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ABSTRACT 
 

HIGHLY STEREOSELECTIVE INTERMOLECULAR 
HALOFUNCTIONALIZATION OF OLEFINS 

 
By 

 
Bardia Soltanzadeh 

Since the inception of organic chemistry more than a 200 years ago, 

halogenation of olefins has been a mainstay reaction.  Yet, this venerable 

reaction had not succumbed to an enantioselective process. Two major issues 

that have thwarted the development of asymmetric alkene halogenations are the 

rapid stereochemical degradation of chiral halonium ions by olefin-to-olefin 

halonium transfer, and by isomerization of halonium ions to the open β-

halocarbenium ions. The latter scenario changed in 2010, when our lab, among 

others, successfully demonstrated stereoselective reactions for the 

intramolecular halocyclization of alkenes with tethered nucleophiles. Not 

surprisingly, most early examples reported on the intramolecular capture of 

halonium ions via tethered nucleophiles; the proximity-driven rate enhancement 

of the cyclization step presumably outcompetes any stereorandomizing event. 

Enantioselectivities of >95:5 are routinely obtained with a variety of halonium 

precursors and nucleophiles. In contrast, enantioselective intermolecular 

halofunctionalizations have been more difficult to achieve due to reduced 

reaction rates, limited choice of compatible nucleophiles, and lack of 

regiochemical control. This dissertation highlights my efforts towards optimizing a 

variety of intermolecular 



halofunctionalization methodologies. First, our results that show excellent 

control of stereo and enantioselectivity in haloetherification and 

haloesterification of both activated and non-activated olefins will be 

discussed.  The resulting lessons from the latter were parlayed into 

developing a highly selective olefin dihalogenation, demonstrating the ability 

to overcome regiochemical scrambling through catalyst controlled process, as 

opposed to substrate control selectivity, which limits the chemistry to 

activated olefins.  Most recently, the chemistry has been extended to 

enantioselective haloamination of olefins, setting the stage for the synthesis 

of privileged moieties found in natural products, bioactive reagents, and 

pharmaceuticals. Finally, our preliminary mechanistic investigations suggest 

that a concerted mechanistic pathway is responsible for product formation. 

The dependence of the course of the reaction on the nature of the nucleophile 

leads to a suggested explanation for the observed divergence in product 

facial selectivity. 
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Chapter I: Highly Stereoselective Intermolecular 
Haloetherification and Haloesterification of Allyl Amides 

I-1 Introduction  
	
  

Methodologies for enantioselective alkene halofunctionalization have 

grown at a fast pace in recent years.1-43 The chiral carbon-halogen bond is a 

versatile motif in bioactive and natural compounds, and also of value in the 

traceless total synthesis of natural products. 44-46 

 

In the last 37 years, various catalytic enantioselective alkene 

functionalization reactions, such as epoxidation,47 dihydroxylation,48 

aziridination49 and others were successfully developed, exhibiting high 

stereoselectivity. Encouragingly, during the last seven years tremendous 

advances have been made in asymmetric halogenation of alkenes. There are 
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two different established methodologies for forming chiral halofunctionalized 

molecules, intramolecular and intermolecular halogenation (Figure I-2a). In 

halocyclization (intramolecular version), after the alkenes are activated with 

various halogen donors, the tethered nucleophiles capture the putative chiral 

halonium ions and deliver enantioenriched-halogenated products. In the latter 

case, the nucleophiles are not attached to the alkenes and intermolecularly trap 

the halonium ions.  

 

Although some excellent reports have shown a great deal of progress in 

the halocyclization area,5, 10, 13, 50-51 enantioselective intermolecular halogenation 

Figure I-2: (a) Intramolecular vs intermolecular halofunctionalization      
(b) Racemization of chiral halonium ion 
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still remains challenging due to poor levels of enantioselectivity and limited 

substrate scope.7 Two of the major issues in the development of intermolecular 

halofunctionalization are the rapid racemization of the chiral halonium ion by 

olefin-to-olefin transfer,52-53 and the isomerization of cyclic halonium ions to 

acyclic β-halocarbenium ions (Figure I-2b).32, 54 These two stereorandomizing 

events will be discussed in the next sections. Not surprisingly, the most early 

examples were reported on the intermolecular capture of halonium ions with 

tethered nucleophiles; the proximity rate enhancement of the cyclization step 

presumably competes with stereorandomizing (olefin to olefin transfer and 

isomerization) events. Enantioselectivities of more than 95:5 er are routinely 

obtained with a variety of halonium precursors and tethered nucleophiles in 

halocyclization reactions. 

I-1-1 Racemization of chiral halonium ion by olefin to olefin halenium 
transfer 
	
  

In 2010, Professor Denmark and his coworkers cleverly showed that the 

chiral bromonium ions undergo rapid stereochemical degradation by olefin-to-

olefin halenium ion transfer.52 Hexafluoroisopropyl alcohol (HFIP) was selected 

as a solvent to provide a strong ionizing medium, thus treatment of compound I-1 

with sodium acetate as a nucleophile forms product I-2 in high yield. The anti 

diastereoselectivity of product I-2 is evident for in-situ formation of bromonium ion 

(Figure I-3). It was shown that acetolysis of chiral compound I-1 with two 

equivalents n-Bu4NOAc in the presence of one equivalent of trans-4-octene I-3 
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and HFIP as solvent forms acetate product with 80% enantiospecificity (Figure I-

3). Interestingly, increasing the amount of n-Bu4NOAc to 5 equivalents led to 

enhancement in enantiospecificity to 94% es (Figure I-3). These results are 

consistent with the proximity rate increase of trapping bromonium ion in the 

presence of higher equivalents of nucleophiles, which can decrease the erosion 

of stereoselectivity caused by olefin-to-olefin halonium ion transfer. A similar 

experiment with chloronium ion shows 

 

 

racemization would not happen in the case of in situ formation of chloronium ion 

in the presence of excess amount of alkenes. The acetolysis of compound I-4 in 

Figure I-3: Partial stereorandomization of bromonium ion by olefin to olefin 
halenium ion transfer 
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the presence of n-Bu4NOAc and alkene I-3 produces product I-5 with 100% es 

(Figure I-3).  

Based on Denmark’s report, development of enantioselective 

cholorofunctionalization of alkenes is feasible. Unfortunately, the isomerization of 

active chloronium ion to β-chlorocarbenium ion can lead to erosion of 

stereoselectivity. Studies that have evidence for isomerization will be discussed 

in the next section. 

Olah and his coworkers reported landmark studies for trapping various 

halonium ions and characterizing them under super acid conditions.55 In one 

instance, the treatment of 1,2 dibromobutane I-6 or I-7 with antimony-

pentafluoride-sulfur dioxide at -78 °C forms bridged 1,2-

dimethylethylenebromonium ion (I-8 and I-9 in a ratio of 3:7). Warming up the 

reaction in the NMR test tube to -40 °C produces different bromonium ions. It 

was suggested that the bridged bromonium ion opens up to produce a carbenium 

ion, subsequently followed by 1,2-hydrogen shift and a 1,2-methyl shift to form 

compound I-11 (Figure I-4). 
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This transformation suggests that the bridged halonium ion and the acyclic 

β-bromenium ion are in rapid equilibrium. Interestingly, the trans and cis 1,2 

dimethylethylenebromonium ions (I-8 and I-9) were obtained in 7:3 ratio, 

respectively, regardless of super acid treatment with syn or anti dibromobutane 

(I-6 or I-7). This latter observation is in line with the expectation that the 

bromonium ion should exchanges via a rapid equilibrium and isomerizes to β-

bromenium ion (Figure I-4).  

In recent reports, Ohta and coworkers investigated the structure of 

chloronium and bromonium ions by isotopic perturbation of equilibrium.56 The 13C 

NMR shift was consistent with a rapid equilibrium rather than a singular structure 

such as cyclic halonium ion (Figure I-5). 

Figure I-4: Rapid equilibrium between cyclic and acyclic bromonium ion 
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Figure I-5: The isotopic perturbation of degenerate equilibrium 

 

Despite these mechanistic limits for developing intermolecular 

halofunctionalization reactions, a number of good reports have shown progress 

in this area. Intermolecular aminohalogenation,4, 36-37 haloesterification,34, 38 

halohydrin formation,39-41 and dihalogenation42-43 have all been reported. 

Nonetheless, alcohols have not been shown to be  viable nucleophiles in the 

reported transformation, despite the improvement seen in halocycloetherification 

1-1-2 Literature precedence for enantioselective intermolecular halo- 
functionalization of alkenes 
	
  

Tang and coworkers published the first enantioselective 

bromoesterification of unfunctionalized alkenes with moderate yield and 

enantioselectivity (up to 77% yield and 85:15 er).38 The chiral binol backbone 

based Brønsted acid I-18 and n-bromo succinamide I-19 were employed as a 

chiral catalyst and halonium source, respectively. An ion pair of chiral catalyst 

and halogen source (NBS) has been suggested to explain the stereoselectivity of 

this reaction. Although, this chemistry is the first asymmetric intermolecular 

bromoesterification, it is limited to cycloalkenes like I-16 as the substrate. 

Additionally, the reported enantioselectivities in most cases are lower than 75:25 

er. 
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Toste and coworkers disclosed chiral oxyfluorination of enamides using 

chiral phosphoric acid I-23 as a chiral catalyst.39 Selectofluor I-21 was employed 

as the fluorine donor, contains sufficient moisture to enable as hydroxyl 

nucleophile for in situ formation of hemiaminal (Figure I-7). Interestingly, both cis 

and trans enamide deliver oxy-fluorinated product in syn diastereoselectivity as a 

primary product with high enantioselectivity. As shown in this report that the yield 

and stereoselectivity for the syn products are promising, but it suffers in 

delivering anti oxyfluorinated products in high yield and enantioselectivity. 

Figure I-6: First asymmetric intermolecular bromoesterification catalyzed by 
chiral Brønsted acid 
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Ma and coworkers reported the catalytic asymmetric intermolecular 

bromohydroxylation of 2-aryl-substituted allylic alcohols I-24 with quinine-derived 

alkaloid I-29 as a chiral catalyst in 2013 (Figure I-7).40 Allylic alcohol I-24 reacts 

with boronic acid and forms boronate ester. The amino group of the chiral 

catalyst forms a complex with boron and increases the nucleophilicity of the 

remaining hydroxyl group on the boronate ester. In the mean time, NBS can get 

activated by the chiral catalyst and deliver the bromonium ion. This tight 

complexion of a substrate, chiral catalyst, and bromonium donor (Complex I-26) 

would produce cyclic boronate ester I-27; in the second step treating the crude 

mixture with H2O2 oxidized I-27 and formed chiral bromohydrin I-25 with high 

enantioselectivity (Figure I-8). The substrate scope shows these transformations 

Figure I-7: Phosphoric acid catalyst for oxyfluorination of enamide 
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are successful for 1,1- disubstituted allylic alkenes. However, the authors have 

not reported any other kind of allylic alcohols as substrates in this study. 

 

In 2013, Tang’s lab developed the enantioselective bromoesterification of 

allylic sulfonamides in the presence of (DHQD)2PHAL as the chiral catalyst.34 

Using triflate as the protecting group for amines plays an important role to tune 

the acidity of nitrogen–hydrogen bond, putatively forming the tighter hydrogen 

bond with phthalazine of (DHQD)2PHAL. On the other hand, employing CSA 

clearly improves the enantioselectivity. Based on these results the authors 

suggest that the nitrogen of the phthalazine ring in the (DHQD)2PHAL forms a 

hydrogen bond with the hydrogen atom of the allylic sulfonamide in the substrate. 

At the same time, one unit of the quinuclidine in the dimeric chinchona alkoxide 

catalyst activates the NBS, thus explaining the high enantioselectivity for this 

Figure I-8: Asymmetric bromohydroxylation of allyl alcohols by quinine-derived 
catalysts 
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transformation (see I-31, Figure I-9). The trans aryl allylic sulfonamides I-29 

deliver final products I-30 with moderate to high enantioselectivity (Figure I-9). 

Unfortunately, employing cis isomer of the aliphatic allyl sulfonamide results in 

bromo-esterified products with low yield and enantioselectivity. Also, nucleophiles 

other than benzoic acid were not evaluated in this report. 

Figure I-9: Enantioselective intermolecular bromoesterification of allylic 
sulfonamides 
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to accomplish the enantioselective iodohydroxylation on unfunctionalized 
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the presence of antimony pentachloride forms the chiral iodo sulfonium ion I-33 

in 76% yield (Figure I-10a).41 Optimization studies showed that treating 1.2-

N

MeO

R NHTf R NHTf

OBz

Br

(DHQD)2PHAL (20 mol%)
PhCO2H (1.1 equiv)

NBS (1.1 equiv)
(+)-CSA (20 mol%), rt, 12 h

CHCl3
I-30

14 examples
up to 82% yield

and 95:5 er

I-29

N N
OO

N

MeO

N H
Et

N

N
O

O

H
N
Tf

Br

H
Et

I-31 proposed working model



	
   12 

dihydronaphthalene I-34 with chiral dimethyl iodo sulfonium ion I-33, and 

subsequently quenching the reaction with water forms iodohydrin product I-35 in 

67% yield and 81:19 er (Figure I-10b). Developing chiral sulfur-derived halonium 

reagents as both chiral promoter and halogen donor is fascinating. However, the 

low enantioselectivity and narrow substrate scope is a shortcoming of this study. 

 

Despite this progress, challenges remain. First, alcohols are yet to be 

demonstrated as viable nucleophiles in intermolecular haloetherification despite 

the success seen in halo-cycloetherification reactions. Second, substrates with 

alkyl substituents on the alkene are known to afford poor to moderate levels of 

enantioselectivity at best. For example, the best enantioselectivity for aliphatic 

substrate in vicinal haloesterification was reported by Tang and his coworkers in 

60:40 er (Figure I-11a).34 Additionaly, Ma reported the enantioselective 

halohydrin synthesis with 84:16 er (Figure I-11b).40  Third, substrate scope 

studies were limited to ‘electronically biased’ alkenes and hence possible 

regioselectivity issues have remained unaddressed. Finally, none of the catalytic 
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halonium additions to isolated alkenes 
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systems were demonstrated to be promiscuous enough to allow for the use of 

different halenium sources and nucleophiles with the same substrates. 

 

We sought to develop an enantioselective intermolecular haloetherification 

reaction with the intention of both demonstrating the feasibility of this 

unprecedented transformation and addressing some of the limitations detailed 

above. The rest of this Chapter will deal with efforts to discover and optimiz the 

first enantio-, diastereo- and regioselective intermolecular chloroetherification of 

a variety of alkenes including those with no dominant bias for regioselectivity  (i.e. 

alkenes with alkyl substituents).  

 

 

Figure I-11: (a) Enantioselective bromoesterification of aliphatic alkenes (b) 
Chiral halohydrin synthesis of aliphatic olefins 
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I-2 Results and discussion 
	
  

I-2-1 Preliminary results 
	
  

I-2-1-1 TFE-incorporated products was a hint for development of a 
methodology for intermolecular halofunctionalization  
	
  

In 2010, our lab disclosed the first enantioselective chlorocyclization of 

alkenoic acid. Commercially available (DHQD)2PHAL as chiral organocatalyst 

and DCDPH (5,5-diphenyl-1,3-dichlorohydantoin) I-42 as chloronium donor were 

employed in this transformation. DCDPH is not commercially available. 

Nonetheless, our lab has developed the one-step synthesis of DCDPH from the 

corresponding commercially available hydantoin. In this chemistry, various 

lactone molecules were synthesized, with up to 89% yield and 95:5 er  (Figure I-

12a).28 

Later on, we demonstrated that the same catalytic system along with 

DCDMH I-45 with little modification could yield products from the enantioselective 

chlorocyclization of unsaturated amide I-43 as well. The facile, formation of 

dihydrooxazoles and dihydrooxazines can overcome many problems, most 

notably avoiding usage of the stoichiometric amount of chiral amino alcohols. In 

this work, we had indicated that the non-nucleophilic CF3CH2OH as the reaction 

medium was crucial for obtaining high yields and enantioselectivities for 

intramolecular cyclization of aryl substituted allyl amides. As reported, various 

dihydrooxazine rings I-44 with different substituents were synthesized, with up to 

90% yield and >99:1 er (Figure I-12b).16 
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In our prior work, we had demonstrated a highly diastereo- and 

enantioselective chlorocyclization of unsaturated amides to furnish 

dihydrooxazine and oxazoline heterocycles.16 The use of CF3CH2OH as the 

reaction medium was crucial for obtaining high enantioselectivities. In the 

attempted chlorocyclization of E-46a-Br under optimized reaction conditions, a-

47a-TFE-Br was isolated in 82:18 er and 35% yield (>10:1 dr and >10:1 rr) along 

with the desired product t-48a-Br (40%, 99.5:0.5 er; see Figure I-13a). The 

reader is referred to the next paragraph for a detailed explanation of our naming 

Figure I-12: An organocatalytic asymmetric chlorolactonization reaction of 
alkenoic acid 
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system for the starting materials and products in this chapter. The rate of 

intramolecular nucleophilic capture of the putative chloriranium ion by the 

pendant amide nucleophile for this substrate is presumably slow enough to allow 

for a competing intermolecular nucleophilic capture even by the weakly 

nucleophilic CF3CH2OH. In the event, a simple solvent-switch from CF3CH2OH to 

n-PrNO2 as the reaction medium alleviated the problem of chemodivergence, 

affording exclusively t-48a-Br in good yield and excellent enantioselectivity (77%, 

>99.5:0.5 er, Figure I-13b).16 While the enantioselectivity and the yield of a-47a-

TFE-Br were not synthetically useful, we were intrigued by the excellent 

diastereo- and regioselectivity of this by-product arising from the intermolecular 

nucleophilic capture of a sterically and electronically unbiased 

chloronium/chlorocarbenium ion intermediate. As such, this result represented a 

good starting point for developing a practical and general intermolecular 

chlorofunctionalization reaction of alkenes. 

We have opted to use a systematic naming system that enables the 

reader to identify the relevant components of the starting materials and products 

easily.  Since all starting materials are substituted allyl amides, they are defined 

as E or Z (where appropriate), followed by a number (46a, 46b, ...) that is unique 

to the substitution on the olefin. The naming is completed by defining the phenyl 

substituent of the amide moiety (NO2, Br, ...), which is always on the para 

position.  The naming of the intermolecular products precedes by 'a' or 's' (anti or 

syn), followed by a number (47a, 47b, ...) that corresponds to the substituent on 
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the parent olefin.  The third component (in italics) is the identity of the nucleophile 

(OMe, OH, ...), followed by the substituent on the phenyl group of the amide. The 

6-member ring intramolecular products are identified as either cis or trans ('c' or 

't'), followed by the number that corresponds to the substituent on the parent 

olefin (48a, 48b, ...), and then the identifier of the phenyl substituent for the 

amide.  The 5-member ring products are named as above, with the exception of 

having 'a' or 's' (anti or syn) that precedes the numbering (49a, 49b, ...).  
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I-2-1-2 Additive studies to improve enantioselectivity of chlorocyclization of 
amides lead to the development of intermolecular halofunctionalization 
	
  

In line with the above observation, additive studies were performed on the 

enantioselective allyl amide chlorocyclization reaction to understand the role of 

TFE as a crucial solvent for this transformation.16 Under optimized conditions, 

employing TFE as solvent produces cyclic product t-48b-Br in >99:1 er (Table I-

1, entry 1). Switching the solvent to acetonitrile erodes the enantioselectivity of 

the product to 90:10 er (Table I-1, entry 2). 

Figure I-13: (a) Discovery of an asymmetric intermolecular 
chloroetherification of allyl amides (b) Using Non-nucleophilic 1-nitropropane 
yielded cyclized products exclusively 
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Nonetheless, illuminating results were obtained when TFE was used as an 

additive for the reaction. As shown in Table I-1, the enantioselectivity of the 

chlorocyclized product t-48b-Br was enhanced drastically by employing 1 or 5 

equivalents of TFE as an additive (Table I-1, entry 3, 4).  

These results intrigued us to test ethanol as a solvent to see the effect of 

different alcohols in these reactions. However, employing ethanol as solvent 

forms the intermolecular chloroetherified product a-47b-OEt-Br in 58%yield and 

79:21 er along with cyclized t-48b-Br product (42% yield and 91:9 er, see Figure 

I-14).  As such, this result is in line with TFE-incorporated product that was 

discussed in the section above, and represented a good starting point for 

developing a practical and general intermolecular chlorofunctionalization reaction 

of alkenes. 

	
  

Entry Solvent Additive er%a Yield%b 

1 TFE None >99:1 89 
2 CH3CN None 90:10 84 
3 CH3CN 1 equiv TFE 96:4 87 
4 CH3CN 5 equiv TFE 98:2 89 

[a] Determined by NMR; [b] Determined by chiral HPLC 
 

Table I-1: Additive studies in chlorocyclization of allyl amides reaction 
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Figure I-14: Intermolecular chloroetherification of allyl amides 

 

I-2-2 Optimization of reaction variables 
	
  

I-2-2-1 Influence of the identity and stoichiometry of the chlorenium source 
on the stereoselectivity of the reaction. 
 

We chose the intermolecular reaction of E-46b-Br with a chlorenium 

source and EtOH as the test bed to optimize the process. (DHQD)2PHAL was 

employed as the chiral catalyst along with various chloronium sources.	
  With the 

exception of N-chlorophthalimide (NCP, entry 3, Table I-2), all other chlorenium 

sources gave complete conversion to products. The identity of the chlorenium 

source does not influence the ratio of 47b:48b in a significant manner (ratio was 

~6:4). Using 1.1 equivalent of DCDMH and DCDPH showed similar er (80:20) for 

product a-47b-OEt-Br (Table I-2, entries 1 and 2). Increasing the DCDMH 

loading to 2 equiv improved the enantiomeric ratio (entry 5). Further increase in 

the DCDMH loading to 5 or 10 equivalents did not lead to any improvement in the 

enantioselectivity (Table 2, entries 5 and 6) for a-47b-OEt-Br. 
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I-2-2-2 Influence of reaction solvent on enantioselectivity of chloro 
etherified products 
	
  

Using ethanol as a solvent gave products a-47b-OEt-Br and t-48b-Br in 

the ratio of 6:4 and enantiomeric ratio of 81:19 for a-47b-OEt-Br (entry 1, Table I-

3). Adding 10 equivalents of TFE decreased the enantioselectivity (entry 2). A 1:1 

MeCN-EtOH cosolvent mixture gave slightly improved enantioselectivity (entry 

3). Changing the ratio of MeCN to EtOH to 7:3 produced both products in 

equimolar amounts, but with higher er (entry 4, Table I-3). Finally, decreasing the 

Table I-2: Chlorenium source optimization 

	
  
Entry Source equiv of Cl+ Conv. % Ratioa 47b:48b er (47b)b,c 

1 DCDMH 1.1 100 6:4 80:20 

2 DCDPH 1.1 100 6:4 80:20 

3 NCP 1.1 0 nd 0 

4 NCSach 1.1 100 6:4 78:22 

5 DCDMH 2 100 6:4 81:19 

6 DCDMH 5 100 6:4 78:22 

7 DCDMH 10 100 6:4 78:22 

[a] Determined by NMR; [b] Determined by chiral HPLC: [c] for compound a-2b-

OEt-Br 
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temperature to -30 °C gave higher enantioselectivity of 84:16 er (entry 5, Table I-

3). 

 

I-2-2-3 Effect of substituents on the amide moiety in the chloro 
etherification reaction selectivity  
	
  

Other optimization studies were focused on varying the expandable amide 

moiety. In this study we used MeOH as nucleophile, and the diastreomeric ratio 

for acyclic haloetherified product was easily obtained with H-NMR.  

At ambient temperature both the desired chloroether product a-47b-OMe-

Br and the cyclized product t-48b-Br were observed (93% combined yield) in a 

1.8:1 ratio. In line with our prior studies, the cyclized product t-48b-Br had 

excellent enantioselectivity (96:4 er), whereas a-47b-OMe-Br exhibited lower 

Table I-3: Influence of co-solvent additives on the chemo- and 
stereoselectivity of the reaction 

	
  

Entry Temp Solvent Ratio of 47b:48ba er (47b) b,c 

1 -30 EtOH 6:4 81:19 

2 -30 EtOH with 10 equiv TFE 6:4 77:23 

3 -30 MeCN:EtOH(1:1) 6:4 81:19 

4 rt MeCN:EtOH (7:3) 1:1 82:18 

5 -30 MeCN:EtOH (7:3) 1:1 84:16 
[a] Determined by NMR; [b] Determined by chiral HPLC: [c] for compound a-
47b-OEt-Br  
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67:33 er. Lower temperatures and lower concentrations led to slightly improved 

enantioselectivity for a-47b-OMe-Br while not significantly improving the dr or the 

47b:48b ratio (see entries 2 and 3 in Table I-4). Further experimentation 

revealed that employing MeOH as a co-solvent in MeCN led to a significant 

improvement in the enantioselectivity of a-47b-OMe-Br (Table I-4, entry 4).  

Other studies focused on varying the expendable amide moiety. Changing 

the 4-bromobenzamide motifs to 4-methoxybenzamide gave practically identical 

results (entry 5 in Table I-4). Nonetheless, employing the electron deficient 4-

NO2-benzamide gave a significant improvement in the enantioselectivity of a-

47b-OMe-NO2 (92:8 er, entry 6, Table I-4). As evident from these preliminary 

results, although useful levels of enantioinduction were seen for the 

intermolecular chloroetherification of E-46b-NO2, the dr (3.4:1) as well the ratio of 

47b:48b (~1:1) were not ideal.  
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I-2-2-4 Reaction optimization for aliphatic substrates 

 
Gratifyingly, replacing the Ph substituent on the alkene in substrate E-46b-

Br with the aliphatic n-C3H7 group gave exclusively the desired intermolecular 

product a-47c-OMe-Br with near complete diastereo- and regioselectivity (>99:1 

dr and rr, see entry 1 in Table I-5) on employing the best conditions from the pilot 

studies. More importantly, a-47c-OMe-Br was isolated in 92% yield and 81:19 er, 

Table I-4:  Orienting studies for enantioselective intermolecular chloroetherification of 
E-46b-(Br/OMe/NO2) 

	
  

	
  
	
  

Entry Substrate Solvent %Yielda 47b:48bb dr (a-47b:s-47b)b er(47b)g er(48b)
g 

1c,e E-46b-Br MeOH 93 1.8:1 6.8:1 67:33 96:4 

2d,e E-46b-Br MeOH 94 1.8:1 6.8:1 73:27 98:2 

3f E-46b-Br MeOH 76 1.8:1 5.7:1 71:29 98:2 

4h,f E-46b-Br MeOH:MeCN 76 1.3:1 5.8:1 85:15 99:1 

5h,f E-46b-OMe MeOH:MeCN 86 1.3:1 5.0:1 83:17 97:3 

6h,f E-46b-NO2 MeOH:MeCN 85 1.1:1 3.4:1 92:8 96:4 

[a] Combined yield of a-47b, s-47b and 48b as determined by NMR analysis with 
MTBE as added external standard; [b] Determined by NMR; [c] The reaction occurs 
at room temperature [d] the reaction occurs at -30 °C [e] The concentration of 
reaction was 0.03 M [f] the concentration of reaction was 0.01 M  [g] Determined by 
chiral HPLC; [h] MeOH:MeCN ratio was 3:7.	
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and the formation of the cyclized product was suppressed to a mere 5%. Under 

the premise that decreasing the nucleophilicity of the amide might completely 

suppress the formation of the cyclized product, the 4-bromobenzamide was 

substituted with the 4-NO2-benzamide. Indeed, this change afforded exclusively 

a-47c-OMe-NO2 (entry 2, Table I-5) in 86% yield, 87:13 er, >20:1 rr, and >99:1 

dr. cis-Allylic amides were even better substrates for this chemistry as compared 

to the trans-allylic amide counterparts. Substrate Z-46c-NO2 gave the 

corresponding product s-47c-OMe-NO2 in 87% yield and 99:1 er (entry 3, Table 

I-5). Reactions that were run at ambient temperatures or with lower catalyst 

loadings showed no loss in the diastereo- and regioselectivity and only a small 

decrease in the enantioselectivity (97:3 er; see entries 4 and 5 in Table I-5). 

Nonetheless, the yields were lower (75–79%) owing to the formation of side 

products arising from the competing addition of MeCN across the alkene. While 

the lack of a cation-stabilizing group can explain the exquisite diastereoselectivity 

with aliphatic substrates, the origin of the regioselectivity with such an unbiased 

system is not easily explained. 
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I-2-3 Substrate scope for the intermolecular chloroetherification reaction 

I-2-3-1 Substrate with MeOH as the nucleophile 
	
  

In an effort to map out the generality of this transformation, a number of 

trans-disubstituted allyl amides were initially exposed to the optimized reaction 

conditions. Compounds E-46b-NO2 and E-46d-NO2 (Figure I-15) with aryl 

substituents on the alkene gave moderate isolated yields (due to competing 

chlorocyclization) and fair diastereoselectivity for the corresponding products a-

47b-OMe-NO2 and a-47d-OMe-NO2 (56% and 64% yields, respectively; ~3.4:1 

dr, mass balance in both cases was the cyclized product t-48b-NO2 and t-48d-

NO2, respectively, Figure I-15). Nonetheless, the chloroether products were 

Table I-5: Reaction optimization for aliphatic substrates. 

	
  
Entrya Substrate Temp °C Product Yield%b erd 

1 E-46c-Br -30 a-47c-OMe-Br 92c 81:19 

2 E-46c-NO2 -30 a-47c-OMe-NO2 86 87:13 

3 Z-46c-NO2 -30 s-47c-OMe-NO2 87 99.5:0.5 

4 Z-46c-NO2 24 s-47c-OMe-NO2 75 97:3 

5e Z-46c-NO2 -30 s-47c-OMe-NO2 79 97:3 

[a] The rr was >20:1 and dr was >99:1 in all instances; [b] Determined by NMR 
using MTBE as added external standard; [c] 5% of cyclized product was also seen 
by NMR; [d] Determined by chiral HPLC. [e] 2 mol% catalyst was used. 

 	
  



	
   27 

formed with good enantioselectivity. Trans-substrates with alkyl substituents on 

the olefin (a-47c/47a/47e-OMe-NO2) predictably gave products with exquisite 

levels of diastereo- and regioselectivity. Additionally, high yield and er was 

observed for a-47c-OMe-NO2 (R1=n-C3H7). The er dropped significantly on 

introduction of the bulky cyclohexyl group (see a-47a-OMe-NO2, 75:25 er). The 

benzyloxy substituted compound gave only moderate yields and rr (62%, 7:1 rr), 

although the enantioselectivity was good (Figure I-15, see a-47e-OMe-NO2, 

89:11 er).  
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Aryl substituted Z-alkenes were exceptional substrates, leading to the 

intermolecular product exclusively, in good yields (73% to 80%, Figure I-16), 

excellent regioselectivity (>99:1 rr) and high enantioselectivity (≥98:2 er, see 

Figure I-16, s-47b/47f/47g-OMe-NO2). Intriguingly, the diastereoselectivity 

progressively decreases going from a Ph substituent (3.3:1 dr for s-47b-OMe-

NO2) to the anisyl substituent (1:1 dr for s-47g-OMe-NO2, Figure I-16) with the p-

Figure I-15: Substrate Scope for intermolecular chloroetherification for trans 
allyl amides substrate 
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toluyl substituted compound Z-46f-NO2 giving an intermediate 1.3:1 dr. These 

results likely suggest an increased carbocation character at the benzylic position 

in the transition state with increasing electron density of the aryl substituent. 

Noteworthy, the minor diastereomer for each reaction still retains high levels of 

enantioselectivity (see values in parentheses, Figure 16, for products s-

47b/47f/47g-OMe-NO2). Z-alkyl substituted olefins afforded the desired products 

in near complete regio-, diastereo-, and enantioselectivity (see Figure 16, 

products s-47h/47c/47i/47e/47j-OMe-NO2). Trisubstituted alkene 46k-NO2 also 

gives the desired product in moderate yield and excellent enantioselectivity (59%, 

99:1 er).  
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Figure I-16:  Substrate scope of intermolecular chloroetherification for cis allyl 
amide substrates 
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I-1-3-2 Nucleophile scope for the intermolecular chloroetherification 
reaction 
 

Finally, we sought to explore the scope of this reaction with regards to the 

nucleophilic and electrophilic components (see Figure I-17). We were delighted to 

discover that a variety of alcohols and even carboxylic acids may be employed 

as viable nucleophiles in this chemistry with little or no modification of the 

optimized reaction conditions. Replacing MeOH with other alcohols such as 

ethanol, allyl alcohol, and propargyl alcohol as the co-solvents cleanly affords the 

desired products in >20:1 dr and ≥98:2 er (see s-47c-OEt-NO2, s-47c-OAllyl-NO2 

and s-47c-OPropargyl-NO2 in Figure I-17). These results demonstrate the 

feasibility of introducing diverse functional handles into the products using this 

chemistry, in addition to the highly stereoselective C-Cl and C-O bond 

installations during the course of the reaction.  

Acetic acid can be employed also as the nucleophilic co-solvent to furnish 

the corresponding chloroesters with excellent enantioselectivity with Z-, E-, as 

well as tri-substituted alkene substrates (≥93:7 er, see s-47c-OAc-NO2, a-47c-

OAc-NO2 and 47k-OAc-NO2 in Figure I-17). Employing water as the nucleophile 

leads directly to the corresponding chlorohydrins in excellent yields and ers (see 

s-47c-OH-NO2 and s-47h-OH-NO2 in Figure I-17).  
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Figure I-17: Nucleophile scope for the intermolecular 
chloroetherification reactiona 
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I-2-3-3 Substrate scope for asymmetric bromination of allyl amide 
substrates 

 
Finally, employing NBS in lieu of DCDMH leads to the corresponding 

bromoether and bromohydrin products in good yields and ers. The substrate in 

optimized condition along with NBS forms s-47c’-OMe-NO2 in 92% yield and 

99:1 er (Figure I-18). Combination of water as nucleophile and NBS as 

bromonium source is compatible with this chemistry and forms s-47c’-OH-NO2, 

a-47c’-OH-NO2 in 99.5:0.5 er and 85:15 er, respectively. Tri-substituted alkene 

46k-NO2 forms corresponding brominated product in 62% yield and 99.5:0.5 er 

(see 46k-OMe-NO2, Figure I-18, The mass balance for this reaction was cyclized 

product).  
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I-2-3-4 Substrate scope for the intermolecular chloroesterification reaction 
by employing quasi-enantiomeric catalyst 

 
The quasi-enantiomeric (DHQ)2PHAL, was also evaluated with different 

substrates, yielding enantiomeric products in comparable yields and selectivities 

(Figure I-19). The exception was the result with the least successful category of 

substrates (trans-substituted aryls) which forms ent-a-47b-OMe-NO2 in 75:25 er, 

Figure I-18: Substrate scope for asymmetric bromination of allyl 
amide substratesa 
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and does not mirror the (DHQD)2PHAL catalyzed reaction well, yielding product 

with lower than expected enantioselectivity. However, the cis allyl amide 

substrates (Z-46f-NO2 and Z-46c-NO2) gave practically identical results favoring 

the opposite enantiomeric antipode of the products (Figure I-19, ent-s-47f-OMe-

NO2 and ent-s-47c-OMe-NO2). Tri substituted alkene 46k-NO2 produced product 

end exactly mirrored the result with (DHQD)2PHAL catalyzed reaction well 

(Figure I-19). 
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It warrants emphasis that a large excess of the nucleophile (>100 equiv) is 

currently required to prevent the formation of cyclized products.  Our lab is 

currently in the process of addressing this limitation to enable the use of highly 

functionalized nucleophiles in this chemistry. 

Figure I-19: Substrate scope for the intermolecular chloroesterification 
reaction by employing quasi-enantiomeric catalyst 
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I-2-4 Product distribution arising due to substrate-control and catalyst-
control for the intermolecular chloroetherification reaction. 

 
The different ratios observed for the regioselectivity of the chiral 

chloroetherified products require an attempted rationalization. As shown in Figure 

I-20, the aryl substituted allyl amide forms a chiral product in 99:1 rr, but 

switching from aryl substituent to alkyl allyl amide, yields products with lower 

regioselectivity ratios (Figure I-20). MeOH as the nucleophile can open up the 

putative chloronium ion from both sites and forms two regioisomers. However, in 

the case of aryl substituents, one regioisomer is obtained due to benzylic 

stabilization of the carbocation. Interestingly unbiased alkene Z-46c-NO2 forms 

corresponding product with high regioselectivity (24:1 rr, s-47c-OMe-NO2, Figure 

I-20). The benzyloxy group (OBn) results in a drop in regioselectivity (7:1 rr, 

Figure I-20, s-47e-OMe-NO2,). However, adding one carbon restores the rr and 

yields product with 23:1 rr (Figure I-20, s-47j-OMe-NO2). These results show that 

the electron-donating group as a substituent can stabilize the carbocation and 

forms the product with higher regioselectivity. 



	
   38 

 

With these observations, we questioned whether the observed 

regioselectivity is only as a result of substrate control or the chiral catalyst 

Figure I-20: The regioselectivity for different products in enantioselective 
chloroetherification reaction 
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(DHQD)2PHAL has some role in determining the ratio of the two regio isomers.

  

Reactions run in the absence of any catalyst gave a mixture of numerous 

products for the intermolecular chloroetherification reaction of both E- and Z- allyl 

amides. In contrast, reactions run in the presence of (DHQD)2PHAL gave 

predominantly the desired chloroether product. The numerous products seen in 

the latter reactions were meticulously isolated and characterized. The Z-46c-NO2 

gave 3 major products. As seen from the HPLC trace of the crude reaction 

mixture, along with the desired product s-47c-OMe-NO2, the constitutional 

Figure I-21: Products distribution For Z-allyl amides 
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isomer s-50c-OMe-NO2 as well as the cyclized oxazoline product s-49c-NO2 was 

seen (Figure I-21). Under optimized reaction conditions that employed 

(DHQD)2PHAL, the major product was the chloroether s-47c-OMe-NO2. Small 

amount of the constitutional isomer s-50c-OMe-NO2 was seen; no cyclized 

products were observed. A similar analysis was also performed with the E-46c-

NO2. As seen from the scheme below, the non-catalyzed reaction gave 2 

constitutional isomers for both the chloroether product as well as the cyclized 

product. Although all these compounds were seen in the (DHQD)2PHAL 

catalyzed reaction as well, the selectivity for the desired chloroether product was 

significantly higher (Figure I-22).  
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Figure I-22: Product distribution for E-allyl amides 

	
  

I-2-5 Absolute stereochemistry of the chloroetherification reactions 
 

I-2-5-1 Absolute stereochemistry of the chloroetherification products 
derived from E- alkene 
	
  

Attention must be drawn to the fact that the Cl bearing stereocenter has 

the same chirality for products derived from either the cis or trans-alkene 

substrates. The absolute stereochemistry of s-47h-OH-NO2 and s-47c-OMe-NO2, 

and the relative stereochemistry of a-47c-OH-NO2 were established by single 

crystal X-ray diffraction.  Since the absolute stereochemistry of a-47c-OH-NO2 

could not be determined from X-ray analysis, we resorted to the chemical 

transformations detailed in Figure I-23 for proof of structure. This was verified by 
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the TPAP-NMO mediated oxidation of the diastereomeric chlorohydrins s-47c-

OH-NO2 and a-47c-OH-NO2, derived from substrates Z-46c-NO2 and E-46c-NO2, 

respectively (see Figure I-23).  Both substrates gave the chloroketone product 

with the same absolute stereochemistry (verified by both, HPLC and optical 

rotation). This is only possible if the face selectivity of the chlorenium delivery 

was the same for these two classes of substrates. 
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I-2-5-2 Stereodivergence in the formation of halohydrin and oxazoline 
products 
	
  

The intermolecular chloroetherification reaction of many substrates gave 

variable amounts of the chlorocyclized products in addition to the desired 

products.  Intriguingly, the Cl-bearing stereocenter of both these products formed 

Figure I-23: Determination of absolute stereochemistry of Cl-bearing 
stereocenter 
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in the same reaction had the opposite stereochemistry based on chemical 

transformations and corroborating crystallographic evidence detailed below. 

While the chloroether product had an R-configuration for the Cl-bearing 

stereocenter, the chlorocyclized product had an S-configuration.  With 

crystallographic evidence supporting the latter observation, we sought to 

unequivocally establish this divergence in stereoselectivity by chemical 

derivatization.  An attempted synthesis of halohydrin a-47b-OH-Br from substrate 

E-46b-Br gave the chlorocyclized product t-3b-Br (36%, 97:3 er) in addition to the 

desired product a-47b-OH-Br (43%, 82:18 er). The stereochemistry of the Cl 

bearing stereocenter of t-48b-Br was assigned as S based on our prior studies. 

The absolute stereochemistry of the Cl-bearing stereocenter in a-47b-OH-Br, on 

the other hand was inferred to be R (based on the crystal structures of s-47c-

OMe-NO2 and s-47h-OH-NO2 and chemical transformations illustrated in Figure 

I-24a). In order to unequivocally establish this stereodivergence, t-48b-Br was 

transformed to a-47b-OH-Br by means of a two-step transformation shown in 

Figure I-23a. Optical rotation as well as HPLC co-injection confirmed that it was 

indeed the enantiomer of a-47b-OH-Br that had resulted from this transformation 

(Figure I-24b). These results lead us to conclude that two distinct mechanisms 

are in play that leads to either the cyclized dihydrooxazine products or the 

desired intermolecular addition of the nucleophile and halenium ion across the 

alkene in the same reaction.	
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Figure I-24: (a) Stereodivergence in the formation of halohydrin and oxazoline 
products. (b) HPLC trace for halohydrins 

	
  

I-2-6 Experimental section 
	
  

I-2-6-1 General information 
 

Commercially available reagents were purchased from Sigma-Aldrich or 

Alfa-Aesar and used as received. CH2Cl2 and acetonitrile were freshly distilled 

over CaH2 prior to use.  THF was distilled over sodium-benzophenone ketyl.  All 

other solvents were used as purchased. 1H and 13C NMR were recorded on 500 

MHz Varian NMR machines using CDCl3 or CD3CN as solvent and were 

referenced to residual solvent peaks.  Flash silica gel (32-63 mm, Silicycle 60 Å) 
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was used for column chromatography.  Enantiomeric excess for all products was 

determined by HPLC analysis using DAICEL CHIRALCEL® OJ-H and OD-H or 

CHIRALPAK® IA and AD-H columns. Optical rotations of all products were 

measured in chloroform.  

I-2-6-2 General procedure for optimization of catalytic asymmetric 
intermolecular haloetherification/haloesterification of unsaturated amides 
 

The substrate (0.04 mmol, 1.0 equiv) was suspended in acetonitrile 

(MeCN, 2.8 mL) in a screw-capped vial equipped with a stir bar. The resulting 

suspension was cooled to -30 ° C in an immersion cooler. (DHQD)2PHAL (3 mg, 

10 mol%) and 1.2 mL of methanol or acetic acid was then introduced. After 

stirring for 2 min DCDMH (15.8 mg, 0.08 mmol, 2.0 equiv) or NBS (14.3 mg, 2.0 

equiv) was added. The stirring was continued at -30 °C till the reaction was 

complete (TLC). The reaction was quenched by the addition of saturated aq. 

Na2SO3 (1 mL) and diluted with DCM (3 mL). The organics were separated and 

the aqueous layer was extracted with DCM (3 × 3 mL). The combined organics 

were dried over anhydrous Na2SO4, concentrated and dissolved in 1 mL of 

CDCl3. An equivalent amount (0.04 mmol) of MTBE was added and the solution 

was analyzed by NMR to obtain the NMR yield of the desired product.  This 

solution was then concentrated in the presence of small quantity of silica gel. 

Column chromatography (SiO2/EtOAc – Hexanes gradient elution) gave the 

desired product. 
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Following modifications were used for halohydrin synthesis: MeCN:H2O ratio was 

9:1; Reaction temperature: -10 °C.  

I-2-6-3 General procedure for substrate scope analysis for catalytic 
asymmetric intermolecular haloetherification/haloesterification of 
unsaturated amides 
 

The substrate (0.1 mmol, 1.0 equiv) was suspended in acetonitrile (MeCN, 

7.0 mL) in a screw-capped vial equipped with a stir bar. The resulting suspension 

was cooled to -30 ° C in an immersion cooler. (DHQD)2PHAL (7.8 mg, 10 mol%) 

and 3.0 mL of methanol or acetic acid was then introduced After stirring for 2 min 

DCDMH (39.4 mg, 0.2 mmol, 2.0 equiv) or NBS (35.6 mg, 2.0 equiv) was added. 

The stirring was continued at -30 °C till the reaction was complete (TLC). The 

reaction was quenched by the addition of saturated aq. Na2SO3 (4 mL) and 

diluted with DCM (3 mL). The organics were separated and the aqueous layer 

was extracted with DCM (3 × 3 mL). The combined organics were dried over 

anhyd. Na2SO4 and concentrated in the presence of small quantity of silica gel. 

Column chromatography (SiO2/EtOAc – Hexanes gradient elution) gave the 

desired product. 

Following modifications were used for halohydrin synthesis: MeCN:H2O ratio was 

9:1; Reaction temperature: -10 °C.  

I-2-6-4 Procedure for gram scale catalytic asymmetric intermolecular 
haloetherification/haloesterification of unsaturated amides 
 

Z-1c-NO2 (1.0 g, 4.0 mmol, 1.0 equiv) was suspended in acetonitrile 

(MeCN, 14.0 mL) in a screw-capped vial equipped with a stir bar. The resulting 
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suspension was cooled to -30 ° C in an immersion cooler. (DHQD)2PHAL (311.6 

mg, 10 mol%), 7.0 mL of methanol was then introduced. After stirring for 2 min 

DCDMH (1500 mg, 8.0 mmol, 2.0 equiv) was added. The stirring was continued 

at -30 °C till the reaction was complete (TLC). The reaction was quenched by the 

addition of saturated aq. Na2SO3 (20 mL) and diluted with DCM (15 mL). The 

organics were separated and the aqueous layer was extracted with DCM (3 × 15 

mL). The combined organics were dried over anhyd. Na2SO4 and concentrated in 

the presence of silica gel. Column chromatography (SiO2/EtOAc – Hexanes 

gradient elution) gave the desired product. 

Following modifications were used for gram scale synthesis of halohydrin s-2c-

OH-NO2: MeCN:H2O ratio was 9:1 (20 mL); catalyst loading: 2 mol% 

(DHQD)2PHAL, Reaction temperature: -10 °C.  

Allyl alcohols I-52 was synthesized from the corresponding aldehydes or 

ketone by a Horner-Wadsworth-Emmons (HWE) olefination reaction follow by 

DIBAL reduction of resulting ester.16 
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I-2-6-5 Synthesis of unsaturated amide substrates for 
chlorofunctionalization57-58 
	
  
Figure I-25: General procedure for synthesis of substrates 

	
  
Allyl alcohols I-52 (1.0 equiv), phthalimide (1.1 equiv) and PPh3 (1.1 equiv) 

was added to the reaction vessel and dissolved in THF (5 mL/mmol). The flask 

was immersed in an ice bath and DIAD (1.1 equiv) was added drop wise. After 

TLC analysis revealed the complete consumption of starting material (∼30 min), 3 

equivalents of hydrazine hydrate was added to the reaction vessel and the 

resulting suspension was stirred overnight at room temprature. The reaction was 

diluted with water, concentrated HCl (3 mL) was added, and the resulting 

suspension was stirred for further 30 min at ambient temperature. The 

precipitated solids were filtered and the filter cake was washed with 10% aq. HCl 

(2 × 2 mL). The combined filtrates were washed with ether (3 × 5 mL) and the 

aqueous phase was concentrated under reduced pressure giving the amine salts 

I-53, which were used in the next reaction without any purification.  

A solution of crude ammonium chloride salt I-53 from the previous step (1 

equiv), triethyl amine (5 equiv) and catalytic amount of DMAP in THF (20 mL) 

were cooled in an ice bath. To this suspension was added p-nitro benzoyl 

chloride (1.5 equiv). After the addition was completed, the reaction was warmed 
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to room temperature. After 3 h, the reaction was quenched with methanol (1.0 

mL) and then diluted with an equal amount of water, concentrated under reduced 

pressure, and extracted with DCM (3 × 25 mL). The combined organic layer was 

washed with brine (1 × 20 mL), dried over anhyd. Na2SO4 and concentrated 

under reduced pressure in the presence of silica gel. Column chromatography 

(EtOAC-Hexanes gradient elution) gave the desired products (E-

(46a,46b,46c,46d,46e)-NO2, Z-(46c,46h,46i)-NO2, 46k-NO2). 

I-2-6-6 General procedure for synthesis of aromatic Z-allyl amides 
	
  
Figure I-26:  General procedure for synthesis of aromatic Z-allyl amides 

 

Iodo benzene I-54 (1.0 equiv) and propargyl alcohol was dissolved in 

triethylamine (10 mL/mmol) at room temperature after which CuI (0.2 equiv) and 

Pd(PPh3)Cl2 (5 mol%) were added to reaction vessel. After TLC analysis 

revealed consumption of starting material, the reaction was diluted with water, 

concentrated under reduced pressure, and extracted with DCM (3 × 25 mL). The 

 Z-(46b,46f,46g)-NO2

I
OH
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+
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combined organic layer was washed with brine (1 × 20 mL), dried over anhyd. 

Na2SO4 and concentrated under reduced pressure in the presence of silica gel. 

Column chromatography (20% EtOAC-Hexanes gradient elution) gave the 

desired products I-56. (70-85 % yield for different substrates)  

3-Phenylprop-2-yn-1-ol I-56 (1.0 equiv), palladium on barium sulfate (10 wt%) 

and quinoline were dissolved in methanol (10 mL/mmol). The reaction vessel 

was purged with hydrogen gas and then stirred under balloon pressure of H2. 

When GC analysis revealed complete consumption of starting material, the 

catalyst was filtered and the filtrate was concentrated. Column chromatography 

(EtOAC-Hexanes gradient elution) gave the desired products (I-57). 

Allyl amides Z-(46b,46f,46g)-NO2 were synthesized as reported 

previously.16  
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I-2-6-7 General procedure synthesis of substrates Z-46e-NO2 – Z-46j-NO2 
	
  
Figure I-27: General procedure for the synthesis of substrates Z-46e-NO2 – Z-
46j-NO2 

 

Alkyne I-58 (1.0 equiv) was dissolved in THF in a flamed dried round 

bottom flask. n-BuLi (1.1 equiv) was added to cooled solution at -78 °C. The 

reaction was then warmed to 0 °C.  After 30 min paraformaldehyde (1.2 equiv) 

was added in a single portion at -78 °C and the reaction was warmed to room 

temperature. After 2 h, the reaction was quenched with sat. aq. NH4Cl solution 

(15.0 mL). The mixture was diluted with water and concentrated under reduced 

pressure and then extracted with DCM (3 × 10 mL). The combined organic layer 

was washed with brine (1 × 10 mL), dried over anhyd. Na2SO4, and concentrated 

under reduced pressure in the presence of silica gel. Column chromatography 

(EtOAC-Hexanes gradient elution) gave the desired products I-59. 

The Z allylic alcohol I-60 was synthesized from alkynol I-59 by a Lindlar reduction 

that was reported in page 49. 
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Allyl amides Z-46e-NO2, Z-46j-NO2 were synthesized as reported previously.16  

I-2-6-8 Analytical data for products 
 
a-47b-OMe-NO2: N-((2R,3S)-2-chloro-3-methoxy-3-phenylpropyl)-4-

nitrobenzamide 

  

Rf : 0.20 ( 30%EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.88 (d, J = 9.0 Hz, 2H), 

7.40-7.33 (m, 5H), 6.82 (br s, 1H), 4.45 (d, J = 4.5 Hz, 1H), 4.25-4.22 (m, 1H), 

4.11-4.06 (m, 1H), 3.66-3.61 (m, 1H), 3.34 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.26, 149.64, 139.66, 136.87, 137.22, 128.76, 

128.12, 127.18, 123.87, 86.33, 62.60, 57.98, 42.54 

HRMS analysis (ESI): Calculated for [M+H]+:  C17H18ClN2O4: 349.0955; Found: 

349.0950 

Resolution of enantiomers: DAICEL Chiralcel® Oj-H column, 20% IPA-Hexanes, 

1.0 mL/min, 265 nm, RT1 (minor) = 27.0 min, RT2 (major) = 30.1 min 

 [α]D20 = +46.7 (c 0.5, CHCl3, er = 92:8) 

 

a-47d-OMe-NO2: N-((2R,3S)-2-chloro-3-(4-fluorophenyl)-3-methoxypropyl)-4-

nitrobenzamide 

H
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NO2
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Cl
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Rf : 0.19 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.91 (d, J = 9.0 Hz, 2H), 

7.33-7.30 (m, 2H), 7.09-7.06 (m, 2H), 6.77 (br s, 1H), 4.38 (d, J = 4.5 Hz, 1H) 

4.19-4.18 (m, 1H), 4.13-4.09 (m, 1H), 3.65-3.63 (m, 1H), 3.31 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.32, 149.65, 139.81, 133.74, 129.08 (d, JCF = 

30 Hz) 128.12, 123.91, 115.81, 115.63, 85.55, 62.79, 57.79, 42.77 

HRMS analysis (ESI): Calculated for [M+H]+: C17H17ClFN2O4: 367.0861; Found: 

367.0844 

Resolution of enantiomers: CHIRALCEL OJ-H 12% IPA-Hexane, 0.7 ml/min, RT1 

(minor) = 64.6, RT2 (major) = 69.6; [α] D 20 = -5.0 (c 0.1, CHCl3, er = 89:11) 

 

a-47c-OMe-NO2: N-((2R,3S)-2-chloro-3-methoxyhexyl)-4-nitrobenzamide 

 

Rf : 0.38 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 

7.24 (br s, 1H), 4.16-4.10 (m, 2H), 3.60-3.56 (m, 1H), 3.49-3.47 (m, 4H), 1.68-

1.62 (m, 2H), 1.54-1.35 (m, 2H), 0.95 (m, 3H) 
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 13C NMR (125 MHz, CDCl3) δ 165.40, 149.70, 139.86, 128.14, 123.90, 83,90, 

61.78, 59.37, 42.92, 33.69, 18.46, 14.09 

HRMS analysis (ESI): Calculated for [M-H]¯:  C14H18ClN2O4: 313.0955; Found: 

313.0953 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 7% IPA-Hexanes, 

0.5 mL/min, 254 nm, RT1 (major) = 32.6 min, RT2 (major) = 34.7 min. 

[α]D20 = -30 (c 0.25, CHCl3, er = 87:13) 

 

a-47a-OMe-NO2: N-((2R,3S)-2-chloro-3-cyclohexyl-3-methoxypropyl)-4-

nitrobenzamide 

 

Rf : 0.36 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 

7.00 (br s, 1H), 4.33-4.30 (m, 1H), 4.15-4.10 (m, 1H), 3.63-3.58 (m, 4H), 3.22-

3.20 (dd, J =7.0, 4.0 Hz 1H), 1.94-1.91(m, 1H), 1.77-1.74 (m, 2H), 1.68-1.63 (m, 

2H), 1.27-1.05 (m, 6H) 

13C NMR (125 MHz, CDCl3) δ 165.40, 149.69, 139.91, 128.12, 123.88, 89.50, 

62.64, 60.87, 42.71, 41.32, 29.67, 28.70, 26.20, 25.99, 25.86 

HRMS analysis (ESI): Calculated for [M-H]¯: C17H22ClN2O4: 353.1268; Found: 

353.1261 
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Resolution of enantiomers: DAICEL Chiralcel® OJ-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 11.8 min, RT2 (minor) = 16.1 min. 

[α]D20 = -4.0 (c 0.6, CHCl3, er = 75:25) 

 

a-47e-OMe-NO2: N-((2R,3S)-4-(benzyloxy)-2-chloro-3-methoxybutyl)-4-

nitrobenzamide 

 

Rf: 0.16 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.25 (d, J = 9.0 Hz, 2H), 7.85 (d, J = 9.0 Hz, 2H), 

7.35-7.29, (m, 5H), 6.87 (br s, 1H), 4.56 (d, J = 1 Hz, 2H), 4.36-4.33 (m, 1H), 

3.99-3.95 (m, 1H), 3.83-3.79 (m, 1H), 3.75-3.72 (dd, J=10.0, 5.0 Hz, 1H), 3.69-

3.66 (dd, J=10.0, 5.0 Hz, 1H), 3.49 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.24, 149.60, 139.78, 137.45, 128.55, 128.11, 

128.02, 127.83, 123.83, 82.33, 73.76, 68.17, 59.11, 59.08, 24.90 

HRMS analysis (ESI): Calculated for [M-H]¯: C19H20ClN2O5: 391.1061; Found: 

391.1057 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 20% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 11.0 min, RT2 (minor) = 11.8 min. 

[α]D20 = +5.2 (c 0.5, CHCl3, er = 88:12) 
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s-47b-OMe-NO2: N-((2R,3R)-2-chloro-3-methoxy-3-phenylpropyl)-4-

nitrobenzamide 

 

Rf : 0.22 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 2H), 7.86 (d, J = 9.0 Hz, 2H), 

7.41-7.24 (m, 5H), 6.57 (br s, 1H), 4.41 (d, J = 4.5 Hz, 1H), 4.29-4.28 (m, 1H), 

4.00-3.95 (m, 1H), 3.56-3.52 (m, 2H), 3.27(s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.32, 149.75, 139.66, 136.83, 123.84, 128.68, 

128.13, 127.49, 123.87, 85.03, 63.63, 57.44, 43.80 

HRMS analysis (ESI): Calculated for [M+H]+: C17H18ClN2O4: 349.0955; Found: 

349.0955 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 22.8 min, RT2 (minor) = 29.9 min. 

[α]D20 = -8.0 (c 0.1, CHCl3, er = 99.5:0.5) 

 

a-47f-OMe-NO2: N-((2R,3R)-2-chloro-3-methoxy-3-(p-tolyl)propyl)-4-

nitrobenzamide 

 

Rf : 0.27 (30% EtOAc in hexanes, UV) 
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1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.89 (d, J = 9.0 Hz, 2H), 

7.22-7.18 (m, 4H), 6.86 (br s, 1H), 4.24 (d, J = 5.5 Hz, 1H), 4.23-4.20 (m, 1H), 

4.10-4.05 (m, 1H), 3.65-3.60 (m, 1H), 3.33 (s, 3H), 2.34 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.27, 149.67, 139.64, 138.74, 133.73, 129.41, 

128.13, 127.38, 123.86, 84.94, 63.72, 57.29, 43.75, 21.21 

HRMS analysis (ESI): Calculated for [M-H]¯: C18H18ClN2O4: 361.0955; Found: 

361.0955 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 265 nm, RT1 (major) = 13.6 min, RT2 (minor) = 16.6 min. 

[α]D20 = +14.9 (c 0.7, CHCl3, er = 97:3) 

 

s-47f-OMe-NO2: N-((2R,3R)-2-chloro-3-methoxy-3-(p-tolyl)propyl)-4-

nitrobenzamide 

 

Rf : 0.27 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.85 (d, J = 9.0 Hz, 2H), 

7.22-7.10 (m, 4H), 6.55 (br s, 1H), 4.39 (d, J = 5.0 Hz, 1H), 4.38-4.24 (m, 1H), 

3.95-3.94 (m, 1H), 3.55-3.50 (m, 1H), 3.30 (s, 3H), 2.35 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.22, 149.63, 139.91, 138.63, 134.15, 129.46, 

128.12, 127.10, 123.85, 86.22, 62.65, 57.86, 42.56, 21.19 
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HRMS analysis (ESI): Calculated for [M-H]¯: C18H18ClN2O4: 361.0955; Found: 

361.0955 

Resolution of enantiomers: DAICEL Chiralcel® OD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 17.8 min, RT2 (minor) = 25.0 min. 

[α]D20 = -7.1 (c 0.6, CHCl3, er = 99:1) 

 

47g-OMe-NO2: N-2-chloro-3-methoxy-3-(4-methoxyphenyl)propyl)-4-

nitrobenzamide (note:  the relative stereochemistry of the two diastereomeric 

products below was not identified.) 

 

Rf : 0.16 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 9.0 Hz, 2H), 7.87 (d, J = 9.0 Hz, 2H), 

7.28 (d, J = 8 Hz, 2H), 6.92 (d, J = 8 Hz, 2H), 6.57 (br s, 1H), 4.37 (d, J = 5.5 Hz, 

1H), 4.27-4.23 (m, 1H), 3.96-3.92 (m, 1H), 3.80 (s, 3H), 3.53-3.48 (m, 1H), 3.29 

(s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.24, 159.87, 149.64, 139.89, 129.09, 128.44, 

128.13, 123.87, 114.10, 85.91, 62.79, 57.70, 55.28, 42.67 

HRMS analysis (ESI): Calculated for [M-H]¯: C18H18ClN2O5 377.0904; Found: 

377.0899 

Resolution of enantiomers: DAICEL Chiralcel® OD-H column, 2% IPA-Hexanes, 

01.0 mL/min, 254 nm, RT1 (minor) = 21.6 min, RT2 (major) = 25.7 min. 
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[α]D20 = +17 (c 0.25, CHCl3, er = 99:1) 

 

epi-47g-OMe-NO2:, N-((2R,3R)-2-chloro-3-methoxy-3-(4-methoxyphenyl)propyl)-

4-nitrobenzamide 

 

Rf : 0.16 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.90 (d, J = 9.0 Hz, 2H), 

7.26 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.85 (br s, 1H), 4.39 (d, J = 6.0 

Hz, 1H) 4.22-4.18 (m, 1H), 4.11-4.06 (m, 1H), 3.80 (s, 3H), 3.65-3.60 (m, 1H), 

3.31 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.27, 159.97, 149.68, 139.63, 128.69, 128.12, 

123.86, 114.08, 84.66, 63.83, 57.18, 55.27, 43.71 

HRMS analysis (ESI): Calculated for [M-H]¯: C18H18ClN2O5 377.0904; Found: 

377.0901 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 20% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 11.9 min, RT2 (minor) = 13.8 min. 

[α]D20 = -13.0 (c 0.25, CHCl3, er = 92:8) 

 

s-47h-OMe-NO2: N-((2R,3R)-2-chloro-3-methoxypentyl)-4-nitrobenzamide 
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Rf : 0.20 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 9.0 Hz, 2H), 7.94 (d, J = 9.0 Hz, 2H), 

6.83 (br s, 1H), 4.28-4.25 (m, 1H), 4.14-4.09 (m, 1H), 3.60-3.51 (m, 1H), 3.46 (s, 

3H), 3.61-3.34 (m, 1H), 1.75-1.69 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.49, 149.69, 139.69, 128.16, 123.90, 84.10, 

60.96, 58.21, 43.92, 22.90, 9.92 

HRMS analysis (ESI): Calculated for [M+H]+: C13H16ClN2O4 299.0799; Found: 

299.0796 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 7% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 22.2 min, RT2 (major) = 24.7 min. 

[α]D20 = +30.0 (c 0.39, CHCl3, er = 98:2) 

 

s-47c-OMe-NO2: N-((2R,3R)-2-chloro-3-methoxyhexyl)-4-nitrobenzamide 

 

Rf : 0.25 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 

6.79 (br s, 1H), 4.25-4.23 (m, 1H), 4.13-4.08 (m, 1H), 3.61-3.55 (m, 1H), 3.45 -

3.41(m, 4H), 1.68-1.62 (m, 2H), 1.54-1.35 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H) 
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13C NMR (125 MHz, CDCl3) δ 165.44, 149.74, 139.73, 128.14, 123.90, 82,70, 

61.04, 58.27, 43.78, 32.08, 18.90, 14.04 

HRMS analysis (ESI): Calculated for [M+H]+: C14H20ClN2O4: 315.1112; Found: 

315.1116 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 12.1 min, RT2 (minor) = 14.0 min. 

[α]D20 = +19.0 (c 0.1, CHCl3, er = 99.5:0.5) 

Absolute stereochemistry was determined 

by single crystal X-ray diffraction (XRD). 

Crystals for XRD were obtained by 

crystallization from CH2Cl2 layered with 

hexanes in a silicone-coated vial.   

 

ent-s-47c-OMe-NO2: N-((2S,3S)-2-chloro-3-methoxyhexyl)-4-nitrobenzamide 

 

Rf : 0.25 (30% EtOAc in hexanes, UV) 64% yield  with  (DHQ)2PHAl 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 

6.79 (br s, 1H), 4.25-4.23 (m, 1H), 4.13-4.08 (m, 1H), 3.61-3.55 (m, 1H), 3.45 -

3.41(m, 4H), 1.68-1.62 (m, 2H), 1.54-1.35 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H) 
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13C NMR (125 MHz, CDCl3) δ 165.44, 149.74, 139.73, 128.14, 123.90, 82,70, 

61.04, 58.27, 43.78, 32.08, 18.90, 14.04 

HRMS analysis (ESI): Calculated for [M+H]+: C14H20ClN2O4: 315.1112; Found: 

315.1116 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 11.4 min, RT2 (major) = 14.4 min. 

[α]D20 = -19.8 (c = 0.5, CHCl3, er = 95.0:5.0) 

 

 

 

s-47i-OMe-NO2: N-((2R,3R)-2-chloro-3-methoxynonyl)-4-nitrobenzamide 

 

Rf : 0.30 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.33 (d, J = 9.0 Hz, 2H), 7.97 (d, J = 9.0 Hz, 2H), 

6.85 (br s, 1H), 4.30-4.27 (m, 1H), 4.16-4.15 (m, 1H), 3.64-3.58 (m, 1H), 3.45 (s, 

3H), 3.44-3.41 (m, 1H), 1.72-1.68 (m, 2H), 1.39-1.25 (m, 8H), 0.90 (t, J = 7.0 Hz, 

3H) 

13C NMR (125 MHz, CDCl3) δ 165.46, 149.70, 139.70, 128.15, 123.91, 82.90, 

61.09, 58.25, 43.82, 31.68, 29.92, 29.25, 25,57, 22.55, 14.06 

HRMS analysis (ESI): Calculated for [M-H]¯: C16H22ClN2O4: 341.1268; Found: 

341.1272 
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Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 10.5 min, RT2 (minor) = 12.7 min. 

[α]D20 = +16.5 (c 0.6, CHCl3, er = 95:5) 

 

s-47e-OMe-NO2: N-((2R,3R)-4-(benzyloxy)-2-chloro-3-methoxybutyl)-4-

nitrobenzamide 

 

Rf : 0.23 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.25 (d, J = 9.0 Hz, 2H), 7.85 (d, J = 9.0 Hz, 2H), 

7.34-7.32 (m, 5H), 6.79 (br s, 1H), 4.55 (s, 2H), 4.38-4.35 (m, 1H), 4.17-4.03 (m, 

1H), 3.80-3.77 (dd, J = 9.5, 4.5 Hz, 1H), 3.78-3.67 (m, 3H), 3.48 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.40, 149.60, 139.76, 137.46, 128.53, 128.01, 

127.82, 123.83, 81.28, 73.82, 68.40, 59.72, 58.85, 43.76 

HRMS analysis (ESI): Calculated for [M-H]¯: C19H20ClN2O5: 391.1061; Found: 

391.1060 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 10% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (minor) = 24.6 min, RT2 (major) = 26.8 min. 

[α]D20 = +4.1 (c 0.45, CHCl3, er = 99:1) 
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s-47j-OMe-NO2: N-((2R,3R)-5-((tert-butyldiphenylsilyl)oxy)-2-chloro-3-

methoxypentyl)-4-nitrobenzamide 

 

Rf : 0.38 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 

7.65-7.63 (m, 5H), 7.41-7.37 (m, 5H), 6.77 (br s, 1H), 4.27 (m, 1H) 4.10-4.07 (m, 

1H), 3.81-3.76 (m, 3H), 3.61-3.58 (m, 1H), 3.42 (s, 3H), 1.99-1.94 (m, 1H), 1.81-

1.78 (m, 1H), 1.25-1.21 (m,2H), 1.04 (s, 9H) 

13C NMR (125 MHz, CDCl3) δ 165.37, 149.73, 139.76, 135.54, 133.49, 133.44, 

129.77, 128.13, 127.74, 123.90, 79.76, 61.18, 59.98, 58.42, 43.73, 32.90, 26.86, 

19.18 

HRMS analysis (ESI): Calculated for [M+H]+: C29H36ClN2O5Si: 555.2082; Found: 

555.2089 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 3% IPA-Hexanes, 

0.7 mL/min, 254 nm, RT1 (minor) = 34.3 min, RT2 (major) = 37.0 min. 

[α]D20 = +17.0 (c 0.1, CHCl3, er = 99.5:0.5) 

 

47k-OMe-NO2: (R)-N-(2-chloro-3-methoxy-3-methylbutyl)-4-nitrobenzamide 
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Rf : 0.20 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 

6.93(br s, 1H), 4.23-4.19 (m, 1H) 4.07-4.054 (m, 1H), 3.25-3.48 (m, 1H), 3.56-

3.52 (m, 1H), 3.30 (s, 3H), 1.35 (s, 3H), 1.32 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.32, 149.68, 139.89, 128.10, 123.86, 77.38, 

66.77, 49.95, 42.89, 22.97, 21.09 

HRMS analysis (ESI): Calculated for [M+H]+: C13H18ClN2O4: 301.0955; Found: 

301.0959 

Resolution of enantiomers: DAICEL Chiralcel® OJ-H column, 5% IPA-Hexanes, 

0.7 mL/min, 254 nm, RT1 (minor) = 28.3 min, RT2 (major) = 31.0 min. 

[α]D20 = +14.0 (c 0.1, CHCl3, er = 99.5:0.5) 

 

s-47c-OEt-NO2: N-((2R,3R)-2-chloro-3-ethoxyhexyl)-4-nitrobenzamide 

 

Rf : 0.25 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ  8.29 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 

6.92 (br s, 1H), 4.25-4.24 (m, 1H), 4.12-4.07 (m, 1H), 3.64-3.57 (m, 3H), 3.55-

3.52 (m, 1H), 1.72-1.66 (m, 1H), 1.61-1.55 (m, 1H), 1.55-1.43 (m, 1H), 1.43-1.35 

(m, 1H), 1.20 (t, J = 6.5 Hz 3H), 0.95 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.35, 149.68, 139.75, 128.15, 123.90, 81.33, 

66.15, 60.75, 43.70, 32.30, 19.03, 15.61, 14.05 
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HRMS analysis (ESI): Calculated for [M-H]¯: C15H22ClN2O4: 329.1268; Found: 

329.1273 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 5% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 20.3 min, RT2 (minor) = 22.0 min. 

[α]D20 = +21.3 (c 0.7, CHCl3, er = 99.5:0.5) 

 

 

s-47c-OAllyl-NO2: N-((2R,3R)-3-(allyloxy)-2-chlorohexyl)-4-nitrobenzamide 

 

Rf : 0.40 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 

6.87 (br s, 1H), 5.94-5.87 (m, 1H), 5.30 (dd, J = 15.0, 1.5 Hz, 1H), 5.21 (dd, J = 

15.0, 1.5 Hz, 1H), 4.26-4.23 (m, 1H), 4.12-4.06 (m, 3H), 3.64-3.59 (m, 2H), 1.72-

1.70 (m, 1H), 1.64-1.57 (m, 1H), 1.54-1.37 (m, 2H), 0.93 (t, J = 9 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.36, 149.69, 139.65, 134.22, 128.20, 123.86, 

118.10, 80.57, 71.44, 60.62, 43.70, 32.20, 18.97, 14.04 

HRMS analysis (ESI): Calculated for [M-H]¯: C16H20ClN2O4: 339.1112; Found: 

339.1107 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 7% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (minor) = 16.9 min, RT2 (major) = 17.8 min. 
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[α]D20 = +13.7 (c 0.5, CHCl3, er = 99.5:0.5) 

 

s-47c-OPropargyl-NO2: N-((2R,3R)-2-chloro-3-(prop-2-yn-1-yloxy)hexyl)-4-

nitrobenzamide 

 

Rf : 0.40 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 

6.87 (br s, 1H), 4.36-4.33 (dd, J = 16.5, 2.5 Hz, 1H), 4.32-4.29 (m,1H), 4.25-4.21 

(dd, J = 16.5, 2.5 Hz, 1H), 4.10-4.05 (m, 1H), 3.83-3.80 (m, 1H), 3.69-3.64 (m, 

1H), 1.72-1.70 (m, 1H), 1.64-1.57 (m, 1H), 1.54-1.37 (m, 2H), 0.96 (t, J = 9 Hz, 

3H) 

13C NMR (125 MHz, CDCl3) δ 165.49, 149.72, 139.70, 128.21, 123.88, 79.61, 

79.02, 75.15, 60.60, 56.67, 43.70, 31.90, 18.72, 14.05 

HRMS analysis (ESI): Calculated for [M-H]¯: C16H18ClN2O4: 337.0955; Found: 

337.0951 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 10% IPA-Hexanes, 1.0 

mL/min, 265 nm, RT1 (minor) = 18.8 min, RT2 (major) = 20.3 min. 

[α]D20 = +14.0 (c 0.1, CHCl3, er = 98:2) 

 

s-47c-OAc-NO2: (2R, 3R)-2-chloro-1-(4-nitrobenzamido)hexan-3-yl acetate 
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Rf : 0.30 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.97 (d, J = 8.5 Hz, 2H), 

7.10 (br s, 1H), 5.17-5.14 (m, 1H), 4.16-4.13 (m, 1H), 4.00-3.95 (m, 1H), 3.36-

3.24 (m, 1H), 2.17 (s, 3H), 1.84-1.81 (m, 1H), 1.63-1.61 (m, 1H), 1.35-1.31 (m, 

2H), 0.91 (t, J = 7.5, 3H) 

13C NMR (125 MHz, CDCl3) δ 172.10, 165.13, 149.83, 139.21, 128.20, 123.92, 

72.11, 60.32, 42.70, 33.68, 20.92, 18.65, 13.64 

HRMS analysis (ESI): Calculated for [M+H]+: C15H20ClN2O5: 343.1061; Found: 

343.1062 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 7% IPA-Hexanes, 

01.0 mL/min, 254 nm, RT1 (major) = 17.6 min, RT2 (minor) = 18.9 min. 

[α]D20 = -8.0 (c 0.1, CHCl3, er = 98:2) 

 

s-47c-OH-NO2: N-((2R,3R)-2-chloro-3-hydroxyhexyl)-4-nitrobenzamide 

 

Rf : 0.12 (30% EtOAc in hexanes, UV) 
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1H NMR (500 MHz, CD3CN) δ 8.28 (d, J = 9.0 Hz, 2H), 7.98 (d, J = 8.5 Hz, 2H), 

6.93 (br s, 1H), 4.14-4.11 (dt, J = 7.0, 2.0 Hz, 2H), 3.90-3.84 (m, 1H), 3.79-3.76 

(m, 1H), 3.60-3.55 (m,1H) 3.41 (d, J = 6.5 Hz, 1H), 1.60-1.56 (m, 1H), 1.53-1.42 

(m, 2H), 1.36-1.31 (m, 1H), 0.91 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 166.39, 150.08, 140.11, 128.83, 124.02, 70.37, 

65.07, 43.79, 36.47, 19.04, 13.61 

HRMS analysis (ESI): Calculated for [M-H]¯: C13H16ClN2O4: 299.0799; Found: 

299.0796 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 15% IPA-Hexanes, 1.0 

mL/min, 265 nm, RT1 (major) = 12.3 min, RT2 (minor) = 13.8 min. 

[α]D20 = +14.6 (c 0.9, CHCl3, er = 99:1) 

 

a-47c-OAc-NO2: (2R,3S)-2-chloro-1-(4-nitrobenzamido)hexan-3-yl acetate 

 

Rf : 0.28 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3)  δ 8.30 (d, J = 9.0 Hz, 2H), 7.94 (d, J = 9.0 Hz, 2H), 

6.65 (br s, 1H), 5.13 (m, 1H), 4.19 (m, 2H), 3.49 (m, 1H), 2.19 (s, 3H), 1.79-1.70 

(m, 2H), 1.42-1-33 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 170.81, 165.26, 149.73, 139.60, 128.20, 123.93, 

73.53, 61.47, 42.00, 33.34, 20.95, 18.34, 13.77 
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HRMS analysis (ESI): Calculated for [M-H]¯: C15H18ClN2O5: 341.0904; Found: 

341.0903 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 12.95 min, RT2 (minor) = 13.9 min. 

[α]D20 = +14.0 (c 0.15, CHCl3, er = 93:7) 

 

s-47h-OH-NO2: N-((2R,3R)-2-chloro-3-hydroxypentyl)-4-nitrobenzamide 

 

Rf : 0.20 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CD3CN) δ 8.29 (d, J = 9.0 Hz, 2H), 7.99 (d, J = 9.0 Hz, 2H), 

7.60 (br s, 1H), 4.17-4.14 (dt, J = 6.5, 1.5 Hz, 1H), 3.90-3.85 (m, 1H), 3.70-3.65 

(m, 1H), 3.61-3.55 (m, 1H), 3.42 (d, J = 6.5 Hz, 1H), 1.66-1.54 (m, 2H), 0.93 (t, J 

= 8.0 Hz, 3H) 

13C NMR (125 MHz, CD3CN) δ 166.38, 150.10, 140.12, 128.84, 124.03, 72.10, 

64.63, 43.77, 27.37, 9.87 

HRMS analysis (ESI): Calculated for [M-H]¯: C12H14ClN2O4: 285.0642; Found: 

285.0645 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 15% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (minor) = 13.7 min, RT2 (major) = 15.2 min. 

[α]D20 = +6.0 (c 0.45, CHCl3, er = 99:1) 
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Absolute stereochemistry was determined by single crystal X-ray diffraction 

(XRD). Crystals for XRD were obtained by crystallization from CH2Cl2 layered 

with hexanes in a silicone-coated vial.   

 

47k-OAc-NO2:  ((R)-3-chloro-2-methyl-4-(4-nitrobenzamido)butan-2-yl acetate 

 

Rf : 0.20 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ  8.30 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 

6.54 (br s, 1H), 4.60-4.58 (dd, J =10.0, 2.5 Hz, 1H) 4.31-4.26 (m, 1H), 3.39-3.33 

(m, 1H), 2.03 (s, 3H), 1.62 (s, 3H),1.60 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 170.04, 165.45, 149.80, 139.57, 128.19, 123.93, 

82.13, 66.63, 42.44, 23.62, 22.78, 22.17 

HRMS analysis (ESI): Calculated for [M+H]+: C14H17ClN2O5: 329.0904; Found: 

304.0906 
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Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 22.1 min, RT2 (minor) = 24.4 min. 

[α]D20 = +39.2 (c 0.7, CHCl3, er = 98:2) 

 

 

 

s-47c’-OMe-NO2: N-((2R,3R)-2-bromo-3-methoxyhexyl)-4-nitrobenzamide 

 

Rf : 0.20 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 9.0 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 

6.84 (br s, 1H), 4.38-4.35 (m, 1H), 4.19-4.12 (m, 1H), 3.73-3.68 (m, 1H), 3.39-

3.36 (m, 1H), 1.79-1.73 (m, 2H), 1.45-1.39 (m, 2H), 0.98 (t, J = 8.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.33, 149.70, 139.70, 128.14, 123.92, 82.75, 

58.12, 54.75, 44.23, 32.99,18.90,14.02 

HRMS analysis (ESI): Calculated for [M+H]+: C14H29BrN2O4: 359.0606; Found: 

359.0604 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 10% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 11.9 min, RT2 (minor) = 12.6 min. 

[α]D20 = +24.4 (c 0.9, CHCl3, er = 99:1) 
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Absolute stereochemistry was determined by single crystal X-ray diffraction 

(XRD). Crystals for XRD were obtained by crystallization from CH2Cl2 layered 

with hexanes in a silicone-coated vial.   

 

s-47c’-OH-NO2: N-((2R,3R)-2-bromo-3-hydroxyhexyl)-4-nitrobenzamide 

 

Rf : 0.15 (30% EtOAc in hexanes, UV) 62 % yield 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.94 (d, J = 9.0 Hz, 2H), 

6.89 (br s, 1H), 4.30-4.27 (m, 1H), 4.22-4.16 (m, 1H), 3.75-3.70 (m, 1H), 3.65 -

3.62 (m, 4H), 2.17 (d, J = 8 Hz), 1.70-1.63 (m, 1H), 1.58-1.35 (m, 3H), 0.95 (t, J = 

7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.82, 149.78, 139.39, 128.21, 123.94, 71.79, 

60.17, 45.04, 38.31, 18.73, 13.88 

HRMS analysis (ESI): Calculated for [M+H]+: C13H18BrN2O4: 345.0450; Found: 

345.0434 

Resolution of enantiomers: DAICEL Chiralcel® Ia column, 10% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 22.9 min, RT2 (minor) = 24.7 min. 
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[α]D20 = +11.6 (c = 0.5, CHCl3, er = 99.5:0.5) 

 

a-47c’-OH-NO2: N-((2R,3S)-2-bromo-3-hydroxyhexyl)-4-nitrobenzamide 

 

Rf : 0.20 (30% EtOAc in hexanes, UV) 51% yield 

1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 9.0 Hz, 2H), 7.97 (d, J = 9.0 Hz, 2H), 

6.89 (br s, 1H), 4.39-4.32 (ddd, J = 15.5, 7.5, 4.0 Hz, 1H), 4.14 (d, J = 4.0 Hz 

1H), 407-4.04 (m, 1H), 3.73 -3.68 (ddd, J = 15.0, 5.5, 3.5 Hz, 1H), 3.66-3.63 (m, 

1H), 1.82-1.77 (m, 1H), 1.61-1.49 (m, 2H), 1.41-1.35 (m, 1H), 0.93 (t, J = 7.0 Hz, 

3H) 

13C NMR (125 MHz, CDCl3) δ 166.88, 149.94, 138.89, 128.34, 124.01, 72.00, 

58.49, 42.87, 35.90, 18.94, 13.94 

HRMS analysis (ESI): Calculated for [M+H]+: C13H18BrN2O4: 345.0450; Found: 

345.0439 

Resolution of enantiomers: DAICEL Chiralcel® OD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 24.5 min, RT2 (major) = 29.7 min. 

[α]D20 = -15.6 (c = 0.6, CHCl3, er = 85.0:15.0) 

 

47k’-OMe-NO2: (S)-N-(2-bromo-3-methoxy-3-methylbutyl)-4-nitrobenzamide 
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Rf : 0.25 (30% EtOAc in hexanes, UV) 62% yield 

1H NMR (500 MHz, CDCl3) δ 8.33 (d, J = 9.0 Hz, 2H), 7.97 (d, J = 9.0 Hz, 2H), 

6.99 (br s, 1H), 4.31-4.23 (m, 2H), 3.65-3.60 (m, 1H), 3.33 (s, 3H), 1.42  (d, J = 

8.5 Hz, 6H) 

13C NMR (125 MHz, CDCl3) δ 165.22, 149.66, 139.86, 128.12, 123.91, 77.06, 

61.19, 50.05, 43.45, 23.41,22.42 

HRMS analysis (ESI): Calculated for [M+H]+: C13H18ClN2O4: 345.0450; Found: 

345.0441 

Resolution of enantiomers: DAICEL Chiralcel® OJ-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 28.8 min, RT2 (major) = 33.9 min. 

[α]D20 = +23.8 (c = 0.7, CHCl3, er = 99.5:0.5) 

 

ent-47k’-OMe-NO2: (S)-N-(2-bromo-3-methoxy-3-methylbutyl)-4-nitrobenzamide 

 

Rf : 0.25 (30% EtOAc in hexanes, UV) 59% yield with (DHQ)2PHAll 

1H NMR (500 MHz, CDCl3) δ 8.33 (d, J = 9.0 Hz, 2H), 7.97 (d, J = 9.0 Hz, 2H), 

6.99 (br s, 1H), 4.31-4.23 (m, 2H), 3.65-3.60 (m, 1H), 3.33 (s, 3H), 1.42  (d, J = 

8.5 Hz, 6H) 
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13C NMR (125 MHz, CDCl3) δ 165.22, 149.66, 139.86, 128.12, 123.91, 77.06, 

61.19, 50.05, 43.45, 23.41,22.42 

HRMS analysis (ESI): Calculated for [M+H]+: C13H18ClN2O4: 345.0450; Found: 

345.0439 

Resolution of enantiomers: DAICEL Chiralcel® OJ-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 27.8 min, RT2 (minor) = 32.4 min. 

[α]D20 = -33.8 (c = 1.0, CHCl3, er = 99.5:0.5) 
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I-2-6-9 Analytical data for byproduct 

 
47c-NHAc-NO2: N-(3-acetamido-2-chlorohexyl)-4-nitrobenzamide 

 

 

Note: Relative and absolute stereochemistry was not established. 

Rf : 0.10 (20% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 9.0 Hz, 2H), 8.25 (br s, 1H), 8.07 (d, J = 

9.0 Hz, 2H), 5.58 (d, J = 9.5 Hz, 1H), 4.34-4.26 (m, 2H), 4.13-4.09 (m, 1H), 2.93-

2.87 (m, 1H), 2.85 (s, 3H), 1.67-1.53 (m, 2H), 1.37-1.32 (m, 2H), 0.88 (t, J = 7.5 

Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 172.09, 164.76, 149.71, 139.19, 128.35, 123.85, 

61.12, 49.31, 42.35, 34.75, 23.29, 19.24, 13.65 

HRMS analysis (ESI): Calculated for [M+H]+: C15H21ClN3O4: 342.1221; Found: 

342.1229 
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I-2-6-10 Analytical data for substrates 

 
E-1b-NO2: N-cinnamyl-4-nitrobenzamide 

  

Rf : 0.31 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 

7.34-7.25 (m, 5H), 7.23(d, J =16.0 Hz, 1H), 6.62 (br s, 1H), 6.59-6.23 (m, 1H), 

4.25 (t, J = 6.5 Hz, 2H) 

13C NMR (125 MHz, CDCl3) δ 165.25, 149.57, 139.90, 136.11, 133.26, 128.65, 

128.14, 128.02, 126.39, 124.42, 123.83, 42.44 

HRMS analysis (ESI): Calculated for [M+H]+: C16H15N2O3: 283.1083; Found: 

283.1085 

 

E-1d-NO2: (E)-N-(3-(4-fluorophenyl)allyl)-4-nitrobenzamide 

 

Rf : 0.30 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 8.5 Hz, 2H), 7.98 (d, J = 8.5 Hz, 2H), 

7.34-7.31 (m, 2H), 7.01-6.97 (m, 1H), 7.58 (d, J =15.5 Hz, 1H), 6.28 (br s, 1H), 

6.21-6.15 (m, 1H), 4.25 (t, J = 6.0 Hz, 2H) 
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13C NMR (125 MHz, CDCl3) δ 165.23, 149.69, 139.91, 132.18, 128.14, 128.02 (d, 

JCF = 30 Hz) , 124.26 (d, JCF = 7.5 Hz) 123.89, 115.70, 115.53, 42.39  

HRMS analysis (ESI): Calculated for [M+H]+: C16H14FN2O3: 301.0988; Found: 

301.0991 

 

E-1c-NO2: (E)-N-(hex-2-en-1-yl)-4-nitrobenzamide 

 

Rf : 0.30 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 

6.14 (br s, 1H), 5.72-5.68 (m, 1H) 5.55-5.51 (m, 1H), 4.02 (t, J = 6.0 Hz, 2H), 

2.03-1.995 (m, 2H), 1.41-1.37 (m, 2H), 0.89 (t, J = 7.0 Hz, 3H) 

 13C NMR (125 MHz, CDCl3) δ 165.09, 149.58, 140.21, 134.96, 128.08, 124.90, 

123.81, 42.35, 34.30, 22.19, 13.65 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17N2O3: 249.1239; Found: 

249.1243 

 

 

 

E-1a-NO2: (E)-N-(3-cyclohexylallyl)-4-nitrobenzamide 

H
N

O

NO2
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Rf : 0.44 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 

6.12 (br s, 1H), 5.67-5.50 (m, 1H), 5.48-5.44 (m, 1H), 4.02 (t, J = 6.0 Hz, 2H), 

1.94 (m, 1H), 1.71-1.54 (m, 5H), 1.28-1.041 (m, 5H) 

13C NMR (125 MHz, CDCl3) δ 165.07, 140.86, 140.22, 128.09, 123.80, 122.26, 

116.59, 42.47, 40.36, 32.71, 26.06, 25.93  

HRMS analysis (ESI): Calculated for [M+H]+: C16H21N2O3: 289.1552; Found: 

289.1541 

 

E-1e-NO2: (E)-N-(4-(benzyloxy)but-2-en-1-yl)-4-nitrobenzamide 

 

Rf : 0.20 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.26 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 

7.32-7.26 (m, 4H), 6.27 (br s, 1H), 5.83 (m, 2H), 4.51 (s, 2H), 4.10-4.01(m, 4H) 

13C NMR (125 MHz, CDCl3) δ 165.18, 149.62, 139.91, 137.96, 129.87, 128.42, 

128.11, 127.99, 127.76, 127.75, 123.82, 72.66, 69.91, 41.67  

HRMS analysis (ESI): Calculated for [M+H]+: C18H19N2O4: 327.1345; Found: 

327.1336 

H
N

O

NO2

H
N

O

NO2

BnO
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Z-1c-NO2: (Z)-N-(hex-2-en-1-yl)-4-nitrobenzamide 

 

Rf : 0.33 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.25 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 

6.17 (br s, 1H), 5.63-5.60 (m, 1H), 5.51-5.46 (m, 1H), 4.01 (t, J = 6.0 Hz, 2H), 

2.12-2.077 (m, 2H), 1.42-1.39 (m, 2H), 0.90 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 158.14, 142.24, 133.03, 127.60, 120.97, 117.17, 

116.67, 30.34, 22.31, 15.46, 6.57 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17N2O3: 249.1239; Found: 

249.1244 

 

Z-1h-NO2: (Z)-4-nitro-N-(pent-2-en-1-yl)benzamide 

 

Rf : 0.35 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.0 Hz, 2H), 

6.08 (br s, 1H), 5.66-5.62 (m, 1H), 5.47-5.43 (m, 1H), 4.12 (t, 6.0 Hz, 2H), 2.17-2-

19 (m, 2H),  1.02 (t, J = 8.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.27, 149.50, 140.10, 136.47, 128.09, 123.79, 

123.49, 37.35, 20.76, 14.13 

NH

O
NO2

NH

O
NO2
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HRMS analysis (ESI): Calculated for [M+H]+: C12H25N2O3: 235.1083; Found: 

235.1079 

 

Z-1i-NO2: (Z)-4-nitro-N-(non-2-en-1-yl)benzamide 

 

Rf : 0.27 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 2H), 7,92 (d, J = 9.0 Hz, 2H), 

6.08 (br s, 1H), 5.65-6.61 (m, 1H), 5.50-5.47 (m, 1H), 4.11 (t, J =5.5 Hz, 2H), 

2.14 (dd, J = 14.0, 7.0 Hz, 2H), 3.46-3.43 (m, 1H), 1.72-1.68 (m, 2H), 1.39-1.25 

(m, 8H,) 0.90 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.25, 149.54, 140.11, 135.13, 128.07, 123.99, 

123.88, 73.45, 31.67, 29.41, 28.92, 27.46, 22.60, 14.07 

HRMS analysis (ESI): Calculated for [M+H]+: C16H23N2O3: 291.1709; Found: 

291.1708 

 

1k-NO2: N-(3-methylbut-2-en-1-yl)-4-nitrobenzamide 

 

Rf : 0.30 (30% EtOAc in hexanes, UV) 

NH

O
NO2

H
N

O

NO2

Me

Me
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1H NMR (500 MHz, CDCl3)  δ 8.26 (d, J = 7.5 Hz, 2H), 7.91 (d, J = 7.5 Hz, 2H), 

6.08 (br s, 1H), 5.28 (t, J = 5.5 Hz, 1H), 4.03 (t, J = 5.5 Hz, 2H), 1.74 (s, 3H), 1.71 

(s, 3H)  

13C NMR (125 MHz, CDCl3) δ 165.95, 149.53, 140.24, 137.71, 128.73, 123.33, 

119.29, 38.38, 25.67, 17.96 

HRMS analysis (ESI): Calculated for [M+H]+: C12H15ClN2O3: 235.1083; Found: 

235.1085 

 

Z-1b-NO2: (Z)-4-nitro-N-(3-phenylallyl)benzamide 

 

Rf : 0.31 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.25 (d, J = 9.0 Hz, 2H), 7.86 (d, J = 9.0 Hz, 2H), 

7.37-7.26 (m, 5H), 6.41 (d, J = 11.5 Hz, 1H), 6.22 (br s, 1H), 5.78-5.73 (m, 1H) 

4.39-4.36 (m, 2H) 

13C NMR (125 MHz, CDCl3) δ 165.25, 149.62, 139.94, 136.09, 123.62, 128.71, 

128.47, 128.08, 127.55, 126.85, 123.81, 38.60 

HRMS analysis (ESI): Calculated for [M+H]+: C16H15N2O3: 283.1083; Found: 

283.1091 

 

 

 

NH

O
NO2
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Z-1f-NO2: (Z)-4-nitro-N-(3-(p-tolyl)allyl)benzamide 

 

Rf : 0.32 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.26 (d, J = 9 Hz, 2H), 7.87 (d, J = 9 Hz, 2H), 7.17-

7.13 (m, 4H), 6.64 (d, J = 12.0 Hz, 1H), 6.17 (br s, 1H), 5.73-5.68 (m, 1H) 4.39-

4.36 (m, 1H), 2.34 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.29, 149.47, 139.89, 137.39, 133.13, 132.31, 

129.10, 128.62, 128.09, 126.12, 123.17, 38.66, 21.15 

HRMS analysis (ESI): Calculated for [M+H]+: C117H17N2O3: 297.1239; Found: 

297.1234 

 

Z-1g-NO2: (Z)-N-(3-(4-methoxyphenyl)allyl)-4-nitrobenzamide 

 

Rf : 0.25 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 2H), 7.89 (d, J = 9.0 Hz, 2H), 

7.20 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.61 (d, J = 11.5 Hz), 6.17 (br s, 

1H), 5.68-5.63 (m, 1H), 4.39-4.36 (m, 2H), 3.80 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.29, 158.96, 149.54, 139.94, 132.08, 130.04, 

128.59, 128.13, 125.10, 123.80, 113.85, 55.28, 38.68 

NH

O
NO2

NH

O
NO2

MeO
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HRMS analysis (ESI): Calculated for [M-H]¯: C17H15N2O4: 311.1032; Found: 

311.1027 

 

Z-1e-NO2: (Z)-N-(4-(benzyloxy)but-2-en-1-yl)-4-nitrobenzamide 

 

Rf : 0.27 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.15 (d, J = 9.0 Hz, 2H), 7.73 (d, J = 9.0 Hz, 2H), 

7.33-7.28 (m, 5H), 6.47 (br s, 1H), 5.92-5-80 (m, 2H), 4.53 (s, 2H), 4.17 (d, J = 

16.0 Hz, 2H), 4.11 (t, 2H) 

13C NMR (125 MHz, CDCl3) δ 164.96, 149.43, 139.82, 137.63, 130.36, 129.22, 

128.60, 128.06, 128.04, 128.00, 123.71, 73.00, 65.85, 37.22 

HRMS analysis (ESI): Calculated for [M+H]+: C18H19N2O4: 327.1345; Found: 

327.1350 

 

Z-1j-NO2: (Z)-N-(5-((tert-butyldiphenylsilyl)oxy)pent-2-en-1-yl)-4-nitrobenzamide 

 

Rf : 0.35 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.18 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 

7.66-7.63 (m, 5H), 7.37-7.24 (m, 5H), 6.02 (br s, 1H), 5.70-5.67 (m, 1H) 5.62-

NH

O
NO2

BnO

NH

O
NO2TBDPSO
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5.60 (m, 1H) 4.06 (t, J = 6.5 Hz, 2H), 3.74 (t, J =6.5 Hz, 2H), 2.40 (dt, J = 6.5 Hz, 

2H), 1.03 (s, 9H) 

13C NMR (125 MHz, CDCl3) δ 165.22, 149.47, 140.02, 135.53, 135.48, 133.75, 

131.24, 129.72, 128.02, 127.70, 126.16, 123.80, 123.72, 63.21, 37.41, 30.85, 

26.87, 26.77, 19.28 

HRMS analysis (ESI): Calculated for [M+H]+: C28H33N2O4Si: 489.2210; Found: 

489.2214 
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I-2-6-11 Analytical data for different products of chloroetherification 
reaction without catalyst 
	
  
s-5c-OMe-NO2: 3-chloro-2-methoxyhexyl)-4-nitrobenzamide 

 

 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 

6.52 (br s, 1H), 4.05-4.02 (m, 1H), 3.92-3.86 (m, 1H), 3.63-3.54 (m, 2H), 3.51 (s, 

3H), 1.87-1.72 (m, 2H), 1.66-1.59 (m, 1H), 1.47-1.38 (m, 1H), 0.95 (t, J = 7.5 Hz, 

3H) 

13C NMR (125 MHz, CDCl3) δ 165.49, 149.73, 139.79, 128.11, 123.92, 81,53, 

62.18, 59.22, 40.56, 35.49, 19.93, 13.4 

 

s-4c-NO2: 1-chlorobutyl-2-(4-nitrophenyl)-4,5-dihydrooxazole 

 
 

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 8.5 Hz, 2H), 8.12 (d, J = 8.5 Hz, 2H), 

4.93-4.89 (m, 1H), 4.22 (dd, J = 15.0, 10.0 Hz, 1H), 4.17 (dd, J = 15.0, 10.0 Hz, 

1H), 3.99-3.97 (m, 1H), 1.85-1.71 (m, 2H), 1.69-1.63 (m, 1H), 1.51-1.45 (m, 1H), 

0.97 (t, J =7.5 Hz, 3H) 

Cl

OMe H
N

O

NO2

N

O

NO2

Cl
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13C NMR (125 MHz, CDCl3) δ 162.22, 149.57, 132.98, 129.27, 123,59, 81.69, 

62.92, 57.85, 35.51, 19.66, 13.45 

HRMS analysis (ESI): Calculated for [M+H]+: C13H16N2O3Cl: 283.0849; Found: 

283.0861 

Relative stereochemistry was determined by single crystal X-ray diffraction 

(XRD). Crystals for XRD were obtained by crystallization from CH2Cl2 layered 

with hexanes in a silicone-coated vial.   

 

 

 a-5c-OMe-NO2: 3-chloro-2-methoxyhexyl)-4-nitrobenzamide 

 
1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 

6.55 (br s, 1H), 4.11-4.07 (m, 1H), 3.99-3.95 (m, 1H), 3.56-3.51 (m, 1H), 3.50-

3.47 (m, 4H), 1.84 -1.79 (m, 1H), 1.69-1.63 (m, 1H), 1.48-1.41 (m, 2H), 0.97 (t, J 

= 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.46, 149.63, 139.86, 128.12, 123.89, 81.70, 

61.21, 57.93, 39.79, 36.26, 19.96, 13.53 

Cl

OMe H
N

O

NO2
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a-4c-NO2: chlorobutyl-2-(4-nitrophenyl)-4,5-dihydrooxazole 

 

1H NMR (500 MHz, CDCl3) δ 8.26 (d, J = 8.5 Hz, 2H), 8.10 (d, J = 8.5 Hz, 2H), 

4.82-4.77 (m, 1H), 4.21 (dd, J = 16.0, 10.0 Hz, 1H), 4.09-4.03 (m, 2H), 1.85-1.83 

(m, 1H), 1.69-1.66 (m, 2H), 1.47-1.43 (m, 1H), 0.98 (t, J =7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 161.86, 149.54, 133.11, 129.19, 123.59, 82.03, 

63.02, 57.96, 35.85, 19.28, 13.49 

 

t-3c-NO2: 5-chloro-2- (4-nitrophenyl)-6-propyl-5,6-dihydro-4H-1,3-oxazine 

 

1H NMR (500 MHz, CDCl3) δ 8.21 (d, J = 8.5 Hz, 2H), 8.06 (d, J = 8.5 Hz, 2H), 

4.26 (dt, J = 8.5, 3.0 Hz, 1H), 3.02-3.94 (m, 2H), 3.70 (dd, J = 16.5, 7.0 Hz, 1H), 

1.99-194 (m, 1H), 1.71-1.64 (m, 2H), 1.55-1.51 (m, 1H), 1.03 (t, J =7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 153.32, 149.22, 138.64, 128.19, 123.30, 78.85, 

52.44, 50.48, 34.48, 18.02, 13.84 

HRMS analysis (ESI): Calculated for [M+H]+: C13H16N2O3Cl: 283.0849; Found: 

283.0863 

N

O

NO2

Cl

N

O

Cl

NO2
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Relative stereochemistry was determined by single crystal X-ray diffraction 

(XRD). Crystals for XRD were obtained by crystallization from CH2Cl2 layered 

with hexanes in a silicone-coated vial.   
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Chapter II: Highly Regio-and Enantioselective Vicinal 
Dihalogenation of Allyl Amides 

II-1 Introduction 
	
  

 Halogenated natural products represent a class of structurally diverse 

molecules with some estimates suggesting that greater than 4000 molecules 

belong to this ever-growing class of natural products.1-4 They are challenging 

synthetic targets, at least in part, due to the paucity of methods available to install 

C-halogen bonds in an enantioselective fashion. The development of 

enantioselective vicinal dihalogenation of easily accessed alkenes represents a 

straightforward means of accessing these motifs and avoids circuitous functional 

group transformations to convert chiral alcohols or epoxides to alkyl halides. With 

the advent of numerous methodologies for asymmetric halofunctionalization of 

alkenes in recent years,5-43 the challenging asymmetric vicinal dihalogenation 

reaction of alkenes has come into focus. Most of the well-established asymmetric 

halofunctionalizations reported till date, have achieved enantioselective C-X (X = 

Cl, Be, I or F) bond formation along with a concomitant formation of a C-O, C-N 

or even a C-C bond formation depending on the nucleophile employed in 

intercepting the putative intermediate. In contrast, halide nucleophiles that could 

lead to dihalogenated products have not been employed with the same levels of 

success. 
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II-1-1 Racemization of chiral halonium ion by olefin to olefin halenium 
transfer 
	
  

          Olefin dihalogenation proceeds in two steps: first the halonium ion is 

formed followed by subsequent nucleophilic attack to the putative halonium ion, 

the absolute configuration of the dihalide products is decided during the first step 

(formation of halonium ion intermediate). For producing chiral halonium ion, the 

halenium ion transfers to alkenes from the halogenating agent should be 

irreversible, and the halonium ion should be stable prior to nucleophilic trapping 

(Figure II-1).  

	
  
	
  

A simple difficulty in formation of enantioselective halonium ion is the 

distance between olefin and chiral catalyst that is covalently or through hydrogen 

binding associated with the halogen donor. This range arises because the alkene 

should approach the σ* orbital of the Cat*-X bond. The anticipated coordination 

geometry for this approach is 180°. This stereoelectronic approach leads to a 

Figure II-1: Alkene dihalogenation reaction proceeding by a two-step 
mechanism 
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significant distance between the chiral catalyst and the alkene, thus induction of 

enantioselectivity from the catalyst to alkenes for the formation of chiral halonium 

ion is difficult (Figure II-2a). Generally, electrophilic species such as osmium 

tetraoxide that can approach to alkenes with π* orbitals enable more diverse 

geometries.15 Therefore, the enantiomeric induction and communication between 

the catalyst and alkenes is simpler than the first case (Figure II-2a). As we 

mentioned in Section I-1-2, even if chiral halonium ions can be formed with high 

enantioselectivity, these chiral intermediates (especially bromonium ions) are 

most likely undergo through rapid stereochemical degradation by olefin-to-olefin 

halonium tion ransfer (Figure II-2b).44  

	
  
	
  

If the chiral halonium ion is formed and the nucleophilic attack event is 

kinetically more competitive than olefin-to-olefin racemization, still dihalogenation 

Figure II-2: (a) Challenges in stereochemical communication (b) Racemization 
via olefin-to-olefin halenium transfer 
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transformation represents a unique challenge in that a poor regioselectivity in the 

halide opening of the putative chiral halonium ion intermediate can erode the 

enantioselectivity of the transformation; the two ‘constitutional isomers’ resulting 

from the regioselectivity of the transformation are in fact the two enantiomers of 

the product (see Figure II-3). Hence, in addition to exquisite face selectivity in 

alkene halogenation, excellent control of regioselectivity is also imperative 

(Figure II-3). It is perhaps not surprising that many of the substrates that have 

succumbed to highly enantioselective dihalogenations are electronically biased – 

employing styryl systems leads to an inherent bias for the halide opening at the 

benzylic position.15, 45 The development of a catalyst-controlled regioselectivity as 

opposed to a substrate controlled process holds promise in significantly 

improving the scope of the transformation and thereby offers an efficient means 

to synthesizing natural products. 

	
  
	
  

Figure II-3:  Mechanistic challenges for asymmetric dihalogenation 
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II-1-2 Literature precedence for enantioselective vicinal dihalogenation of 
alkenes 
	
  

 A few landmark achievements in dihalogenation chemistry merit mention. 

Snyder’s group has reported an enantioselective total synthesis of (-)-

Napyradiomycin II-4 that featured an asymmetric dichlorination of an advanced 

precursor using chlorine gas and an excess of a chiral 1,1′-biphenanthryl II-3 

promoter.46 Employing four equivalents of chiral dialkoxyboranes forms a chiral 

2:1 complex with alkene II-1, subsequent treatment with Cl2 gas resulted in 

dichloride product II-2 in 93.5:6.5 er. In the proposed working model, it was 

suggested that the chiral borane would coordinate to carbonyl groups of the 

precursor and shield one enantioface of the alkene.  
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The same group has also reported the asymmetric dichlorination of 

unfunctionalized olefins with a chiral sulfide compound as a stoichiometric chiral 

reagent.46 However, employing the chiral sulfonium salt II-6 in the presence of 

dihydronaphthalene II-5 in CH2Cl2 delivers dichlorinated product II-7 in 57% yield 

but the enantioselectivity is only 57:43 er (Figure II-5). 

Figure II-4: Stoichiometric, enantioselective dichlorination of alkene en route 
to (-)-Napyradiomycin 
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         The Nicolaou group reported the first practical, catalytic asymmetric 

dichlorination of allyl alcohols using the (DHQ)2PHAL/ArICl2 (II-10) reagent 

system.45 The trans cinnamyl alcohols II-8 produce the dichlorinated product II-9 

in moderate to good yield (Figure II-6a). However, cis cinnamyl alcohols and 

aliphatic substituted allyl alcohols are generally less selective and form the final 

product with low enantioselectivity. In the stereoinduction model, the author 

suggests that the quinuclidine nitrogen of the chiral catalyst activates the iodine 

(III) of the dichlorinating agent II-10. Notably, the potential hydrogen bonding 

between the hydroxyl group of the substrate and the nitrogen atom of the 

phthalazine ring of (DHQ)2PHAL would bring the allyl alcohols in the chiral 

catalyst’s binding pocket and produce vicinal dichlorinated products in high 

enantioselectivities (Figure II-6b). 

Figure II-5:	
   	
   Stoichiometric, enantioselective dichlorination of alkenes by 
employing chiral sulfonium ion salt 
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        Burns and coworkers demonstrated that cinnamyl alcohols II-11 in the 

presence of 20 mol% of a chiral diol (TADDOL) II-13 and dibromomalonate II-14  

(as the bromonium source), and a bromotitanium triisopropoxide (as a bromide 

source) would deliver dibrominated products II-12 up to 72% yield and 92:8 er.47 

Slightly higher enantioselectivities (5 to 10% ee) can be obtained when one 

equivalent of TADDOL II-13 was used (Figure II-7). 

Figure II-6: (a) Asymmetric dichlorination of styryl allyl alcohol (b) Proposed 
working model 
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        The catalytic cycle for this transformation showed that the ligand exchange 

on titanium might form the coordinatively saturated complex II-15, that contains 

the substrate, bromide ion, diethyl dibromomalonate II-14 and chiral diol II-13. 

The species in this complex are arranged in a manner to allow for both 

intramolecular bromonium delivery and intramolecular bromide capture. Charge 

separation in complex II-16 may increase the nucleophilicity of the bromide, 

which then can add to bromonium ion through transition state II-17 (Figure II-8). 

Ligand exchange at Ti with i-PrOH is reversible and releases the dibrominated 

product. In this mechanistic scenario, the authors claimed the bromonium ion 

formation is reversible, and the bromide delivery is the enantiodetermining step. 

If that is true, this scenario may manifest itself through dynamic kinetic resolution. 

However, the authors did mention that the enantiodetermining irreversible 

Figure II-7: Catalytic enantioselective dibromination of allyl alcohols 
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bromonium ion formation, or even concerted dibromination step, could not be 

ruled out with the results in hand. 

 

         In a further development, the highly regio- and enantioselective vicinal 

asymmetric chlorobromination of aliphatic allyl alcohols using N-

bromosuccinimide/ClTi(Oi-Pr)3 reagent system was also reported by the same 

group.48 Using 50 mol% of the chiral diol II-13, the chlorobrominated products 

were produced with 1:2 site selectivity. Interestingly, Schiff base as the chiral 

catalyst II-18 forms the chlorobrominated product II-20 exclusively (>20:1, see 

Figure II-8: Proposed catalytic cycle 
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Table II-1, entry 2). Based on these results, II-18 can overturn the intrinsic 

(substrate control) site selectivity of the chloride ion addition to bromonium ion 

intermediate.  

 

        The substrate scope for this regioselective chlorobromination indicates that 

using (10–30 mol%) tridentate Schiff base II-18 as catalyst in the presence of 

chlorotitanium triisopropoxide forms intermediate II-23. Subsequently, formation 

of the bromonium ion and nucleophilic attack with chloride would form the 

chlorobrominatad product II-24 in 89% yield, 96:4 er and >20:1 rr (Figure II-9). 

Table II-1: Catalyst-controlled regioselective chlorobromination of allyl 
alcohols 

	
  
	
  

entry Conditions 20:21 ee% (20), ee% (21) 

1 50 mol% II-13, CH2Cl2, rt 1:2 6:8 

2 10 mol% II-18, hexane, -20 °C >20:1 94,nd 
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         For the application of this new method, Burns and coworkers employed this 

enantioselective chlorobromination for the gram-scale total synthesis of (+)-

bromochloromyrcene II-28 (Figure II-10).49 It was the first time the asymmetric 

dihalogenation reaction was used in a total synthesis, and the catalyst-controlled 

regio site selectivity in the halogenation step is impressive. 

Figure II-9: Catalytic chemo- regio- and enantioselective bromochlorination of 
allylic alcohols 
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        After this development in enantioselective dihalogenation reactions, Burns 

and coworker reported preliminary results for the catalytic and enantioselective 

dichlorination of allylic alcohols that have aliphatic substituents.50 The formation 

of vicinal dichlorinated products is a powerful means of entry to chlorosulfolipids 

natural products synthesis. In this area dichlorinated aliphatic allyl alcohol is 

known as an essential motif for the synthesis of deschloromytilipin A II-29, 

mytilipin A II-30, danicalipin A II-31 and malhamensilipin A II-32 (Figure II-11). 

Due to lack the of enantioselective dichlorination methodology, these natural 

products are either synthesized in a racemic fashion51 or in the case of 

danicalipin A, the kinetic resolution of epoxide opening was used as a precursor 

for the formation of chiral vicinal dichloride products.52  

NBS (1.05 equiv)
ClTi(Oi-Pr)3 (1.1 equiv)

II-18 (10-30 mol%)
Hexane, -20 °C

OH

Cl

OH

Br

DMP
NaHCO3

Cl
O

Br
Cl

Br
Ph3P CH2

II-26 82% yield, 84% ee

II-28 (+)-bromochloromyrcene

II-25

II-27

Figure II-10: Enantioselective synthesis of (+)-bromochloromyrcene 
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         In the developed enantioselective dichlorination of aliphatic allyl alcohols, 

the tert-butyl hypochlorite (t-BUOCl) was used as the Cl+ source.50 However, the 

chiral catalyst and halide sources were the same as in other reports. As shown in 

Figure II-12, allyl alcohol II-33 produces the corresponding dichlorinated product 

II-34 in 95:5 er by employing 30 mol% Schiff base II-18.  In this transformation, t-

BuOCl and ClTi(Oi-Pr)3 were used as chloronium and chloride sources, 

respectively. 

Figure II-11: Structure of chlorosulfolipid natural products 
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          Notably, these results indicate the first regio-enantioselective 

dihalogenation of unbiased (non-aryl-substituted) alkenes, but still, two 

shortcomings are apparant with these methodologies; 1: the enantioselectivities 

for dichlorination of the aliphatic alcohols are moderate (around 81% ee); 2: the 

hydroxyl group was used as the chiral catalyst-directing group.  Thus, this 

transformation could only be used for the alkenes that are tethered to the 

hydroxyl group. With these shortcomings in mind, I sought to develop highly a 

regio-, diastereo- and enantioselective dihalogenation methodologies for alkenes. 

II-2 Results and discussions 

II-2-1 Catalyst-controlled regioselectivity in enantioselective 
haloetherification reaction 
	
  
          As discussed in Chapter I, our group has recently reported a highly 

enantioselective intermolecular haloetherification and haloesterification reaction 

of unsaturated amides (Figure II-13).29 One of the key features of the 

transformation was the excellent catalyst-controlled regioselectivity that renders a 

wide variety of alkyl-substituted alkenes as compatible substrates for the 

chemistry. 

Figure II-12: Example of asymmetric alkene dichlorination 

Ph OH

t-BuOCl (1.05 equiv)
ClTi(Oi-Pr)3 (1.1 equiv)

II-18 (30 mol%)
Hexane, -20 °C

Ph OH

Cl
Cl

II-33 II-34
61% yield, 95:5 er
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          To figure out if the enantioselective chloroetherification methodology can 

extend to catalytic enantioselective dihalogenation reactions, we designed the 

control experiment to indicate whether the catalyst dictates the regioselectivity for 

the haloetherification reactions. The chloroetherification reaction of Z-allyl amide 

II-35 was conducted in optimized conditions without (DHQD)2PHAL as the chiral 

catalyst. In line with desired product II-36, the regioisomer product II-37 and 

cyclized product II-38 were formed in the ratio of 57:16:27, respectively (Table II-

2, entry 1). However employing (DHQD)2PHAL produced chloroetherified product 

II-36 with high selectivity (Table II-2, entry 2).  

 

Figure II-13: Catalytic asymmetric intermolecular halohydrin formation, 
haloetherification and haloesterification 

R2

Nu

Cl/Br

R1

H
N

O

ArR1 H
N Ar

OR2

10 mol% (DHQD)2PHAL 
2.0 equiv DCDMH or NBS

Nucleophile:MeCN (3:7),
0.01 M, -30 oC 

H2O:MeCN (1:9), -10 oCAr = 4-NO2-Ph
R1, R2 = H, Ar, Alk

>25 examples
up to > 99.5:0.5 dr, er, rr

Nucleophile: R-OH, R-CO2H or H2O
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          Notably, the same control experiment was conducted with E-allyl amide II-

39 and in this case a mixture of regioisomers (II-40, II-41) and cyclic products (II-

42, II-43) were formed in the ratio of 43:15:26:16, respectively (Table II-3, entry 

1). Interestingly, when the chiral catalyst is employed, the desired 

chloroetherified product II-40 forms in high selectivity (87%, Table II-3, entry 2). 

Noteworthy is the fact that the chiral catalyst is responsible not only for the high 

enantioselectivities but also for the exquisite regioselectivity for the reactions 

employing aliphatic substrates (for example, noncatalyzed reactions gave rr 

values of ~4:1 for substrate II-35 and 3:2 for substrate II-39). These results hint at 

extensive pre-organization of the substrate–nucleophile–catalyst complex in 

Table II-2: Catalyst-controlled regioselectivity in chloroetherification 
reactions of Z-allyl amide II-35 	
  

H
N Ar

O

C3H7

OMe

Cl H
N Ar

O

catalyst 
2.0 equiv DCDMH

MeOH:MeCN (3:7)
0.01 M, rt, 3 h

N
O

Ar

C3H7

Cl

+ C3H7

Cl

OMe H
N Ar

OC3H7

II-35 II-36 II-37

II-38

Entry Catalyst II-36:II-37:II-38a rr (II-36:II-37) a 

1 None 57:16:27 4:1 

2 10% (DHQD)2PHAL 96:4:0 24:1 
aRegioselectivity and ratio of uncyclized to cyclized products were determined 

by HPLC 
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addition to the halogen source catalyst H-bonded complex that we have 

previously established. 

 

II-2-2 Extension of haloetherification to the enantioselective dihalogenation 
of alkenes 
	
  
          Based on these results, we realized the potential to extend the asymmetric 

chloroetherification chemistry to the enantioselective dihalogenation of alkenes 

by discovering an appropriate halide salt to intercept the same halonium putative 

intermediate (Figure II-14). 

Table II-3:	
  Catalyst-controlled regioselectivity in chloroetherification reactions of 
E-allyl amide II-39 
	
  

	
  

Entry Catalyst II-40:II-41:II-42:II-43a rr (II-40:II-41) a 

1 None 43:15:26:16 3:2 

2 10% (DHQD)2PHAL 87:4:7:2 10:1 
aRegioselectivity and ratio of uncyclized to cyclized products were determined 

by HPLC 
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          Our studies commenced with identifying conditions that could transform II-

35 to II-44. Pilot studies indicated that the best enantioselectivities were seen 

when MeCN or CF3CH2OH (TFE) was used as the solvent. It should be noted 

that competing intermolecular processes such as interception of the intermediate 

by the solvent leads to side products II-45 (from TFE incorporation) or II-47 (the 

Ritter product when CH3CN is employed). Also, the intramolecular halocyclization 

path yields the oxazoline II-46 as a side product. Our initial screening of reaction 

conditions had to not only deliver the desired dihalogenated products in 

acceptable yields and enantioselectivity, but also avoid the production of side 

products II-45-II-47 (see Table II-4). 

          Numerous chloride sources were evaluated for this test reaction in the 

presence of 2.0 equivalents of DCDMH, 10 mol% of (DHQD)2PHAL and 

acetonitrile (ACN) as a solvent. Initially, soluble quaternary ammonium chloride 

salts were evaluated. Disappointingly, a mixture of products with a marginal 

preference for the desired product II-44 as a racemate were produced (II-44:II-46 

H
N Ar

OR1 Nu

Cl/Br H
N Ar

O

10 mol% (DHQD)2PHAL 
Cl or Br

Nucleophile:
 R-OH, R-CO2H or H2O

R2 R1

R2

>25 examples
up to >99% dr, rr, ee

R1,R2 = Ar, Alk, H

 (DHQD)2PHAL 
Cl or Br

Nucleophile: X X

Cl/Br H
N Ar

O

R1

R2 ?

Figure II-14: Potential to extend asymmetric chloroetherification chemistry to 
the enantioselective dihalogenation reaction 
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=55:45, 50:50 er, Table II-4, entry 1). Use of NaCl predominantly produces the 

Ritter product II-47 (Table II-4, entry 2). Encouragingly, LiCl fared much better 

despite its sparing solubility in organic solvents. Reactions run at ambient 

temperature with 15 equivalents of LiCl gave significant amounts of the 

chlorocyclized by-product II-46 (II-44:II-46 = 79:21, Table II-4, entry 3). Lowering 

the temperature to -30 °C gave the dichlorinated product exclusively (II-44:II-46 = 

95:5 and 92:8 er, entry 4); although encouraging, this result gave significantly 

lower enantioselectivity for other substrates (see Table II-5, in Section II-2-5). 

          Further experimentation revealed that employing trifluoroethanol 

(CF3CH2OH, TFE) as the reaction solvent gave reproducibly exquisite 

enantioselectivity for the desired product, albeit at the expense of the product 

yield (ca. 40%) due to the formation of II-45 (Table II-4, entry 5). Formation of by-

product II-45 could be greatly mitigated by simply increasing the stoichiometry of 

LiCl from 15 to 100 equiv (>20:1 II-44:II-45, Table II-4, entry 7). These results 

were particularly surprising given the low solubility of LiCl in TFE (ca. 20 mg/mL). 
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II-2-3 Dichlorination of allyl amides in acetonitrile 
 
          Using acetonitrile as the solvent for dichlorination of II-54A produced the 

corresponding product II-54B in moderate yield and stereoselectivity (entry 1, 

Table II-5). Under the same conditions II-39B was formed in high yield and 

diastereoselectivity (99:1 dr) albeit in low enantioselectivity (61.5:38.5 er, entry 2, 

	
  

	
  
	
  

	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
Entry Solvent Conc Temp (°C) XCl XCl (equiv) 44:45:46:47a 

1 MeCN 0.02 23 TEAC 15 55:0:45:0 
2 MeCN 0.02 23 NaCl 15 0:0:13:87 
3 MeCN 0.02 23 LiCl 15 79:0:21:0 
4 MeCN 0.02 -30 LiCl 15 95:0:5:0 
5 TFE 0.02 -30 LiCl 15 45:56:0:0 
6 TFE 0.02 -30 LiCl 50 86:14:0:0 
7 TFE 0.02 -30 LiCl 100 95:5:0:0 
9 TFE 0.40 -30 LiCl 100 95:5:0:0 

aDetermined by NMR; TFE = 2,2,2-trifluoroethanol; TEAC = 
Tetraethylammonium chloride 
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N Ar
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H
N Ar

O

C3H7

OTFE

Cl H
N Ar

O

II-44

II-45

II-35
Ar = 4-NO2Ph

C3H7

(DHQD)2PHAL 
10 mol%

DCDMH (2.0 equiv)
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O ArC3H7
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II-46
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Cl H
N Ar

O
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O

Table II-4:  Summary of optimization studies for dichlorination 
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Table II-5). However, performing the dichlorination reaction in trifluroethanol 

(TFE) gave a significant improvement in stereoselectivity of II-54B and II-39B 

(>99:1 er and 93:7 er, respectively, see Figure II-15 and II-16 in Section II-2-5-1 

and II-2-5-2). 

II-2-4 Role of the counterion of chloride in selectivity of dichlorination 
reactions 
	
  
          Intrigued by the effect of solid LiCl, we investigated the role of the 

counterion under the optimized conditions with various chloride salts that have a 

wide range of solubilities in TFE. The fully soluble tetraethylammonium chloride 

(TEAC) produced a mixture of products with a marginal preference for the 

desired product II-44 in high enantioselectivity (93:7 er, Table II-6, entry 2). 

Treating compound II-35 with sparingly soluble NaCl in TFE (0.03 M solubility) 

returned predominantly the TFE incorporated product II-45 (Table II-6, entry 3). 

	
  
Entry R1 R2 Prod %Yielda/dr erb 

1 H Ph II-54B 59/>6.3:1 91:9 
2 C3H7 H II-39B 89/>99:1 61.5:38.5 

aCombined yield, Determined by NMR;  bDetermined by chiral HPLC 
 

	
  

Table II-5: Dichlorination of allyl amides in acetonitrile 
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These results are in complete contrast with LiCl (entry 1), which delivers the 

desired product in high chemo- and enantioselectivity. CsCl, exhibiting similar 

solubility as LiCl in TFE (0.53 M for CsCl vs. 0.40 M for LiCl) also fails to deliver 

the product in high selectivity, yielding a nearly 1:1 ratio of II-44:II-45. From these 

results, it is evident that while solubility of the chloride source might be an 

important factor that dictates product distribution, the counterion is equally 

important. Additionally, the presence of undissolved LiCl is also essential for 

good selectivity. Finally, we ruled out the possibility that in-situ generated Cl2 gas 

might be the active chlorenium and chloride source; in this instance very low 

selectivity was observed for the desired product (Table II-6, entry 5). Numerous 

control experiments suggest that these reactions likely occur at the solid-liquid 

interface. These experiments are discussed later in the chapter. 
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II-2-5 Substrate scope for asymmetric dichlorination reaction  
	
  
II-2-5-1 Substrate scope for Z-allyl amide in asymmetric dichlorination 
reaction 
	
  
          Mapping the generality of the dichlorination reaction, numerous cis-

substituted allyl amides were examined under the optimized conditions (0.02 M 

substrate concentration in TFE, 100 equivalents LiCl and 2.0 equivalents of 

Entry XCl Solubility (mol/lit) XCl (equiv) 44:45:46:47a eeb(5) 

1 LiCl 0.40 100 95:5:0:0 92:8 

2 TEAC Fully soluble 100 66:34:0:0 93:7 

3 NaCl 0.03 100 0:89:11:0 nd 

4 CsCl 0.54 100 55:44:3:0 95:5 

5c Cl2 (gas) nd Gas 16:43:41:0 50:50 
aDetermined by NMR;  bDetermined by chiral HPLC;  cCl2 gas was generated in 

situ and bubbled into the reaction; TFE = 2,2,2-trifluoroethanol; TEAC = 
Tetraethylammonium chloride 

 

Table II-6:  Role of chloride counter ion in selectivity of the dichlorination 
reaction 
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Ar = 4-NO2Ph

C3H7

(DHQD)2PHAL 
10 mol%

DCDMH (2.0 equiv)

XCl, Temp
Solvent (0.02 M)

N

O ArC3H7

Cl

II-46

C3H7

NH

Cl H
N Ar

O

II-47

O



	
   123 

DCDMH at -30 oC). Dichlorination of Z-aliphatic amides exhibit high 

diastereoselectivity (Figure II-15, see II-44 and II-48B to II-52B, >99:1 dr). The 

identity of the benzamide motif had little influence on the enantioselectivity of this 

reaction; products II-44 and II-48B were both formed in 99.5:0.5 er (Figure II-15, 

entries 1 and 2). The other Z-alkyl substituted olefins afforded dichlorinated 

products in complete diastereo- and enantioselectivity (see II-49B, II-50B). The 

benzyloxysubstituted alkene II-51A gave lower enantioselectivity (88.5:11.5 er). 

Aryl-substituted Z-olefins gave corresponding products in high enantioselectivity 

and regioselectivity (>97:3 er and >99:1 rr, Figure II-15, see II-53B-II-55B). The 

diastereoselectivities and yields for these entries are varied (1.7:1 to >20:1 dr 

and 35% to 88% yield); as expected reduced diastereoselectivity was seen with 

increasing benzylic cation stabilization. The poor yield for substrate II-53A is 

attributed to the formation of cyclized and TFE incorporated products, while the 

moderate yield for compound II-54B is due to the formation of TFE incorporated 

product. Nonetheless, the trifluoromethyl substituted olefin II-55A afforded the 

dichlorinated product with exquisite yield and stereoselectivity (88% yield, >99:1 

dr, 99.5:0.5 er, Figure II-15, entry 9).  
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Figure II-15: Substrate scope for Z-allyl amides in dichlorination reactiona,b 
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II-2-5-2 Substrate scope for E-allyl amide in asymmetric dichlorination 
reaction 
	
  
          Trans aliphatic substituted olefins showed high level of diastereoselectivity 

(>99:1 dr, see II-39B, II-56B and II-57B). Changing the 4-bromobenzamide motif 

to the 4-nitrobenzamide gave identical results (~91:9 er, ~80 % yield, see II-39B, 

II-56B). The benzyloxy protected substrate II-57A formed dichlorinated product in 

85% yield and 89:11 er (Figure II-16, II-57B). Compound II-58A, with aryl 

substituent on the alkene gave moderate yield (due to competing production of 

cyclized and TFE-incorporated products) and moderate enantioselectivity for 

product II-58B (63% yield, 90:10 er, Figure II-16). Trisubstituted alkene II-59A 

was also compatible with this chemistry and returned the desired product in 73% 

yield and 92:8 er. It warrants emphasis that for trisubstituted and aryl-substituted 

olefins, a higher substrate concentration (0.20 M) is required for mitigating the 

formation of TFE incorporated by-product (see Section II-2-6 for concentration 

studies). 
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II-2-5-3 Substrate scope for dichlorination reaction with quasi-enantiomeric 
(DHQ)2PHAL catalyst 
	
  
           The quasi-enantiomeric catalyst, (DHQ)2PHAL, transformed two 

substrates (II-35, II-39A) to the corresponding enantiomeric products in 

comparable yield and selectivity (Figure II-17, ent-II-44 and ent-II-39B). This 

Figure II-16: Substrate scope for Z-allyl amides in dichlorination 
reactiona, b 
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quasi-enantiomeric catalyst forms the mirror image products with similar yields 

and enantioselectivities when (DHQD)2PHAL was used (see Figure II-15 and II-

16). 

 

 

II-2-5-4 Substrate scope for regio- and enantioselective hetero-
dihalogenation 
	
  
         Gratifyingly, this chemistry also delivers vicinal dibrominated and chloro-

brominated products with high stereoselectivity. Treating II-35 in TFE (0.2 M) with 

100 equivalents LiCl as the chloride source and 2.0 equivalents of NBS as the 

aIsolated yield on a 0.1 mmol scale; bEnantioselectivity determined by chiral
HPLC
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H
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Cl H
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10 mol% (DHQ)2PHAL
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Cl H
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99:1 dr
96:4 er

R2R1
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Figure II-17: Substrate scope for dichlorination reaction with quasi-
enantiomeric (DHQ)2PHAL catalysta, b 
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bromenium source gave II-35C in 97% yield and 99.5:0.5 er (Figure II-18, entry 

1). Using LiBr in conjunction with NBS gave the dibrominated product II-35C’ in 

90% yield and 84:16 er (Figure II-18, entry 2). Z-aromatic olefin II-55A returned 

chlorobrominated product II-55C in 96% yield with high stereoselectivity (99.5:0.5 

er and >99:1 dr, see II-55C, Figure II-18). The chlorobromination of E-amides II-

39 and II-58A formed desired products II-39C and II-58C in high 

diastereoselectivity and good enantioselectivity. The yield for aromatic substrate 

II-58A suffers due to the formation of the cyclized product  (58%, see II-58C, 

Figure II-18). There are solvent and equilibrium optimization studies for hetero-

dihalogenation that will be discussed in Section II-2-7. 



	
   129 

Figure II-18: Regio- and enantioselective hetero-dihalogenationa, b 

 

II-2-6 Influence of reaction concentration on the yield for the dichlorination 
of unsaturated aromatic and trisubstituted allyl amides 
	
  
          The dichlorination of aromatic allyl amides (II-54A, II-58A) in optimized 

concentration (0.02 M) produced the mixture of dichlorinated product and 

chloroetherification side product in moderate yield and high diastereoselectivity 

(entries 1 and 2, Table II-7). 

aIsolated yield on a 0.1 mmol scale; bEnantioselectivity determined by chiral
HPLC
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Table II-7: Dichlorination of aromatic and trisubstituted allyl amides 

	
  

Entry R1 R2 Conc Prod %Yielda/drb B:D 
1 H Ph 0.02 II-54B 55c/10:1 4.2:1 
2 Ph H 0.02 II-58B 40c/32:1 2.8:1 
3 Me Me 0.02 II-59B 44c/na 1:1.8 
4 H Ph 0.2 II-54B 62c/15.6:1 15.6:1 
5 Ph H 0.2 II-58B 63c/53:1 5.3:1 
6 Me Me 0.2 II-59B 73c/na 4.4:1 

aYield determined by NMR; bDiastereoselectivity determined by chiral HPLC; 
cRest of mass balance is TFE incorporated product 

 
           The trisubstituted olefin II-59A formed the desired product II-59B in 44% 

yield (see entry 3, Table II-7). The mass balance for these reactions was TFE-

incorporated side product II-(54, 58, 59)D. In an attempt to increase the yield and 

chemoselectivity for these substrates II-(54, 58, 59)A, the reaction was 

performed at a higher concentration (0.2 M). The higher concentration resulted in 

higher yields and diastereoselectivities of the desired products (see entries 4, 5 

and 6, Table II-7). 

10 mol% (DHQD)2PHAL 
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II-2-7 Influence of solvents and equivalents of lithium chloride on the 
chlorobromination reactions 

 

Table II-8: Optimization of chlorobromination reactions 

	
  

Entry Solvent Temp equiv of 
LiCl C:Ea er (II-35 C)b 

1 ACN rt 30 1.0:1.0 76:24 
2 ACN -30 100 4.5:1.0 76:24 
3 ACN -30 300 4.9:1.0 76:24 
4 TFE -30 100 >99:1 98:2 

aThe ratio of products, Determined by NMR; bDetermined by chiral HPLC 
 

          Treating allyl amide II-35 in ACN (0.2 M) with 30 equivalents of LiCl as the 

chloride source and 2 equivalents of NBS as the bromenium source gave a 

mixture of products II-35C:II-35E in ratio of 1:1 with 76:24 er for the desired 

product II-35C (entry 1, Table II-8). Using higher equivalents of LiCl slightly 

increased the chemoselectivity in favor of dihalogenated product II-35C (entries 2 

and 3, Table II-8). Interestingly, performing the chlorobromination reaction in TFE 

as solvent forms product II-35C with exquisite chemoselectivity and 

enantioselectivity (98:2 er, entry 4, Table II-8). 
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II-2-8 Various halenium and halide sources for the enantioselective 
dihalogenation of unsaturated amides were used 
	
  
	
  
Table II-9: Regio- and enantioselective dihalogenation 

	
  
Entry X-source X+ source X1 X2 Prod %Conv %Yielda erb 

1 LiCl NBS Cl Br 35C 100 97 98:2 
2 LiBr NBS Br Br 35C’ 100 90 84:16 
3 LiBr DCDMH Br Br 35C’ 100 96 77:23 
4 LiF DCDMH F Cl 45 100 nd nd 
5 LiI NIS I I - 0 nd nd 
6 LiI DCDMH I Cl - 0 nd nd 

aYield determined by NMR; bEnantioselectivity determined by chiral HPLC 
	
  

	
  

          Treating II-35 (0.2 M) in TFE with 100 equivalents of LiCl as the chloride 

source and 2.0 equivalents of NBS as the bromonium source produced II-35C in 

97% yield and 98:2 er. With this result in hand we attempted to form the other 

regioisomer by changing the X- and X+ source. U LiBr and NBS formed the 

dibrominated product II-35C’ in 90% yield and 84:16 er (Table II-9, entry 2). 

Surprisingly, employing LiBr and DCDMH led to the dibrominated product II-35C’ 

instead of the chlorobrominated product (Table II-9, entry 3). This observation 

suggests that in the presence of LiBr, DCDMH is converted to DBDMH, or 

otherwise generates a bromonium. This has led us to devise a simple procedure 

for the synthesis of a variety of bromenium sources from their corresponding 

II-35
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chlorenium containing parents. These results will discuss in Section II-2-11. 

Employing LiF as a fluoride source failed to yield chlorofluorinated product and 

instead returned the TFE incorporated product II-45 in high yield (Table II-9, entry 

4). Lithium iodide does not lead to any product and starting material was 

recovered (Table II-9, entries 4 and 5). 

II-2-9 Product distribution arising due to substrate-control and catalyst-
control for the dichlorination reactions 
 
Table II-10: Product distribution in catalyzed and non-catalyzed dichlorination 
reactions 

	
  

Entry Catalyst Ratio (C:D:E)a Regioselectivitya er (II-48C)b 

1 None 52:24:24 2:1 50:50 
2  (DHQD)2PHAL 90:5:5 18:1 94:6 

aThe ratio of products and regioselectivities, Determined by NMR.; b 

Enantioselectivity determined by chiral HPLC 
 

         The dihalogenation reaction without any catalysts gave 3 major products. 

As shown in the NMR trace (Figure II-19) for the crude reaction, along with the 

desired product II-48C, the regioisomer II-48D and the cyclized product II-48E 
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were also formed in a ratio of 52:24:24 (Table II-10, entry 1). On the other hand, 

employing (DHQD)2PHAL as the chiral catalyst at ambient temperature gave the 

desired product in significantly higher selectivity with 94:6 enantioselectivity 

(Table II-10, entry 2). These results demonstrate that the chiral catalyst is not 

only responsible for high enantioselectivity but also for the exquisite 

regioselectivity seen for reactions employing aliphatic substrates. 

 

	
  

II-2-10 Control experiments indicating that dichlorination reaction occurs 
on LiCl solid surface 

II-2-10-1 Screening selectivity ratio with different concentrations 
	
  
          The fact that these reactions required up to 100 equiv of LiCl for optimal 

results was counterintuitive given the sparing solubility of LiCl in organic solvents. 

Additionally, a significant amount of the added LiCl remained undissolved during 

the reaction and could be recovered at the end. In order to determine whether 

II-­‐48C	
  

With	
  (DHQD)2PHAL	
  

II-­‐48D	
  II-­‐48E	
  

Without	
  (DHQD)2PHAL	
  

Figure II-19: NMR trace for product distribution in catalyzed and non-
catalyzed chlorobromination reaction 
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suspended LiCl plays a role in this reaction and if indeed the reaction is occurring 

on a solid-liquid interface, two sets of control experiments were executed. In the 

first set of experiments, a saturated solution of LiCl in TFE (0.47 M concentration) 

was prepared and employed in dichlorination reactions with different substrate 

concentrations (Table II-11, entries 1-4). Two key observations were made. First, 

all reactions gave similar product ratios regardless of the substrate concentration 

or the substrate:LiCl ratio (5.8-6.6:1 ratio of II-44:II-45). Second, the ratio of II-

44:II-45 was significantly worse than that observed under optimized reaction 

conditions that employed a large excess of LiCl (>20:1 II-44:II-45); i.e. reactions 

run in the presence of suspended/undissolved LiCl were significantly more 

selective (Table II-10, entry 5). 
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Table II-11: Screening selectivity ratio in different concentrations 

 

Entry TFE (mL) Conc. (35) Conc. (LiCl) LiClb (equiv) 44:45a 

1 0.5 0.20 0.47 (soluble) 2 5.8:1 

2 0.5 0.08 0.47 (soluble) 5 6.6:1 

3 2 0.02 0.47 (soluble) 20 6.4:1 

4 7 0.006 0.47 (soluble) 67 6.2:1 

5 2 0.02 2.0 (insoluble) 100 >20:1 
aRatio determined by NMR; b0.47 M solution of LiCl in TFE was prepared by 
saturating TFE with LiCl, filtering the undissolved LiCl and determining the 
molarity of the dissolved salt from the difference in mass of recovered LiCl. 

  

II-2-10-2 Effect of rate of stirring (RPM studies) on the selectivity of 
dichlorination reaction 
 
          A second set of control experiments was performed to probe mixing and 

mass-transfer effects. The stirring speed was altered, first in the soluble regime 

(15 equiv of LiCl, 0.3 M in LiCl) and then in the insoluble regime. The stirring 

speed had a remarkable effect on product distribution. In the absence of any 

stirring (0 rpm) significant amount of by-product II-45 was formed (II-44:II-45= 

1:1, Table II-12, entry 1). At 100 and 300 rpm, this ratio improved to 3.5:1 (entries 

2 and 3, Table II-12). In the insoluble regime (100 equiv of LiCl, 0.02 M substrate 

concentration, entries 4 – 7, Table II-12) this effect was even more pronounced. 
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At 0 rpm, the ratio of II-44:II-45 was 1.5:1. Increasing the rate of stirring to 300 

rpm gave the desired product almost exclusively (95% yield, II-44:II-45 = >20:1, 

Table II-12, entry 5). With a further increase in substrate concentration to 0.20 M, 

the effects of mass transfer became less pronounced (II-44:II-45 = >20:1 at 0 

rpm as well as at 300 rpm, see entries 6 and II-7 in Table II-12). The combination 

of results from Tables II-6, II-11 and II-12 highlighting the requirement for a Li 

cation, and also the dependence on the heterogeneous nature of the reaction, 

strongly suggests that success in greatly limiting the TFE incorporated side 

product II-45 is due to the reactionpreceding at the liquid-solid interface. 
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Table II-12: Effect of rate of stirring  (RPM studies) in selectivity of the 
dichlorination reaction 

 

entry Conc RPM equiv (LiCl) Yield 44:45a,b 

1 0.02 0 15 95 1.0:1.0 

2 0.02 100 15 88 3.5:1.0 

3 0.02 300 15 90 3.5:1.0 

4 0.02 0 100 90 1.5:1.0 

5 0.02 300 100 95 >20:1 

6 0.20 0 100 82 >20:1 

7 0.20 300 100 87 >20:1 
aRatio determined by NMR; b1% to 3% of cyclized product was seen by NMR. 
 
 
 II-2-10-3 Effect of LiCl particle size on product distribution of the 
dichlorination reaction 
 
          The suggested role of solid LiCl on the reaction would presume that 

particle size should have an influence on the reaction outcome. To probe the role 

of insoluble LiCl on the olefin dichlorination reaction, different particle sizes of 

lithium chloride were produced by sequential sieving through different mesh 

screens. This was accomplished by taking the salt particles that passed from a 

higher mesh size screen (for example 850 mm) and were trapped onto a smaller 

mesh size screen (such as 300 mm).  In the latter example, the particle sizes are 
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between 850 mm to 300 mm.  The mesh ranges in Table II-13 refer to sequential 

sieving with two different mesh screens as described above.  The reactions were 

ran with 50 equivalents of LiCl in each case, since with larger excess the II-

58B:II-58D ratio would have been less pronounced (at 100 equivalents the 

majority of the product is the desired II-58B). As anticipated for a reaction that is 

dependent on reaction at the solid interface, LiCl particle size makes a difference 

in the ratio of products. Entry 1, with the largest particle sizes yields the worst 

ratio of II-58B:II-58D (62:38). As the particle sizes become progressively smaller, 

the ratio favors the desired II-58B product, which is presumably aided by the 

reaction taking place at the solid interface.  We would anticipate that the reaction 

to yield II-58D (incorporation of the solvent) is independent of the solid and 

occurs in the soluble phase. These results corroborate the RPM studies (Table II-

12), which also highlights that the dichlorination reaction is aided by the presence 

of the solid LiCl, suggestive of the fact that the reaction could occur on solid-

liquid interface.	
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Table II-13: Effect of LiCl particle size on product distribution of the dichlorination 
reaction 

	
  

Entrya LiCl particle size (µm)b Ratio (B:D)c 

1 850-300 62:38 
2 300-150 66:34 
3 150-53 66:34 
4 53-45 74:26 

aFor all reactions, 50% of the product was the intramolecularly cyclized 
compound; bLiCl was ground to powder and was sieved to obtain different 
particle sizes.; cDetermined by NMR 

 

II-2-10-4 Effect of 12-crown-4 ether on product distribution of dichlorination 
reactions 

 
          12-Crown-4 ether is a specific scavenger for lithium cation, yielding a more 

soluble chloride in the reaction mixture. In the presence of 15 equivalents of LiCl 

at ambient temperature the desired product II-44 was formed predominantly (II-

44:II-45 = 77:23, Table II-14, entry 1). Adding 12-crown-4 ether formed II-44 with 

diminished selectivity; in presence of 3 equivalents of 12-crown-4 ether the ratio 

of II-44:II-45 decreased to 68:32 (Table II-14, entry 2). Employing 20 equivalents 

of crown ether in presence of 50 equivalants of LiCl gave a mixture of products in 

worse selectivity (61:39 II-44:II-45, Table II-14, entry 6). These results are in line 

with other control experiments (RPM studies, LiCl particle size) demonstrate that 
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insoluble LiCl plays an important role for obtaining high selectivity for 

dichlorination reactions. 

Table II-14: Effect of 12-crown-4 ether on product distribution of dichlorination 
reactions 

	
  

Entry Equiv of LiCl Equiv of Crown ether Ratio (44:45)a 

1 15 0 77:23 
2 15 1 72:28 
3 15 3 68:32 
4 50 0 89:11 
5 50 5 86:14 
6 50 20 61:39 

aDetermined by NMR 
 

II-2-11: A new unprecedented transformation for the synthesis of N-
haloimides revealed by side product identification in hetero-dihalogenation 
	
  
           During exploring substrate scope for hetero-dihalogenation reaction 

interesting observations leads us to Expedient access to N-bromo- and N-

iodoimides from the corresponding N-chloroimides.  

 

II-2-11-1 The importance of N-haloimides 
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          N-haloimides are among the most widely employed electrophilic 

halogenating reagents in both academia and industry. These reagents serve as 

stable and easily handled sources of halogen atoms and often obviate the need 

to use more corrosive reagents such as molecular chlorine, bromine or iodine. 

Among this diverse family of reagents, N-bromo and N-iodo imides are 

particularly useful owing to the higher reactivity of the resulting bromide or iodide 

products. The typical example, 1,3-dibromo-5,5-dimethyl-hydantoin (DBDMH), 

has been employed in radical  bromination reactions,53  electrophilic aromatic  

bromination,47, 54 oxidation of thiol to disulfides55 and most recently in 

enantioselective bromofunctionalization of alkenes.56  Moreover, DBDMH is 

used as an active antimicrobial agent; AviBrom® and BoviBrom® are two 

processing aids that are used for disinfection of beef. Is also more prefered over 

the corresponding chlorinated counterparts as adisinfectant and bactericide for 

water sources and food industries because its efficiency is less sensitive to pH. 

II-2-11-2 Currently used methods for producing N-haloimides 
	
  
          Two prominent methods are currently used for the synthesis of N-

haloimides – 1) Treating the parent imide with molecular bromine or iodine in the 

presence of a strong base such as sodium hydroxide.  Although straightforward, 

this process is often limited to production facilities that are capable of producing 

Br2 or I2 due to the high cost and hazards associated with the transportation and 

storage of the highly corrosive reagents.57 2) In situ generation of Br2 or I2 using 

readily available bromide or iodide salts by treating with a strong oxidant.  While 
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this process avoids handling molecular Br2 or I2, the hazardous nature of the 

oxidants (such as H2SO4, H2O2, persulfate salts, Oxone, etc) often preclude the 

use of such processes on scale (Figure II-20).58 

 Figure II-20:  Currently used methods for producing N-haloimides 

 

           In this Section, we propose an alternative and cost-effective means of 

generating the N-haloimides in situ by reacting readily available and stable N-

Chloroimides with inorganic bromide or iodide salts (LiBr, LiI).  This process of in-

situ transformation of N-chloroimides to the corresponding N-bromo or N-iodo 

imides is unprecedented. Also, all the reagents are easily handled and shelf-

stable.  

II-2-11-3 Highly regio- and enantioselective vicinal dihalogenation of allyl 
amides 
 
          As mentioned earlier in this Chapter, we reported the enantioselective 

vicinal dihalogenation of allyl amides in the presence of (DHQD)2PHAL as a 

chiral organocatalyst. An electrophilic halenium (X+) donor along with lithium 

halide (X-) is needed for completion of this transformation. The employing of 

large excess (100 equivalents) of lithium halide is essential to obtain high 

selectivity and yield, it was indicated that reaction occurs on solid surface of 

Lithium halide. This methodology is compatible with E and Z alkenes with both 

N H
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O O
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aryl and aliphatic substituents. Various examples of dihalogenated and 

heterodihalogenated products was evaluated with up to 97% yield and >99.5:0.5 

er (Figure II-21). 

Figure II-21: Highly regio- and enantioselective vicinal dihalogenation of allyl 
amides 

 

II-2-11-4 Identification of a hetero-dihalogenation reaction’s side product 
 
              In addition to vicinal dichlorination and dibromination, we were also able 

to demonstrate heterodihalogenation i.e. bromo-chlorination of the allyl amide. 

Specifically, when II-35 was treated with LiCl as the nucleophilic chloride source 

and DBDMH as the source of electrophilic bromine, chloro- brominated product 

II-35C was formed in 97% yield. In an effort to reverse the regiochemistry, we 

switched the halide source to LiBr and the electrophilic halogen donor to DCDMH 

for accessing bromo-chlorinated product II-35D (regioisomer of II-35C).  The 

reaction did not proceed as planned; instead the dibrominated product II-35C’ 

was isolated in 96% yield (Figure II-22a). We surmised that DCDMH must have 

reacted with LiBr to afford DBDMH in-situ.  We were able to confirm this via 

NMR.  When DCDMH was treated with a slight excess of LiBr in CD3CN, a rapid 

and quantitative formation of DBDMH was seen based on 13C NMR. It occurred 
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to us that this might represent a general route to access a variety of N-

bromoimides from the corresponding N-chloroimides.  

 

 
	
  
	
  

II-2-11-5 Substrate scope for expedient synthesis of N-bromo- and N-
iodoimides from the corresponding N-chloroimides 
 
          Four of the most commonly employed N-bromoimides were accessed from 

the corresponding N-chloroimides in high yields. As shown in Figure II-23, 

DBDMH was isolated in quantitative yield by addition of LiBr to suspended 

Figure II-22: (a) Regioselective chloro-bromination of allyl amides (b) LiBr-
mediated transformation of DCDMH to DBDMH 
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DCDMH in Acetonitrile.  The reaction was complete in 1 hour at ambient 

temperature. Isolation of the product involved a routine aqueous work-

up/extraction protocol followed by recrystallization from EtOAc-Hexanes. This 

methodology was general. Various N-bromoimides were synthesized by 

employing LiBr in >90% yield (see products II-60A-II-63A, Figure II-23).  

	
  
Figure II-23: Substrate scope for formation of N-bromo and N-iodoimidea, b 

We then turned our attention to potentially accessing N-iodoimides using 

an analogous approach. With well-documented stability issues, an expedient 

access to N-iodoimides from the corresponding shelf-stable N-chloroimides 

would represent an attractive alternative to freshly recrystallizing these reagents 
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prior to use. To our delight, employing LiI in lieu of LiBr affords the N-Iodoimides 

in high yields (II-60B-II-62B, Figure II-23). The only by-product formed in this 

process is LiCl. This is of particular relevance to the synthesis of N-iodoimides – 

all commercial processes to N-iodoimides produce stoichiometric quantities of 

inorganic iodide waste (I2/NaOH system).  Most water treatment facilities have 

strict specifications for iodide content owing to the numerous adverse effects of 

inorganic iodides on aquatic and terrestrial organisms. The process is rapid and 

quantitative in most cases that have been examined thus far.  

II-2-12 Conclusion 
	
  
In conclusion, we report an experimentally expedient dihalogenation reaction that 

is catalyzed with (DHQD)2PHAL, yielding products in high yield and 

enantioselectivity. Exquisite catalyst controlled regioselectivity has allowed for a 

broad substrate scope that includes alkyl and aryl substituted allyl amides. The 

stereochemistry of the double bond is of little consequence, as good results are 

obtained with both E and Z olefins. Of particular interest is the role of LiCl, the 

chloride source for the reaction. Our exhaustive screening demonstrated TFE as 

the optimal choice for solvent, although its incorporation as the nucleophile in the 

reaction was initially a problem. Use of excess LiCl drastically reduces the TFE 

incorporated side product. Our preliminary investigations strongly suggest not 

only a role for the solid salt in solution, but also for the presence of Li salt in 

particular, for the success of this transformation. Mechanistic investigations are 
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underway to further elaborate the nature of interactions, presumably at the 

solid/liquid interface, that lead to the observed effects. 

We report the unprecedented and expedient transformation for generating the N-

bromo and N-iodoimides by reacting readily available and stable N-chloroimides 

with inorganic bromide or iodide salts (LiBr, LiI). All reagents are easily handled, 

readily available and shelf stable. The transformation is rapid, high-yield and 

operationally straightforward. 

II-2-13 Experimental section 
 

II-2-13-1 General information 
 
          Commercially available reagents were purchased from Sigma-Aldrich or 

Alfa-Aesar and used as received. CH2Cl2 and acetonitrile were freshly distilled 

over CaH2 prior to use.  THF was distilled over sodium-benzophenone ketyl.  All 

other solvents were used as purchased. LiCl and LiBr were purchased from 

Sigma-Aldrich; the particle size of LiCl and LiBr were <850 mm. 1H and 13C NMR 

were recorded on 500 MHz Varian NMR machines using CDCl3 as solvent and 

were referenced to residual solvent peaks.  Flash silica gel (32-63 mm, Silicycle 

60 Å) was used for column chromatography. The sieves for obtaining different 

mesh size of LiCl were purchased from H&C sieving systems. Enantiomeric 

excess for all products was determined by HPLC analysis using DAICEL 

CHIRALCEL® OJ-H and OD-H or CHIRALPAK® IA and AD-H columns. Optical 

rotations of all products were measured in chloroform. Allyl amides II-35, II-39, II-
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(48 to 59)A (except II-55A) were synthesized as reported previously.29 Analytical 

data for byproducts II-46 and II-47 were also reported in the same reference. 

II-2-13-2 General procedure for catalytic asymmetric dichlorination of 
unsaturated amides 
 
          The substrate (0.1 mmol, 1.0 equiv) and LiCl (420 mg, 10 mmol, 100 

equiv, reagent grade, <850 mm particle size) were suspended in trifluoroethanol  

(TFE, 5.0 mL) in a screw-capped 20 mL vial equipped with a micro stir bar (7 × 2 

mm). The resulting suspension was cooled to -30 °C in an immersion cooler. 

(DHQD)2PHAL (7.8 mg, 10 mol%) was then introduced. After stirring for 2 min 

DCDMH (39.5 mg, 0.2 mmol, 2.0 equiv) was added. The stirring at 300 RPM (as 

indicated by the stirrer) was continued at -30 °C till the reaction was complete 

(TLC). The reaction was quenched by the addition of saturated aq. Na2SO3 (3 

mL) and diluted with DCM (3 mL). The organics were separated and the aqueous 

layer was extracted with DCM (3 × 4 mL). The combined organics were dried 

over anhydrous Na2SO4 and concentrated in the presence of small quantity of 

silica gel. Column chromatography (SiO2/EtOAc – Hexanes gradient elution) 

gave the desired product. 

II-2-13-3 Procedure for gram scale scope analysis for catalytic asymmetric 
dichlorination of unsaturated amides in presence of 1% of chiral catalyst 
 
          II-35 (1.0 g, 4.0 mmol, 1.0 equiv) and LiCl (17 g, 100 equiv) were 

suspended in trifluoroethanol (TFE, 20.0 mL) in a round-bottom flask equipped 

with a stir bar. The resulting suspension was cooled to -30 °C in an immersion 
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cooler. (DHQD)2PHAL (32.0 mg, 1.0 mol%) was then introduced. After stirring for 

2 min DCDMH (1500 mg, 8.0 mmol, 2.0 equiv) was added. The stirring in >300 

RPM was continued at -30 °C till the reaction was complete (TLC). The reaction 

was quenched by the addition of saturated aq. Na2SO3 (20 mL) and diluted with 

DCM (15 mL). The organics were separated and the aqueous layer was 

extracted with DCM (3 × 15 mL). The combined organics were dried over anhyd. 

Na2SO4 and concentrated in the presence of silica gel. Column chromatography 

(SiO2/EtOAc – Hexanes gradient elution) gave the desired product in 91% yield 

and 98:2 enantioselectivity. 

II-2-13-4 Procedure for gram scale scope analysis for synthesis of N-
bromo- and N-iodoimides from the corresponding N-chloroimides. 
 

The substrate II-35 (5 mmol, 1.0 gr) was suspended in acetonitrile (ACN, 

10 ml). LiBr (2.2 equiv, 0.95 gr) was then introduced. After stirring for 1 hour, the 

reaction was quenched by the addition of water (10 mL) and diluted with EtOAC 

(10 mL). The mixture was extracted with EtOAC (3 × 5 mL), and organic layer 

concentrated to half of the volume. Following by addition of 5 ml water and 

extraction with EtOAC (1 × 5 mL). The organic layer was dried over anhydrous 

Na2SO4 and concentrated to the third quarter of the volume. At last, 10 ml of 

hexane was added to crude and cooled down in fridge to obtain crystalline 

product 6 in 100% yield.  

This methodology is general and the same procedure were used for producing 

various N-Bromo and Iodoimide 
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II-2-13-5 Analytical data for products 
	
  
II-44: N-((2S,3S)-2,3-dichlorohexyl)-4-nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 

6.52 (br s, 1H), 4.41-4.38 (ddd, J = 9.5, 4.5, 2.5 Hz, 1H), 4.18-4.15 (ddd, J = 9.0, 

4.5, 2.0 Hz, 1H), 4.13-4.07 (ddd, J = 14.0, 7.5, 4.5 Hz, 1H), 3.66-3.61 (ddd, J = 

13.5, 8.5, 5.0 Hz, 1H), 1.93-1.80 (m, 2H), 1.62-1.54 (m, 1H), 1.46-1.38 (m, 1H), 

0.96 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.77, 149.81, 139.27, 128.22, 123.96, 63.49, 

62.76, 44.92, 37.45, 19.67, 13.40 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17Cl2N2O3: 319.0616; Found: 

319.0609 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 8.3 min, RT2 (minor) = 10.8 min. 

[α]D20 = +47.1 (c 0.65, CHCl3, er = >99:1) 

Absolute stereochemistry was determined by single crystal X-ray diffraction 

(XRD). Crystals for XRD were obtained by crystallization from CH2Cl2 layered 

with hexanes in a silicone-coated vial.   

H
N

O

NO2
Cl

Cl
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ent-II-44: N-((2R,3R)-2,3-dichlorohexyl)-4-nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 94% yield with (DHQ)2PHAL 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 

6.52 (br s, 1H), 4.41-4.38 (ddd, J = 9.5, 4.5, 2.5 Hz, 1H), 4.18-4.15 (ddd, J = 9.0, 

4.5, 2.0 Hz, 1H), 4.13-4.07 (ddd, J = 14.0, 7.5, 4.5 Hz, 1H), 3.66-3.61 (ddd, J = 

13.5, 8.5, 5.0 Hz, 1H), 3.66-3.61(m, 1H), 1.93-1.80 (m, 2H), 1.62-1.54 (m, 1H), 

1.46-1.38 (m, 1H), 0.96 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.77, 149.81, 139.27, 128.22, 123.96, 63.49, 

62.76, 44.92, 37.45, 19.67, 13.40 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17Cl2N2O3: 319.0616; Found: 

319.0607 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 8.6 min, RT2 (major) = 11.0 min. 

[α]D20 = -45.3 (c 1.0, CHCl3, er = 98:2) 

H
N

O

NO2
Cl

Cl
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II-48B: 4-bromo-N-((2S,3S)-2,3-dichlorohexyl)benzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 

6.48 (br s, 1H), 4.40-4.37 (ddd, J = 9.0, 4.5, 2.5 Hz, 1H), 4.17-4.14 (ddd, J = 9.0, 

4.5, 2.5 Hz, 1H), 4.14-4.03 (ddd, J = 14.0, 7.0, 4.5 Hz, 1H), 3.64-3.59 (ddd, J = 

14.0, 8.5, 5 Hz, 1H), 1.93-1.79 (m, 2H), 1.61-1.53 (m, 1H), 1.45-1.38 (m, 1H), 

0.94 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 166.82, 132.56, 131.96, 128.57, 126.68, 63.62, 

62.82, 44.82, 37.55, 19.66, 13.40 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17Cl2NOBr: 351.9871; Found: 

351.9865 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 15% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 6.7 min, RT2 (minor) = 10.4 min. 

[α]D20 = +40.5 (c 0.8, CHCl3, er = >99:1) 

 

II-49B: N-((2S,3S)-2,3-dichloropentyl)-4-nitrobenzamide 
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Rf : 0.50 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 

6.61 (br s, 1H), 4.43-4.40 (ddd, J = 8.5, 4.0, 2.5 Hz, 1H), 4.12-4.05 (m, 2H), 3.67-

3.62 (ddd, J = 14.0, 9.5, 5.5 Hz, 1H), 1.96-1.90 (m, 2H), 1.06 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.77, 149.82, 139.27, 128.23, 123.97, 64.77, 

63.17, 44.95, 28.94, 11.21 

HRMS analysis (ESI): Calculated for [M+H]+: C12H15Cl2N2O3: 305.0460; Found: 

305.0450 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 9.9 min, RT2 (minor) = 11.3 min. 

[α]D20 = +36.6 (c 0.6, CHCl3, er = >99:1) 

 

II-50B: N-((2S,3S)-2,3-dichlorononyl)-4-nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 

6.63 (br s, 1H), 4.41-4.38 (ddd, J = 9.0, 4.0, 2.0 Hz, 1H), 4.16-4.07 (m, 2H), 3.66-

3.61 (ddd, J = 14.0, 9.0, 5.5 Hz, 1H), 1.90-1.85 (m, 2H), 1.57-1.50 (m, 1H), 1.40-

1.18 (m, 7H), 0.88 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.77, 149.81, 139.28, 128.22, 123.95, 63.46, 

63.10, 44.93, 35.52, 31.52, 28.59, 26.37, 22.50, 14.01 
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HRMS analysis (ESI): Calculated for [M+H]+: C16H23Cl2N2O3 361.1086; Found: 

361.1077 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 6.6 min, RT2 (minor) = 8.0 min. 

[α]D20 = +27.4 (c 0.7, CHCl3, er = >99:1) 

 

II-51B: N-((2S,3S)-4-(benzyloxy)-2,3-dichlorobutyl)-4-nitrobenzamide 

 

Rf : 0.50 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 9.0 Hz, 2H), 7.90 (d, J = 9.0 Hz, 2H), 

7.36-7.29 (m, 5H), 6.65 (br s, 1H), 4.67-4.63 (ddd, J = 8.0, 5.0, 2.0 Hz, 1H), 4.57 

(s, 2H), 4.29 (dt, J = 7.0, 2.5 Hz 1H), 4.07-4.02 (ddd, J = 14.0, 7.5, 5.0 Hz, 1H), 

3.78 (d, J = 6.5 Hz, 2H), 3.76-3.70 (ddd, J = 14.0, 8.5, 5.0 Hz, 1H) 

13C NMR (125 MHz, CDCl3) δ 165.60, 149.75, 139.33, 137.13, 128.58, 128.21, 

128.13, 127.87, 123.91, 73.77, 70.61, 60.12, 59.61, 44.46 

HRMS analysis (ESI): Calculated for [M+H]+: C18H19Cl2N2O4: 397.0722; Found: 

397.0717 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 14.7 min, RT2 (minor) = 17.4 min. 

[α]D20 = +27.1 (c 0.55, CHCl3, er = 89:11) 
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II-52B: N-((2S,3S)-5-((tert-butyldiphenylsilyl)oxy)-2,3-dichloropentyl)-4-

nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 

7.64-7.60 (m, 4H), 7.42-7.34 (m, 6H), 6.57 (br s, 1H), 4.60 (ddd, J = 9.0, 3.5, 2.5 

Hz, 1H), 4.48-4.45 (ddd, J = 8.5, 5.0, 2.5 Hz, 1H), 4.09-4.04 (ddd, J = 14.5, 7.5, 

5.5 Hz, 1H), 3.88-3.83 (m, 1H), 3.79-3.71 (m, 2H), 2.15-2.09 (m, 1H), 2.06-1.99 

(m, 1H), 0.98 (s, 9H) 

13C NMR (125 MHz, CDCl3) δ 165.67, 149.80, 139.27, 135.50, 135.46, 

133.21,133.14, 129.81, 129.80, 128.20, 127.77, 127.75, 123.95, 63.38, 59.81, 

59.49, 44.73, 38.29, 26.79, 19.17 

HRMS analysis (ESI): Calculated for [M+H]+: C28H33Cl2N2O4Si: 559.1605; Found: 

559.1609 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 7% IPA-Hexanes, 

0.8 mL/min, 254 nm, RT1 (minor) = 12.5 min, RT2 (major) = 13.3 min. 

[α]D20 = +21.8 (c 0.45, CHCl3, er = >99:1) 

 

Syn-II-53B: N-((2S,3S)-2,3-dichloro-3-(p-tolyl)propyl)-4-nitrobenzamide 
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Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 8.5 Hz, 2H), 7.87 (d, J = 8.5 Hz, 2H), 

7.34 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.50 (br s, 1H), 5.13 (d, J = 5.5 

Hz, 1H), 4.56-4.53 (m, 1H), 4.10-4.05 (ddd, J = 14.5, 7.5, 4.0 Hz, 1H), 3.50-3.44 

(ddd, J = 13.5, 9.0, 5.0 Hz, 1H), 2.34 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.49, 149.80, 139.30, 139.25, 133.79, 129.42, 

128.17, 127.67, 123.92, 65.11, 64.35, 44.30, 21.18 

HRMS analysis (ESI): Calculated for [M+H]+: C17H17Cl2N2O3: 367.0614; Found: 

367.0616 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 13.4 min, RT2 (minor) = 20.4 min. 

[α]D20 = -19.4 (c 0.4, CHCl3, er = 97:3) 

 

Anti-II-53B: N-((2S,3R)-2,3-dichloro-3-(p-tolyl)propyl)-4-nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H), 

7.31 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.50 (br s, 1H), 4.99 (d, J = 8.0 
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Hz, 1H), 4.58-4.54 (m, 1H), 4.49-4.44 (ddd, J = 14.0, 6.5, 3.5 Hz, 1H), 3.67-3.62 

(ddd, J = 13.5, 8.0, 5.0 Hz, 1H), 2.34 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.42, 149.80, 139.39, 139.27, 134.56, 129.50, 

128.21, 127.62, 123.92, 64.08, 63.55, 43.90, 21.21 

HRMS analysis (ESI): Calculated for [M+H]+: C17H17Cl2N2O3: 367.0614; Found: 

367.0619 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 14.9 min, RT2 (major) = 18.2 min. 

[α]D20 = +4.0 (c 0.3, CHCl3, er = 91:9) 

 

II-54B: N-((2S,3S)-2,3-dichloro-3-phenylpropyl)-4-nitrobenzamide 

 

Rf : 0.50 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 2H), 7.88 (d, J = 9.0 Hz, 2H), 

7.47-7.35 (m, 5H), 6.50 (br s, 1H), 5.18 (d, J = 5.0 Hz, 1H), 4.59-4.55 (m, 1H), 

4.14-4.01 (ddd, J = 14.0, 7.5, 4.0 Hz, 1H), 3.52-3.46 (ddd, J = 14.0, 8.5, 4.5 Hz, 

1H) 

13C NMR (125 MHz, CDCl3) δ 165.53, 149.81, 139.21, 136.71, 129.23, 128.71, 

128.17, 127.80, 123.94, 64.97, 64.25, 44.38 

HRMS analysis (ESI): Calculated for [M+H]+: C16H15Cl2N2O3: 353.0460; Found: 

353.0452 
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Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 13.5 min, RT2 (minor) = 27.6 min. 

[α]D20 = -11.3 (c 0.6, CHCl3, er = >99:1) 

 

II-55B: N-((2S,3S)-2,3-dichloro-3-(4-(trifluoromethyl)phenyl)propyl)-4- 

nitrobenzamide 

 

Rf : 0.43 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 9.0 Hz, 2H), 7.91 (d, J = 9.0 Hz, 2H), 

7.66 (d, J = 9 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 6.59 (br s, 1H), 5.27 (d, J = 4.5 

Hz, 1H) 4.60-4.56 (m, 1H), 4.19-4.14 (ddd, J = 14.5, 7.0, 4.0 Hz, 1H), 3.55-3.50 

(ddd, J = 14.5, 8.5, 4.0 Hz, 1H) 

13C NMR (125 MHz, CDCl3) δ 165.75, 149.87, 140.55, 139.02, 131.38 (q, JCF = 

32.2 Hz), 128.35, 128.20, 127.2 (q, JCF = 271.6 Hz), 125.63 (q, JCF = 2.8 Hz), 

123.99, 64.30, 63.03, 44.62 

HRMS analysis (ESI): Calculated for [M+H]+: C17H14Cl2N2O3F3: 421.0322; Found: 

421.0334 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 15% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 10.5 min, RT2 (minor) = 19.1 min. 

[α]D20 = -5.2 (c 1.0, CHCl3, er = >99:1) 
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II-39B: N-((2S,3R)-2,3-dichlorohexyl)-4-nitrobenzamide 

 

Rf : 0.56 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.31 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 

6.55 (br s, 1H), 4.40-4.35 (ddd, J = 14.0, 7.0, 3.0 Hz, 1H), 4.28-4.24 (ddd, J = 

10.0, 6.5, 3.0 Hz, 1H), 4.09-4.05 (ddd, J = 10.0, 6.5, 3.5 Hz, 1H), 3.59-3.54 (ddd, 

J = 14.0, 8.5, 5.0 Hz, 1H), 2.04-1.97 (m, 1H), 1.85-1.80 (m, 1H), 1.68-1.61 (m, 

1H), 1.49-1.44 (m, 1H), 0.97 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.54, 149.79, 139.43, 128.21, 123.96, 64.00, 

63.59, 43.66, 37.21, 19.30, 13.41 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17Cl2N2O3: 319.0616; Found: 

316.0610 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 10% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 13.0 min, RT2 (minor) = 14.5 min. 

[α]D20 = +16.6 (c 0.5, CHCl3, er = 92:7) 

ent-II-39B: N-((2R,3S)-2,3-dichlorohexyl)-4-nitrobenzamide 

 

Rf : 0.56 (30% EtOAc in hexanes, UV) 80% yield with (DHQ)2PHAL 
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1H NMR (500 MHz, CDCl3) δ 8.31 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 

6.55 (br s, 1H), 4.40-4.35 (ddd, J = 14.0, 7.0, 3.0 Hz, 1H), 4.28-4.24 (ddd, J = 

10.0, 6.5, 3.0 Hz, 1H), 4.09-4.05 (ddd, J = 10.0, 6.5, 3.5 Hz, 1H), 3.59-3.54 (ddd, 

J = 14.0, 8.5, 5.0 Hz, 1H), 2.04-1.97 (m, 1H), 1.85-1.80 (m, 1H), 1.68-1.61 (m, 

1H), 1.49-1.44 (m, 1H), 0.97 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.54, 149.79, 139.43, 128.21, 123.96, 64.00, 

63.59, 43.66, 37.21, 19.30, 13.41 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17Cl2N2O3: 319.0616; Found: 

319.0611 

Resolution of enantiomers: DAICEL Chiralcel® OD-H column, 5% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 13.0 min, RT2 (major) = 14.5 min. 

[α]D20 = -15.2 (c 1.0, CHCl3, er = 96:4) 

 

II-56B: 4-bromo-N-((2S,3R)-2,3-dichlorohexyl)benzamide 

 

Rf : 0.54 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 

6.45 (br s, 1H), 4.36-4.31 (ddd, J = 14.0, 7.0, 3.0 Hz, 1H), 4.26-4.23 (m, 1H), 

4.10-4.04 (ddd, J = 10.0, 6.5, 3.5 Hz, 1H), 3.54-3.38 (ddd, J = 13.5, 8.0, 4.0 Hz, 
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1H), 2.00-1.95 (m, 1H), 1.88-1.80 (m, 1H), 1.68-1.59 (m, 1H), 1.51-1.42 (m, 1H), 

0.95 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 166.58, 132.73, 131.95, 128.53, 126.60, 64.31, 

63.70, 43.47, 37.18, 19.35, 13.42 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17Cl2NOBr: 351.9871; Found: 

351.9863 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 8.4 min, RT2 (minor) = 9.5 min. 

[α]D20 = +12.4 (c 0.9, CHCl3, er = 92:8) 

 

II-57B: N-((2S,3R)-4-(benzyloxy)-2,3-dichlorobutyl)-4-nitrobenzamide 

 

Rf : 0.50 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.26 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 

7.37-734, 5H), 6.63 (br s, 1H), 4.63-4.56 (dd, J = 22.5, 12.0 Hz, 2H), 4.54-4.50 

(ddd, J = 10.5, 6.5, 4.5 Hz, 1H), 4.25-4.17 (m, 2H), 3.88 (d, J = 5 Hz, 2H), 3.78-

3.73 (ddd, J = 14.0, 8.0, 5.5 Hz, 1H) 

13C NMR (125 MHz, CDCl3) δ 165.38, 149.71, 139.41, 137.13 128.60, 128.18, 

128.13, 127.85, 123.88, 73.78, 70.75, 61.05, 60.37, 43.53 
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HRMS analysis (ESI): Calculated for [M+H]+: C18H19Cl2N2O4: 397.0722; Found: 

397.0725 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 16.1 min, RT2 (major) = 17.6 min. 

[α]D20 = +5.1 (c 0.3, CHCl3, er = 89:11) 

 

II-58B: N-((2S,3R)-2,3-dichloro-3-phenylpropyl)-4-nitrobenzamide 

 

Rf : 0.44 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H), 

7.43-7.35 (m, 5H), 6.56 (br s, 1H), 5.02 (d, J = 8 Hz, 1H), 4.59-4.55 (dt, J = 11, 

3.5 Hz, 1H), 4.49-4.44 (ddd, J = 14.5, 7.0, 3.5 Hz, 1H), 3.67-3.62 (ddd, J = 13.5, 

8.5, 5.0 Hz, 1H) 

13C NMR (125 MHz, CDCl3) δ 165.47, 149.77, 139.36, 137.47, 129.22, 128.79, 

128.21, 127.75, 123.91, 63.98, 63.55, 43.89 

HRMS analysis (ESI): Calculated for [M+H]+: C16H15Cl2N2O3: 353.0460; Found: 

353.0462 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 20% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 10.5 min, RT2 (major) = 11.6 min. 

[α]D20 = +5.6 (c 1.0, CHCl3, er = 90:10) 
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II-59B: (S)-N-(2,3-dichloro-3-methylbutyl)-4-nitrobenzamide 

 

Rf : 0.50 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 9.0 Hz, 2H), 7.95 (d, J = 9.0 Hz, 2H), 

6.63 (br s, 1H), 4.58-4.53 (ddd, J = 10.5, 7.5, 3.0 Hz, 1H), 4.24 (dd, J = 9.5, 3.0 

Hz, 1H), 3.47-3.41 (ddd, J = 14.5, 10.0, 4.5 Hz, 1H), 1.78 (s, 3H), 1.70 (s, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.57, 149.78, 139.51, 128.22, 123.97, 69.68, 

69.44, 43.36, 31.29, 28.47 

HRMS analysis (ESI): Calculated for [M+H]+: C12H15N2O3Cl2: 305.0460; Found: 

305.0446 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 2% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 113.4 min, RT2 (minor) = 130.4 min. 

[α]D20 = +42.4 (c 0.8, CHCl3, er = 92:8) 

 

 

 

 

 

 

 

 

H
N

O

Me

NO2

Cl

Cl

Me



	
   165 

II-35C: N-((2S,3S)-2-bromo-3-chlorohexyl)-4-nitrobenzamide 

 

Rf : 0.52 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.31 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 

6.62 (br s, 1H), 4.52-4.50 (ddd, J = 9.0, 4.0, 2.0 Hz, 1H), 4.17-4.12 (ddd, J = 

15.0, 7.5, 4.5 Hz, 1H), 4.08-4.05 (m, 1H), 3.75-3.70 (ddd, J = 14.0, 9.0, 5.0 Hz, 

1H), 1.93-1.84 (m, 2H), 1.62-1.54 (m, 1H), 1.46-1.38 (m, 1H), 0.96 (t, J = 7.0 Hz, 

3H) 

13C NMR (125 MHz, CDCl3) δ 165.68, 149.82, 139.29, 128.23, 123.99, 62.70, 

57.52, 45.25, 38.51, 19.67, 13.40 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17ClNO3Br: 363.0111; Found: 

363.0107 

Resolution of enantiomers: DAICEL Chiralcel® OD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 4.7 min, RT2 (major) = 14.7 min. 

[α]D20 = +54.3 (c 0.5, CHCl3, er = >99:1) 

Absolute stereochemistry was determined by single crystal X-ray diffraction 

(XRD). Crystals for XRD were obtained by crystallization from CH2Cl2 layered 

with hexanes in a silicone-coated vial.   
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II-35C': N-((2S,3S)-2,3-dibromohexyl)-4-nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.31 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 

6.61 (br s, 1H), 4.50-4.47 (ddd, J = 9.0, 4.0, 2.5 Hz, 1H), 4.23-4.15 (m, 2H), 3.75-

3.69 (ddd, J = 14.5, 9.0, 5.5 Hz, 1H), 1.99-1.93 (m, 2H), 1.62-1.56 (m, 1H), 1.45-

1.40 (m, 1H), 0.96 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.64, 149.82, 139.27, 128.23, 123.98, 57.50, 

56.06, 45.94, 38.68, 20.75, 13.26 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17N2O3Br2: 406.9606; Found: 

406.9603 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 10% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 14.7 min, RT2 (minor) = 17.9 min. 

[α]D20 = +32.7 (c 0.4, CHCl3, er = 83.0:17.0) 
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II-55C: N-((2S,3S)-2-bromo-3-chloro-3-(4-(trifluoromethyl)phenyl)propyl)-4-

nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 

7.66 (d, J = 9 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 6.63 (br s, 1H), 5.29 (d, J = 4.0 

Hz, 1H) 4.69-4.65 (m, 1H), 4.25-4.20 (ddd, J = 14.5, 7.0, 4.0 Hz, 1H), 3.65-3.59 

(ddd, J = 14.5, 9.0, 5.0 Hz, 1H), 

13C NMR (125 MHz, CDCl3) δ 165.68, 149.85, 140.77, 139.04, 131.57 (q, JCF = 

32.1 Hz), 128.29, 128.19, 126.77 (q, JCF = 271.8 Hz), 125.57 (q, JCF = 3.7 Hz), 

123.99, 63.03, 57.82, 44.98 

HRMS analysis (ESI): Calculated for [M+H]+: C17H14ClBrN2O3: 468.9827; Found: 

468.9828 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 11.5 min, RT2 (minor) = 21.7 min. 

[α]D20 = +2.5 (c 1.0, CHCl3, er = >99:1) 

 

II-39C: N-((2S,3R)-2-bromo-3-chlorohexyl)-4-nitrobenzamide 
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Rf : 0.50 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 

6.62 (br s, 1H), 4.41-4.35 (m, 2H), 4.15-4.11 (ddd, J = 10.0, 7.0, 3.5 Hz, 1H), 

3.69-3.63 (ddd, J = 15.0, 10.0, 5.5 Hz, 1H), 2.08-2.02 (m, 1H), 1.91-1.83 (m, 1H), 

1.68-1.60 (m, 1H), 1.52-1.44 (m, 1H), 0.967 (t, J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.46, 149.77, 139.44, 128.22, 123.95, 63.76, 

57.32, 44.11, 38.22, 19.32, 13.38 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17ClN2O3Br: 363.0111; Found: 

363.0103 

Resolution of enantiomers: DAICEL Chiralcel® IA column, 10% IPA-Hexanes, 1.0 

mL/min, 254 nm, RT1 (major) = 13.7 min, RT2 (minor) = 15.0 min. 

[α]D20 = +6.6 (c 1.0, CHCl3, er = 92:8) 

 

II-58C: N-((2S,3R)-2-bromo-3-chloro-3-phenylpropyl)-4-nitrobenzamide 

 

Rf : 0.50 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 

7.42-7.35 (m, 5H), 6.57 (br s, 1H), 5.08 (d, J = 9.5 Hz, 1H), 4.68-4.64 (dt, J = 

12.0, 3.5 Hz, 1H), 4.56-4.51 (ddd, J = 14, 6.5, 3.0 Hz, 1H), 3.81-3.75 (ddd, J = 

14.0, 8.0, 5.5 Hz, 1H), 
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13C NMR (125 MHz, CDCl3) δ 165.35, 149.80, 139.39, 138.30, 129.24, 128.81, 

128.23, 127.61, 123.95, 63.62, 56.95, 44.35 

HRMS analysis (ESI): Calculated for [M+H]+: C16H15ClBrN2O3: 369.9955; Found: 

369.9939 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 20% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 11.4 min, RT2 (major) = 12.5 min. 

[α]D20 = +26.3 (c 0.7, CHCl3, er = 89:11)   
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II-2-13-6 Analytical data for byproduct II-45 
	
  
II-45: N-(2-chloro-3-(2,2,2-trifluoroethoxy)hexyl)-4-nitrobenzamide 

 

Rf : 0.60 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 

6.68 (br s, 1H), 4.28-4.25 (m, 1H), 4.15-4.10 (ddd, J = 14.5, 7.0, 4.5 Hz, 1H), 

3.99-3.91 (m, 2H), 3.73-3.70 (dt, J = 10.5, 3.5 Hz, 1H), 3.59-3.54 (ddd, J = 13.5, 

9.0, 5.0 Hz, 1H), 1.78-1.73 (m, 1H), 1.67-1.60 (m, 1H), 1.45-1.35 (m, 2H), 0.96 (t, 

J = 7.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.63, 149.76, 139.46, 128.16, 127.03 (q, JCF  = 

277.8 Hz), 123.93, 82.57, 67.33  (q, JCF  = 34.1 Hz), 60.76, 43.44, 32.18, 18.53, 

13.96 

HRMS analysis (ESI): Calculated for [M+H]+: C15H19ClN2O4F3: 383.0985; Found: 

383.0970 
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II-2-13-7 Analytical data for products in non-catalyzed reaction (II-48C, II-
48D, II-48E) 
	
  
II-48C: 4-bromo-N-((2S,3S)-2-bromo-3-chlorohexyl)benzamide 

 

Rf : 0.54 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 

6.60 (br s, 1H), 4.51-4.48 (ddd, J = 8.5, 5.0, 2.5 Hz, 1H), 4.09-4.03 (m, 2H), 3.73-

3.67 (ddd, J = 14, 9.0, 5.0 Hz, 1H), 1.92-1.78 (m, 2H), 1.59-1.52 (m, 1H), 1.44-

1.37 (m, 1H), 0.94 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 166.77, 132.56, 131.94, 128.58, 126.66, 62.74, 

57.71, 45.15, 38.61, 19.65, 13.39 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17ClBr2NO: 395.9365; Found: 

395.9374 

Resolution of enantiomers: DAICEL Chiralcel® AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 10.2 min, RT2 (minor) = 20.8 min. 

[α]D20 = +40.1 (c 1.0, CHCl3, er = 94:6) 

 

II-48D: 4-bromo-N-((2S,3S)-3-bromo-2-chlorohexyl)benzamide 
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Rf : 0.54 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 

6.49 (br s, 1H), 4.32-4.29 (ddd, J = 9.0, 4.0, 2.5 Hz, 1H), 4.27-4.24 (ddd, J = 9.0, 

4.5, 2.0 Hz, 1H), 4.08-4.03 (ddd, J = 14.0, 7.0, 4.5 Hz, 1H), 3.65-3.59 (ddd, J = 

14.5, 9.0, 5,0 Hz, 1H), 1.98-1.87 (m, 2H), 1.62-1.56 (m, 1H), 1.45-1.38 (m, 1H), 

0.95 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 165.80, 132.54, 131.97, 128.57, 126.70, 63.57, 

59.32, 45.80, 38.08, 20.72, 13.30 

HRMS analysis (ESI): Calculated for [M+H]+: C13H17ClBr2NO: 395.9365; Found: 

395.9373 

 

 

II-48E: (S)-5-((S)-1-bromobutyl)-2-(4-bromophenyl)-4,5-dihydrooxazole 

 

Rf : 0.30 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 

4.86-4.82 (m, 1H), 4.16-4.11 (dd, J = 15.0, 10.0 Hz, 1H), 4.09-4.05 (dt, J = 10.0, 

3.5 Hz, 1H), 3.98-3.94 (dd, J = 15.0, 7.0 Hz, 1H), 1.89-1.82 (m, 1H), 1.80-1.74 

(m, 1H), 1.70-1.63 (m, 1H), 1.50-1.42 (m, 1H), 0.95 (t, J = 7.0 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 163.04, 131.67, 129.72, 126.27, 126.18, 81.21, 

58.30, 56.36, 35.42, 20.78, 13.36 

N

O
Br
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Br
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HRMS analysis (ESI): Calculated for [M+H]+: C13H16Br2NO: 359.9599; Found: 

359.9610 

II-2-13-8 Analytical data for substrate II-55A 
	
  
II-55A: (Z)-4-nitro-N-(3-(4-(trifluoromethyl)phenyl)allyl)benzamide 

 

Rf : 0.39 (30% EtOAc in hexanes, UV) 

1H NMR (500 MHz, CDCl3) δ 8.20 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 8.5 Hz, 2H), 

7.58 (d, J = 7.5 Hz, 2H), 7.34 (d, J = 7.5 Hz, 2H), 6.67 (br s, 1H), 6.63 (d, J = 

12.0 Hz, 1H), 5.86-5.81 (m, 1H), 4.32 (t, J = 6.0 Hz, 2H) 

13C NMR (125 MHz, CDCl3) δ 165.42, 149.51, 139.68, 139.57, 139.55, 130.84, 

129.72 (q, JCF = 32.2 Hz), 129.24, 128.89, 128.10, 127.19 (q, JCF = 270.3 Hz), 

125.35 (q, JCF = 3.8 Hz), 38.51 

HRMS analysis (ESI): Calculated for [M+H]+: C17H14N2O3F3: 351.0957; Found: 

351.095 
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Chapter III: Highly regio-, diastereo-, and 
enantioselective chloroamination of alkenes 

III-1 Introduction 
	
  

 Molecules that contain amines and halogens in their structure are found in 

different natural products and bioactive compounds (Figure III-1).1-4 Additionally, 

haloamine compounds are versatile motifs in organic synthesis, where the 

halogens can serve as a leaving group to yield aziridines or can be utilized in 

cross-coupling reactions.5-6 

Figure III-1: Biologically active haloamines 
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One of the common methods for synthesizing haloamines is activating the 

carbon-carbon double bond with various halogen donors as electrophiles and 

subsequently nucleophilic attack of the putative halonium ion with different amine 

sources. Recently our lab suggested that the well-known two-step mechanism in 

halofunctionalization (1-formation of halonium, 2- nucleophilic attack to halonium 

ion intermediate) is not the predominant mechanism in many 

halofunctionalization reactions. Based on kinetic isotopic effect (KIE), NMR and 

kinetic studies our lab proposed a nucleophile dependent path where the 

nucleophile pre-polarizes the alkene, leading to a more nucleophilic olefin that 

can compete effectively with the halenium source for the halogenation. In this 

manner, the halofunctionalization occurs via a concerted transition state (Figure 

III-2).7  

Figure III-2: Nucleophile assisted alkene activation (NAAA) 
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methodologies for haloamination reaction, choosing nucleophilic amine sources 

with lower halonium affinity is essential. 

We have recently begun to explore the intermolecular halofuctionalization 

of alkenes.9-10 This possesses additional challenges in comparison to the 

intramolecular halofunctionalization reactions. Intramolecular reactions always 

have the nucleophile in close proximity as it is tethered, allowing for a quick 

capture of the halonium intermediate or a β-halocarbenium ion. A long-lived 

cation might erode enantioselectivity and diastereoselectivity.11 Also, 

intramolecular reactions (cyclization) often rely on ring closure kinetics and 

molecular geometry leading to the major regioisomer.12 On the other hand, 

approaching externally, the intermolecular nucleophile must be able to 

differentiate between the two possible positions it can attack. Finally, in some 

cases, the external nucleophile must outcompete the tethered nucleophile for a 

reaction at the same location.  The first intermolecular catalytic asymmetric 

reaction we developed was a haloetherification reaction. This was done via 

optimizing conditions such as solvent and concentration to outcompete the 

cyclization reaction and simultaneously afford high enantioselectivity and yield for 

the intermolecular reaction.  We were able to obtain enantiomeric excesses as 

high as 99% for this methodology (see Chapter I and Figure III-3a).9  We then 

extended this methodology to dihalogenation reactions, such as dichlorination 

and chlorobromination. This provided the products with high enantioselectivity 

and yield (see Chapter II and Figure III-3b).10 
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Figure III-3: (a) Highly enantioselective haloetherification of allyl amides (b) 
Highly enantioselective dihalogenation of allyl amides 
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III-1-1 Literature precedence for catalytic vicinal haloamination of alkenes 
	
  

III-1-1-1 Literature precedence for catalytic-racemic vicinal haloamination of 
alkenes 
	
  

A halogen vicinal to an amine has been a useful intermediate in the 

synthesis of aminated oligosaccharides. Danishefsky and co-workers reported 

sulfonamidoglycosylation of glycals, a route to oligosaccharides with 2-

aminohexose subunits in 1990.5 In this report, benzenesulfonamide was 

employed as an amine nucleophilic source, and IDCP III-2 was used as iodonium 

agent to yield haloaminated product III-3 in 78% yield and >99% 

diastereoselectivity. Treating haloamine III-3 with base produced aziridine  III-4. 

This aziridine ring was then opened via a nucleophilic attack of sugar to form 

oligosaccharide III-5 in 52% yield after two steps (Figure III-4). 
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Figure III-4:  A general procedure for sulfonamidoglycosylation of glycals 
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A general process for haloamination of alkenes was developed by E. J. 

Corey and coworkers in 2006.13 In this procedure, a Lewis acid catalyzed 

haloamination of alkenes was reported where N-bromoacetamide served as 

halogen donor, 40 mol% SnCl4 was employed as a Lewis acid catalyst and 

acetonitrile with a trace amount of water was used as solvent and nucleophile. 

Substrate scope shows different cyclic alkenes III-6 were transferred to 

haloaminated products III-7 with up to 90% yield (Figure III-5a). The formation of 

bromonium ion III-9 followed by nucleophilic attack by acetonitrile generated 

nitrilium ion III-10. The reaction of nitrilium ion with water followed by 

tautomerization forms final bromoaminated product III-12 (Figure III-5b).  

Figure III-5: A general process for the haloamination of olefins 
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The same group used the above haloamination methodology for the 

concise synthesis of anti-influenza neuramidase inhibitor (Tamiflu®) III-15 (Figure 

III-6).6 

 

A mechanistically similar Indium (III)-catalyzed aminobromination and 

aminofluorination of styrenes were reported by Yadav and coworkers in 2009.14 

The NBS and selectfluor were employed as halogen donor to yield 

aminobrominated product III-17A in 87% yield and aminofluorinated product III-

17B in 90% yield (Figure III-7). 
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Figure III-7: Indium (III)-catalyzed aminobromination and aminofluorination 

 

Yeung and coworkers disclosed a racemic chloroamination of olefins in 

2013.15 For facile and efficient chloroamination of alkenes, Lewis basic diphenyl 

selenide (20 mol%) along with N-chlorosuccinamide (NCS) as chloronium source 

and acetonitrile as nitrogen source were used, respectively. In these conditions, 

chloroaminated products III-19 were formed in up to 89% yield (Figure III-8). 

Figure III-8: Lewis basic selenium catalyzed chloroamination of olefins 
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ethoxide in EtOH to hydrolyze the saccharin ring. Warming the reaction mixture 

to room temperature yielded imidazoline III-24 in up to 47% yield (Figure III-9). 

Figure III-9: A method for electrophilic diamination of alkenes 
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catalyst acts as a bifunctional entity that activates both NBS and the 

encarbamate via hydrogen bonding (Figure III-10b). 

Figure III-10: Highly enantioselective α-bromination of encarbamates 
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source from a succinimide to the more active N,N-dichloro-4-methylbenzene-

sulfonamide and changed the R group of the chiral ligand to the sterically 

hindered adamantyl group III-30. In this case, the reaction was able to proceed 

with higher yields and similar enantio- and diastereoselectivity to form a 

chlorinated product (Figure III-11a). A diverse range of aryl and aryl-substituted 

chalcones III-28 were examined in these studies. These reactions are believed to 

proceed through a chiral halonium ion. The scandium as Lewis acid coordinates 

to the carbonyl of the enone and the oxygen of the sulfonyl group. These 

coordinations place the counter ion of the dihalo-sulfonamide close to the chiral 

halonium ion (Figure III-11b).  
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Figure III-11: Sc(OTf)3-catalyzed enantioselective halogenation of alkenes 

 

Although enantioselective haloamination and haloamidation reactions 

have seen success, there are still many limitations. Each method described 

above can either tolerate alkyl substitution or aryl substitution, never both. 

Asymmetric chloroamination has only seen success when the scandium catalyst 

is used; no organocatalytic methods have been reported. The substrate scope 

was limited to only the chalcone and α,β-unsaturated keto-ester moieties. 

III-33 X = Cl  up to 99% yield
up to >99:1 er

R2R1

O Conditions

Ligand - Sc(OTf)3 (0.050-0.5 mol%)
DCM

R2R1

O

X

NHTs

III-31 X = Br   up to 99% yield
up to >99:1 er

III-28
R1,R2 = Ar

N H
O

N N
O

H N
O O

R R

III-29 R = PhCH2CH2
III-30 R = 1-Adamantyl

 X = Br  NBS (1.2 equiv.), TsNH2 (1.1 equiv.), 0 °C, Ligand = III-29
 X = I     NIS (1.2 equiv.), TsNH2 (1.1 equiv.), rt, dark, Ligand = III-29
 X = Cl   TsNCl2 (0.6 equiv.), TsNH2 (0.6 equiv.), 35 °C, Ligand = III-30

III-32 X = I  up to 99% yield
up to 99:1 er

Conditions:

R Ar

O

Cl

ScOSO
NH

Tsb

a



	
   194 

III-2 Result and discussion 
	
  

During my graduate studies, I learned that being detail oriented is 

essential to be successful. Separation and characterization of side products, 

even if they are 10% of mass balance, can lead us to new methodologies. Some 

of these side products can be substantial, valuable and worth attempting to 

optimize the reaction to get them exclusively. 

III-2-1 Discovery of chloroacetamide product III-34D as a side product in 
enantioselective dichlorination reactions 
	
  

During dichlorination reactions optimization studies to produce 

dichlorinated product III-34A, competing intermolecular processes such as 

interception of the intermediate by the solvent leads to side products III-34B 

(from TFE incorporation) or III-34D  (the Ritter product when CH3CN is 

employed).10 Also, the intramolecular halocyclization path yields the oxazoline III-

34C as a side product. As listed in Table III-1, numerous chloride sources in 

different solvents were evaluated for developing an enantioselective 

dichlorination reaction. It was revealed that employing 100 equivalents of LiCl in 

TFE (CF3CH2OH) in the presence of (DHQD)2PHAL as a chiral catalyst leads to 

the desired dichlorinated product III-34A in high selectivity and enantio excess 

(Table III-1, entry 7). Employing 15 equivalents of NaCl in acetonitrile did not 

provide any desired dichlorinated product. However, chloroacetamide (Ritter type 

reaction) product III-34D was formed in good selectivity (Table III-1, entry 2). We 

have taken advantage of this previously unintended result for the development of 
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the first organo-catalytic enantioselective chloroamidation. This is also the first 

example of an asymmetric Ritter type reaction.  

Table III-1: Summary of optimization studies in dichlorination reactions 

 

Entry Solvent Temp (°C) XCl XCl (equiv) A:B:C:Da 

1 MeCN 23 TEAC 15 55:0:45:0 
2 MeCN 23 NaCl 15 0:0:13:87 
3 MeCN 23 LiCl 15 79:0:21:0 
4 MeCN -30 LiCl 15 95:0:5:0 
5 TFE -30 LiCl 15 45:56:0:0 
6 TFE -30 LiCl 50 86:14:0:0 
7 TFE -30 LiCl 100 95:5:0:0 

aDetermined by NMR; TFE = 2,2,2-trifluoroethanol; TEAC = 
Tetraethylammonium chloride 
 

III-2-2 Typical Ritter type mechanism leading to the chloroacetamide 
product III-34D  
	
  
          The mechanism for the formation of chloroacetamide III-34D is shown in 

Figure III-12. Same as the typical Ritter type reaction, after the chloronium ion 
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the nitrilium ion III-36. The trace amount of water in acetonitrile reacts with III-36 

and yields intermediate III-37. Subsequently, tautomerization of III-37 yields the 

final chloroacetamide product III-34D (Figure III-12).13   

Figure III-12: Proposed mechanism for the formation of the chloroacetamide III-
34D 
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their instability on silica gel. Interestingly, addition of the silica gel to the crude 

mixture resulted in the conversion of the mixtures of intermediates were 

transferred to the final chloroacetamiden product III-34D as a single diastereomer 

in 67% yield and 95:5 er (Figure III-13a). ) The NMR spectrums for allyl amide 

substrate III-34, the mixture of unknown products and final chloroacetamide 

product III-34D were shown in Figure III-13b. 
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Figure III-13: (a) Unknown products as an intermediate were formed in 
chloroamination reaction (b) The NMR spectra for allyl amide substrate III-34, the 
mixture of unknown products and final chloroacetamide product III-34D 

 

 

H
N

C3H7

10 mol% (DHQD)2PHAL 
2.0 equiv DCDMH

ACN 0.02 M, rtO

Ar

III-34
Ar = 4-NO2-Ph

Mixtures of products

C3H7

Cl H
N

OHN

O

Ar

III-34D
67% yield

 99:1 dr, 95:5 er

SiO2

a

b H
N

C3H7 O

Ar

III-34

Mixtures of products

C3H7
Cl H

N

OHN

O

Ar

III-34D



	
   199 

III-2-4 Designing control experiments to determine the structure of mixture 
of products 
	
  
          Due to the instability of unknown products on silica gel, we designed 

control experiments to reveal their structure. Under the same conditions, 

employing TsNCl2 (N,N-dichloro-p-toluenesulfonamide) instead of DCDMH 

yielded single chloroimide product III-34E in 78% yield and 95:5 er (Figure III-

14a). This chloroamidine product III-34E was stable to purification on silica gel. 

This result indicates that the counter ion of the chlorine source must be part of 

the final chlorinated product III-34E. Therefore, in the case of employing 

DCDMH, we assume the mixture of products is the result of the attack of the two 

nucleophilic nitrogens atoms in the DCDMH structure. However, the chloroimide 

product III-34E is stable on silica gel, but the combination of products III-38 in 

case of using DCDMH is not stable and hydrolyze in the presence of silica gel to 

form chloroacetamide III-34D in 67% yield and 95:5 enantioselectivity (Figure III-

14b)  
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Figure III-14: (a) The counter ion of chlorine source is part of the final product (b) 
Revealing the structures of the mixture of products 

 

III-2-5 Modified mechanism for the formation of the chloroacetamide III-34D  
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yield chloroamidine III-40. Subsequently, hydrolysis of the chloroamidine III-40 

forms chloroacetamide III-34D. 

Figure III-15: The modified proposed mechanism for formation of 
chloroacetamide III-34D	
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14b). Interestingly, without (DHQD)2PHAL, the final product was formed without 

employing silica gel for hydrolysis. These observations could suggests that, 

(DHQD)2PHAL holds DCDMH in the chiral pocket, thus making the counter ion of 

DCDMH relatively close to the nitrilium ion intermediate, which the traps it to form 

imide products (see Figure III-15, III-39). However, without the chiral catalyst, the 

trace amount of water in acetonitrile is responsible for the nucleophilic attack of 

the nitrilium ion to yield the intermediate product III-37 (see Figure III-12), 

followed by tautomerization to deliver the chloroacetamide product. 

Figure III-16: Chloroamination of allyl amide III-34 without (DHQD)2PHAL 
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highlighting the role of chiral catalyst (DHQD)2PHAL in the enantioselective 

chloroamination reactions, yielding the intermediate III-38 suggested in Figure III-

14B. 

Figure III-17: Catalyst controlled chloroamination of unsaturated allyl amides 
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(Figure III-18a). When dichloramine-T (TsNCl2) is employed, we have observed 

that the Ritter product is more stable and does not hydrolyze as easily, leaving 

the sulfonamide intact (see III-34E, Figure III-18b). These two products have 

significant synthetic applications and both have the potential to undergo 

hydrolysis to the chiral 1,3 diamine. The α-chloroamide product has been shown 

to undergo an aziridination reaction when treated with cesium carbonate (Figure 

III-18a).22 As mentioned before, the unmodified α-haloamide itself can be 

observed in molecules of biological importance. The chloroamidine product III-

34E can be cyclized using sodium carbonate in 40 °C to form 2-imidazoline 

product in 72% yield (III-43). This chiral imidazoline product could be of interest 

in medicinal chemistry and can be hydrolyzed to the chiral 1,2,3 triamine product 

III-44 (Figure III-18b).  
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Figure III-18: Two different types of chlorenium sources lead to two distinct 
products 
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CH3CN:TFE (8:2) was employed for the enantioselective chloroamination 

reactions (Figure III-18a, III-18b). We observed that using fluorinated solvents as 

additive or co-solvent affected the rate of the reaction. The relatively low pka of 

the fluorinated solvents presumably protonates the quinuclidine nitrogen atoms, 

therefore enabling the catalyst to hydrogen bond with DCDMH (see Figure III-

17).21 This coordination can bring the counter ion of the chlorenium source closer 

to the nitrilium ion intermediate and accelerate the chloroamination reaction. The 

relative rates with or without HFIP for enantioselective chloroacetamidation of III-

34 were shown in Figure III-19. 
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Figure III-19: Role of fluorinated additives in chloroamination reactions 
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motif to 4-bromobenzamide gave similar results (see III-45D). The other Z-alkyl 

substituted olefins (III-46, III-47) afforded the chloroacetamide products in high 

yield and stereoselectivity (see Figure III-20, III-46D and III-47D). Aryl substituted 

Z-alkenes are also compatible with this chemistry and yield final product III-48D 

in 82% yield and >99:1 er. The diastereoselectivity for product III-48D is poor 

(4.7:1.0 dr), which is presumably due to the carbocation character at the benzylic 

position. Varying the expandable amide moiety for E-alkyl substituted olefins 

affected the yield and enantioselectivity. The substrate with 4-nitrobenzamide 

gave slightly higher yield and enantioselectivity compared to the substrate that 

has 4-bromobenzamide moiety (see III-49D and III-50D). The aryl substituted E-

allyl amide III-51 gave moderate yield (due to competing chlorocyclization) and 

fair diastereoselectivity (1.5:1 dr). Nonetheless, the chloroacetamide product III-

51D was formed in high enantioselectivity (see Figure III-20, III-51D). Benzonitrile 

can also be employed as nucleophile to furnish the corresponding product with 

excellent enantioselectivity (see III-52D) 
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Figure III-20: Enantioselective chloroamidation substrate scope 
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III-2-10 Optimization studies for the intermolecular enantioselective 
chloroamidination of E-allyl amides 
 
          We choose the E-aliphatic substituted allyl amide III-49 to optimize the 

enantioselective chloroamidination reactions. 10 mol% (DHQD)2PHAL was 

employed as the chiral catalyst along with two equivalents of TsNCl2 as the 

chlorenium and nitrogen source. At ambient temperature in acetonitrile, the 

desired chlorofunctionalized III-49E along with cyclized (III-49G and III-49C) 

products were observed in the ratio of 47:35:18, respectively (Table III-2, entry 

1). The intermolecular product shows 88:12 er, whereas the cyclized products III-

49E and III-49G exhibit lower enantioselectivity (88:12 er for III-49D and 50:50 er 

for III-49C, Table III-2, entry 1). Lower temperature (-30 °C) led to slightly 

improved selectivity toward desired intermolecular product III-49E (Table III-2, 

entry 2). Decreasing the amount of TsNCl2 (1.1 equiv) shows significantly higher 

selectivity for the formation of desired acyclic product III-49C (Table III-2, entry 

3).  Employing different additives such as 1.1 equivalents of TsNH2, five 

equivalents Li2CO3 and 5 A° molecular sieves would not increase the selectivity 

of the chloroamidination reaction (Table III-2, entries 4 to 6). The reaction that 

was run with 20 mol% (DHQD)2PHAL in -30 °C shows slightly higher selectivity 

compared to using 10 mol% chiral catalyst (Table III-2, entries 7 and 8). IN an 

attempt to reduce the formation of cyclized products (III-49G and III-49C), the 

reactions were conducted in -45 °C and -50 °C. Lower temperatures led to the 

formation of the desired chloroamidinated product III-49E exclusively with 96:4 er 

(Table III-2, entries 9 and 10) 
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Entry Temp Mol% 
cat Additive Equiv of 

TsNCl2 
E:G:Ca er (E)b  er (G)b 

1e rt 10 None 2 47:35:18 88:12  78:22 

2 -30 10 None 2 70:25:5 95.5:4.5  82:18 

3 rt 10 None 1.1 63:28:9 89:11  78:22 

4f rt 10 TsNH2 1.1 47:34:19 nd  nd 

5g rt 10 Li2CO3 1.1 59:30:11 89:11  78:22 

6 rt 10 5 A° MS 1.1 58:29:13 89:11  78:22 

7 -30 10 None 1.1 78:17:5 95.5:4.5  nd 

8 -30 20 None 1.1 81:15:5 nd  nd 

9c -45 10 None 1.1 90:9:1 96:4  nd 

10d -55 10 None 1.1 95:4:1 96:4  nd 
aDetermined by NMR; bEnantioselectivity determined by chiral HPLC; c Mixture of 

ACN:TFE (9:1) was used ; dMixture of ACN:TFE (8:2) was used ; eThe 
enantioselectivity for compound III-49C was 50:50 er ; f1.1 equiv of TsNH2 was 

used; g5 equiv of Li2CO3 was used 
	
  

H
N

C3H7

Cl

X mol% (DHQD)2PHAL 
X equiv TsNCl2

ACN 0.04 M, 
Temp

H
N

Ar

O
O

Ar

N
C3H7 N

O ArC3H7

Cl

N

O ArC3H7

Cl

NHTs

III-49
Ar = 4-NO2-Ph

III-49E

III-49C

III-49G

Table III-2: Optimization studies for the intermolecular enantioselective 
chloroamidination of E-allyl amides 
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III-2-11 Substrate scope for enantioselective chloroamination reaction by 
employing TsNCl2 as the chlorenium source 
	
  
            We sought to explore the scope of this transformation under optimized 

conditions (1.1 equiv of TsNCl2, 10 mol% (DHQD)2PHAL and the mixture of 

CH3CN:TFE (8:2) as solvent at -50 °C). As mentioned before, products of this 

reaction are stable on silica gel. Chiral chloroamidine products were formed in 

high yield and stereoselectivities. Z-alkyl-substituted alkenes afforded the desired 

products in near complete regio-, diastereo-, and enantioselectivity (Figure III-21, 

see III-34E, III-46E and III-47E). Benzyloxy substituted olefin gave the isolated 

product in slightly lower yield and enantioselectivity (78% yield and 95:5 er) as 

compared to other Z-alkyl substituted allyl amides (see III-52E). The cis substrate 

with aryl substituent III-48 produced chloroimide product in 78% yield and 96:4 

er. The only trans substrate (III-49) that was evaluated so far in this chemistry 

produced the product in 82% yield, >99:1 dr and 96:4 er (Figure III-21, III-49E). 
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Figure III-21: Enantioselective chloroimidation substrate scope 

 

III-2-12 Conclusion  
	
  
We report the first enantioselective Ritter type reaction. This chemistry is 

compatible with aryl and aliphatic substituted alkenes. Interestingly, exquisite 

regioselectivity was observed even with employing aliphatic substituted 

(unbiased) alkenes. Both E- and Z-olefins under optimized conditions deliver 

chloroamide products with high yield and enantioselevtivities. In this system, two 
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different types of chlorenium sources lead to two distinct and precious products 

(chloroacetamide and chloroamidines). Expanding the substrate scope for this 

transformation is underway. The optimized condition for chloroamidination (1.1 

equiv of TsNCl2, 10 mol% (DHQD)2PHAL and the mixture of CH3CN:TFE (8:2) as 

solvent at -50 °C) might be improved by employing less amount of TsNCl2 (0.6 

equivalents). Exploring substrate scope of chloroamidination reaction in the 

presence of two equivalents of HFIP as an additive in CH3CN instead of using 

the mixture of CH3CN:TFE (8:2) is necessary (see Figure III-21). Kinetic studies 

are underway to elaborate on the employing HFIP as an additive and figure out 

the kinetic order of reactants in enantioselective Ritter type reactions. 

III-2-13 Experimental section 

III-2-13-1 General procedure for catalytic asymmetric chloroamidation of 
unsaturated allyl amides 

The substrates (0.1 mmol, 1.0 equiv) and (DHQD)2PHAL (7.8 mg, 0.01 

mmol, 10 mol%) were suspended in acetonitrile (2.0 mL) in a 4 mL vial capped 

with a septum and equipped with a micro stir bar (7 × 2 mm). 

Hexafluoroisopropanol (21.4 µl, 0.2 mmol, 2.0 equiv) was introduced, and the 

resulting suspension was cooled to -30 °C in an immersion cooler. After stirring 

for 2 min DCDMH (39.5 mg, 0.2 mmol, 2.0 equiv) was added. The stirring was 

continued at -30 °C until the reaction was complete (TLC). The reaction was 

quenched by the addition of saturated aq. Na2SO3 (3 mL), concentrated, and 

diluted with DCM (3 mL). The organics were separated and the aqueous layer 
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was extracted with DCM (3 × 4 mL). The combined organics were dried over 

anhydrous Na2SO4 and concentrated in a 20 ml vial. The reaction was then 

suspended with 2 mL of DCM and SiO2 (60.4 mg, 1 mmol, 10.0 equiv) was 

introduced and allowed to stir for 12 h. SiO2 was then filtered via a cotton stuffed 

column. The column was rinsed with EtOAc (5 mL). The filtrate was then 

concentrated in the presence of a small quantity of silica gel. Column 

chromatography (SiO2/EtOAc – Hexanes gradient elution) gave the desired 

product.  

III-2-13-2 Analytical data for chloroamide products 
	
  
III-34D N-((2S,3S)-3-acetamido-2-chlorohexyl)-4-nitrobenzamide 

 
1H NMR (500 MHz, Chloroform-d) δ 8.29 (d, J = 9.0 Hz, 3H, 2CH, 1NH), 8.08 (d, 

J = 9.0 Hz, 2H), 5.71 (d, J = 9.3 Hz, 1H, NH), 4.35 – 4.23 (m, 2H), 4.12 (ddd, J = 

11.0, 5.2, 1.7 Hz, 1H), 2.93 (ddd, J = 13.7, 11.0, 4.4 Hz, 1H), 2.15 (s, 3H), 1.70-

1.60 (m, 1H), 1.59-1.49 (m, 1H), 1.41-1.32 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 

13C NMR (125 MHz, Chloroform-d) δ 172.2, 164.8, 149.7, 139.2, 128.4, 123.8, 

61.2, 49.3, 42.6, 34.7, 23.3, 19.3, 13.7. 

Resolution of enantiomers: DAICEL Chiralcel AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 8.8 min, RT2 (major) = 14.3 min 

H
N

O

NO2

NH

C3H7
Cl

O
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III-45D N-((2S,3S)-3-acetamido-2-chlorohexyl)-4-bromobenzamide 

 
1H NMR (500 MHz, Chloroform-d) δ 8.07 (dd, J = 8.6, 4.4 Hz, 1H, NH), 7.78 (d, J 

= 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 5.75 (d, J = 9.3 Hz, 1H, NH), 4.33-4.24 

(m, 2H), 4.12 (ddd, J = 10.9, 5.2, 1.7 Hz, 1H), 2.90 (ddd, J = 13.5, 10.9, 4.4 Hz, 

1H), 2.14 (s, 3H), 1.60-1.68 (m, 1H), 1.50-1.58 (m 1H), 1.3 (h, J = 7.4 Hz, 2H), 

0.89 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 171.90, 165.96, 132.49, 131.84, 128.75, 126.45, 

61.45, 49.22, 42.46, 34.77, 23.26, 19.24, 13.66. 

Resolution of enantiomers: DAICEL Chiralcel AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 5.8 min, RT2 (minor) = 7.1 min 

 

 

 

 

 

III-46D N-((2S,3S)-3-acetamido-2-chloropentyl)-4-nitrobenzamide 

H
N

O

Br

NH

C3H7
Cl
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1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 8.8 Hz, 1H, NH), 8.29 (d, J = 5.4 Hz, 

1H), 8.10 (d, J = 8.7 Hz, 1H), 5.59 (d, J = 9.3 Hz, 1H, NH), 4.35 (ddd, J = 13.7, 

8.8, 5.1 Hz, 1H), 4.25-4.08 (m, 2H), 2.94 (ddd, J = 13.7, 10.9, 4.3 Hz, 1H), 2.17 

(s, 2H), 1.77-1.63 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 172.24, 164.74, 149.70, 139.17, 128.37, 123.82, 

60.80, 51.25, 42.53, 25.88, 23.26, 10.61. 

Resolution of enantiomers: DAICEL Chiralcel AD-H column, 15% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 7.7 min, RT2 (minor) = 8.8 min 

III-47D N-((2S,3S)-3-acetamido-5-((tert-butyldiphenylsilyl)oxy)-2-chloropentyl)-4-

nitrobenzamide 

 
1H NMR (500 MHz, CDCl3) δ 8.48 (dd, J = 8.7, 4.2 Hz, 1H, NH), 8.26 (d, J = 9.0 

Hz, 2H), 8.10 (d, J = 9.0 Hz, 2H), 7.58 (ddd, J = 9.6, 8.0, 1.4 Hz, 4H), 7.46-7.39 

(m, 2H), 7.39-7.32 (m, 4H), 5.56 (d, J = 9.3 Hz, 1H, NH), 4.77 (q, J = 7.4 Hz, 1H), 

4.41 (ddd, J = 13.8, 8.9, 5.1 Hz, 1H), 4.17 (ddd, J = 11.2, 5.1, 1.6 Hz, 1H), 3.74-

H
N

O

NO2

NH

C2H5
Cl

O

H
N

O

NO2

NH

Cl
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3.61 (m, 2H), 2.93 (ddd, J = 13.7, 11.2, 4.3 Hz, 1H), 2.11 (s, 3H), 1.89-1.82 (m, 

2H), 0.89 (s, 9H). 

13C NMR (125 MHz, CDCl3) δ 172.1, 164.7, 149.6, 139.1, 135.5, 135.4, 133.0, 

133.0, 129.8, 129.8, 128.4, 127.8, 127.8, 123.8, 61.5, 59.5, 46.4, 42.4, 35.6, 

26.7, 23.3, 19.0. 

Resolution of enantiomers: DAICEL Chiralcel OD-H column, 7% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 22.9 min, RT2 (major) = 26.2 min 

 

III-48D N-((2S,3S)-3-acetamido-2-chloro-3-phenylpropyl)-4-nitrobenzamide  

 
1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 8.8 Hz, 2H), 8.03 (d, J = 8.8 Hz, 2H), 

7.63 (dd, J = 8.7, 3.3 Hz, 1H, NH), 7.44-7.35 (m, 5H), 6.05 (d, J = 8.5 Hz, 1H, 

NH), 5.23 (t, J = 8.8 Hz, 1H), 4.52-4.38 (m, 2H), 3.37 (dt, J = 14.4, 4.4 Hz, 1H), 

2.08 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 170.7, 165.5, 149.7, 139.5, 137.6, 129.2, 128.8, 

128.4, 127.5, 123.8, 62.1, 56.3, 42.5, 23.4. 

Resolution of enantiomers: DAICEL Chiralcel OD-H column, 20% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 12.8 min, RT2 (minor) = 17.8 min 

 

III-49D N-((2S,3R)-3-acetamido-2-chlorohexyl)-4-nitrobenzamide 
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1H NMR (500 MHz, Chloroform-d) δ 8.31 (d, J = 8.9 Hz, 2H), 8.06 (d, J = 8.9 Hz, 

2H), 7.60 (d, J = 8.4 Hz, 1H, NH), 5.49 (d, J = 9.0 Hz, 1H, NH), 4.38 (ddd, J = 

14.5, 8.8, 3.8 Hz, 1H), 4.20-4.06 (m, 1H), 3.99-3.90 (m, 1H), 3.37 (ddd, J = 14.6, 

4.8, 3.7 Hz, 1H), 2.09 (s, 3H), 2.01-1.92 (m, 1H), 1.51 – 1.41 (m, 2H), 1.38-1.28 

(m, 1H), 0.96 (t, J = 7.2 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 171.30, 165.41, 149.6, 139.65, 128.35, 123.83, 

63.14, 51.75, 42.50, 33.22, 23.35, 19.01, 13.72. 

Resolution of enantiomers: DAICEL Chiralcel AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 10.2 min, RT2 (minor) = 11.4 min 

 

 

 

 

III-50D N-((2S,3R)-3-acetamido-2-chlorohexyl)-4-bromobenzamide 

 

H
N

O

NO2

NH

C3H7
Cl

O

H
N

O

Br

NH

C3H7
Cl

O



	
   220 

1H NMR (500 MHz, CDCl3) δ 7.73 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 

7.23 (s, 1H, NH), 5.63 (d, J = 9.0 Hz, 1H, NH), 4.27 (ddd, J = 14.5, 8.3, 4.0 Hz, 

1H), 4.14 (ddd, J = 9.9, 7.2, 2.8 Hz, 1H), 4.00 (ddd, J = 7.5, 5.7, 4.0 Hz, 1H), 3.37 

(ddd, J = 14.5, 5.7, 4.0 Hz, 1H), 2.06 (s, 3H), 1.84-1.94 (m, 1H), 1.52-1.39 (m, 

2H), 1.39-1.28 (m, 1H), 0.94 (t, J = 7.2 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 171.0, 166.7, 132.8, 131.8, 128.8, 126.4, 63.7, 

51.6, 42.7, 32.8, 23.3, 19.0, 13.8. 

Resolution of enantiomers: DAICEL Chiralcel AD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 8.4 min, RT2 (minor) = 10.9 min 

 

III-51D N-((2S,3R)-3-acetamido-2-chloro-3-phenylpropyl)-4-nitrobenzamide 

 
1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 8.8 Hz, 2H), 8.10 (d, J = 8.8 Hz, 3H, 

NH), 7.41-7.29 (m, 5H), 6.26 (d, J = 9.7 Hz, 1H, NH), 5.62 (dd, J = 9.7, 1.8 Hz, 

1H), 4.55 (ddd, J = 10.5, 5.4, 1.8 Hz, 1H), 4.39 (ddd, J = 13.8, 8.3, 5.4 Hz, 1H), 

3.12 (ddd, J = 13.8, 10.5, 4.7 Hz, 1H), 2.24 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 171.7, 164.9, 149.8, 139.0, 137.0, 128.8, 128.4, 

128.3, 126.6, 123.9, 61.1, 52.2, 43.0, 23.4. 
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Resolution of enantiomers: DAICEL Chiralcel OJ-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (major) = 17.0 min, RT2 (minor) = 23.1 min 

 

III-34F N-((2S,3S)-3-benzamido-2-chlorohexyl)-4-nitrobenzamide 

 

1H NMR (500 MHz, Chloroform-d) δ 8.40 (dd, J = 8.6, 4.4 Hz, 1H NH), 8.33 (d, J 

= 8.8 Hz, 2H), 8.15 (d, J = 8.8 Hz, 2H), 7.83 (d, J = 6.9 Hz, 2H), 7.62 – 7.57 (m, 

1H), 7.51 (t, J = 7.6 Hz, 2H), 6.24 (d, J = 9.4 Hz, 1H, NH), 4.53 (tdd, J = 9.1, 5.3, 

1.6 Hz, 1H), 4.35 (ddd, J = 13.8, 8.7, 5.2 Hz, 1H), 4.24 (ddd, J = 10.9, 5.2, 1.7 

Hz, 1H), 3.00 (ddd, J = 13.7, 10.9, 4.4 Hz, 1H), 1.86-1.76 (m, 1H), 1.73-1.63 (m, 

1H), 1.48-1.39 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, Chloroform-d) δ 169.30, 164.84, 149.73, 139.22, 133.21, 

132.46, 128.96, 128.42, 127.03, 123.88, 61.49, 49.63, 42.68, 34.94, 19.37, 

13.71. 

Resolution of enantiomers: DAICEL Chiralcel OD-H column, 10% IPA-Hexanes, 

1.0 mL/min, 254 nm, RT1 (minor) = 8.8 min, RT2 (major) = 14.3 min 
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Chapter IV: Mechanistic investigation for the observed 
switch in olefin chlorenium face selectivity 

IV-1 Introduction 

IV-1-1 Switch of chlorenium face selectivity in two products of 
dichlorination reaction 
 

 In our prior work, we had demonstrated optimized conditions (0.02 M 

substrate concentration in TFE, 100 equivalents LiCl and 2.0 equivalents of 

DCDMH at -30 °C) for the enantioselective dihalogenation reactions of alkenes 

(Figure IV-1a). The fact that these reactions required up to 100 equivalents of 

LiCl for optimal results was surprising. Based on different control experiments, it 

was indicated that the reaction is occurring on a solid-liquid interface (see 

Chapter II). On the other hand, treating allyl amide IV-1 with 15 equivalents of 

LiCl in the presence of 10 mol% (DHQD)2PHAL and two equivalents of DCDMH 

at room temperature produces a mixture of products. In line with the desired 

dichlorinated product IV-1A, the TFE-incorporated product IV-1B was formed in 

45% yield and 92:8 enantioselectivity (Figure IV-1b). The crystal structure for the 

dichlorinated product IV-1A enabled us to assign the absolute stereochemistry 

for the two newly formed chiral centers. Unfortunately, different attempts to get 

single crystal structure for the TFE incorporated product IV-1B were not 

successful. However, varying the expandable amide moiety from 4-

nitrobenzamide to 4-bromobenzamide led to get a crystal structure for the TFE-

incorporated product IV-1B. Examination of the latter results leads to an 

interesting yet puzzling observation. The chloroetherified side-product IV-1B for 
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the dichlorination reactions is formed with a switch in olefin face selectivity during 

the addition of the chlorenium, with overall excellent enantioselectivity (Figure IV-

1b).  To the best of our knowledge, this is the first time that two products are 

produced in high ee under same reaction conditions (same chiral catalyst, 

solvent, etc.), but with different chlorenium face selectivity. 

Figure IV-1: Switch of chlorenium face selectivity for two products of the 
dichlorination reaction. 
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IV-1-2 Switch of chlorenium face selectivity for two products of the 
chloroetherification reaction. 
 
          Based on the results above, we were interested in determining if the switch 

in chlorenium face selectivity can also occur in the enantioselective 

haloetherification of alkenes.1 When trans-aryl-substituted alkenes such as 

compound IV-2 were subjected to the optimized conditions for the 

enantioselective haloetherification reactions two products were produced, the 

desired chloroetherified product IV-2B (43% yield and 82:18 er) along with the 

chlorocyclized product IV-2C (36% yield and 97:3 er, see Figure IV-2). Notably, 

aliphatic substituted alkenes under the same optimized conditions yielded the 

desired intermolecular products exclusively in high yield and stereoselectivity. 

 

          We sought to understand whether the chlorenium face selectivity would 

switch in these two products (inter- and intramolecular chlorofunctionalized 

products), similar to the dichlorination case. We were able to a get crystal 

structure for cyclized product IV-2C.2 However, several attempts to obtain a 

single crystal for the intermolecular product IV-2B failed. In order to 

unequivocally assign the stereo centers of chloroetherified product IV-2B, 

compound IV-2C was transformed to IV-2B in two steps as shown in Figure IV-3. 

Figure IV-2: The trans-aryl-substituted alkenes form two products during the 
enantioselective chloroetherification reaction 
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Treating the chlorocyclized product with 1.5 N HCl at reflux followed by protection 

of the amine with 4-bromobenzoylchloride produces halohydrin ent-IV-2B. 

Optical rotation, as well as HPLC co-injection, confirmed that it was indeed the 

enantiomer of IV-2B that had resulted from this transformation (Figure IV-3). 

These results lead us to conclude that the chlorenium face selectivity switches 

while the two products are formed during the enantioselective 

chlorofunctionalization reactions (both the enantioselective dichlorination and 

haloetherification reactions). 
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Figure IV-3:	
   Switch of chlorenium face selectivity for the two products of the 
chloroetherification reaction. 
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However, our results show various nucleophiles can affect the chlorine face 

selectivity. As depicted in Figure IV-4b, with H2O as the nucleophile the 

chlorenium face selectivity for the halohydrin product IV-2B has an R 

configuration. On the other hand, when 4-bromobenzamide acts as the 

nucleophile, the chlorine face selectivity for cyclized product IV-2C result in an S 

configuration (Figure IV-4b). 

Figure IV-4: (a) The classical way for indicating halenium face selectivity (b) 
various nucleophiles dictates face selectivity 
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halocyclization reaction that showed in lieu of a stepwise activation of alkenes 

(electrophilic attack on the alkene) and subsequent nucleophilic bond formation, 

the reaction actually proceeds via a concerted mechanism. Our proposed 

Nucleophile Assisted Alkene Activation (NAAA) pathway suggests that the 

proximity of the nucleophile to the olefin leads to the activation of the olefin (pre-

polarization) for capturing of the electrophile from its source. Based on the latter 

supposition, the nucleophile should be part of the rate-determining step and thus 

can affect the halogen face selectivity (Figure IV-5a, b).5  

Figure IV-5: (a) Classical perception of the electrophilic addition to alkenes (b) 
Nucleophile Assisted Alkene Activation (NAAA) 
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IV-1-3-1 18O KIE studies prove the role of the nucleophile in the transition 
states 
 

Different experiments such as transition state calculation, kinetic isotopic 

effects (KIE) and NMR studies have provided support for the NAAA pathway. 

The summary of two of the experiments performed by Dr. Kumar Ashtekar would 

be helpful for readers.5 The 18O KIE experiment for the racemic 

chlorolactonization reaction would directly probe the role of nucleophile in the 

NAAA pathway. The 1:1 mixture of IV-3-16O and IV-3-18O were treated with 0.1 

equivalents of DCDMH in CHCl3 at room temperature to form the mixture of 16O 

and 18O chlorocyclized products (IV-3C and IV-3C*). The ratio of these products 

shows a significant 18O KIE (K16O/K18O = 1.026). In contrast, the reaction of 4-

methoxy substituted aryl IV-4 as control experiment shows almost unity value 18O 

KIE (K16O/K18O = 1.009). These results indicate that the nucleophile should be 

part of the rate-determining step. 

 

 

 
 
 
 
 
 
 
 
 
 

Figure IV-6: 18O KIE experimental results for IV-3 and IV-4 
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IV-1-3-2 NMR resonance displaying the interaction of nucleophiles with the 
alkenes 
 
           The NMR studies demonstrate the pre-polarization and activation of 

alkenes by the tethered nucleophile. The free acid displays proton resonance for 

olefinic hydrogens at 6.50 for Ha and 5.62 for Hb, while 13C resonance appears at 

130.4 and 129.8 ppm, respectively. Changing the tethered nucleophile to 

carboxylate (more nucleophilic than carboxylic acid) leads to shielding of Ha and 

C-Ha, where as the more proximal Hb and C-Hb deshielded relative to the acid. 

The above NMR studies indicate that the interaction between the nucleophile and 

the alkene (pre-polarization) would be an important feature for electrophilic 

addition reactions such as halofunctionalization. 

Figure IV-7:  NMR resonance of olefinic C and H displaying the interaction of 
nucleophiles with the alkenes 
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IV-1-4 Kinetic studies 
 
          In order to demonstrate that the enantioselective chlorofunctionalization 

follows the NAAA pathway, illustrating that nucleophile in these reactions is part 

of the transition state and exhibits first order kinetic is essential. In the classical 

kinetic studies, pseudo first order approximations are used to figure out kinetic 

orders of each reactant in reaction. In this approximation excess amount of the 

reactant ([B]) as compared to other reactant is used, thus during the reaction the 

concentration of compound B does not change. By this approximation, the rate of 

reaction is related to the concentration of one component. In this case, plotting 

rate vs. concentration of A would reveal the order for compound A (Figure IV-8).6  

 

Figure IV-8: The classical method for kinetic studies (pseudo first order 
approximation) 
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enantioselective intermolecular chloroetherification would not be applicable due 

to the large excess of nucleophile under the optimized conditions. Extensive 

literature research was performed in an attempt to find a solution for the above 

problem and determine the kinetic order of nucleophiles in this type of reactions. 

Figure IV-9:  Nucleophiles were used as co-solvents in the enantioselective 
chloroetherification reactions 
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Figure IV-10: The hexadehydro-Diels-Alder reaction 
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Table IV-1: Competitive H2-transfer vs. addition product in HDDA reaction 

	
  
	
  
	
  

Entry [IV-9] equiv IV-9 11:12 Yield 

1 9.5 M (neat) 1000 12:1 80%, IV-11 

2 0.013 M (in CDCl3) 1.6 1:17 60%, IV-12 
	
  
 

            Based on the above results, these two reactions have different kinetic 

profiles relative to cyclohexanol. The authors investigated the kinetic order of the 

trapping reagent (such as cyclohexanol) for the addition product IV-11 and the 

reduced benzyne products IV-12. However, applying pseudo first order 

approximation to examine the kinetic order of the alcohol (trapping agent) is not 

possible since an excess amount of cyclohexanol (1000 equivalents) for the 

formation of alcohol addition products IV-11 is used (see Table IV-1, entry 1).  
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            Hoye and coworkers cleverly designed the protocol to probe the kinetic 

order for the benzyne trapping process.8-9 They designed triyne IV-14 that 

contains a competing intramolecular trap serve as an internal clock. By 

performing the reaction in various concentration of the trapping agent and 

determining the ratio of products arising from the intramolecular product IV-15 vs. 

the product derived from the engagement of trapping agent (bimolecular capture 

of benzyne such as IV-16a/b, IV-17), the kinetic order of the trapping agent can 

be calculated. 

           The triyne IV-14 and i-PrOH (70 molar equiv) were dissolved in varying 

amount of CDCl3 to produce series of solutions with different initial concentration 

of triyne. Each solution was heated to 68 °C and after 18 h the reactions were 

quenched and concentrated. Various ratio of intermolecular-Diels-Alder product 

IV-15 and intermolecular products that arise from i-PrOH engagement (IV-16a/b, 

IV-17) were observed as a function of the concentration of the isopropanol. 

Notably, the addition products IV-16a/b were formed in the same ratio (10:1) 

regardless of the isopropanol concentration. 
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Table IV-2:  Kinetic competition study employing an internal clock reaction 

	
  
	
  

[i-PrOH] (Bulk) [i-PrOH] (Monomer) 16a/15 17/15 

1.31 0.83 1.2 0.46 

0.66 0.49 0.37 0.26 

0.44 0.35 0.19 0.17 

0.33 0.28 0.13 0.12 
	
  
 

          The ratio for the rate expression for the formation of IV-16a and IV-15 is 

shown in eq (1), and it can be rewritten as eq (2). Since i-PrOH is in excess, its 

concentration approximately remains unchanged during the reaction. Equation 

(2) can be shown as eq (3), which can also be expressed as eq (4) by 

mathematical manipulations (Figure IV-11). Plotting ln([16a]/[15]) vs. ln[i-

PrOH]mono determines the order of isopropanol for the alcohol addition pathway. 

The same protocol can be used to determine the kinetic order of i-PrOH relative 

to reduced product IV-17. The plot shows that the kinetic order of isopropanol for 

the alcohol addition pathway is two. However, for the redox reaction pathway, the 

kinetic order of i-PrOH is one (Figure IV-11).8  
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Figure IV-11: The kinetic Formulas and ln-ln plot, which the kinetic order was 
obtained 

	
  
d[𝟏𝟔𝐚]
d[15] =   

k! ∙ [𝟏𝟒] ∙ [iPrOH]! ∙ dt
k! ∙ [𝟏𝟒] ∙ dt

              (1) 

 
[𝟏𝟔𝐚]
[15]   =   

k! ∙ [𝟏𝟒] ∙ [iPrOH]! ∙ dt
k! ∙ [𝟏𝟒] ∙ dt

          (2) 

 
[𝟏𝟔𝐚]
[𝟏𝟓]   =   

k!
k!
∙ iPrOH !                                                        (3)     

 

ln
[𝟏𝟔𝐚]
[𝟏𝟓] = n ∙ ln iPrOH + ln

k!
k!
                    (4) 

 

            Notably, alcohols aggregate in solutions, the entropy and enthalpy 

energies for different alcohols were determined experimentally and by 

calculation. The enthalpy and entropy energy associated with dimerization of 

isopropanol in CCl4 has been calculated to be -5.7 kcal/mol and -19.5 kcal/mol, 

respectively.10 The free energy was calculated for a particular temperature by 

applying to the formula ΔG = ΔH - TΔS. Subsequently, the equilibrium constant 

(Keq) for isopropanol dimerization at 68 °C was obtained by employing the 

following formula (ΔG = -RTlnKeq). 
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IV-2 Results and discussions 
	
  

IV-2-1 Kinetic competition studies for chloroetherification reactions 
	
  
          The E-aryl-substituted allyl amide IV-18 in the presence of 10 mol% 

(DHQD)2PHAL and 100 equivalents of MeOH as a nucleophile in acetonitrile at 

ambient temperature forms the mixture of products (IV-18B, IV-18B’ and IV-

18C). Clearly, methanol is engaged in the formation of two diastereomers of the 

intermolecular chloroetherified products. However, in the chlorocyclized product 

IV-18C, the tethered amide acts as an intramolecular nucleophile. The 

chlorocyclized product IV-18C could be used as an internal clock for the kinetic 

competition studies similar to what Hoye and coworkers report.8 Applying kinetic 

competition formulas as shown in Figure IV-12 yield the kinetic order of the 

nucleophile (methanol) for the formation of intermolecular products IV-18B, IV-

18B’ (Figure IV-12). 
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Figure IV-12: Kinetic competition studies for enantioselective 
chloroetherifications 
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            The E-allyl amide IV-18 in the presence of 10 mol% (DHQD)2PHAL and  
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methanol (Table IV-3). Conducting the chlorofunctionalization reaction in 1.26 
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amount of minor intermolecular diastereomer did not depend on the 

concentration of methanol (see entries 1 to 4, the amount of compound IV-18B’ 

is constant). 

Table IV-3: The ratio of the IV-18B and IV-18C is related to the concentration of 
MeOH 

 

Entry Conc MeOH (M) 18B: 18B’: 18C a 

1 1.26 26.0: 21.8: 52.3 

2 1.85 29.7: 22.2: 48.3 

3 3.45 34.3: 21.6: 44.1 

4 6.06 38.7: 20.6: 40.7 
aDetermined by NMR 
 

Plotting ln(18B/18C) vs. ln[MeOH]mono suggests that the process leading to 

the major intermolecular diastereomer IV-18B is first order for methanol. 

Interestingly, plotting ln(18B’/18C) vs. ln[MeOH]mono indicates that the kinetic 

order for formation of minor diastereomer IV-18B’ is zero for methanol (Figure IV-

13). These results lead us to conclude that two distinct mechanisms are in play, 
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leading to either the desired intermolecular products IV-18B or the minor 

intermolecular addition IV-18B’. 

 

 

ln
[𝟏𝟖𝐁]
[𝟏𝟖𝐂] = n ∙ ln MeOH + ln

k!
k!

 

 

ln
[𝟏𝟖𝐁′]
[𝟏𝟖𝐂] = n ∙ ln MeOH + ln

k!
k!

 

 

 

 

 

 
 

IV-2-2 Proposed mechanism for chlorenium face selectivity switch for 
products IV-18B and IV-18C 
 

The NAAA pathway suggests, the nucleophile activates alkenes by pre-

polarization, and should be part of the transition state. The fact that the kinetic 

order for the formation of intermolecular product IV-18B is one with regards to 

methanol lead us to suggest the NAAA pathway is a factor in chlorenium face 

selectivity switch in the enantioselective chloroetherification reactions. The 

tethered benzamide nucleophile activates (pre-polarization) the alkene from the 

re face. However, the MeOH as an intermolecular nucleophile activates from the 

other face of the alkene (si face). The transition state indicates concerted 

activation and addition of the electrophilic halogen to alkenes. Our preliminary 
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Figure IV-13: The ln-ln plot from which the kinetic order was obtained 
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mechanistic studies lead us to propose the concerted transition states depicted in 

Figure IV-14 to explain the divergent chlorenium face selectivity observed in the 

products of the chloroetherifcation reactions. It merit mentions, mechanistic 

investigations are under way to elaborate on the nature of interaction for different 

nucleophiles with the chiral catalyst and alkenes to show how the characteristic 

of the nucleophile can change the face selectivity and enantioselectivity of the 

products. 

 

IV-2-3 Exploring mechanism of formation of the minor diasteomer IV-18B’ 
	
  
          As described above, the kinetic order of methanol for the formation of the 

minor diastereomer is zero. Therefore, the NAAA pathway cannot explain the 

mechanism for the formation of IV-18B’. The combined observations described 

above for the enantioselective intermolecular chloroetherification report leads us 

to propose a carbocationic mechanism. As depicted in Figure IV-16, varying 

substituents on the aryl group of Z-aryl-substituted allyl amides resulted in a 
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significant effect on the diastereoselectivity of the chloroetherified products. 

Electron donating substituents such as methoxy gave the corresponding 

products IV-19B with 1:1 dr (Figure IV-15). However, reducing the electron 

donation cause formation of chloroetherified products with higher 

diastereoselectivity (see products IV-19B to IV-22B). Employment of 

trifluoromethyl group as substituent gave chloroetherified product IV-22B with 

>20:1 dr. 

Figure IV-15: Different substituents on aryl group of allyl amides effects  
diastereoselectivities of products 
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Hammett analysis of the later data by plotting log(B/B’) vs. σ (Hammett value for 

different substituents), indicates carbocation formation during the 

chloroethrification reactions (Figure IV-16).  

Figure IV-16: Hammett plot for diastereoselectivities of chloroetherified products 
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          The mechanism for the formation of two chloroetherified diastereomers 

and chlorocyclized products is summarized in Figure IV-17. The NAAA pathway 

suitably explains the chlorenium face selectivity switch for the major 

interm

olecular product IV-18B and the cyclized product IV-18c. Nonetheless, the zero 

kinetic order of the nucleophile for the formation of the minor diastereomer IV-

18B’ and the Hammett analysis lead us to propose carbocation production for the 

formation the latter product.  

  

 

Figure IV-17: Proposed mechanism for the formation of intermolecular 
and intramolecular products in enantioselective chloroetherification 
reactions 
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IV-2-4 Experimental section 
	
  

The E-allyl amide IV-18 (0.04 mmol, 11.8 mg) in the presence of 10 mol% 

(DHQD)2PHAL (0.004 mmol, 3.1 mg) and methanol (4 mmol, 160 µl) were 

dissolved in different amounts of acetonitrile (0.5 mL, 1 mL, 2 mL, 3 mL) in a 

screw-capped vial equipped with a stir bar. After stirring for 2 min DCDMH (15.8 

mg, 0.08 mmol, 2.0 equiv) was added to these series of solution at room 

temperature. The stirring was continued at room temperature till the reaction was 

complete (TLC). The reaction was quenched by the addition of saturated aq. 

Na2SO3 (1 mL) and diluted with DCM (3 mL). The organics were separated and 

the aqueous layer was extracted with DCM (3 × 3 mL). The combined organics 

were dried over anhyd. Na2SO4 and concentrated. The ratio of products IV-18B/ 

IV-18C (or IV-18B’/ IV-18C) resulting from each individual reaction was 

determined by integrating appropriately resolved resonances in the 1 H NMR 

spectrum of each crude product mixture. 
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