (4.4)

Ideally, the eigenvalues of the operator would be negative for all values of k or at least

nonzero, but here we have zeros at k = ε−
1
2 . There are a couple of different ways to rectify

this problem.

One way to stabilize the linear operator is to add and subtract a term in the equation

that makes the operator non-positive in the frequency representation [56]. This gives,

ut = −ε2∆2u+ ∆
(
u3 − u

)
+ β∆u− β∆u, (4.5)
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with the splitting,

Lu = −ε2∆2u+ β∆u

N (u) = ∆
(
u3 − (1 + β)u

)
.

In the frequency representation,

L = −ε2k4 − βk2, (4.6)

so any β ≥ 1 gives the desired property. Through numerical simulations, we concur with

Shen and Yang’s suggestion that β = 2 is the ideal choice. Unfortunately, the addition of

this term introduces additional error which is undesirable, but like the method described

in Chapter 2, it comes with a guarantee that the energy will never increase. Thus, this

method is ideal for simulations where dynamics are less important that the final geometry or

solution. This decrease in accuracy is evident in Table 4.1, and it becomes more significant

for the Functionalized Cahn-Hilliard equation.

A more accurate way to obtain stability under inversion is to linearize the problem using

information from the physics of the solution. Solutions to the CH equation rapidly form

domains where u (x) = ±1, so we choose to linearize about the background state u (x) = −1.

We take v = u+ 1 and substitute into equation 1.3 which gives

vt = −ε2∆2v + ∆
(

2v − 3v2 + v3
)
. (4.7)
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δt Simple Shen Physics-based ETD
1e-3 1.3741 9.7420e-2 7.2249e-2
1e-4 4.8206e-4 4.5247e-3 2.5333e-3
1e-5 6.8251e-5 3.3740e-4 1.3448e-4
1e-6 1.0790e-5 2.3092e-5 6.5339e-6

Table 4.1 Comparison of linearization choices for the CH equation. Error of the final solution
is given for a simulation with fixed time step δt. For the simple linearization with δt = 10−3,
the solution became unstable and developed spurious oscillations.

Taking the linear and nonlinear parts gives the operators

Lv = −ε2∆2v + 2∆v

N (u) = ∆
(
v3 − 3v2

)
,

where the frequency representation of L is strictly negative for all values of k except k = 0,

as desired.

With this formulation of the CH equation, we now apply the first order exponential inte-

grator (4.3). We note that with this linearization, the first order method is unconditionally

stable with respect to the time step size. Unfortunately, it suffers from a loss of convergence

order for time steps larger than δt & 10−4.

4.3 Linearization of the FCH Equation

To effectively linearize the FCH equation, we use information from the physics of the solution.

Solutions to the FCH equation rapidly form domains where u (x) = −1 is the dominant,

background phase. We choose to linearize about the background state, u (x) = b = −1, by
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taking v = u− b and substituting into equation 1.10 which gives

vt = ∆
[(
ε2∆−W ′′ (v + b) + εη1

)(
ε2∆v −W ′ (v + b)

)
+ ε (η1 − η2)W ′ (v + b)

]
= ∆

[(
ε2∆−W ′′ (b)−W ′′′ (b) v −Q2 (v) + εη1

)(
ε2∆v −W ′ (b)−W ′′ (b) v −Q1 (v)

)
+ ε (η1 − η2)

(
W ′ (b) +W ′′ (b) v +Q1 (v)

)]
,

where Q1 (v) and Q2 (v) contain the terms that are quadratic and higher order in v. For

our typical potential well, Wτ (u) = 1
2 (u+ 1)2

(
1
2 (u− 1)2 − τ

3 (u− 2)
)

, we have Q1 (v) =

1
2 (6b+ τ) v2 + v3 and Q2 (v) = 3v2. We note that W ′ (b) = 0, and separate the linear and

nonlinear parts to obtain the operators

Lv = ∆
[(
ε2∆−W ′′ (b) + εη1

)(
ε2∆−W ′′ (b)

)
+ ε (η1 − η2)W ′′ (b)

]
v

N (u) = ∆
[
−
(
ε2∆−W ′′ (b) + εη1

)
Q1 (v) +

(
−W ′′′ (b)−Q2 (v)

) (
ε2∆v −W ′′ (b) v −Q1 (v)

)
+ ε (η1 − η2)Q1 (v)] .

This linearization is ideal because the frequency representation of L is strictly negative for

all values of k except k = 0, making the operator stable under inversion for η1 ≥ η2.

Numerically, we observe stability as long as η1 and η2 are of the same order.

With this formulation of the FCH equation, we now apply the first order exponential in-

tegrator (4.3). We note that with this linearization, the first order method is unconditionally

stable with respect to the time step size, and now extend this linearization to higher-order

in time methods for solving the FCH equation.

110



4.4 Computing Exponential Terms

One way to improve time accuracy and obtain higher-order time-stepping is to expand

N (v (t)) as a Taylor series in time. Over the integral of integration, we take the expan-

sion about tn and truncate at the order of accuracy that we desire,

N (v (t)) = N (vn) + (t− tn) JN

(
dv

dt

)∣∣∣∣
tn

+O
(
δt2
)

= N (vn) + (t− tn) JN (Lvn +N (vn)) +O
(
δt2
)
. (4.8)

d
dtN (v) = JN

(
dv
dt

)
is calculated by hand, noting that all the time dependence is in v (x, t).

We derive the second order method by first substituting the approximation into equation

4.2,

vn+1 = eδtLvn + eδtL
∫ δt

0
e−sL [N (vn) + sJN (Lvn +N (vn))] ds.

After pulling out the portions that are constant in time,

vn+1 = eδtLvn + eδtL
[
N (vn)

∫ δt

0
e−sLds+ JN (Lvn +N (vn))

∫ δt

0
se−sLds

]
,

we integrate the exponentials by hand to obtain a second-order in time method,

vn+1 = eδtLvn +
eδtL − 1

L
N (vn) +

eδtL − 1− δtL
L2

JN (Lvn +N (vn)) . (4.9)

The exponential coefficients are universal for high order ETD methods, and they are

particularly difficult to calculate numerically with reasonable accuracy. The exponential
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coefficients are defined as:

φ0 (z) = ez φ1 (z) =
ez − 1

z
φ2 (z) =

ez − 1− z
z2

. . . φl+1 (z) =
φl (z)− 1

l!

z
. (4.10)

In our implementation of ETD methods, z = δtL, and we always compute these terms in

the frequency representation. Using this notation, equations 4.3 and 4.9 can be written as,

vn+1 = φ0 (δtL) vn + δt φ1 (δtL)N (vn)

vn+1 = φ0 (δtL) vn + δt φ1 (δtL)N (vn) + δt2 φ2 (δtL) JN (Lvn +N (vn)) ,

respectively. In Sections 4.5 and 4.6, we introduce methods that are higher order in time

which use the higher order φ-functions. Unfortunately, computing φ1 (z) directly encounters

significant errors when z is small, i.e. both δt and k are small. This comes from cancellation

errors when rounding off values at machine precision, and can lead to errors that are orders

of magnitude larger than the actual value [62, 110, 69]. These errors become increasingly

problematic for φl (x) with larger values of l.

To eliminate these errors, we use the Taylor expansion of φ1 (z) about z = 0, and include

as many terms as necessary to obtain a desired tolerance. We find that direct computation of

φl (z) is sufficient if z > η
1
l+1 , where η is machine precision (typically 10−16). In the spectral

setting, L is small for wave numbers, k, near zero, but is typically O (1) or larger. Thus,

small z depends on the size of δt which can be as small as 10−12 in our three dimensional

calculations. When computing φ1 (z) and δt ≤ 10−7, we divide the φ1 (z) operator into two

portions: large k values are computed directly, and small k values are computed using a

Taylor expansion out to a fixed number of terms that have been estimated a priori. In three
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dimensional calculations, the cutoff for which the expansion is necessary is given by L <
√
η
δt ,

where the array L was computed once at the beginning of the simulation. The calculation

is performed similarly when approximating the higher order φ-functions.

An alternate method for stabilizing the calculation of φ-functions was presented by Kas-

sam and Trefethen [69]. It involves calculating the value of an integral in the complex plane.

When L is real, as the CH and FCH equations, the integration can be performed around any

contour Γ that encloses the eigenvalues of the operator that are small in modulus. Kassam

uses circles and 32 or 64 evaluation points with the trapezoidal rule to obtain stability and

accuracy.

Similar work by Du and Zhu suggests that only two points are necessary for up to

the fourth-order Runge-Kutta scheme [67]. It seems reasonable that only a few points are

necessary to provide stability, but we find it difficult to believe that two points is sufficient

to see higher order accuracy in time, and the paper gave no results higher than second order.

4.5 Runge-Kutta Methods

One way to improve the time accuracy of the exponential integrator is through the use of

Runge-Kutta (RK) type methods. This is accomplished by computing approximations to

N (v (t)) using multiple stages over the interval [tn, tn+1]. For the second order RK method,

we take an explicit exponential integrator step

an = eδtLvn +
eδtL − 1

L
N (vn) ,
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then make the approximation

N (v (t)) = N (vn) + (t− tn) (N (an)−N (vn)) /δt+O
(
δt2
)
.

This approximation gives the ETDRK2 method described in [65, 66].

Denoting the numerical approximation to v (tn) as vn, the second order RK method is

an = eδtLvn +
eδtL − 1

L
N (vn)

vn+1 = an +
eδtL − 1− δtL

δtL2
(N (an)−N (vn)) . (4.11)

A similar construction gives a third-order exponential integrator RK method,

an = e
δt
2 Lvn +

e
δt
2 L − 1

L
N (vn)

bn = eδtLvn +
eδtL − 1

L
(2N (an)−N (vn))

vn+1 = eδtLvn + δt−2L−3
{[
−4− δtL+ eδtL

(
4− 3δtL+ δt2L2

)]
N (vn)

+ 4
[
2 + δtL+ eδtL (−2 + δtL)

]
N (an)

+
[
−4− 3δtL − δt2L2 + eδtL (4− δtL)

]
N (bn) } . (4.12)

The standard fourth order Runge-Kutta method only attains third-order accuracy in

time, but [65] gives a method with different coefficients that is fourth-order accurate for
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exponential integrator schemes,

an = e
δt
2 Lvn +

e
δt
2 L − 1

L
N (vn)

bn = e
δt
2 Lvn +

e
δt
2 L − 1

L
N (an)

cn = e
δt
2 Lan +

e
δt
2 L − 1

L
(2N (bn)−N (vn))

vn+1 = eδtLvn + δt−2L−3
{[
−4− δtL+ eδtL

(
4− 3δtL+ δt2L2

)]
N (vn)

+ 2
[
2 + δtL+ eδtL (−2 + δtL)

]
(N (an) +N (bn))

+
[
−4− 3δtL − δt2L2 + eδtL (4− δtL)

]
N (cn) } . (4.13)

Since we are only using explicit methods, we require that these methods have sufficient

numerical stability. Stability for the RK and other methods will be discussed in Section 4.8.

4.6 Taylor Methods

In Section 4.4, we derived a second-order, explicit ETD method based on a Taylor expansion

of N (v) centered at tn. Unfortunately, numerical simulations showed that this method

(4.9) is unstable for large time-step sizes and attains second order convergence for only very

small time-step sizes. This is due to approximating the function on the left hand side of

the integration interval where the exponential multiplier is smallest (remember that L ≤ 0

for each k in the frequency representation). To solve this dilemma, we instead approximate
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N (v (t)) with an expansion about tn+1,

N (v (t)) = N (vn+1) + (tn+1 − t) JN
(
dv

dt

)∣∣∣∣
tn+1

+O
(
δt2
)

= N (vn+1) + (tn+1 − t) JN (Lvn+1 +N (vn+1)) +O
(
δt2
)
. (4.14)

Again substituting into equation 4.2 and extracting the multiplying constants from the in-

tegral, we have

vn+1 = eδtLvn + eδtL
∫ δt

0
e−sL [N (vn+1) + (δt− s) JN (Lvn+1 +N (vn+1))] ds

= eδtLvn + eδtL
[
{N (vn+1) + δtJN (Lvn+1 +N (vn+1))}

∫ δt

0
e−sLds

− JN (Lvn+1 +N (vn+1))

∫ δt

0
se−sLds

]
.

Computing the integrals by hand leaves an implicit numerical method,

vn+1 = eδtLvn +
eδtL − 1

L
{N (vn+1) + δtJN (Lvn+1 +N (vn+1))}

− eδtL − 1− δtL
L2

JN (Lvn+1 +N (vn+1)) .

Rather than solve this implicit method, we add an explicit stage to approximate vn+1,

an = eδtLvn +
eδtL − 1

L
N (vn)

vn+1 = eδtLvn +
eδtL − 1

L
{N (an)− δtJN (Lan +N (an))} (4.15)

+
eδtL − 1− δtL

L2
JN (Lan +N (an)) .
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This method based on the Taylor expansion is not unconditionally stable with respect

to time-step size, but it allows a much larger time step size than (4.9) and shows second

order convergence (see Section 4.7). Further, since the second stage of equation 4.15 accepts

an approximation for vn+1 and returns a better approximation for it, we can iterate on

the second stage of the method to reduce the error of our solution. As the number of

iterations increases, the error in the solution approaches the error of a fully-implicit second-

order exponential integrator. In this way, the method behaves like a predictor-corrector type

method.

By taking more terms in our initial Taylor expansion, a similar third order method is

an = eδtLvn +
eδtL − 1

L
N (vn)

Ṅ (an) = JN (Lan +N (an))

N̈ (an) = HN
(

[Lan +N (an)]2
)

+ JN [L (Lan +N (an)) + JN (Lan +N (an))]

vn+1 = eδtLvn +
eδtL − 1

L

{
N (an)− δtṄ (an) +

δt2

2
N̈ (an)

}

+
eδtL − 1− δtL

L2

{
Ṅ (an)− δtN̈ (an)

}
+
eδtL − 1− δtL − 1

2δt
2L2

L3
N̈ (an) . (4.16)

Again, each iteration of the second stage improves the solution by decreasing the error. Since

the predictor stage is only first order, we require at least two iterations of the second stage

to obtain a third order method. Further iterations drive the solution to the expected error

of a fully-implicit third-order exponential integrator.

117



4.7 Convergence of ETD Methods

To test the order of convergence in time step size, and to compare the methods discussed

in this chapter, we completed a refinement study. The initial condition was a solution to

the CH equation that was far past the spinodal phase but still far from the steady state

solution. Time evolution was computed for fixed δt = 10−4 then halved and recomputed.

We estimated the error for δt = 10−4 as the distance between the solutions measured in the

maximum norm. Using the solution with δt = 5 · 10−5, we again halved the time step to

calculate the corresponding error. Figures 4.1 through 4.5 give the results of the refinement

studies for each of the methods described above.

Figure 4.1 shows the results for the higher order ETD-Runge-Kutta methods (equations

4.11, 4.12, and 4.13) together with the general ETD (4.3) for comparison. Dashed lines with

the proper order are included for reference. We note that for small enough time step size,

each of the methods reaches its expected order of convergence. However, as the size of the

time step approaches δt = 10−4 the order of convergence begins to plateau. The reason for

this behavior is discussed in Section 5.4.1.

Figure 4.2 gives the corresponding plot for the ETD-Taylor methods (equations 4.15 and

4.16). The methods reach their expected order of convergence for larger size time steps than

the ETD-RK methods, but again they plateau near δt = 10−4. Figures 4.3 and 4.4 show the

effect of iterating on the second stage of the method for the ETD-T2 and ETD-T3 methods,

respectively. These iterations reduce the error by as much as three orders of magnitude in

the ETD-T2 method and five orders of magnitude in the ETD-T3 method.

Lastly, Figure 4.5 compares the error between the Runge-Kutta and Taylor methods

for both the second and third order schemes. For the simple implementation, the Taylor
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Figure 4.1 Timestep size refinement study for the ETD-RK methods given in Section 4.5.
Dashed lines are included for comparison and have slope of two, three, and four respectively.

methods have slightly more error than the corresponding ETD-RK methods, but including

several iterations makes the Taylor methods much more valuable.

4.8 Stability Analysis

In this section I compare the stability regions of the first through third order ETD methods

described above (4.3, 4.11, 4.12, 4.15, 4.16). The stability region is the parameter region

such that the magnitude of the amplification factor is less than or equal to one when it is

applied to the model equation

ut = ξu+ λu, (4.17)
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Figure 4.2 Timestep size refinement study for the ETD-Taylor methods given in Section 4.6.
Dashed lines are included for comparison and have slope of two and three respectively.

where Lu = ξu, and N (u) = λu. We assume ξ is a negative, real-valued constant and λ

is complex. In Figures 4.6, we plot the regions for λ in the complex plane where un+1 ≤ 1

for one step with an initial condition un = 1. Similar plots and analysis for the ETD-RK

methods can be found in [67] and [65].

As discussed in Section 4.6, the Taylor methods decrease error when the second stage is

repeated, but unfortunately iterating on the corrector stage does not significantly increase

the size of the stability region as shown in Figure 4.7.
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Figure 4.3 Timestep size refinement study for the ETD-T2 method with different numbers
of iterations. The dashed line has slope two and is included for comparison.

4.8.1 Predictor/Corrector Analysis

To understand the limits on the stability region for the ETD-Taylor methods, we take the

limit as δtξ → 0 and look at the ode,

ut = λu. (4.18)

The backward Taylor series for this problem yields a single time step of the form

un+1 = un +

(
z − z2

2!
+
z3

3!
− z4

4!
+ · · ·

)
un+1, (4.19)

where we can truncate the expansion at the order we desire for the method.
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Figure 4.4 Timestep size refinement study for the ETD-T3 method with different numbers
of iterations. The dashed line has slope three and is included for comparison.

Taken together with a predictor step, we have:

Predictor: u[0] = p0(z) · un (4.20a)

Corrector: u[k] = un + p(z) · u[k−1], (4.20b)

with k as the counter for number of corrector iterations. To implement the second order

ETD-T2 scheme (4.15) for the ode of interest (4.18), we use p0(z) = 1 + z in (4.20a) which

yields the first order predictor, and set p(z) = z − z2/2 in (4.20b) giving the second order

corrector. Each iteration of (4.20b) will increase the order of the method, up to the order

of accuracy of p(z). Thus the second step of ETD-T3 must be performed at least twice to

achieve solutions that are third order in time.
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Figure 4.5 Comparison of the error for ETD-RK methods versus the ETD-Taylor methods
with one and twenty iterations.

The exact solution to the linear difference equation (4.20a)-(4.20b) is given by,

u[k] =
un

1− p(z)
+ p(z)k

(
p0(z)− 1

1− p(z)

)
un. (4.21)

Provided |p(z)| < 1, the error converges to the same as a fully implicit scheme, but unfor-

tunately this has a much smaller region of stability. For second and third order corrector

steps, Figure 4.8 shows the regions where |p(z)| < 1 which match with the results of Figure

4.7 for small δtξ.

4.9 Implementation of ETD-RK2

To obtain larger-scale, three-dimensional solutions to the CH and FCH equations, we imple-

mented the ETD-RK2 method for time stepping combined with a spectral solution in space.
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Figure 4.6 Stability regions for exponential time differencing methods up to third order in
time. Regions are plotted in the δtλ complex plane.
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Figure 4.7 Stability regions for ETD-T2 and ETD-T3 methods with 100 iterations of the
second step. Regions are plotted in the δtλ complex plane.
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ETD-T3. The regions are plotted in the δtλ complex plane. Compare with Figure 4.7
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Two properties make the spectral method ideal for this calculation: high spatial resolution

captures solution fronts, and computing derivatives is fast and easy. Details for the general

spectral method are given in Section 3.3. We first wrote the code in C++ and parallelized

it using OpenMP. After we were satisfied with the stability and validity of the CPU ver-

sion of the code, we wrote a corresponding code for a GPU using C++/CUDA. The Fourier

transforms were computed using cuFFT, a package similar to FFTW adapted for GPUs. We

used an adaptive time-stepping scheme based on error control, and a cubic domain with 128

grid points in each direction. The cubic domain is limited in the number of Fourier modes

in each dimension by the size of the GPU’s on-card memory. We performed our calculation

on an Nvidia M1060 which has 4 gigabytes of memory leading to the 128 mode limitation.

4.9.1 Application to a GPU

When writing algorithms for a graphics processing unit there are three important hardware

properties; massive parallelism, fixed memory limit, and asynchronous scheduling. Algo-

rithms that are effective within these limitations can gain impressive speed as shown in the

previous examples (Sections 2.9 and 3.6.1).

Modern GPUs typically have thousands of streaming multiprocessors that can handle

thirty-two threads at a time. To be computationally effective, this impressive parallelism

requires problems of sufficient size. If the computational requirements of the algorithm

are too small, multiprocessors will sit idle and lead to a decrease efficiency. On the other

hand, each GPU has limited on-card memory, so an effective algorithm will not require large

amounts of storage. This on-card memory is limited to about 6GB of storage for current

GPUs, and any memory transfer onto and off of the card is much slower than the speed of

calculation, so it is effectively a hard limit on the amount of usable memory.
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Figure 4.9 Diagram showing how to implement a spectral method on a GPU to avoid syn-
chronization, minimize memory use, and fully utilize the parallelism of the GPU.

Finally, graphics processing units gain speed by hiding latency. This is done by scheduling

with a first-come-first-served method for each of the streaming multiprocessors. Every time

an algorithm requires a synchronization of the threads, the scheduler must clear out and

restart, which slows down the computation. This is particularly relevant when computing

with a spectral method because synchronization must occur when switching between regions

of element-wise calculations and regions of Fourier transforms.

Figure 4.9 gives the process for computing
(
u2 + u

)
∆u. This term does not appear in

either the CH or FCH equations, but it gives a simple working example to better explain

how the more complicated algorithms work. Beginning with two arrays, u in the spatial

domain and ∆ in the frequency domain, we alternate between FFT/IFFTs and element-

wise operations. Note that by computing u2 + u at the last level we are able to perform

the calculation requiring storage of only one additional array. Further, when the domain

is relatively large, every streaming multiprocessor will be required giving full usage of the

massive parallelism.
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4.9.1.1 GPU Speedup

For the ETD-RK2 method, we conducted a speed test similar to Section 2.9. The test

consisted of a very short simulation (approximately thirty time steps) computed with a

single graphics processing unit compared against a fully parallelized code running on eight

CPU processors. The hardware for the two codes was purchased at roughly the same time by

the High Performance Computing Center at Michigan State University, so the comparison is

fair. The same random initial data was used for each simulation, and the parameters were:

ε = 0.03, η1 = 5.0, η2 = 3.0, and τ = 0.6. We adjusted the number of grid points in the

domain by powers of two in each dimension keeping the shape as close to cubic as possible.

The CPU simulations were run on two quad-core Intel Xeon E5620 processors, with each

of the eight cores having 2.4 GHz of processing speed. The code was written in C++ and

aggressively parallelized with OpenMP using the FFTW library for the Fourier transforms.

The GPU simulation was on an Nvidia Tesla C2075 which has 448 cores with 1.15 GHz

processing speed. The code was written in C++ and CUDA using the cuFFT library for the

Fourier transforms.

Figure 4.10 shows the number of times faster that the GPU calculation ran compared

to the CPU calculation. As discussed before, the total computation speedup is lower than

the speed up per time-step due to the slow transfer of data to and from the GPU card. As

computation length increases the total computation speed up will approach the higher value.

Further, the size of the problem is also important. As the number of grid points increases,

so does the amount of computation between thread synchronizations on the GPU leading

to greater efficiency. The number of grid points for this computation cannot be increased

above 1022 due to the 6GB memory limit on the card.
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Figure 4.10 Number of times faster the GPU computation is over an eight-core, fully-
parallelized, CPU computation.

An aspect of supercomputing centers that is gaining notoriety is the issue of power

consumption [111]. For this speed comparison, the CPU calculation used eighty watts of

energy per processor for a total energy consumption of 160 W, while the GPU used 225 Watts.

Although the CPU used less power per unit time, the total power consumption was two to

nine times less for the GPU than the CPUs, because the GPU completed the calculation

many times faster. Energy efficiency is an additional advantage of GPU computing.

4.9.2 Adaptive Time-Stepping

In order to capture fast transient behaviors in the Cahn-Hilliard and Functionalized Cahn-

Hilliard simulations, we implemented a second order adaptive time stepping scheme with

the ETD-RK2 method. Unlike the pairs of methods described in Chapter 3, we do not have

a corresponding implicit scheme with matching error terms. Instead we use the trapezoidal
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method to compare against,

un+1 = un +
δt

2
(F (un+1) + F (un)) . (4.22)

It would be pointless to solve the second order implicit equation, so we take the solution

from ETD-RK2 at the new time, uETD-RK2, substitute it into equation 4.22, and explicitly

compute an approximation to the solution from the trapezoidal method,

utrap = un +
δt

2
(F (uETD-RK2) + F (un)) . (4.23)

Taking the difference of these two solutions at time tn+1, we obtain an estimate, η, of

the exact single-step error, ηe,

ηe ≈ η :=
1

2

∥∥uETD-RK2 − utrap
∥∥ . (4.24)

This estimate is used to choose the size of the next time step, δtn+1, with

δtn+1 = δtn max

(
0.8 3

√
σ

η
, 1.3

)
,

where σ is the desired tolerance, and as before, 0.8 and 1.3 are safety factors.

The adaptive time-stepping is primarily important for the beginning stages of a simulation

where the solution rapidly relaxes onto the slow manifolds of evolution. It also becomes

important later in simulations where domains grow close together and rapid topological

changes occur. At all times, we restrict our time-step to δt ≤ 10−4, for the reasons discussed

in Sections 4.7 and 5.4.1.
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4.10 Numerical Examples for FCH

As with the other methods, we we used the high-performance solver to investigate important

geometries and structural evolutions that had connections to the analysis of the models.

Using the medusa head problem in two dimensions, we show that the ETD-RK2 method gives

proper convergence in time for important topological events. Second, we applied the three-

dimensional GPU solver to a geometry with a hollow sphere interacting with hoop shaped

pores. Third, we will show evolution of a punctured hollow sphere that has applications to

vesicle membranes in biology.

4.10.1 Medusa Head in 2D

The medusa head problem forced us to make some important changes to our early choice

of time-stepping method for the FCH equation. In Section 2.7, we initially presented the

medusa head in three dimensions where we used the convex splitting method to compute

time evolution. When we went back to show convergence in time for the precipitous drop

in energy, we discovered that when we cut the time step in half, the event happened in

approximately half the time. If this effect was due to compounding error that drove the

system away from the unstable equilibrium, we would expect that halving the time step

would lengthen the time before the event.

We chose this geometry as a check against the undesirable behavior shown by the convex

splitting method. In Figure 4.11, we ran the simulation with the same initial condition and

fixed time-steps of 2 ·10−4, 10−4, and 5 ·10−5. The event did happen sooner for smaller time

step sizes, but difference was very minor. This suggests that our time evolution is precise,

and future work will address accuracy in time evolution compared against the asymptotic
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analysis of the model. The calculation was done in MATLAB.

4.10.2 Punctured Hollow Spheres

An area of research in cell biological where the FCH model could prove useful is in the study

of lipid membranes. Cells use vesicles (hollow spheres) composed of lipid bilayer membranes

to transport nutrients and perform other vital functions. Recently, molecular dynamics

simulations have been used to study formation of these membranes [112, 113]. Using our

phase field model, we studied the time evolution of a vesicle that had been punctured by

removing the section with azimuthal angle, φ, less than π
8 , π

16 , and π
32 .
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Figure 4.11 Time evolution of an unstable steady state solution to the FCH equation in two dimensions. Energy versus time is
shown for three identical simulations with different fixed time step sizes.



Figure 4.12 shows the time evolution of the punctured vesicle with φ ≤ π
8 removed.

Initially, the opening receded and reduced the line-energy by thickening the edge. After, the

opening had stabilized, the hole slowly closed. The parameters for simulation were: ε = 0.03,

η1 = 5, η2 = 10, τ = 0.2, and the domain was [−π2 ,
π
2 ] cubed. In non-dimensionalized

time, the closing times for the three punctured spheres was T = 10.9934, T = 0.9658, and

T = 0.03217 respectively, as measured by the sign change of the second derivative of the

energy decay from negative to positive.

4.11 Conclusions

The exponential time differencing schemes provide a good balance of accuracy and speed

when computing solutions to the Functionalized Cahn-Hilliard equation (1.10). The general

ETD scheme can be extended to higher-order time-stepping schemes by approximating the

nonlinear portion of the equation using both Runge-Kutta or Taylor expansions. Finding a

good linearization of the right hand side of the equation provides dividends in both stability

and accuracy of the calculation. The best linearization that we found was based on the

physics of the model by computing the linearization about the dominant phase u = −1.

We studied the stability and accuracy for the higher-order ETD-RK and ETD-Taylor

methods and found that in general the Runge-Kutta methods had better stability properties

and accuracy for the simple schemes. However, when we treated the ETD-Taylor methods

like predictor corrector schemes, it only took a few iterations to obtain a scheme hundreds of

times more accurate that either the ETD-RK or simple ETD-Taylor methods. Higher-order

ETD schemes rely on precise calculation of the φ-function to be stable and accurate.
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Figure 4.12 Time evolution of a punctured vesicle.



Adaptive time-stepping based on error estimates improved the speed of the calculations

for reasonable accuracy. We were able to use this combination of speed and accuracy to

capture accurate evolution of physically and biologically relevant structures. Certainly, ex-

ponential time differencing scheme are adequate for simulation of the FCH equation.
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Chapter 5

Comparison of Methods for the FCH

Equation

To quantify the differences between the methods proposed in Chapters 2, 3, and 4, we

performed an experiment on the punctured hollow sphere geometry from Section 4.10.2

using the three-dimensional GPU codes given in Appendix ??. The initial condition used

was a sphere with angle φ ≤ π
16 removed and evolved numerically until a stage after the

hole had closed, but the sphere had not yet become smooth. This gives a smooth geometry

on the manifold of evolution that will evolve quickly without any changes in topology. The

parameters for the test were: ε = 0.03, η1 = 5ε = 0.15, η2 = 10ε = 0.30, and τ = 0.20. We

compare the accuracy, computation speed, and time step restrictions for the three methods

computed on the GPU.

5.1 Description of Compared Schemes

The implementation of the convex splitting method applied the scheme from equation 2.5

with the splitting given in equations 2.12 and 2.13. The fixed-point iteration uses the operator

defined by equation 2.31 with c1 = c2 = 5.0. The error from this method is expected to be

O (δt), and the adaptive time-stepping constant is set at ct = 0.16 (see 2.41).

The implementation of the implicit method used the scheme described in Section 3.3.3
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with the Jacobian matrix and associated preconditioned matrix given in equations 3.13 and

3.14. The error from this method is O (δt), and the adaptive time stepping tolerance was

set to σ = 10−4.

The implementation of the exponential time differencing used the ETD-RK2 scheme

(4.11), with the linearization from Section 4.3. The error from this method is O
(
δt2
)
. We

compute adaptive time stepping based on the difference between the solutions after both

stages at time t = tn+1. This gives a fast first-order adaptive time stepping that does not

require any extra computation.

5.2 Complete Simulation

For the first comparison, we ran a simulation from T = 0 to T = 2 with each of the three

methods. We ran the simulations using the fully parallelized and optimized GPU code, and

we allowed completely adaptive time stepping. Results from the simulations are given in

Table 5.1. To obtain error estimates, we compared against a “true” solution computed using

the ETD-RK2 method with a fixed time step size of δt = 10−6. We also computed the

solution with a fixed time step size δt = 10−5 so that we could be confident that this “true”

solution was accurate enough (i.e. the error was at least an order of magnitude smaller than

the comparison solutions).

The first major result was that the solution from the convex splitting method did not

evolve enough to close the puncture as shown in Figure 5.1. This not only gave significant

error, but it did not allow us to compare event times, and the calculated energy of the final

solution was significantly different from the other two methods. Further, without the rapid

changes in geometry that accompany the event, the adaptive time stepping scheme did not
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Convex Splitting Fully Implicit Exponential Integrator

Error
(
l2
)

29.66 8.6836e-3 1.8772e-1
Maximum δt 1.8e-2 7.7e-4 1.0e-4

Computation Time (s) 194 43172 4540
Number of Time Steps 190 2997 21109

Event Time none 0.9654 0.9658
Energy Drop 169.604 176.337 176.335

Table 5.1 Comparison of the convex splitting, fully implicit, and exponential integrator
methods for a full simulation up to T = 2 with adaptive time stepping.

Convex Splitting Implicit and ETD-RK2

Figure 5.1 Final states of the complete simulation comparing the convex splitting method to
the other two methods. The images show a two-dimensional slice of the three-dimensional
solutions

slow down for that portion of the simulation and the computation time was absurdly fast.

The error from each simulation was calculated with the l2-norm, and it shows that the

implicit scheme was approximately twenty times more accurate than the ETD scheme. The

implicit scheme also took time steps up to seven times larger than the ETD scheme. The

big winner for the ETD method is that it was roughly ten times faster than the implicit

scheme, and it accurately predicted the geometric event and ended with a computed energy

very close to that of the implicit scheme.

The speed of the exponential time differencing was much faster than the other two meth-

ods. On average, the ETD scheme took 0.215 seconds per time step compared to 1.021
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second and 14.405 seconds for the convex splitting and implicit schemes, respectively. This

explains why the ETD scheme can successfully take far more small, accurate time steps.

This speed difference is particularly important for the three-dimensional simulations. With

the ETD scheme, we can compute important geometries out to T = 300 or less in one week.

The same simulation with the convex splitting would likely miss the important dynamics,

and the implicit scheme would require more than two months.

5.3 Fixed Time-Step Simulation

For a second comparison of the three methods, we conducted fixed time-step simulations for

δt = 4 · 10−4, 2 · 10−4, and 1 · 10−4. For initial conditions, the simulation used the “true”

solution from above at time T = 1, and we computed the solution up to T = 2. This initial

geometry was shortly after the closing of the puncture and it evolved to resemble a hollow

sphere.

The results are collected in Table 5.2, and they give further evidence that the convex

splitting method has particularly bad evolution and thus poor accuracy. The implicit method

is roughly two orders of magnitude more accurate than the ETD method for the time-step

sizes used. The convex splitting scheme and the exponential integrator compute time steps

at roughly the same speed, with the implicit scheme taking five to ten times longer. It is

particularly interesting that when the step size halves (number of steps double), the amount

of computation time does not double. Some of this can be attributed to the overhead of slow

data transfer onto and off of the GPU card. However, the implicit scheme actually becomes

more efficient for each time-step when the steps are small. This is because the initial guess

for the Newton solve is much closer when the time-step is small, and it therefore uses fewer
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Convex Splitting Fully Implicit Exponential Integrator
δt Error Time Error Time Error Time

4e-4 5.3619 603 1.2657e-3 6968 6.1249e-1 751
2e-4 4.1915 1016 6.1597e-4 8096 2.9415e-1 1126
1e-4 2.6570 1941 2.9146e-4 11973 1.0623e-1 2159

Table 5.2 Comparison of error and simulation time for fixed time-step simulations of the
FCH equation. Error calculations use the l2 norm, and time is given in seconds.

Newton iterations and far fewer preconditioned conjugate gradient iterations.

5.4 Time Step Size Restrictions

Although we have focused on time stepping methods that balance large time steps with

accurate solutions and reasonable computation speeds, we have discovered that there are

soft limits on the size of time steps for each of the three types of methods. Both the convex

splitting method and the exponential time differencing give incorrect evolution for time steps

that are too large. The implicit scheme is limited by the ability to complete the Newton

convergence and the error control. In this section, we discuss the causes for these limitations

and how to adjust for them.

5.4.1 Solution Freeze Out for Convex Splitting

In our work with Eyre’s convex splitting method, we discovered that some numerical methods

for the Cahn-Hilliard equation suffer from a behavior we call solution freeze out. This

behavior occurs when doubling the time step size does not give twice the evolution of the

solution, and the movement of mass with respect to time vanishes. This can happen when

the higher frequency modes in the solution are over damped, causing the mass in the phases

to have a limit on the distance evolved in a given time step.
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T = 2 · 10−2 T = 4 · 10−2 T = 6 · 10−2 T = 8 · 10−2 T = 10−1

Figure 5.2 Time evolution showing freeze out of solution with larger time step sizes. For
rows one through three δt = 10−2, 10−3, and 10−4 respectively.

We first noticed this behavior when performing a refinement study on an unstable equi-

librium initial condition. When we increased the time step size by a factor of ten, the critical

event happened nearly ten times later in the evolution. This was surprising because we ex-

pected any increase in error to drive the geometry away from the equilibrium point more

quickly. Figure 5.2 shows this type of evolution for time step sizes δt = 10−2, 10−3, and10−4

in the coarsening stage of evolution for the CH equation. The coarsening of the solution

should occur near T = 2 · 10−2, but is not captured for the largest time step size. Further,

when δt = 10−3, the freeze out leads to incorrect early topological changes which give a

different solution at the final time. This freeze out behavior was also observed by Gomez

and Hughes [55].
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5.4.2 Solution Freeze Out for Exponential Time Differencing

The first order exponential integrator also experiences freeze out. This causes the decrease

in accuracy leading to loss of convergence order which can be seen in Figures 4.1 and 4.2

as δt approaches 10−4. The question becomes, at which time step size do we stop trusting

the evolution of the solution? The obvious answer is to look at the order of convergence.

Table 5.3 shows the time refinement study that gives the order of convergence for a given

fixed δt used in the first order ETD scheme (4.3). For any δt & 10−4 the method ceases to

be first order in time, and it will give incorrect evolution. The study was performed on a

solution of Cahn-Hilliard equation that was far beyond the spinodal stage, but this behavior

is consistent with long-time simulations of the FCH equation.

δt Order
1.00E-3 -0.1754
5.00E-4 0.4640
2.50E-4 0.8845
1.25E-4 1.0263
6.25E-5 1.0433
3.12E-5 1.0354
1.56E-5 1.0266

Table 5.3 Order of convergence at given time step sizes.

More than just a refinement study tells us why δt ≈ 10−4 is the appropriate cutoff. If

we look back at equation 4.3, we notice that all of the time evolution is embedded in the

exponential operators. Freeze out happens when doubling the time step size results in less

than twice the evolution. In Figure 5.3, we plot the amount of evolution versus time step

size and wave number (as in 4.4). We define amount of evolution as the fractional change in
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the solution divided by the fractional change in time. For the first order ETD method,

amount of evolution =

φ1(2dtL)
φ1(dtL)

− 1

2dt
dt − 1

+ 1.

As timestep size grows, note that the freeze out begins initially with high-frequency wave

numbers. This behavior brings stability to the method, but when δt gets too large it starts

damping out physically relevant wave numbers. We identify physically relevant wave numbers

by the energy spectrum of the solution (Figure 5.4). For the geometry and length scales we

compute, a typical simulation must capture |k| . 40, and from Figure 5.3, we see that this

requires δt . 10−4.

Switching now to the FCH equation, Figure 5.5 shows that the change of the linear

operator increases the freeze out behavior, particularly for the convex splitting method. In

two dimensions, the FCH equation requires accuracy for essentially the same wave numbers

as the CH equation due to geometric similarities. Thus for the ETD schemes, we limit time

steps to a maximum of dt = 10−4 any time that the adaptive time stepping scheme estimates

a time step larger than that. For the convex splitting scheme, the same limitation would

require time steps no larger than δt = 10−7 which greatly reduces its feasibility.

5.4.3 Implicit Time-step Size Restriction

The implicit scheme has a more standard time-step size restriction. Due to the fourth-

order nonlinearity in the Functionalized Cahn-Hilliard equation, Newton’s method will not

converge if the initial guess is not close enough. We have two reasonable choices for the

initial guess; the solution at the last computed time step, or the solution of a forward Euler

step. Preconditioning the conjugate gradient iteration has no effect on the time-step size
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(a) Exponential Integrator

(b) Convex Splitting

Figure 5.3 Freeze out of operators for the two methods applied to the Cahn-Hilliard equation
showing the amount of evolution when doubling the time step size. Note that both methods
suffer from similar freeze out behavior.
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(a) Typical Solution to the CH Equation (b) Energy Spectrum

Figure 5.4 The energy spectrum of solutions to the Cahn-Hilliard equation is dominated by
low wave numbers.

restriction.

When using the last solution as the initial guess, the larger the step in time, the farther

away the initial guess is from solution at the next time. This gives a time-step restriction on

the order of 10−6 for the FCH equation with ε = 0.03. On the other hand, using a forward

Euler step to initialize the implicit solve also has a limitation. The Euler step should capture

the evolution and make the initial guess closer, but the explicit scheme is unstable for large

time-steps and introduces spurious oscillations. This drives the forward Euler guess away

from being a good initializer. It turns out that the forward Euler step is better in most cases

and provides a time-step restriction on the order of 10−4 when ε = 0.03.

5.5 Conclusions

In conclusion, the exponential time differencing methods give the best combination of speed

and accuracy, both of which are important in computing long time evolution for solutions
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(a) Exponential Integrator

(b) Convex Splitting

Figure 5.5 Freeze out of operators for the two methods applied to the Functionalized Cahn-
Hilliard equation showing the amount of evolution when doubling the time step size. Note
that the convex splitting method suffers from much stronger freeze out behavior.
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of the Functionalized Cahn-Hilliard equation in three dimensions. In combination with a

spectral solution in space, application of the ETD method to a graphics processing unit

greatly enhances the speed of the simulation and allows us to compute up to T = 300 in

a week or less which is a great improvement over the fully implicit scheme. Although the

ETD methods suffer from freeze out effects, the restriction is much less stringent than the

convex splitting method. This gives time accuracy when the code enforces a hard limit on

the size of the time-step. The ETD method captures relevant geometric evolution better

than convex splitting and much faster than a fully implicit scheme.

The Functionalized Cahn-Hilliard equation can be effectively split using the convex split-

ting method proposed by Eyre [34, 46]. The scheme is very efficient computationally and

performs its implicit iterations on a timescale much like an explicit method. A convex split-

ting scheme could be very effective in any calculation where the solution at final time is

important, but the evolution that arrives at that solution is unneeded. The primary draw-

back is the lack of accuracy when time-steps are restrictively small. The convex splitting is

also very difficult to adapt to new potential wells or vector phase problems which will be

necessary when connecting with ab initio simulations and experimental work.

Lastly, the fully implicit scheme is the most accurate by at least an order of magnitude.

If very precise evolution is required an implicit scheme is the proper choice. The cost of using

the implicit scheme is its slow computation time. Preconditioning the Newton solve with

a physics-based preconditioner does not alleviate the small time-step sizes required for the

iterative solve to converge, but it does reduce the number of conjugate gradient iterations

by up to a factor of one hundred and cuts the computation time similarly.
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5.6 Future Work

As with any interesting research, there are a wide variety of directions we could take in the

future. An interesting extension would be to improve the model to more than two phases.

Some of the analysis has already been performed for three phases, and the new energy

formulation comparable to equation 1.6 is

E (u) =

∫
Ω

1

2

∣∣∣∣∣∣∣ε2∆~U −W ′
(
~U
)

+ εH0

−u2

u1


∣∣∣∣∣∣∣
2

− ε
[
η1
ε2

2

∣∣∣∇~U ∣∣∣2 + η2W
(
~U
)]

dΩ. (5.1)

~U = (u1, u2)T defines the fraction of polymer phases one and two, and the fraction of solvent

is us = 1−u1−u2 so that the total amount is identically one. Further, the εH0 term allows us

to introduce intrinsic curvature and have greater control when modeling important biological

systems such as endocytosis and exocytosis.

An important aspect of future work could be the development of better ties to the physics

through a continuum mechanics description. Currently, there is evidence from experiments

and some asymptotic analysis that suggests that the model is reasonable, but it would vastly

improve the value of the FCH model if we could identify what types of physical systems

connect well with the model’s results. With this development, we would be able to identify

the physical constants that each of the four coefficients in the FCH energy, namely ε, η1,

η2, and τ . We would also need to obtain an accurate potential well, W (u) for each specific

system.

A more physics based application of the model is comparison with small angle scattering

either with x-rays (SAXS) or neutrons (SANS). We have put some effort into this connection

already, but the extension of the numerical to SAXS comparison could lead to an inverse
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problem to find the four coefficients in the FCH energy. With some good fortune, this inverse

problem could assist engineers and chemists in creating better membranes for PEM fuel cells,

solid state Dye-Sensitized solar cells (DSSC), or polymer gel electrolyte batteries.

Finally, one of the widest areas of future research would be the generation of better

numerical methods for handling different boundary conditions and larger domains. With

the ability to compute solutions on larger domains with any type of boundary condition, we

could simulate the entire pore network formation of Nafion or other materials from lab-like

conditions. There would no longer be the restrictions of simulating inside bulk material

with uniform water concentrations. The likely candidate for these changes is high order

discontinuous Galerkin methods with global domain decomposition.

Although not exhaustive, this list gives a view of the opportunities for numerical com-

putation that exist with the Functionalized Cahn-Hilliard model. The methods and imple-

mentations described deliver significant results, and valuable knowledge will come from the

continuation of this research.
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Appendix A: Convex Splitting Code
in CUDA

1 //
2 // spe6NL3Dcuda6 . cu
3 //
4 // This code was wr i t t en by Jaylan Jones to approximate s o l u t i o n s

to the
5 // Funct i ona l i z ed Cahn−H i l l i a r d Equation us ing the convex

s p l i t t i n g
6 // scheme patterned a f t e r the work o f Eyre .
7 //
8
9 #inc lude <iostream>

10 #inc lude <f stream>
11 #inc lude <sstream>
12 #inc lude <cuda . h>
13 #inc lude <c u f f t . h>
14 #inc lude <time . h>
15
16 #d e f i n e PI 3.141592653589
17 #d e f i n e REAL double
18 #d e f i n e COMPLEX cufftDoubleComplex
19 #d e f i n e TYPE CUFFT Z2Z
20 #d e f i n e EXEC cufftExecZ2Z
21
22 us ing namespace std ;
23
24 //
25 // This s e r i e s o f k e r n e l s are a l l c a l l e d in the main funct ion , and

they
26 // break up the computat ional work in to p i e c e s that have no data
27 // dependence on each other .
28 //
29
30 //
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31 // bu i ld shp c o n s t r u c t s the approximate i n v e r s e to the Frechet
d e r i v a t i v e

32 // used in the i t e r a t i v e p roce s s that s o l v e s the i m p l i c i t por t i on
o f

33 // the s p l i t t i n g .
34 //
35
36
37 g l o b a l void bu i ld shp (REAL ∗shp , REAL ∗Lap , i n t n , REAL alpha ,

REAL eta2 , REAL taub , REAL c1 , REAL c2 )
38 {
39 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
40 i f ( idx < n)
41 shp [ idx ] = −Lap [ idx ] ∗ ( alpha∗alpha∗Lap [ idx ] ∗ ( alpha∗alpha∗Lap [

idx ] − c2 ) + c1 + 1 − 0 .5∗ taub∗ taub + alpha∗ eta2 ) ;
42 }
43
44 //
45 // Al l the numbered k e r n e l s are c a l l e d in main
46 //
47
48 g l o b a l void kern0 ( i n t n , COMPLEX ∗U, COMPLEX ∗R, REAL evap ,

REAL dt )
49 {
50 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
51 i f ( idx < n)
52 {
53 U[ idx ] . x = R[ idx ] . x − dt ∗ evap ∗ (R[ idx ] . x + 1) / 2 ;
54 U[ idx ] . y = 0 . 0 ;
55 }
56 }
57
58 g l o b a l void kern1 ( i n t n , REAL alpha , REAL eta1 , REAL eta2 ,

REAL taub , REAL taus , COMPLEX ∗U, COMPLEX ∗F1U, COMPLEX ∗F2U,
COMPLEX ∗F3R, COMPLEX ∗F4R, COMPLEX ∗F5R)

59 {
60 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
61 i f ( idx < n)
62 {
63 F1U[ idx ] . x = 2.5∗ taub∗pow(U[ idx ] . x , 4 ) + (0 . 5∗ taub∗ taub − 4 −

alpha∗ eta2 )∗pow(U[ idx ] . x , 3 ) ;
64 F1U[ idx ] . y = 0 . 0 ;
65
66 F2U[ idx ] . x = (2 + alpha∗ eta1 − 0 .5∗ taub∗U[ idx ] . x )∗U[ idx ] . x ;
67 F2U[ idx ] . y = 0 . 0 ;
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68
69 F3R [ idx ] . x = pow(U[ idx ] . x , 3 ) ;
70 F3R [ idx ] . y = 0 . 0 ;
71
72 F4R [ idx ] . x = (3∗U[ idx ] . x + taub )∗U[ idx ] . x ;
73 F4R [ idx ] . y = 0 . 0 ;
74
75 F5R [ idx ] . x = 3∗pow(U[ idx ] . x , 5 ) − 0 . 5∗ ( taub∗6 + alpha∗ eta2 ∗ taus

)∗pow(U[ idx ] . x , 2 ) ;
76 F5R [ idx ] . y = 0 . 0 ;
77 }
78 }
79
80 g l o b a l void kern2 ( i n t n , COMPLEX ∗U, COMPLEX ∗LapR , REAL ∗Lap)
81 {
82 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
83 i f ( idx < n)
84 {
85 LapR [ idx ] . x = Lap [ idx ]∗U[ idx ] . x ;
86 LapR [ idx ] . y = Lap [ idx ]∗U[ idx ] . y ;
87 }
88 }
89
90 g l o b a l void kernDel ( i n t n , COMPLEX ∗U, COMPLEX ∗DelxR , REAL ∗

Delx , COMPLEX ∗DelyR , REAL ∗Dely , COMPLEX ∗DelzR , REAL ∗Delz )
91 {
92 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
93 i f ( idx < n)
94 {
95 DelxR [ idx ] . x = −Delx [ idx ]∗U[ idx ] . y ;
96 DelxR [ idx ] . y = Delx [ idx ]∗U[ idx ] . x ;
97
98 DelyR [ idx ] . x = −Dely [ idx ]∗U[ idx ] . y ;
99 DelyR [ idx ] . y = Dely [ idx ]∗U[ idx ] . x ;

100
101 DelzR [ idx ] . x = −Delz [ idx ]∗U[ idx ] . y ;
102 DelzR [ idx ] . y = Delz [ idx ]∗U[ idx ] . x ;
103 }
104 }
105
106 g l o b a l void kern3 ( i n t n , REAL ∗Lap , REAL alpha , COMPLEX ∗expR ,

COMPLEX ∗F1U, COMPLEX ∗F2U, COMPLEX ∗F4RLapR, COMPLEX ∗F4R,
COMPLEX ∗LapR)

107 {
108 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
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109 i f ( idx < n)
110 {
111 expR [ idx ] . x = −Lap [ idx ] ∗ ( alpha∗alpha∗F2U[ idx ] . x∗Lap [ idx ] + F1U

[ idx ] . x ) ;
112 expR [ idx ] . y = −Lap [ idx ] ∗ ( alpha∗alpha∗F2U[ idx ] . y∗Lap [ idx ] + F1U

[ idx ] . y ) ;
113
114 F4RLapR [ idx ] . x = F4R[ idx ] . x∗LapR [ idx ] . x/n ;
115 F4RLapR [ idx ] . y = 0 . 0 ;
116 }
117 }
118
119 //
120 // kernE computes the FCH energy from the s o l u t i o n at the cur r ent

time
121 //
122
123 g l o b a l void kernE ( i n t n , REAL alpha , REAL eta1 , REAL eta2 ,

REAL taub , REAL taus , COMPLEX ∗LapR , COMPLEX ∗R, COMPLEX ∗DelxR
, COMPLEX ∗DelyR , COMPLEX ∗DelzR , REAL ∗Energy )

124 {
125 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
126 i f ( idx < n)
127 {
128 Energy [ idx ] = 0 . 5∗ ( alpha∗alpha∗LapR [ idx ] . x/n − (R[ idx ] . x∗R[ idx

] . x−1)∗(R[ idx ] . x+taub /2) ) ∗( alpha∗alpha∗LapR [ idx ] . x/n − (R[ idx ] .
x∗R[ idx ] . x−1)∗(R[ idx ] . x+taub /2) ) − alpha ∗0 .5∗ ( alpha∗alpha∗ eta1
∗( DelxR [ idx ] . x/n∗DelxR [ idx ] . x/n + DelyR [ idx ] . x/n∗DelyR [ idx ] . x/n
+ DelzR [ idx ] . x/n∗DelzR [ idx ] . x/n) + eta2 ∗(R[ idx ] . x+1)∗(R[ idx ] . x

+1) ∗ ( 0 . 5∗ (R[ idx ] . x−1)∗(R[ idx ] . x−1)+taus /3∗(R[ idx ] . x−2) ) ) ;
129 }
130 }
131
132 g l o b a l void kern4 ( i n t n , COMPLEX ∗F4RLapR, COMPLEX ∗F4R,

COMPLEX ∗LapR)
133 {
134 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
135 i f ( idx < n)
136 {
137 F4RLapR [ idx ] . x = F4R[ idx ] . x∗LapR [ idx ] . x/n ;
138 F4RLapR [ idx ] . y = 0 . 0 ;
139
140 }
141 }
142
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143 g l o b a l void kern5 ( i n t n , REAL ∗Lap , REAL alpha , REAL eta2 ,
REAL taub , COMPLEX ∗hr , COMPLEX ∗expR , COMPLEX ∗F3R, COMPLEX ∗
F4RLapR, COMPLEX ∗U, COMPLEX ∗F5R)

144 {
145 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
146 i f ( idx < n)
147 {
148 hr [ idx ] . x = expR [ idx ] . x − Lap [ idx ] ∗ ( alpha∗alpha∗Lap [ idx ] ∗ (

alpha∗alpha∗Lap [ idx ]∗U[ idx ] . x−F3R[ idx ] . x ) − alpha∗alpha∗F4RLapR
[ idx ] . x + (1−0.5∗ taub∗ taub+alpha∗ eta2 )∗U[ idx ] . x + F5R [ idx ] . x ) ;

149 hr [ idx ] . y = expR [ idx ] . y − Lap [ idx ] ∗ ( alpha∗alpha∗Lap [ idx ] ∗ (
alpha∗alpha∗Lap [ idx ]∗U[ idx ] . y−F3R[ idx ] . y ) − alpha∗alpha∗F4RLapR
[ idx ] . y + (1−0.5∗ taub∗ taub+alpha∗ eta2 )∗U[ idx ] . y + F5R [ idx ] . y ) ;

150 }
151 }
152
153 //
154 // warpReduce , reduce , warpReduceSum , and reduceSum p a r a l l e l i z e

the r educ t i on s nece s sa ry to c a l c u l a t e energy and change in
s o l u t i o n

155 //
156
157 d e v i c e void warpReduce ( v o l a t i l e REAL ∗ sdata , unsigned i n t t id ,

i n t b l o ckS i z e )
158 {
159 i f ( b l o ckS i z e >= 64) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 3 2 ] ) ) ;
160 i f ( b l o ckS i z e >= 32) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 1 6 ] ) ) ;
161 i f ( b l o ckS i z e >= 16) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 8 ] ) ) ;
162 i f ( b l o ckS i z e >= 8) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 4 ] ) ) ;
163 i f ( b l o ckS i z e >= 4) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 2 ] ) ) ;
164 i f ( b l o ckS i z e >= 2) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 1 ] ) ) ;
165 }
166
167 g l o b a l void reduce (COMPLEX ∗ g idata , COMPLEX ∗g odata , i n t n ,

i n t b l o ckS i z e )
168 {
169 extern s h a r e d REAL sdata [ ] ;
170 unsigned i n t t i d = threadIdx . x ;
171 unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + t i d ;
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172 unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
173 sdata [ t i d ] = 0 ;
174
175 whi l e ( i < n) { sdata [ t i d ] = max( fabs ( g i d a t a [ i ] . x ) , f abs ( g i d a t a [

i+b l o ckS i z e ] . x ) ) ; i += g r i d S i z e ; }
176 sync th r ead s ( ) ;
177
178 i f ( b l o ckS i z e >= 512) { i f ( t i d < 256) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 256 ] ) ) ; } sync th r ead s ( ) ; }
179 i f ( b l o ckS i z e >= 256) { i f ( t i d < 128) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 128 ] ) ) ; } sync th r ead s ( ) ; }
180 i f ( b l o ckS i z e >= 128) { i f ( t i d < 64) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 6 4 ] ) ) ; } sync th r ead s ( ) ; }
181 i f ( t i d < 32) warpReduce ( sdata , t id , b l o ckS i z e ) ;
182 i f ( t i d == 0) g odata [ b lockIdx . x ] . x = sdata [ 0 ] ;
183 }
184
185 d e v i c e void warpReduceSum ( v o l a t i l e REAL ∗ sdata , unsigned i n t

t id , i n t b l o ckS i z e )
186 {
187 i f ( b l o ckS i z e >= 64) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 3 2 ] ;
188 i f ( b l o ckS i z e >= 32) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 1 6 ] ;
189 i f ( b l o ckS i z e >= 16) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 8 ] ;
190 i f ( b l o ckS i z e >= 8) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 4 ] ;
191 i f ( b l o ckS i z e >= 4) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 2 ] ;
192 i f ( b l o ckS i z e >= 2) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 1 ] ;
193 }
194
195 g l o b a l void reduceSum (REAL ∗ g idata , REAL ∗g odata , i n t n , i n t

b l o ckS i z e )
196 {
197 extern s h a r e d REAL sdata [ ] ;
198 unsigned i n t t i d = threadIdx . x ;
199 unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + t i d ;
200 unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
201 sdata [ t i d ] = 0 ;
202
203 whi l e ( i < n) { sdata [ t i d ] = g i d a t a [ i ] + g i d a t a [ i+b lo ckS i z e ] ; i

+= g r i d S i z e ; }
204 sync th r ead s ( ) ;
205
206 i f ( b l o ckS i z e >= 512) { i f ( t i d < 256) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 2 5 6 ] ; } sync th r ead s ( ) ; }
207 i f ( b l o ckS i z e >= 256) { i f ( t i d < 128) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 1 2 8 ] ; } sync th r ead s ( ) ; }
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208 i f ( b l o ckS i z e >= 128) { i f ( t i d < 64) { sdata [ t i d ] = sdata [ t i d ]
+ sdata [ t i d + 6 4 ] ; } sync th r ead s ( ) ; }

209 i f ( t i d < 32) warpReduceSum ( sdata , t id , b l o ckS i z e ) ;
210 i f ( t i d == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;
211 }
212
213 g l o b a l void kern6 ( i n t n , REAL dt , COMPLEX ∗hp , REAL ∗shp ,

COMPLEX ∗expR , COMPLEX ∗U)
214 {
215 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
216 i f ( idx < n)
217 {
218 hp [ idx ] . x = 1/ dt + shp [ idx ] ;
219
220 expR [ idx ] . x = −U[ idx ] . x/dt + expR [ idx ] . x ;
221 expR [ idx ] . y = −U[ idx ] . y/dt + expR [ idx ] . y ;
222 }
223 }
224
225 g l o b a l void kern7 ( i n t n , REAL alpha , REAL eta2 , REAL taub ,

REAL taus , COMPLEX ∗R, COMPLEX ∗F3R, COMPLEX ∗F4R, COMPLEX ∗F5R
)

226 {
227 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
228 i f ( idx < n)
229 {
230 F3R [ idx ] . x = pow(R[ idx ] . x , 3 ) ;
231 F3R [ idx ] . y = 0 . 0 ;
232
233 F4R [ idx ] . x = (3∗R[ idx ] . x + taub )∗R[ idx ] . x ;
234 F4R [ idx ] . y = 0 . 0 ;
235
236 F5R [ idx ] . x = 3∗pow(R[ idx ] . x , 5 ) − 0 . 5∗ ( taub∗6 + alpha∗ eta2 ∗ taus

)∗pow(R[ idx ] . x , 2 ) ;
237 F5R [ idx ] . y = 0 . 0 ;
238 }
239 }
240
241 g l o b a l void kern8 ( i n t n , REAL dt , REAL alpha , REAL eta2 , REAL

taub , REAL ∗Lap , COMPLEX ∗change , COMPLEX ∗expR , COMPLEX ∗R,
COMPLEX ∗F3R, COMPLEX ∗F4RLapR, COMPLEX ∗F5R, COMPLEX ∗hp)

242 {
243 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
244 i f ( idx < n)
245 {
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246 change [ idx ] . x = expR [ idx ] . x + R[ idx ] . x/dt − Lap [ idx ] ∗ ( alpha∗
alpha∗Lap [ idx ] ∗ ( alpha∗alpha∗Lap [ idx ]∗R[ idx ] . x−F3R[ idx ] . x ) −
alpha∗alpha∗F4RLapR [ idx ] . x + (1−0.5∗ taub∗ taub+alpha∗ eta2 )∗R[ idx
] . x + F5R[ idx ] . x ) ;

247 change [ idx ] . y = expR [ idx ] . y + R[ idx ] . y/dt − Lap [ idx ] ∗ ( alpha∗
alpha∗Lap [ idx ] ∗ ( alpha∗alpha∗Lap [ idx ]∗R[ idx ] . y−F3R[ idx ] . y ) −
alpha∗alpha∗F4RLapR [ idx ] . y + (1−0.5∗ taub∗ taub+alpha∗ eta2 )∗R[ idx
] . y + F5R[ idx ] . y ) ;

248
249 change [ idx ] . x = −change [ idx ] . x/hp [ idx ] . x ;
250 change [ idx ] . y = −change [ idx ] . y/hp [ idx ] . x ;
251 }
252 }
253
254 g l o b a l void kern9 ( i n t n , COMPLEX ∗R, COMPLEX ∗change )
255 {
256 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
257 i f ( idx < n)
258 {
259 R[ idx ] . x = (R[ idx ] . x + change [ idx ] . x ) /n ;
260 R[ idx ] . y = 0 . 0 ;
261 }
262 }
263
264 //
265 // The node s t r u c t u r e b u i l d s a l i nked l i s t that c o l l e c t s energy

and time data
266 //
267
268 s t r u c t node
269 {
270 REAL time ;
271 REAL energy ;
272 s t r u c t node∗ next ;
273 } ;
274
275 void addNode ( s t r u c t node∗& t a i l , REAL time )
276 {
277 s t r u c t node∗ newNode = new node ;
278 newNode−>time = time ;
279 newNode−>energy = 0 . 0 ;
280 newNode−>next = NULL;
281 t a i l−>next = newNode ;
282 t a i l = newNode ;
283 }
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284
285 //
286 // This i s where the main func t i on beg ins . To make sense o f the

code , begin here .
287 //
288
289 i n t main ( i n t argc , char ∗ const argv [ ] ) {
290 i f ( argc <=1 )
291 {
292 cout << ”Usage : ” << argv [ 0 ] << ” <f i l ename> <output o f f /

i n c r e a s i n g /even (0/1/2)>” << endl ;
293 e x i t (1 ) ;
294 }
295
296 c l o c k t t i c , toc ;
297 t i c = c lo ck ( ) ;
298 //
299 // I n i t i a l i z e nece s sa ry cons tant s
300 //
301 cout . p r e c i s i o n (10) ;
302 i n t i , j , k ;
303 f s t ream myf i l e , myf i l e2 , myf i l e3 , myf i l e4 ;
304 s t r i ng s t r eam sstm ;
305 char data in [ 5 0 ] ;
306
307 REAL alpha , eta1 , eta2 , time , tmax , dt , to l , Lx , Ly , Lz , c1 , c2 ,

ct , taub , taus , evap , t p i c s t e p ;
308 i n t m, n , Nx, Ny, Nz , Mx, My, Mz, b l o c k s i z e ;
309 COMPLEX ∗max , ∗max h , ∗ r e s ;
310
311 max h = new COMPLEX;
312 r e s = new COMPLEX;
313
314 s t r u c t node∗ tEhead = NULL;
315 s t r u c t node∗ t E t a i l = NULL;
316
317 tEhead = new node ;
318 tEhead−>time = 0 . 0 ;
319 tEhead−>energy = 0 . 0 ;
320 t E t a i l = tEhead ;
321
322 s t r i n g f i l e i n , f i l eUout , f i l e t E o u t ;
323
324 //
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325 // Read in a l l the nece s sa ry data from the f i l e g iven by the
user

326 //
327
328 myf i l e3 . open ( argv [ 1 ] , i o s : : in ) ;
329
330 i f ( myf i l e3 . i s open ( ) )
331 {
332 myf i l e3 . i gno r e (512 , ’= ’ ) ;
333 myf i l e3 >> data in ;
334 f i l e i n = data in ;
335 cout << ” I n i t cond f i l e = ” << f i l e i n << endl ;
336
337 myf i l e3 . i gno r e (512 , ’= ’ ) ;
338 myf i l e3 >> data in ;
339 f i l e U o u t = data in ;
340 cout << ”Write out s o l u t i o n f i l e = ” << f i l e U o u t << ” . dat” <<

endl ;
341
342 myf i l e3 . i gno r e (512 , ’= ’ ) ;
343 myf i l e3 >> data in ;
344 f i l e t E o u t = data in ;
345 cout << ”Write out time and energy f i l e = ” << f i l e t E o u t << ” .

dat” << endl ;
346
347 myf i l e3 . i gno r e (512 , ’= ’ ) ;
348 myf i l e3 >> data in ;
349 alpha = a t o f ( data in ) ;
350 cout << ” alpha = ” << alpha << endl ;
351
352 myf i l e3 . i gno r e (512 , ’= ’ ) ;
353 myf i l e3 >> data in ;
354 taub = a t o f ( data in ) ;
355 cout << ”taub = ” << taub << endl ;
356
357 myf i l e3 . i gno r e (512 , ’= ’ ) ;
358 myf i l e3 >> data in ;
359 taus = a t o f ( data in ) ;
360 cout << ” taus = ” << taus << endl ;
361
362 myf i l e3 . i gno r e (512 , ’= ’ ) ;
363 myf i l e3 >> data in ;
364 eta1 = a t o f ( data in ) ;
365 cout << ” eta1 = ” << eta1 << endl ;
366

161



367 myf i l e3 . i gno r e (512 , ’= ’ ) ;
368 myf i l e3 >> data in ;
369 eta2 = a t o f ( data in ) ;
370 cout << ” eta2 = ” << eta2 << endl ;
371
372 myf i l e3 . i gno r e (512 , ’= ’ ) ;
373 myf i l e3 >> data in ;
374 evap = a t o f ( data in ) ;
375 cout << ”evap = ” << evap << endl ;
376
377 myf i l e3 . i gno r e (512 , ’= ’ ) ;
378 myf i l e3 >> data in ;
379 tmax = a t o f ( data in ) ;
380 cout << ”tmax = ” << tmax << endl ;
381
382 myf i l e3 . i gno r e (512 , ’= ’ ) ;
383 myf i l e3 >> data in ;
384 dt = a t o f ( data in ) ;
385 cout << ”dt = ” << dt << endl ;
386
387 myf i l e3 . i gno r e (512 , ’= ’ ) ;
388 myf i l e3 >> data in ;
389 t p i c s t e p = a t o f ( data in ) ;
390 cout << ” t p i c s t e p = ” << t p i c s t e p << endl ;
391
392 myf i l e3 . i gno r e (512 , ’= ’ ) ;
393 myf i l e3 >> data in ;
394 Nx = a t o i ( data in ) ;
395 cout << ”Nx = ” << Nx << endl ;
396
397 myf i l e3 . i gno r e (512 , ’= ’ ) ;
398 myf i l e3 >> data in ;
399 Ny = a t o i ( data in ) ;
400 cout << ”Ny = ” << Ny << endl ;
401
402 myf i l e3 . i gno r e (512 , ’= ’ ) ;
403 myf i l e3 >> data in ;
404 Nz = a t o i ( data in ) ;
405 cout << ”Nz = ” << Nz << endl ;
406
407 myf i l e3 . i gno r e (512 , ’= ’ ) ;
408 myf i l e3 >> data in ;
409 Lx = a t o f ( data in ) ;
410 cout << ”Lx = ” << Lx << endl ;
411
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412 myf i l e3 . i gno r e (512 , ’= ’ ) ;
413 myf i l e3 >> data in ;
414 Ly = a t o f ( data in ) ;
415 cout << ”Ly = ” << Ly << endl ;
416
417 myf i l e3 . i gno r e (512 , ’= ’ ) ;
418 myf i l e3 >> data in ;
419 Lz = a t o f ( data in ) ;
420 cout << ”Lz = ” << Lz << endl ;
421
422 myf i l e3 . i gno r e (512 , ’= ’ ) ;
423 myf i l e3 >> data in ;
424 c1 = a t o f ( data in ) ;
425 cout << ”c1 = ” << c1 << endl ;
426
427 myf i l e3 . i gno r e (512 , ’= ’ ) ;
428 myf i l e3 >> data in ;
429 c2 = a t o f ( data in ) ;
430 cout << ”c2 = ” << c2 << endl ;
431
432 myf i l e3 . i gno r e (512 , ’= ’ ) ;
433 myf i l e3 >> data in ;
434 ct = a t o f ( data in ) ;
435 cout << ” ct = ” << ct << endl ;
436
437 myf i l e3 . i gno r e (512 , ’= ’ ) ;
438 myf i l e3 >> data in ;
439 t o l = a t o f ( data in ) ;
440 cout << ” t o l = ” << t o l << endl ;
441
442 myf i l e3 . i gno r e (512 , ’= ’ ) ;
443 myf i l e3 >> data in ;
444 b l o c k s i z e = a t o i ( data in ) ;
445 cout << ” Block s i z e = ” << b l o c k s i z e << endl ;
446 cout << ”Grid s i z e = ” << Nx∗Ny∗Nz/ b l o c k s i z e << endl ;
447 }
448 e l s e { cout << ” F i l e could not be read . ” << endl ; }
449
450 time = 0 . 0 ;
451 REAL tPic = 1 . 0 ;
452
453 i f (∗ argv [ 2 ] == ’ 2 ’ ) { tPic = t p i c s t e p ;}
454
455 Mx = Nx/2 ;
456 My = Ny/2 ;
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457 Mz = Nz/2 ;
458 n = Nx∗Ny∗Nz ;
459 dim3 dimBlock ( b l o c k s i z e ) ;
460 dim3 dimGrid (n/dimBlock . x ) ;
461
462 //
463 // Build the l a p l a c i a n array , and dynamical ly a l l o c a t e other

needed ar rays
464 //
465
466 REAL ∗xkvec , ∗ykvec , ∗ zkvec ;
467 xkvec = new REAL[Nx ] ;
468 ykvec = new REAL[Ny ] ;
469 zkvec = new REAL[ Nz ] ;
470
471 f o r ( i =0; i<Mx; i++)
472 {
473 xkvec [ i ] = i ∗PI/Lx ;
474 xkvec [ i+Mx] = ( i−Mx)∗PI/Lx ;
475 }
476
477 f o r ( i =0; i<My; i++)
478 {
479 ykvec [ i ] = i ∗PI/Ly ;
480 ykvec [ i+My] = ( i−My)∗PI/Ly ;
481 }
482
483 f o r ( i =0; i<Mz; i++)
484 {
485 zkvec [ i ] = i ∗PI/Lz ;
486 zkvec [ i+Mz] = ( i−Mz)∗PI/Lz ;
487 }
488
489 REAL ∗Lap h , ∗Lap , ∗shp , ∗Energy , ∗Energy h ;
490 REAL ∗Delx h , ∗Dely h , ∗Delz h , ∗Delx , ∗Dely , ∗Delz ;
491 Energy h = new REAL;
492 Lap h = new REAL[ n ] ;
493 Delx h = new REAL[ n ] ;
494 Dely h = new REAL[ n ] ;
495 Delz h = new REAL[ n ] ;
496
497 f o r ( i =0; i<Nx; i++) {
498 f o r ( j =0; j<Ny; j++) {
499 f o r ( k=0; k<Nz ; k++)
500 {
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501 Lap h [ k+Nz∗( j+Ny∗ i ) ] = −(xkvec [ i ]∗ xkvec [ i ]+ykvec [ j ]∗ ykvec [
j ]+ zkvec [ k ]∗ zkvec [ k ] ) ;

502 Delx h [ k+Nz∗( j+Ny∗ i ) ] = xkvec [ i ] ;
503 Dely h [ k+Nz∗( j+Ny∗ i ) ] = ykvec [ j ] ;
504 Delz h [ k+Nz∗( j+Ny∗ i ) ] = zkvec [ k ] ;
505 }
506 }
507 }
508
509 cout << ”Lap b u i l t ” << endl ;
510
511 i n t nBytes = s i z e o f (COMPLEX)∗n ;
512 cout << ”nBytes i s = ” << nBytes << endl ;
513 COMPLEX ∗U h , ∗U, ∗R, ∗F1U, ∗F2U, ∗F3R, ∗F4R, ∗F5R, ∗LapR , ∗

DelxR , ∗DelyR , ∗DelzR , ∗expR , ∗F4RLapR, ∗hr , ∗hp , ∗change ;
514 U h = new COMPLEX[ nBytes ] ;
515
516 //
517 // Read in i n i t i a l U data from f i l e i n
518 //
519
520 myf i l e . open ( f i l e i n . c s t r ( ) , i o s : : in ) ;
521
522 i f ( my f i l e . i s open ( ) )
523 {
524 f o r ( i =0; i<n ; i++)
525 {
526 myf i l e . g e t l i n e ( datain , 50) ;
527 U h [ i ] . x = a t o f ( data in ) ;
528 U h [ i ] . y = 0 . 0 ;
529 }
530 cout << ” I n i t i a l data read in s u c c e s s f u l l y ” << endl ;
531 } e l s e { cout << ” I n i t i a l data not read ” << endl ; }
532
533 myf i l e . c l o s e ( ) ;
534
535 //
536 // A l l o ca t e memory on the GPU and s e t up space f o r the Four i e r

t rans forms
537 //
538
539 cudaMalloc ( ( void ∗∗)&Lap , s i z e o f (REAL)∗n) ;
540 cudaMalloc ( ( void ∗∗)&Delx , s i z e o f (REAL)∗n) ;
541 cudaMalloc ( ( void ∗∗)&Dely , s i z e o f (REAL)∗n) ;
542 cudaMalloc ( ( void ∗∗)&Delz , s i z e o f (REAL)∗n) ;
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543 cudaMalloc ( ( void ∗∗)&max , s i z e o f (COMPLEX)∗dimGrid . x/2) ;
544
545 cudaMalloc ( ( void ∗∗)&shp , s i z e o f (REAL)∗n) ;
546 cudaMalloc ( ( void ∗∗)&Energy , s i z e o f (REAL)∗n) ;
547 cudaMalloc ( ( void ∗∗)&U, nBytes ) ;
548 cudaMalloc ( ( void ∗∗)&R, nBytes ) ;
549 cudaMalloc ( ( void ∗∗)&F1U, nBytes ) ;
550 cudaMalloc ( ( void ∗∗)&F2U, nBytes ) ;
551 cudaMalloc ( ( void ∗∗)&F3R, nBytes ) ;
552 cudaMalloc ( ( void ∗∗)&F4R, nBytes ) ;
553 cudaMalloc ( ( void ∗∗)&F5R, nBytes ) ;
554 cudaMalloc ( ( void ∗∗)&LapR , nBytes ) ;
555 cudaMalloc ( ( void ∗∗)&DelxR , nBytes ) ;
556 cudaMalloc ( ( void ∗∗)&DelyR , nBytes ) ;
557 cudaMalloc ( ( void ∗∗)&DelzR , nBytes ) ;
558 cudaMalloc ( ( void ∗∗)&expR , nBytes ) ;
559 cudaMalloc ( ( void ∗∗)&F4RLapR, nBytes ) ;
560 cudaMalloc ( ( void ∗∗)&hr , nBytes ) ;
561 cudaMalloc ( ( void ∗∗)&hp , nBytes ) ;
562 cudaMalloc ( ( void ∗∗)&change , nBytes ) ;
563 cout << ” Device memory a l l o c a t e d ” << endl ;
564
565 cudaMemcpy(Lap , Lap h , s i z e o f (REAL)∗n , cudaMemcpyHostToDevice ) ;
566 cudaMemcpy( Delx , Delx h , s i z e o f (REAL)∗n , cudaMemcpyHostToDevice )

;
567 cudaMemcpy( Dely , Dely h , s i z e o f (REAL)∗n , cudaMemcpyHostToDevice )

;
568 cudaMemcpy( Delz , Delz h , s i z e o f (REAL)∗n , cudaMemcpyHostToDevice )

;
569 cudaMemcpy(R, U h , nBytes , cudaMemcpyHostToDevice ) ;
570 cout << ” I n i t i a l data copied ” << endl ;
571
572 cu f f tHand le plan ;
573 cu f f tP lan3d (&plan , Nx, Ny, Nz , TYPE) ;
574
575 bui ld shp<<< dimGrid , dimBlock>>>(shp , Lap , n , alpha , eta2 , taub

, c1 , c2 ) ;
576
577 kern0<<< dimGrid , dimBlock>>>(n , U, R, 0 , 0) ;
578
579 sstm << f i l e t E o u t << ” . dat” ;
580 myf i l e4 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
581 myf i l e4 . p r e c i s i o n (14) ;
582 sstm . s t r ( ”” ) ;
583
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584 //
585 // whi l e loop governing time stepp ing
586 //
587 whi l e ( time < tmax)
588 {
589 //
590 // Compute the e x p l i c i t por t i on o f the r i g h t hand s i d e
591 //
592 r e s [ 0 ] . x = 1 0 0 0 . 0 ;
593
594 kern1<<< dimGrid , dimBlock>>>(n , alpha , eta1 , eta2 , taub , taus

, R, F1U, F2U, F3R, F4R, F5R) ;
595
596 EXEC( plan , U, U, CUFFT FORWARD) ;
597
598 kern2<<< dimGrid , dimBlock>>>(n , U, LapR , Lap) ;
599
600 kernDel<<< dimGrid , dimBlock>>>(n , U, DelxR , Delx , DelyR , Dely

, DelzR , Delz ) ;
601
602 EXEC( plan , F1U, F1U, CUFFT FORWARD) ;
603 EXEC( plan , F2U, F2U, CUFFT FORWARD) ;
604 EXEC( plan , LapR , LapR , CUFFT INVERSE) ;
605 EXEC( plan , DelxR , DelxR , CUFFT INVERSE) ;
606 EXEC( plan , DelyR , DelyR , CUFFT INVERSE) ;
607 EXEC( plan , DelzR , DelzR , CUFFT INVERSE) ;
608
609 kern3<<< dimGrid , dimBlock>>>(n , Lap , alpha , expR , F1U, F2U,

F4RLapR, F4R, LapR) ;
610
611 //
612 // Compute the energy o f the s o l u t i o n from the prev ious time

step
613 //
614
615 kernE<<< dimGrid , dimBlock>>>(n , alpha , eta1 , eta2 , taub , taus

, LapR , R, DelxR , DelyR , DelzR , Energy ) ;
616 cudaMemcpy( Energy h , Energy , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
617
618 reduceSum<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(

Energy , Energy , n , b l o c k s i z e ) ;
619 cudaMemcpy( Energy h , Energy , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
620 m = n/( b l o c k s i z e ∗2) ;
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621 whi l e (m > 1)
622 {
623 reduceSum<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(

Energy , Energy , m, b l o c k s i z e ) ;
624 m = m/( b l o c k s i z e ∗2) ;
625 }
626
627 cudaMemcpy( Energy h , Energy , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
628 tEta i l−>energy = ∗Energy h ;
629 myf i l e4 << tEta i l−>time << ”\ t ” << tEta i l−>energy << endl ;
630
631 //
632 // Compute the d i f f e r e n c e between the e x p l i c i t s tep and the

prev ious time step to approximate the adapt ive time stepp ing .
633 //
634 EXEC( plan , F3R, F3R, CUFFT FORWARD) ;
635 EXEC( plan , F4RLapR, F4RLapR, CUFFT FORWARD) ;
636 EXEC( plan , F5R, F5R, CUFFT FORWARD) ;
637
638 kern5<<< dimGrid , dimBlock>>>(n , Lap , alpha , eta2 , taub , hr ,

expR , F3R, F4RLapR, U, F5R) ;
639
640 EXEC( plan , hr , hr , CUFFT INVERSE) ;
641
642 reduce<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(hr , max

, n , b l o c k s i z e ) ;
643 m = n/( b l o c k s i z e ∗2) ;
644 whi l e (m > 1)
645 {
646 reduce<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(max ,

max , m, b l o c k s i z e ) ;
647 m = m/( b l o c k s i z e ∗2) ;
648 }
649
650 cudaMemcpy(max h , max , s i z e o f (REAL) , cudaMemcpyDeviceToHost ) ;
651 max h [ 0 ] . x = max h [ 0 ] . x / n ;
652 dt = ct /max h [ 0 ] . x ;
653
654 //
655 // Adjust the t imestep i f nece s sa ry
656 //
657 i f ( dt < 0 .000001)
658 {
659 dt = 0 .000001 ;
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660 }
661
662 i f ( dt > ( tmax − time ) )
663 {
664 dt = tmax − time ;
665 }
666
667 i f ( dt > ( tPic − time ) && ∗argv [ 2 ] != ’ 0 ’ )
668 {
669 dt = tPic − time ;
670 }
671
672 kern6<<< dimGrid , dimBlock>>>(n , dt , hp , shp , expR , U) ;
673
674 //
675 // This loop i t e r a t e s u n t i l the non l i n ea r part i s with in

t o l e r a n c e o f the s o l u t i o n
676 //
677 whi l e ( r e s [ 0 ] . x > t o l )
678 {
679 kern7<<< dimGrid , dimBlock>>>(n , alpha , eta2 , taub , taus , R,

F3R, F4R, F5R) ;
680
681 EXEC( plan , R, R, CUFFT FORWARD) ;
682
683 kern2<<< dimGrid , dimBlock>>>(n , R, LapR , Lap) ;
684
685 EXEC( plan , LapR , LapR , CUFFT INVERSE) ;
686
687 kern4<<< dimGrid , dimBlock>>>(n , F4RLapR, F4R, LapR) ;
688
689 EXEC( plan , F3R, F3R, CUFFT FORWARD) ;
690 EXEC( plan , F4RLapR, F4RLapR, CUFFT FORWARD) ;
691 EXEC( plan , F5R, F5R, CUFFT FORWARD) ;
692
693 kern8<<< dimGrid , dimBlock>>>(n , dt , alpha , eta2 , taub , Lap ,

change , expR , R, F3R, F4RLapR, F5R, hp) ;
694
695 EXEC( plan , change , change , CUFFT INVERSE) ;
696
697 reduce<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(

change , max , n , b l o c k s i z e ) ;
698 m = n/( b l o c k s i z e ∗2) ;
699 whi l e (m > 1)
700 {
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701 reduce<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(max
, max , m, b l o c k s i z e ) ;

702 m = m/( b l o c k s i z e ∗2) ;
703 }
704
705 cudaMemcpy( res , max , s i z e o f (REAL) , cudaMemcpyDeviceToHost ) ;
706 r e s [ 0 ] . x = r e s [ 0 ] . x / (REAL) n ;
707
708 EXEC( plan , R, R, CUFFT INVERSE) ;
709
710 kern9<<< dimGrid , dimBlock>>>(n , R, change ) ;
711 }
712
713 //
714 // Update time and update U to be the s o l u t i o n at the next

time step
715 // Write out s o l u t i o n to hard d i sk i f r equ i r ed
716 //
717 kern0<<< dimGrid , dimBlock>>>(n , U, R, evap , dt ) ;
718
719 time = time + dt ;
720
721 i f ( time == tPic && ∗argv [ 2 ] != ’ 0 ’ )
722 {
723 cudaMemcpy(U h , U, nBytes , cudaMemcpyDeviceToHost ) ;
724 sstm << f i l e U o u t << ( i n t ) tPic << ” . dat” ;
725 myf i l e2 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
726 myf i l e2 . p r e c i s i o n (14) ;
727 i f ( myf i l e2 . i s open ( ) )
728 {
729
730 f o r ( i =0; i<n ; i++)
731 {
732 myf i l e2 << U h [ i ] . x << endl ;
733 }
734
735 }
736 cout << ” Writing out ” << sstm . s t r ( ) << endl ;
737 myf i l e2 . c l o s e ( ) ;
738 sstm . s t r ( ”” ) ;
739
740 i f (∗ argv [ 2 ] == ’ 1 ’ )
741 {
742 tPic += pow ( (REAL) 1 0 . 0 , (REAL) c e i l ( log10 ( tPic +1) )−1) ;
743 }
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744 e l s e
745 {
746 tPic += t p i c s t e p ;
747 }
748 }
749
750 cout << time << ”\ t ” << dt << ”\ t ” << tEta i l−>energy << endl ;
751 addNode ( tEta i l , time ) ;
752 }
753
754 //
755 // Write f i n a l s o l u t i o n to hard d i sk and compute i t s energy
756 //
757 cudaMemcpy(U h , U, nBytes , cudaMemcpyDeviceToHost ) ;
758
759 EXEC( plan , R, R, CUFFT FORWARD) ;
760
761 kern2<<< dimGrid , dimBlock>>>(n , R, LapR , Lap) ;
762
763 kernDel<<< dimGrid , dimBlock>>>(n , R, DelxR , Delx , DelyR , Dely ,

DelzR , Delz ) ;
764
765 EXEC( plan , LapR , LapR , CUFFT INVERSE) ;
766 EXEC( plan , DelxR , DelxR , CUFFT INVERSE) ;
767 EXEC( plan , DelyR , DelyR , CUFFT INVERSE) ;
768 EXEC( plan , DelzR , DelzR , CUFFT INVERSE) ;
769
770 kernE<<< dimGrid , dimBlock>>>(n , alpha , eta1 , eta2 , taub , taus ,

LapR , U, DelxR , DelyR , DelzR , Energy ) ;
771
772 reduceSum<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(Energy

, Energy , n , b l o c k s i z e ) ;
773 m = n/( b l o c k s i z e ∗2) ;
774 whi l e (m > 1)
775 {
776 reduceSum<<< dimGrid , dimBlock , b l o c k s i z e ∗ s i z e o f (REAL)>>>(

Energy , Energy , m, b l o c k s i z e ) ;
777 m = m/( b l o c k s i z e ∗2) ;
778 }
779
780 cudaMemcpy( Energy h , Energy , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
781 tEta i l−>energy = ∗Energy h ;
782
783 myf i l e4 << tEta i l−>time << ”\ t ” << tEta i l−>energy << endl ;
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784 myf i l e4 . c l o s e ( ) ;
785
786 sstm << f i l e U o u t << ( i n t ) tmax << ” . dat” ;
787 myf i l e2 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
788 myf i l e2 . p r e c i s i o n (14) ;
789 i f ( myf i l e2 . i s open ( ) )
790 {
791
792 f o r ( i =0; i<n ; i++)
793 {
794 myf i l e2 << U h [ i ] . x << endl ;
795 }
796
797 }
798 cout << ” Writing out ” << sstm . s t r ( ) << endl ;
799 myf i l e2 . c l o s e ( ) ;
800 sstm . s t r ( ”” ) ;
801
802 whi l e ( tEhead != NULL)
803 {
804 t E t a i l = tEhead ;
805 tEhead = tEhead−>next ;
806 d e l e t e t E t a i l ;
807 }
808
809 //
810 // Perform c l ean up o f memory used
811 //
812
813 f r e e (U h) ;
814 f r e e ( max h ) ;
815 f r e e ( Energy h ) ;
816 f r e e ( r e s ) ;
817
818 cudaFree (Lap) ;
819 cudaFree ( Delx ) ;
820 cudaFree ( Dely ) ;
821 cudaFree ( Delz ) ;
822 cudaFree (max) ;
823 cudaFree ( Energy ) ;
824 cudaFree ( shp ) ;
825 cudaFree (U) ;
826 cudaFree (R) ;
827 cudaFree (F1U) ;
828 cudaFree (F2U) ;
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829 cudaFree (F3R) ;
830 cudaFree (F4R) ;
831 cudaFree (F5R) ;
832 cudaFree (LapR) ;
833 cudaFree ( DelxR ) ;
834 cudaFree ( DelyR ) ;
835 cudaFree ( DelzR ) ;
836 cudaFree ( expR) ;
837 cudaFree (F4RLapR) ;
838 cudaFree ( hr ) ;
839 cudaFree (hp) ;
840 cudaFree ( change ) ;
841
842 d e l e t e [ ] xkvec ;
843 d e l e t e [ ] ykvec ;
844 d e l e t e [ ] zkvec ;
845 d e l e t e [ ] Lap h ;
846 d e l e t e [ ] Delx h ;
847 d e l e t e [ ] Dely h ;
848 d e l e t e [ ] Delz h ;
849
850 toc = c lock ( ) − t i c ;
851 cout << ”\n” << toc / ( ( double ) CLOCKS PER SEC) << endl ;
852
853 re turn 0 ;
854 }

./code/spe6NL3Dcuda6.cu
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Appendix B: Fully Implicit Code in
CUDA

1 //
2 // FCHImp. cu
3 //
4 // This code was wr i t t en by Jaylan Jones to approximate s o l u t i o n s

to the
5 // Funct i ona l i z ed Cahn−H i l l i a r d Equation us ing the f u l l y i m p l i c i t

scheme .
6 //
7
8 #inc lude <iostream>
9 #inc lude <f stream>

10 #inc lude <sstream>
11 #inc lude <cuda . h>
12 #inc lude <c u f f t . h>
13 #inc lude <time . h>
14
15 #d e f i n e PI 3.141592653589
16 #d e f i n e REAL double
17 #d e f i n e COMPLEX cufftDoubleComplex
18 #d e f i n e TYPE CUFFT Z2Z
19 #d e f i n e EXEC cufftExecZ2Z
20
21 us ing namespace std ;
22
23 //
24 // Build data s t r u c t u r e s nece s sa ry to pass in to k e r n e l s
25 //
26
27 s t r u c t dataBin {
28 i n t n , l , m, mtotal , CGsteps , Nsteps , b l o c k s i z e ;
29 REAL dt , eps i l on , eta1 , eta2 , tau , to l , maxR, ∗Energy h ;
30 dim3 dimBlock , dimGrid ;
31 COMPLEX ∗max h ;

174



32 } ;
33
34 s t r u c t operBin {
35 REAL ∗Lap , ∗Q;
36 } ;
37
38 i n t i ;
39
40 //
41 // This s e r i e s o f k e r n e l s compartmental izes the c a l c u l a t i o n in to

p e i c e s that do not depend s e r i a l l y on data .
42 // The k e r n e l s are c a l l e d i n t the main func t i on below .
43 //
44
45 //
46 // kernE1 and kernE2 are c a l l e d in the FCHenergy func t i on that

c a l c u l a t e s the FCH energy o f the s o l u t i o n
47 //
48
49 g l o b a l void kernE1 ( i n t n , COMPLEX ∗U, REAL ∗Lap , REAL ∗Delx ,

REAL ∗Dely , REAL ∗Delz , COMPLEX ∗LapU , COMPLEX ∗DelxU , COMPLEX
∗DelyU , COMPLEX ∗DelzU )

50 {
51 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
52 i f ( idx < n)
53 {
54 U[ idx ] . x = U[ idx ] . x/n ;
55 U[ idx ] . y = U[ idx ] . y/n ;
56
57 LapU [ idx ] . x = Lap [ idx ]∗U[ idx ] . x ;
58 LapU [ idx ] . y = Lap [ idx ]∗U[ idx ] . y ;
59
60 DelxU [ idx ] . x = −Delx [ idx ]∗U[ idx ] . y ;
61 DelxU [ idx ] . y = Delx [ idx ]∗U[ idx ] . x ;
62
63 DelyU [ idx ] . x = −Dely [ idx ]∗U[ idx ] . y ;
64 DelyU [ idx ] . y = Dely [ idx ]∗U[ idx ] . x ;
65
66 DelzU [ idx ] . x = −Delz [ idx ]∗U[ idx ] . y ;
67 DelzU [ idx ] . y = Delz [ idx ]∗U[ idx ] . x ;
68
69 }
70 }
71
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72 g l o b a l void kernE2 ( i n t n , REAL eps i l on , REAL eta1 , REAL eta2 ,
REAL tau , REAL ∗Energy , COMPLEX ∗U, COMPLEX ∗LapU , COMPLEX ∗
DelxU , COMPLEX ∗DelyU , COMPLEX ∗DelzU )

73 {
74 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
75 i f ( idx < n)
76 {
77 Energy [ idx ] = 0 . 5∗ ( e p s i l o n ∗ e p s i l o n ∗LapU [ idx ] . x−(U[ idx ] . x∗U[ idx

] . x−1)∗(U[ idx ] . x+tau /2) ) ∗( e p s i l o n ∗ e p s i l o n ∗LapU [ idx ] . x−(U[ idx ] . x
∗U[ idx ] . x−1)∗(U[ idx ] . x+tau /2) )−e p s i l o n ∗( eta1 ∗ e p s i l o n ∗ e p s i l o n
/2∗( DelxU [ idx ] . x∗DelxU [ idx ] . x + DelyU [ idx ] . x∗DelyU [ idx ] . x +
DelzU [ idx ] . x∗DelzU [ idx ] . x ) + eta2 ∗0 .5∗ (U[ idx ] . x+1)∗(U[ idx ] . x+1)
∗ ( 0 . 5∗ (U[ idx ] . x−1)∗(U[ idx ] . x−1)+tau /3∗(U[ idx ] . x−2) ) ) ;

78 }
79 }
80
81 //
82 // kernRes1 , kernRes2 , kernRes3 , and kernRes4 are c a l l e d in the

r e s i d u a l f unc t i on that c a l c u l a t e s the r e s i d u a l f o r the
conjugate g rad i en t i t e r a t i o n s

83 //
84
85 g l o b a l void kernRes1 ( i n t n , COMPLEX ∗W, COMPLEX ∗T1 , REAL ∗Lap

)
86 {
87 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
88 i f ( idx < n)
89 {
90 W[ idx ] . x = W[ idx ] . x/n ;
91 W[ idx ] . y = W[ idx ] . y/n ;
92
93 T1 [ idx ] . x = Lap [ idx ]∗W[ idx ] . x ;
94 T1 [ idx ] . y = Lap [ idx ]∗W[ idx ] . y ;
95 }
96 }
97
98 g l o b a l void kernRes2 ( i n t n , REAL dt , REAL eps i l on , REAL eta1 ,

REAL eta2 , REAL tau , COMPLEX ∗W, COMPLEX ∗R, COMPLEX ∗T1)
99 {

100 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
101 i f ( idx < n)
102 {
103 T1 [ idx ] . x = e p s i l o n ∗ e p s i l o n ∗T1 [ idx ] . x − (W[ idx ] . x∗W[ idx ] . x−1)

∗(W[ idx ] . x+tau /2) ;
104 T1 [ idx ] . y = 0 . 0 ;
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105
106 R[ idx ] . x = −(3∗W[ idx ] . x∗W[ idx ] . x + tau∗W[ idx ] . x − 1 − e p s i l o n ∗

eta1 )∗T1 [ idx ] . x + e p s i l o n ∗( eta1−eta2 ) ∗(W[ idx ] . x∗W[ idx ] . x−1)∗(W[
idx ] . x+tau /2) ;

107 R[ idx ] . y = 0 . 0 ;
108 }
109 }
110
111 g l o b a l void kernRes3 ( i n t n , REAL dt , REAL eps i l on , COMPLEX ∗R,

COMPLEX ∗T1 , REAL ∗Lap)
112 {
113 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
114 i f ( idx < n)
115 {
116 R[ idx ] . x = dt∗Lap [ idx ] ∗ ( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ]∗T1 [ idx ] . x + R

[ idx ] . x ) ;
117 R[ idx ] . y = dt∗Lap [ idx ] ∗ ( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ]∗T1 [ idx ] . y + R

[ idx ] . y ) ;
118 }
119 }
120
121 g l o b a l void kernRes4 ( i n t n , COMPLEX ∗W, COMPLEX ∗U, COMPLEX ∗R

)
122 {
123 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
124 i f ( idx < n)
125 {
126 R[ idx ] . x = − W[ idx ] . x + U[ idx ] . x + R[ idx ] . x/n ;
127 R[ idx ] . y = 0 . 0 ;
128 }
129 }
130
131 //
132 // kernHm1 and kernHm2 are used to compute the Hˆ{−1} i nne r

product in the Hm1InnerProd func t i on
133 //
134
135 g l o b a l void kernHm1( i n t n , REAL ∗Lap , COMPLEX ∗Vhat , COMPLEX ∗

innerProd )
136 {
137 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
138 i f ( idx < n && idx != 0)
139 {
140 innerProd [ idx ] . x = Vhat [ idx ] . x/Lap [ idx ] ;
141 innerProd [ idx ] . y = Vhat [ idx ] . y/Lap [ idx ] ;
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142 }
143 e l s e i f ( idx == 0)
144 {
145 innerProd [ idx ] . x = 0 . 0 ;
146 innerProd [ idx ] . y = 0 . 0 ;
147 }
148 }
149
150 g l o b a l void kernHm2( i n t n , REAL ∗Energy , COMPLEX ∗U, COMPLEX ∗

innerProd )
151 {
152 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
153 i f ( idx < n)
154 {
155 Energy [ idx ] = U[ idx ] . x∗ innerProd [ idx ] . x/n ;
156 }
157 }
158
159 //
160 // kernCG1 through kernCG7 are c a l l e d in the conjGrad func t i on
161 //
162
163 g l o b a l void kernCG1 ( i n t n , REAL dt , REAL ∗Q, COMPLEX ∗Zhat ,

COMPLEX ∗R, COMPLEX ∗Phat , COMPLEX ∗Vhat )
164 {
165 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
166 i f ( idx < n)
167 {
168 Zhat [ idx ] . x = R[ idx ] . x/(1+dt∗Q[ idx ] ) ;
169 Zhat [ idx ] . y = R[ idx ] . y/(1+dt∗Q[ idx ] ) ;
170
171 Phat [ idx ] . x = Zhat [ idx ] . x ;
172 Phat [ idx ] . y = Zhat [ idx ] . y ;
173
174 Vhat [ idx ] . x = 0 . 0 ;
175 Vhat [ idx ] . y = 0 . 0 ;
176
177 R[ idx ] . x = R[ idx ] . x/n ;
178 R[ idx ] . y = R[ idx ] . y/n ;
179 }
180 }
181
182 g l o b a l void kernCG2 ( i n t n , COMPLEX ∗Phat , COMPLEX ∗T1 , COMPLEX

∗W, COMPLEX ∗LapU , REAL ∗Lap)
183 {
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184 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
185 i f ( idx < n)
186 {
187 Phat [ idx ] . x = Phat [ idx ] . x/n ;
188 Phat [ idx ] . y = Phat [ idx ] . y/n ;
189
190 T1 [ idx ] . x = Lap [ idx ]∗Phat [ idx ] . x ;
191 T1 [ idx ] . y = Lap [ idx ]∗Phat [ idx ] . y ;
192
193 W[ idx ] . x = W[ idx ] . x/n ;
194 W[ idx ] . y = W[ idx ] . y/n ;
195
196 LapU [ idx ] . x = Lap [ idx ]∗W[ idx ] . x ;
197 LapU [ idx ] . y = Lap [ idx ]∗W[ idx ] . y ;
198 }
199 }
200
201 g l o b a l void kernCG3 ( i n t n , REAL dt , REAL eps i l on , REAL eta1 ,

REAL eta2 , REAL tau , REAL ∗Lap , COMPLEX ∗T1 , COMPLEX ∗W,
COMPLEX ∗Phat , COMPLEX ∗JP , COMPLEX ∗LapU)

202 {
203 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
204 i f ( idx < n)
205 {
206 T1 [ idx ] . x = e p s i l o n ∗ e p s i l o n ∗T1 [ idx ] . x − (3∗W[ idx ] . x∗W[ idx ] . x +

tau∗W[ idx ] . x − 1)∗Phat [ idx ] . x ;
207 T1 [ idx ] . y = 0 . 0 ;
208
209 JP [ idx ] . x = −(6∗W[ idx ] . x + tau )∗Phat [ idx ] . x∗( e p s i l o n ∗ e p s i l o n ∗

LapU [ idx ] . x − (W[ idx ] . x∗W[ idx ] . x−1)∗(W[ idx ] . x+tau /2) ) − (3∗W[
idx ] . x∗W[ idx ] . x + tau∗W[ idx ] . x − 1 − e p s i l o n ∗ eta1 )∗T1 [ idx ] . x +
e p s i l o n ∗( eta1−eta2 ) ∗(3∗W[ idx ] . x∗W[ idx ] . x + tau∗W[ idx ] . x − 1)∗
Phat [ idx ] . x ;

210 JP [ idx ] . y = 0 . 0 ;
211 }
212 }
213
214 g l o b a l void kernCG4 ( i n t n , REAL dt , REAL eps i l on , COMPLEX ∗JP ,

COMPLEX ∗Phat , COMPLEX ∗T1 , REAL ∗Lap)
215 {
216 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
217 i f ( idx < n)
218 {
219 JP [ idx ] . x = ( Phat [ idx ] . x − dt∗Lap [ idx ] ∗ ( e p s i l o n ∗ e p s i l o n ∗Lap [

idx ]∗T1 [ idx ] . x + JP [ idx ] . x ) ) /n ;
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220 JP [ idx ] . y = ( Phat [ idx ] . y − dt∗Lap [ idx ] ∗ ( e p s i l o n ∗ e p s i l o n ∗Lap [
idx ]∗T1 [ idx ] . y + JP [ idx ] . y ) ) /n ;

221 }
222 }
223
224 g l o b a l void kernCG5 ( i n t n , REAL alpha , COMPLEX ∗Vhat , COMPLEX

∗Phat , COMPLEX ∗R, COMPLEX ∗JP)
225 {
226 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
227 i f ( idx < n)
228 {
229 Vhat [ idx ] . x = Vhat [ idx ] . x + alpha∗Phat [ idx ] . x ;
230 Vhat [ idx ] . y = Vhat [ idx ] . y + alpha∗Phat [ idx ] . y ;
231
232 R[ idx ] . x = R[ idx ] . x − alpha∗JP [ idx ] . x ;
233 R[ idx ] . y = 0 . 0 ;
234 }
235 }
236
237 g l o b a l void kernCG6 ( i n t n , REAL dt , REAL ∗Q, COMPLEX ∗Zhat ,

COMPLEX ∗R)
238 {
239 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
240 i f ( idx < n)
241 {
242 Zhat [ idx ] . x = R[ idx ] . x/(1+dt∗Q[ idx ] ) ;
243 Zhat [ idx ] . y = R[ idx ] . y/(1+dt∗Q[ idx ] ) ;
244
245 R[ idx ] . x = R[ idx ] . x/n ;
246 R[ idx ] . y = R[ idx ] . y/n ;
247 }
248 }
249
250 g l o b a l void kernCG7 ( i n t n , REAL beta1 , REAL beta2 , COMPLEX ∗

Phat , COMPLEX ∗Zhat )
251 {
252 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
253 i f ( idx < n)
254 {
255 Phat [ idx ] . x = Zhat [ idx ] . x + beta2 / beta1 ∗Phat [ idx ] . x ;
256 Phat [ idx ] . y = Zhat [ idx ] . y + beta2 / beta1 ∗Phat [ idx ] . y ;
257 }
258 }
259
260 //
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261 // kernN1 i s c a l l e d in the Newton func t i on
262 //
263
264 g l o b a l void kernN1 ( i n t n , COMPLEX ∗Vhat , COMPLEX ∗W)
265 {
266 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
267 i f ( idx < n)
268 {
269 Vhat [ idx ] . x = Vhat [ idx ] . x/n ;
270
271 W[ idx ] . x += Vhat [ idx ] . x ;
272 W[ idx ] . y = 0 . 0 ;
273 }
274 }
275
276 g l o b a l void kernLapQ ( i n t n , REAL eps i l on , REAL c1 , REAL c3 ,

REAL ∗Lap , REAL ∗Q, REAL ∗Delx , REAL ∗Dely , REAL ∗Delz )
277 {
278 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
279 i f ( idx < n)
280 {
281 Lap [ idx ] = −(Delx [ idx ]∗Delx [ idx ]+Dely [ idx ]∗Dely [ idx ]+ Delz [ idx

]∗ Delz [ idx ] ) ;
282 Q[ idx ] = −Lap [ idx ] ∗ ( e p s i l o n ∗ e p s i l o n ∗ e p s i l o n ∗ e p s i l o n ∗Lap [ idx ]∗

Lap [ idx ] − c1∗ e p s i l o n ∗ e p s i l o n ∗Lap [ idx ] − c3 ) ;
283 }
284 }
285
286 //
287 // kern1 through kern5 are c a l l e d in the main func t i on
288 //
289
290 g l o b a l void kern1 ( i n t n , REAL ∗Lap , COMPLEX ∗U, COMPLEX ∗LapU)
291 {
292 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
293 i f ( idx < n)
294 {
295 U[ idx ] . x = U[ idx ] . x/n ;
296 U[ idx ] . y = U[ idx ] . y/n ;
297
298 LapU [ idx ] . x = Lap [ idx ]∗U[ idx ] . x ;
299 LapU [ idx ] . y = Lap [ idx ]∗U[ idx ] . y ;
300 }
301 }
302
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303 g l o b a l void kern2 ( i n t n , REAL eps i l on , REAL eta1 , REAL eta2 ,
REAL tau , COMPLEX ∗LapU , COMPLEX ∗T1 , COMPLEX ∗U, COMPLEX ∗Wexp
)

304 {
305 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
306 i f ( idx < n)
307 {
308 T1 [ idx ] . x = e p s i l o n ∗ e p s i l o n ∗LapU [ idx ] . x − (U[ idx ] . x∗U[ idx ] . x −

1) ∗(U[ idx ] . x + tau /2) ;
309 T1 [ idx ] . y = 0 . 0 ;
310
311 Wexp [ idx ] . x = −(3∗U[ idx ] . x∗U[ idx ] . x + tau∗U[ idx ] . x − 1 −

e p s i l o n ∗ eta1 )∗T1 [ idx ] . x + e p s i l o n ∗( eta1−eta2 ) ∗(U[ idx ] . x∗U[ idx ] .
x − 1) ∗(U[ idx ] . x + tau /2) ;

312 Wexp [ idx ] . y = 0 . 0 ;
313 }
314 }
315
316 g l o b a l void kern3 ( i n t n , REAL dt , REAL eps i l on , REAL ∗Lap ,

COMPLEX ∗Wexp, COMPLEX ∗T1)
317 {
318 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
319 i f ( idx < n)
320 {
321 Wexp [ idx ] . x = dt∗Lap [ idx ] ∗ ( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ]∗T1 [ idx ] . x

+ Wexp [ idx ] . x ) ;
322 Wexp [ idx ] . y = dt∗Lap [ idx ] ∗ ( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ]∗T1 [ idx ] . y

+ Wexp [ idx ] . y ) ;
323 }
324 }
325
326 g l o b a l void kern4 ( i n t n , COMPLEX ∗Wexp, COMPLEX ∗U, COMPLEX ∗W

)
327 {
328 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
329 i f ( idx < n)
330 {
331 Wexp [ idx ] . x = U[ idx ] . x + Wexp [ idx ] . x/n ;
332 Wexp [ idx ] . y = U[ idx ] . y + Wexp [ idx ] . y/n ;
333
334 W[ idx ] . x = Wexp [ idx ] . x ;
335 W[ idx ] . y = Wexp [ idx ] . y ;
336 }
337 }
338
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339 //
340 // kernError i s to compute the e r r o r f o r the adapt ive time

stepp ing scheme
341 //
342
343 g l o b a l void kernError ( i n t n , COMPLEX ∗R, COMPLEX ∗Wexp,

COMPLEX ∗W)
344 {
345 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
346 i f ( idx < n)
347 {
348 R[ idx ] . x = 0.5∗ f abs (Wexp [ idx ] . x − W[ idx ] . x ) ;
349 }
350 }
351
352 g l o b a l void kern5 ( i n t n , COMPLEX ∗U, COMPLEX ∗W)
353 {
354 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
355 i f ( idx < n)
356 {
357 U[ idx ] . x = W[ idx ] . x ;
358 U[ idx ] . y = 0 . 0 ; //W[ idx ] . y ;
359 }
360 }
361
362 //
363 // warpReduce , reduce , warpReduceSum , and reduceSum p a r a l l e l i z e

the r educ t i on s nece s sa ry to c a l c u l a t e energy and e r r o r
364 //
365
366 d e v i c e void warpReduce ( v o l a t i l e REAL ∗ sdata , unsigned i n t t id ,

i n t b l o ckS i z e )
367 {
368 i f ( b l o ckS i z e >= 64) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 3 2 ] ) ) ;
369 i f ( b l o ckS i z e >= 32) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 1 6 ] ) ) ;
370 i f ( b l o ckS i z e >= 16) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 8 ] ) ) ;
371 i f ( b l o ckS i z e >= 8) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 4 ] ) ) ;
372 i f ( b l o ckS i z e >= 4) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 2 ] ) ) ;
373 i f ( b l o ckS i z e >= 2) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 1 ] ) ) ;
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374 }
375
376 g l o b a l void reduce (COMPLEX ∗ g idata , COMPLEX ∗g odata , i n t n ,

i n t b l o ckS i z e )
377 {
378 extern s h a r e d REAL sdata [ ] ;
379 unsigned i n t t i d = threadIdx . x ;
380 unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + t i d ;
381 unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
382 sdata [ t i d ] = 0 ;
383
384 whi l e ( i < n) { sdata [ t i d ] = max( fabs ( g i d a t a [ i ] . x ) , f abs ( g i d a t a [

i+b l o ckS i z e ] . x ) ) ; i += g r i d S i z e ; }
385 sync th r ead s ( ) ;
386
387 i f ( b l o ckS i z e >= 512) { i f ( t i d < 256) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 256 ] ) ) ; } sync th r ead s ( ) ; }
388 i f ( b l o ckS i z e >= 256) { i f ( t i d < 128) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 128 ] ) ) ; } sync th r ead s ( ) ; }
389 i f ( b l o ckS i z e >= 128) { i f ( t i d < 64) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 6 4 ] ) ) ; } sync th r ead s ( ) ; }
390 i f ( t i d < 32) warpReduce ( sdata , t id , b l o ckS i z e ) ;
391 i f ( t i d == 0) g odata [ b lockIdx . x ] . x = sdata [ 0 ] ;
392 }
393
394 d e v i c e void warpReduceSum ( v o l a t i l e REAL ∗ sdata , unsigned i n t

t id , i n t b l o ckS i z e )
395 {
396 i f ( b l o ckS i z e >= 64) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 3 2 ] ;
397 i f ( b l o ckS i z e >= 32) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 1 6 ] ;
398 i f ( b l o ckS i z e >= 16) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 8 ] ;
399 i f ( b l o ckS i z e >= 8) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 4 ] ;
400 i f ( b l o ckS i z e >= 4) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 2 ] ;
401 i f ( b l o ckS i z e >= 2) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 1 ] ;
402 }
403
404 g l o b a l void reduceSum (REAL ∗ g idata , REAL ∗g odata , i n t n , i n t

b l o ckS i z e )
405 {
406 extern s h a r e d REAL sdata [ ] ;
407 unsigned i n t t i d = threadIdx . x ;
408 unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + t i d ;
409 unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
410 sdata [ t i d ] = 0 ;
411
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412 whi l e ( i < n) { sdata [ t i d ] = g i d a t a [ i ] + g i d a t a [ i+b lo ckS i z e ] ; i
+= g r i d S i z e ; }

413 sync th r ead s ( ) ;
414
415 i f ( b l o ckS i z e >= 512) { i f ( t i d < 256) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 2 5 6 ] ; } sync th r ead s ( ) ; }
416 i f ( b l o ckS i z e >= 256) { i f ( t i d < 128) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 1 2 8 ] ; } sync th r ead s ( ) ; }
417 i f ( b l o ckS i z e >= 128) { i f ( t i d < 64) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 6 4 ] ; } sync th r ead s ( ) ; }
418 i f ( t i d < 32) warpReduceSum ( sdata , t id , b l o ckS i z e ) ;
419 i f ( t i d == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;
420 }
421
422 //
423 // FCHenergy computes the energy o f the s o l u t i o n U
424 //
425
426 REAL FCHenergy ( dataBin &data , operBin oper , COMPLEX ∗U, REAL ∗

Energy , REAL ∗Delx , REAL ∗Dely , REAL ∗Delz , COMPLEX ∗LapU ,
COMPLEX ∗DelxU , COMPLEX ∗DelyU , COMPLEX ∗DelzU , cu f f tHand le
plan ) {

427
428 EXEC ( plan , U, U, CUFFT FORWARD) ;
429
430 kernE1<<< data . dimGrid , data . dimBlock>>>(data . n , U, oper . Lap ,

Delx , Dely , Delz , LapU , DelxU , DelyU , DelzU ) ;
431
432 EXEC( plan , LapU , LapU , CUFFT INVERSE) ;
433 EXEC( plan , DelxU , DelxU , CUFFT INVERSE) ;
434 EXEC( plan , DelyU , DelyU , CUFFT INVERSE) ;
435 EXEC( plan , DelzU , DelzU , CUFFT INVERSE) ;
436 EXEC( plan , U, U, CUFFT INVERSE) ;
437
438 kernE2<<< data . dimGrid , data . dimBlock>>>(data . n , data . ep s i l on ,

data . eta1 , data . eta2 , data . tau , Energy , U, LapU , DelxU , DelyU ,
DelzU ) ;

439
440 reduceSum<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f (

REAL)>>>(Energy , Energy , data . n , data . b l o c k s i z e ) ;
441
442 i n t nRed = data . n/( data . b l o c k s i z e ∗2) ;
443 whi l e (nRed > 1)
444 {
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445 reduceSum<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗
s i z e o f (REAL)>>>(Energy , Energy , nRed , data . b l o c k s i z e ) ;

446 nRed = nRed/( data . b l o c k s i z e ∗2) ;
447 }
448
449 cudaMemcpy( data . Energy h , Energy , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
450 // tEta i l−>energy = ∗data . Energy h ;
451
452 re turn (∗ data . Energy h ) ;
453 }
454
455 //
456 // r e s i d u a l computes the r e s i d u a l needed in the standard conjugate

g rad i en t a lgor i thm used below
457 //
458
459 void r e s i d u a l ( dataBin &data , operBin oper , COMPLEX ∗U, COMPLEX ∗W

, COMPLEX ∗R, COMPLEX ∗T1 , cu f f tHand le plan ) {
460
461 EXEC( plan , W, W, CUFFT FORWARD) ;
462
463 kernRes1<<< data . dimGrid , data . dimBlock>>>(data . n , W, T1 , oper .

Lap) ;
464
465 EXEC( plan , T1 , T1 , CUFFT INVERSE) ;
466 EXEC( plan , W, W, CUFFT INVERSE) ;
467
468 kernRes2<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt , data

. ep s i l on , data . eta1 , data . eta2 , data . tau , W, R, T1) ;
469
470 EXEC( plan , T1 , T1 , CUFFT FORWARD) ;
471 EXEC( plan , R, R, CUFFT FORWARD) ;
472
473 kernRes3<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt , data

. ep s i l on , R, T1 , oper . Lap) ;
474
475 EXEC( plan , R, R, CUFFT INVERSE) ;
476
477 kernRes4<<< data . dimGrid , data . dimBlock>>>(data . n , W, U, R) ;
478 }
479
480 //
481 // Hm1InnerProd computes the inner product in the Hˆ{−1} norm

between U and V
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482 //
483
484 REAL Hm1InnerProd ( dataBin &data , operBin oper , COMPLEX ∗U, COMPLEX

∗Vhat , COMPLEX ∗ innerProd , REAL ∗Energy , cu f f tHand le plan ) {
485
486 kernHm1<<< data . dimGrid , data . dimBlock>>>(data . n , oper . Lap , Vhat

, innerProd ) ;
487
488 EXEC( plan , innerProd , innerProd , CUFFT INVERSE) ;
489
490 kernHm2<<< data . dimGrid , data . dimBlock>>>(data . n , Energy , U,

innerProd ) ;
491
492 reduceSum<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f (

REAL)>>>(Energy , Energy , data . n , data . b l o c k s i z e ) ;
493
494 i n t nRed = data . n/( data . b l o c k s i z e ∗2) ;
495 whi l e (nRed > 1)
496 {
497 reduceSum<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗

s i z e o f (REAL)>>>(Energy , Energy , nRed , data . b l o c k s i z e ) ;
498 nRed = nRed/( data . b l o c k s i z e ∗2) ;
499 }
500
501 cudaMemcpy( data . Energy h , Energy , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
502 // tEta i l−>energy = ∗data . Energy h ;
503
504 re turn (∗ data . Energy h ) ;
505 }
506
507 //
508 // conjGrad execute s the standard conjugate g rad i en t scheme
509 //
510
511 void conjGrad ( dataBin &data , operBin oper , COMPLEX ∗U, COMPLEX ∗W,

COMPLEX ∗R, COMPLEX ∗T1 , COMPLEX ∗LapU , COMPLEX ∗Zhat , COMPLEX
∗Phat , COMPLEX ∗Vhat , COMPLEX ∗JP , COMPLEX ∗ innerProd , REAL ∗

Energy , COMPLEX ∗max , cu f f tHand le plan ) {
512
513 REAL alpha , beta1 , beta2 ;
514
515 r e s i d u a l ( data , oper , U, W, R, T1 , plan ) ;
516
517 EXEC( plan , R, R, CUFFT FORWARD) ;
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518
519 kernCG1<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt , oper .

Q, Zhat , R, Phat , Vhat ) ;
520
521 EXEC( plan , R, R, CUFFT INVERSE) ;
522
523 data .m = 0 ;
524 beta1 = Hm1InnerProd ( data , oper , R, Zhat , innerProd , Energy ,

plan ) ;
525
526 whi l e ( data .m <= data . CGsteps ) {
527
528 EXEC( plan , W, W, CUFFT FORWARD) ;
529
530 kernCG2<<< data . dimGrid , data . dimBlock>>>(data . n , Phat , T1 , W,

LapU , oper . Lap) ;
531
532 EXEC( plan , Phat , Phat , CUFFT INVERSE) ;
533 EXEC( plan , T1 , T1 , CUFFT INVERSE) ;
534 EXEC( plan , W, W, CUFFT INVERSE) ;
535 EXEC( plan , LapU , LapU , CUFFT INVERSE) ;
536
537 kernCG3<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt ,

data . ep s i l on , data . eta1 , data . eta2 , data . tau , oper . Lap , T1 , W,
Phat , JP , LapU) ;

538
539 EXEC( plan , Phat , Phat , CUFFT FORWARD) ;
540 EXEC( plan , JP , JP , CUFFT FORWARD) ;
541 EXEC( plan , T1 , T1 , CUFFT FORWARD) ;
542
543 kernCG4<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt ,

data . ep s i l on , JP , Phat , T1 , oper . Lap) ;
544
545 EXEC( plan , JP , JP , CUFFT INVERSE) ;
546
547 alpha = Hm1InnerProd ( data , oper , JP , Phat , innerProd , Energy ,

plan ) ;
548
549 alpha = beta1 / alpha ;
550
551 kernCG5<<< data . dimGrid , data . dimBlock>>>(data . n , alpha , Vhat ,

Phat , R, JP) ;
552
553 data .m++;
554
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555 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f (
REAL)>>>(R, max , data . n , data . b l o c k s i z e ) ;

556 i n t nRed = data . n/( data . b l o c k s i z e ∗2) ;
557 whi l e (nRed > 1)
558 {
559 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f

(REAL)>>>(max , max , nRed , data . b l o c k s i z e ) ;
560 nRed = nRed/( data . b l o c k s i z e ∗2) ;
561 }
562
563 cudaMemcpy( data . max h , max , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
564
565 data .maxR = data . max h−>x ;
566
567 i f ( data .maxR < data . t o l /10) {
568 break ;
569 }
570
571 EXEC( plan , R, R, CUFFT FORWARD) ;
572
573 kernCG6<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt ,

oper .Q, Zhat , R) ;
574
575 EXEC( plan , R, R, CUFFT INVERSE) ;
576
577 beta2 = Hm1InnerProd ( data , oper , R, Zhat , innerProd , Energy ,

plan ) ;
578
579 kernCG7<<< data . dimGrid , data . dimBlock>>>(data . n , beta1 , beta2

, Phat , Zhat ) ;
580
581 beta1 = beta2 ;
582 }
583
584 }
585
586 //
587 // newton execute s Newton ’ s method f o r f i n d i n g z e ro s o f the

func t i on and depends on the conjGrad func t i on above
588 //
589
590 void newton ( dataBin &data , operBin oper , COMPLEX ∗U, COMPLEX ∗W,

COMPLEX ∗Vhat , COMPLEX ∗R, COMPLEX ∗T1 , COMPLEX ∗LapU , COMPLEX
∗Zhat , COMPLEX ∗Phat , COMPLEX ∗JP , COMPLEX ∗ innerProd , REAL ∗
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Energy , COMPLEX ∗max , cu f f tHand le plan ) {
591 whi l e ( data . l <= data . Nsteps ) {
592 conjGrad ( data , oper , U, W, R, T1 , LapU , Zhat , Phat , Vhat , JP ,

innerProd , Energy , max , plan ) ;
593
594 data . mtotal +=data .m;
595 i f ( data .m >= data . CGsteps ) {break ;}
596 data . l ++;
597
598 EXEC( plan , Vhat , Vhat , CUFFT INVERSE) ;
599
600 kernN1<<< data . dimGrid , data . dimBlock>>>(data . n , Vhat , W) ;
601
602 r e s i d u a l ( data , oper , U, W, R, T1 , plan ) ;
603
604 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f (

REAL)>>>(R, max , data . n , data . b l o c k s i z e ) ;
605 i n t nRed = data . n/( data . b l o c k s i z e ∗2) ;
606 whi l e (nRed > 1)
607 {
608 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f

(REAL)>>>(max , max , nRed , data . b l o c k s i z e ) ;
609 nRed = nRed/( data . b l o c k s i z e ∗2) ;
610 }
611
612 cudaMemcpy( data . max h , max , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
613
614 data .maxR = data . max h−>x ;
615 i f ( data .maxR < data . t o l ) {break ;}
616 }
617 }
618
619 //
620 // The node s t r u c t u r e b u i l d s a l i nked l i s t that c o l l e c t s energy

and time data
621 //
622
623 s t r u c t node {
624 REAL ctime ;
625 REAL energy ;
626 i n t mtotal ;
627 s t r u c t node∗ next ;
628 } ;
629
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630 void addNode ( s t r u c t node∗& t a i l , REAL ctime ) {
631 s t r u c t node∗ newNode = new node ;
632 newNode−>ctime = ctime ;
633 newNode−>energy = 0 . 0 ;
634 newNode−>mtotal = 0 ;
635 newNode−>next = NULL;
636 t a i l−>next = newNode ;
637 t a i l = newNode ;
638 }
639
640 //
641 // This i s where the main func t i on beg ins . To make sense o f the

code , begin here .
642 //
643
644 i n t main ( i n t argc , char ∗ const argv [ ] ) {
645 i f ( argc <=1 )
646 {
647 cout << ”Usage : ” << argv [ 0 ] << ” <f i l ename> <output o f f /

i n c r e a s i n g /even (0/1/2)>” << endl ;
648 e x i t (1 ) ;
649 }
650
651 t ime t t i c , toc ;
652 t ime t t i c2 , toc2 ;
653 time(& t i c ) ;
654 //
655 // I n i t i a l i z e nece s sa ry cons tant s
656 //
657 cout << s c i e n t i f i c ;
658 cout . p r e c i s i o n (10) ;
659 i n t i , j , k ;
660
661 fst ream myf i l e , myf i l e2 , myf i l e3 , myf i l e4 ;
662 s t r i ng s t r eam sstm ;
663 char data in [ 5 0 ] ;
664
665 REAL ctime , Tmax, Tpicstep , Lx , Ly , Lz , c1 , c2 , c3 , Ttol ,

Tfactor , Error ;
666 i n t Nx, Ny, Nz , Mx, My, Mz;
667 bool CGflag = true ;
668
669 REAL tPic = 1 . 0 ;
670 s t r u c t node∗ tEhead = NULL;
671 s t r u c t node∗ t E t a i l = NULL;
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672
673 tEhead = new node ;
674 tEhead−>ctime = 0 . 0 ;
675 tEhead−>energy = 0 . 0 ;
676 t E t a i l = tEhead ;
677
678 s t r i n g f i l e i n , f i l eUout , f i l e t E o u t ;
679
680 dataBin data ;
681 operBin oper ;
682
683 //
684 // Read in a l l the nece s sa ry data from the f i l e g iven by the

user
685 //
686
687 myf i l e3 . open ( argv [ 1 ] , i o s : : in ) ;
688
689 i f ( myf i l e3 . i s open ( ) )
690 {
691 myf i l e3 . i gno r e (512 , ’= ’ ) ;
692 myf i l e3 >> data in ;
693 f i l e i n = data in ;
694 cout << ” I n i t cond f i l e = ” << f i l e i n << endl ;
695
696 myf i l e3 . i gno r e (512 , ’= ’ ) ;
697 myf i l e3 >> data in ;
698 f i l e U o u t = data in ;
699 cout << ”Write out s o l u t i o n f i l e = ” << f i l e U o u t << ” . dat” <<

endl ;
700
701 myf i l e3 . i gno r e (512 , ’= ’ ) ;
702 myf i l e3 >> data in ;
703 f i l e t E o u t = data in ;
704 cout << ”Write out time and energy f i l e = ” << f i l e t E o u t << ” .

dat” << endl ;
705
706 myf i l e3 . i gno r e (512 , ’= ’ ) ;
707 myf i l e3 >> data in ;
708 data . e p s i l o n = a t o f ( data in ) ;
709 cout << ” e p s i l o n = ” << data . e p s i l o n << endl ;
710
711 myf i l e3 . i gno r e (512 , ’= ’ ) ;
712 myf i l e3 >> data in ;
713 data . eta1 = a t o f ( data in ) ;
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714 cout << ” eta1 = ” << data . eta1 << endl ;
715
716 myf i l e3 . i gno r e (512 , ’= ’ ) ;
717 myf i l e3 >> data in ;
718 data . eta2 = a t o f ( data in ) ;
719 cout << ” eta2 = ” << data . eta2 << endl ;
720
721 myf i l e3 . i gno r e (512 , ’= ’ ) ;
722 myf i l e3 >> data in ;
723 data . tau = a t o f ( data in ) ;
724 cout << ” tau = ” << data . tau << endl ;
725
726 myf i l e3 . i gno r e (512 , ’= ’ ) ;
727 myf i l e3 >> data in ;
728 data . dt = a t o f ( data in ) ;
729 cout << ”dt = ” << data . dt << endl ;
730
731 myf i l e3 . i gno r e (512 , ’= ’ ) ;
732 myf i l e3 >> data in ;
733 Tmax = a t o f ( data in ) ;
734 cout << ”Tmax = ” << Tmax << endl ;
735
736 myf i l e3 . i gno r e (512 , ’= ’ ) ;
737 myf i l e3 >> data in ;
738 Tpicstep = a t o f ( data in ) ;
739 cout << ” Tpicstep = ” << Tpicstep << endl ;
740
741 myf i l e3 . i gno r e (512 , ’= ’ ) ;
742 myf i l e3 >> data in ;
743 Nx = a t o i ( data in ) ;
744 cout << ”Nx = ” << Nx << endl ;
745
746 myf i l e3 . i gno r e (512 , ’= ’ ) ;
747 myf i l e3 >> data in ;
748 Ny = a t o i ( data in ) ;
749 cout << ”Ny = ” << Ny << endl ;
750
751 myf i l e3 . i gno r e (512 , ’= ’ ) ;
752 myf i l e3 >> data in ;
753 Nz = a t o i ( data in ) ;
754 cout << ”Nz = ” << Nz << endl ;
755
756 myf i l e3 . i gno r e (512 , ’= ’ ) ;
757 myf i l e3 >> data in ;
758 Lx = a t o f ( data in ) ;
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759 cout << ”Lx = ” << Lx << endl ;
760
761 myf i l e3 . i gno r e (512 , ’= ’ ) ;
762 myf i l e3 >> data in ;
763 Ly = a t o f ( data in ) ;
764 cout << ”Ly = ” << Ly << endl ;
765
766 myf i l e3 . i gno r e (512 , ’= ’ ) ;
767 myf i l e3 >> data in ;
768 Lz = a t o f ( data in ) ;
769 cout << ”Lz = ” << Lz << endl ;
770
771 myf i l e3 . i gno r e (512 , ’= ’ ) ;
772 myf i l e3 >> data in ;
773 c1 = a t o f ( data in ) ;
774 cout << ”c1 = ” << c1 << endl ;
775
776 myf i l e3 . i gno r e (512 , ’= ’ ) ;
777 myf i l e3 >> data in ;
778 c2 = a t o f ( data in ) ;
779 cout << ”c2 = ” << c2 << endl ;
780
781 myf i l e3 . i gno r e (512 , ’= ’ ) ;
782 myf i l e3 >> data in ;
783 c3 = a t o f ( data in ) ;
784 cout << ”c3 = ” << c3 << endl ;
785
786 myf i l e3 . i gno r e (512 , ’= ’ ) ;
787 myf i l e3 >> data in ;
788 data . CGsteps = a t o f ( data in ) ;
789 cout << ”CGsteps = ” << data . CGsteps << endl ;
790
791 myf i l e3 . i gno r e (512 , ’= ’ ) ;
792 myf i l e3 >> data in ;
793 data . Nsteps = a t o f ( data in ) ;
794 cout << ” Nsteps = ” << data . Nsteps << endl ;
795
796 myf i l e3 . i gno r e (512 , ’= ’ ) ;
797 myf i l e3 >> data in ;
798 data . t o l = a t o f ( data in ) ;
799 cout << ” t o l = ” << data . t o l << endl ;
800
801 myf i l e3 . i gno r e (512 , ’= ’ ) ;
802 myf i l e3 >> data in ;
803 Ttol = a t o f ( data in ) ;
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804 cout << ” Ttol = ” << Ttol << endl ;
805
806 myf i l e3 . i gno r e (512 , ’= ’ ) ;
807 myf i l e3 >> data in ;
808 Tfactor = a t o f ( data in ) ;
809 cout << ” Tfactor = ” << Tfactor << endl ;
810
811 myf i l e3 . i gno r e (512 , ’= ’ ) ;
812 myf i l e3 >> data in ;
813 data . b l o c k s i z e = a t o i ( data in ) ;
814 cout << ” Block s i z e = ” << data . b l o c k s i z e << endl ;
815 cout << ”Grid s i z e = ” << Nx∗Ny∗Nz/ data . b l o c k s i z e << endl ;
816 }
817 e l s e { cout << ” F i l e could not be read . ” << endl ; }
818
819 ctime = 0 . 0 ;
820
821 i f (∗ argv [ 2 ] == ’ 2 ’ )
822 {
823 tPic = Tpicstep ;
824 }
825
826 Mx = Nx/2 ;
827 My = Ny/2 ;
828 Mz = Nz/2 ;
829 data . n = Nx∗Ny∗Nz ;
830 data . dimBlock = data . b l o c k s i z e ;
831 data . dimGrid = data . n/ data . dimBlock . x ;
832
833
834 //
835 // Build the l a p l a c i a n array , and dynamical ly a l l o c a t e other

needed ar rays
836 //
837
838 REAL ∗xkvec , ∗ykvec , ∗ zkvec ;
839 xkvec = new REAL[Nx ] ;
840 ykvec = new REAL[Ny ] ;
841 zkvec = new REAL[ Nz ] ;
842
843 f o r ( i =0; i<Mx; i++)
844 {
845 xkvec [ i ] = i ∗PI/Lx ;
846 xkvec [ i+Mx] = ( i−Mx)∗PI/Lx ;
847 }
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848
849 f o r ( i =0; i<My; i++)
850 {
851 ykvec [ i ] = i ∗PI/Ly ;
852 ykvec [ i+My] = ( i−My)∗PI/Ly ;
853 }
854
855 f o r ( i =0; i<Mz; i++)
856 {
857 zkvec [ i ] = i ∗PI/Lz ;
858 zkvec [ i+Mz] = ( i−Mz)∗PI/Lx ;
859 }
860
861 REAL ∗Delx h , ∗Dely h , ∗Delz h , ∗Delx , ∗Dely , ∗Delz , ∗Energy ;
862 data . Energy h = new REAL;
863 Delx h = new REAL[ data . n ] ;
864 Dely h = new REAL[ data . n ] ;
865 Delz h = new REAL[ data . n ] ;
866
867 f o r ( i =0; i<Nx; i++) {
868 f o r ( j =0; j<Ny; j++) {
869 f o r ( k=0; k<Nz ; k++)
870 {
871 Delx h [ k+Nz∗( j+Ny∗ i ) ] = xkvec [ i ] ;
872 Dely h [ k+Nz∗( j+Ny∗ i ) ] = ykvec [ j ] ;
873 Delz h [ k+Nz∗( j+Ny∗ i ) ] = zkvec [ k ] ;
874 }
875 }
876 }
877
878 cout << ”Del ope ra to r s b u i l t ” << endl ;
879
880 //
881 // I n i t i a l i z e a l l o f the ar rays that w i l l be used in f o u r i e r

transforms , and bu i ld the p lans nece s sa ry
882 //
883
884 i n t nBytes = s i z e o f (COMPLEX)∗data . n ;
885 cout << ”nBytes i s = ” << nBytes << endl ;
886 COMPLEX ∗U h , ∗U, ∗W, ∗Wexp, ∗Vhat , ∗R, ∗T1 , ∗LapU , ∗Zhat , ∗Phat

, ∗JP , ∗DelxU , ∗DelyU , ∗DelzU , ∗ innerProd , ∗max ;
887
888 //
889 // Read in i n i t a l U data from f i l e i n
890 //
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891
892 U h = new COMPLEX[ nBytes ] ;
893 data . max h = new COMPLEX;
894
895 myf i l e . open ( f i l e i n . c s t r ( ) , i o s : : in ) ;
896
897 i f ( my f i l e . i s open ( ) )
898 {
899 f o r ( i =0; i<data . n ; i++)
900 {
901 myf i l e . g e t l i n e ( datain , 50) ;
902 U h [ i ] . x = a t o f ( data in ) ;
903 U h [ i ] . y = 0 . 0 ;
904 }
905 cout << ” I n i t i a l data read in s u c c e s s f u l l y ” << endl ;
906 } e l s e { cout << ” I n i t i a l data not read ” << endl ; }
907
908 myf i l e . c l o s e ( ) ;
909
910 //
911 // A l l o ca t e memory on the GPU and s e t up space f o r the Four i e r

t rans forms
912 //
913
914 cudaMalloc ( ( void ∗∗)&U, nBytes ) ;
915 cudaMalloc ( ( void ∗∗)&W, nBytes ) ;
916 cudaMalloc ( ( void ∗∗)&Wexp, nBytes ) ;
917 cudaMalloc ( ( void ∗∗)&Vhat , nBytes ) ;
918 cudaMalloc ( ( void ∗∗)&R, nBytes ) ;
919 cudaMalloc ( ( void ∗∗)&T1 , nBytes ) ;
920 cudaMalloc ( ( void ∗∗)&LapU , nBytes ) ;
921 cudaMalloc ( ( void ∗∗)&Zhat , nBytes ) ;
922 cudaMalloc ( ( void ∗∗)&Phat , nBytes ) ;
923 cudaMalloc ( ( void ∗∗)&JP , nBytes ) ;
924 cudaMalloc ( ( void ∗∗)&DelxU , nBytes ) ;
925 cudaMalloc ( ( void ∗∗)&DelyU , nBytes ) ;
926 cudaMalloc ( ( void ∗∗)&DelzU , nBytes ) ;
927 cudaMalloc ( ( void ∗∗)&innerProd , nBytes ) ;
928 cudaMalloc ( ( void ∗∗)&Energy , s i z e o f (REAL)∗data . n) ;
929
930 cudaMalloc ( ( void ∗∗)&oper . Lap , s i z e o f (REAL)∗data . n) ;
931 cudaMalloc ( ( void ∗∗)&oper .Q, s i z e o f (REAL)∗data . n) ;
932 cudaMalloc ( ( void ∗∗)&Delx , s i z e o f (REAL)∗data . n) ;
933 cudaMalloc ( ( void ∗∗)&Dely , s i z e o f (REAL)∗data . n) ;
934 cudaMalloc ( ( void ∗∗)&Delz , s i z e o f (REAL)∗data . n) ;
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935 cudaMalloc ( ( void ∗∗)&max , s i z e o f (COMPLEX)∗data . dimGrid . x/2) ;
936
937 cu f f tHand le plan ;
938 cu f f tP lan3d (&plan , Nx, Ny, Nz , TYPE) ;
939
940
941 cudaMemcpy( Delx , Delx h , s i z e o f (REAL)∗data . n ,

cudaMemcpyHostToDevice ) ;
942 cudaMemcpy( Dely , Dely h , s i z e o f (REAL)∗data . n ,

cudaMemcpyHostToDevice ) ;
943 cudaMemcpy( Delz , Delz h , s i z e o f (REAL)∗data . n ,

cudaMemcpyHostToDevice ) ;
944 cudaMemcpy(U, U h , nBytes , cudaMemcpyHostToDevice ) ;
945 cout << ” I n i t i a l data copied ” << endl ;
946
947 //
948 // Ca l cu la t e the constant ar rays Lap and Q that w i l l be used

below
949 //
950
951 kernLapQ<<< data . dimGrid , data . dimBlock>>>(data . n , data . ep s i l on ,

c1 , c3 , oper . Lap , oper .Q, Delx , Dely , Delz ) ;
952 cout << ”Lap and Q i n i t i a l i z e d ” << endl ;
953
954 //
955 // whi l e loop governing time stepp ing
956 //
957 whi l e ( ctime < Tmax)
958 {
959 time(& t i c 2 ) ;
960
961 //
962 // Prepare the ar rays needed to use CG based Newton ’ s method
963 //
964
965 EXEC( plan , U, U, CUFFT FORWARD) ;
966
967 kern1<<< data . dimGrid , data . dimBlock>>>(data . n , oper . Lap , U,

LapU) ;
968
969 EXEC( plan , LapU , LapU , CUFFT INVERSE) ;
970 EXEC( plan , U, U, CUFFT INVERSE) ;
971
972 tEta i l−>energy = FCHenergy ( data , oper , U, Energy , Delx , Dely ,

Delz , LapU , DelxU , DelyU , DelzU , plan ) ;
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973
974 kern2<<< data . dimGrid , data . dimBlock>>>(data . n , data . ep s i l on ,

data . eta1 , data . eta2 , data . tau , LapU , T1 , U, Wexp) ;
975
976 EXEC( plan , Wexp, Wexp, CUFFT FORWARD) ;
977 EXEC( plan , T1 , T1 , CUFFT FORWARD) ;
978
979 kern3<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt , data .

ep s i l on , oper . Lap , Wexp, T1) ;
980
981 EXEC( plan , Wexp, Wexp, CUFFT INVERSE) ;
982
983 kern4<<< data . dimGrid , data . dimBlock>>>(data . n , Wexp, U, W) ;
984
985 data . l = 0 ;
986 data .m = 0 ;
987 data . mtotal = 0 ;
988
989 //
990 // Apply Newton ’ s method
991 //
992
993 newton ( data , oper , U, W, Vhat , R, T1 , LapU , Zhat , Phat , JP ,

innerProd , Energy , max , plan ) ;
994
995 i f ( data .m >= data . CGsteps ) { cout << ”No Conjugate Gradient

convergence at time t = ” << tEta i l−> ctime << endl ;}
996
997 i f ( data . l >= data . Nsteps ) { cout << ”No Newton convergence at

time t = ” << tEta i l−> ctime << endl ;}
998
999 kernError<<< data . dimGrid , data . dimBlock>>>(data . n , R, Wexp, W

) ;
1000
1001 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f (

REAL)>>>(R, max , data . n , data . b l o c k s i z e ) ;
1002 i n t nRed = data . n/( data . b l o c k s i z e ∗2) ;
1003 whi l e (nRed > 1)
1004 {
1005 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f

(REAL)>>>(max , max , nRed , data . b l o c k s i z e ) ;
1006 nRed = nRed/( data . b l o c k s i z e ∗2) ;
1007 }
1008
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1009 cudaMemcpy( data . max h , max , s i z e o f (REAL) ,
cudaMemcpyDeviceToHost ) ;

1010
1011 Error = data . max h−>x ;
1012
1013 //
1014 // Check to see i f the i t e r a t i o n s converged then ad jus t the

time step acco rd ing ly
1015 //
1016
1017 i f ( Error > Ttol | | data .m >= data . CGsteps | | data . l >= data .

Nsteps ) {
1018 cout << ” Tolerance f a i l ! Recomputing ” << Error << ”\ t l = ”

<< data . l << ”\ t m = ” << data .m << endl ;
1019 data . dt = data . dt / 1 . 3 ;
1020 }
1021 e l s e {
1022 ctime = ctime + data . dt ;
1023 tEta i l−>mtotal = data . mtotal ;
1024
1025 //
1026 // Update time and update U to be the s o l u t i o n at the next

time step
1027 //
1028
1029 kern5<<< data . dimGrid , data . dimBlock>>>(data . n , U, W) ;
1030
1031 time(&toc2 ) ;
1032 cout << ctime << ”\ t ” << data . dt << ”\ t ” << tEta i l−>energy

<< ”\ t ” << data . l << ”\ t ” << data .m << ”\ t ” << data . mtotal << ”
\ t ” << d i f f t i m e ( toc2 , t i c 2 ) << endl ;

1033
1034 i f ( data . mtotal < data . CGsteps/10 && data . l < data . Nsteps /3)

{
1035 i f ( CGflag == true ) {
1036 data . dt = data . dt∗min( Tfactor ∗ s q r t ( Ttol / Error ) , (REAL)

1 . 3 ) ;
1037 }
1038 e l s e {
1039 data . dt = data . dt∗min( Tfactor ∗ s q r t ( Ttol / Error ) , (REAL)

( 1 . 0 + 0 .003∗ ( data . CGsteps/10−data . mtotal ) ) ) ;
1040 }
1041 }
1042 e l s e
1043 {
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1044 data . dt = data . dt∗min( Tfactor ∗ s q r t ( Ttol / Error ) , (REAL)
1 . 0 ) ;

1045 CGflag = f a l s e ;
1046 }
1047
1048 //
1049 // Write out s o l u t i o n to hard d i sk i f r equ i r ed
1050 //
1051
1052 i f ( abs ( ctime − tPic ) < data . t o l /100 && ∗argv [ 2 ] != ’ 0 ’ )
1053 {
1054 cudaMemcpy(U h , U, nBytes , cudaMemcpyDeviceToHost ) ;
1055
1056 sstm << f i l e U o u t << ( i n t ) tPic << ” . dat” ;
1057 myf i l e2 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
1058 i f ( myf i l e2 . i s open ( ) )
1059 {
1060
1061 f o r ( i =0; i<data . n ; i++)
1062 {
1063 myf i l e2 << U h [ i ] . x << endl ;
1064 }
1065
1066 }
1067 cout << ” Writing out ” << sstm . s t r ( ) << endl ;
1068 myf i l e2 . c l o s e ( ) ;
1069 sstm . s t r ( ”” ) ;
1070
1071 i f (∗ argv [ 2 ] == ’ 1 ’ )
1072 {
1073 tPic += pow ( (REAL) 1 0 . 0 , (REAL) c e i l ( log10 ( tPic +1) )−1) ;
1074 }
1075 e l s e
1076 {
1077 tPic += Tpicstep ;
1078 }
1079 }
1080 //
1081 // Adjust the t imestep i f nece s sa ry
1082 //
1083 i f ( data . dt > (Tmax − ctime ) )
1084 {
1085 data . dt = Tmax − ctime ;
1086 }
1087
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1088 i f ( data . dt > ( tPic − ctime ) && ∗argv [ 2 ] != ’ 0 ’ )
1089 {
1090 data . dt = tPic − ctime ;
1091 }
1092
1093 addNode ( tEta i l , ct ime ) ;
1094
1095 }
1096 }
1097
1098 tEta i l−>energy = FCHenergy ( data , oper , W, Energy , Delx , Dely ,

Delz , LapU , DelxU , DelyU , DelzU , plan ) ;
1099
1100 //
1101 // Write f i n a l s o l u t i o n to hard d i sk and compute i t s energy
1102 //
1103 sstm << f i l e U o u t << ( i n t ) Tmax << ” . dat” ;
1104 myf i l e2 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
1105 i f ( myf i l e2 . i s open ( ) )
1106 {
1107 cudaMemcpy(U h , U, nBytes , cudaMemcpyDeviceToHost ) ;
1108
1109 myf i l e2 . p r e c i s i o n (15) ;
1110 f o r ( i =0; i<data . n ; i++)
1111 {
1112 myf i l e2 << U h [ i ] . x << endl ;
1113 }
1114
1115 }
1116 cout << ” Writing out ” << sstm . s t r ( ) << endl ;
1117 myf i l e2 . c l o s e ( ) ;
1118 sstm . s t r ( ”” ) ;
1119
1120 sstm << f i l e t E o u t << ” . dat” ;
1121 myf i l e4 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
1122 i f ( myf i l e4 . i s open ( ) )
1123 {
1124
1125 whi l e ( tEhead != NULL)
1126 {
1127 myf i l e4 << tEhead−>ctime << ”\ t ” << tEhead−>energy << ”\ t ”

<< tEhead−>mtotal << endl ;
1128 t E t a i l = tEhead ;
1129 tEhead = tEhead−>next ;
1130 d e l e t e t E t a i l ; }

202



1131
1132 }
1133 myf i l e4 . c l o s e ( ) ;
1134 d e l e t e tEhead ;
1135
1136 //
1137 // Perform c l ean up o f memory used
1138 //
1139
1140 cudaFree (U) ;
1141 cudaFree (U h) ;
1142 cudaFree (W) ;
1143 cudaFree (Wexp) ;
1144 cudaFree ( Vhat ) ;
1145 cudaFree (R) ;
1146 cudaFree (T1) ;
1147 cudaFree (LapU) ;
1148 cudaFree ( Zhat ) ;
1149 cudaFree ( Phat ) ;
1150 cudaFree (JP) ;
1151 cudaFree ( DelxU ) ;
1152 cudaFree ( DelyU ) ;
1153 cudaFree ( DelzU ) ;
1154 cudaFree ( innerProd ) ;
1155 cudaFree ( oper . Lap) ;
1156 cudaFree ( oper .Q) ;
1157 cudaFree (max) ;
1158
1159 cu f f tDe s t r oy ( plan ) ;
1160
1161 d e l e t e data . Energy h ;
1162 d e l e t e data . max h ;
1163 d e l e t e [ ] U h ;
1164 d e l e t e [ ] xkvec ;
1165 d e l e t e [ ] ykvec ;
1166 d e l e t e [ ] zkvec ;
1167 d e l e t e [ ] Delx h ;
1168 d e l e t e [ ] Dely h ;
1169 d e l e t e [ ] Delz h ;
1170
1171 time(&toc ) ;
1172 cout << ”\n” << d i f f t i m e ( toc , t i c ) << endl ;
1173
1174 re turn 0 ;
1175 }
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Appendix C: ETD-RK2 Code in
CUDA

1 //
2 // FCHExInt . cu
3 //
4 // This code was wr i t t en by Jaylan Jones to approximate s o l u t i o n s

to the
5 // Funct i ona l i z ed Cahn−H i l l i a r d Equation us ing the Exponent ia l

Time
6 // D i f f e r e n c i n g Runge−Kutta scheme that i s second order accurate

in time .
7 //
8
9 #inc lude <iostream>

10 #inc lude <f stream>
11 #inc lude <sstream>
12 #inc lude <cuda . h>
13 #inc lude <c u f f t . h>
14 #inc lude <time . h>
15 #inc lude <math . h>
16
17 #d e f i n e PI 3.141592653589
18 #d e f i n e REAL double
19 #d e f i n e COMPLEX cufftDoubleComplex
20 #d e f i n e TYPE CUFFT Z2Z
21 #d e f i n e EXEC cufftExecZ2Z
22
23 us ing namespace std ;
24
25 //
26 // Build data s t r u c t u r e s nece s sa ry to pass in to k e r n e l s
27 //
28
29 s t r u c t dataBin {
30 i n t n , b l o c k s i z e ;
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31 REAL dt , eps i l on , eta1 , eta2 , tau , mu, maxR, ∗Energy h ;
32 dim3 dimBlock , dimGrid ;
33 COMPLEX ∗max h , ∗ z f ;
34 } ;
35
36 s t r u c t operBin {
37 REAL ∗Lap , ∗L ;
38 } ;
39
40 s t r u c t node {
41 REAL ctime ;
42 REAL energy ;
43 s t r u c t node∗ next ;
44 } ;
45
46 i n t i ;
47
48 //
49 // This s e r i e s o f k e r n e l s compartmental izes the c a l c u l a t i o n in to

p e i c e s that do not depend s e r i a l l y on data .
50 // The k e r n e l s are c a l l e d i n t the main func t i on below .
51 //
52
53 //
54 // kernE1 and kernE2 are c a l l e d in the FCHenergy func t i on that

c a l c u l a t e s the FCH energy o f the s o l u t i o n
55 //
56
57 g l o b a l void kernE1 ( i n t n , COMPLEX ∗U, REAL ∗Lap , REAL ∗Delx ,

REAL ∗Dely , REAL ∗Delz , COMPLEX ∗LapU , COMPLEX ∗DelxU , COMPLEX
∗DelyU , COMPLEX ∗DelzU )

58 {
59 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
60 i f ( idx < n)
61 {
62 U[ idx ] . x = U[ idx ] . x/n ;
63 U[ idx ] . y = U[ idx ] . y/n ;
64
65 LapU [ idx ] . x = Lap [ idx ]∗U[ idx ] . x ;
66 LapU [ idx ] . y = Lap [ idx ]∗U[ idx ] . y ;
67
68 DelxU [ idx ] . x = −Delx [ idx ]∗U[ idx ] . y ;
69 DelxU [ idx ] . y = Delx [ idx ]∗U[ idx ] . x ;
70
71 DelyU [ idx ] . x = −Dely [ idx ]∗U[ idx ] . y ;
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72 DelyU [ idx ] . y = Dely [ idx ]∗U[ idx ] . x ;
73
74 DelzU [ idx ] . x = −Delz [ idx ]∗U[ idx ] . y ;
75 DelzU [ idx ] . y = Delz [ idx ]∗U[ idx ] . x ;
76
77 }
78 }
79
80 g l o b a l void kernE2 ( i n t n , REAL eps i l on , REAL eta1 , REAL eta2 ,

REAL tau , REAL ∗Energy , COMPLEX ∗U, COMPLEX ∗LapU , COMPLEX ∗
DelxU , COMPLEX ∗DelyU , COMPLEX ∗DelzU )

81 {
82 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
83 i f ( idx < n)
84 {
85 Energy [ idx ] = 0 . 5∗ ( e p s i l o n ∗ e p s i l o n ∗LapU [ idx ] . x−(U[ idx ] . x∗U[ idx

] . x−1)∗(U[ idx ] . x+tau /2) ) ∗( e p s i l o n ∗ e p s i l o n ∗LapU [ idx ] . x−(U[ idx ] . x
∗U[ idx ] . x−1)∗(U[ idx ] . x+tau /2) )−e p s i l o n ∗( eta1 ∗ e p s i l o n ∗ e p s i l o n
/2∗( DelxU [ idx ] . x∗DelxU [ idx ] . x + DelyU [ idx ] . x∗DelyU [ idx ] . x +
DelzU [ idx ] . x∗DelzU [ idx ] . x ) + eta2 ∗0 .5∗ (U[ idx ] . x+1)∗(U[ idx ] . x+1)
∗ ( 0 . 5∗ (U[ idx ] . x−1)∗(U[ idx ] . x−1)+tau /3∗(U[ idx ] . x−2) ) ) ;

86 }
87 }
88
89 //
90 // kernLapL b u i l d s the Laplac ian and L ar rays to be used

throughout the c a l c u l a t i o n
91 //
92
93 g l o b a l void kernLapL ( i n t n , REAL eps i l on , REAL eta1 , REAL mu,

REAL ∗Lap , REAL ∗L , REAL ∗Delx , REAL ∗Dely , REAL ∗Delz )
94 {
95 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
96 i f ( idx < n)
97 {
98 Lap [ idx ] = −(Delx [ idx ]∗Delx [ idx ]+Dely [ idx ]∗Dely [ idx ]+ Delz [ idx

]∗ Delz [ idx ] ) ;
99 L [ idx ] = Lap [ idx ] ∗ ( ( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ] − mu + e p s i l o n ∗

eta1 ) ∗( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ] − mu) ) ;
100 }
101 }
102
103 //
104 // kernS1 , kernS2 , kernS3 , and kernS4 a c c e l e r a t e p e i c e s o f the

func t i on sub
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105 //
106
107 g l o b a l void kernS1 ( i n t n , REAL tau , COMPLEX ∗V, COMPLEX ∗Q1)
108 {
109 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
110 i f ( idx < n)
111 {
112 Q1 [ idx ] . x = ( 0 . 5∗ ( tau − 6) + V[ idx ] . x )∗V[ idx ] . x∗V[ idx ] . x ;
113 Q1 [ idx ] . y = ( 0 . 5∗ ( tau − 6) + V[ idx ] . y )∗V[ idx ] . y∗V[ idx ] . y ;
114 }
115 }
116
117 g l o b a l void kernS2 ( i n t n , REAL eps i l on , REAL mu, REAL ∗Lap ,

COMPLEX ∗V, COMPLEX ∗Q1, COMPLEX ∗R)
118 {
119 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
120 i f ( idx < n)
121 {
122 V[ idx ] . x = V[ idx ] . x/n ;
123 V[ idx ] . y = V[ idx ] . y/n ;
124
125 R[ idx ] . x = ( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ] − mu)∗V[ idx ] . x − Q1[ idx ] .

x/n ;
126 R[ idx ] . y = ( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ] − mu)∗V[ idx ] . y − Q1[ idx ] .

y/n ;
127 }
128 }
129
130 g l o b a l void kernS3 ( i n t n , REAL tau , COMPLEX ∗V, COMPLEX ∗R)
131 {
132 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
133 i f ( idx < n)
134 {
135 R[ idx ] . x = (6 − tau − 3∗V[ idx ] . x )∗V[ idx ] . x∗R[ idx ] . x ;
136 R[ idx ] . y = (6 − tau − 3∗V[ idx ] . y )∗V[ idx ] . y∗R[ idx ] . y ;
137 }
138 }
139
140 g l o b a l void kernS4 ( i n t n , REAL eps i l on , REAL eta1 , REAL eta2 ,

REAL mu, REAL ∗Lap , COMPLEX ∗V, COMPLEX ∗Q1, COMPLEX ∗R)
141 {
142 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
143 i f ( idx < n)
144 {
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145 R[ idx ] . x = Lap [ idx ]∗(−( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ] − mu + e p s i l o n
∗ eta1 )∗Q1[ idx ] . x + R[ idx ] . x + e p s i l o n ∗( eta1 − eta2 ) ∗(mu∗V[ idx ] .
x + Q1 [ idx ] . x ) ) ;

146 R[ idx ] . y = Lap [ idx ]∗(−( e p s i l o n ∗ e p s i l o n ∗Lap [ idx ] − mu + e p s i l o n
∗ eta1 )∗Q1[ idx ] . y + R[ idx ] . y + e p s i l o n ∗( eta1 − eta2 ) ∗(mu∗V[ idx ] .
y + Q1 [ idx ] . y ) ) ;

147 }
148 }
149
150 //
151 // kern0 , kern1 , and kern2 a c c e l e r a t e po r t i on s o f the main

func t i on .
152 //
153
154 g l o b a l void kern0 ( i n t n , COMPLEX ∗U, COMPLEX ∗V, i n t d i r e c t )
155 {
156 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
157 i f ( idx < n)
158 {
159 U[ idx ] . x = V[ idx ] . x − d i r e c t ;
160 U[ idx ] . y = 0 . 0 ;
161 }
162 }
163
164 g l o b a l void kern1 ( i n t n , REAL dt , REAL ∗L , COMPLEX ∗A, COMPLEX

∗V, COMPLEX ∗R)
165 {
166 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
167 i f ( idx < n)
168 {
169 A[ idx ] . x = ( exp ( dt∗L [ idx ] ) ∗V[ idx ] . x + ( exp ( dt∗L [ idx ] ) − 1) /L [

idx ]∗R[ idx ] . x ) /n ;
170 A[ idx ] . y = ( exp ( dt∗L [ idx ] ) ∗V[ idx ] . y + ( exp ( dt∗L [ idx ] ) − 1) /L [

idx ]∗R[ idx ] . y ) /n ;
171 }
172 }
173
174 g l o b a l void kern2 ( i n t n , REAL dt , REAL ∗L , COMPLEX ∗A, COMPLEX

∗V, COMPLEX ∗R, COMPLEX ∗R2)
175 {
176 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
177 i f ( idx < n)
178 {
179 A[ idx ] . x = A[ idx ] . x/n ;
180 A[ idx ] . y = A[ idx ] . y/n ;
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181
182 V[ idx ] . x = A[ idx ] . x + ( exp ( dt∗L [ idx ] ) − 1 − dt∗L [ idx ] ) /( dt∗L [

idx ]∗L [ idx ]∗n) ∗(R2 [ idx ] . x − R[ idx ] . x ) ;
183 V[ idx ] . y = A[ idx ] . y + ( exp ( dt∗L [ idx ] ) − 1 − dt∗L [ idx ] ) /( dt∗L [

idx ]∗L [ idx ]∗n) ∗(R2 [ idx ] . y − R[ idx ] . y ) ;
184 }
185 }
186
187 //
188 // kernError computes the d i f f e r e n c e between s t a g e s that i s used

in the adapt ive time stepp ing
189 //
190
191 g l o b a l void kernError ( i n t n , COMPLEX ∗R, COMPLEX ∗V, COMPLEX ∗

A)
192 {
193 i n t idx = blockIdx . x∗blockDim . x+threadIdx . x ;
194 i f ( idx < n)
195 {
196 R[ idx ] . x = fabs (V[ idx ] . x − A[ idx ] . x ) ;
197 }
198 }
199
200 //
201 // warpReduce , reduce , warpReduceSum , and reduceSum p a r a l l e l i z e

the r educ t i on s nece s sa ry to c a l c u l a t e energy and e r r o r
202 //
203
204 d e v i c e void warpReduce ( v o l a t i l e REAL ∗ sdata , unsigned i n t t id ,

i n t b l o ckS i z e )
205 {
206 i f ( b l o ckS i z e >= 64) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 3 2 ] ) ) ;
207 i f ( b l o ckS i z e >= 32) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 1 6 ] ) ) ;
208 i f ( b l o ckS i z e >= 16) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 8 ] ) ) ;
209 i f ( b l o ckS i z e >= 8) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 4 ] ) ) ;
210 i f ( b l o ckS i z e >= 4) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 2 ] ) ) ;
211 i f ( b l o ckS i z e >= 2) sdata [ t i d ] = max( fabs ( sdata [ t i d ] ) , f abs (

sdata [ t i d + 1 ] ) ) ;
212 }
213
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214 g l o b a l void reduce (COMPLEX ∗ g idata , COMPLEX ∗g odata , i n t n ,
i n t b l o ckS i z e )

215 {
216 extern s h a r e d REAL sdata [ ] ;
217 unsigned i n t t i d = threadIdx . x ;
218 unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + t i d ;
219 unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
220 sdata [ t i d ] = 0 ;
221
222 whi l e ( i < n) { sdata [ t i d ] = max( fabs ( g i d a t a [ i ] . x ) , f abs ( g i d a t a [

i+b l o ckS i z e ] . x ) ) ; i += g r i d S i z e ; }
223 sync th r ead s ( ) ;
224
225 i f ( b l o ckS i z e >= 512) { i f ( t i d < 256) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 256 ] ) ) ; } sync th r ead s ( ) ; }
226 i f ( b l o ckS i z e >= 256) { i f ( t i d < 128) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 128 ] ) ) ; } sync th r ead s ( ) ; }
227 i f ( b l o ckS i z e >= 128) { i f ( t i d < 64) { sdata [ t i d ] = max( fabs (

sdata [ t i d ] ) , f abs ( sdata [ t i d + 6 4 ] ) ) ; } sync th r ead s ( ) ; }
228 i f ( t i d < 32) warpReduce ( sdata , t id , b l o ckS i z e ) ;
229 i f ( t i d == 0) g odata [ b lockIdx . x ] . x = sdata [ 0 ] ;
230 }
231
232 d e v i c e void warpReduceSum ( v o l a t i l e REAL ∗ sdata , unsigned i n t

t id , i n t b l o ckS i z e )
233 {
234 i f ( b l o ckS i z e >= 64) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 3 2 ] ;
235 i f ( b l o ckS i z e >= 32) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 1 6 ] ;
236 i f ( b l o ckS i z e >= 16) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 8 ] ;
237 i f ( b l o ckS i z e >= 8) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 4 ] ;
238 i f ( b l o ckS i z e >= 4) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 2 ] ;
239 i f ( b l o ckS i z e >= 2) sdata [ t i d ] = sdata [ t i d ] + sdata [ t i d + 1 ] ;
240 }
241
242 g l o b a l void reduceSum (REAL ∗ g idata , REAL ∗g odata , i n t n , i n t

b l o ckS i z e )
243 {
244 extern s h a r e d REAL sdata [ ] ;
245 unsigned i n t t i d = threadIdx . x ;
246 unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + t i d ;
247 unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
248 sdata [ t i d ] = 0 ;
249
250 whi l e ( i < n) { sdata [ t i d ] = g i d a t a [ i ] + g i d a t a [ i+b lo ckS i z e ] ; i

+= g r i d S i z e ; }
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251 sync th r ead s ( ) ;
252
253 i f ( b l o ckS i z e >= 512) { i f ( t i d < 256) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 2 5 6 ] ; } sync th r ead s ( ) ; }
254 i f ( b l o ckS i z e >= 256) { i f ( t i d < 128) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 1 2 8 ] ; } sync th r ead s ( ) ; }
255 i f ( b l o ckS i z e >= 128) { i f ( t i d < 64) { sdata [ t i d ] = sdata [ t i d ]

+ sdata [ t i d + 6 4 ] ; } sync th r ead s ( ) ; }
256 i f ( t i d < 32) warpReduceSum ( sdata , t id , b l o ckS i z e ) ;
257 i f ( t i d == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;
258 }
259
260 //
261 // FCHenergy computes the energy o f the s o l u t i o n U at each

t imestep
262 //
263
264 REAL FCHenergy ( dataBin &data , operBin oper , COMPLEX ∗U, REAL ∗

Energy , REAL ∗Delx , REAL ∗Dely , REAL ∗Delz , COMPLEX ∗LapU ,
COMPLEX ∗DelxU , COMPLEX ∗DelyU , COMPLEX ∗DelzU , cu f f tHand le
plan ) {

265
266 EXEC ( plan , U, U, CUFFT FORWARD) ;
267
268 kernE1<<< data . dimGrid , data . dimBlock>>>(data . n , U, oper . Lap ,

Delx , Dely , Delz , LapU , DelxU , DelyU , DelzU ) ;
269
270 EXEC( plan , LapU , LapU , CUFFT INVERSE) ;
271 EXEC( plan , DelxU , DelxU , CUFFT INVERSE) ;
272 EXEC( plan , DelyU , DelyU , CUFFT INVERSE) ;
273 EXEC( plan , DelzU , DelzU , CUFFT INVERSE) ;
274 EXEC( plan , U, U, CUFFT INVERSE) ;
275
276 kernE2<<< data . dimGrid , data . dimBlock>>>(data . n , data . ep s i l on ,

data . eta1 , data . eta2 , data . tau , Energy , U, LapU , DelxU , DelyU ,
DelzU ) ;

277
278 reduceSum<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f (

REAL)>>>(Energy , Energy , data . n , data . b l o c k s i z e ) ;
279
280 i n t nRed = data . n/( data . b l o c k s i z e ∗2) ;
281 whi l e (nRed > 1)
282 {
283 reduceSum<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗

s i z e o f (REAL)>>>(Energy , Energy , nRed , data . b l o c k s i z e ) ;
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284 nRed = nRed/( data . b l o c k s i z e ∗2) ;
285 }
286
287 cudaMemcpy( data . Energy h , Energy , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
288
289 re turn (∗ data . Energy h ) ;
290 }
291
292 //
293 // sub i s used to compute both s t ag e s o f the ETD−RK2 scheme
294 //
295
296 void sub ( dataBin &data , operBin oper , COMPLEX ∗V, COMPLEX ∗Q1,

COMPLEX ∗R, cu f f tHand le plan ) {
297
298 kernS1<<< data . dimGrid , data . dimBlock>>>(data . n , data . tau , V, Q1

) ;
299
300 EXEC( plan , V, V, CUFFT FORWARD) ;
301 EXEC( plan , Q1, Q1, CUFFT FORWARD) ;
302
303 cudaMemcpy( data . z f , V, s i z e o f (COMPLEX) , cudaMemcpyDeviceToHost ) ;
304
305 data . z f−>x = data . z f−>x / data . n ;
306 data . z f−>y = data . z f−>y / data . n ;
307
308 kernS2<<< data . dimGrid , data . dimBlock>>>(data . n , data . ep s i l on ,

data .mu, oper . Lap , V, Q1, R) ;
309
310 EXEC( plan , V, V, CUFFT INVERSE) ;
311 EXEC( plan , R, R, CUFFT INVERSE) ;
312
313 kernS3<<< data . dimGrid , data . dimBlock>>>(data . n , data . tau , V, R)

;
314
315 EXEC( plan , V, V, CUFFT FORWARD) ;
316 EXEC( plan , R, R, CUFFT FORWARD) ;
317
318 kernS4<<< data . dimGrid , data . dimBlock>>>(data . n , data . ep s i l on ,

data . eta1 , data . eta2 , data .mu, oper . Lap , V, Q1, R) ;
319
320 }
321
322 //
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323 // addNode adds a node to the l i nked l i s t that c o l l e c t s the energy
and time step s i z e s

324 //
325
326 void addNode ( s t r u c t node∗& t a i l , REAL ctime ) {
327 s t r u c t node∗ newNode = new node ;
328 newNode−>ctime = ctime ;
329 newNode−>energy = 0 . 0 ;
330 newNode−>next = NULL;
331 t a i l−>next = newNode ;
332 t a i l = newNode ;
333 }
334
335 //
336 // This i s where the main func t i on beg ins . To make sense o f the

code , begin here .
337 //
338
339 i n t main ( i n t argc , char ∗ const argv [ ] ) {
340 i f ( argc <=1 )
341 {
342 cout << ”Usage : ” << argv [ 0 ] << ” <f i l ename> <output o f f /

i n c r e a s i n g /even (0/1/2)>” << endl ;
343 e x i t (1 ) ;
344 }
345
346 t ime t t i c , toc ;
347 t ime t t i c2 , toc2 ;
348 time(& t i c ) ;
349 //
350 // I n i t i a l i z e nece s sa ry cons tant s
351 //
352 cout << s c i e n t i f i c ;
353 cout . p r e c i s i o n (10) ;
354 i n t i , j , k ;
355
356 fst ream myf i l e , myf i l e2 , myf i l e3 , myf i l e4 ;
357 s t r i ng s t r eam sstm ;
358 char data in [ 5 0 ] ;
359
360 REAL ctime , dtmax , Tmax, Tpicstep , TpicFactor , Lx , Ly , Lz , Ttol ,

Tfactor , Error ;
361 i n t Nx, Ny, Nz , Mx, My, Mz;
362
363 REAL tPic = 1 . 0 ;
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364 s t r u c t node∗ tEhead = NULL;
365 s t r u c t node∗ t E t a i l = NULL;
366
367 tEhead = new node ;
368 tEhead−>ctime = 0 . 0 ;
369 tEhead−>energy = 0 . 0 ;
370 t E t a i l = tEhead ;
371
372 s t r i n g f i l e i n , f i l eUout , f i l e t E o u t ;
373
374 dataBin data ;
375 operBin oper ;
376
377 //
378 // Read in a l l the nece s sa ry data from the f i l e g iven by the

user
379 //
380
381 myf i l e3 . open ( argv [ 1 ] , i o s : : in ) ;
382
383 i f ( myf i l e3 . i s open ( ) )
384 {
385 myf i l e3 . i gno r e (512 , ’= ’ ) ;
386 myf i l e3 >> data in ;
387 f i l e i n = data in ;
388 cout << ” I n i t cond f i l e = ” << f i l e i n << endl ;
389
390 myf i l e3 . i gno r e (512 , ’= ’ ) ;
391 myf i l e3 >> data in ;
392 f i l e U o u t = data in ;
393 cout << ”Write out s o l u t i o n f i l e = ” << f i l e U o u t << ” . dat” <<

endl ;
394
395 myf i l e3 . i gno r e (512 , ’= ’ ) ;
396 myf i l e3 >> data in ;
397 f i l e t E o u t = data in ;
398 cout << ”Write out time and energy f i l e = ” << f i l e t E o u t << ” .

dat” << endl ;
399
400 myf i l e3 . i gno r e (512 , ’= ’ ) ;
401 myf i l e3 >> data in ;
402 data . e p s i l o n = a t o f ( data in ) ;
403 cout << ” e p s i l o n = ” << data . e p s i l o n << endl ;
404
405 myf i l e3 . i gno r e (512 , ’= ’ ) ;
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406 myf i l e3 >> data in ;
407 data . tau = a t o f ( data in ) ;
408 data .mu = 2 − data . tau ;
409 cout << ” tau = ” << data . tau << endl ;
410
411 myf i l e3 . i gno r e (512 , ’= ’ ) ;
412 myf i l e3 >> data in ;
413 data . eta1 = a t o f ( data in ) ;
414 cout << ” eta1 = ” << data . eta1 << endl ;
415
416 myf i l e3 . i gno r e (512 , ’= ’ ) ;
417 myf i l e3 >> data in ;
418 data . eta2 = a t o f ( data in ) ;
419 cout << ” eta2 = ” << data . eta2 << endl ;
420
421 myf i l e3 . i gno r e (512 , ’= ’ ) ;
422 myf i l e3 >> data in ;
423 data . dt = a t o f ( data in ) ;
424 cout << ”dt = ” << data . dt << endl ;
425
426 myf i l e3 . i gno r e (512 , ’= ’ ) ;
427 myf i l e3 >> data in ;
428 dtmax = a t o f ( data in ) ;
429 cout << ”dtmax = ” << dtmax << endl ;
430
431 myf i l e3 . i gno r e (512 , ’= ’ ) ;
432 myf i l e3 >> data in ;
433 Tmax = a t o f ( data in ) ;
434 cout << ”Tmax = ” << Tmax << endl ;
435
436 myf i l e3 . i gno r e (512 , ’= ’ ) ;
437 myf i l e3 >> data in ;
438 Tpicstep = a t o f ( data in ) ;
439 cout << ” Tpicstep = ” << Tpicstep << endl ;
440
441 myf i l e3 . i gno r e (512 , ’= ’ ) ;
442 myf i l e3 >> data in ;
443 TpicFactor = a t o f ( data in ) ;
444 cout << ” TpicFactor = ” << TpicFactor << endl ;
445
446 myf i l e3 . i gno r e (512 , ’= ’ ) ;
447 myf i l e3 >> data in ;
448 Ttol = a t o f ( data in ) ;
449 cout << ” Ttol = ” << Ttol << endl ;
450
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451 myf i l e3 . i gno r e (512 , ’= ’ ) ;
452 myf i l e3 >> data in ;
453 Tfactor = a t o f ( data in ) ;
454 cout << ” Tfactor = ” << Tfactor << endl ;
455
456 myf i l e3 . i gno r e (512 , ’= ’ ) ;
457 myf i l e3 >> data in ;
458 Nx = a t o i ( data in ) ;
459 cout << ”Nx = ” << Nx << endl ;
460
461 myf i l e3 . i gno r e (512 , ’= ’ ) ;
462 myf i l e3 >> data in ;
463 Ny = a t o i ( data in ) ;
464 cout << ”Ny = ” << Ny << endl ;
465
466 myf i l e3 . i gno r e (512 , ’= ’ ) ;
467 myf i l e3 >> data in ;
468 Nz = a t o i ( data in ) ;
469 cout << ”Nz = ” << Nz << endl ;
470
471 myf i l e3 . i gno r e (512 , ’= ’ ) ;
472 myf i l e3 >> data in ;
473 Lx = a t o f ( data in ) ;
474 cout << ”Lx = ” << Lx << endl ;
475
476 myf i l e3 . i gno r e (512 , ’= ’ ) ;
477 myf i l e3 >> data in ;
478 Ly = a t o f ( data in ) ;
479 cout << ”Ly = ” << Ly << endl ;
480
481 myf i l e3 . i gno r e (512 , ’= ’ ) ;
482 myf i l e3 >> data in ;
483 Lz = a t o f ( data in ) ;
484 cout << ”Lz = ” << Lz << endl ;
485
486 myf i l e3 . i gno r e (512 , ’= ’ ) ;
487 myf i l e3 >> data in ;
488 data . b l o c k s i z e = a t o i ( data in ) ;
489 cout << ” Block s i z e = ” << data . b l o c k s i z e << endl ;
490 cout << ”Grid s i z e = ” << Nx∗Ny∗Nz/ data . b l o c k s i z e << endl ;
491 }
492 e l s e { cout << ” F i l e could not be read . ” << endl ; }
493
494 ctime = 0 . 0 ;
495
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496 tPic = TpicFactor ;
497
498 i f (∗ argv [ 2 ] == ’ 2 ’ )
499 {
500 tPic = Tpicstep ;
501 }
502
503 Mx = Nx/2 ;
504 My = Ny/2 ;
505 Mz = Nz/2 ;
506 data . n = Nx∗Ny∗Nz ;
507 data .mu = 2 − data . tau ;
508 data . dimBlock = data . b l o c k s i z e ;
509 data . dimGrid = data . n/ data . dimBlock . x ;
510
511
512 //
513 // Build the l a p l a c i a n array , and dynamical ly a l l o c a t e other

needed ar rays
514 //
515
516 REAL ∗xkvec , ∗ykvec , ∗ zkvec ;
517 xkvec = new REAL[Nx ] ;
518 ykvec = new REAL[Ny ] ;
519 zkvec = new REAL[ Nz ] ;
520
521 f o r ( i =0; i<Mx; i++)
522 {
523 xkvec [ i ] = i ∗2∗PI/Lx ;
524 xkvec [ i+Mx] = ( i−Mx) ∗2∗PI/Lx ;
525 }
526
527 f o r ( i =0; i<My; i++)
528 {
529 ykvec [ i ] = i ∗2∗PI/Ly ;
530 ykvec [ i+My] = ( i−My) ∗2∗PI/Ly ;
531 }
532
533 f o r ( i =0; i<Mz; i++)
534 {
535 zkvec [ i ] = i ∗2∗PI/Lz ;
536 zkvec [ i+Mz] = ( i−Mz) ∗2∗PI/Lx ;
537 }
538
539 REAL ∗Delx h , ∗Dely h , ∗Delz h , ∗Delx , ∗Dely , ∗Delz , ∗Energy ;
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540 data . Energy h = new REAL;
541 Delx h = new REAL[ data . n ] ;
542 Dely h = new REAL[ data . n ] ;
543 Delz h = new REAL[ data . n ] ;
544
545 f o r ( i =0; i<Nx; i++) {
546 f o r ( j =0; j<Ny; j++) {
547 f o r ( k=0; k<Nz ; k++)
548 {
549 Delx h [ k+Nz∗( j+Ny∗ i ) ] = xkvec [ i ] ;
550 Dely h [ k+Nz∗( j+Ny∗ i ) ] = ykvec [ j ] ;
551 Delz h [ k+Nz∗( j+Ny∗ i ) ] = zkvec [ k ] ;
552 }
553 }
554 }
555
556 cout << ”Del ope ra to r s b u i l t ” << endl ;
557
558 //
559 // I n i t i a l i z e a l l o f the ar rays that w i l l be used in f o u r i e r

transforms , and bu i ld the p lans nece s sa ry
560 //
561
562 i n t nBytes = s i z e o f (COMPLEX)∗data . n ;
563 cout << ”nBytes i s = ” << nBytes << endl ;
564 COMPLEX ∗U h , ∗U, ∗V, ∗A, ∗Q1, ∗R, ∗R2 , ∗LapU , ∗max ;
565
566 //
567 // Read in i n i t a l U data from f i l e i n
568 //
569
570 U h = new COMPLEX[ nBytes ] ;
571 data . max h = new COMPLEX;
572 data . z f = new COMPLEX;
573
574 myf i l e . open ( f i l e i n . c s t r ( ) , i o s : : in ) ;
575
576 i f ( my f i l e . i s open ( ) )
577 {
578 f o r ( i =0; i<data . n ; i++)
579 {
580 myf i l e . g e t l i n e ( datain , 50) ;
581 U h [ i ] . x = a t o f ( data in ) ;
582 U h [ i ] . y = 0 . 0 ;
583 }
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584 cout << ” I n i t i a l data read in s u c c e s s f u l l y ” << endl ;
585 } e l s e { cout << ” I n i t i a l data not read ” << endl ; }
586
587 myf i l e . c l o s e ( ) ;
588
589 cudaMalloc ( ( void ∗∗)&U, nBytes ) ;
590 cudaMalloc ( ( void ∗∗)&V, nBytes ) ;
591 cudaMalloc ( ( void ∗∗)&A, nBytes ) ;
592 cudaMalloc ( ( void ∗∗)&Q1, nBytes ) ;
593 cudaMalloc ( ( void ∗∗)&R, nBytes ) ;
594 cudaMalloc ( ( void ∗∗)&R2 , nBytes ) ;
595 cudaMalloc ( ( void ∗∗)&LapU , nBytes ) ;
596 cudaMalloc ( ( void ∗∗)&Energy , s i z e o f (REAL)∗data . n) ;
597
598 cudaMalloc ( ( void ∗∗)&oper . Lap , s i z e o f (REAL)∗data . n) ;
599 cudaMalloc ( ( void ∗∗)&oper . L , s i z e o f (REAL)∗data . n) ;
600 cudaMalloc ( ( void ∗∗)&Delx , s i z e o f (REAL)∗data . n) ;
601 cudaMalloc ( ( void ∗∗)&Dely , s i z e o f (REAL)∗data . n) ;
602 cudaMalloc ( ( void ∗∗)&Delz , s i z e o f (REAL)∗data . n) ;
603 cudaMalloc ( ( void ∗∗)&max , s i z e o f (COMPLEX)∗data . dimGrid . x/2) ;
604
605 cu f f tHand le plan ;
606 cu f f tP lan3d (&plan , Nx, Ny, Nz , TYPE) ;
607
608
609 cudaMemcpy( Delx , Delx h , s i z e o f (REAL)∗data . n ,

cudaMemcpyHostToDevice ) ;
610 cudaMemcpy( Dely , Dely h , s i z e o f (REAL)∗data . n ,

cudaMemcpyHostToDevice ) ;
611 cudaMemcpy( Delz , Delz h , s i z e o f (REAL)∗data . n ,

cudaMemcpyHostToDevice ) ;
612 cudaMemcpy(U, U h , nBytes , cudaMemcpyHostToDevice ) ;
613 cout << ” I n i t i a l data copied ” << endl ;
614
615 //
616 // Ca l cu la t e the constant ar rays Lap and L that w i l l be used

below
617 //
618 kernLapL<<< data . dimGrid , data . dimBlock>>>(data . n , data . ep s i l on ,

data . eta1 , data .mu, oper . Lap , oper . L , Delx , Dely , Delz ) ;
619 cout << ”Lap and L i n i t i a l i z e d ” << endl ;
620
621 sstm << f i l e t E o u t << ” . dat” ;
622 myf i l e4 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
623 myf i l e4 . p r e c i s i o n (15) ;
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624
625 tEta i l−>energy = FCHenergy ( data , oper , U, Energy , Delx , Dely ,

Delz , LapU , Q1, R, R2 , plan ) ;
626 myf i l e4 << ctime << ”\ t ” << tEhead−>energy << endl ;
627 cout << time << ”\ t ” << 0 .0 << ”\ t ” << tEta i l−>energy << ”\ t ” <<

(REAL) 0 .0 << endl ;
628
629 kern0<<< data . dimGrid , data . dimBlock>>>(data . n , V, U, (REAL) −1)

;
630
631 //
632 // whi l e loop governing time stepp ing
633 //
634 whi l e ( ctime < Tmax)
635 {
636 time(& t i c 2 ) ;
637
638 //
639 // Ca l cu la t e A and V
640 //
641
642 sub ( data , oper , V, Q1, R, plan ) ;
643
644 kern1<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt , oper .

L , A, V, R) ;
645
646 cudaMemcpy(A, data . z f , s i z e o f (COMPLEX) , cudaMemcpyHostToDevice

) ;
647
648 EXEC( plan , A, A, CUFFT INVERSE) ;
649
650 sub ( data , oper , A, Q1, R2 , plan ) ;
651
652 kern2<<< data . dimGrid , data . dimBlock>>>(data . n , data . dt , oper .

L , A, V, R, R2) ;
653
654 cudaMemcpy(V, data . z f , s i z e o f (COMPLEX) , cudaMemcpyHostToDevice

) ;
655
656 EXEC( plan , V, V, CUFFT INVERSE) ;
657 EXEC( plan , A, A, CUFFT INVERSE) ;
658
659 kernError<<< data . dimGrid , data . dimBlock>>>(data . n , R, V, A) ;
660

221



661 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f (
REAL)>>>(R, max , data . n , data . b l o c k s i z e ) ;

662 i n t nRed = data . n/( data . b l o c k s i z e ∗2) ;
663 whi l e (nRed > 1)
664 {
665 reduce<<< data . dimGrid , data . dimBlock , data . b l o c k s i z e ∗ s i z e o f

(REAL)>>>(max , max , nRed , data . b l o c k s i z e ) ;
666 nRed = nRed/( data . b l o c k s i z e ∗2) ;
667 }
668
669 cudaMemcpy( data . max h , max , s i z e o f (REAL) ,

cudaMemcpyDeviceToHost ) ;
670
671 Error = data . max h−>x ;
672
673 //
674 // Update time and update U to be the s o l u t i o n at the next

time step
675 //
676
677 ctime = ctime + data . dt ;
678
679 kern0<<< data . dimGrid , data . dimBlock>>>(data . n , U, V, 1) ;
680
681 tEta i l−>energy = FCHenergy ( data , oper , U, Energy , Delx , Dely ,

Delz , LapU , Q1, R, R2 , plan ) ;
682
683 time(&toc2 ) ;
684
685 myf i l e4 << ctime << ”\ t ” << tEta i l−>energy << endl ;
686 cout << ctime << ”\ t ” << data . dt << ”\ t ” << tEta i l−>energy <<

”\ t ” << d i f f t i m e ( toc2 , t i c 2 ) << endl ;
687
688 //
689 // Ca l cu la t e the adapt ive time step
690 //
691
692 data . dt = min ( data . dt∗min( Tfactor ∗ s q r t ( Ttol / Error ) , (REAL)

1 . 3 ) , dtmax) ;
693
694 i f ( abs ( ctime − tPic ) < 0.0000000001 && ∗argv [ 2 ] != ’ 0 ’ )
695 {
696 cudaMemcpy(U h , U, nBytes , cudaMemcpyDeviceToHost ) ;
697
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698 sstm << f i l e U o u t << ( i n t ) f l o o r ( tP ic / TpicFactor + 0 . 5 ) << ” .
dat” ;

699 myf i l e2 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
700 i f ( myf i l e2 . i s open ( ) )
701 {
702
703 myf i l e2 . p r e c i s i o n (15) ;
704 f o r ( i =0; i<data . n ; i++)
705 {
706 myf i l e2 << U h [ i ] . x << endl ;
707 }
708
709 }
710 cout << ” Writing out ” << sstm . s t r ( ) << endl ;
711 myf i l e2 . c l o s e ( ) ;
712 sstm . s t r ( ”” ) ;
713
714 i f (∗ argv [ 2 ] == ’ 1 ’ )
715 {
716 tPic += pow ( (REAL) 1 0 . 0 , (REAL) c e i l ( log10 ( tPic+TpicFactor )

)−1) ;
717 }
718 e l s e
719 {
720 tPic += Tpicstep ;
721 }
722 }
723 //
724 // Adjust the t imestep i f nece s sa ry
725 //
726 i f ( data . dt > (Tmax − ctime ) )
727 {
728 data . dt = Tmax − ctime ;
729 }
730
731 i f ( data . dt > ( tPic − ctime ) && ∗argv [ 2 ] != ’ 0 ’ )
732 {
733 data . dt = tPic − ctime ;
734 }
735
736 addNode ( tEta i l , ct ime ) ;
737
738 }
739
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740 tEta i l−>energy = FCHenergy ( data , oper , U, Energy , Delx , Dely ,
Delz , LapU , Q1, R, R2 , plan ) ;

741
742 //
743 // Write out f i n a l s o l u t i o n data
744 //
745
746 sstm << f i l e U o u t << ( i n t ) f l o o r (Tmax/ TpicFactor + 0 . 5 ) << ” . dat”

;
747 myf i l e2 . open ( sstm . s t r ( ) . c s t r ( ) , i o s : : out ) ;
748 i f ( myf i l e2 . i s open ( ) )
749 {
750 cudaMemcpy(U h , U, nBytes , cudaMemcpyDeviceToHost ) ;
751
752 myf i l e2 . p r e c i s i o n (15) ;
753 f o r ( i =0; i<data . n ; i++)
754 {
755 myf i l e2 << U h [ i ] . x << endl ;
756 }
757
758 }
759 cout << ” Writing out ” << sstm . s t r ( ) << endl ;
760 myf i l e2 . c l o s e ( ) ;
761 sstm . s t r ( ”” ) ;
762
763 whi l e ( tEhead != NULL)
764 {
765 t E t a i l = tEhead ;
766 tEhead = tEhead−>next ;
767 d e l e t e t E t a i l ; }
768
769 myf i l e4 << ctime << ”\ t ” << tEhead−>energy << endl ;
770 myf i l e4 . c l o s e ( ) ;
771 d e l e t e tEhead ;
772
773 //
774 // Clean up a l l the memory used on the GPU and CPU
775 //
776
777 cudaFree (U) ;
778 cudaFree (U h) ;
779 cudaFree (V) ;
780 cudaFree (A) ;
781 cudaFree (Q1) ;
782 cudaFree (R) ;
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783 cudaFree (R2) ;
784 cudaFree (LapU) ;
785 cudaFree ( oper . Lap) ;
786 cudaFree ( oper . L) ;
787 cudaFree (max) ;
788
789 cu f f tDe s t r oy ( plan ) ;
790
791 d e l e t e data . Energy h ;
792 d e l e t e data . max h ;
793 d e l e t e [ ] U h ;
794 d e l e t e [ ] xkvec ;
795 d e l e t e [ ] ykvec ;
796 d e l e t e [ ] zkvec ;
797 d e l e t e [ ] Delx h ;
798 d e l e t e [ ] Dely h ;
799 d e l e t e [ ] Delz h ;
800
801 time(&toc ) ;
802 cout << ”\n” << d i f f t i m e ( toc , t i c ) << endl ;
803
804 re turn 0 ;
805 }

./code/FCHExInt.cu
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