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ABSTRACT

A FRAMEWORK FOR COMBINING ANCILLARY INFORMATION WITH PRIMARY
BIOMETRIC TRAITS

By

Yaohui Ding

Biometric systems recognize individuals based on their biological attributes such as faces,

fingerprints and iris. However, in several scenarios, additional ancillary information such as

the biographic and demographic information of a user (e.g., name, gender, age, ethnicity),

or the image quality of the biometric sample, anti-spoofing measurements, etc. may be

available. While previous literature has studied the impact of such ancillary information

on biometric system performance, there is limited work on systematically incorporating

them into the biometric matching framework. In this dissertation, we develop a principled

framework to combine ancillary information with biometric match scores.

The incorporation of ancillary information raises several challenges. Firstly, ancillary

information such as gender, ethnicity and other demographic attributes lack distinctiveness

and can be used to distinguish population groups rather than individuals. Secondly, an-

cillary information such as image quality and anti-spoof measurements may have different

numerical ranges and interpretations. Further, most of the ancillary information cannot

be automatically extracted without errors. Even the direct collection of ancillary informa-

tion from subjects may be susceptible to transcription errors (e.g., errors in entering the

data). Thirdly, the relationships between ancillary attributes and biometric traits may not

be evident.

In this regard, this dissertation makes three contributions. The first contribution entails

the design of a Bayesian Belief Network (BBN) to model the relationship between biometric

scores and ancillary factors, and exploiting the ensuing structure in a fusion framework.

The ancillary information considered by the network includes image quality and anti-spoof

measures. Experiments convey the importance of explicitly incorporating such information



in a biometric system. The second contribution is the design of a Generalized Additive

Model (GAM) that uses spline functions to model the correlation between match scores

and ancillary attributes, and then learns a transformation function to normalize the match

scores prior to fusion. The resulting framework can also be used to predict in advance if

fusing match scores with certain demographic attributes is beneficial in the context of a

specific biometric matcher. Experiments indicate that the proposed method can be used to

significantly improve the recognition accuracy of state-of-the-art face matchers. The third

contribution is the design of an ensemble of One Class Support Vector Machines (OC-SVMs)

to combine multiple anti-spoofing measurements in order to mitigate the concerns associated

with the issue of “imbalanced training sets” and “insufficient spoof samples” encountered by

conventional anti-spoofing algorithms. In the proposed method, the spoof detection problem

is formulated as a one-class problem, where the focus is on modeling a real fingerprint using

multiple feature sets. The one-class classifiers corresponding to these multiple feature sets

are then combined to generate a single classifier for spoof detection. Experimental results

convey the importance of this technique in detecting spoofs made of materials that were not

included in the training data.

In summary, this dissertation seeks to advance our understanding of systematically ex-

ploiting ancillary information in designing effective biometric recognition systems by devel-

oping and evaluating multiple statistical models.
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CHAPTER 1

INTRODUCTION

1.1 Biometrics and Biometric Fusion

Biometrics is the science of recognizing individuals based on their physical (such as face,

fingerprint, iris) and behavioral (such as speech and gait) traits [48]. A conventional biomet-

ric system can be viewed as an automatic pattern matching system that acquires biometric

data from an individual (e.g. a fingerprint) using a sensor, extracts a set of discriminatory

features from this data (e.g. minutia points), compares the extracted feature set with those

stored in a database (referred to as a template), and results in a score indicating the sim-

ilarity between the two feature sets [46]. This assessment of the similarity of the feature

sets, referred to as a match score, may then be used to recognize the individual. Figure 1.1

illustrates such a process in the context of fingerprint verification.

Biometric systems that operate using a single biometric trait for human recognition are

called unimodal biometric systems. Due to the diverse nature of biometric applications (e.g.,

ranging from mobile phone unlocking to international border crossing), no single biometric

trait is likely to be optimal and satisfy the requirements of all applications [108]. Some of

the limitations of a unimodal biometric system, such as noisy sensor data, non-universality

of traits, lack of distinctiveness of traits and unacceptable error rates, can be alleviated

by fusing multiple pieces of evidence from the same subject [47]. This kind of information

fusion procedure, also referred to as the biometric fusion, typically can increase population

coverage, provide better recognition accuracy compared to unimodal biometric systems, and

meet the stringent performance requirements imposed by various applications [131, 81].

There are various sources of information that can be involved in a biometric fusion pro-

cedure. This information may be obtained from multiple biometric traits (e.g., face and

fingerprint), or from the same biometric trait but with multiple representations (e.g., two
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Figure 1.1: Illustration of a conventional fingerprint verification system.

facial images of an individual obtained at different pose angles), or multiple algorithms (e.g.,

two feature sets extracted using a texture-based algorithm and a minutiae-based algorithm,

respectively). Ross et al. [108] described several major factors that impact the design and

structure of a biometric fusion system as follows:

1. number of sensors deployed;

2. time taken to acquire the biometric data from users;

3. storage requirements;

4. processing time of the added algorithm;
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5. perceived inconvenience experienced by the user.

In light of the listed factors, most of the existing fusion scenarios require additional sensors

and storage space to process the additional biometric data acquired from the users, which

may increase the response time of the system and decrease its usability.

Recently, another class of biometric fusion problems, that combine the ancillary infor-

mation (such as the image quality of biometric samples, the gender of users, anti-spoofing

measures, etc.) with primary biometric traits (e.g., fingerprints, facial images, etc.), has

gained increasing attention. For instance, demographic attributes (such as age, gender and

ethnicity) extracted from biometric data (as shown in Table 1.1) can be subsequently used

to improve the recognition accuracy of primary biometric traits [45, 110]. Recent research

has also sought to improve the resilience of biometric verification systems to spoof attacks by

combining match scores with both anti-spoofing measurements and image quality [68, 23].

To contrast with the term primary biometric traits, the term ancillary information is

used to indicate the fact that the ancillary information in themselves may not be suitable

for human recognition, but can be judiciously used to improve recognition accuracy.

We focus on three categories of ancillary information in this dissertation: demographic at-

tributes, the image quality of biometric samples and anti-spoofing measurements. Figure 1.2

provides an illustration of the proposed general framework for combining ancillary informa-

tion with primary biometric traits. The challenge in incorporating such ancillary information

into biometric matching framework are discussed in the following sections, respectively.

1.2 Ancillary Information

1.2.1 Demographic Attributes

In some biometric applications, several descriptive attributes of a user (such as gender, age,

ethnicity, etc.) are requested at the time of enrollment and stored in the database along

with the biometric data. For example, a border control biometric database may contain
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Figure 1.2: Illustration of the proposed general framework for combining ancillary
information with primary biometric traits. The design of a BBN is to model the
relationship between ancillary factors and biometric scores. The design of GAM is to learn
transformation functions and normalize the scores prior to being combined via the BBN.

information such as the gender and ethnicity of users besides their fingerprints and facial

images. These descriptive attributes are referred to as demographic attributes (as defined in

[20]), which denotes the quantifiable characteristics of a population group. In some cases, it

may be possible to automatically extract demographic attributes from the biometric data.

For example, recent research has shown that a number of demographic attributes - sometimes

referred to as soft biometrics - can be gleaned from biometric data using automated machine

learning schemes (see Table 1.1). This raises the question of whether demographic attributes

can be effectively combined with biometric match scores in order to improve the recognition

accuracy of a system.

Several inherent characteristics of demographic attributes impact the design and structure

of the fusion framework. First, most demographic attributes only contain a few discrete

labels. For example, the gender attribute is usually considered as a binary variable with two

labels: “male” and “female”. The limited distinctiveness of the gender attribute means it
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Table 1.1: Table of recent work on the automated extraction of demographic information
from biometric data. For an elaborate treatment of the subject, see [20].

Biometric Traits Demographic Attributes Authors
Face Gender&Race&Age, etc. Han et al. 2017 [41]
Face Gender&Race&Age, etc. Liu et al. 2015 [62]
Face Gender and Age Bekios-Calfa et al. 2014 [6]
Face Ethnicity Fu et al. 2014 [31]
Face Age&Others Yi et al. 2014 [137]
Fingerprint Gender Rattani et al. 2014 [99]
Audio Gender El Shafey et al. 2014 [27]
Iris Gender and Race Lagree and Bowyer 2011 [56]
Iris Age Amanda et al. 2013 [114]
Periocular Gender Bobeldyk and Ross 2016 [8]
Face and Gait Gender Ng et al. 2012 [82]
Face and Finger Gender Li et al. 2010 [60]

unlikely to be useful for human recognition by itself. Moreover, the automatic extraction of

demographic attributes may be less reliable compared to that of commonly used biometric

traits. For example, the age of a subject cannot be precisely estimated by most of the

existing age estimation algorithms [114, 32]. Furthermore, the demographic information

directly collected from subjects may contain transcription errors (e.g. an error in entering

the gender of a subject).

While previous literature has studied the impact of demographic factors on recognition

performance (e.g., [52, 30, 40, 87, 91]), there is limited work on systematically incorporat-

ing them into the biometric matching framework. In fact, most of the current approaches

primarily use demographic data in the context of biometric identificaton, by restricting the

search to only those identities in the database having the same demographic characteristics

as the input query. This is often referred to as biometric indexing or database filtering. For

example, if the input face image is deemed to be a “Male Asian”, then a face recognition

system would constrain its search to only those identities in the database that are labeled as

“Male” and “Asia”. However, such an approach has one major problem: if the demographic
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attribute is mislabeled, then it is possible for the input image to be never compared against

the correct identity. This observation demonstrates the need for a framework that accounts

for missing or inaccurate demographic labels when combining demographic attributes with

biometric traits.

1.2.2 Anti-Spoofing Measurements

A presentation attack occurs when an attacker presents a fake or modified biometric trait to

the sensor [113, 128]. For instance, it has been shown that some fingerprint systems can be

fooled by using a finger-like object fabricated using easily available materials such as latex,

glue and gelatin (as shown in Figure 1.3), with the fingerprint ridges of another person

inscribed on it [73]. Fake biometric traits can also be used during the enrollment stage,

especially in mobile applications where the enrollment process is not carefully monitored

[23].

Spoofing is an example of a presentation attack, where the adversary uses a fake or al-

tered biometric trait with the intention of masquerading as another individual [113]. Spoof

detection refers to the ability of a system to correctly distinguish between a legitimate, live

human biometric presentation and spoof artifacts [129]. An anti-spoofing measure, as the

output of most anti-spoofing schemes discussed in the literature, is a numerical value indicat-

ing the probability that the input biometric sample corresponds to a live human biometric

presentation (i.e., liveness value) or a spoof artifact (i.e., spoof score) [113]. In this thesis,

the spoof score, which indicates how likely a biometric sample is to be a spoof, is preferred.

The various anti-spoofing approaches proposed in the literature can be broadly classified into

hardware-based and image-based solutions [70, 71]. Image-based spoof detection algorithms

have the advantage over hardware-based systems of being (1) less expensive (as no extra

device is needed) and (2) less intrusive for the user [70, 79].

Take fingerprint anti-spoofing as an example. Existing fingerprint anti-spoofing algo-

rithms extract texture-based features [84, 36], anatomical features [28, 72] or physiological
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Figure 1.3: Examples of fake fingerprint images (from LivDet2011 database [134])
corresponding to the live finger (as the source fingerprint) and four different fabrication
materials. (a) Live finger, (b) Latex, (c) EcoFlex, (d) Gelatin and (e) WoodGlue.

features [34, 67] from a fingerprint image (or sequence of images), and then train a binary

classifier (such as a Support Vector Machine (SVM)) to distinguish between the features of

“Live” and “Spoof” samples.

Most researchers [68, 113, 129] conjecture that the problem of confirming a live sample is

a harder problem than that of deciding whether two samples are from the same identity. One

of the main reasons is that as spoof attacks evolve, it is likely that new and more sophisticated

materials and techniques will be used to create fake fingerprints thereby undermining existing

learning-based anti-spoofing approaches (see Figure 1.3). In order to alleviate some of these

concerns, this thesis proposes a One-Class Classification (OCC) approach that predominantly

uses training samples from only a single class, i.e., the “live” class, to generate a hypersphere

that encompasses most of the live samples and excludes all kinds of spoofs.

Anti-spoofing methods are designed to be incorporated into biometric systems in or-

der to increase system security [70, 68]. This thesis proposes a novel fusion framework in

which anti-spoofing algorithms are incorporated into conventional biometric systems using a

Bayesian Belief Network (BBN) framework. Additionally, the fusion framework is extended

by incorporating image quality, another ancillary attribute which is impacted by the choice

of fabrication materials used, to further improve anti-spoofing performance.
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Figure 1.4: Examples of fingerprint and iris images exhibiting different sample quality
values. The quality score of each image is obtained using the IQF freeware developed by
MITRE (as seen in Chapter 5). Top row: Fingerprint images whose quality is impacted by
different factors. Bottom row: Iris images exhibiting variations in gaze angle that impacts
quality. The iris images are from Johnson et al. [50].

1.2.3 Sample Quality Assessment

The literature has shown that biometric recognition is affected by many factors related to the

quality of biometric samples [127, 94, 80]. First, the acquisition process of biometric samples

can be negatively affected by noise in the acquisition sensor. An example would be noisy

fingerprints due to a malfunctioning sensor. Second, the inconsistent interaction between the

human and sensing device can lead to the acquisition of suboptimal data. For example, the

application of excess pressure on a fingerprint sensor may result in non-linear deformation of

the ridges; similarly, turning one’s head away from an iris camera can result in off-axis iris

images. Third, environmental factors, such as dry fingerprints during the winter season, can

lead to difficulty obtaining good quality samples (as seen in Figure 1.4). Consequently, these

factors lead to a decrease in the quality of the biometric sample, and hence, compromise the
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Table 1.2: Examples of schemes incorporating quality information in the biometric
recognition process. This table is not intended to be exhaustive. It merely highlights a few
examples of existing studies that use quality measures as ancillary information.

Authors Main Contributions
Chen et al. [15] Considered quality scores as a predictor variable in fingerprint

matching performance
Wein and Baveja [132] Improved the identification accuracy of the fingerprint system in

U.S. VISIT program using quality-dependent thresholds
Fierrez-Aguilar et al. [92] Implemented quality scores as a weighting factor in their

multi-algorithm fingerprint score-level fusion
Nandakumar et al. [80] Incorporated quality scores with match scores from fingerprint

and face via a GMM-based scheme
Fierrez-Aguilar et al. [29] Incorporated quality scores with match scores from fingerprint

and voice via a SVM-based method
Maurer and Baker [74] Proposed a graphical model to combine quality with match scores

from fingerprint and voice
Abaza and Ross [1] Proposed a rank-level fusion scheme to incorporate quality scores

with match scores from fingerprint and face
Kryszczuk et al. [53] Evaluated the impact of image quality as a specific feature in

fingerprint recognition
Poh et al. [93] Proposed a Bayesian framework for incorporating device-specific

quality scores with match scores from fingerprint and face
Poh and Kittler [95] Proposed a Bayesian framework for incorporating quality scores

with match scores from fingerprint and face.

performance of the automated biometric system. In order to reduce the adverse effect of the

above factors, recent research has explored the possibility of incorporating biometric sample

quality in the biometric decision process (see Table 1.2).

As discussed by Poh and Kittler [95], the biometric sample quality can be defined in

various ways, viz., i) the degree of extractability of the features used for recognition [132],

ii) the degree of conformance of biometric samples to some predefined criteria known to

influence the recognition performance [15, 39], and iii) the degree of richness of texture and

other image characteristics, e.g., the sharpness, contrast, and detailed rendition of the image

[15, 86]. Take the minutiae-based fingerprint matcher as an example. A fingerprint is deemed
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to be of high quality if it contains sufficient number of reliable minutiae points that can be

used by the automated matcher. This criterion may be different from the human perception

of image quality, where high quality may indicate a fingerprint with clear ridges, low noise,

and good contrast.

Quality Scores are commonly used for indicating how good the quality of a biometric

sample is. These scores could be numerical values or categorical values depending on the

definitions and metrics that are used. The lack of a uniform standard requires the design

of a fusion framework that is resilient to inaccurate or uncertain quality measures when

integrating them with biometric match scores.

1.3 Challenges and Possible Solution

As discussed in the previous section, the main challenges in combining ancillary informa-

tion with biometric traits can be summarized as follows:

• Lack of distinctiveness: Most ancillary attributes, such as gender and ethnicity, can

only distinguish population groups rather than individuals. As a result, utilizing ancil-

lary information is not guaranteed to benefit the recognition performance. Therefore,

the fusion framework should be able to predict in advance if fusing certain attributes

with biometric match scores is beneficial with respect to a particular biometric matcher.

• Lack of reliability: Ancillary information is not as reliable as primary biometric

traits. Automated extraction algorithms of ancillary information, such as anti-spoofing

measurements and image quality, can have a large degree of uncertainty. Even the

direct collection of demographic information, such as gender, from subjects may be

susceptible to transcription errors. This lack of reliability of ancillary information

will affect biometric matching accuracy if the fusion framework does not adequately

account for such types of uncertainty.

• Lack of unity and consistency: Measurements of ancillary information are application-
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specific and may have different numerical ranges and interpretations. For example,

both the ANSI/NIST standard and the Electronic Fingerprint Transmission Specifi-

cation (EFTS) lack any metrics or standards for image quality (as reported in [77]).

Thus, the fusion framework should be able to accommodate diverse types of inputs.

• Implicit relationship between ancillary information and match scores: The

relationship between match scores and ancillary information has not been systemati-

cally studied in the literature, primarily due to the lack of large datasets containing

the relevant ancillary labels. Consequently, the assumption of independence between

ancillary variables and biometric match scores may be presumptuous. One possible so-

lution is to assume causal relationships based on domain knowledge, and then carefully

validate the assumptions based on actual data.

1.4 Dissertation Contributions

This purpose of this thesis is to devise a principled framework to effectively combine ancil-

lary information with primary biometric traits by addressing the aforementioned challenges.

The main contributions of this thesis are summarized below:

• The primary purpose for combining demographic and biometric attributes is to im-

prove biometric matching accuracy. In order to facilitate this, we first investigate

existing attribute-based fusion schemes (here, the term “attributes" refers to ancillary

information). This investigation inspired us to pose the problem as an exploration of

optimal transformation functions on match scores based on ancillary measures that can

maximize the matching accuracy. Based on this formulation, the rationale of several

commonly used fusion schemes, such as the attribute-based indexing and decision-level

fusion, are explained from both an intuitive and a mathematical perspective.

• We design a Generalized Additive Model (GAM) that uses spline functions to model the

relation between match scores and demographic attributes resulting in a consistently
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higher matching accuracy compared to other fusion schemes. It learns the optimal pa-

rameters of transformation functions. These model parameters can be used to predict

in advance whether fusing demographic data with a certain biometric matcher is ben-

eficial or not. Moreover, the proposed model is shown to be effective even in situations

where the demographic data are incorrect or unreliable to some extent.

• We design a method to combine anti-spoofing measures with biometric match scores. In

this regard, we employ a Bayesian Belief Network (BBN) that specifies the relationship

between anti-spoofing measures and biometric match scores via a causal assumption.

Further, the role of ancillary information on matching accuracy is carefully restricted

via a conditional independence assumption. Experimental results demonstrate that

the proposed BBN configuration can provide consistently better overall recognition

performance than typical classifiers, such as naive Bayes, decision tree and neural

networks.

• We propose the design of an ensemble of multiple One-Class SVM (OC-SVM) clas-

sifiers to address the problem of developing more generalizable algorithms for anti-

spoofing. Experimental results on two public-domain LivDet datasets (2011 and 2013)

demonstrate that the proposed ensemble approach can achieve competitive accuracy

by predominately using training samples from only a single class, i.e., the live class.

Several drawbacks of the single OC-SVM classifier are successfully overcome by the

aggregation of decision boundaries from multiple independent OC-SVMs correspond-

ing to different feature spaces. The proposed one-class classifier mitigates the concerns

associated with the issue of “imbalanced training set” and “insufficient spoof samples”

encountered by conventional anti-spoofing algorithms.

• Finally, this thesis proposes a general principled framework which is suitable for com-

bining different types of ancillary information with biometric match scores. We use

the quality score as an example to demonstrate that both the proposed BBN and
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GAM scheme can be effectively extended to involve additional ancillary factors. Then,

several different extensions of the simple BBN are compared, and the results show

the advantage of utilizing a simple BBN configuration in which the match scores are

updated via the GAM transformation functions.

The thesis is organized as follows: Chapter 2 introduces a Generalized Additive Model

to model the correlation between match scores and demographic attributes, and normalize

the match scores resulting in better verification performance. Chapter 3 compares the se-

quential and parallel scheme of combining anti-spoofing measures with match scores, and

then presents the design of a Bayesian Belief Network to improve the overall recognition

performance. Chapter 4 proposes an ensemble of one-class classifiers to improve spoof detec-

tion accuracy. Chapter 5 proposes a general fusion framework which can effectively combine

different types of ancillary information with primary biometric traits. Chapter 6 summarizes

the findings of this research work and outlines ideas for future research.
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1.5 Notation

We use the following notation and symbols throughout this thesis.

X : Matrix of match scores

xi i = 1, . . . , n : The original match score from the ith match

Y : Scores after fusion or transformation

yi i = 1, . . . , n : The transformed match score from the ith match

y′i i = 1, . . . , n : The decision of “Accept” or “Reject” of the ith match

δ : Operating thresholds∑
I(x > δ) : The number of match scores that are greater than threshold δ

x ∈ XGen
Q1 : The genuine match scores in quadrant 1

Z : A coded demographic factor

F : A set of transformation functions on original match scores

fzi(xi) zi = 1, . . . , L : The score transformation function corresponding to the zi level

of a demographic factor

St t = {1, 2} : Input states of sample 1 or 2

at t = {1, 2} : All the ancillary information of sample 1 or 2

lt t = {1, 2} : The spoof scores of sample 1 or 2

qt t = {1, 2} : The quality scores of sample 1 and 2

Pr(x) : The probability of a random variable x

α0 : Total interception

γ : Coefficients of interactions

ε : Residuals of the model
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CHAPTER 2

COMBINING DEMOGRAPHIC ATTRIBUTES WITH BIOMETRIC
TRAITS

2.1 Background

In some biometric applications, demographic attributes of a user (such as gender, age,

ethnicity, etc.) are requested at the time of enrollment and stored in the database along

with the biometric data. For example, a border control biometric database may contain

information such as the name, gender, date of birth, nationality and ethnicity of subjects

besides their facial images or fingerprints (see Figure 2.1). Further, recent research has

established that demographic attributes - sometimes referred to as soft biometrics - can

be deduced from biometric data using automated machine learning schemes [20]. Table 2.1

provides an overview of recent face-based and fingerprint-based gender estimation algorithms.

Figure 2.1: An example scenario, involving a border control system, where the biometric
traits and demographic attributes can be potentially combined to improve recognition
accuracy.
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Table 2.1: Overview of recent face-based and fingerprint-based gender estimation
algorithms using biometric data. Abbreviations used: a Deep Multi-Task Learning
(DMTL), Principal Component Analysis (PCA), Support Vector Machines (SVM),
Discrete Wavelet Transform (DWT), Convolutional Neural Networks (CNN).

Authors Classifiers Performance
Han et al. 2017 [41] DMTL 95.45% on 62,566 face images
Liu et al. 2015 [62] CNN 87.40% on 202,599 face images
Bekios-Calfa et al. 2014 [6] PCA 88.04% on 337 face images
Yi et al. 2014 [137] CNN 98.10% on 62,566 face images
Shan 2012 [115] SVM 94.81% on 7,443 face images
Jia and cristianini 2015 [49] C-Prgasos 96.86% on 4 million face images
Castrillón-Santana et al. 2017 [12] CNN 94.20% on 28,220 face images
Gnanasivam and Muttan 2012 [38] DWT 88.28% on 3,570 fingerprints
Rattani et al. 2014 [99] SVM 71.70% on 948 fingerprints
Marasco et al. 2014 [69] PCA 88.70% on 494 fingerprints

This raises the question of how such demographic attributes can be effectively combined with

primary biometric traits for improving the recognition accuracy of the system.

In this chapter, we approach the problem of systematically combining demographic at-

tributes with biometric match scores in a fusion framework. The proposed fusion scheme

combines demographic data with biometric match scores via a Generalized Additive Model

(GAM) that is applicable to the biometric verification scenario. The proposed GAM learns a

set of penalized spline-based transformation functions that describe the relationship between

match scores and demographic factors (as seen in Figure 2.2). The proposed framework has

several advantages:

1. The model parameters obtained during the training phase can be used to predict in

advance whether fusing demographic data with a certain biometric matcher is beneficial

or not (section 2.5.5).

2. The proposed framework results in better verification accuracy than existing methods

for combining demographic attributes with match scores (section 2.5.3).
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Figure 2.2: Proposed fusion framework for combining demographic attributes with match
scores. The raw match scores are transformed via a set of demographic-based score
transformation functions which are learned using the proposed Generalized Additive Model
during the training phase. The transformed scores are used to verify whether two samples
are from the same identity.

3. The proposed model is shown to be effective even in scenarios where the demographic

labels are incorrect or unreliable (section 2.5.6).

This chapter is organized as follows: Section 2.2 briefly discuss several commonly used

combining schemes to integrate demographic data with the biometric matching framework.

Section 2.3 explains the rationale for formulating this problem as an optimization of score

transformation functions. Section 2.4 introduces the theory of Generalized Additive Model

(GAM) and its extensions. Section 2.5 presents the advantages of the proposed fusion frame-

work via experimental results conducted on multiple datasets. Section 2.6 summarizes the

findings.
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2.2 Related Work

The impact of demographic factors on recognition performance has been studied in the

literature (e.g., [52, 30, 40, 87, 91]). These studies have shown that certain demographic

cohorts are more susceptible to errors in the biometric matching process. For example,

Klare et al. [52] pointed out that multiple face recognition algorithms consistently have

lower matching accuracies on the same cohorts (Females, Blacks, and age group 18 − 30).

However, there is limited work that has been conducted on systematically incorporating

demographic data into the biometric matching framework.

In the context of biometric identification, demographic data can be simply utilized as

index values to restrict the search to only those identities in the database having the same

demographic characteristics as the probe sample. However, as stated earlier, such an ap-

proach is heavily impacted by the mislabeling problem, where the probe image will never

be compared against the correct identity. In the context of biometric verification, if the

demographic characteristics from the probe sample and the claimed template are different,

a conventional biometric system is likely to simply reject this probe without computing a

match score. This scheme of integrating demographic data in a biometric system is referred

to as the stratified matching scheme in this work, because it first partitions the biometric

samples into multiple strata according to their demographic characteristics (the Male and

Female strata, the Caucasian and Non-Caucasian strata, etc.) prior to the matching pro-

cess. As investigated later in this paper, the stratified matching scheme cannot significantly

increase the verification accuracy, especially when the demographic labels are erroneous.

Another way to combine biometric and demographic data is by utilizing decision-level

fusion schemes. Decision-level fusion schemes first make a decision on whether the demo-

graphic labels of two samples are same. Then, this decision is merged with the decision that

is independently rendered by a conventional biometric matcher. The final decision can be

obtained by employing techniques like majority voting, or the logical AND/OR operators

[108, 14]. However, these fusion schemes can still be heavily impacted by the mislabeling
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problem.

Feature-level fusion [107] is another viable way of combining biometric and demographic

data. Feature-level fusion schemes involve the concatenation of feature sets used for pre-

dicting demography (e.g., a texture-based feature set that is used for estimating the gender

from irides) with the feature sets used in conventional biometric matchers (e.g., IrisCode

used for iris recognition). Lu and Jain [63] proposed a face matching algorithm where the

feature set used for ethnicity estimation was incorporated into a conventional face matcher.

However, one of the challenges in such an approach is the low compatibility between feature

sets, since this design heavily relies on the nature of feature sets used for biometric matching

and demographic prediction. For example, reconciling minutiae points (used for fingerprint

recognition) and BSIF-based feature vectors (used for gender prediction) may not be easily

possible. Consequently, the generalizability of feature-level fusion schemes across different

feature sets is limited. Moreover, feature-level fusion schemes require access to feature sets

used by the biometric matcher as well as the demographic predictor, which are typically

viewed as proprietary information and are, therefore, not easily accessible.

It must be mentioned here that other types of soft biometric attributes, besides de-

mographic labels, have been successfully incorporated in biometric systems. For example,

anthropometric attributes such as body height and face geometry, that are used in forensics,

can be leveraged for use in a biometric system. As noted by Nixon in [90], a judicious com-

bination of these attributes can result in a relatively high degree of distinctiveness for face

recognition. Ramanathan and Wechsler [97] combined two appearance-based approaches

(PCA and LDA) with anthropometric/geometric measurements (19 manually extracted ge-

ometric measurements of the head and shoulders) via a neural network, and the proposed

algorithm was robust to occluded and disguised faces. Biographic information, such as

name and address, has been utilized for the identity de-duplication of biometric databases

[118]. As a summary, Dantcheva et al. [20] introduced a taxonomy of methods for utilizing

these soft biometric information, which include biographics, anthropometrics and so on, in

19



Figure 2.3: Illustration of the partitioned score matrix from a conventional face matcher.
The score matrix is partitioned into four quadrants according to different matching
scenarios. For instance, “Q1” denotes the scenario where “Male” probe samples are
compared against “Male” gallery samples.

the context of biometric recognition systems. However, these methods cannot be trivially

appropriated for use with demographic attributes. This is mainly because that most demo-

graphic attributes are even less distinctive across the population (e.g., gender) compared to

other types of soft biometric information such an anthropometric attributes.

Moreover, the lack of reliability of demographic information can negatively affect biomet-

ric matching accuracy if the fusion framework does not adequately account for such types

of uncertainty. As pointed out by a report from the Secure Flight Program in the U.S. [19],

when travellers’ name, gender and age information were used for comparing traveller iden-

tity against those on a FBI watch list, the rate of false rejection was significantly increased

because of the unreliability of gender information.
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2.3 Analytical Investigation on Fusion Schemes

In order to better motivate the proposed fusion approach, and to use a single formulation

to explain other fusion schemes, we now turn our attention to the score matrix. The score

matrix consists of match scores obtained when comparing every probe biometric sample

against every gallery biometric sample. We partition the score matrix into multiple sections,

where each section is a matrix of match scores when comparing probe samples with a certain

demographic label against gallery samples with a certain demographic label (e.g., “Male vs

Male” or “Female vs Male”). Such a partitioning also helps in explaining the rationale for

formulating fusion frameworks as score transformation functions.

2.3.1 Partitioned Score Matrix

The biometric verification problem may be formally posed as follows: given a probe biometric

sample and a claimed identity, determine whether this claim is true or false [48]. Typically,

the probe sample is compared against the gallery sample corresponding to the claimed iden-

tity in order to generate a match score (typically a single number), which quantifies the

degree of similarity or dissimilarity between these two samples. Consider the score matrix,

X, in Figure 2.3, where each entry, x (like 0.93, 0.46, . . . ), corresponds to the match score

obtained when a probe sample is compared against a gallery sample. Hence, each row of

this score matrix is a set of match scores generated when comparing an input probe sample

against all gallery samples stored in the biometric database. The genuine scores can be

denoted as x ∈ XGen, while x ∈ XImp denotes the impostor scores. Typically, the score is

compared against a threshold, δ, in order to render a decision.

Without loss of generality, the match scores can be assumed to be similarity scores. Thus,

if the threshold, δ, is decreased to make the system more tolerant to input variations and

noise, the False Match Rate (FMR) increases and the True Match Rate (TMR) increases.

On the other hand, if δ is increased to make the system more secure, the FMR decreases
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while the TMR increases. As a result, each {FMR, TMR} pair is a function of threshold δ:

FMR(δ) =
∫ ∞
δ

Pr(x|x ∈ XImp)dx;

TMR(δ) =
∫ ∞
δ

Pr(x|x ∈ XGen)dx,

where, Pr(x|x ∈ XGen) denotes the probability density function of genuine scores.

The match score matrix, X, can be partitioned by demographic attributes. Figure 2.3

illustrates a simple case where a face matcher is integrated with a binary gender attribute.

There are four quadrants according to the following matching scenarios: “Male vs. Male

(Q1)”, “Male vs. Female (Q2)”, “Female vs. Male (Q3)” and “Female vs. Female (Q4)”.

Consequently, x ∈ XGen
Q1 and x ∈ X

Imp
Q1 denote the genuine and impostor scores in Q1,

separately, where male samples are matched against male samples. Given a threshold δ, the

corresponding FMR and TMR can be calculated as :

FMR(δ) =
∫ ∞
δ

Pr(x|x ∈ XImp)dx

=

∫ ∞
δ

Pr(x|x ∈ X
Imp
Q1 )dx+

∫ ∞
δ

Pr(x|x ∈ X
Imp
Q2 )dx

+

∫ ∞
δ

Pr(x|x ∈ X
Imp
Q3 )dx+

∫ ∞
δ

Pr(x|x ∈ X
Imp
Q4 )dx;

TMR(δ) =
∫ ∞
δ

Pr(x|x ∈ XGen)dx

=

∫ ∞
δ

Pr(x|x ∈ XGen
Q1 )dx+

∫ ∞
δ

Pr(x|x ∈ XGen
Q2 )dx

+

∫ ∞
δ

Pr(x|x ∈ XGen
Q3 )dx+

∫ ∞
δ

Pr(x|x ∈ XGen
Q4 )dx

where Pr(x|x ∈ X
Imp
Q1 ) denotes the probability density function of impostor scores in Q1.

In practice, this probability density can be estimated by counting the number of impostors

scores corresponding to the scenario in Q1:
∑

I(x|x ∈ X
Imp
Q1 ). Similarly,

∑
I(x > δ|x ∈

X
Imp
Q1 ) denotes the number of impostors scores in Q1 that are greater than the given threshold
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δ. In summary, the empirical FMR and TMR can be calculated as:

FMR(δ) =
∑

I(x > δ|x ∈ XImp)∑
I(x|x ∈ XImp)

=

∑
I(x > δ|x ∈ X

Imp
Q1 ) + . . .+

∑
I(x > δ|x ∈ X

Imp
Q4 )∑

I(x|x ∈ X
Imp
Q1 ) + . . .+

∑
I(x|x ∈ X

Imp
Q14)

; (2.1)

TMR(δ) =
∑

I(x > δ|x ∈ XGen)∑
I(x|x ∈ XGen)

=

∑
I(x > δ|x ∈ XGen

Q1 ) + . . .+
∑

I(x > δ|x ∈ XGen
Q4 )∑

I(x|x ∈ XGen
Q1 ) + . . .+

∑
I(x|x ∈ XGen

Q4 )
.

With the partitioned score matrix, it is able to investigate the difference of score distri-

butions among matching scenarios. For example, if we assume that all the gender labels are

accurate, then it is impossible to have any genuine scores in Q2 and Q3, which results in∑
I(x > δ|x ∈ XGen

Q2 =
∑

I(x > δ|x ∈ XGen
Q3 = 0. Thus, the above TMR is rewritten as:

TMR(δ) =

∑
I(x > δ|x ∈ XGen

Q1 ) +
∑

I(x > δ|x ∈ XGen
Q4 )∑

I(x|x ∈ XGen
Q1 ) + . . .+

∑
I(x|x ∈ XGen

Q4 )
.

2.3.2 Formulation of Stratified Matching Scheme

Figure 2.13 illustrates the stratified matching scheme as a special case of transformation on

match scores. First, the demographic characteristics of the probe sample and the claimed

identity are compared. If the demographic characteristics from two samples are same (sim-

ilar to the proposed matching scenarios of Q1 and Q4 in Figure 2.3), these two biometric

samples are compared by a conventional biometric matcher and a match score is generated

for rendering the decision. On the other hand, if these characteristics are different, the

system rejects the probe without computing a match score (denoted as N/A). The strati-

fied matching scheme, therefore, reduces the computing time and speeds up the recognition

process.

However, as is proved below, the verification accuracy cannot be significantly improved

by the stratified matching scheme. According to the proposed formulation of verification
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Figure 2.4: Illustration of the stratified matching scheme. When the demographic
characteristics from two samples are NOT the same, the stratified matching scheme simply
rejects the probe sample without computing any match scores. On the other hand, if the
characteristics are the same, the match scores from the conventional biometric matcher are
used to render the final decision. The stratified matching scheme can be considered as a
special case of demographic-based transformation.

accuracy, as shown in Eqn (2.1), the stratified matching scheme only removes the entries

x ∈ XQ2 and x ∈ XQ3 because they are not available. As a result, the FMR is reduced by

removing the term
∑

I(x > δ|x ∈ X
Imp
Q2&Q3) from the numerator and the term

∑
I(x|x ∈

X
Imp
Q2&Q3) from the denominator, while the TMR remains same. The FMR and TMR after

using the stratified matching scheme are updated as follows:

FMRstrat(δ) =∑
I(x > δ|x ∈ X

Imp
Q1 ) +

∑
I(x > δ|x ∈ X

Imp
Q4 )∑

I(x ∈ X
Imp
Q1 ) +

∑
I(x ∈ X

Imp
Q4 )

;

TMRstrat(δ) = (2.2)∑
I(x > δ|x ∈ XGen

Q1 ) +
∑

I(x > δ|x ∈ XGen
Q4 )∑

I(x ∈ XGen
Q1 ) +

∑
I(x ∈ XGen

Q4 )
.

Comparing Eqn (2.2) to (2.1), it can be safely concluded that the matching accuracy can
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be significantly increased only if the following inequation is satisfied:∑
I(x > δ|x ∈ X

Imp
Q1&Q4)∑

I(x ∈ X
Imp
Q1&Q4)

�
∑

I(x > δ|x ∈ X
Imp
Q2&Q3)∑

I(x ∈ X
Imp
Q2&Q3)

⇐⇒
∫ ∞
δ

p(x ∈ X
Imp
Q1&Q4)dx�

∫ ∞
δ

p(x ∈ X
Imp
Q2&Q3)dx.

(2.3)

From an intuitive viewpoint, the original false matches (FM) consist of four parts:

Total FM = FM from Q1+ FM from Q4

+ FM from Q2+ FM from Q3.

The stratified matching scheme reduces the total FMR by eliminating the false matches from

Q2 and Q3. However, it cannot reduce the false matches within the same strata (Q1 and

Q4), which results in limited accuracy improvement in practice.

Indeed, there are other practical concerns about the stratified matching scheme. First,

it requires operating thresholds to be strata-specific. For example, in order to achieve a

fixed FMR, the stratified matching scheme has to implement different thresholds for male

and female subjects, separately. Figure 2.5 presents the ROC curves from a commercial

fingerprint matcher (i.e., COTS-C as introduced in section 2.5) when integrating gender

information via the stratified matching scheme. Here, if the same thresholds are used for

both male and female subjects, the matcher may exhibit significantly different False Match

Rates (FMRs) for male and female subjects (as shown in Figure 2.5). Moreover, as shown in

Figure 2.6, it may be difficult to compare the accuracy of two matchers when the stratified

matching scheme is implemented. Here, we observe that Matcher 1 constantly results in

higher accuracy for male subjects while Matcher 2 performs better on female subjects. This

is because different decision thresholds were used for male and female subjects and, hence,

the matching accuracy of each strata had to be exhibited separately.

Furthermore, the stratified matching scheme could be negatively impacted by mislabeled

demographic data. The process of automatically extracting demographic attributes from bio-

metric data is vulnerable to errors. Even the direct collection of demographic information
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Figure 2.5: Examples of ROC curves from the stratified matching scheme. The gender
information of subjects in the WVU database are integrated with a commercial fingerprint
matcher (which will be introduced in Section 2.5). It demonstrates that in order to achieve
a consistent FMR for both male and female subjects, the stratified matching scheme
requires different thresholds according to each strata.

from subjects may be susceptible to transcription errors. As demonstrated by the exper-

imental results in the latter sections, the matching accuracy from the stratified matching

scheme sharply degrades when operating with mislabeled demographic information.

2.3.3 Formulation of Decision-Level Fusion Schemes

The decision-level fusion scheme is commonly used in the context of biometric fusion, where

the outputs of the individual biometric sources are combined in order to generate the final

decision. Fusion at the decision-level is bandwidth efficient because only the final deci-

sions, often requiring just a single bit, are transmitted to the fusion engine [130]. Moreover,

decision-level information is more easily accessible in proprietary systems compared to score-
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Figure 2.6: An example of ROC curves from the stratified matching scheme, where the
gender information of subjects are integrated with two conventional biometric matchers
(i.e., Matcher 1 and Matcher 2), respectively. It demonstrates that in order to compare the
accuracy of two matchers, the stratified matching scheme still need to exhibit a joint
performance rather than the within-cohort performance.

level or feature-level information [108, 14, 130].

In order to combine the demographic information via a decision-level fusion scheme, the

demographic characteristics of the probe and the claimed gallery identity need to be com-

pared to render a decision of “Match” or “Non-Match”. Demographic-based and biometric-

based decisions need to be merged in order to render the final decision. Various techniques

are applicable in the biometric verification scenario such as majority voting [51], weighted

majority voting [61] and naive-bayes combination [55]. We start by investigating the logical

AND operator, which can be viewed as a specific case of majority voting, and then generalize

the decision-level fusion scheme as a special case of match score transformation.

When a logical AND operator is implemented, as shown in Figure 2.7, the final decision is
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Figure 2.7: Illustration of the decision-level fusion scheme. The decision from a
demographic label matcher (“Same” or “Not Same”) is combined with the decision from a
conventional biometric matcher (“Match” or “Non-Match”) to render the final decision
(“Accept” or “Reject”). It can be considered as a special case of demographic-based
transformation, where the match scores are transformed to zero and rejected regardless of
the threshold, if demographic labels are “Not Same” for two samples.

“Accept” only if the demographic-based decision is “Same” and the biometric-based decision

is “Match”. It is noted that the biometric-based decision relies on the operating threshold δ

as well as the match score. According to the score matrix (as shown in Figure 2.3), when

the gender labels of two samples are “Not Same” (as in the quadrant Q2 and Q3), the

final decision is a “Non-Match” regardless of the threshold of the biometric matcher. This

is equivalent to forcing all the match scores to zero resulting in a constant “Non-Match”

decision irrespective of the threshold value. On the other hand, when the gender labels are

the same for two samples (as in the quadrant Q1 and Q4), the final decision entirely depends

on the decision of the biometric matcher. This is equivalent to forcing all the match scores

to be the same non-zero value (as shown in Figure 2.7).

Accordingly, compared to Eqn (2.1), the FMR and TMR of the AND-based decision
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fusion scheme can be rewritten as:

FMRDcom(δ) =

∑
I(x > δ|x ∈ XImp)∑
I(x|x ∈ XImp)

=

∑
I(x > δ|x ∈ X

Imp
Q1&Q4)∑

I(x|x ∈ X
Imp
Q1&Q4) +

∑
I(x|x ∈ X

Imp
Q2&Q3)

;

TMRDcom(δ) =

∑
I(x > δ|x ∈ XGen)∑
I(x|x ∈ XGen)

=

∑
I(x > δ|x ∈ XGen

Q1&Q4)∑
I(x|x ∈ XGen

Q1&Q4)
.

(2.4)

Comparing Eqn (2.4) with Eqn (2.1), the denominators of FMR and TMR are both the

same, and the only difference is the removal of the term
∑

I(x > δ|x ∈ X
Imp
Q2&Q3) from the

numerator for FMR. As a result, the FMR will be consistently reduced by this fusion scheme.

2.3.4 Generalization and Optimization

As stated earlier, the stratified matching scheme can be considered as a special case of

demographic-based transformation of match scores. Let F denote such a transformation

function, while xi and yi denote the ith match score before and after the transformation,

respectively. Here, i = 1, . . . , n, where n is the total number of entries in the score matrix.

Another input factor, zi, is a coded demographic-based factor indicating which partition the

ith match score falls in. Suppose a score matrix is partitioned into four quadrants based on

a binary gender factor, as illustrated in Figure 2.3, then zi can take on one of 4 values, i.e.,

zi = {1, . . . , L}, where L = 4. Accordingly, the stratified matching scheme can be re-written

as:

yi = FSM(xi, zi) =



xi, zi = 1 (i.e., xi ∈ Q1)

N/A, zi = 2 (i.e., xi ∈ Q2)

N/A, zi = 3 (i.e., xi ∈ Q3)

xi, zi = 4 (i.e., xi ∈ Q4).

(2.5)
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It shows that when the demographic characteristics from two samples are not the same, as

in the case for zi = 2 or 3, the transformation function fSM(xi, zi) records the transformed

score as N/A. On the other hand, if the demographic characteristics are the same, as in

the case for zi = 1 or 4, then fSM(xi, zi) simply remains the original match score. Indeed,

fSM can be decomposed into L subordinate transformation functions according to different

values of zi. For instance, suppose f1(xi) is the subordinate transformation function of the

quadrant Q1, we actually have yi = f1(xi) = xi in the stratified matching scheme.

As a summary of the above observations, we propose a general form of demographic-based

transformation functions as:

yi = Fgeneral(xi, zi) =



f1(xi), zi = 1

f2(xi), zi = 2

. . .

fL(xi), zi = L.

(2.6)

The general transformation function, Fgeneral(xi, zi), is decomposed into a set of transfor-

mation functions fl(xi), where l = 1, . . . , L. The number of matching scenarios, L, relies on

the number of demographic labels.

However, deriving such transformation functions is not easily possible. First, subordinate

functions in each partition (i.e., hl(xi)) may be independent of each other. However, they

need to be explored simultaneously, since it is important to improve the global verification

accuracy and not just the within-partition verification accuracy. Further, there is no inherent

constraint on the form of the subordinate functions. As shown in the stratified matching

scheme in Eqn (2.5), one subordinate function is linear while another function always outputs

N/A. The arbitrary form indeed enhances the difficulty of solving this problem analytically.

These issues inspire us to address the problem via the additive model (AM) with a con-
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tinuous predictor and a factor-by-curve interaction, formulated as:

yi = F(xi, zi) + εi = α0 +
L∑

zi=1

fzi(xi) + γzizi + εi,

where γzi is the coefficient of the interaction, and εi is the residual. We will explain our

rationale below.

2.4 Additive Model and Extension

2.4.1 Additive Model with Interaction

Suppose we have a set of observations {(x1, y1), . . . , (xn, yn)}, where xi is a vector of p

continuous covariates and yi is the continuous response of interest. The covariates, X, in our

case, are original match scores from conventional biometric matchers, while the response, Y ,

denotes the transformed match scores which will be used to render the verification decision

(as shown in Eqn (2.6)). As a widely used extension of traditional linear models, an additive

model (AM) can represent the relationship between covariates and the response variable as

the sum of low-dimensional transformation functions:

Y = F(X) + ε = α0 +

p∑
j=1

fj(X) + ε, (2.7)

where α0 is a constant and fj are the smooth partial functions or effects associated with

each continuous covariate in X. The AM is more flexible than the linear models since there

is no assumption of a parametric form of the effects of the continuous covariates, X, but only

assumes that these effects can be represented by unknown smooth functions, fj . Without

the restriction of linearity, additive models are more flexible than linear regression models.

Besides flexibility and accuracy, a key promising point is the interpretability, as the additive

predictors provide visual means for inspecting the models and identifying domain-specific

relations between inputs and outputs [43].

As investigated in section 2.3, the effect of the original scores, X, on the transformed

scores, Y , vary across groups defined by levels of a categorical demographic factor in our
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case. Let us denote Z as a coded demographic factor with L levels and p = 1 indicating

that X only includes the match scores from one biometric modality. Then, an extension of

the additive model with factor-by-curve interactions included, which is proposed by [18], can

better express the relationship between X, Y and Z as follows:

Y = F(X,Z) + ε = α0 +
L∑
k=1

fk(X)IZ=k +
L∑
k=2

γkIZ=k + ε, (2.8)

where IZ=k is the indicator function for the kth level of Z. The term, γk, is the coefficients

of the factor-by-curve interaction. As pointed by Coull et al. [18], for the situations where

the interaction term is statistically significant, the effect of the covariates on response can be

expressed via different curves across levels of the categorical factor. Different curves, in our

case, are different score transformation functions corresponding to different match scenarios,

which can reduce the overall verification error rates.

2.4.2 Fitting AM via Penalized B-Splines

Various approaches has been developed for fitting the model in Eqn (2.8). Hastie and

Tibshirani [42] discussed a number of approaches using smoothing splines. Coull et al. [18]

implemented the penalized splines for fitting the additive models, and a difference penalty on

coefficients of splines was used instead of using the integral of the squared second derivative.

The term “spline” is used to refer to a wide class of functions that are used in applications

requiring data interpolation and smoothing. The simplest spline is a piecewise polynomial

function, with each polynomial having a single variable. If a spline is constructed of piecewise

third-order polynomials which smoothly pass through a set of control points, also referred

to as “knots”, it becomes a so-called “natural” cubic spline [3].

Compared with the simple cubic spline, B-splines are more attractive for non-parametric

modelling, where the optimal number and positions of knots is learned from the data.

Equidistant knots can be used in B-splines as well, but their small and discrete number

allows only limited control over smoothness and fit.
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In order to avoid overfitting, a form of penalization is commonly required for learning

splines. Eilers and Marx [26] first proposed to use a difference penalty on coefficients of

adjacent B-splines. Compared to the familiar spline penalty on the integral of the squared

second derivative, the computational complexity is sharply simplified, especially for the case

of fitting additive models with factor-by-curve interactions [18].

For simplicity, we directly explain the factor-by-curve interactions used in this work,

which is specified for one single covariate (i.e., the match scores, X, from one single biometric

matcher), and one single categorical factor (i.e., the demographic factor Z). Consider the

set of triples (xi, yi, zi), where the xi and yi represent the ith match score before and after

the transformation, respectively, and zi represents a coded demographic-based factor. The

additive model for fitting is

yi = F(xi, zi) + εi = α0 +
L∑

zi=1

fzi(xi) + γzixi + εi, (2.9)

where f1, . . . , fL are L different subordinate transformation functions depending on the

value of zi, and εi i.i.d. N(0, σ2ε ). It must be noted that the score after transformation,

yi, which is considered as the response variable in Eqn (2.9), is not the actual response in

biometric verification study. Extra transformations are analyzed in section 2.4.3.

Let κ1, . . . , κK be a set of distinct knots inside the range of the xi’s and let x+ =

max(0, x). The knots are usually taken to be relatively dense among the observations in

an attempt to capture the curvature in fl, l = 1, . . . , L. Ruppert and Carroll [11] described

an algorithm for choosing the number of knots and demonstrated its effectiveness through

simulation. Let us define:

zil =


1 if zi = l,

0 otherwise.
(2.10)
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The linear (i.e., 1st order) penalized spline model for Eqn (2.9) is:

yi =β0 + β1xi +
K∑
k=1

bk(xi − κk)+ +
L∑
l=2

zil(γ0l + γ1lxi)

+
L∑
l=1

zil
{ K∑
k=1

clk(xi − κk)+
}
+ εi, (2.11)

subject to the constraints

K∑
k=1

b2k < B and
K∑
k=1

(clk)
2 < Cl, l = 1 . . . L, (2.12)

for some constant B and Cl. The term γ0l + γ1lxi models the linear deviation between f1

and fl, where l = 2 . . . L. The term
∑K
k=1 bk(xi − κk)+ represents the overall smooth term.

The term
∑K
k=1 c

l
k(xi − κk)+ represents deviations from the overall smooth term [11]. The

penalty in Eqn (2.12) induces smoothness in the effect of our covariate variable X and Y .

As pointed by Ruppert and Carroll [11], the exact number of knots is not a major concern.

Suppose the gender information with two different labels (i.e. “Male” and “Female”) of

subjects are integrated with a conventional face matcher. There are four different matching

scenarios, indicated as zi ∈ {1, 2, 3, 4}, and L = 4 subordinate transformation functions.

Given an arbitrary match score in the score matrix X, xi, Eqn (2.11) can be written as:

yi = β0 + β1xi +
K∑
k=1

bk(xi − κk)+ + εi

+



∑K
k=1 c

1
k(xi − κk)+ zi = 1,

(γ02 + γ12xi) +
∑K
k=1 c

2
k(xi − κk)+ zi = 2,

(γ03 + γ13xi) +
∑K
k=1 c

3
k(xi − κk)+ zi = 3,

(γ04 + γ14xi) +
∑K
k=1 c

4
k(xi − κk)+ zi = 4.

(2.13)

Shively et al. [116] pointed out that, for given values of B and Cl, l = 1 . . . L, the model

in Eqn (2.11), subject to the constraints in Eqn (2.12), yields fitted values equivalent to
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those produced by the model:

yi =β0 + β1xi +
K∑
k=1

bk(xi − κk)+ +
L∑
l=2

zil(γ0l + γ1lxi)

+
L∑
l=1

zil
{ K∑
k=1

clk(xi − κk)+
}
+ εi, (2.14)

where, bk i.i.d. N(0, σ2b ) and clk i.i.d. N(0, σ2cl) for appropriate values of σb and σcl. The

above mixed model formulation of penalized spline models is used in the work. It can be

rewritten in matrix notation as:

Y = Xβ + zu+ ε, (2.15)

where

X =


1 x1 z12 . . . z1L z12x1 . . . z1Lx1
...

...
... . . . ...

... . . . ...

1 xn zn2 . . . znL zn2xn . . . znLxn

 ,
β = (β0, β1, γ02, . . . , γ0L, γ12, . . . , γ1L)

T ,

z =



(x1 − κ1)+ . . . (xn − κ1)+
... . . . ...

(x1 − κK)+ . . . (xn − κK)+
... . . . ...

z11(x1 − κ1)+ . . . zn1(xn − κ1)+
... . . . ...

z11(x1 − κK)+ . . . zn1(xn − κK)+

z12(x1 − κK)+ . . . zn2(xn − κK)+
... . . . ...

z1L(x1 − κK)+ . . . znL(xn − κK)+



T

,

u = (b1, . . . , bK , c
1
1, . . . , c

1
K , c

2
1, . . . , c

L
K)T ,
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and u

ε

 ∼ N

(
0,

G 0

0 σ2ε I

),
with G = diag(σ2b1K , σ

2
c11K , . . . , σ

2
cL1K). Here, 1K is the K × 1 vector of ones. Thus, the

penalized spline model in Eqn (2.14) falls within the linear mixed model framework with X ∈

Rn×(2L+1) and z ∈ Rn×K(L+1), and there is a well-developed body of methodology for this

broad class of models that can be used to estimate the parameters [116]. In particular, the

best linear unbiased predictor (BLUP) proposed by Robinson [106] is used for the estimation:

β̂ =

{
XT (zGzT + σ2ε I)

−1
}−1

XT
(
zGzT + σ2ε I

)−1
y (2.16)

and

û = σ2ε

(
σ2ε z

T z+G−1
)−1

zT (y −Xβ̂). (2.17)

Extension to models of higher order polynomials (xi − κK)m with m > 1 is straightfor-

ward. Specifically, this study implements the 2nd order penalized B-spline model for solving

Eqn (2.9):

yi =β0 + β1xi + β2x
2
i +

K∑
k=1

bk(xi − κk)2+

+
L∑
l=2

zil(γ0l + γ1lxi + γ2lx
2
i ) (2.18)

+
L∑
l=1

zil
{ K∑
k=1

clk(xi − κk)
2
+

}
+ εi,

where, again, bk i.i.d. N(0, σ2b ), and c
l
k i.i.d. N(0, σ2cl), l = 1, . . . , L.

The constraints on exploring transformation functions are discussed as aforementioned.

It is notable that there are plenty of alternative forms available for the transformation, such

as the LOESS function, the simple polynomial function, etc. In the following section, we

need to connect the transformation function exploration with the global verification accuracy.
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Figure 2.8: An intuitive example of the transformation functions that can better separate
the genuine and impostor score distributions and achieve a higher overall matching
accuracy.

Fortunately, we have an extension of the additive model, the Generalized Additive Model,

that has been commonly implemented in typical classification problems and will now be used

in the biometric fusion scenario.

2.4.3 Generalized Additive Model

In a biometric verification study, the decision of “Accept” or “Reject”, rather than the trans-

formed score, Y , is considered as the response variable. The Generalized Additive Model

(GAM) techniques, which can be used to predict the mean of a response variable, depend-

ing on the values of other explicative covariates, allow us for a further extension to include

categorical response variables in the AM, that is really essential in a biometric verification

problem. It is worth noticing that the GAMs avoid the curse of dimensionality by restricting

the non-parametric regression problem to an additive model [43]. In other words, a GAM

37



can inherit the interpretability from the AM, and its additive components simply describe

the influence of each covariate, separately.

Explicitly, we are interested in predicting the biometric verification decision using a GAM

for binary response, Y ′, with two levels , “1/0”, corresponding to “Accept/Reject”. The match

scores, X, are generated using one single biometric matcher, which results in p = 1 in Eqn

(2.7). A link function, L, is used to convert the continuous variable, Y , which denotes the

scores after the transformation in Eqn (2.7), into the binary variable, Y ′. This response

variable Y ′ follows a Bernoulli distribution, where E(Y ′|X) = Pr(Y ′ = 1|X). Thus, the

corresponding link function L can be written as:

L(Pr(Y ′)) = ln
Pr(Y ′)

1− Pr(Y ′)
.

As a typical logistic conversion, the GAM framework takes the form:

L(E(Y ′|X)) = F(X,Z) + ε. (2.19)

According to Eqn (2.7) and the investigation in section 2.3.4, the link function directly

connects the transformed match scores with the verification accuracy. Intuitively speaking,

a transformation function would improve the verification accuracy only if it better separates

the score distributions of genuine and impostor scores compared to the original match scores.

Figure 2.8 exhibits the distributions of match scores before and after implementing a GAM-

based score transformation.

Eqn (2.20) summarizes the formula of GAM used in this work. The transformation

functions, F(xi, zi), are estimated based on the penalized B-spline models (as seen in Eqn

(2.9)), which is a special form of a piecewise function that can be simply implemented without

limitations on the number and location of knots.

L(E(y′i|xi, zi)) = ln(
Pr(y′i|xi)

1− Pr(y′i|xi)
) = F(xi, zi) + εi. (2.20)

In summary, the generalized additive model is a logistic transformation of additive models

(as shown in Eqn (2.20)), where binary responses are used in order to fit the biometric
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Figure 2.9: Examples of biometric images in the three datasets used in this work: a)
Morph face database, b) LFW face database, and c) WVU multimodal dataset.

verification scenario. The mean of the binary response is related to the predictors using a

link function L. The use of the link function is one of the central ideas of generalized linear

models.

In this paper, we use the methodology proposed by Wood [133] for fitting GAMs in

the form of Eqn (2.20). The existence of standard software in R, such as Wood’s mgcv

package, makes it easy to fit models of this type in practice. The main idea is to implement

a penalized iteratively re-weighted least squares scheme (P-IRLS), and more details can be

found in [133]. Besides, the mgcv package offers an option of tensor product (te) which

produces spline functions of multiple predictors. Compared to the isotropic (s) model, the

tensor product model is better for modelling interactions of quantities measured in different

units, or where very different degrees of smoothness appropriate relative to different levels

in a factor [133]. In this study, the tensor product model is applicable to test whether the

transformation functions corresponding to different levels in Z are significantly different (will

be seen in section 2.5.5).
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2.5 Experimental Results

2.5.1 Databases and Tools

Extensive experiments were conducted to investigate whether the proposed GAM-based fu-

sion scheme can effectively integrate the demographic information into the biometric match-

ing framework. Three main databases, along with two commercial face matchers (COTS-A

and COTS-B) and one fingerprint matcher (COTS-C), are used to evaluate the universal-

ity of the proposed scheme. Table 2.4 summarizes the purpose of each set of experiments,

along with the corresponding databases and tools which have been used. The examples of

biometric sample images from the databases used in this work are presented in Figure 2.9.

(1) Morph face database: The Morph face database was collected over two sessions, and

in each session different number of face samples were collected. Further, there are different

number of samples available for each subject. Subjects with only one sample were not used

in our work. Still, more than 11,000 face images of 3,500 subjects were retained. A 5-

fold cross-validation protocol was used to reduce the potential over-fitting problem, and the

average accuracy is presented.

To investigate whether the proposed scheme is affected by unevenly distributed demo-

graphic labels, the subjects in each fold are intentionally organized. Table 2.2 gives an

example of how the gender labels are distributed in an arbitrary fold of the cross-validation

protocol. On the other hand, if the target is to evaluate the performance of combining

the race attribute with face matchers, the subjects would be re-organized according to the

distribution of the race attribute within each fold. Indeed, experimental results did not

demonstrate a significant effect associated with the imbalance issue.

As aforementioned, the proposed GAM scheme is a learning-based method, whose param-

eters highly related with the biometric matcher which is used for generating match scores.

Generally speaking, the COTS-B performs better than the COTS-A. However, the COTS-A

provides a built-in gender estimation module which can automatically extract the gender
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Table 2.2: A demonstration of how the demographic labels are distributed in one fold of
the 5-fold cross-validation protocol that was executed on the MOR face database. Subjects
are organized according to their gender information to retain class balance.

Female Male Total

Training Black 789 778 1,567 sub
Sets White 656 667 1,323 sub

Total 1,445 1,445 2,890 sub

Test Black 200 197 397 sub
Sets White 178 181 359 sub

Total 378 378 756 sub

information from the facial images which were collected for the recognition purpose. By

comparing with the gender labels manually annotated, the gender estimation results from

the COTS-A may consist of a mislabeling rate around 12.0%.

(2) LFW face database: The LFW database, which stands for Labeled Faces in the Wild,

is designed for studying the problem of unconstrained face recognition. The database consists

of more than 13,000 images of faces collected from the web, which are varied in many factors,

such as background, pose, illumination, etc.

In order to adhere to a publicly available benchmark, the design of our experiments

carefully followed the protocol defined under the category of “Image-Restricted, No Outside

Data Results” in LFW’s official website1. Regarding the 10-fold cross-validation as required

by this benchmark, 300 matched pairs (leading to genuine scores) and 300 mismatched pairs

(leading to impostor scores) are fixed in each fold. As noted, the sample size in each fold

is much smaller compared to the Morph face database. However, the experimental results,

where the manually annotated gender attribute is integrated with the match scores generated

using the COTS-B face matcher, indicate a significant improvement in the matching accuracy.

The LFW database does not include the ground truth of subjects’ demographic labels. As

a result, the gender attribute and race attribute of 1,665 individuals were labeled manually.

Both attributes are highly imbalanced across the classes. For example, there are 1,231 male

1http://vis-www.cs.umass.edu/lfw/results.html
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Table 2.3: A demonstration of how the demographic labels are distributed in one fold of
the 5-fold cross-validation which was performed using the WVU multimodal dataset. In
this example, the distribution of race labels is intentionally kept balanced for the two
categories (i.e., Caucasian and Non-Caucasian), while the gender distribution may not be
balanced at the same time.

Female Male Total

Training Caucasian 39 66 105 sub
Sets Non-Caucasian 22 88 110 sub

Total 61 154 215 sub

Test Caucasian 16 27 43 sub
Sets Non-Caucasian 12 30 42 sub

Total 28 57 85 sub

subjects and 434 female subjects, among which 953 individuals are labeled as “White” and

712 subjects are labeled as “Not White.” This manual annotation was compared with the

result from Kumar et al.’s automated estimation algorithm [54]. It is observed that around

10% of the subjects are differently labeled, which illustrates a practical scenario where the

mislabeling issue exists. As we show later, if the mislabeling rate is less than 20%, the

performance of the GAM fusion scheme is not adversely impacted.

(3) WVU multimodal dataset: In the WVU Multimodal database, each subject has

five samples of fingerprints corresponding to the left index (marked as “FL1”), five samples

of the fingerprint corresponding to left thumb (marked as “FL2”), and five frontal facial

images (marked as “Face”). The match scores of fingerprint samples are generated using a

commercial fingerprint matcher, COTS-C, while both COTS-A and COTS-B face matchers

are used to generate match scores from the facial images (as shown in Table. 2.4).

Both gender and race information is directly collected from each of 240 subjects during

the enrollment, whose gender is labeled as “Male” or “Female”, while the race information

is recorded as “Caucasian”, “Asian-Indian”, “Asian” or “Others”. The latter three categories

are combined and labeled as “Non-Caucasian” in this work. Table 2.3 demonstrates how the

demographic labels are distributed in one fold of the 5-fold cross-validation in this database.
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Table 2.4: A summary of the experimental design in this work. An extensive experiments
were carried on three biometric databases with three biometric modalities. The match
scores are generated using three commercial biometric matchers. The demographic
attributes are labelled by: i) a direct collection (marked as “D”) from subjects, ii) a manual
annotation (marked as “M”), or iii) a machine learning based gender estimation module
from COTS-A (marked as “L”).

Purpose Database Biometric Demographics Results
Matcher & Source

LFW COTS-B gender (M) Tab. 2.5
Accuracy Face race (M)

Morph COTS-B gender (M) Fig. 2.10
Face race (M) (a)&(b)

gender (M) Fig. 2.11
Morph COTS-B + race (D) (a)
Face gender (L) Tab.2.6

with 3 levels
Scalability WVU COTS-C gender (M) Fig. 2.11

FL1 + race (D) (b)
WVU COTS-B gender (L) Tab.2.6
Face with 3 levels

WVU COTS-A gender (L) Fig. 2.12
Face COTS-B gender (L) (a)&(b)

Predicting Morph COTS-A gender (L) Fig. 2.11
Face COTS-B gender (M) (a)
WVU COTS-C race (D) Tab. 2.7

No gender
gender (M)

Robustness Morph COTS-A 10% Mislabeled Tab. 2.8
Face gender (L)

20% Mislabeled
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2.5.2 Experimental Design

The experimental design consists of Four major parts:

1. Improvement in Matching Accuracy: This set of experiments are designed to investi-

gate the most fundamental question that whether the matching accuracy is benefited

by incorporating a single binary demographic attribute into the biometric matching

framework. The experimental results from the LFW face databases and the WVU

mutlimodal database, which consist of match scores from three different biometric

matchers, are exhibited to convey the benefits.

2. Fusion Scalability: The experiment is to investigate the scalability of the proposed

GAM scheme by combining multiple demographic attributes with match scores, simul-

taneously. The experimental results inspire us to predict the accuracy improvement in

advance by conducting a model diagnostic.

3. Model Diagnostic and Predictive Metric: The purpose of this experiment is to propose

a metric which can predict in advance if integrating match scores with particular

demographic information is beneficial in the context of a specific biometric matcher.

The predictive metric relies on the linear model diagnostic process, which is applicable

here because of certain inherent properties of the proposed GAM scheme.

4. Robustness in Inaccurate Labels: This set of experiments demonstrate that the pro-

posed GAM scheme is robust to missing or inaccurate demographic labels when these

labels are used in conjunction with biometric traits. Rather than only simulating the

“mislabeling cases” in the test set, a proportion of subjects in the training set are

assumed to contain “reversed” demographic labels. The purpose of this design is to

simulate the scenario where demographic labels are gleaned from biometric data using

automated machine learning schemes.
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Table 2.5: The matching accuracy of the proposed GAM fusion scheme on the LFW face
database. The true match rates (TMRs) and standard errors are reported under the
category of “Image-Restricted, No Outside Data” on the LFW face database. The
performance is compared with multiple existing algorithms reported under the same
protocol.

Algorithms Average TMR ± SE
MRF-Fusion-CSKDA [4] 0.9589± 0.0194

POP-PEP [58] 0.9110± 0.0147

Eigen-PEP [59] 0.8897± 0.0132

RSF [109] 0.8881± 0.0078

COTS-B (as baseline) 0.8777± 0.0052

COTS-B + gender via proposed GAM 0.9280± 0.0099

COTS-B + race via proposed GAM 0.8989± 0.0105

2.5.3 Experiment 1. Matching Accuracy

The main purpose of integrating demographic information with a biometric matching frame-

work is to improve the human recognition accuracy. The matching accuracy is commonly

compared via the true match rates (TMRs) and false match rates (FMRs) corresponding to

given operating thresholds (as shown in Eqn (2.1)).

Our experimental results on the LFW face database are reported in the last 3 rows of

Table 2.5. As can be seen here, without integrating any demographic attributes, the match

scores generated using the commercial face matcher COTS-B can provide a 87.78% true

match rate under the required protocol [44], which is comparable with the best existing

algorithms reported by the LFW official website (as shown in the Table 2.5. It is noted that

the benchmark of LFW required a strict 10-fold cross-validation, and all the FMRs reported

here are an average accuracy over all folds. Hence, it can be seen that the COTS-B matcher

performs stably over the 10 folds since the standard error of FMRs is small. The same match

scores from the COTS-B matcher are then transformed via the proposed GAM scheme, where

four gender-based transformation functions are learned from the training sets, respectively.

As shown in the 6th row of Table 2.5, the averaged TMR is increased to 92.80% at the

same FMR level. If the race attributes are integrated instead of gender, the TMR achieves
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(a) (b)

Figure 2.10: ROC curves before (marked as dashed lines) and after (marked as solid lines)
integrating demographic attributes with the match scores generated by the COTS-B face
matcher on the Morph face database. For instance, (a) face + gender, and (b) face + race

89.89%. Both cases demonstrate a significant improvement in the matching accuracy due to

the proposed fusion scheme.

The relatively high standard errors on TMRs (i.e., 0.0099 and 0.0105) suggest that in

certain folds of the cross-validation, this GAM-based combination has a comparable perfor-

mance with the top face matching algorithms which are listed in the first 4 rows of Table

2.5. This high variance among folds is mainly due to the limited training data in each fold.

In each fold, there are only 300 genuine scores and 300 impostor scores available for esti-

mating parameters of the GAM corresponding to that fold. Compared to linear models, the

training of additive models requires more samples. Moreover, folds in the cross-validation

are randomly selected without regarding how the demographic labels are distributed across

the classes. Suppose the training set in a fold only consists of few match scores conforming

to the scenario of “Female vs. Female”, then the subordinate transformation function cor-

responding to this scenario may have a very low degree of freedom, which leads to inferior

performance on the test set.

Figure 2.10 demonstrates the experimental results on the Morph face database. The

match scores are generated using the COTS-B face matcher. Both the gender and race

labels in Figure 2.10 are manually annotated. The ROCs convey the improvement in the
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Figure 2.11: ROCs for integrating multiple demographic attributes, simultaneously. The
left figure (a) is from the Morph face database, where the match scores are generated using
the COTS-B face matcher. The right figure (b) is from the WVU FL1 fingerprint database,
where the match scores are generated using the COTS-C fingerprint matcher.

matching accuracy after incorporating demographic attributes into the matching framework

via the proposed GAM scheme. For example, when the FMR was fixed at 0.01%, the TMRs

were increased from 88.2% to 92.7% by integrating the gender attribute, and to 91.7% by

integrating the race attribute.

As a summary, it is evident that the proposed GAM scheme can effectively combine the

demographic information with conventional biometric matcher and improve the verification

performance.

2.5.4 Experiment 2. Scalability to Multiple Attributes

So far, the gender and race are integrated with match scores via the proposed GAM scheme,

separately. Both attributes are binary factors with only two levels, which results in four dif-

ferent transformation functions learned during the training phase. In this set of experiments,

both two available demographic attributes are incorporated into the matching framework,

simultaneously, where more GAM-based transformation functions need to be learned for the

purpose of scalability investigation.

Take the Morph face database as an example. The subjects’ gender information is man-
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ually annotated as “Male” or “Female”, while the race attribute has labels like “White” and

“Non-White”. Hence, each face image could be labeled as one of these four demographic char-

acteristics: “Male&White”, “Female&White”, “Male&Non-White” and “Female&Non-White”.

After matching, there were 16 possible matching scenarios across the score matrix. Regard-

ing each scenario, the proposed GAM scheme learned one transformation function according

to the original match scores, xi, and the corresponding recognition decision, “y′i”.

Figure 2.11 exhibits the matching accuracies before and after combining demographic

attributes on the Morph face database and the WVU FL1 fingerprint database. The gender

and race were first integrated via the GAM scheme, separately and then, jointly. It can be

seen from both figures that, when the gender and race were separately combined with match

scores, either of them was beneficial to the matching accuracy (marked as green and blue

lines). When both attributes were jointly incorporated (marked as red lines), the matching

accuracy were significantly improved compared to the baseline where only original match

scores were used (marked as black lines). However, if we compared the combination of “

face + gender” with the combination of “face + gender + race” (i.e., blue lines vs. red

lines), the matching accuracy was not improved further by adding the race attribute. This

observation inspires us to investigate the reason why fusing more demographic attributes is

not guaranteed to improve the recognition accuracy via the GAM scheme (will be discussed

in section 2.5.5).

Moreover, the scalability of the proposed GAM fusion scheme was investigated by inte-

grating the demographic attribute with a “Uncertain” level. As mentioned, there is a built-in

module in the face matcher COTS-A which can estimate the gender from the face image us-

ing machine learning algorithms. Additional to the gender estimation result, the module

outputs a confidence value between 0 and 100 which indicates how much confidence to mak-

ing this estimation. In this set of experiments, the estimated gender labels were categorized

into 3 groups instead of binary classes. For instance, if a face image was estimated as “male”

or “female” with a confidence value below 65, it would be labeled as “Uncertain”. Then,
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Table 2.6: The true match rates (TMRs) on Morph face and WVU face databases before
and after integrating the gender attribute via the proposed GAM scheme. The match
scores are generated using the COTS-B face matcher. The gender label is from: i) a direct
collection (marked as “D”) from subjects, ii) a manual annotation (marked as “M”), or iii) a
built-in gender estimation module in COTS-A with binary outputs (marked as “2L”) or
3-level outputs (marked as “3L”).

Databases Gender FMR = 0.01% FMR = 0.1% FMR = 1%

no 88.2 94.0 96.8
Morph 2L 92.7 97.2 97.5

3L 92.9 97.2 97.5

no 96.6 98.4 99.0
WVU 2L 98.0 99.2 99.5

3L 97.9 99.2 99.4

the gender attribute with 3 levels (e.g., 32.9% “Male”, 29.4% “Female” and 37.7% “Uncer-

tain” for the Morph face database) was incorporated into the matching framework. There

were 9 subordinate transformation functions learned from the training phase, and Table 2.6

summarizes the matching accuracy on the Morph face database and WVU face database

before and after integrating this 3-level gender attribute via the proposed GAM scheme.

The corresponding TMRs are calculated when the FMRs are fixed at multiple levels, i.e.

FMR = 0.01%, 0.1%, 1%.

It is evident that the GAM-based incorporation of gender attribute increased the match-

ing accuracy on both databases, regardless of whether a demographic attribute was refined

into more levels. The refinement of gender attribute has realistic scenarios, such as mitigat-

ing the challenging issue about LBGT people. However, compared the results from 2-level

and 3-level gender attribute, the matching accuracy did not vary much for the proposed

fusion scheme. One possible reason may relate to the sources of gender labels used in this

experiment. It is noted that the “Uncertain” label relied on the confidence values provided

by the built-in module in COTS-A, rather than a realistic gender collection procedure.
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(a) (b)

Figure 2.12: ROC curves on the WVU face database before (dashed lines) and after (solid
lines) integrating the gender labels which are generated using a built-in gender estimation
module in COTS-A. In figure (a) and (b), the match scores are generated using the
COTS-A and COTS-B face matcher, separately.

2.5.5 Experiment 3. Predicting Gain

As discussed earlier about Figure 2.11, fusing more demographic attributes may not be

able to improve the recognition accuracy via the GAM scheme. Besides, one more failure

case is shown in Figure 2.12 (a), where the gender estimated by a built-in gender estimation

module of the COTS-A is integrated with the match scores from the COTS-A. Both two cases

demonstrate that it is not guaranteed that integrating demographic attributes can always

improve the recognition accuracy. Hence, it will be beneficial to propose a metric that be

able to predict whether the demographic labels can be used to the recognition accuracy of

the biometric matcher before running the experiments on the entire test dataset.

The parameters of the GAM model offer some insights into how such a prediction metric

can be derived. As a regression model, the GAM scheme provides certain diagnostic proce-

dure which can be implemented to analyze the covariate/factor effects and the interaction

effect between them.

The interaction effect is critical in the proposed GAM scheme. As expressed in the

Eqn 2.20, if the interaction term, γzizi, is not significantly different across the demographic

classes, it is not reasonable to have different transformation functions for each matching
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scenario and hence, the transformed scores cannot better separate the “Accept” and “Reject”

classes and provide a better global matching accuracy. According to the R package mgcv

[133] used for estimating the parameters in GAM, it provides a powerful tool which can

test the interaction effect: tensor product model, te(X, z). In this work, the tensor product

model is implemented as:

Formula:

y ~ s(X) + s(z) + te(X, z) ,

where s(X) and s(z) are isotropic smooths that produce spline functions, marginally. As

pointed by Wood [133], the tensor product model would be preferred for modelling the

interactions where very different degrees of smoothness are related to different levels in

a factor. In other words, a significant interaction effect via the tensor product model can

indicate the existence of significantly different score transformation functions among different

levels of a demographic factor. Because of the space limitation, more details about the test

of the interaction effect in a GAM scheme can be found in [133]. The package calculates

the approximate significance of the above three smooth terms, and the P-Value of te(X, z)

is reported in Table 2.7. Compared with the results in the 3rd and 4th column of Table 2.7,

it is noted that there is a clear connection between the performance improvement and the

diagnostics of the interaction effect in GAM. Take the 1st row of Table 2.7 as an example.

When the match scores from COTS-A were integrated with the race on the WVU face

database, a significant interaction effect (P-Value is 1.70e − 5) was observed in the learned

GAM model, which indicates that the parameters of the transformation functions among

different race levels are quite different with each others. Therefore, the matching accuracy

is increased (AUC was increased by 8.5%) when this learned GAM model is used for fusing

the race and match scores.

It is observed that both two failure cases at improving accuracy (the 2nd row and 5th

row) were using the gender labels automatically estimated via a gender estimation module in
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Table 2.7: The P-Values generated from a statistical analysis on interaction effects in the
GAM scheme. The highlighted P-Values denote the interaction effects between
demographic factors and match scores are significant at the significance level 0.001.

Database Biometric Matcher Gain Interaction
+ Demographics in AUC (P-Values)

WVU COTS-A + race (D) + 8.5% 1.70e-5 < 0.001

Face COTS-A + gender (L) + 0.4% 0.156 > 0.001

COTS-B + gender (L) + 3.4% 1.96e-4 < 0.001

Morph COTS-B + race (M) + 7.9% 1.07e-4 < 0.001

Face COTS-A + gender (L) + 0.3% 2.68 > 0.001

WVU COTS-C + gender (D) + 6.5% 2.03e-5 < 0.001

FL2 COTS-C + gender (L) + 6.3% 0.0001 < 0.001

COTS-A. Meanwhile, the match scores were also generated using the COTS-A. It is possible

that the internal design of COTS-A caused the both failure cases of integration. Suppose

the match scores from the COTS-A matcher has already reflected the gender estimation

result of its built-in module, then the proposed GAM scheme cannot further improve the

matching accuracy by adding the same estimated gender information. The observation

has a realistic scenario when any arbitrary vendor of a biometric matcher wondered if their

matching accuracy can be improved by integrating demographic attributes. They can simply

implement the proposed GAM scheme on a training set with the match scores from their

specific matcher, and the interaction effect in the learned GAM would indicate whether the

integration with particular demographic attributes is beneficial or not.

2.5.6 Experiment 4. Robustness to Mislabeling Problem

Table 2.8 demonstrates the verification performance of the proposed GAM scheme on the

Morph face database where 10% and 20% of the probe subjects’ demographic labels were in-

tentionally mislabeled. The performance is compared against the stratified matching scheme.

In the stratified matching scheme, the verification performance would decrease sharply if the

demographic labels of subjects are incorrect. For example, if the demographic label of the
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Figure 2.13: Transformation functions learned from the training set where the match scores
from COTS-B are integrated with the gender information automated estimated via the
gender estimation module in COTS-A. The automated gender estimation had an error rate
around 12.0%.
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Table 2.8: Matching accuracy of the proposed GAM when the demographic labels are
incorrect. The proportion of mislabeled data in indicated in the left-most column.

State of TMR (%) at FMR = 0.01%
gender Labels via Stratified Matching via GAM

from manual annotation 88.5 92.6
10% are mislabeled intentionally 61.8 (-26.7) 92.5 (-0.1)
20% are mislabeled intentionally 44.2 (-44.3) 90.6 (-2.0)
from an automated estimation 50.5 (-38.0) 92.2 (-0.4)

with ≈ 12.0% errors

probe and the claimed template sample are different, the stratified matching scheme is likely

to simply reject this probe without computing a match score. In that case, a mislabeled

subject has no opportunity to generate a match score that may be high enough to overcome

the threshold.

From the results in Table 2.8, it is noted that when the mislabeling rate is below 20%,

the recognition accuracy proposed GAM scheme won’t significantly decrease. In fact, when

the mislabeling rate is above 25% (not been shown here), the recognition accuracy of pro-

posed GAM scheme significantly decreases as well. Although the 25% mislabeling rate is

not tolerable, the error rates of current demographic estimation algorithms could be much

lower in practice. As pointed out by Sun et al.’s survey paper [119], although a number of

challenging issues continue to inhibit its full potential, the error rates of recent demographic

estimation algorithms can be controlled below 10%. Therefore, the proposed GAM provides

a sufficient robustness in situations where the demographic data are incorrect or unreliable,

especially for incorporating the demographic data generated by automated estimation algo-

rithms. Figure 2.13 illustrates the learning-based transformation functions that were learned

from the training set of the Morph face database with gender labels estimated by COTS-

A gender estimation module. It is noted that for two samples with different demographic

labels, their match score is generated and transformed into a new score according to the

matching scenario (e.g., “Male vs. Male”). Plus, if their original match score is high enough,

it can be retained at a relatively high value by the corresponding transformation function,
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which avoid a potential false non-match case.

2.6 Summary and Future Work

Demographic attributes (such as gender, age, race), are potential to improve the per-

formance of biometric matchers. While previous literature has studied the impact of these

demographic factors on recognition performance, this work develops a principled approach

to combine demographic data with biometric match scores that is applicable to the biometric

verification scenario.

In this chapter, the GAM approach uses spline functions to model the relationship be-

tween match scores and demographic factors via a learning-based process. Compared to

other fusion methods, the parameters of the transformation functions are optimized with re-

spect, the matching accuracy, which results in a consistently better recognition performance

(7.5% on average).

As a regression curve based approach, the resulting GAM framework can also be used to

predict in advance if fusing match scores with certain demographic attributes is beneficial

in the context of a particular biometric matcher. This advantage of GAM mitigates the

concern associated with the issue of “lack of distinctiveness” encountered by integrating

ancillary attributes which only contain a few discrete labels.

Moreover, experimental results conducted on databases where the demographic infor-

mation are extracted using erroneous automated estimation algorithms, indicate that the

resulting GAM framework pertain continues to be effective even in situations where the

demographic labels are incorrect or unreliable. The experimental results on the MORPH

face database and LFW face database suggest that the learned transformation functions are

useful until the mislabeled training samples becomes greater than 30% of the entire training

set. This suggests the reliability of the model even in situations when the damographic or

ancillary labels are incorrect.

As future work, we plan to pursue this learning-based combining scheme in the following
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ways:

• When the number of labels increases, the number of transformation functions in GAM

increases rapidly, which impacts the computational complexity of the algorithm. One

possible solution is to bring in a diagnostic procedure to the GAM learning stage. The

main effect and interaction effect between demographic attributes and match scores

need to be carefully analyzed before embodying them into the predictive model.

• When it comes to the fusion of match scores from multiple biometric traits with ancil-

lary factors, the interactions among all the covariates can be incorporated in the GAM

model.
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CHAPTER 3

COMBINING ANTI-SPOOFING MEASUREMENTS WITH BIOMETRIC
MATCH SCORES

3.1 Background

In the field of biometrics, a presentation attack occurs when an attacker presents a fake or

modified biometric trait to the sensor [113, 128]. For instance, it has been shown that some

fingerprint systems can be fooled by using a finger-like object fabricated using easily available

materials such as latex, glue and gelatin (as shown in Figure 1.3), with the fingerprint ridges

of another person inscribed on it [73].

Spoofing is an example of a presentation attack, where the adversary uses a fake or

altered biometric trait with the intention of masquerading as another individual [113]. Such

attacks pose a direct threat because they leverage commonly available materials and do not

require any knowledge of the internal functionality of the underlying biometric authentication

system. Fake biometric traits can also be used during the enrollment stage, especially in

mobile applications where the enrollment process is not carefully monitored [23].

Spoof detection refers to the ability of a system to correctly distinguish between a legiti-

mate, live human biometric presentation and spoof artifacts [129]. An anti-spoofing measure,

as the output of most anti-spoofing schemes discussed in the literature, is a numerical value

indicating the probability that the input biometric sample corresponds to a live human bio-

metric presentation (i.e., a liveness value) or a spoof artifact (i.e., a spoof score) [113]. In

this thesis, the spoof score, which indicates how likely a biometric sample is to be a spoof, is

preferred. Specifically, biometric samples that are assigned less spoof score are less likely to

be a spoof, and vice-versa.

The various anti-spoofing approaches proposed in the literature can be broadly classified

into sensor-based and image-based solutions [70, 71]. Image-based spoof detection algorithms
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Figure 3.1: Illustration of the fusion framework integrating match scores with quality
scores and anti-spoofing measures from two fingerprint samples, and rendering a final
accept/reject decision.

have the advantage over sensor-based systems of being (1) less expensive (as no extra device

is needed) and (2) less intrusive for the user [70, 79].

It must be noted that, as an inherent demand of system security, anti-spoofing methods

are designed to be incorporated into biometric systems [68, 70]. The major contributions

of this thesis is to design a novel fusion framework in which anti-spoofing approaches are

incorporated into conventional biometric systems using a Bayesian Belief Network (BBN)

framework. Additionally, the fusion framework is extended by incorporating image quality,

another ancillary attribute which is impacted by the choice of fabrication materials used, to

further improve anti-spoofing performance.

In this chapter, we first compare two commonly used fusion frameworks: sequential

and parallel frameworks. The experimental results from three different methods, which do

not explicitly model the interaction between match scores and anti-spoofing measures (i.e.,

spoof scores), are reported. Then, we propose a framework for combining match scores

and the corresponding spoof scores based on a Bayesian Belief Network (BBN) model that

assumes a certain influence of the spoof scores on match scores. Further, we investigate

if the proposed BBN framework can improve the verification performance by adding more

ancillary information, such as image quality of biometric samples. Figure 3.1 shows a block
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diagram where image quality, anti-spoofing measures and match scores extracted from a

pair of fingerprint images are integrated together in a fusion framework to render the final

accept/reject decision.

3.2 Related Work

3.2.1 Feature Extraction for Anti-Spoofing

Liveness Detection Competitions (LivDet), which are aimed at comparing biometric spoof

detection methodologies using a standardized testing protocol and large quantities of spoof

and live samples, have been hosted in 2009, 2011, 2013 and 2015. The competitions are

open to all academic and industrial institutions that have a software-based or system-based

biometric spoof detection solution. They are shown themselves to provide a crucial look at

the current state of the art in detection schemes [70, 85, 34, 98].

We take the reported fingerprint anti-spoofing algorithms in the Fingerprint LivDet as an

example to review the related literature (as seen in Figure 3.2). Image-based spoof detection

algorithms, in this work, have received more attention since they do not require the use

of additional hardware and are based only on the images that are subsequently used by

the fingerprint matcher. Generally speaking, existing fingerprint spoof detection algorithms

extract textural, coarseness, anatomical or physiological attributes from live and fake

fingerprint samples (as seen in Table 3.1).

In comparative evaluations on LivDet 2013 database [34], local textural features (such

as LBP, LPQ, and BSIF) have been shown to outperform other competing anti-spoofing

measures based on anatomical (such as pore detection [72]) and perspiration [2] as well as

the algorithms submitted to the second liveness detection competition (LivDet 2011) held

in 2011 whose error rates were in the range [20%, 40%].

Rattani and Poh [98] demonstrated the influence of fabrication materials on the obtained

anti-spoofing measures of the fake fingerprints. Specifically, the probability distribution of

the LBP-based anti-spoofing measures varied for five different fabrication materials: latex,
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Figure 3.2: Taxonomy of existing fingerprint anti-spoofing algorithms.

Table 3.1: Examples of features that have been proposed for fingerprint spoof detection. A
more detailed review can be found in [70].

Features Associated Studies

Textural

Nikam and Agarwal’s grey level co-occurence matrix (GLCM) [84]
Ghiani et al.’s Local phase quantization (LPQ) [36]
Ghiani et al.’s binary statistical image features (BSIF) [35]
Nikam and Agarwal’s local binary patterns (LBP) [83]
Zhang et al.’s Binary gabor pattern (BGP) [140]

Anatomical
Espinoza and Champod’s pore analysis for spoof detection [28]
Marcialis et al.’s statistics related to fingerprint pore analysis [72]
Tan and Schukers’s fusion of ridge signal & valley noise analysis [121]

Perspiration
Marasco and Sansone’s fusion of morphological and perspiration [67]
Abhyankar and Schukers’s perspiration analysis using wavelets [2]

Coarseness
Moon et al.’s coarseness analysis using noise residue [76]
Coli et al.’s power spectrum analysis [17]
Tan and Schukers’s wavelet based statistics [120]

60



woodglue, silicone, gelatin and ecoflex. Figure 3.3 show variation in the spoof scores of

live fingerprint sample (0.02), and the fake fingerprint samples fabricated using latex (0.22),

ecoflex (0.45) and woodglue (0.69) for a subject in LivDet 2013. These anti-spoofing measures

are obtained using LBP-based spoof detector [85]. Remind these studies mentioned above

did not combine spoof scores obtained by the spoof detector with the fingerprint verification

system.

(a) (b) (c) (d)

Figure 3.3: Example of fake fingerprint images fabrication using latex, ecoflex and
woodglue materials and the corresponding LBP-based anti-spoofing measures [85], in the
LivDet 2011 database.

3.2.2 Compromised Templates

As each biometric system operation involve template-query pair for the comparison and

decision making, eight possible events can occur during the system operation. In Table

3.2, these events are described based on the properties of template and query samples (i.e.,

Si = {L,S} for i ∈ {1, 2}), whether they are from the same (genuine) or different identity

(impostor) (K = {G, I}) and the desirable classification decisions (i.e., Accept or Reject).

These cases are listed in detail as follows:

• The first 2 cases (LLG and LLI) show the property of genuine and impostor access

considered in the traditional system. Among them LLG denote that template and

query samples are live and belong to the genuine subject (i.e., genuine access). LLG
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Table 3.2: Eight possible events during the biometric system operation for a pair of
enrolled and input fingerprint image. These events are distinguished by the input state of
the pair of fingerprint images, which can be live or spoof, and whether they are from the
claimed identity or not. The desirable classification decisions are provided as well.

Case Template Query Genuine or Summary Desirable
No. State State Impostor of State Classification
1 Live Live Genuine LLG Accept
2 Live Live Impostor LLI Reject
3 Live Spoof Genuine LSG Reject
4 Spoof Live Genuine SLG Reject
5 Spoof Spoof Genuine SSG Reject
6 Live Spoof Impostor LSI Reject
7 Spoof Live Impostor SLI Reject
8 Spoof Spoof Impostor SSI Reject

is the only desirable accept case. LLI denote the case that template and query sample

are live but belong to different subjects (impostor access).

• The case 3 (LSG) illustrate the most common case of spoofing attacks where fake probe

samples are compared against live enrollment sample of the claimed identity. These

fake probe samples are the replica of the original fingerprint of the claimed identity.

The cases 4 and 5 (SLG and SSG) are the most hazardous cases, where fake artifacts

may be used to enroll the identity. Further, these fake fingerprint may be delegated

to multiple individuals and then the system may be accessed using the live and fake

fingerprint sample of the claimed identity.

• The last three cases (LSI, SLI, and SSI) consider the possibility of matching live

and fake fingerprint samples belonging to different identities (LSI and SLI). The case

SSI consider the possibility of matching a pair of fake fingerprint images belonging to

different identities. All these cases do not adhere to the traditional definition of spoofing

where the fake artifact is the replica of the original fingerprint image of the claimed

identity. However, the likelihood of occurrence of these cases cannot be undermined.

Figures 3.4 show the example match score distributions of the LSG against LLG, from
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Figure 3.4: The match score distributions of the LSG and LLG state on samples acquired
using Biometrika sensor in the LivDet 2011 database.

live and fake fingerprint images acquired using Biometrika, from the LivDet 2011 database.

The high overlap in the match score distributions corresponding to LLG vs. LSG suggests

that fingerprints can be effectively spoofed to gain illegitimate access to the system. Further,

the match score distributions corresponding to the case SSG is quite similar to that of LLG

(not shown here). Furthermore, the match score distribution of LSI is similar to that of

LLI (can be seen in Figure 3.12). The same trend is observed for Italdata, Sagem, and

DigitalPersona sensors.

3.2.3 Performance Evaluation Metrics

When distinguishing spoofs from live samples, the LivDets proposed the following perfor-

mance metrics to evaluate the various anti-spoofing algorithms submitted to the competitions

[85, 34]:

• Ferrlive: Percentage of misclassified live fingerprints.
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• Ferrfake: Percentage of misclassified spoof fingerprints.

Further, EER of the spoof detection (indicated as S-EER) is the rate at which FerrLive is

equal to Ferrfake.

However, in this work, because the compromised templates are considered, the LivDet

proposed performance metrics cannot sufficiently evaluate all eight possible spoof detection

scenarios. In stead, we proposed the following evaluation metrics from both spoof detection

and global verification perspectives as:

• Global verification: When distinguishing genuine user from zero-effort impostors and

spoof attacks. Accordingly, the errors of the system can be described as follows:

– False Reject Rate (FRR): Proportion of samples belonging to class LLG that

are incorrectly classified as belonging to LLI, LSG, LSI, SLG, SLI, SSG, SSI.

Genuine Acceptance Rate (GAR) is calculated as 1 - FRR.

– False Acceptance Rate (FAR): Proportion of samples belonging to class LLI

that are incorrectly classified as belonging to LLG.

– Spoof False Acceptance Rate (SFAR): Proportion of samples belonging to

classes LSG, SLG and SSG that are incorrectly classified as belonging to class

LLG. Note that the classes LSI, SSI and SLI do not constitute spoof attacks

according to the basic definition, they may be considered to evaluate the overall

performance of the system.

• Spoof detection: When distinguishing spoofs from live samples.

– Live Detection Rate (LDR): Percentage of correctly detected live samples. It is

equivalent to 1 - Ferrlive for the cases where only the anti-spoofing performance

were evaluated.
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– Spoof Detection Rate (SDR): Percentage of correctly detected spoof samples. It is

equivalent to 1 - Ferrfake for the cases where only the anti-spoofing performance

were evaluated.

As a result, EER of the spoof detection (remained as S-EER) indicates the rate at

which LDR is equal to SDR.

As the fingerprint verification system operates under both zero-effort impostor and spoof

attacks, the overall error rates can be defined as follows:

• Genuine Acceptance Rate (GAR): Proportion of the LLG class that are incorrectly

classified as genuine and accepted by the system.

• Overall False Acceptance Rate (OFAR): Proportion of zero-effort impostor and spoof

samples that are incorrectly classified as the LLG class.

• Overall Equal Error Rate (O-EER): The rate at which OFAR equals 1 minus the

Genuine Acceptance Rate (GAR). The O-EER of each fusion scheme is shown in the

ROC curves.

Figure 3.13 shows the ROC Curves of the baseline performance of the fingerprint verifi-

cation system under zero-effort impostors and spoof attacks. It is notable that:

• The EER of the baseline systems under zero-effort impostors (i.e., LLG vs. LLI) are in

the range [2.2%, 5.1%] for the Biometrika, Italdata, Sagem and DigitalPersona sensors,

respectively.

• The EER for the cases when the spoof artifact is the replica of the original fingerprint

image of the claimed identity (i.e., LLG vs. LSG (SSG)) are in the range [29.4%,

54.1%] for the Biometrika, Italdata, Sagem and DigitalPersona sensors, respectively.

Thus, demonstrating the hazard of the spoof attacks to the biometric system security.
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• The case LLG vs. SSI obtain higher error rate than LLG vs. LSI, this is due to

variation in the quality of spoof samples. Consequently, leading to high error rate

when a pair of poor quality spoof images, belonging to different identities (SSI), are

matched. This experiment emphasizes the urgent need for enhancing the security of

the fingerprint verification system against spoof attacks.
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Figure 3.5: ROC Curves of the baseline performance of the fingerprint verification system
under zero-effort impostors and spoof attacks.
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3.3 Fusion Schemes: Sequential vs. Parallel

In this work, we assume that the matcher and spoof detector are “classifiers”. The inputs

to the matcher are two fingerprint samples (e.g., gallery and probe images). The output

is a match score that indicates the proximity of the two samples. A threshold is applied

to this match score to determine if the samples correspond to the same identity (“Genuine

(G)”) or different identities (“Impostor (I)”). Thus, the verification stage has two output

classes: G and I. The input to the spoof detector is a fingerprint sample (e.g., gallery or

probe image). The output is a spoof score indicating the degree of spoofness of the sample.

A threshold is applied to this spoof score to determine if the sample is “Live (L)” or “Spoof

(S)”. Since there are two samples, spoof detection stage has four output classes: LL, LS, SL,

SS. We consider various arrangements of the matcher and the spoof detector modules. Some

configurations may not be operationally tenable - however, these have been considered only

for completeness sake.

• In Method A, the classifier is invoked before the spoof detector as seen in Figure 3.6.

The matcher in the first stage is used to distinguish genuine from impostor based only

on match scores. In the spoof detection stage, there are two pairs of classifiers: one

pair that is invoked if the input samples are deemed to belong to the Genuine (G) class

and another that is invoked if they are deemed to belong to the Impostor (I) class.

This arrangement may be redundant (i.e., the use of four different spoof detectors may

not be necessary).

• In Method B, the spoof detector is invoked before the matcher as seen in Figure 3.7.

Depending upon the output of the two spoof detectors in the first stage (LL, LS, SL

or SS), one of four matchers in the verification stage is invoked. For example, the

first matcher (Classifier 3) operates only on gallery and probe samples that are both

classified as Live, while the fourth matcher (Classifier 6) operates only on the gallery

and probe samples that are both classified as Spoof.
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Figure 3.6: Architecture of Method A. Here, the matcher is invoked before the spoof
detector. The classifier in the first stage (classifier 1) is used to distinguish genuine from
impostor based only on match scores. There are two pairs of classifiers in the spoof
detection stage. One pair classifiers (classifier 2 and 3) that are invoked if the input
samples are deemed by the matcher to belong to the Genuine (G) class and another pair
(classifier 4 and 5) that is invoked if they are deemed to belong to the Impostor (I) class.
This arrangement may be redundant (i.e., the use of four different spoof detectors may not
be necessary).

In Method C (see Figure 3.8, the match score, and the spoof scores are provided as

inputs to a single classifier. This classifier has one of eight possible outputs: LLG, LSG,

SLG, SSG, LLI, LSI, SLI, SSI. It can be considered as a multi-label problem. For each class

label, the first two letters denote the input state of the samples (“Live” or “Spoof”), while

the third letter denotes whether the samples correspond to the Genuine or Impostor class.

In this method, no explicit assumption is made regarding a possible relationship between

spoof scores and match scores.

The three methods described above do not explicitly model the relationship between

spoof scores and match scores. A powerful framework for modeling causal relationships

among a set of variables X is offered by graphical models such as Bayesian Belief Networks.
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Figure 3.7: Architecture of Method B. Here, the spoof detector is invoked before the
matcher. Depending upon the output of classifier 1 and 2 (LL, LS, SL or SS), one of four
classifiers in the verification stage is invoked. For example, classifier 3 operates only on
input scores between gallery and probe samples that are both classified as Live, while
classifier 6 operates only on scores between gallery and probe samples that are both
classified as Spoof.

Figure 3.8: Architecture of Method C. Here, the classifier has three inputs: match score,
spoof scores of gallery sample and spoof scores of probe sample. All 3 inputs are used
simultaneously in order to determine the output class.
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3.4 Bayesian Belief Networks in Biometrics

Classification is a basic task in data analysis and pattern recognition that requires the

construction of a classifier, that is, a function that assigns a class label to instances described

by a set of attributes. The induction of classifiers from data sets of pre-classified instances

is a central problem in machine learning. Numerous approaches to this problem are based

on various functional representations such as decision trees, decision lists, neural networks,

decision graphs, and rules. One of the most effective classifiers, in the sense that its predictive

performance is competitive with state-of-the-art classifiers, is the so-called naive Bayesian

classifier described, for example, by Duda and Hart [24] and by Langley et al. [57]. This

classifier learns from training data the conditional probability of each node Xi given the class

label C as seen in Figure 3.9.

Classification is then done by applying Bayes rule to compute the probability of C given

the particular instance of X1, . . . , Xn, and then predicting the class with the highest pos-

terior probability. This computation is rendered feasible by making a strong independence

assumption: all the attributes Xi are conditionally independent given the value of the class

C. By independence we mean probabilistic independence, that is, A is independent of B

given C whenever P(A|B,C) = P(A|C) for all possible values of A, B and C, whenever

P (C) > 0.

Compared to the naïve Bayes classifier, the Bayesian belief network (BBN) classifier can

often offer better performance by avoiding unwarranted (by the data) assumptions about

independence. A BBN is a probabilistic graphical model that represents a set of random

variables and their conditional dependencies via a directed acyclic graph (DAG). For exam-

ple, a Bayesian network could represent the probabilistic relationships between diseases and

symptoms. Given symptoms, the network can be used to compute the probabilities of the

presence of various diseases. Formally, Bayesian networks are DAGs whose nodes represent

random variables in the Bayesian sense: they may be observable quantities, latent variables,

unknown parameters or hypotheses. Edges represent conditional dependencies; nodes that
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Figure 3.9: A simple example of Bayesian Network structure

are not connected (there is no path from one of the variables to the other in the Bayesian

belief network) represent variables that are conditionally independent of each other. Each

node is associated with a probability function that takes, as input, a particular set of val-

ues for the node’s parent variables, and gives (as output) the probability (or probability

distribution, if applicable) of the variable represented by the node.

Why BBN can provide a better performance than naïve Bayes classifier? It is mainly

because that using the independence statements encoded in the network, the joint distribu-

tion is uniquely determined by these local conditional distributions. Consider a finite set

U = {X1, . . . , Xn} of discrete random variables where each variable Xi may take on values

from a finite set. Formally, a BBN for U includes two components: the graph encoding the

independence assumptions, and the set of parameters that quantifies the network. The joint

probability function of U can be specified as:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|parents(Xi))

And from the configuration of Figure 3.9, the joint probability function is:

P (X1, . . . , Xn, C) = P (C)
n∏
i=1

P (Xi|C)
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In this section, we first introduce the existing BBNs which have been implemented in the

context of biometrics. Then, three extended BBN configurations are proposed and compared,

theoretically. The experimental results of these BBNs are presented in the later sections.

The notation used in this chapter is listed as follows:

Notation: Let the observation be x = [m, l1, l2, q1, q2] where m ∈ R is a fingerprint match

score, l1 ∈ R (l2 ∈ R) denotes liveness scores of the gallery sample (probe sample), and

q1 ∈ R (q2 ∈ R) is the quality value of the gallery sample (probe sample). Let K = {G, I}

denote two possible outputs: genuine (two fingerprint samples are from the same finger) and

impostor (two fingerprint samples are from different fingers). Note that K does not include

any assumptions about whether the pair of matched samples are live or fake. Further, let S1

and S2 denote the liveness states of the gallery and probe samples, which can be either Live

or Spoof, i.e., Si = {L,S} for i ∈ {1, 2}. Thus, the output of a fingerprint matcher working

in conjunction with a spoof detector can result in 8 possible events {S1,S2,K}: LLG, LLI,

LSG, LSI, SLG, SLI, SSG, SSI.

3.4.1 Existing Bayesian Belief Networks

In the context of biometrics, a conventional generative classifier attempts to model the

match scores (m) conditioned on the ground truth of the image pair being compared (K),

i.e., p(m|K). The BBN model representing this conventional classifier is denoted as K→ m.

This conventional classifier can be extended to include all eight events and can be effec-

tively realized using likelihood ratio-based test statistics as in Eqn (3.1). This conventional

classifier, referred to as BBN-M, is considered as one of the baseline classifiers in this work.

f llr =
p(LLG|m)

p(∼ LLG|m)
. (3.1)

Model (a) BBN-MQ: Figure 3.10 (a) show the BBN model proposed in [74] that combined

fingerprint match score (m) with the image quality (q1 and q2). The model is based on the
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following assumption: Assumption: Quality measure of a sample influences the corresponding

match score.

One advantage of BBN is to explicitly depict the dependence between predictor variables,

such as the match scores and the quality scores from two fingerprint samples, by the prior

knowledge or the causal understanding from a human perspective rather than just the data.

Take the quality scores of the gallery and probe sample (i.e., q1 and q2) as an example.

Firstly, the variable q1 and q2 are supposed to be independent (denoted as q1 ⊥⊥ q2), because

two fingerprint samples can be arbitrary. Moreover, they can be assumed to influence the

match score m (denoted as q1 → m and q2 → m) from a causal understanding, but they

are expected to be independent with the ground truth K. This is because the ground truth

of two fingerprint samples being from the same finger or from two different fingers cannot

be influenced by the quality scores of these samples 1 This advantage is further discussed

regarding the calculation of likelihood ratio-based test statistics below.

As a summary, the assumption is shown as qi → m for i ∈ {1, 2} in Figure 3.10 (a), and

the joint density represented by the BBN-MQ model can be directly calculated as,

p(K, q1, q2,m) = p(m|K, q1, q2)p(q1)p(q2)p(K). (3.2)

Since this model does not consider spoof attacks, the conditional probability of K = {G, I}

does not include the liveness states (S1 and S2). The final decision K = {G, I} is made

based on the likelihood ratio-based test statistic (f llr) as follows:

f llr =
p(K=G|m, q1, q2)
p(K=I|m, q1, q2)

=
p(K=G,m, q1, q2)
p(K=I,m, q1, q2)

(based on Eqn (3.2) and since K ⊥⊥ q1 ⊥⊥ q2)

=
p(K=G)p(m, q1, q2|K=G)

p(K=I)p(m, q1, q2|K=I)
. (3.3)

Assuming the prior probability of p(K = G) and p(G = I) are equal, the above f llr can

be obtained by estimating the joint probability of {m, q1, q2} given the target class K.

1Of course, there could be cases where a person’s fingerprint is consistently poor due to
implicit skin issues.
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(a) (b)

(c) (d)

Figure 3.10: Several possible BBNs for fusing fingerprint match scores with liveness and
quality scores. BBN-MQ and BBN-ML are based on previous literature, while BBN-MLQ
and BBN-MLQc are the proposed ones.

3.4.2 Proposed Bayesian Belief Networks

Model (b) BBN-ML: Figure 3.10 (b) show the BBN model proposed by Marasco et al. [68]

for combining match scores (m) with the corresponding liveness scores (l1 and l2). BBN-ML

is based on the following assumption:

Assumption: liveness scores of a sample influences the corresponding match score.

As mentioned before, for spoof detection, the variables S1 and S2 represent the ground

truth of the states of liveness of the two fingerprint samples. If Si is a spoof, then it will

likely result in a lower liveness value li. The BBN model representing the relationship
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between liveness state Si and the liveness scores li is denoted as K→ m and Si → li. This

assumption is shown as two directional arrows (i.e., li → m) in Figure 3.10 (b). The joint

densities represented by the BBN-ML model can be written as:

p(K,S1,S2,m, l1, l2)

= p(m|K, l1, l2)p(l1|S1)p(l2|S2)p(K)p(S1)p(S2). (3.4)

This BBN-ML representation is also referred to as Method D corresponding to the meth-

ods discussed in Section 3.3. For spoof detection, the variables S1 and S2 represent the

ground truth of the input states of two fingerprint samples. If Si is a spoofing, then it will

be more likely to obtain higher spoof scores li. The BBN model representing the relationship

between state Si and the anti-spoofing measure li are shown in Figure 3.10 (b). These basic

causal relationships are shown as K → m and Si → li in all the BBNs discussed in this

section.

For example, a match score between two samples of different individuals (K = 1) is likely

to be lower than that of samples coming from the same individual (K = 0). The variables

S0 and S1 represent the events related to the presence of a spoof biometric presentation

at enrollment and verification times, respectively. The variables l1 and l2 denote the spoof

scores of the gallery and probe samples, respectively. In the proposed method, we assume

that the spoof scores l1 and l2 influence the corresponding match score, m. The interactions

among the involved variables are based on the idea that the events S1, S2 and K influence

a common effect, i.e., the decision made by the biometric system, through variables l1, l2

and m. We study how the impact of the event K on the final decision depends on the other

events S1 and S2. This approach has one of eight possible outputs: LLG, LSG, SLG, SSG,

LLI, LSI, SLI, SSI.

The computational paradigm of Bayesian Networks is based on probabilistic evidence

where new evidence has to be propagated to other parts of the network. When performing

Bayesian inference, a combination of observed data with prior knowledge is required. In
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our study, we seek to integrate the biometric matcher, the spoof detector, and prior of

the three distributions P (K), P (S1) and P (S2). In the Bayesian Network model, all the

conditional probabilities are given and the goal is to determine the maximum posterior

value of the unknown variables in the network, through careful application of the Bayes

rule [25, 136]. The joint probability distribution, represented as P (K,S1, S2, x, l1, l2), is

factorized according to the structure of the network, as follows:

p(LLG|m, l1, l2)→
p(K=G,S1=L,S2=L,m, l1, l2)

p(m, l1, l2)

(from Eqn (3.4))

=
p(m|K, l1, l2)p(l1|S1)p(l2|S2)p(K)p(S1)p(S2)

p(m|l1, l2)p(l1, l2)

(since l1 ⊥⊥ l2)

=
p(S1)p(l1|S1)

p(l1)

p(S2)p(l2|S2)
p(l2)

p(K)p(m|K, l1, l2)
p(m|l1, l2)

(since K ⊥⊥ l1 and K ⊥⊥ l2)

→ p(S1=L|l1) p(S2=L|l2) p(K=G|m, l1, l2). (3.5)

The final decision is made using the likelihood ratio based test statistic (f llr) of the condi-

tional probability of eight possible events (classes) given the match score (m) and liveness

scores (l1 and l2). Taking the only acceptance case2 It must be noted that the above math-

ematical derivation can simplify the calculation of the likelihood ratio (f llr) between the

classes LLG and ∼ LLG.

The above equation shows that the proposed BBN can be considered as being composed

of three independent components. The first two terms indicate that both the gallery and

probe samples are classified as being live or spoof based only on their spoof scores. The

third term indicates that the input biometric presentation is classified as being genuine or

impostor based on both match scores and spoof scores.
2The acceptance case indicates the event where the two samples are live and they originate

from the same finger.
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As discussed earlier, the proposed Bayesian Belief Network (BBN) based fusion frame-

works overcomes multiple conventional directly modeled classifiers when combining anti-

spoofing measures with match scores. In the following two method, we extended the BBN-

ML with more input variables, which are the image quality measurements from the probe

sample and claimed template sample, referred to as BBN-MLQ and BBN-MLQc. Quality

Scores are commonly used for indicating how good the quality of a biometric sample is.

These scores could be numerical values or categorical values depending on the definitions

and metrics that are used. The lack of a uniform standard requires the design of a fusion

framework that is resilient to inaccurate or uncertain quality measures when integrating

them with biometric match scores. In this section, we proposed two different configurations

of BBN to combine the quality scores. Experimental results show that the BBN-MLQc

where clustering the continuous quality scores prior to fusion consistently obtain lower error

rates over existing frameworks from two perspectives: (i) anti-spoofing capability, and (ii)

verification of an identity.

Model (c) BBN-MLQ: Figure 3.10 (c) shows one of the proposed BBN model that combines

match scores with quality and liveness scores. This model is based on the following three

assumptions:

Assumption 1: Quality measure of a sample influences the corresponding match score, i.e.,

qi → m

Assumption 2: liveness scores of a sample influences the corresponding match score, i.e.,

li → m

Assumption 3: Quality measure of a sample influences the corresponding liveness scores, i.e.,

qi → li.
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The joint probabilities represented by BBN-MLQ are factorized as:

p(K,S1,S2,m, l1, l2, q1, q2)

= p(m|K, l1, l2, q1, q2)p(l1|S1, q1)p(l2|S2, q2)

p(K)p(S1)p(S2)p(q1)p(q2). (3.6)

BBN-MLQ can be realized using the likelihood ratio based test statistic (f llr) as follows:

f llr =
p(LLG|m, l1, l2, q1, q2)
p(∼ LLG|m, l1, l2, q1, q2)

(3.7)

(from Eqn (3.6) and since K ⊥⊥ S1,S2)

=
p(m|K=G, l1, l2, q1, q2)p(l1|S1=L, q1)p(l2|S2=L, q2)p(LLG)∑
∼LLG p(m|K, l1, l2, q1, q2)p(l1|S1, q1)p(l2|S2, q2)p(∼ LLG)

(since K ⊥⊥ l1, l2, q1, q2)

=
p(m, l1, l2, q1, q2|K=G)p(l1, q1|S1=L)p(l2, q2|S2=L)p(LLG)

p(m, l1, l2, q1, q2|K)p(l1, q1|S1)p(l2, q2|S2)p(∼ LLG)
.

The configuration of this BBN model can be considered as a direct extension of BBN-ML

by adding quality scores as new predictor variables. Although the inference of the model

is straightforward, the influence of latent factors has not been considered. As a result, we

propose another configuration of the BBN model to utilize the quality scores in a more

effective way.

Model (d) BBN-MLQc: Figure 3.10 (d) shows another configuration of the BBN model.

This model is based on the fact that a simpler BBN configuration with fewer assumptions is

more likely to generalize over unseen data. This is because additional assumptions of causal

relationships can lead to a more complex joint probability function (such as in Eqn (3.6))

which may be difficult to estimate and interpret. Therefore, this model incorporates quality

scores into the existing BBN-ML model without making any additional assumptions, while

the match scores and liveness scores are calibrated/normalized based on the quality measure.

The model is referred to as BBN-MLQc in this work, and the assumption made in this

model is as same as the one made in the BBN-ML model:
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Assumption: liveness scores of a sample influences the corresponding match score.

The conditional probability can be estimated in a manner similar to the BBN-ML

model:

p(K=G,S1=L,S2=L |mnorm, lnorm
1 , lnorm

2 ) (3.8)

= p(S1=L|lnorm
1 ) p(S2=L|lnorm

2 ) p(K=G|mnorm, lnorm
1 , lnorm

2 )

where mnorm and lnorm
i for i ∈ {1, 2} are the quality-normalized match scores and live-

ness scores, respectively. The proposed quality-based calibration is based on the following

observations:

1. Similar quality scores are likely to share a similar combination of factors, such as image

resolution, noise level, clarity of ridges/valley structures, or fabrication materials used.

Quality categorization can, therefore, capture these latent factors.

2. Certain liveness scores may result in higher spoof detection accuracy than others. In

such cases, the quality measure of the biometric samples can be ignored by the spoof

detector. This suggests the use of a piecewise function to calibrate liveness scores by

the quality measure only over certain ranges.

The rationale behind the proposed BBN-MLQc model is to categorize the quality mea-

sure into discrete states, and then apply different calibration functions for each quality based

on the spoof detection accuracy.

The categorization (or discretization) of continuous quality scores is achieved using the

Minimum Optimal Description Length (MODL) algorithm based on the minimal description

length (MDL) principle [9]. The class entropy of a set of quality scores q is defined as:

Ent(q) = −
Z∑
i=1

p(ci, q)log(p(ci, q))), (3.9)

where p(ci, q) is the proportion of samples lying in category ci, and Z is the total number of

categories. Suppose the first bin B1 is added as a cut-off point and the set q is partitioned
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Figure 3.11: Boxplot of quality scores and probability distribution of the liveness scores for
five different materials in the LivDet 2011 database when the Biometrika sensor is used.
A similar observation can be made for Italdata, Sagem and Digital sensors as well.

into subsets qc1 and qc2 , then the entropy of the partition is:

Ent(q, B1) =
|qc1 |
|q|

Ent(qc1) +
|qc2 |
|q|

Ent(qc2), (3.10)

where |q| denotes the number of samples in the set q. There could be Z − 1 bins. The

original MODL algorithm in [9] scores all possible categorization possibilities and selects the

one with the lowest entropy, and is also employed to decide the number of categories Z in

this work.

The quality categorization is followed by an exploration of optimal calibration functions

for liveness scores. There are multiple ways to transform the liveness scores using quality. In

this work, the basic Fisher’s linear discriminant analysis (LDA) is employed. The calibrated

liveness scores can be considered as a linear combination of variables (l, q).

lnormi =


li i ∈ c1,

f
ci
LDA(li, qi) i ∈ c{2,...Z}.

(3.11)

Basically, Eqn (3.11) indicates that if the samples lie in the quality state c1 - correspond-

ing to the quality state obtaining the highest spoof detection accuracy - the liveness scores
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do not need to be calibrated by any image quality. However, if the samples lie in other qual-

ity states, the liveness scores are calibrated using fciLDA, where ci denotes the corresponding

quality state. The output classes used for training the LDA functions are Live or Spoof,

i.e.., Si = {L,S} for i ∈ {1, 2}.

It should be noted that the above quality-based calibration is non-linear with respect to

the liveness scores, and the estimation of the joint probability function represented by the

proposed BBN is greatly simplified by the calibration process. In this chapter, we focus on

the configurations of multiple Bayesian Belief Networks. Practical scenarios of combining

quality states with conventional biometric systems can be found in Section 5.2.1.

3.5 Databases and Protocol

There are two major parts of experiments conducted on two database, separately. First,

the performance of the sequential methods (Method A and B), parallel methods (Method B

with options), and Bayesian Belief Network (Method D with options) was evaluated on a sub-

set of the CrossMatch database taken from the Fingerprint Liveness Detection Competition

2009 [34]. It is made up of live and spoof fingerprint samples imaged using a CrossMatch

optical scanner with a resolution factor of 500 dpi and an image size of 480x640 pixels.

Two spoof materials were considered in our experiments: gelatin and silicone. Match scores

were extracted using the VeriFinger SDK software by matching all pairs of images across

all subjects. The scores, therefore, correspond to four different matching scenarios: Live vs

Live, Live vs Spoof, Spoof vs Live, and Spoof vs Spoof. For each image, the spoof scores

was extracted by using an algorithm which combines morphological and perspiration-based

characteristics [34].

The verification performance of the fingerprint recognition system is analyzed using the

Receiving Operating Characteristic (ROC) curves. ROC curves are obtained for both spoof

materials under the four different matching scenarios (live-live, live-spoof, spoof-live and

spoof-spoof). On the CrossMatch database, the spoof scores seems to be better in detecting
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spoof samples made with gelatin and poor in detecting spoof samples made with silicone (as

shown in Figure 3.4. So the spoof detection has higher reliability in the case of gelatin and

lower reliability in the case of silicone.

Besides of the ROC curves, the comparison of four methods are conducted at a practical

operating threshold (as shown in Table 3.4). The sequential methods (Method A and Method

B) require a threshold, i.e., the classifiers seen in Figure 3.6 and Figure 3.7.are threshold-

based. In order to determine a practical operating threshold, a training set is needed for

each classifier (Biometric matchers and spoof detectors).

The training set is composed by randomly sampling the data set of subjects at 3 different

rates: 25%, 50% and 75%. In order to avoid overfitting the training sets, a 10-fold cross

validation is used. In each fold, the threshold that yields the minimum total error rates is

determined. In some cases, two or more thresholds may have the same minimum value. To

resolve such a tie, the threshold corresponding to the lowest FMR for biometric matchers

is selected. Once the threshold is determined for every training fold, the average threshold

of all 10 folds is used as the final threshold. The performance is then evaluated on all the

test folds using this average threshold. The evaluation of Method C was carried out by

implementing four different classifiers and choosing the one that resulted in the best perfor-

mance. Classifiers were trained at different rates (25%, 50% and 75%) as well. The Neural

Network (NN) presented the lowest FMR, compared to the Decision Tree (DT), the Naive

Bayes (NB) and the K Nearest Neighbor (KNN). For Method C, we report results obtained

by using the NN since it provides the highest accuracy. The NN method was then employed

in Method D as well, as an estimator to compute the conditional probability obtained by the

mathematical deviation expressed in Eqn. 3.5. The classifiers were implemented by using

the Matlab Version 7.6.0.324 (R2008a) software.

The second part of experimental analysis is conducted on the LivDet 2011 [134] database.

It consists of 1,000 live and 1,000 fake fingerprint samples in the training set, and the same

number of samples from different subjects in the test set. The spoof artifacts in the LivDet

82



2011 database are fabricated using five materials, viz., gelatine, silicone, woodglue, ecoflex,

and latex. For each material, 200 fingerprints were fabricated from 20 fingers using the

consensual method (i.e., with the consent and collaboration of the user). Both live fingers

and spoof artifacts were obtained using four different sensors, i.e., Biometrika, Italdata,

Sagem and DigitalPersona (as shown in table 3.3). In this part of experiments, the proposed

Bayesian Belief Networks, such as BBN-ML, BBN-MLQ and BBN-MLQc, are compared

according to the following perspectives:

1. Analysis of the match score distribution and baseline performance of the fingerprint

verification system under zero-effort impostors and spoof attacks: This experiment is

designed to demonstrate the hazard due to spoof attacks by performing comparative

analysis of the match score distribution and baseline performance of the system under

spoof attacks with respect to impostor access. In particular, the match score distribu-

tion and the baseline performance of the fingerprint verification system is assessed for

the following cases (a) LLG vs. LLI, (b) LLG vs. LSG, (c) LLG vs. SSG, (d) LLG vs.

LSI and (e) LLG vs. SSI.

2. A comparison of spoof detection performance of the fusion frameworks: This experi-

ment evaluate the spoof detection performance of the proposed BBN-MLQc and BBN-

MLQ. Comparative assessment is made with the existing BBN-ML and GMM-based

direct modelling scheme (DM-GMM) based on quality, liveness and match scores. The

spoof detection accuracy of these frameworks is estimated by calculating the propor-

tion of enrolled and input spoof images correctly classified into one of these classes i.e.,

LSG, SLG, SSG, LSI, SLI and SSI. Note that the spoof detection accuracy of these

frameworks will not be equal to that of the baseline spoof detection algorithm used

(LBP in this study), due to interaction of liveness scores with match score and quality

values in rendering the final classification. The aim is to validate the assumption that

appropriate modelling of relationship between quality and liveness score enhance the

83



spoof detection accuracy of the proposed models (BBN-MLQ and BBN-MLQc) over

existing frameworks and the baseline spoof detection algorithm used.

3. A comparison of performance of various frameworks against spoof attacks: This ex-

periment evaluate the performance of the proposed frameworks against spoof attacks.

The trained frameworks are evaluated against the events LSG, SLG and SSG against

LLG and the performance is reported. We considered only LSG, SLG and SSG against

LLG in this case, adhering to the basic definition of the spoofing attacks.

4. A comparison of overall performance of various frameworks: As these fusion frame-

works are developed to operate under both zero-effort impostors and spoof attacks.

This experiment evaluate the overall performance of the proposed frameworks against

all possible eight operations listed in Table 3.2, including also the cases when spoof

artifact other than those of the claimed identity is used to access the system (LSI, SLI

and SSI).

5. Robustness of the BBN models across fabrication materials: This experiment evaluate

the robustness of the proposed BBN-MLQ and BBN-MLQc on new fabrication ma-

terials. To this aim, these models are tested using spoofs generated using fabrication

materials not used during the training stage. The aim is to validate the assumption

that appropriate modelling of relationship between quality and liveness score also en-

hance the interoperability of the proposed models (BBN-MLQ and BBN-MLQc) across

fabrication materials over existing frameworks. This is due to accounting for the ma-

terial specific characteristics (i.e, change in the quality) of the fake fingerprint images

generated using different fabrication materials. Comparative assessment is made with

BBN-ML model that does not consider quality values.
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Table 3.3: Number of match scores, liveness scores and quality values corresponding to
different states based on 5-fold cross validation. These scores are used for used for training
and testing the fusion frameworks against spoof attacks.

Sensors No. of Samples Spoof Materials Scores
Training Test

Biometrika Live: 200 fingers (5 live samples each) Ecoflex, Gelatine, No. of match scores: ≈ 1, 600, 000 ≈ 400, 000
Spoof: 100 fingers (10 spoof samples each) Latex, Silgum No. of LLS: ≈ 1, 600 ≈ 400

Italdata Live: 200 fingers (5 live samples each) and WoodGlue No. of LFS and FLS: ≈ 2, 000 ≈ 500
Spoof: 100 fingers (10 spoof samples each) No. of FFS: ≈ 3, 600 ≈ 900

Digital Live: 200 fingers (5 live samples each) Gelatine, Latex, No. of LLD: ≈ 400, 000 ≈ 100, 000
Spoof: 100 fingers (10 spoof samples each) PlayDoh, Silicone, No. of LFD and SFD: ≈ 800, 000 ≈ 200, 000

Sagem Total 1000 live samples and WoodGlue No. of FFD: ≈ 400, 000 ≈ 100, 000
and 1000 spoof samples No. of liveness values and quality scores: 2,000

3.6 Experimental Results on LivDet 2009 Database

In order to compare the performance of different fusion frameworks in a practical scenario,

we report the error rates at specific operating points where all the four proposed methods have

comparable false acceptance error rates. In the case of Method C, since the false acceptance

obtained by the Neural Network was not comparable with the other three proposed methods,

we also report the error rates of the Full Bayesian classifier which showed a comparable

performance. The results are summarized in Table 3.4 and 3.5).

• Tables 3.4 and 3.5) indicate that the best verification performance is achieved by

Method D. This outcome suggests that combining anti-spoofing information with

match scores leads to a verification performance improvement compared to the case

where the spoof scores are not used (see the error rates of stage 1 of Method A). For

example, at a training rate of 25%, FMR is 0.11% for Method D and 0.18% when spoof

scores are not used.

• In the presence of a reliable anti-spoofing measure (see Table 3.5 which corresponds to

gelatin spoof), the best spoof detection performance is achieved by Method C, while

when dealing with a less reliable anti-spoofing measure (see Table 3.4 which corresponds

to silicone spoof) it is achieved by Method A.

• The best global performance is achieved by Method D. This result demonstrates that
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Table 3.4: Comparison of all the methods from verification, spoof detection and global
error perspective (silicone samples)

Verification Spoof Detection Global Error
Rates Method FAR FRR 1 - SDR 1 - LDR OFAR 1 - GAR
25% A 0.1752 5.2609 1.6190 12.4870 0.5428 13.7391

B 0.3228 5.4928 10.4675 12.4025 0.7014 14.8986
C(NN) 0.3360 10.1014 3.9093 12.7438 0.2529 25.6522
C(FB) 0.6245 5.0000 12.0664 12.4756 0.5052 13.3913
D(NN) 0.0020 5.5275 5.6879 12.5440 0.2478 15.2899
D(FB) 0.1086 5.0580 5.2720 12.5142 0.3262 14.7246

50% A 0.2342 5.0217 1.4669 12.4918 0.5026 14.4348
B 0.5474 5.0435 10.2243 12.3301 0.8619 14.3478

C(NN) 0.3449 9.5000 3.7694 12.7703 0.2169 26.3478
C(FB) 0.6374 4.9565 12.0126 12.4711 0.4797 13.1304
D(NN) 0.0020 5.1870 5.2968 12.5576 0.2408 15.6957
D(FB) 0.1030 5.0435 5.2439 12.5158 0.3077 14.2174

75% A 0.1443 4.7826 0.6604 12.5168 0.3172 18.7826
B 0.4822 4.7826 7.3144 12.3459 0.6899 17.0435

C(NN) 0.3597 11.4348 4.0000 12.9944 0.1918 30.0782
C(FB) 0.5929 4.4783 11.8765 12.4824 0.5351 14.4348
D(NN) 0.0020 5.0652 5.3384 12.5610 0.2217 19.3043
D(FB) 0.1119 4.5652 5.3510 12.5011 0.3130 18.0435

the configuration of the Bayesian Network is effective and the assumption that spoof

scores influence match scores works well. Lowest global error rates are observed in the

presence of a reliable anti-spoofing measurement (see Table 3.5).

According to the above observation, the design of Bayesian Belief Network (BBN) is

proposed to further improve the overall security performance. As a graphical model based

parallel scheme, the proposed BBN does not overwhelm other parallel classifiers (e.g., neu-

ral network and decision tree) from the spoof detection perspective. However, the overall

matching accuracy of the BBN is consistently better than other classifiers. One possible

reason is that the configuration of BBN assumes that the match score would not affect the

spoof detection accuracy. Compared to the equivalence assumption of match scores and

anti-spoofing measures which is used in other classifiers, the BBN assumes a one-way influ-

ence which is more practical and in accordance with a causal conception. This observation
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Table 3.5: Comparison of all the methods from verification, spoof detection and global
error perspective (gelatin samples)

Verification Spoof Detection Global Error
Rates Method FAR FRR 1 - SDR 1 - CDR OFAR 1 - GAR
25% A 0.1913 15.7073 0.1943 12.4577 0.0453 4.4228

B 0.2179 16.0081 0.5687 12.4577 0.0469 4.5854
C(NN) 0.0392 26.8943 0.6475 12.5021 0.0744 13.1707
C(FB) 0.2646 15.2846 0.0082 12.4369 0.0862 5.3089
D(NN) 0.0112 16.6341 0.3331 12.4786 0.0056 5.7236
D(FB) 0.1420 15.6016 0.4852 12.4338 0.0396 4.6179

50% A 0.2506 15.9146 0.1844 12.4550 0.0512 4.4878
B 0.1762 16.4634 0.6520 12.4595 0.0467 4.4878

C(NN) 0.4021 26.9390 1.3361 12.7726 0.0512 19.3845
C(FB) 0.2712 15.5366 0.0020 12.4507 0.0563 5.8537
D(NN) 0.0110 16.4146 0.3200 12.4750 0.0081 4.6341
D(FB) 0.0893 15.8659 0.3161 12.4340 0.0459 4.1951

75% A 0.1884 15.6341 0.1137 12.4614 0.0419 4.4878
B 0.2232 15.5366 0.5719 12.4614 0.0419 4.4878

C(NN) 0.4018 28.1707 1.6498 12.7726 0.0391 21.4533
C(FB) 0.2841 15.7561 0.0003 12.4486 0.0616 6.0488
D(NN) 0.0098 16.9512 0.3017 12.4744 0.0054 4.2927
D(FB) 0.1171 15.1463 0.3062 12.4322 0.0289 4.2927

inspires us to implementing the similar causal assumptions in the future work on combining

ancillary factors which do not have an evident relationship with biometric match scores.

3.7 Experimental Results on LivDet 2011 Database

3.7.1 EXP1. Baseline

Figures 3.12 show the example match score distributions of the LSG, SSG, LSI and LLI

against LLG, from live and fake fingerprint images acquired using Biometrika, from the

LivDet 2011 database. The high overlap in the match score distributions corresponding to

LLG vs. LSG suggest that fingerprints can be effectively spoofed to gain illegitimate access

to the system. Further, the match score distributions corresponding to the case SSG is quite

similar to that of LLG. Furthermore, the match score distribution of LSI is similar to that

of LLI. The same trend is observed for Italdata, Sagem and DigitalPersona sensors.
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Figure3.13 shows the ROC Curves of the baseline performance of the fingerprint verifi-

cation system under zero-effort impostors and spoof attacks. It can be seen that:

• The EER of the baseline systems under zero-effort impostors (i.e., LLG vs. LLI) are in

the range [2.2%, 5.1%] for the Biometrika, Italdata, Sagem and DigitalPersona sensors,

respectively.

• The EER of the fingerprint verification system under spoof attacks, for the cases when

the spoof artifact is the replica of the original fingerprint image of the claimed identity

(i.e., LLG vs. LSG (SSG)) are in the range [29.4%, 54.1%] for the Biometrika, Italdata,

Sagem and DigitalPersona sensors, respectively. Thus, demonstrating the hazard of

the spoof attacks to the biometric system security.

• The case LLG vs. SSI obtain higher error rate than LLG vs. LSI, this is due to

variation in the quality of spoof samples. Consequently, leading to high error rate

when a pair of poor quality spoof images, belonging to different identities (SSI), are

matched. This experiment emphasize on the urgent need of enhancing the security of

the fingerprint verification system against spoof attacks.

3.7.2 EXP2. Performance Under Zero-Effort Impostors

Figure 3.14 show the ROC curves for the spoof detection accuracy of the BBN-MLQc, BBN-

MLQ, BBN-ML, BBN-MQ and GMM-based direct modelling scheme (DM-GMM). Com-

parative assessment is made with BBN-M based only on match scores. It can be seen that

the proposed BBN-MLQ and BBN-MLQc obtained better spoof detection performance in

comparison to the existing frameworks and the baseline LBP-based anti-spoofing algorithm.

This is due to appropriate modelling of quality with the liveness score. Further, BBN-MLQc

always outperformed BBN-MLQ. The BBN-M and BBN-MQ do not incorporate the liveness

score, hence, they are not evaluated in this experiment.

It can be seen that (Figure 3.14)
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Figure 3.12: The match score distributions of (a) LSG vs. LLG, (b) SSG vs. LLG, (c) LSI
vs. LLG and (d) LLI vs. LLG on samples acquired using Biometrika sensor in the LivDet
2011 database.
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Figure 3.13: ROC Curves of the baseline performance of the fingerprint verification system
under zero-effort impostors and spoof attacks.
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Figure 3.14: Spoof detection performance of the various BBN frameworks on the LivDet
2011 database. Note that the spoof detection accuracy of these frameworks is not the same
as that of the LBP-based spoof detection algorithm used. This is because the interaction of
liveness scores with match score and quality is taken into account when rendering the final
decision. The results are from different sensors as: (a) Biometric, (b) Italdata, (c) Sagem
and (d) Digital.
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• The EER of the BBN-MLQc reduced by 24.2%, 36.8%, 35.7% and 36.2% (range

[24.2%,36.8%]) over the baseline LBP-based spoof detection scheme for the Biometrika,

Italdata, Sagem and DigitalPersona sensors, respectively. For instance, EER of the

BBN-MLQc is 13.9% whereas the EER of the spoof detection is 22.0% for the Italdata

sensor. The spoof detection rate (SDR) increased from 56% to 79% using BBN-MLQc

over LBP-based spoof detection at a fixed 99.9% live detection rate (LDR).

• Further, EER of the BBN-MLQ reduced by 20.8%, 36.8%, 32.1% and 22.8% (range

[20.8%,36.8%]) over the baseline LBP-based spoof detection scheme for all the four

sensors, respectively.

• DM-GMM always outperformed BBN-ML because BBN-ML, this is due to considera-

tion of quality values in DM-GMM. The spoof detection accuracy of the BBN-MLQ is

slightly better than DM-GMM.

Figure 3.15 shows the variation in the quality and variation in the distribution of the

liveness score as a function of the five fabrication materials used to generate spoofs in LivDet

2011 (Biometrika sensor). This experiment show the efficacy of normalizing the liveness score

based on the quality of the fake fingerprint samples in the proposed models. Thus, reducing

the impact of variation in the quality of the fake fabrication materials on the performance

of the spoof detection.

Further, Figure 3.16 show the liveness score before and after adaptation using the trans-

formation function of BBN-MLQc (as in Eqn. (5.1). Specifically, liveness values of the sam-

ples corresponding to normalized quality range [0.3,0.5] are transformed. As a consequence,

liveness values of the live samples are shifted towards one and those of spoof samples are

shifted towards zero, leading to better spoof detection capability of BBN-MLQc over other

frameworks.
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Figure 3.15: Boxplot of quality values and probability distribution of the liveness score for
five different materials in Biometrika in the LivDet 2011 database. The same observation
is made for Italdata, Sagem and Digital sensors as well.

3.7.3 EXP3. Spoof Detection Accuracy

This experiment evaluates the performance of the proposed frameworks against spoof at-

tacks. As discussed earlier, Live Detection Rate (LDR) indicates the percentage of correctly

detected live samples, while Spoof Detection Rate (SDR) indicates the percentage of correctly

detected spoof samples. EER of the spoof detection (remained as S-EER) indicates the rate

at which LDR is equal to SDR.

Table 5.1 shows the spoof detection performance of the BBN-MLQc, BBN-MLQ, BBN-

ML, BBN-MQ and GMM-based direct modelling scheme (DM-GMM) on four sensors.

It can be seen that the proposed BBN-MLQ and BBN-MLQc obtained better spoof

detection performance in comparison to the existing frameworks and the baseline LBP-based

spoof detector. This is due to appropriate modeling of quality with the liveness scores.

• When spoof detection error (1 - SDR) was fixed at 1%, the live detection rate (LDR) of

the BBN-MLQc is increased by 28.0%, 41.0%, 19.3% and 13.5% over the baseline LBP-

based spoof detection scheme for the Biometrika, Italdata, DigitalPersona and Sagem

sensors, respectively. It demonstrates the advantage of incorporating the quality of
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Figure 3.16: Scatter plot and histogram of the liveness scores, before and after adaptation
using the transformation function used in BBN-MLQc. It can be noticed that liveness
values of the live samples are shifted towards one and those of spoof samples are shifted
towards zero, leading to better spoof detection capability of BBN-MLQc over other
frameworks.
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images for spoof detection.

• The spoof detection error (1 - SDR) of the BBN-MLQc is significantly lower than the

DM-GMM direct modelling scheme. However, the BBN-MLQ is only slightly better

than DM-GMM. It indicates that the benefits of the graphical modelling algorithm

depends on the configuration of networks.

• Furthermore, when the spoof detection error (1 - SDR) was fixed at 1%, the live

detection rate (LDR) of the BBN-MLQc model increased by 24.8%, 19.8%, 14.1%

and 9.0% over the existing BBN-ML model, although both of them share the same

causal assumptions. It demonstrates the benefits of utilizing the proposed quality-

based calibration scheme.

The ROC curves of spoof detection performance on data from the Biometrika and Italdata

sensors are shown in Figure 3.14. The above observations are consistent across all the four

sensors.

3.7.4 EXP4. Overall Recognition Accuracy

This experiment evaluates the overall performance of the proposed BBN-MLQc and BBN-

MLQ frameworks under all possible spoof attack scenarios. Comparative assessment is made

with the existing Bayesian Networks and GMM-based direct modelling scheme (DM-GMM).

As the fingerprint verification system operates under both zero-effort impostor and spoof

attacks, the overall performance rates can be defined as follows:

• Genuine Acceptance Rate (GAR): Proportion of the LLG class that are incorrectly

classified as genuine and accepted by the system.

• Overall False Acceptance Rate (OFAR): Proportion of zero-effort impostor and spoof

samples that are incorrectly classified as the LLG class.
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BBN−MLQc (O−EER = 3.5%)

BBN−MLQ (O−EER = 3.7%)
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Figure 3.17: Performance of the various frameworks when all eight events are considered
for four sensors as (a) Biometrika, (b) Italdata, (c) Digital and (d) Sagem. It can be seen
that BBN-MLQc outperforms all other frameworks.

• Overall Equal Error Rate (O-EER): The rate at which OFAR equals 1 minus the

Genuine Acceptance Rate (GAR). The O-EER of each fusion scheme is shown in the

ROC curves.

Table 5.2 demonstrates that BBN-MLQc performs much better than all the existing

frameworks and the baseline BBN-M. This is due to its high spoof detection capability and

better performance under spoof attacks (see Experiment 1). The ROC curves of each fusion
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scheme are shown in Figure 3.17.

• At a fixed 1% OFAR, the GAR of the BBN-MLQc increased by 17.0%, 5.77%, 9.49%

and 6.66% (range [5.77%, 17.0%]) over the BBN-M for the Biometrika, Italdata, Sagem

and DigitalPersona sensors, respectively. For instance, the GAR of the BBN-MLQc is

95.5% whereas GAR of the BBN-M is 81.7% at a 1% OFAR for the Biometrika sensor.

• At a fixed 1% OFAR, the GAR of the BBN-MLQ increased by 16.5%, 5.13%, 9.03%

and 6.02% (range [16.5%,5.13%]) over the BBN-M for all the four sensors, respectively.

The GARs of the BBN-ML increased in the range [13.7%,5.17%], and are similar to the

GARs of the DM-GMM that increased in the range [13.7%,5.14%]). Further, BBN-MQ

performed just a little better than BBN-M by 1.47%, 0.22%, 0.14% and 0.13% (range

[1.47%,0.13%]), respectively.

3.7.5 EXP5. Performance Across Fabrication Materials

Figure 3.18 show the performance of the BBN-MLQc and BBN-MLQ in comparison to BBN-

ML across fabrication materials for the Biometrika sensor. These models are trained using

a single kind of material say Latex and tested on the rest four materials say Gelatin, La-

tex, EcoFlex, Silgum and WoodGlue. It can be seen that performance of all the frameworks

dropped significantly across materials. This is due to different characteristics of different fab-

rication materials. However, the proposed BBN-MLQc and BBN-MLQ always outperformed

BBN-ML.

It can be seen that (Figure 3.18)

• The EER of the BBN-MLQc reduced by 41.4%, 22.6%, 71.9%, 39.4% and 41.4% over

BBN-ML when trained using latex, gelatine, ecoflex, silgum and woodglue, respectively,

for the Biometrika sensor.

• Further, The EER of the BBN-MLQ reduced by 34.3%, 5.7%, 17.5%, 2.6% and 33.9%

over BBN-ML when trained using latex, gelatine, ecoflex, silgum and woodglue, re-
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BBN−MLQ −EcoFlex (O−EER = 25.3%)

BBN−ML −EcoFlex (O−EER = 30.7%)

BBN−MLQc (O−EER = 3.4%) 

BBN−MLQ (O−EER = 3.6%)

BBN−ML (O−EER = 4.5%)

(c)

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

Overall False Acceptance Rate [%]

G
e
n

u
in

e
 A

c
c
e
p
ta

n
c
e

 R
a
te

 [
%

]

 

 

BBN−MLQc −Silgum (O−EER = 25.5%)
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(d)

Figure 3.18: Evaluation of the BBN-MLQ and BBN-MLQc across fabrication materials
trained on only (a) Latex, (b) Gelatin, (c) EcoFlex and (d) Silgum tested on rest other four
materials for the Biometrika sensor.

spectively. However, the drop is the performance is significant in this experiment. For

instance, EER of the BBN-MLQc increased from 3.4% to 25.5% when trained using

all the available materials over the one trained using only latex. This is because of the

worst case assumption of training using single kind of material.

The same observation is made for different combination of one, two and three training

materials for Italdata, Sagem and Digital sensor.
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BBN−MLQc −EcoFlex+Latex+Gelatine (O−EER = 4.5%)

BBN−MLQ −EcoFlex+Latex+Gelatine (O−EER = 5.9%) 

BBN−ML −EcoFlex+Latex+Gelatine (O−EER = 8.7%)

BBN−MLQc (O−EER = 3.4%)

BBN−MLQ (O−EER = 3.6%)
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(b)

Figure 3.19: Evaluation of the BBN-MLQ and BBN-MLQc across fabrication materials
trained using combination of (a) EcoFlex+ Latex and (b) EcoFlex+ Latex+ Gelatin and
tested on rest other three and two materials, respectively, for the Biometrika sensor as an
example.

3.7.6 EXP6. BBN-Based Validation

The assumptions in the existing and proposed BBN models are statistically validated us-

ing Structural equation modeling (SEM). Structural equation modeling (SEM) is a causal

modeling approach that combine cause−effect information with statistical data to provide

a quantitative assessment of relationships among the studied variables. If the relationships

are significant, the theoretical construction is considered valid and can be used to provide

guidelines for the application of the model in practice. Druzdzel and Simon3examined the

conditions under which one can reasonably interpret the structure of a Bayesian network as

a causal graph of the system. The authors also proposed a method, referred to as causal

ordering, to link BBN to structural equation modeling (SEM) in order to test the causal

relationships between variables.

Basically, the proposed causal ordering method is a mechanical procedure that trans-

form the dependency structure of an acyclicity causal graph (such as BBN) into a set of

3Marek Druzdzel and Herbert Simon, “Causality in Bayesian Belief Networks”, The Ninth
Annual Conference on Uncertainty in Artificial Intelligence, 1993, page 3–11
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(a) (b) (c)

Figure 3.20: Structural equations associated with the BBN-ML model as an example.

simultaneous equations. After the set of equations are obtained for a particular BBN, it is

straightforward to build an equation model and test the goodness-of-fit using existing SEM

software or packages. Next, the procedure of causal ordering and equation extraction is

briefly described as follows:

1. Let B be a BBN model. The acyclicity assumption in a causal structure of B ensure

that there exists an equation model S, which involves all variables in B, and the joint

probability functions from B and S are equivalent with respect to all variables.

2. For a structural equation model, a mechanism (M) can be described as:

FM (x1, x2, . . . , xn, ε) = 0

The presence of a variable xi means that the system’s element that is denoted by xi

directly participates in the mechanism M . The structural relationship of a equation

model S with n simultaneous structural equations ε1, ε2, . . . εn can be denoted by a

matrix with X and zero entries. As an example, Figure 3.20 shows the structural

equations and matrix (with an entry (marked with X corresponding to each variable

and the relationship between variables) associated with BBN-ML.

3. The causal ordering theorem also states that, the structural model S reflects the causal

structure of a Bayesian Belief Network B if and only if (1) each node of B and all its
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direct predecessors describe variables involved in a separate mechanism in the system

and (2) each node with no predecessors represent an exogenous variable.

In this work, set of structural equations are retrieved for each BBN model the above

mentioned approach, and then input to a R package called “SEM” to obtain the goodness-

of-fit. The following is an example of the obtained outputs on testing the BBN-ML model

using R package called “SEM”.

Model Chisquare = 117.30

Df = 2 Pr(>Chisq) = 0.9811e-33

Chisquare (null model) = 323.03 Df = 12

Goodness-of-fit index = 0.9521

The goodness-of-fit value is calculated using chi-square test, which assumes that the

ratio between the variance from the proposed model with observations, and the variance

from the theoretical saturated model follows a chi-square distribution with a certain degree

of freedom. Recall that BBN with fewer assumptions and simpler configurations have higher

goodness-of-fit. Note that even if the goodness-of-fit value is high, it can only concluded

that the model fits the training data and cannot be used to predict the performance of the

trained BBN.
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Table 3.6: Spoof detection performance of the various BBN frameworks on the LivDet 2011 database.

Various Biometrika Italdata Digital Sagem
Frameworks CDR at CDR at CDR at CDR at CDR at CDR at CDR at CDR at

1% 1- SDR 10% 1- SDR 1% 1- SDR 10% 1- SDR 1% 1- SDR 10% 1- SDR 1% 1- SDR 10% 1- SDR
BBN-MLQc 70.1 91.1 52.6 84.8 81.2 95.8 85.6 97.2
BBN-MLQ 62.3 91.1 49.8 83.2 77.1 95.8 84.1 97.2
BBN-ML 45.3 80.3 34.1 67.8 67.1 91.4 76.6 92.5
DM-GMM 61.7 91.0 46.0 82.1 75.3 93.3 83.0 95.6

Spoof Detector 42.0 80.0 22.9 66.9 61.9 88.0 72.1 92.5

Table 3.7: Performance of the various frameworks when all eight events are considered for the Biometrika and Italdata
sensors. BBN-MLQc is seen to outperform all other frameworks.

Various Biometrika Italdata Digital Sagem
Frameworks GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at

OFAR = 1% OFAR = 5% OFAR = 1% OFAR = 5% OFAR = 1% OFAR = 5% OFAR = 1% OFAR = 5%
BBN-MLQc 80.5 88.3 72.5 89.0 84.8 88.6 75.3 88.3
BBN-MLQ 75.6 85.2 72.1 88.6 83.0 87.6 72.3 87.2
BBN-ML 74.2 86.7 72.5 88.7 83.0 87.7 73.3 87.4
BBN-MQ 77.9 85.5 72.0 88.2 77.5 87.1 68.1 84.4
BBN-M 76.7 85.1 71.8 88.1 77.5 86.9 68.1 83.5

DM-GMM 79.8 87.1 72.5 89.0 82.9 87.5 72.5 87.4
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3.8 Summary and Future Work

While the primary purpose of a biometric recognition system is to ensure a reliable and

accurate user authentication, the security of the recognition system itself can be jeopardized

by spoof attacks. Anti-spoofing approaches, although is still under developing, are designed

for incorporation with biometric systems to increase the security with an inherent demand.

In this chapter, we firstly investigate two fundamental combining scheme, sequential and

parallel schemes, for combining anti-spoofing measures with biometric match scores. The

experimental results on two public-domain LivDet databases (2009 and 2011) show that the

parallel scheme overwhelms the sequential scheme from both the spoof detection perspective

and overall security perspective. It also evident the potential that anti-spoofing measures

can improve the human recognition performance by combining with biometric traits.

It is notable that this work also presents a novel viewpoint on the attacking scenario

by considering compromising templates. The distorted distributions of match scores clearly

demonstrate the risk if the enrolled templates are spoofed. Additionally, we point out that

from a security perspective, the ability of locating the potentially aimed templates of a spoof

attack is essential if the anti-spoofing algorithms are still under developing and erroneous.

According to the above observation, the design of Bayesian Belief Network (BBN) is

proposed to further improve the overall security performance. As a graphical model based

parallel scheme, the proposed BBN does not overwhelm other parallel classifiers (e.g., neu-

ral network and decision tree) from the spoof detection perspective. However, the overall

matching accuracy of the BBN is consistently better than other classifiers. One possible

reason is that the configuration of BBN assumes that the match score would not affect the

spoof detection accuracy. Compared to the equivalence assumption of match scores and

anti-spoofing measures which is used in other classifiers, the BBN assumes a one-way influ-

ence which is more practical and in accordance with a causal conception. This observation

inspires us to implementing the similar causal assumptions in the future work on combining

ancillary factors which do not have an evident relationship with biometric match scores.

103



Besides, we proposed two Bayesian Belief Network (BBN) models that can effectively

integrate liveness scores with quality scores and match score. The proposed BBN models

have two different configurations distinguished on the basis of how the quality scores are

incorporated. This study also compares the proposed BBN models with existing fusion

frameworks against spoof attacks. Comprehensive experiments are conducted on the LivDet

2011 dataset. Results indicate that the proposed BBN-MLQ and BBN-MLQc methods

consistently outperform existing fusion frameworks. Based on the experiments, the following

conclusions can be drawn:

• Causal relationship: Fusion frameworks that model the appropriate relationship

between the considered variables, such as the influence of the quality on liveness scores,

obtain better performance.

• Benefits of quality: Incorporating image quality is beneficial in the fusion framework

(BBN-MLQ and BBN-MLQc). This is because quality scores can take into account

the material-specific characteristics of spoof fabrication materials. Further, the models

incorporating quality also have benefits (better performance) when evaluated on novel

spoof fabrication materials [102].

• The role of quality: These quality scores can be incorporated as features (as in

BBN-MLQ) or used as a normalization parameter (as in BBN-MLQc). Experimental

results suggest the efficacy of quality when used as a normalization parameter rather

than a feature, since the latter makes the Bayesian Belief Network more complicated

to be interpreted and calculated.

• The role of latent variables: The consistently better performance of BBN-MLQc

over existing frameworks show the efficacy of quality-based clusters in adapting the

liveness scores and match scores against the sample quality. Even for a single acqui-

sition device, clusters of quality values (Qci) can be obtained corresponding to image
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resolution, ridge and valley clarity, noise level, and spoof fabrication materials. Fur-

ther, quality and liveness scores are also influence by the acquisition sensor used. As a

part of future work, these latent variables i.e., quality clusters and sensor information

will be incorporated in the BBN models. Further, the role of these latent variables will

be analyzed for novel sensors and fabrication materials.

• Semi-supervised learning in BBN models: Our experimental results suggest that

performance of all the BBN models drops across materials. Hence, automatically

adapting these BBN models to novel spoof materials is another research avenue. In

other words, models will be incorporated with the learning ability to automatically

detect and adapt themselves to spoof samples generated using novel materials.

• Effect of the baseline anti-spoofing algorithms: Continuous efforts are being

directed towards developing spoof detection schemes which offer lower error rates, also

evident by three spoof detection competitions (LivDet) conducted between 2009 and

2011. The performance of existing and proposed fusion frameworks will be evaluated

on incorporating liveness scores obtained using novel spoof detection schemes and

comparative assessment will be drawn with respect to existing ones.

• Empirical analysis would be implemented to validate the causal assumptions made by

the proposed BBN model, especially when the framework involves match scores from

multiple biometric traits and the causal relationship become more implicit. Further

more, when other kinds of ancillary information is involved with the proposed BBN

model, it is essential to extend the configuration of BBN in a reasonable way.
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CHAPTER 4

COMBINING ONE-CLASS SVMS FOR ANTI-SPOOFING

4.1 Background

As mentioned in the previous chapter, a biometric system is vulnerable to spoof attacks,

where a fake fingerprint is used to circumvent the system. In order to detect or deflect

fingerprint spoof attacks, a number of sensor-based and image-based anti-spoofing solutions

have been proposed [70, 79]. Image-based solutions, in particular, have received plenty of

attention in the literature since they do not require the use of additional hardware and

are based only on the images that are subsequently used by the fingerprint matcher. Such

algorithms typically extract texture-based features [84, 36], anatomical features [28, 72] or

physiological features [34, 67] from a fingerprint image (or sequence of images), and then

train a binary classifier (such as a Support Vector Machine) that distinguishes the features

of “Live” and “Spoof” samples.

However, there are some concerns associated with the use of binary classifiers in the

context of spoof detection. In practice, it is easy to obtain training samples pertaining to

the “Live" class but difficult to obtain samples for the “Spoof" class, thereby leading to

imbalanced training sets where the latter has substantially fewer training samples. Further,

the training set for the spoof class may not have data corresponding to all possible types of

fabrication materials. This makes it difficult for the classifier to reliably learn the concept

of a spoof. In fact, it has been shown that spoof detection accuracy degrades sharply, when

the test set has fake samples fabricated using materials that were previously “unseen” in the

training set (as reported in [135, 37]). As spoof attacks evolve, it is likely that new and more

sophisticated materials will be used to create fake fingerprints thereby undermining existing

learning-based spoof detectors.

To generalize the effectiveness of spoof detectors across fabrication materials - even those
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that are not encountered during training - recent work has formulated spoof detection as an

open-set problem [101, 102]. Others utilize quality-based measures to minimize the impact

of fabrication materials [33, 23]. While such methods have demonstrated success, they still

require a large number of training samples from the spoof class. Menotti et al. [75] proposed a

convolutional neural network (CNN) whose performance exceeded that of many fingerprint

spoof detection benchmarks. However, just like other CNN-based methods, it requires a

large number of training samples. Further, its robustness across fabrication materials was

not evaluated.

The aforementioned concerns (related to interoperability across fabrication materials

and limited spoof training samples) motivated us to consider approaching spoof detection

as a one-class problem. The one-class classification paradigm differs from the multi-class

paradigm in that only data from a single class (e.g., the live class) is used for training the

classifier [112]. The task in one-class classification is to derive a decision boundary around

samples of the live class that accepts as many samples as possible from that class while ex-

cluding other samples. Take the one-class support vector machine classifier as an example.

The idea is to minimize the volume of the decision hypersphere containing the training data

from a single class. However, this makes the problem harder than two-class classification

because it is difficult to determine the tightness of the hypersphere enclosing the training

samples. Moreover, it is difficult to determine what type of features extracted from a sample

would effectively model the samples from the “Live" class.

In this chapter, we present a unified view of the general one-class classification approaches

based on i) the features/descriptors used, ii) the availability of training data, and iii) the

classifiers used in the context of fingerprint spoof detection. Besides, an ensemble of multi-

ple one-class SVM (OC-SVM) classifiers is proposed, where each OC-SVM uses a different

feature set to find the smallest possible hypersphere around the majority of training samples

pertaining to the “Live" class. Then, a Least Square Estimation (LSE) based weighting

algorithm is proposed to aggregate those independently trained OC-SVMs by assigning the

107



Figure 4.1: Schematic of the proposed ensemble framework that uses multiple OC-SVMs.
Each OC-SVM utilizes a different set of features. While spoof fingerprints are not
necessary for training the OC-SVMs, they are used to refine the decision boundary in the
validation phase.

higher weight to the one with higher accuracy. Furthermore, the boundary of the hypersphere

is further refined using a small number of spoof samples (as shown in Figure 4.1).

The experimental results show three significant advantages of the proposed ensemble of

OC-SVMs:

1. The detection accuracy is comparable with state-of-art spoof detection algorithms;

however, only a smaller number of spoof samples is required for training.

2. The spoof detection accuracy remains consistent, regardless of what fabrication mate-

rial is used to forge spoofs and what fingerprint sensor is used to collect them.

3. The detection accuracy can be further improved by increasing the number of spoof

fingerprint samples utilized as training samples, without suffering from the imbalanced

class problem encountered by conventional binary SVM (B-SVM) classifiers.
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Figure 4.2: Proposed categorization for the study of image-based fingerprint spoof
detection algorithms. The proposed ensemble OC-SVM classifier falls into the category of
SVM-related classifiers that use multiple kinds of features extracted from only the live
samples for training.

This chapter is organized as follows: Section 4.2 categorizes the current state of the art

research on image-based fingerprint spoof detection from a new perspective. Section 4.3

focuses on one particular category under the proposed categorization, the one-class classifi-

cation based SVM classifiers using multiple kinds features, and proposes renovations that can

effectively combine multiple OC-SVM classifiers to achieve an optimal decision boundary.

Section 4.4 presents the experimental protocol and analyzes the results based on commonly

used performance metrics. Section 4.5 summarizes the findings of this work.

4.2 An Overview of Image-Based Spoof Detection

Spoof detection approaches represent a common countermeasure to address the issue of

spoofing and can be sensor-based or image-based. Sensor-based solutions exploit character-

istics of vitality such as pulse oximetry, finger temperature, the electrical conductivity of

the skin, and skin resistance [88, 103, 104]. These methods require additional hardware in

conjunction with the biometric sensor, which makes the device expensive. This work focuses

on the image-based approaches that commonly use machine-learning algorithms to deal with

the problem.

109



Based on reviewing past research that has been carried out in the field of image-based

fingerprint spoof detection, we propose a categorization (as shown in Figure 4.2) based on

three broad families for the study. The categorization can be summarized as:

• Features: the use of different kinds of feature sets has a significant impact on the

spoof detection performance.

• Availability of Training Data: a spoof detection approach can learn learn with both

live and spoof samples, or with live samples only.

• Learning Classifiers: the learning classifiers may base on the Support Vector Ma-

chines (SVM) or other methodologies.

4.2.1 Feature Extraction for Spoof Detection

An image-based fingerprint spoof detector aims to disambiguate live fingers from fake (spoof)

artifacts by exploiting their differences in dynamic behaviors of live fingertips (e.g., ridge dis-

tortion, perspiration) or static characteristics (e.g., textural characteristics, ridge frequen-

cies, elastic properties of the skin). Thus far, four fingerprint liveness detection competitions

(LivDet) have been conducted between 2009 and 2015. The static features that were ex-

tracted from a single fingerprint impression, have been widely used for the contestants. It

is mainly because that compared to other approaches based on multiple impressions (i.e.,

dynamic features), the static features are much cheaper and more user-friendly (as shown in

Figure 4.3).

Static features may concern textural characteristics, ridge frequencies, elastic properties

of the skin, or a combination of these. From the results reported in these competitions

[135, 37, 79], the local texture-based features have been shown to outperform other competing

techniques based on anatomical (such as pore detection [72]) or perspiration [2] features.

Hence, the experiments in this work are conducted using local textural features as shown in

Table 3.1. Briefly, Grey Level Co-occurrence Matrix (GLCM) characterizes the texture of
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Figure 4.3: Categorization of current existing anti-spoofing approaches. We highlight the
textual-based approaches and list several commonly used feature sets that provide
comparable spoof detection accuracies.

an image by calculating the frequency of occurrence of pairs of pixels with specific values

and in a specified spatial relationship; statistical measures are then extracted from this

matrix [84]. Local Phase Quantization (LPQ) utilizes phase information computed locally

in a window [36]. The phases of the four low-frequency coefficients are decorrelated and

uniformly quantized. Binary Statistical Image Features (BSIF) encode texture information

as a binary code for each pixel by linearly projecting local image patches onto a subspace,

whose basis vectors are from natural images [35]. The Local Binary Pattern (LBP) operator

compares a pixel with its neighbours, thresholds the ensuing results into a decimal value, and

converts this value into a binary code [85]. Binary Gabor Patterns (BGP) encode textual

information by convolving the image with Gabor filters and binarizing the responses [140].

A more detailed discussion of features in spoof detection can be found in Marasco and

Ross’s survey paper [70]. The authors also pointed out an open issue in the field of anti-

spoofing is to develop interoperable approach for detecting spoofs under more complex attack

scenarios, such as across different fingerprint sensors and across multiple fabrication materi-

als. Since each of the above texture descriptors are expected to capture different attributes

of live and spoof samples, one possible solution is to fuse the above texture descriptors and
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adapt them to generalize over multiple spoof materials and fingerprint sensors.

4.2.2 Availability of Training Data

As mentioned earlier, most spoof detector adopt a machine learning approach where a clas-

sifier is trained to capture the concept of the “spoof” class and “live” class. The training

samples of the “spoof” class needs to be created in laboratory by giving certain source fin-

gerprints, and the fake prints can be obtained via the consensual method (i.e., with the

collaboration of the user) or the non-consensual method (e.g., from a latent fingerprint) [37].

A variety of readily available materials such as latex, gelatin, woodglue, etc., have been

used to fabricate fake fingerprints. Figure 5.4 shows example of fake fingerprint samples

corresponding to four different fabrication materials and their source finger (from LivDet

2011 database [135]). As reported by Nixon et al. [89], there are more than fifty seven

materials and material variants that have been identified for fake fingerprint fabrication.

The flexibility in material choice leads to several concerns associated with the use of spoof

samples in the design of spoof detection algorithms.

In practice, it is easy to obtain training samples pertaining to the “Live" class but difficult

to obtain samples for the “Spoof" class, thereby leading to imbalanced training sets where

the latter has substantially fewer training samples. Further, the training set for the spoof

class may not have data corresponding to all possible types of fabrication materials. This

makes it difficult for the classifier to reliably learn the concept of a spoof. In fact, it has been

shown that spoof detection accuracy degrades sharply, when the test set has fake samples

fabricated using materials that were previously “unseen” in the training set (as reported in

[135, 37]). As spoof attacks evolve, it is likely that new and more sophisticated materials

will be used to create fake fingerprints [5] thereby undermining existing learning-based spoof

detectors.

The aforementioned concerns (related to interoperability across fabrication materials and

limited spoof training samples) motivated us to consider approaching spoof detection via the
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second category of frameworks, the one-class classification (OCC), where only the samples

from live fingers are used for training the classifier.

There are a great mount of existing works available for a deep investigation on the OCC

frameworks. Tax and Duin [123, 124] and Schölkopf et al [112] have developed algorithms

based on support vector machines (SVM) to tackle the problem of OCC using positive

examples only (refer to Section 4.3.1). The main idea behind these strategies is to construct

a decision boundary around samples of the live class so as to differentiate other sample.

However, this makes the problem harder than two-class classification because the decision

boundary is determined by the data from one side of the boundary rather than the both

sides. In the proposed ensemble of one-class SVM classifier, the decision boundary is further

refined by using a relatively small number of spoof fingerprints in a validation phase. As

discussed by Tax and Duin [126], the rationale behind the validation phase is to adjust the

decision boundary to better classify the points that are in the vicinity of the boundary by

utilizing negative examples (spoof fingerprints).

4.2.3 Learning Classifiers

Most spoof (or liveness) detection algorithms proposed in the literature are learning based,

that is, they learn a decision policy to distinguish real fingerprints from fake ones based on

a set of training samples. As mentioned earlier, this work focuses on the spoof detection

approaches that only use the samples from the “Live” class, so this section pays more atten-

tion on the available OCC learning classifiers. An OCC learning classifier can be arguably

categorized into two families according to whether it utilize the support vector machines

(SVM) to tackle the problem.

• Non SVM-Related OCC Algorithms: Ridder et al. [105] conduct an experimental

comparison of various OCC algorithms, including: (a) Global Gaussian approximation,

(b) Parzen density estimation, (c) 1-Nearest Neighbor method, and (d) Gaussian ap-

proximation (combines aspects of (a) and (b)). Manevitz and Yousef [64] proposed a
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Figure 4.4: Illustration of the support vector data description (SVDD) scheme. The figure
on the left shows a simple dataset in the input feature space. The figure on the right shows
the data projected to a higher dimensional space using SVM approaches.

three-level feed-forward neural network to filter documents when only positive infor-

mation is available. DeComite et al. [21] modify the C4.5 decision tree algorithm [96]

to develop an algorithm that takes as input a set of labelled examples, a set of positive

examples, and a set of unlabelled data, and then use these three sets to construct

the decision tree. Letouzey et al. [22] design an algorithm which is based on positive

statistical queries (estimates for probabilities over the set of positive instances)

• SVM-Related OCC Algorithms: The one-class classification problem is often

solved by estimating the target density [78], or by fitting a model to the data sup-

port vector classifier [10]. Tax and Duin [123, 124] seek to solve the problem of OCC

by distinguishing the positive class from all other possible patterns in the pattern

space. Instead of using a hyperplane to distinguish between two classes, a hypersphere

is found around the positive class data that encompasses almost all points in the data

set with the minimum radius. This method is called the Support Vector Data De-
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scription (SVDD), which also be used in this work. Thus training this model has the

possibility of rejecting some fraction of the positively-labeled training samples, when

this sufficiently decreases the volume of the hypersphere. Furthermore, the hypersphere

model of the SVDD can be made more flexible by introducing kernel functions. Tax

[122] considers a Polynomial and a Gaussian kernel and found that the Gaussian kernel

works better for most data sets. A drawback of this technique is that they often re-

quire a large data set; in particular, in high dimensional feature spaces, it becomes very

inefficient. Also, problems may arise when large differences in density exist. Samples

in low-density areas will be rejected although they are legitimate objects.

Schölkopf et al. [112, 111] present an alternative approach to the work mentioned above

of Tax and Duin on OCC using a separating hyperplane. The difference between theirs

and Tax and Duin’s approach is that instead of trying to find a hypersphere with mini-

mal radius to fit the data, they try to separate the surface region containing data from

the region containing no data. This is achieved by constructing a hyperplane which is

maximally distant from the origin, with all data points lying on the opposite side from

the origin and such that the margin is positive. Their paper proposes an algorithm that

computes a binary function that returns +1 in small regions (subspaces) that contain

data and −1 elsewhere. The data is mapped into the feature space corresponding to

the kernel and is separated from the origin with maximum margin. They evaluate the

efficacy of their method on the US Postal Services data set of handwritten digits and

show that the algorithm is able to extract patterns which are very hard to assign to

their respective classes and a number of outliers were identified. Figure 4.5 intuitively

demonstrates this approach when multiple kinds of feature sets are involved.

Manevitz and Yousef [65] propose a different version of the one class SVM which is

based on identifying outlier data as representative of the second class. The idea of

this methodology is to work first in the feature space, and assume that not only is the

origin the second class, but also that all data points close enough to the origin are to
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Figure 4.5: Illustration of the proposed ensemble of OC-SVMs. Multiple OC-SVMs are
built based on different feature sets, and their decision boundaries in the projected space
are adjusted to minimize the volume of hypersphere that contains the training data.

be considered as noise or outliers. The vectors lying on standard sub-spaces of small

dimension (i.e. axes, faces, etc.) are treated as outliers.

Classifiers are commonly ensembled to provide a combined decision by averaging the

estimated posterior probabilities. In this work, we also implement a Sum combination

rule to ensemble mulitple OC-SVMs. Besides, when Bayes theorem is used for the

combination of different classifiers, under the assumption of independence, a product

combination rule can be used to create classifier ensemble. The outputs of the individ-

ual classifiers are multiplied and then normalized (also called the logarithmic opinion

pool [7]). In OCC, as the information on the non-positive data is not available, in most

cases, the outliers are assumed to be uniformly distributed and the posterior proba-

bility can be estimated. Tax [122] mentions that in some OCC methods, distance is

estimated instead of probability for one class classifier ensembling. Tax observes that

the use of ensembles in OCC improves performance, especially when the product rule
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is used to combine the probability estimates.

Yu [138] proposes an OCC algorithm with SVMs using positive and unlabeled data,

and without labeled negative data, and discusses some of the limitations of other OCC

algorithms [125, 139, 112, 65]. Yu comments that in the absence of negative examples,

OC-SVM requires a much larger amount of positive training data to induce an accurate

class boundary.

4.3 Proposed Ensemble of OC-SVMs Approach

4.3.1 Conventional OC-SVM

The one-class paradigm, also known as single-class classification or anomaly/novelty detec-

tion, is a learning scheme developed by Schölkopf et al [112]. One-class paradigm allows

for the modeling of just a single class of patterns (e.g., real live fingerprints), and distin-

guishing them from all other possible patterns (e.g., spoof fingerprints fabricated by different

materials). Tax and Duin [126] constructed a hypersphere with radius R > 0 and center a

around the positive class data, which encompasses almost all points in the data set, while

allowing for some samples to be excluded as outliers. This method is called Support Vector

Data Description (SVDD), and the hypersphere formulation involves solving the following

quadratic programming optimization problem:

arg min
a,R,ξ

{
R2 +

1

Nν

∑
i

ξi

}
,

subject to ||φ(xi)− a||2 ≤ R2 + ξi ξi ≥ 0.

(4.1)

Here, the training set is denoted as {xi}, i = 1 . . . N , where xi are column vectors. The

term φ(xi) is a non-linear mapping function that maps each input feature vector to a higher

dimensional space. ν is a predefined regularisation parameter that governs the trade-off

between the size of the hypersphere and the fraction of data points falling outside the hyper-

sphere, i.e., the fraction of training examples that can be classified as outliers. The ξi terms
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are the slack variables that allow some of the data points to lie outside the hypersphere. The

Lagrange multipliers αi ≥ 0 and γi ≥ 0 are used to solve Eqn. (4.1):

L(a, R, ξ, αi, γi) = R2 +
1

Nν

∑
i

ξi −
∑
i

αi{R2

+ ξi − (||φ(xi)||2 − 2a · φ(xi) + ||a||2)} −
∑
i

γiξi.

(4.2)

L should be minimized with respect to a, R and ξ, and maximized with respect to αi and

γi. When L’s partial derivatives w.r.t a and ξi are set to zero, it results in the following

constraints:

∂L

∂a
: a =

∑
i αiφ(xi)∑

i αi
=
∑
i

αiφ(xi).

∂L

∂ξi
:

1

Nν
− αi − γi = 0.

(4.3)

Eqn. (4.3) suggests that the center of the hypersphere is a linear combination of the input

vectors. Further, because αi ≥ 0 and γi ≥ 0, the Lagrange multiplier γi can be removed

when we require that 0 ≤ ai ≤ 1
Nν . As a result, the dual problem for Eqn. (4.1) can be

written as:

argmax
αi

∑
i

αi(φ(xi) · φ(xi))−
∑
i,j

αiαj(φ(xi) · φ(xj))

 ,

subject to 0 ≤ αi ≤
1

Nν
.

(4.4)

When a training sample xi satisfies the inequality ||φ(xi)−a||2 < R2+ ξi, the constraint

in Eqn. (4.4) is satisfied and the corresponding Lagrange multiplier αi will be zero. For

training samples that satisfy the equality ||φ(xi)−a||2 = R2+ ξi, the constraints have to be

enforced and the Lagrange multiplier will become greater than zero. This can be summarized

as:

||φ(xi)− a||2 < R2 + ξi → αi = 0 (inlier)

||φ(xi)− a||2 = R2 + ξi → 0 < αi <
1
Nν (border SVs)

||φ(xi)− a||2 > R2 + ξi → αi =
1
Nν (outlier).
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After the center a and the radius R of the hypersphere are deduced, a test sample z can be

detected as an outlier, i.e., assigned to the spoof class, if its distance to the center of the

hypersphere is greater than the radius:

||φ(z)− a||2 = (φ(z) · φ(z))− 2
∑
i

αi(φ(z) · φ(xi))

+
∑
i,j

αiαj(φ(xi) · φ(xj)) > R2.

In this work, the LIBSVM package [13] (ver 3.18) was used to solve the above optimization

problem.

4.3.2 Proposed Ensemble of OC-SVMs

Juszczak and Duin, Biggio et al. and Medina-Perez et al. aimed to improve the accuracy of

classification by employing ensembles based on several instances of the same base classifiers.

The techniques used in for feature subspace partition included fixed combining rules, RSM

and bagging. In general, the ensembles exhibit robustness and diversity, which allow them

to obtain better classification accuracy.

In the context of spoof detection, if the training data resides in a single feature space

(e.g., LPQ feature space), the use of a single OC-SVM classifier can easily lead to overfitting

problems. This is because the hypersphere attempts to tightly encompass live fingerprints

and so a single feature space may not adequately capture the concept of a “live" class. To

overcome this drawback, diversity is intuitively induced by combining several OC-SVMs that

are based on descriptions of live fingerprint patterns in different feature spaces. Two different

combination methods, the majority voting and the LSE-based weighting approach, are used

here for combining the outputs of multiple OC-SVMs.

Majority voting is the simplest method for combining multiple classifiers. Multiple

OC-SVMs, pertaining to different feature sets but derived from the same training sam-

ples, will result in multiple hyperspheres as decision functions, fj(x), j = 1 . . . L. Here,

L is the number of feature sets (OC-SVMs) considered. Let yi denote the class label.
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While yi is always +1 for the training data (i.e., the live class), ŷi, which denotes the

output label of an OC-SVM classifier, could be −1 (i.e., the spoof class) or +1. Let

Nk(x) =
∑L
j=1 I(ŷ = k|fj(x)) where k ∈ {+1,−1}, denote the number of OC-SVMs that

assign the input sample to the live or spoof class. Then the final decision of the OC-SVM

ensemble via majority voting, fMV (z), for a test sample, z, is determined by:

fMV (z) = argmax
k

(Nk(z)) k ∈ {+1,−1}. (4.5)

An alternative to majority voting is the LSE-based weighting approach. The LSE-based

weighting technique assigns different weights to individual OC-SVMs based on their classi-

fication accuracy. In the training phase, the weight vector w is estimated as ŵ = A−1y,

where A = (fj(xi))N×L consists of the estimated class label of each OC-SVM on training

samples, and y = (yi)N×1. The final decision of the OC-SVM ensemble for a given input

sample z due to the LSE-based weighting is determined by:

fLSE(z) = sign{ŵ · (fj(z))L×1}. (4.6)

Since the performance of the LSE-based weighting approach was consistently better than

the majority voting approach, only results from the LSE-based weighting are reported.

As stated earlier, one of the challenges in one-class classification is to determine how

tightly the boundary should fit the training data. We propose two adjustments to the pro-

posed ensemble OC-SVM scheme to address this concern. Firstly, the global regularisation

parameter ν, that governs the trade-off between the radius of each hypersphere and the frac-

tion of training data falling outside of the hypersphere, is gradually adjusted in the interval

[0.1%, 10%] in increments of 0.001. The LSE-based weights are also adjusted to optimize the

detection accuracy during the training phase. In order to evaluate the detection accuracy,

the Correct Detection Rate (CDR) on live fingers is defined as follows:

• CDR of “Live” fingers (CDRL): the proportion of live samples that are correctly clas-

sified as “Live”.
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The rationale behind the adjustment is for the decision hypersphere to better fit the training

data in every feature space rather than on a single feature space.

Secondly, the hypersphere is further refined by using a relatively small number of spoof

fingerprints in a validation phase. As discussed by Tax and Duin [126], the rationale behind

the validation phase is to adjust the decision hypersphere to better classify the points that are

in the vicinity of the hypersphere of any one of the LOC-SVMs by utilizing negative examples

(spoof fingerprints). The available negative examples are labelled as outliers. Hence, they

decrease the fraction of positive training samples that are classified as outliers, which leads

to a readjustment of the global regularisation parameter ν. Hence, the following performance

metric is defined to validate the detection accuracy on spoof fingerprints.

• CDR of “Spoof” fingers (CDRS): the proportion of fake samples that are correctly

classified as “Spoof”.

4.4 Experimental Results

4.4.1 Database and Protocol

We used the LivDet2011 [135] and LivDet2013 [37] dataset for performance assessment of

the proposed ensemble of one-class SVMs (as shown in Table 4.1). The LivDet2011 dataset

comprises images from 4 different sensors. Corresponding to each sensor, there are 1,000

live and 1,000 fake fingerprint samples in the training set, and the same number of samples,

but from different subjects, in the test set. The spoof materials used for Biometrika and

ItalData sensors were gelatine, latex, ecoflex (platinum-catalysed silicone), silgum and wood

glue (400 each), while the fake fingerprints for Digital Persona and Sagem sensors were made

of gelatine, latex, playdoh, silicone and wood glue (400 each).

The LivDet2013 dataset consists of images from four different sensors as well. The

spoof materials used for spoof samples were Body Double, latex, Play-Doh and wood glue

for Crossmatch and Swipe sensors, and gelatine, latex, ecoflex, modasil and wood glue for
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Table 4.1: Characteristics of the datasets in the LivDet2011 and LivDet2013 competition.
More details can be found in [135] and [37].

LivDet2011 DATASET
#1 #2 #3 #4

Sensor Biometrika Italdata Persona Sagem
Resolution(dpi) 500 500 500 500
Image Size 312*372 640*480 352*384 355*391
Live Samples 2000 2000 2000 2000
Live Subjects 200 200 20 52
Fake Samples 2000 2000 2000 2000
Fake Subjects 34 34 68 42

LivDet2013 DATASET
#1 #2 #3 #4

Sensor Biometrika Italdata Crossmatch Swipe
Resolution(dpi) 569 500 500 96
Image Size 315*372 640*480 800*750 208*1500
Live Samples 2000 2000 2250 2250
Live Subjects 50 50 94 100
Fake Samples 2000 2000 2250 2250
Fake Subjects 15 15 45 45

Biometrika and Italdata sensors. The images were divided into two equal datasets, training

and testing. Live images came from 300 fingers from 50 subjects for Biometrika and Italdata

datasets, 940 fingers representing 94 subjects for Crossmatch dataset, and 1000 fingers from

100 subjects for Swipe dataset. Spoof images come from approximately 225 fingers repre-

senting 45 people for the Crossmatch and Swipe Datasets and 100 fingers representing 15

subjects for the Biometrika and Italdata datasets.

It can be noted that the following experiments have placed different emphasis on these

two datasets. To compare the proposed method against state-of-the-art spoof detection

algorithms that exhibit interoperability across fabrication materials, the experimental pro-

tocol described in [101] is carefully followed in this work. Rattani and Ross [101] divided

the test set of LivDet2011 dataset into two non-overlapping subsets according to the fab-

rication materials used. Each subset consists of 500 live samples and 500 fake fingerprints,
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where 200 fake fingerprints correspond to two fabrication materials that are used during the

training stage (these are the “known" materials) and 300 fake fingerprints correspond to the

rest three fabrication materials that are not used during the training stage (these are the

“novel" materials). Although those fake fingerprints in the training set were useless for the

proposed ensemble of OC-SVMs classifier, fake samples in the test set are used to evaluate

the detection accuracy. As noted, the detection accuracies on all ten possible combinations

of known materials (and ten combinations of novel materials as well) are reported to prove

the consistency.

Although seven different fabrication materials are available in the LivDet2013 dataset,

not every sensor has corresponding images for the complete set. This is the possible reason

that most of the current literature utilized the dataset to assess the detection accuracy rather

than analyze the impact of fabrication materials. In this work, the detection accuracy of

the proposed ensemble OC-SVM approach is reported to compare with multiple contestants

in the competition. Furthermore, the performance improvement of the proposed approach

brought by increasing the number of spoof samples in the validation is analyzed on the same

dataset as well.

As pointed in the competition report of LivDet2013 [37], the live images collected with the

Crossmatch sensor turned to be especially difficult to recognize for most of the algorithms,

which leads to a further investigation. Moreover, the samples from Swipe sensor have a

significantly lower resolution compared to all the other sensors in the two dataset (as seen

in Table 4.1). In order to generate unbiased results, the experiments about detecting spoofs

collected across different fingerprint sensors are only implemented on the LivDet2011 dataset.

To show the advantage of the proposed ensemble OC-SVM on the detection of novel

fabrication materials, CDRS is intuitively divided into two parts:

• CDR of “Known” fake samples (CDRK): the proportion of fake samples generated

using known materials (i.e., materials encountered in the training set) that are correctly

classified as “Spoof”;
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• CDR of “Novel” fake samples (CDRN ): the proportion of fake samples generated using

novel materials (i.e., materials not encountered in the training set) that are correctly

classified as “Spoof”.

In the following, the known materials are also noted as training materials. Although they

were not used to train any one-class classifiers in this work, the rest of materials are used as

“Novel” materials to evaluate CDRN .
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Table 4.2: Establishing the baseline performance using conventional binary SVM (B-SVM) and one-class SVM (OC-SVM)
using single feature set on the LivDet2011 dataset. The listed combinations of training materials are only required by the
B-SVM classifier, and the rest materials are used as “novel” materials to evaluate the CDRN of both classifiers.

Training Materials GLCM Feature BSIF Feature LPQ Feature LBP Feature BGP Feature
(Only Used by B-SVM) B-SVM OC-SVM B-SVM OC-SVM B-SVM OC-SVM B-SVM OC-SVM B-SVM OC-SVM

1 Latex + EcoFlex 47.4 40.2 51.1 37.4 56.2 35.6 53.5 28.5 58.2 40.4
2 WoodGlue + Latex 55.0 38.0 53.9 37.7 52.5 38.3 58.2 30.2 60.0 37.5
3 Gelatine + Latex 55.7 42.2 53.1 39.8 58.6 35.3 53.5 28.3 55.0 40.4
4 Silgum + Latex 50.2 30.2 48.8 29.9 46.9 44.0 47.4 27.5 53.4 33.3
5 EcoFlex + Silgum 50.2 28.9 51.9 39.8 58.6 34.2 49.7 33.9 55.0 33.3
6 Gelatine + EcoFlex 47.0 37.9 41.4 33.5 56.3 43.3 40.0 33.3 50.2 40.2
7 Silgum + Gelatine 53.9 40.4 48.4 33.3 52.1 40.8 47.0 38.0 53.5 37.5
8 WoodGlue + Silgum 47.4 42.2 42.1 35.4 54.2 43.3 40.9 33.3 47.4 38.0
9 Gelatine + WoodGlue 50.2 31.2 49.3 33.3 52.1 39.9 47.9 31.2 47.9 37.2
10 WoodGlue + EcoFlex 50.4 42.2 51.9 39.8 54.2 43.3 40.0 33.9 53.4 38.0

Average CDRN 50.7 37.3 49.2 36.0 54.2 39.8 47.8 31.8 53.4 37.6
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4.4.2 Conventional B-SVM and OC-SVM

This section evaluates the performance of conventional binary SVM (B-SVM) and conven-

tional one-class SVM classifiers. This provides a baseline for the experiments in the subse-

quent sections.

Five different kinds of texture descriptors were used in this work, and their dimensionali-

ties were 40, 516, 256, 54 and 216 for GLCM, BSIF, LPQ, LBP and BGP, respectively. The

training set used in this experiment consists of 400 live samples and 400 fake fingerprints

made using two fabrication materials (200 each). Note that only B-SVM classifiers use fake

fingerprints for training. In this experiment, no validation phase for the OC-SVM is imple-

mented and the parameters of both classifiers are tuned following a conventional estimation

procedure. Table 4.2 shows the correct detection rates on “novel” fake samples (CDRN )

using conventional B-SVM and conventional OC-SVM (in parentheses) in the LivDet2011

dataset. Note that all the accuracy rates reported here are carried out on the exact same

test set that was stated earlier. Since similar trends were observed across all 4 sensors, only

results from the Biometrika sensor are reported.

It can be seen that both conventional classifiers do not provide an acceptable correct

detection accuracy on the fake samples manufactured using novel materials. The conven-

tional OC-SVM classifier performed worse than the conventional binary SVM. However, we

noted that the conventional OC-SVM provides higher correct detection rates on live fingers

(CDRL) than conventional B-SVM in some cases (results not shown here). These results are

not surprising because the conventional OC-SVM is unable to find a tight enough decision

boundary when using only the live fingerprints for training, leading to a higher CDRL but

a much lower CDRN compared to B-SVM.
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Table 4.3: Performance of the proposed ensemble of OC-SVMs compared to the automatic adaptation approach in [101] and
conventional binary SVM (B-SVM) on the LivDet2011 dataset. The correct detection rates tested on previously known
materials (CDRK) and on novel materials (CDRN ) are reported, respectively. It is notable that except the listed materials for
training, the rest materials are tested as “novel materials”.

Part A. Performance of Biometricka-Based Spoof Detectors.
Training Materials Proposed Ensemble of OC-SVMs Automatic Adaptation (LBP) B-SVM (Esemble of Features)

CDRK CDRN CDRK CDRN CDRK CDRN
1 Latex + EcoFlex 92.8 89.2 95.0 86.6 77.2 63.8
2 WoodGlue + Latex 94.0 92.8 94.0 90.4 78.0 65.0
3 Gelatine + Latex 91.8 91.0 92.2 86.6 75.8 61.8
4 Silgum + Latex 91.0 90.4 91.0 86.0 69.8 61.6
5 EcoFlex + Silgum 92.8 89.2 91.0 82.0 77.8 67.8
6 Gelatine + EcoFlex 91.0 91.0 92.8 85.8 77.8 66.2
7 Silgum + Gelatine 92.8 90.8 90.0 84.2 77.8 66.2
8 WoodGlue + Silgum 92.8 92.8 90.8 85.6 78.0 66.0
9 Gelatine + WoodGlue 90.0 89.2 91.8 89.2 72.8 64.0
10 WoodGlue + EcoFlex 91.0 89.2 94.0 87.2 72.0 66.4
Average and Std. Dev. 92.0± 1.2 90.6± 1.3 92.3± 1.6 86.4± 2.2 75.7± 2.9 64.9± 1.9

Part B. Performance of Italdata-Based Spoof Detectors.
Training Materials Proposed Ensemble of OC-SVMs Automatic Adaptation (LPQ) B-SVM (Esemble of Features)

CDRK CDRN CDRK CDRN CDRK CDRN
1 Latex + EcoFlex 82.2 81.6 82.8 83.0 71.4 69.6
2 WoodGlue + Latex 84.2 83.4 85.1 85.9 72.0 69.6
3 Gelatine + Latex 82.8 82.8 84.9 83.7 73.2 69.8
4 Silgum + Latex 82.4 81.6 85.0 83.9 66.8 66.2
5 EcoFlex + Silgum 82.8 82.0 81.2 74.3 68.8 63.8
6 Gelatine + EcoFlex 82.2 82.2 80.7 78.1 76.8 72.1
7 Silgum + Gelatine 83.6 82.0 82.9 83.0 71.4 70.0
8 WoodGlue + Silgum 84.6 84.6 85.6 82.0 71.4 70.0
9 Gelatine + WoodGlue 84.6 83.6 82.9 83.4 69.6 69.6
10 WoodGlue + EcoFlex 82.0 81.6 83.2 79.8 72.2 71.0
Average and Std. Dev. 83.1± 1.0 82.5± 1.0 83.4± 1.6 81.7± 3.2 71.4± 2.5 69.2± 2.3
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Table 4.3 (cont’d)
Part C. Performance of Digital Persona-Based Spoof Detectors.

Training Materials Proposed Ensemble of OC-SVMs Automatic Adaptation (LPQ) B-SVM (Esemble of Features)
CDRK CDRN CDRK CDRN CDRK CDRN

1 Latex + PlayDoh 89.6 88.8 89.9 82.6 74.2 67.6
2 WoodGlue + Latex 88.8 88.2 88.1 81.0 76.0 67.6
3 Gelatine + Latex 88.8 88.8 90.0 82.9 75.6 68.2
4 Silicone + Latex 89.8 89.2 91.9 81.1 69.8 64.6
5 PlayDoh + Silicone 90.0 90.0 91.2 81.1 74.8 69.8
6 Gelatine + PlayDoh 89.6 88.8 84.6 76.2 77.8 70.4
7 Silicone + Gelatine 90.0 89.2 85.9 75.9 73.2 67.6
8 WoodGlue + Silicone 89.0 89.0 91.0 79.7 73.2 70.4
9 Gelatine + WoodGlue 89.4 88.8 88.8 79.5 70.2 68.2
10 PlayDoh + WoodGlue 86.8 86.2 90.5 83.6 71.2 69.2
Average and Std. Dev. 89.2± 0.9 88.7± 0.9 89.2± 2.3 80.4± 2.5 73.6± 2.5 66.8± 1.6

Part D. Performance of Sagem-Based Spoof Detectors.
Training Materials Proposed Ensemble of OC-SVMs Automatic Adaptation (LBP) B-SVM (Esemble of Features)

CDRK CDRN CDRK CDRN CDRK CDRN
1 Latex + PlayDoh 82.8 81.0 82.1 82.0 69.6 66.2
2 WoodGlue + Latex 82.2 82.2 80.6 79.0 70.2 65.4
3 Gelatine + Latex 82.8 82.8 87.0 83.4 69.0 67.8
4 Silicone + Latex 83.2 82.1 80.1 79.0 62.2 60.2
5 PlayDoh + Silicone 83.2 83.2 78.1 83.7 70.0 63.4
6 Gelatine + PlayDoh 82.8 82.6 81.4 79.8 71.4 66.1
7 Silicone + Gelatine 83.2 82.4 87.6 83.4 66.9 60.4
8 WoodGlue + Silicone 82.9 82.9 83.5 80.5 70.2 67.8
9 Gelatine + WoodGlue 82.8 82.8 87.3 84.7 65.2 62.4
10 PlayDoh + WoodGlue 81.2 81.0 80.7 83.2 68.4 63.4
Average and Std. Dev. 82.7± 0.6 82.3± 0.7 82.8± 3.2 81.9± 2.0 68.3± 2.7 64.3± 2.6
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Figure 4.6: The decisions changed by the different combinations of feature spaces that are
used in the proposed ensemble of OC-SVMs in the LivDet2011 dataset.

4.4.3 Analysis of Proposed Ensemble Strategy

In order to investigate the impact of the proposed ensemble strategy, Table. 4.4 compared the

detection accuracy on novel spoof materials (CDRN ) from different combinations of feature

sets used in the proposed ensemble of OC-SVMs. It it noted that the proposed combination

of GLCM, LBP, BGP, BSIF and LPQ overcame the other combinations of feature spaces.

Further, Fig. 4.6 provides the values of optimized regularisation parameters, ν, and the

corresponding CDRS on different combination of feature sets. It is noted that although the

CDRs on spoof fingers are consistently increased by adding more feature sets, the regulari-

sation parameters and the weight vectors (w, which has not been shown here) are fluctuant

upon different combinations.

Take the detection result on S1, a single spoof sample fabricated using Silgum (sample
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Table 4.4: The correct detection accuracy on novel spoof materials (CDRN ) when different
combinations of feature sets are used in the proposed ensemble of OC-SVMs (LivDet2011
dataset).

Used Feature Sets or Average CDRN on Different Sensors
Combinations Biometrika Italdata Persona Sagem

GLCM feature [84] 46.5 40.1 47.3 47.4
LPQ feature [36] 55.2 53.2 46.3 50.1
BSIF feature [35] 56.1 53.0 55.3 51.7
LBP feature [83] 56.7 52.7 53.3 57.3
BGP feature [140] 58.5 53.1 55.3 49.9

LBP+BGP (the best two) 67.2 61.9 64.8 63.5
GLCM+LBP+BGP 69.9 62.2 66.6 64.9
GLCM+LBP+BGP+BSIF 73.5 73.0 76.4 76.4
GLCM+LBP+BGP+LPQ 79.6 77.2 79.6 79.7

GLCM+LBP+BGP+BSIF
+ LPQ (Proposed) 83.9 83.0 84.1 84.7

ID 76_7), as an example. It was correctly classified as spoof by the ensemble of LBP

and BGP features. However, by adding GLCM and BSIF features, the detection result on

this particular sample flopped although the CDRs on the entire test set increased. It is

eventually detected as spoof when all five feature sets are involved in the proposed ensemble

approach. The fluctuant results on this random sample indicate the important role played

by the proposed ensemble procedure in some extents.

4.4.4 Proposed Ensemble of OC-SVMs

This section evaluates the performance of the ensemble OC-SVM classifier, especially on

novel materials. To achieve a fair comparison, two variations of the conventional B-SVM

were used as baselines:

• A feature-level fusion of B-SVM (referred to as B-SVM-F): The feature sets are con-

catenated into a single feature vector and the concatenated feature vector is used to

train the conventional B-SVM and generate the binary outputs.
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• A decision-level fusion of B-SVM (referred to as B-SVM-D): Several B-SVM classifiers

are trained, and each of them is trained on a different feature set to generate binary

outputs, then those outputs are combined using the majority vote rule.

Table 4.3 reports the performance of the proposed ensemble OC-SVM compared to an

adaptive approach (referred to as Automatic Adaptation) proposed earlier by Rattani and

Ross [101], which was shown to significantly increase the correct detection rate on novel

spoof materials (CDRN ).

As described earlier, the proposed ensemble OC-SVM utilizes the live fingerprint samples

in the training set to generate the decision hypersphere. Although the spoof samples are not

used by the learning procedure, they are used to readjust the decision boundary. In order to

demonstrate the impact of this readjustment, the table reports the CDRs before and after

the validation phase in the same cell. For example, the average CDRN of the proposed OC-

SVM is reported as 83.8 + 2.4%; this means the correct detection rate before the validation

phase was 83.8%, and it increased by 2.4% after the validation. It must be noted that the

number of fake samples used for validation is relatively small (50 spoof samples) compared

to the larger training set (400 spoof samples) used by other approaches.

From Table 4.3, it can be seen that the ensemble OC-SVM provides significantly higher

correct detection rates than the other two SVM-based fusion schemes. One possible reason for

the poor performance of the feature-level B-SVM (B-SVM-F) is the curse of dimensionality.

A similar feature-level fusion was implemented for the conventional one-class SVM (OCSVM-

F) as well. However, the poor performance (as shown in Figure 4.7) on both live samples

(60.0%) and spoof samples (50.4%) indicates that multiple feature sets need to be aggregated

more carefully to avoid potential issues such like the curse of dimensionality. It must be noted

that the decision-level fusion of B-SVM results in an improvement in accuracy for detecting

novel materials (as evidenced by the CDRN for B-SVM-D). This result substantiates our

previous conjecture that the use of different feature sets can better characterize the concept

of “live” fingerprints to some extent.
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Without considering the impact of fabrication materials, the proposed ensemble OC-SVM

is comparable with the best reported algorithm in LivDet2011 (89% CDRL and 81% CDRS

on the Biometrika sensor as shown in [135]). However, it does not exceed the performance

of the automatic adaptation approach [101], which has the lowest error rates on the same

database so far. Further, along with the accuracy improvement on detecting fake samples (as

evidenced by CDRN and CDRK), the validation phase decreased the accuracy on detecting

live samples (CDRL is reduced by 0.5%). We address both issues in the next experiment.

4.4.5 Validation Using Spoof Samples

This section evaluates the performance of the proposed ensemble OC-SVM by increasing the

number of fake samples used in the validation phase. Although fake samples are not required

for training the classifier, they can be used to improve the overall accuracy by tuning the

decision hypersphere (i.e., the global regularisation parameter ν). Figure 4.7 presents two

bar plots of the average CDR on live and spoof samples under this experimental design.

Figure 4.7(b) indicates that when increasing the number of fake samples in the validation

phase (from 0 to 400), the proposed ensemble OC-SVM provides consistently higher CDRs

on spoof samples than the binary SVM classifier with feature level fusion (B-SVM-F) and

decision-level fusion (B-SVM-D). Figure 4.7(a) suggests that the proposed ensemble OC-

SVM can provide similar detection rates as the state-of-art detector in [101], although the

former only needs half the number of spoof samples as the latter (200/400). Moreover, the

detection rates of the proposed method are more stable with a smaller standard deviation

across different fabricated materials. This suggests that the proposed method is not unduly

impacted by the choice of fabrication material used for generating the spoof fingerprint. The

average CDRs on live samples are presented in Figure 4.7(a). Similar to the results in Table

4.3, the CDRL marginally decreased by 0.5% to 0.8% when the number of fake samples is

increased during validation. This demonstrates the trade-off between the misclassification of

live samples and the size of the decision hypersphere. However, compared to the performance
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Figure 4.7: Performance of the ensemble OC-SVM after increasing the number of fake
samples used in the validation phase. (a) CDRL, (b) CDRN and (c) when 200 spoof
samples are used in validation phase. Training materials used here are as same as in Table
4.2 and 4.3.
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Table 4.5: Performance of the proposed ensemble OC-SVM on the LivDet2013 dataset.
The Top 3 performed algorithms as reported in the competition are listed for a comparison.

Algorithms CDRL CDRK CDRN Average

LivDet2013
Dermalog 73.1% 98.9% 84.6% 85.9%
UniNap1 88.0% 85.4% 86.6% 87.0%
Anonum3 74.4% 94.7% 83.3% 84.5%

Proposed Ensemble OC-SVM 80.1% 94.9% 84.6% 87.6%

Proposed Ensemble OC-SVM
with Spoofs for Validation 88.0% 94.7% 88.0% 90.2%

Table 4.6: Performance of the proposed ensemble OC-SVM on on cross-sensor training.

Correct Detection Rates Average CDR ± STDERROR
(CDRL and CDRS) Biometrika Digital Italdata Sagem

Same Sensor CDRL 89.9± 0.1 88.3± 0.2 80.1± 0.2 77.9± 0.1
CDRS 83.0± 0.1 85.2± 0.1 73.2± 0.1 70.4± 0.2

Cross Sensors CDRL 87.6± 0.4 86.9± 0.2 77.1± 0.4 74.9± 0.2
CDRS 73.1± 0.4 74.1± 0.2 64.0± 0.3 62.9± 0.2

gain on spoof detection (an increase from 83.0% to 89.7%), the modest degradation in CDRL

is acceptable.

4.4.6 Performance on Cross-Sensor Training

In order to generalize the effectiveness of the proposed ensemble of OC-SVM classifier cross

different fingerprint sensors, the classifier is trained only using the live fingerprint samples

from one sensor (e.g. Biometrika) then tested on both live and spoof samples from the other

three sensors (as shown in Table 4.6). The correct detection rates using the training samples

from the same sensor are also reported as the baseline performance.

It is noted that when the training phase includes samples from different sensors, the

correct detection accuracy on live samples (CDRL) are degraded while the correct detection

accuracy on spoof samples keep consistent. One possible reason is that, when the validation
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sets include the spoof samples captured by different sensors, it is harder to approach a tight

enough boundary which leads to a higher detection accuracy on the live class.

4.5 Summary and Future Work

In this work, the problem of spoof detection is posed as a one-class problem where the

classifier learns the concept of a “live" fingerprint sample and uses this to reject spoof sam-

ples. It was shown that the accuracy of a conventional one-class SVM (OC-SVM) could be

significantly improved by fusing multiple kinds of features and optimizing the decision func-

tions across these features. Experimental analysis conducted on the LivDet2011 database

show that the proposed ensemble OC-SVM outperforms Binary SVMs, and its performance

is comparable with state-of-art spoof detection algorithms that are interoperable across fabri-

cation materials. However, the proposed method requires much fewer spoof training samples

than competing techniques. Further, the performance of the proposed method is observed

to be stable across different fabrication materials. Thus, the proposed approach successfully

mitigates some of the concerns associated with the issue of “imbalanced training sets” and

“insufficient spoof samples” encountered by conventional spoof detection algorithms.

Bolded results shows cases in which a proposed diversity measure was significantly better

than results obtained by a single classifier. In most cases the diversity measures were not

worse than a single classi- fier, even often outperforming it. This is caused by the selection

of mutually complementary classifiers to the pool. Therefore using more than one classi- fier

lead to a better decision boundary, when a single model generated too generic solution. In

several cases an ensemble with pool consisting of classi- fiers selected by diversity measured

was not as good as a single classifier. This is caused by a fact that diversity measure itself

is not the sole determinant of the accuracy. Probably in such cases classifiers with high

diversity but low quality were chosen to an ensemble.
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CHAPTER 5

PROPOSED FRAMEWORK FOR COMBINING ANCILLARY
INFORMATION WITH BIOMETRIC TRAITS

5.1 Background

The term of “ancillary information”, as discussed earlier in this dissertation, is used to

contrast with the “primary biometric traits” and describes the fact that the ancillary infor-

mation in themselves may not be suitable for the purpose of human recognition. However,

ancillary information such as the biographic and demographic information of a user (e.g.,

name, gender, age, ethnicity), or the image quality of the biometric sample, anti-spoofing

measurements, etc. are potential to be beneficial to the biometric system. The aim of this

work is to design fusion frameworks that can mitigate the limitations of existing frameworks

by simultaneously incorporating ancillary information in a biometric verification system. Fig-

ure 5.1 illustrates such a fusion framework integrating biometric match scores with ancillary

information by taking the fingerprint verification system as an example.

The Generalized Additive Model (GAM), as was explored in Chapter 2, is devised to

combine demographic attributes with biometric match scores and improve the matching

accuracy. The Bayesian Belief Network proposed in Chapter 3 can effectively combine anti-

spoofing measurements in the design of a biometric recognition system under spoof attacks.

These works inspire us to integrate the GAM and BBN design in a general way which can

retain all their hallmarks. However, the current public-domain anti-spoofing databases did

not collect the corresponding demographic attributes of subjects. Instead, experiments of the

proposed general fusion framework are conducted by integrating match scores with quality

scores and liveness scores to render a final accept/reject decision. Figure 5.2 illustrates the

general fusion framework by taking the fingerprint recognition system as the example.

To realize a fingerprint system capable of handling variations in the image quality as
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Figure 5.1: Illustration of the general fusion framework integrating biometric match scores
with ancillary information. It shows that the ancillary information of two samples, such as
quality scores and liveness scores, are self-reliant and independent with each other.
Meanwhile, only the biometric match scores are corresponding to both samples and the
identities they belong.

Figure 5.2: Illustration of the fusion framework integrating match scores with quality
scores and liveness scores from two fingerprint samples, and rendering a final accept/reject
decision.
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well as robustness against spoof attacks, three major components are required: (a) image

quality estimator yielding quality scores to indicate how good the image quality is [39, 132],

(b) spoof detector yielding liveness scores to indicate how likely the fingerprint is from a

live finger [66, 117], and (c) an effective fusion framework capable of incorporating quality

scores and liveness scores with the fingerprint match scores to make an optimal accept/reject

decision. Figure 5.2 shows a block diagram where image quality scores, liveness scores and

match scores extracted from a pair of fingerprint images are integrated together in a fusion

framework to render the final accept/reject decision.

In this chapter, we first categorize existing fusion frameworks incorporating ancillary in-

formation into two categories: (a) direct modelling, and (b) graphical modelling, based on

the relationship assumed between the variables (i.e., match scores, liveness scores and quality

scores). Then, these fusion frameworks are generalized to incorporate ancillary attributes

with biometric match scores by categorizing ancillary attributes into direct variables and

latent variables (as shown in Figure 5.3). The direct variables (such as liveness scores) which

explicitly affect the system targets (e.g., anti-spoofing capability or verification of an iden-

tity) are exploited as nodes via a BBN design, while the latent variables (e.g., demographic

attributes, quality scores or confidence measure) that do not directly influence the system

targets are exploited to update the scores of nodes in the BBN design via the GAM method.

Experiments are conducted with three variables, match scores, liveness scores and quality

scores, and experimental results are analyzed according to the proposed performance metrics

in Chapter 3, followed by a summarized finding of this work.

5.2 Related Literature

5.2.1 Introduction of Fingerprint Sample Quality

A fingerprint is a pattern of friction ridges on the surface of a fingertip. A good quality

fingerprint have distinguishable patterns and features that provide more useful information

for subsequent applications, i.e., verification or spoof detection. Several definitions [95] have
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Figure 5.3: Illustration of the proposed general fusion framework. Ancillary information is
categorized into direct variables (e.g. liveness scores) and latent variables (e.g.
demographic attributes and quality scores), where the direct variables are involved into the
BBN scheme as nodes and the latent variables are exploited to normalize the nodes of BBN
prior to fusion.

been given for quality measures as (a) the degree of extractability of the features used for

recognition, (b) the degree of conformance of fingerprint samples to some predefined criteria

known to influence the recognition performance [39, 132], and (c) the degree of texture

richness and general quality information, e.g., the sharpness, contrast, and detail rendition

of the image [15, 86]. A quality detector is an algorithm designed to assess the quality of a

fingerprint sample.

Figure 5.4 show the quality of the live and fake fingerprints fabricated using silicone

and playdoh materials, estimated using Image Quality of Fingerprint (IQF) freeware de-

veloped by MITRE1. It can be observed that fake fingerprints fabricated using different

materials obtained different quality values of the same finger. This is due to difference in

the noise component in the fake fingerprint samples fabricated using different materials. As

1http://www2.mitre.org/tech/mtf/
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a consequence, quality of the fake fingerprint samples usually vary across fabrication mate-

rials [99, 101]. Thus, emphasizing on the need of modelling influence of the sample quality

of the fake fingerprints across fabrication materials in a framework against spoof attacks.

(a) (b) (c) (d)

Figure 5.4: The quality measures of the fingerprint samples from (a) live finger and fake
fingerprints fabricated using (b) latex, (c) gelatin and (d) woodglue, using IQF
measurement on the LivDet 2011 database. It can be noticed that quality of the spoof vary
across fake fabrication materials.

5.2.2 Taxonomy on Fusion Frameworks against Spoof Attacks

In this work, we categorize the existing fusion frameworks that combine match scores with

liveness scores and image quality into: (i) Direct modelling or (ii) Graphical modelling (as

shown in Figure 5.5). This taxonomy is based on whether the dependence between the

variables involved is purely learned from the data or assumed via causal understandings.

(i) Direct modelling: Direct modelling based schemes attempt to favor an equivalent impact

from each involved variable, and the relationship among variables are purely learned from

the data.

Marasco et al. [68] proposed and compared different schemes for combining liveness

scores with match scores. Compared to sequential schemes that invoked the spoof detector

and the fingerprint matcher sequentially, parallel schemes that combined liveness scores and

match scores as a two-dimensional input variable to classifiers such as Decision Trees, Naive

Bayes and Neural Networks, were observed to result in a consistently higher accuracy. The
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Figure 5.5: Taxonomy of existing fusion frameworks incorporating match scores, liveness
scores and image quality.

authors remark that existing spoof detectors cannot be used for automated rejection of

biometric samples until their detection accuracies are substantially improved.

Rattani and Poh [98] proposed a fusion framework that combined biometric sample qual-

ity and liveness scores with fingerprint match scores. The framework was implemented using

three generative classifiers based on Gaussian Mixture Model (GMM), Gaussian Copula

and Quadratic Discriminant Analysis (QDA). The results indicated that the GMM classifier

provided the lowest overall error rate. The authors also established the benefit of fusing

both quality and liveness scores in a fingerprint verification system. Chingovska et al. [16]

proposed a fusion framework that incorporated LBP-based liveness scores with face match

scores using logistic regression.

(ii) Graphical modelling: Graphical modelling based schemes assume a causal relationship

between the variables. These schemes are often more accurate than direct modelling based

schemes because the estimation of conditional probabilities is often simplified by such as-

sumptions. Based on the assumptions about the relationship between the involved variables,

different configurations of graphical models may be designed.

Marasco et al. [68] proposed a Bayesian Belief Network (BBN) model that combined

match scores with liveness scores. This BBN (referred to as BBN-ML in this work) assumed
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a one-directional influence of match scores on liveness scores. Based on this configuration,

the conditional probability of an input fingerprint sample being from a genuine user, given

its liveness scores and match score, was inferred. The authors also demonstrated the effec-

tiveness of the proposed BBN over direct modelling schemes that did not explicitly assume

any relationship between match scores and liveness scores.

However, the image quality was not incorporated by Marasco et al. in their proposed

framework. Thus, the variation in the match score and liveness scores as a function of the

change in the sample quality was not taken into account. Further, the framework also did

not take into account the influence of latent factors - such as the type of sensor and fake

fabrication material (i.e., material-specific characteristics) - on the liveness scores. Note that

the fabrication materials can influence the quality of the fabricated spoofs and the liveness

scores as pointed in [102].

Rattani et al. [100] proposed a fusion framework that fused the match scores, quality

and liveness scores, while also accounting for the sensor influence, using a Bayesian frame-

work. Although the model was not further generalized to consider the influence of other

latent variables, it provided a good insight into the advantage of graphical modelling. The

results indicated that the performance of the proposed model in a multi-sensor scenario, was

comparable to a fusion framework that was trained and tested using fingerprint images from

the same sensor. As Rattani et al. ’s model is based on modelling a specific factor (i.e.. the

sensor influence) on match scores, it is not further discussed in this manuscript.

(iii) A brief introduction of the proposed modelling: It is noticeable that the quality-based

calibration approach in BBN-MLQc exploits quality scores to normalize the match scores

and liveness scores prior to integrating them into a BBN framework. An alternative nor-

malization method is to apply the GAM scheme introduced in Chapter 2 and normalize

match scores and liveness scores via a set of spline transformation functions (as shown in

Eqn. 2.7). Similar to the gender attribute combined with match scores in the Eqn. 2.7, the

quality scores after the categorization by Eqn. 3.9 and 3.10 are now used to divide matching
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scenarios into multiple cohorts.

y = f(x, q) = α0 +

pm∑
j=1

βj(x|q = j) + γ ∗ d+ ε. (5.1)

The additive model integrating match scores with quality scores relies on the combination

of discrete quality levels from both two samples (as shown in Eqn. 5.1). The number of

cohorts is denoted as pm. Suppose the quality scores have two levels, such as high and low,

then pm = 4 and four cohorts are listed as: “high vs. high”, “high vs. low”, “low vs. high”

and “low vs. low”. Consequentially, four different transformation functions are trained to

normalize the match scores before involving them into the BBN framework. Similar to the

match scores, the liveness score of each sample is normalized by the corresponding quality

scores via GAM (as shown in Eqn. 5.2) .

lnormi = f l(li, qi) = αl0 +

pl∑
j=1

βlj(li|qi = j) + γl ∗ dl + εl. (5.2)

To evaluate the effectiveness of the proposed GAM based normalization of liveness scores

and match scores, we generate the ROC curves of spoof detection accuracy and matching

accuracy before and after the normalization (as shown in Figure 5.6 and 5.7).

5.3 Experimental Results

The spoof images in the LivDet 2011 database are fabricated using the consensual method

which are supposed to be more difficult to detect than the non-consensual method. A

consensual procedure [134] (i.e., with the consent and collaboration of the user) for fake

fingerprint fabrication consists of the following steps: (a) a user is asked to press his finger

against a soft material, such as wax, play-doh or plaster, to create a mould that holds

a negative impression of the fingerprint; (b) a casting (fabrication) material such as liquid

silicon, wax, gelatin, or clay is poured on the mould; and (c) after the liquid solidifies, the cast

is lifted from the mould and is used as a fingerprint replica or fake finger. The casting (i.e.,
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(a) (b)

Figure 5.6: The performance of Spoof detection before and after updating the liveness
scores via the GAM framework. The quality scores are used as the covariate of GAM. The
samples are fabricated using a) silicone material and b) gelatin material.

(a) (b)

Figure 5.7: The performance of biometric matching system before and after updating the
match scores via the GAM framework. The quality scores are used as the covariate of
GAM. The samples are fabricated using a) silicone material and b) gelatin material.
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(a) (b) (c) (d)

Figure 5.8: Example of spoof images in the LivDet 2009 (a-b) and 2013 (c-d) databases
fabricated using consensual and non-consensual methods, respectively. These spoofs are
acquired using Biometrika sensor. Note that the spoof images are either of very low quality
(a-b) or partial (c-d).

fabrication) material should have high elasticity and very low shrinkage to avoid reduction

in volume as the cast cools and solidifies.

Figure 5.8 show the fake images acquired using Biometrika sensor in LivDet 2009 and

2013. It can be seen that the images are either of poor quality or partial owing to non-

consensual approach to fake fingerprint fabrication (LivDet 2013).

The VeriFinger SDK2 is used to generate match scores by matching all pairs of images

within and across all subjects for live and spoof impressions. The quality of live and spoof

impressions was obtained using the IQF freeware developed by MITRE3. The quality mea-

sure ranges between 0 and 100, with 0 being the lowest and 100 being the highest quality.

Finally, fingerprint liveness was assessed using the recently proposed spoof detection algo-

rithm based on local binary patterns (LBP) [85]. A two class Support Vector Machine (SVM)

(implemented using LIBSVM package) was trained using LBP features extracted from live

and fake images in the training set. The output score (probability estimate) of the SVM

was then used as a liveness scores. The LBP-SVM spoof detector provides a better spoof

detection accuracy over existing techniques as reported in [79].

The evaluation of the various BBN frameworks is conducted in terms of the spoof detec-

2http://www.neurotechnology.com/vf_sdk.html
3http://www.mitre.org/tech/mtf/
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Table 5.1: The spoof detection accuracy of the proposed BBN-AD fusion scheme on the
LivDet 2011 fingerprint database. The true detection rates (TDRs) and the false detection
rates (FDRs) are compared with two fusion schemes introduced in Chapter 3. Additionally,
the accuracy of the original spoof detector is provided as a baseline.

Various Biometrika Italdata Digital Sagem
Frameworks TDR at TDR at TDR at TDR at TDR at TDR at TDR at TDR at

1% FDR 10% FDR 1% FDR 10% FDR 1% FDR 10% FDR 1% FDR 10% FDR
BBN-AD 78.2 91.1 77.1 88.8 77.1 91.1 82.6 95.8

BBN-MLQc 70.1 91.1 52.6 84.8 81.2 95.8 85.6 97.2
BBN-MLQ 62.3 91.1 49.8 83.2 77.1 95.8 84.1 97.2

Spoof Detector 42.0 80.0 22.9 66.9 61.9 88.0 72.1 92.5

tion accuracy and overall performance. We used scores from the training set (see Table 3.3)

to train the fusion frameworks against spoof attacks and the scores in the testing part were

used for the performance evaluation. Specifically, the match score (m) and a pair of quality

values (q1, q2) as well as liveness scores (l1, l2) extracted from a pair of training images -

the input and the template which can be live as well as fake. This observation vector (m, l1,

l2, q1, q2) is mapped to one of eight classes: LLG, LLI, LSG, LSI, SLG, SLI, SSG, SSI (see

Table 3.2) and used for training various fusion frameworks; BBN-MQ, BBN-ML, BBN-MLQ,

BBN-MLQc and the GMM based direct modelling (referred to as DM-GMM) based scheme

based on joint density estimation of match scores, quality and liveness scores. Comparative

assessment of the various frameworks is done with BBN-M based only on the match scores

and trained using all the eight possible events during the biometric system operation (see

Table 3.2). Similarly, the observation (m, l1, l2, q1, q2) extracted from a pair of testing

images - the input image and the template sample - is assigned to one of the eight classes

and the error rates of these frameworks are evaluated. The detailed performance evaluation

metrics used in this work were discussed in section 3.2.3.

5.4 Summary and Future Work

In this work, we proposed two Bayesian Belief Network (BBN) models that can effectively

integrate liveness scores with quality scores and match score. The proposed BBN models

have two different configurations distinguished on the basis of how the quality scores are
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Table 5.2: The overall acceptance accuracy of the proposed BBN-AD fusion scheme on the
LivDet 2011 fingerprint database. The genuine acceptance rate rate (TDRs) under
different overall false acceptance rates (OFARs) are compared with two fusion schemes
introduced in Chapter 3.

Various Biometrika Italdata Digital Sagem
Frameworks GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at GAR [%] at

OFAR = 1% OFAR = 5% OFAR = 1% OFAR = 5% OFAR = 1% OFAR = 5% OFAR = 1% OFAR = 5%
BBN-AD 81.2 88.3 79.2 89.0 82.6 90.2 80.2 88.6

BBN-MLQc 80.5 88.3 72.5 89.0 84.8 88.6 75.3 88.3
BBN-MLQ 75.6 85.2 72.1 88.6 83.0 87.6 72.3 87.2

incorporated. This study also compares the proposed BBN models with existing fusion

frameworks against spoof attacks. Comprehensive experiments are conducted on the LivDet

2011 dataset. Results indicate that the proposed BBN-MLQ and BBN-MLQc methods

consistently outperform existing fusion frameworks. Based on the experiments, the following

conclusions can be drawn:

• Causal relationship: Fusion frameworks that model the appropriate relationship

between the considered variables, such as the influence of the quality on liveness scores,

obtain better performance.

• Benefits of quality: Incorporating image quality is beneficial in the fusion framework

(BBN-MLQ and BBN-MLQc). This is because quality scores can take into account

the material-specific characteristics of spoof fabrication materials. Further, the models

incorporating quality also have benefits (better performance) when evaluated on novel

spoof fabrication materials [102].

• The role of quality: These quality scores can be incorporated as features (as in

BBN-MLQ) or used as a normalization parameter (as in BBN-MLQc). Experimental

results suggest the efficacy of quality when used as a normalization parameter rather

than a feature, since the latter makes the Bayesian Belief Network more complicated

to be interpreted and calculated.

As a part of future work, the following experiments and analysis will be done:
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• The role of latent variables: The consistently better performance of BBN-MLQc

over existing frameworks show the efficacy of quality-based clusters in adapting the

liveness scores and match scores against the sample quality. Even for a single acqui-

sition device, clusters of quality values (Qci) can be obtained corresponding to image

resolution, ridge and valley clarity, noise level, and spoof fabrication materials. Fur-

ther, quality and liveness scores are also influence by the acquisition sensor used. As a

part of future work, these latent variables i.e., quality clusters and sensor information

will be incorporated in the BBN models. Further, the role of these latent variables will

be analyzed for novel sensors and fabrication materials.

• Semi-supervised learning in BBN models: Our experimental results suggest that

performance of all the BBN models drops across materials. Hence, automatically

adapting these BBN models to novel spoof materials is another research avenue. In

other words, models will be incorporated with the learning ability to automatically

detect and adapt themselves to spoof samples generated using novel materials.

• Effect of the baseline anti-spoofing algorithms: Continuous efforts are being

directed towards developing spoof detection schemes which offer lower error rates, also

evident by three spoof detection competitions (LivDet) conducted between 2009 and

2011. The performance of existing and proposed fusion frameworks will be evaluated

on incorporating liveness scores obtained using novel spoof detection schemes and

comparative assessment will be drawn with respect to existing ones.

• Cross database matching: For the real time applications, these learning-based

fusion frameworks against spoof attacks should be able to generalize well on cross

database matching i.e., training using one database (say LivDet 2009) and testing us-

ing other (say LivDet 2011). As a part of future work, we will develop more robust

models that can generalize well across databases.
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CHAPTER 6

SUMMARY

While the primary purpose of a biometric recognition system is to ensure reliable and accu-

rate human recognition, ancillary information may be available in most biometric application

scenarios. They may be collected from official documents (such as demographic information

of a user) or deduced from the collected biometric data itself (such as the image quality of a

biometric sample, and the spoof measures). This raises the research question of whether this

ancillary information can be effectively combined with biometric match scores to improve

the recognition accuracy of a system. This dissertation attempts to investigate this question

and addresses several challenging issues at the same time. A summary of the contribution

is listed below:

• We design a Generalized Additive Model (GAM) that learns an optimal transformation

function to normalize the match scores according to demographic attributes prior to fu-

sion. The empirical analysis shows that the resulting framework can be used to predict

in advance if exploiting match scores with certain demographic attributes is beneficial

in the context of a specific biometric matcher. Experimental results conducted on mul-

tiple databases indicate that the resulting framework proves to be effective even in the

situation where the attributes are unreliable or incorrect to some extent. These advan-

tages of GAM mitigate the concerns associated with issues of “lack of distinctiveness”

and “lack of reliability” encountered when integrating ancillary information.

• We design a Bayesian Belief Network (BBN) to appropriately model the relationship

between biometric scores and ancillary factors, and exploit the ensuing structure in

a fusion framework. As a graphical model, the BBN can utilize causal assumptions

to reduce the computational complexity of estimating the joint probability of a fusion

framework with multiple covariates. More important, by assigning different weights
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to match scores and other ancillary factors (e.g. spoof scores) from a biometric recog-

nition perspective, the overall matching accuracy after combining ancillary factors is

consistently better than other typical classifiers.

• We design an ensemble of one-class classifiers to improve the classification performance

in the context of biometric anti-spoofing. We adopt a One Class Support Vector

Machine (OC-SVM) approach that predominantly uses training samples from only

a single class, i.e., the live class, to generate a hypersphere that encompasses most

of the live samples. The goal is to learn the concept of a “live” biometric sample.

The boundary of the hypersphere is refined using a small number of spoof samples.

The proposed method uses an ensemble of such OC-SVMs based on different feature

sets. Experimental results show the advantages of the proposed ensemble of OC-SVMs

for detecting spoofs generated from previously “unseen” materials, or collected via

previously “unknown” sensors.

• We design a general fusion framework to combine ancillary information via the afore-

mentioned GAM and BBN schemes. We utilize the quality measure of biometric sam-

ples as an example to test the scalability of the proposed fusion framework. Experi-

mental results show that a consistent performance improvement is obtained using the

proposed framework, and a significant accuracy benefit (2.5% to 10.5%) is observed

compared to other commonly used direct modeling frameworks.

In conducting the studies on a general fusion framework as proposed in this dissertation,

a number of areas for future work can be explored by researchers in ancillary informa-

tion extraction. One obvious direction for future work is to incorporate extensive ancillary

information via the proposed fusion framework, such as the confidence of age estimation

algorithms, the uncertainty measurements from anti-spoofing algorithms, and so on. Simi-

lar to the ancillary attributes discussed in this thesis, many of these attributes are reliant
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of a single biometric sample rather than a pair of samples. Therefore, they can be simply

included as latent variables via the GAM architecture.

Moreover, the proposed framework can be extended by combining match scores from

multiple biometric modalities. Along with the usage of additional biometric modalities, it

is possible to independently extract extra ancillary information from each of them, which

can lead to significant performance improvement. However, directly applying the proposed

framework to a large-scale database may result in degraded performance. The possible

reason is that both the GAM and BBN models depend on assumptions of relationships

between ancillary attributes and match scores. In other words, when these relationships be-

come complex, a validation of the assumptions is required before implementing the proposed

framework.

The usefulness of the proposed one-class classification approach can be further advanced

with the development of feature engineering, such as deep neural network based feature

selection. Recent research has pointed out that the architecture of deep neural networks is a

promising technique for learning robust features. It is possible to further improve the anti-

spoofing accuracy by training an unsupervised deep neural network and extracting generic

underlying features, and then applying the proposed ensemble of one-class SVMs on the

feature sets learned from the networks. Alternately, convolutional auto-encoders can be used

to formulate this as a one-class problem. Because the proposed OCC approach is scalable

and computationally efficient, it is a promising framework to exploiting more robust and

sophisticated features and eventually addressing the performance degradation issue under

cross-database and cross-attack scenarios.
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